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Abstract

The ocean environment is inhomogeneous on all scales of interest to sonar operation.
These inhomogeneities form discontinuities in the physical properties in the medium
and thereby intercept and reradiate a portion of the acoustic or seismic energy incident
upon them (SCATTERING). The sum total of the scattering contributions from all
the scatterers form REVERBERATION. Full wave theory models are developed in
this thesis for discrete as well as diffuse reverberation. Elasticity, 3-D and waveguide
effects are emphasized.

The fundamental physics of the 3-D discrete reverberation from bottom facets
such as sediment covered ridge is addressed by means of a numerical model based
on a hybrid wavenumber integration - boundary element (WI-BEM) approach. The
bottom facet is assumed to be a 2-dimensional inclusion in an otherwise horizontally
stratified seismo-acoustic environment. The elastic wave equations can then be sep-
arated by applying the spatial Fourier transform in the axial direction, leading to
an integral representation for the total field in terms of solutions to 2-dimensional
problems. These solutions are determined by a modified version of an existing WI-
BEM model, incorporating the additional elastic boundary conditions and with the
Green's functions for the stratified seismo-acoustic environment determined by a 3-
dimensional version of SAFARI. The WI-BEM approach inherently decomposes the
total field into basic wave components, thus enable us to visualize scattering into
seismic interface waves and shear waves in the bottom.

A perturbation approach is used to model the diffuse scattering from horizontal
roughness patches on the ocean bottom. A fixed cylindrical coordinate representa-
tion of the virtual seismic sources for the scattered field is introduced. It enables the
incorporation of waveguide effects and the efficient computation of the scattered far
field. The model is used to simulate numerically the scattering from a rough patch in
the environment representing some scenarios in the ARSRP mid-Atlantic experiment.
The effects of roughness statistics, bottom elasticity and waveguide physics are dis-
cussed. The principal conclusion is that Lambert's law is inadequate for representing
bistatic bottom reverberation.
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Chapter 1

Introduction

1.1 Motivation

The ocean environment is inhomogeneous on all scales of interest to sonar operation.

These inhomogeneities might be within the water column (such as schools of fish) or

in the sea bed (bottom inclusion), or could be rough interfaces (the tidal waves on

the sea surface, the ridges on the sea-bed). These inhomogeneities form discontinu-

ities in the physical properties in the medium and thereby intercept and reradiate

a portion of the acoustic or seismic energy incident upon them. This reradiation is

called SCATTERING, and the sum total of the scattering contributions from all the

scatterers is called REVERBERATION. Since the reverberation distorts a transmit-

ted signal, it plays a significant role in the use of sonar systems for target detection,

localization and classification, both as noise and signal.

As noise, the reverberation is extremely difficult to eliminate in sonar signal pro-

cessing due to the fact that it is generated by the signal itself. On the other hand,

the reverberation contains the information of the target and the environment, which

can be extracted using method such as matched field processing (MFP). In so doing,

the reverberation becomes a "signal".

As in pursuing understanding of any natural phenomena, to understand the mech-

anism of reverberation and its effects on sonar signal processing, we have to resort

to both EXPERIMENT and MODELING. First, we observe the phenomena (exper-



Figure 1-1: The Big Picture: How our work fits in.

iment). Then, we try to explain the observed data by attributing them to known

processes (modeling). Thus, we get some preliminary understanding of what is hap-

pening. This is an iterative process. As we gain better understanding, we can design

better experiments and develop better models. That, in turn, furthers our under-

standing of the phenomena. Ultimately, the experiment and modeling work provided

us with good understanding of the physical processes as well as specific techniques,

which will facilitate better applications. The process in shown in Fig. 1-1.

The reverberation in the real ocean environment calls for sophisticated mathe-

matical/numerical models. As will be described in the next chapter, there are many

kinds of scatterers and processes that contribute to the seismo-acoustic reverberation.

It is virtually impossible to get a grip on the whole issue once and for all. Mathemat-

ical models can act as controlled experiments, in which the different factors can be

isolated and analyzed separately, then put together. In some scenarios, such as the

3-dimensional reverberation, it is difficult enough to make sense of the results from



numerical models, let alone to solely rely on intuition to imagine what will happen.

1.2 Objectives

Within the context of the endeavor to understand the ocean reverberation (Fig. 1-1),

the emphasis of this thesis is mainly on developing wave theory models (the upper

left block in that figure), and using these models to further our understanding of the

ocean reverberation (the middle block).

Among the many kinds of reverberation mechanisms in the ocean environment,

this thesis attempts to address two types: DISCRETE and DIFFUSE scattering,

their definition in the context of this thesis is given in the following.

In the received signal by a sonar in the ocean environment, discrete reverberation

appears as the spikes occurring at discrete times and ranges, while diffuse reverbera-

tion appears more noise-like in the background. Discrete reverberation is caused by

distinct features (FACET), such as sea mounts or ridges, and is in general consid-

ered a deterministic problem. Diffuse reverberation is caused by small scale features,

such as the dust particles in the water column or the rough seabed. These features

changes too frequently to be described deterministically and are numerous enough

to be treated as stochastic ensembles. Actually, by examining diffuse and discrete

reverberation, two extremes of the scatterer correlation lengths are covered. Discrete

reverberation is caused by features with correlation lengths much longer than the

acoustic wavelength and diffuse reverberation is caused by features with correlation

lengths close to the acoustic wavelength. Of course, the real scatterers in the ocean

environment spread all over the correlation length scale. But by examining the ex-

tremes, we gain important insights into the scattering mechanism. By changing the

parameters in our model, some intermediate cases can be covered as well.

The objective of this thesis is to develop general mathematical/numerical models

for discrete and diffuse scattering. These are general models in the sense that: First of

all, they are full wave theory models rather than ray or normal-mode approximation.

Second, some of the features generally ignored in the simpler models are included. So



the models developed here will be more versatile and provide a more complete picture

of the scattering mechanism. On the other hand, they serve as bench-marks for the

other simpler models. These features are:

* Three-dimensionality

* Elasticity

* Waveguide Effects

1.3 Approaches

Because of the different attributes of the discrete and diffuse scattering, we will de-

velop separate models for each of them. But the core of both models will be the

Wavenumber Integration Method [35]. This method is based on separation of vari-

ables through integral transforms, both for time and spatial domain analysis. One

of the main advantages of the integral transform methods is the inherent decomposi-

tion of the total solution in both temporal and spatial spectral components, enabling

interpretation of the results in terms of basic wave physics. The disadvantage of the

integral transform methods is that the geometry must be separable. But the back-

ground environment (i. e., without the scatterers) we are dealing with is modeled as

horizontally stratified media, which is a separable geometry. Of course, no real ocean

consists of layers with exact horizontal boundaries. However, the mechanical proper-

ties of the ocean environment changes at a much faster rate in the vertical direction

than in horizontal direction, so horizontal stratification is a good first approximation

in most scenarios. As corrections, either slow varying range dependencies or interface

roughness can be introduced. The latter is precisely one of the focuses of this thesis.

1.3.1 Discrete Scattering

Among the existing discrete scattering models, the coupled mode approach of Evans

[17] is capable of modeling the 2D reverberation from facets, but is limited to purely

fluid environments. It is therefore inapplicable to analysis of elastic scattering by ice



and bottom facets. Parabolic equation approaches allow sloping environments, but

although some elastic PEs are being developed for elastic media and two-way prop-

agation, they are not suited for modeling the reverberation in high-contrast media,

which is exactly the basic characteristics of the environment that causes the discrete

scattering.

Waterman developed Transition-matrix formulation for acoustic [83] and elastic

[84] wave scattering. He expressed the incoming and scattered wavefield in terms of a

series of "basic functions". The coefficients for the scattered field and those of the in-

coming field were linked by a matrix: Transition-matrix (T-matrix). The elements in

the T-matrix can be computed by the surface integrals of the basic functions and their

derivatives. Any orthogonal and complete set of functions can be selected as the ba-

sic functions. Subsequently, Ingenito [32] and Hackman [29] used T-matrix approach

to produce the waveguide reverberation, where multiple scattering is accounted for

through a scattering series.

Full discrete method such as Finite Difference approach has been applied to bot-

tom scattering [14] and Arctic ice keel scattering [25, 26, 24]. Finite Difference and

Finite Element [52] methods are very general because of their flexibility regarding

the shape of facets. But they tend to be extremely computationally intensive since

the entire environment has to be discretized by a mesh whose size is small compared

to the wavelength. Thus these methods are limited to short range scattering even in

two-dimensional case.

Compared to FD and FEM, Boundary Element Method (BEM) has the distinct

advantage in that only the surface of the facet needs to be discretized, thus reduc-

ing the computational intensity substantially. The radiation conditions which create

problems for FEM and FD in the frequency domain are automatically included in

the wavefield representation. Schuster and Smith [65] combined a boundary integral

method with a wavenumber integration approach to analyze scattering by rigid inclu-

sions in a stratified fluid waveguide. Dawson and Fawcett [13, 21, 12, 20] used a similar

approach to address the reverberation from the waveguide boundaries. However, both

were limited to fluid waveguide and ideal, homogeneous boundary conditions.



Gerstoft and Schmidt [27] and Kawase [36, 37, 38] developed 2-Dimensional WI-

BEM models capable of treating the full elastic media. In Gerstoft and Schmidt's

model, both the exterior and interior domains may be stratified with any combination

of acoustic, elastic and transversely isotropic layers.

The WI-BEM approach will be used in modeling the facet scattering in this thesis.

Other than the reasons mentioned above, since the background ocean waveguide is

horizontally stratified, the three-dimensional elastic Green's functions needed in the

WI-BEM formulation can be computed efficiently by means of the existing SAFARI

code. Since both the inner and outer domains can be stratified elastic media, the

importance of out-of-plane elastic scattering by facets can be analyzed.

1.3.2 Diffuse Scattering

For the diffuse scattering caused by rough interface, a fair amount of models have been

developed using various approaches. Among them are Rayleigh method [56, 55], the

so-called boss approach [76, 77, 78, 79, 75], the Kirchhoff Approximation [40, 43] and

the method of small perturbations [73, 41, 63], to name a few. Detailed descriptions

and comparison will be given in Section 5.2. As described there, we here choose to

use perturbation approach to model the diffuse scattering.

There have been several perturbation models developed for acoustic scattering,

for example, Dacol and Berman [11] developed a second order perturbation approach

to the scattering from a randomly rough interface between a fluid and an elastic half-

spaces. However, their formulation is not easily generalized to predict the scattered

field in a waveguide environment.

Schmidt and Kuperman [41, 63] overcame this problem by combining the physics

of scattering from a rough interface and the wave guide physics governing the mean

field propagation. Their self-consistent perturbation approach can be used to predict

the effect of rough interfaces on the mean field as well as the higher-order statistics of

waveguide reverberation. This philosophy works well with our objectives and it will

be the choice of approach for our modeling of diffuse scattering.



1.4 Thesis Organization

In chapter 2, terminologies are defined. The types and causes of known ocean acoustic

reverberation are described. Some of the modeling approaches are reviewed. Then we

describe the Acoustic Reverberation Special Research Project (ARSRP) experiment.

Finally, the central issues of this thesis are discussed.

In chapter 3, the motivation of treating the two-and-half dimensional facet rever-

beration problem is given and the exact problem is defined. Then the formulation

of the 3-D extension of the existing 2-D WI-BEM model developed by Gerstoft and

Schmidt [27] is presented.

The numerical simulation of a canonical problem is presented in chapter 4, where

the scatterer is an elastic cylinder submerged in a homogeneous elastic medium. The

solution is compared to an analytic solution. The result validates our 2-1/2D WI-

BEM model and code. Then the reverberation from a sediment covered ridge is

presented to address the effect of sediment cover. The significant wave type conversion

associated with elasticity is observed in the scattered field. Subsequently, a shallow

water scenario is shown. The three-dimensional effects and the modal excitation are

highlighted, showing the versatility of our model.

We turn to diffuse scattering in chapter 5 and 6. The 3-D perturbation formula-

tion is presented in chapter 5, with brief descriptions of various approaches of rough

interface scattering. A fixed cylindrical coordinate representation is introduced. It

enables the incorporation of waveguide effects and the efficient computation of the

scattered far field.

In chapter 6, the modeling of the interface roughness is discussed. Then the

scattering from a rough patch in the environment representing some scenarios in the

Acoustic Reverberation Special Research Program (ARSRP) experiment is presented.

We use realization for the patch profile, both isotropic and anisotropic. This problem,

especially the anisotropic patch one, is inherently three-dimensional. The dependence

of the scattered field on the roughness spectrum is shown. After that, patch scattering

in a shallow water environment is treated with emphasis on the roles of elasticity and



waveguide effects. Finally, Lambert's law is discussed, and it is shown that in general

it does not hold in scenarios we considered.

A summary of the thesis and suggestion for future work are given in chapter 7.



Chapter 2

Ocean Acoustic Reverberation

2.1 Classical Reverberation Terminologies

2.1.1 Sonar Equation

The many phenomena and effects peculiar to underwater sound produce a variety of

quantitative effects on the design and operation of sonar equipment. These diverse

effects can be conveniently and logically grouped together quantitatively in a small

number of units called the sonar parameter, which, in turn, are related by the

sonar equations. These equations are the working relationships that tie together

the effects of the medium, the target, and the equipment; they are among the design

and prediction tools available to the engineer for underwater sound applications.

For monostatic active sonar operating on the reverberation background, the sonar

equation is

DT = [SL - 2TL + TS] - RL, (2.1)

where

* parameters determined by the equipment are:

projector source level SL, detection threshold DT,

* parameters determined by the medium are:

transmission loss TL, reverberation level RL,



* parameter determined by the target is:

target strength TS.

On the right hand side of the sonar equation, the terms within the bracket is the

received signal level. Essentially, if the sonar is used as detection device, when the

input signal-to-noise ratio is above the detection threshold DT, a decision will be

made that a target is present. Otherwise, the decision will be made that the target

is absent. Sonar equation corresponds to the condition that the target is just being

detected.

As we mentioned before, the reverberation could be either signal or noise, depend-

ing on the circumstances. As signal, the discrete or diffuse scattering effects will be

included in target strength TS. As noise, these effects will be included in reverber-

ation level RL. In what follows, we shall define some quantities that describe these

scattering effects.

2.1.2 Scattering-Strength

The fundamental ratio in the classical reverberation description is called scattering

strength. It is the ratio, in decibel units, of the intensity of the sound scattered by a

unit area or volume, referred to a unit distance, to the incident plane-wave intensity;

specifically,

S = 10 log iscat (2.2)
'inc

In the equation above, Iinc is the intensity of the incident plane wave. Icat is the

intensity of the sound scattered by an unit area or volume, measured at unit distance

from the scatterer.

It is obvious that the scattering-strength is a function of the scattering direction.

Traditionally, due to the monostatic usage of sonar (same sonar as both transmitting

and receiving array), only the back scattering is concerned. In the back scattering

direction, S is termed backscattering strength.

A related terminology is the scattering cross section (m, for volume scattering



and ms for surface scattering). It was originally used in radar applications. As the

name suggested, it has the unit of area, given by the ratio of scattered power to the

intensity incident upon the unit area or volume of the scatterer. Intuitively, it can

be imagined to be the area spanned by the scatterer, which captures all the energy

going through and reradiates it in different directions.

Scattering strength is the measure of scattering in one particular direction, while

the scattering cross section is the measure of the total scattering. If it is assumed that

the scattering is uniformly distributed over a sphere (for volume scattering strength

S,) or hemisphere (for surface scattering strength Ss), it follows that

S, = 10 log m , (2.3)
47'

S, = 10 log m (2.4)
2w

Another concept frequently used in sonar engineering is the equivalent plane-

wave reverberation level. This is the level of the axially incident plane wave

which produces the same hydrophone voltage across the hydrophone terminals as

that produced by the received reverberation.

2.1.3 Target-Strength

In active sonar the parameter target strength refers to the echo returned by an un-

derwater target. Such targets may be objects of military interest, such as submarines

and mines, or they may be schools of fish sought by fish-finding sonar. Excluded from

the category of "targets" are inhomogeneities in the sea of indefinite extent, such as

scattering layers and the ocean surface and bottom, which, because of their indefinite

size, return sound in the form of reverberation instead of as echoes.

In the context of the sonar equations, target strength is defined as 10 times the

logarithm to the base 10 of the ratio of the intensity of the sound returned by the

target, at a unit distance from its "acoustic center" in some direction, to the incident

intensity from a distant source;



Ii

where I, is the intensity of return at unit distance and Ii is the incident intensity.

As we can see, the target strength was originally used in connection with the echoes

produced by discrete targets, while scattering strength as defined here was intended

to be used in connection with reverberation from extended inhomogeneities. Other

than that, target strength is similar to the scattering strength in the backscattering

direction.

2.1.4 Limitations of the Classical Descriptors

The sonar equations are not always adequate in many scenarios. One limitation is

produced by the nature of the medium in which the sonar operate. The sea is a

moving medium containing inhomogeneities of various kinds, together with irregular

boundaries, one of which is in motion. Multipath propagation is the rule. As a

result, many of the sonar parameters fluctuate irregularly with time, while others

change because of unknown changes in the equipment and the platform on which it

is mounted. Because of these fluctuations, a "solution" of the sonar equations is no

more than a best-guess time average of what is to be expected in a basically stochastic

problem.

Another problem is that the sonar equation is a relationship in terms of intensities.

There is no phase information. In many applications, for example, matched filed

processing, phase information is extremely important. This is one of the reasons that

in this thesis, we do not use the classical reverberation descriptors. Instead, all the

field components (displacements and tractions) and their phases are considered.

2.2 Types and Causes of Reverberation

The reverberation-producing scatterers in the sea are of three basically different

classes. One type of scatterer occurs within the water column or the sea-bed and



produces volume reverberation. Sea-surface reverberation is produced by scat-

terers located on or near the sea surface (such as surface bubbles), and bottom re-

verberation originates at scatterers on or near the sea bottom. Sometimes the last

two can be analyzed similarly as rough interface scattering, but bottom reverberation

involves volume reverberation from inside the sediment or seabed [45].

2.2.1 Volume Reverberation

One kind of scatterers responsible for volume scattering appear to be biological in

nature; that is, they are a part of the marine life existing in the sea. Nonbiological

sources such as dusts and sand particles, thermal microwakes, have been shown to be

insignificant contributors to the scattering strength observed at sea [54]. It was also

observed [19] that the volume scatterers were not uniformly distributed in depth, but

tended to be concentrated in a diffuse layer called the deep scattering layer (DSL)

caused by schools of marine life.

At frequencies in excess of 20 kHz, the scatterers responsible for the DSL are likely

to be zooplankton, or the smaller marine animals that feed upon the phytoplankton

and are in turn fed upon by small pelagic fish. Examples are siphonophores and

cephalopods. At lower frequencies from about 2 to 10 kHz, the dominant scatterers

are the various types of fish that possess a swim bladder. It amounts to an internal

air bubble that becomes resonant at a frequency which depends on the size and depth

of the fish.

It was observed that the DSL showed the diurnal migration with depth. That is,

it shifts upward at sunset and downward at sunrise. It is likely due to the marine

animals that causes the volume reverberation migrating to keep the intensity of light

illumination constant at the depth of the layer.

Another source of volume scattering is internal-waves. Garrett and Munk [3]

modeled the space-time scales of internal waves. Subsequently, Flatte, Dozier and

Tappert [22, 15] examined the scattering effect of internal waves.



2.2.2 Sea-Surface Reverberation

Because of its roughness and the possibility of the occurrence of entrapped air bubbles

just beneath it, the sea surface is a profound scatterer of sound. This scattering

has long been noted to be responsible for the reverberation received in horizontally

pointing sonar under conditions such that the sound beam is not carried down into

the depths of the sea by refraction.

Experiments [82] shows that the scattering strength S, increases with wind speed

at low grazing angles, but decreases with wind speed at high angles near normal

incidence, with a "crossover" near 800. This peculiar behavior was attributed [80] to

different processes responsible for the backscattering over different ranges of angle. At

low angles (< 300), the scattering was attributed to a layer of air bubbles just beneath

the sea surface, for which observational evidence was presented; at intermediate angles

(300 to 700), scattering from the rough interface was invoked as the dominant process,

and at high angles (700 to 900), the return was postulated to originate as reflection

from normally inclined wave facets acting as tiny acoustic mirrors.

2.2.3 Sea-Bottom Reverberation

Like the sea surface, the bottom is an effective reflector and scatterer of sound and

acts to redistribute in the ocean above it a portion of the sound incident upon it.

It was observed at an early date that the reverberation from the seabed was greater

over rocky bottoms than over mud bottoms. It has since become customary to relate

bottom scattering strength to the type of bottom, such as mud, silt, sand, boulders,

rock, even though it is realized that the size of the particles comprising a sedimentary

bottom is only an indirect indicator of acoustic scattering. Actually, the roughness of

the sea bottom appears to be the dominant mechanism determining characteristics

of the backscattering.

However, since the sea bottom is partly transparent to sound, in the sense that

a portion of the incident acoustic energy is transmitted to the earth below, bottom

type must in part determine the partition of energy between the water above and the



bottom beneath. As a matter of fact, this thesis has in-depth investigation about the

effects on the reverberation of the seabed properties, such as elasticity.

In addition to the roughness, other processes may, in some circumstances, play a

significant role in the scattering process. One is the particulate nature of sedimentary

bottoms, where each sedimentary particle may itself be imagined to be a scatterer

of sound, and where the return of sound from the bottom is produced by a form of

volume reverberation within the bottom itself.

2.3 Other Reverberation Models

To present a more complete picture, here we describe some of the reverberation models

that were not covered in Chapter One, and have some relevance to the thesis one way

or the other. It is by no means exhaustive.

2.3.1 Lambert's Law

Lambert's law [30] is a simple classical model of rough surface scattering of sound

and light.

The typical rough interface scattering scenario is shown in Fig. 2-1. Sound of

intensity Ii is incident at angle 0 on the small surface area dA. The power intercepted

by dA will be Ii sin OdA. This power is assumed to be scattered proportionately to the

sine of the angle of scattering, so that the intensity at unit distance in the direction

¢ will be,

I, = pi sin 0 sin OdA, (2.6)

where p is a proportionality constant. For a unit area we have, on taking 10 times

the logarithm of each side,

10log- = 10 log · + 10 log(sin 0 sin 0). (2.7)

In the backward direction, for which = - - 0,
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Figure 2-1: Scattering of a Plane Wave on a Rough Surface

SB = 10 log A + 10 log sin2 0. (2.8)

Thus, by Lambert's law, the backscattering strength must vary as the square of

the sine of the grazing angle. If all the incident acoustic energy is redistributed into

the upper medium, with none lost by transmission into the medium below, then it can

be shown by integration that p = ,; the normal-incidence backscattering strength

would therefore be 10log(!) = -5dB. It should be emphasized that the law rests

on a particular assumption concerning the redistribution of the scattered energy in

space. Although many materials follow Lambert's law closely in scattering light,

none does so exactly. Lambert's law applies specifically to the radiation of light by

radiant, absorptive materials [30]; the "law" should properly be called Lambert's

"rule" for scattering. Nevertheless, it has been shown to be a good description of the

backscattering of sound by very rough bottoms.



2.3.2 Volume Scattering Models

As one of the pioneers in developing models for volume scattering, Stockhausen [68]

derived a volumetric backscattering strength expression assuming that the water-

sediment interface is flat and refracting, and with the homogeneous sediment con-

taining a uniform set of solid spherical particles which act to scatter the acoustic

energy. Treating the small spheres as uncorrelated point scatterers, he employed

Morse's expression [51] which is valid for scattering from spheres much smaller than

a wavelength. In his model, Stockhausen represented all the scattering processes by

a single volume backscattering cross section without further exploring any physical

mechanism.

There is experimental evidence that the backscattering strength has very weak

frequency dependence over the frequency range 1-100 kHz and has an angular depen-

dence proportional to sin 0 for grazing angles 0 from 5 to 50 degrees. To interpret

this, Ivakin and Lysanov [34, 33] proposed that the scattering is due to the sharply

anisotropic random inhomogeneities, which are large-scale in the horizontal plane and

small-scale in depth in the sediment. They used the Born approximation to derive

an expression for the equivalent scattering strength.

Tang [69] in his thesis and Tang and Frisk [70, 71, 72] in later papers discussed

in detail the scattering from a random layer or half-space where the sound speed is

assumed to be a constant plus a small random component. An integro-differential

equation method was applied. An interesting point was that the spatial correlation

length of the scattered field could be used to infer the correlation length of the scat-

terers. This provides a way of inverting for the bottom parameters critical to bottom

scattering by measuring the scattered field using multiple receivers. Also taken into

consideration was the anisotropy of the scatterers. Besides examining the combina-

tion of interface roughness and volume inhomogeneity effects, an attempt was made to

solve the near-field problem in low-frequency scattering when the far-field assumption

was not appropriate anymore.



2.3.3 Normal Mode Reverberation Models

In shallow water, the waveguide plays a very important role in the scattering and

reverberation process. So normal modes will be a good approximation in the far

field. Bucker and Morris [9] introduced the basic idea of using normal modes for

reverberation calculations. It was developed further by Zhang and Jin [85]. In these

models, normal modes were used to calculate the acoustic energy propagating from

the source to the scattering area, and from the scattering area to the receiver. At the

scattering patch each mode is decomposed into up- and down-going waves, then ray-

mode analogies and empirical scattering functions were used to compute the scattering

energy.

In a recent paper, Ellis [16] extended this work by using group velocities to obtain

the travel times for each mode pair, and by further developing the ray-mode analogy.

Ellis examined the effects of summing the modes coherently or incoherently and of

including the time spreading due to the modal group velocities. Calculations show

excellent agreement with some ray-based models, and using the Lambert bottom-

scattering coefficient as the only adjustable parameter, good agreement is obtained

with some measured shallow-water reverberation.

In essence, these models are still classical reverberation models in the sense that

they are dealing with terms in sonar equation.

2.4 ARSRP Experiment

Beginning in 1989, the Office of Naval Research (ONR) initiated a Acoustic Rever-

beration Special Research Program (ARSRP). The objectives are three-fold: (1) to

develop and expand the physics of low frequency acoustic scatter from the air/sea

boundary zone and the ocean bottom/subbottom; (2) to quantify the essential envi-

ronmental properties that govern or control the low frequency acoustic scattering; and

(3) to provide the theoretical and numerical tools to properly predict low frequency

acoustic reverberation.

In July 1993, the Main Acoustics Experiment (MAE) of the ARSRP was carried



out on the western flank of the Mid-Atlantic Ridge (MAR). Two research vessels were

used to obtain mono- and bistatic reverberation from select bathymetric features of

geomorphology characteristic to the MAR. Naturally occurring bottom morphology

was exploited in the experimental design to minimize ambiguity in the receiving-array

measurements and provide corridors for both direct-path (within 1/2 convergence

zone (CZ)) and longer range waterborne propagation to these select sites.

In the MAE, acoustic waveforms were transmitted from the vertical source array

of a slowly moving research vessel (RV) to probe scattering sites spread over wide

areas on the western flank of MAR. Echo returns are measured with horizontally

towed line arrays.

75% of MAE involves what is known as the B'-C' Corridor Experiments (Fig. 2-2).

The B'-C' corridor is the western portion of a much longer segment valley that extends

to the MAR proper. The western end of the corridor is curtailed by a highly lineated

outside-corner ridge roughly 30 km in length known as B'. The eastern end is sealed

by a rounded inside-corner promontory known as C'. The water-column sound-speed

structure coupled with the source depth leads to a conjugate depth of 3800m for the

RV CORY CHOOUEST transmissions, and a 1/2 CZ range of roughly 33km.

The B'-C' corridor was selected for a variety of reasons. First, it became clear

that bathymetry to the west of the sites has greater excess depth and is therefore far

more conducive to multiple CZ reverberation studies. Second, the B'-C' corridor is

roughly 2 CZ in length, and generally much deeper than the conjugate depth, except

for B' and C' that protrude well above the conjugate depth contour at either end.

This corridor morphology was a windfall for experimental design. A source within the

corridor 1/2 CZ from B' is also 1- CZ from C' and vice versa. Therefore direct-path

returns can be simultaneously measured from B' while 11 CZ returns are measured

from C', and vice versa. Furthermore, the ambiguous returns from along the corridor

axis can be easily resolved at 1/2 CZ range for either feature due to excess depth

within the corridor, and at 1 CZ due to interaction with B' or C' at 1/2 CZ.

Makris et. al. [48] documented the deterministic relationship between low-

frequency reverberation and detailed geomorphology for wide-area insonification of
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Figure 2-2. The B'-C' Corridor Experiment. The levels of contour plot represent thedepth of ocean bottom. B' and C' sites are marked on the figure. Research shipstravel along the lines indicated.
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the B'-C' experiment. Charted reverberation registers precisely with extended ridges

and has a, high correlation with negative transmission loss. For a given ridge, promi-

nent returns come from steep escarpments and cliffs that face the bistatic source and

receiving arrays. Monostatic and bistatic returns form the same lineated ridge at ,

11 and 21 CZ ranges were used to document the registration with steep scarps.

In the B'-C' corridor, range-independent model is adequate except for the two

ridges. This is exactly the kind of environment our scattering models assume.

2.5 The Issues

There are a number of scientific issues for the ARSRP. Some pertain to ocean acoustic

reverberation in general while others are unique to the particular region and frequency

band for the ARSRP. Some of the issues are:

* Is the concept of "scattering Strength" as used in the sonar equation useful for

quantifying reverberation with a high resolution system?

* What is a good representation of the seafloor? Is the "fractal", or self similar

model adequate at the small scales needed for backscattering predictions?

* What is the role of the insonification in the near field, at 1/2 CZ distances and

greater?

* What are the important mechanisms for rough seafloor reverberation? Can

experiments be designed to test these mechanism?

* How does the sloping seafloor affect the reverberation field?

As we stated, a good model serves as a controlled experiment. It should enable

us to avoid unnecessary complexity, while retaining those basic physical process. So

it is essential to examine what the important and not well-understood issues are in

the ocean seismo-acoustic reverberation.

Three important issues will be addressed throughout this thesis:



* Three-Dimensional Effects.

The discrete as well as diffuse scattering in the ocean environment is inherently

three-dimensional, just as the geometry of the real world is three dimensional.

Thus, even if the insonification is one-dimensional, such as plane wave, the

reverberation field could be more complex. For example, specular as well as

out-of-plane scattering occurs. Because the different sound speed in various

layers, the scattering directions become more complex. The two-dimensional

models are too restrictive to cover all the possibilities.

* Elasticity.

Many models treat the bottom as fluid to reduce the conceptual and numerical

complexity. But the real ocean bottom consists of stratified elastic layers. It is

interesting to examine the effect of elasticity on the seismo-acoustic reverber-

ation. It is shown in this thesis that elasticity plays a significant role in both

discrete and diffuse scattering process. One way it affects the reverberation is

through wave type conversion.

* Waveguide Physics.

In the long range source/scatterer or source/receiver separation, the waveguide

affects the reverberation process tremendously. It in effect acts as a filter in

both the incoming and scattering wavenumber domain, and thus changes the

scattering pattern as well as the level of the reverberation. It would be desirable

to incorporate the waveguide physics in the reverberation model, so the short

as well as long range field can be treated consistently.

So, all three of these effects might be important to the seismo-acoustic wave

scattering in the ocean environment. These effects can not be treated separately and

cascaded together. Rather, they are integrated parts of one problem. The models we

develop must incorporate these effects in a unified formulation.



Chapter 3

2-1/2 Dimensional WI-BEM

Approach

3.1 Statement of the Problem

In this and the next chapter, we will address one of the important scattering and

reverberation mechanism in an ocean environment: the discrete reverberation.

The discrete reverberation is caused by the distinctive features in the ocean en-

vironment (the facet). The scattering from the facet is most substantial when the

wavelength of the incoming acoustic (elastic) wave is close to the the dimension of

the facet. The discrete reverberation is extremely sensitive to the signal frequency

and the angle of insonification and observation. A simple analogy: a pilot in the

airplane (receiving array) trying to find a mirror on the ground (facet). Most of the

time the pilot won't identify the mirror. What he sees is the rivers, mountains, office

buildings, etc., i.e., the background. But at a certain point, a strong glare will come

into his eyes. And he deduce that there is a mirror where the glare comes from.

Although this is not the exact optical parallel to the acoustic and elastic facet

scattering, it does highlight some points. Suppose we are towing a sonar array in

the ocean. The received signals as appeared on the screen will be like this: over the

relatively constant background, some spikes come up from time to time. The relative

constant background is caused by the white electronic noise and diffuse scattering,



among other things, while the spikes are most likely caused by the facet scattering.

Most of the time the scattering effect of a particular facet is insignificant compared

to that of the diffuse mechanism. But at a certain angle, the facet effect will be so

strong that it will overshadow virtually all other effects, just like the glare from the

mirror.

Traditionally, the scattering effects were studied in the context of backscattering

strength. Only the backward direction was considered. But considering the reverber-

ation and bistatic sonar deployment, it is necessary to study the whole scattered

field rather than just one direction.

Discrete scattering in the ocean environment is inherently three dimensional.

Though two dimensional models can be used to solve some simple scenarios, it is

quite restrictive. A case in point: the out of plane scattering effect can not be

treated by a two dimensional model. Another traditional assumption often made in

the scattering model is that the environment is well represented by fluid media. The

sea bed is modeled either as a liquid medium or rigid body. This simplification was

prompted by the limitation of the computer power, since the elastic model introduces

extra equations to be solved. Some argue that the elastic effect is not important in

the ocean scattering problem anyway. But we will show in the next chapter how

elasticity affects the scattered field.

So, it comes down to this: we would like to model the facet scattering problem

where the full scattered field can be simulated, and the 3-D and elastic effects

are considered. Also, we would like to incorporate the waveguide physics into our

scattering formulation, so that we can integrate the scattering mechanism and the

propagation process in a unified framework.

To fulfill all these criteria in a model, the computational effort would be enormous.

As an intermediate step between 2-D and the full 3-D model, in this thesis we will deal

with the so called 2 -D model. We will address the scenario where the environment is

2-dimensional, i.e., it's invariant along one direction, but the source is 3-dimensional,

i.e., the source position or strength is the function of all three coordinates. Thus

the field (both the incoming field and the scattered field) is inherently 3-dimensional.



The model combines the 2 dimensional environment and the 3 dimensional source

and field, thus the name 21D. By intuition, it is natural to think that somehow this

problem would be easier to cope with than the full blown three dimensional case. And

as will be shown later in the chapter, it is true. There are ways to further simplify

the 21 - D problem.

Besides the reduced computational requirement, the 2 D model shows clearly

some of the basic physics involved in the 3 dimensional scattering effects. In the full

3 dimensional scenario, the environment and the incoming and scattered field might

be too complicated for us to isolate and identify many different factors and effects.

For example, with the different parts of the scatterer having various tangential planes

and orientations, it would be hard to identify which part of the field is caused by

the specular reflection and which was caused by the out of plane scattering. In the

21D case, on the other hand, we have a relatively simpler shaped scatterer 1, and it's

clearly which direction is specular and which direction is out of plane.

One might be lead to believe that the 2 D model is just for the theoretical inves-

tigation without any practical applications. Not so. In the real ocean environment,

there are many elongated features, such as ice keel, sea mounts, salt domes, diapirs,

etc. When the length of relative invariation is much bigger than the wavelength of the

incoming and scattered acoustic (elastic) waves, we can practically treat the feature

as infinitely long for many applications. And when the diameter of the feature is of

the order of the wavelength of the incoming wave, the facet scattering effects will

be significant. Our 21D elastic scattering model can address this kind of problem

perfectly.

Now, let's define in detail the problem we will treat in this and the next chapter.

We model the ocean environment as range-independent horizontally stratified me-

dia 2. By that we mean the environmental properties are the same on the same

horizontal plane. Media properties are functions of the depth only. The bottom is

modeled as elastic layers, allowing for the sediment layers and the basement struc-

lone less dimension of freedom
2sometimes referred to as vertical stratified media in other communities.



tures. So actually, the environment is one dimensional without the scatterer. With

the scatterer, an additional dimension is introduced. Without the loss of generality,

we will assign a Cartesian coordinate system such that the Y-axis is parallel to the

axis of invariation of the scatterer. (Fig. 3-1) So, now the Y axis is the only direc-

tion along which the environment is invariant. Thus, the environment becomes two

dimensional.

The position and the strength of the source will be functions of all three coor-

dinates. In Fig. 3-1, just to illustrate, we put a point source in the water column.

Since we are simulating the whole field, rather than just the scattered amplitude in

some particular direction, in effect, we have multiple horizontal and vertical receiver

hydrophone arrays placed throughout the water column. Since the elastic effects

are considered, the geophone arrays can be deployed anywhere on the water-seabed

interface and throughout the seabed layers.

3.2 Review of the Two Dimensional Hybrid WI-

BEM Method

In boundary element methods, approximations are made only on the boundary of

the domain to be analyzed. At every interior point of the domain the governing

partial differential equations are satisfied exactly. This contrasts with the finite ele-

ment method, in which there is not in general pointwise satisfaction of the governing

differential equations, resulting for example in the computation of a displacement

field which corresponds to a residual body force distribution, not present in the orig-

inal problem to be solved. In consequence of approximations being made only on

the boundary, no interior mesh of elements need be specified, and in a numerical

implementation there are no unknowns associated with interior points of the domain.

Boundary element methods can be applied only if a Green's function of the gov-

erning partial differential equations is known. A Green's function is a function that

satisfies the differential equation with zero right hand side (body force) at every
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elastic environment
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Figure 3-1: Illustration of the 2-1/2D Problem. The environment is two-dimensional.
But the source and the resulting scattering field is three-dimensional



point of an infinite domain except at one point known as the source, at which the

right hand side is infinite. Generally, Green's function are known for homogeneous

materials, whether isotropic or not, and so boundary element methods are applicable

to the analysis of homogeneous and piecewise homogeneous two and three dimensional

domains.

In this thesis, the ocean environment is modeled as horizontally stratified me-

dia. And the Green's function in this environment can be efficiently computed by

Wavenumber Integration (WI) method using the Direct Global Matrix (DGM) ap-

proach [59, 64]. Thus a hybrid Wavenumber Integration - Boundary Element Method

(WI-BEM) approach is used.

This part of the thesis is a continuation of the work by Gerstoft and Schmidt [27].

They developed the hybrid WI-BEM approach to solve the two dimensional ocean

seismo-acoustic facet reverberation problem. In this section, a review of the method

is given.

3.2.1 Boundary Integral Formulation

Consider a volume V bounded by a surface S. Suppose under body force f(Y) and

surface traction ti(x'), the displacement field in the volume is '(Y). Under a different

set of body force f*(d) and surface traction t*(x), the displacement field is Gi(£).

Here, we omitted the time dependence factor e-it.

From the reciprocity theorem, the work done by the forces of the first system on

the displacements of the second system equals the work done by the forces of the

second system on the displacements of the first system:

j tui dA + JfluidV = j tiudA + fiugdV, (3.1)

where the ti, etc, are the components of the vectors t, etc. fs dA and fv dV are the

surface and volume integrals over the region, respectively.

Now, to make use of the Green's functions, we assume the first field is due to a

unit force at a point x inside the volume, fi* = 6i(x - x), then tj and uý correspond



to the Green's functions Hji(, x', ; r'(x,)) for tractions on a surface with outgoing

normal vector n- and Gj(7, 2) for displacements at point 7. Thus Eq. (3.1) becomes

ux(() + j Hi(i, 7; ni(x()dS = js Gj(X, z)tj(x; n'(x)dS +± Gj(£,' ) f (x'y)dV,

(3.2)

where u3(x,) and tj(xa; rs) are the j components of displacements and tractions on

the surface S, respectively. Gji(ss, Y) is the displacement in the j direction at x, due

to a force in the i direction at 7 and Hji(xi, 7; nr) is the traction in the j direction at

the point x, on the surface S with outgoing normal vector nr, due to a force in the i

direction at a point 7 inside the volume.

Letting the field point 7 approach a point x, on the boundary S, Eq. (3.2) becomes

an integral equation for the tractions and displacements on the boundary:

~(i)= (H ( , 'I )uj(i)]dS + Gi(Hx4y)fj(xy)dV.

(3.3)

After integrating around the singularity in the Hji(x, S, ; nr) at x• = x, the

integral equation become

Cijuj( s[Gji(i, 5)t(.8; IV)-H (i, x s; i)uj(i)IdS-i-J , xy)f (xy)dV,

(3.4)
for a smooth boundary, Cij = 6ij.

It can be easily shown that the surface integral will always vanish along parts of

the boundary where the chosen Green's functions satisfy the boundary conditions.

So for the typical ocean environment we are dealing with, we can choose the Green's

function that satisfies the horizontally stratified boundary conditions. Then we need

only to perform the surface integration on the surface that deviate from the stratified

scenario, i.e., the facet. And fortunately, this kind of Green's functions are readily

available from the code SAFARI [59].

After solving for the boundary displacements il(Ix) and tractions i(xi; n') from

Eq. (3.4). The displacement fields in the region can be calculated by Eq. (3.3). The



associated stress fields can be calculated using Hooke's law.

3.2.2 Discretization

Collocation method is used to discretize Eq. (3.4). The boundary S is approximated

by M linear elements, connected in M nodes, with node number m at ?~" connecting

elements number m and m + 1 3. A local coordinate y E [-1, 1] is introduced for

the element. So the coordinates of points on the element can be written in terms of

coordinates of the center point of the element (zm, x") and y

zm(y) 1m+ m i y, (3.5)
Xm(y) x J 2 cosOm

where Im is the length of the element.

Linear shape function N(y) - Y is used to approximate the displacement and

the stress distribution along the element

u(y) um-1 um

(y) t -1  N(y) + tm N(-y). (3.6)
tty) tm-i tm

Using Eq. (3.6), Eq. (3.4) is discretized into the form

M 2

C u
i = 3-[Gn H, • =, ... M, i = 1 2. (3.7)

m=1 j=1

The source contribution to the node displacements i! is obtained from the volume

integral in Eq. (3.4). Influence matrix elements G " and Hm are

S 1 1 1
G3 .z G(jim(y),?Y)N(-y)dy+ m+J Gji(4m+(y), ( )N(y)dy; (3.8)

2 -1

-i rn Hji( rn(y), Y; iir)N(-y)dy + lm+1 Hji(i +i(y), i; 1i)N(y)dy.
2 .' 2 1

(3.9)
3subscript is used to indicate element number and superscript is used to indicate node number



The kernel Gji(XFm(y), Y) represents the displacement in the j direction at a point

4m(y) on element m, due to a virtual unit force in the i direction at the node at P for

the exterior layered media without the facet. Similarly, the kernel Hji(X'(y), P; rnm)

represents the j component of the tractions on the m-th element with outgoing normal

vector inm. These kernels can be efficiently computed by the Direct Global Matrix

(DGM) method of Schmidt [64, 61]. In section 3.4), I will describe a 3D version of

the DGM method [60, 39].

Similarly for the interior region, a discretized boundary integral equation like

Eq. (3.6) can be established, with all the quantities replaced by those of the interior

region (indicated by a overbar). The node displacements and tractions in the two

regions must satisfy the continuity conditions:

{ U im ; (3.10)

Now we have a system of linear equations that can be solved for the node tractions

and displacements,

H -G U U
L G t I

Once we solved the nodal tractions and displacements, the displacement field in

the external region can be determined by the discretized form of Eq. (3.3)

M 2

ui(x) = E [G((g)tT - Hm(Y)u"] + uii(), i = 1, 2. (3.12)
m=1 j=1

The stress field follow from Hooke's law.

3.3 Reduction of the 2-1/2 D Problem

In this section, we will try to reduce the 2-1/2 D WI-BEM problem into a series of

2D problems. It is shown that the invariance of boundary conditions in one direction

is instrumental in this procedure. That is the main reason we chose 2-1/2 D problem.



In 2-1/2 dimensional facet scenario, the boundary become a surface instead of a

line. So Eq. (3.4) becomes

C /u = J [G(ji (X,; Xl)t (Xs; 4)-Hj(Xs; X , n-)uj(X,)]ds+ Gij(X/; XS) fj(xy)dV,

(3.13)
where i, j = 1, 2, 3. And position vectors X, = (zs, xz, y,) is three-dimensional, so are

Xi and Xv.

The environment is invariant in the Y direction. So the Green's functions should

be "stationary" in Y coordinates. That is:

Gj(z, x, 2y; z1, x'•, y') = Gjj (z,, xz, ys + ,; zý;, z2, x, y + ();GjiZ8 S 8 8 SY~)i (3.14)

Hji (z,s x, Ys; Zs,' , ys, r(z, x,)) = Gji(z, x,, yS + (; z', 's , Y+ , n4(z, x,)). (3.15)

So the Green's functions can be written as

Gj(Xs; I) = Gjj(z8, xs, Ys - Ys; zS, (3.16)

and

Hj (s; ;X', n) = Hgji(zs, , Ys - y. ; z ,zs, , (3.17)

Apply Fourier Transform:

Gji(Zs, ys - yls; zS, x) = 00 G(zs , x., , 7 , k,)e-ikY(Ys-y')dky;

-00
MO

73(z,, x,; kI )e-ik'Ys dk'

Since the environment is independent of y coordinate, some simplification can be

made:

j Hi(Xs; 2', ri)u () 8 )ds

J H , I ik( dky;.Hji(zs, x,, y, - y'; z, , x1, (,, x,; , x, s, k,)e - ik" y (ys - y )dlk;
---O=

uj(ZX, 7,y,) =

(3.18)

(3.19)

(3.20)



= (z, 7; z~, s, I, ky)eik, Yij (z,, xs; k')
[ +00e - iy,(ky+k' ) d]dkydk'dl

= 27 ] H] (z, xs,; z, x, s, -k')'j(z,, x,; k,)e-iky• dk, dl. (3.21)

Here we used the property of the delta function:

1 ±+0 k
6(x) = y e ik dk. (3.22)2x f-oo

Similarly,

-27 ] G(z,,,x; z', ' -k,)ti(z,,x,;i`, k,)eikvY'dkydl. (3.23)

Define

di(X) = v Gij(X ; x,) f(Xv)dV, (3.24)

and apply Fourier Transform: 9- ff e iky y . Now Eq. (3.13) becomes:

Cij9j ( , z; ky)

= 27r [Gi(zs, x; zs , xS, -ky)ti>(z, x; n-i, ky)

- Hji(zs, x; z', x', n, -ky) j(z, x,; ky)]dl + i(z, xi; ). (3.25)

Thus, the 21 dimensional problem has been reduced to a series of 2D problems

with k, as a parameter. So we can develop a 21-D model based on the existing 2D

WI-BEM model. Additional elastic boundary conditions need to be incorporated

into the BEM formulation. And the WI-DGM model used in the kernel and field

computation must be capable of treating the full three-dimensional scenario. Such a

model is developed and is the topic of the next section.



3.4 3-D DGM formulation

Schmidt and Glattetre [60] and Kim [39] developed 3-D DGM formulation in the

cylindrical coordinate system. For WI-BEM approach, a Cartesian coordinate system

is more suitable, so I developed a 3-D Cartesian DGM formulation. The outline of the

formulation will be presented in this section. The detailed derivation is in Appendix A.

3.4.1 Homogeneous Solution

The displacement field can be described by a scalar potential and a vector potential:

U = V (x, y, z) + V x I (x, , z), (3.26)

where the vector displacement potential can be further expanded as:

(x, y, z) = Vx (0, 0, A) + (0, 0, 0z). (3.27)

Under such a representation, the wavefield is explicitly expressed as basic wave

type components. 0 corresponds to compressional wave; 0z/ corresponds to horizon-

tally polarized shear wave (SH wave); A corresponds to the vertically polarized shear

wave (SV wave).

The stresses relate to the displacement field as

axzz(x, yz) = a(+ ) + 2o 2w = (A + 2/-)o- + A(ou + L),

UczX(x, y, z) = +(~ ), (3.28)
zy(X, Y, z) = It(a + z).

For homogeneous part of the field, the displacement potentials satisfy the Helmholtz

equations:

(V2 + K, )(x, y, z) = 0,

(V2 + K2)A(x, y, z) = 0, (3.29)
(V 2 + Ký) O (x, y, z) = 0,



where Kp is the compressional media wavenumber, and K, the shear media wavenum-

ber.

It can be shown (Appendix A) that the homogeneous solutions for the displace-

ment potentials in the wavenumber domain are:

r (k , z; ky) = A-(kx, ky)e -- z + A+(kx, ky)eaz,

zV(k,,z; ky) = B-(k, ky)e -Pz + B+(kX, ky)eBz, (3.30)

A(k , z; k,) = C- (kx, ky,)e-Z + C+(kx, ky)ePz,

where a = k + k2 - k- , and f = k+ k - k.

When a is imaginary, A- is the amplitude of a down-going compressional plane

wave of a particular direction; A+ is the amplitude of the up-going compressional

plane wave. Different wavenumber (kx, ky) corresponds to different horizontal di-

rections. The process of Fourier transforming the potential from spatial domain

O(x, y, z) into wavenumber domain O(kx, ky, z) is no more than decomposition of the

complex wave field into a series of plane wave component. For plane waves, the

derivative operations with respect to coordinates become simply a multiplication by

some wavenumber dependent constants. Thus, differential equations are simplified to

linear equations, which are much easier to solve.

Now we have represented the potentials in terms of unknown plane wave am-

plitudes, the displacement and stress fields can be represented by the same set of

amplitudes through Eq. (3.26) and Eq. (3.28). The exact forms of these representa-

tion are given in Appendix A.

3.4.2 Source Field

Compressional Point Source

An explosive source in a homogeneous medium will not generate a shear wave. The

compressional wave it generates has the displacement potential ý(x, y, z) that satisfies



the following equation,

(V2 + k )4(x, y, z) = -S•6(x)6(y)6(z - z'), (3.31)

where S, is the source strength. By Fourier transform the above equation, it is easy

to show that the potential in the wavenumber domain is,

(kX, z; k,) = S e7rz2a%8w -OJZ-s (3.32)

Point Force Source of Arbitrary Direction

Assume the source is (Fx, F,, Fz), define

o0(kx, z; ky) = -1 1 e•-az,
o0(kx, z; ky) = - 2 e-iz-z

(3.33)

The displacement potentials for the source field are

S(x, y, z) = F V0o(z, y, z),
(x, y, z) = V x (-Fx¢o(x, y, z), -Fyo(x, y, z), -Fzlo(x, y, z)).

(3.34)

So,

¢(kX, z; k) = ikF , 1l e-z-z +ikF, 1 e-z-z+ F- sign(z-z8 ) •e-alz-zI,

pw2 87r2a pw2 8r 2a W2gn(z-z 82
(3.35)

b(kx, z; ky) = {j'[O + fsign(z - z,)Fy - ikyFz]

+ e'[-psign(z - z,)Fx + 0 + ikxFz]
1 1 zz(

ikxF, + 0]} e-POZ-z-al
pw2 872ý

+ ez[ikF, - (3.36)



3.4.3 Global Equation

So far in this section, we have represented the displacement and stress fields in terms

of a series of plane waves, whose amplitudes are yet to be determined. Thus, in each

layer, the displacement and stress fields can be written as:

w

U

V

o-zz

Uzy

= [A][B] + [R]. (3.37)

In the equation above, [B] is the aggregate of the unknown amplitudes of the plane

waves;

A-

SC-

B-
[B] = (3.38)

SC+
B+

[A] is a wavenumber dependent matrix that relates the plane wave amplitudes

to the homogeneous solution of the displacement and stress fields; [R] is the field

contribution by physical sources.

To solve for the unknown plane wave amplitudes, we consider the boundary con-

ditions. In the spatial domain, the boundary condition is the constraint that the

displacements and stresses must be continuous across the boundaries. For a bound-

ary of arbitrary shape, this doesn't mean that the wavenumber transforms of the

displacements and stresses should be continuous across the boundaries. In other

words, plane waves traveling at different directions might be coupled at the bound-

ary. In that case, decompositing the wavefield into plane wave components does not



simplify the solution of the problem, although the equation of motions are simplified.

Fortunately, here we are dealing with horizontally stratified media. All bound-

aries are planes perpendicular to the Z axis. In this kind of scenario, plane wave

traveling at different directions in a layer are decoupled. So we can solve for the un-

known plane wave amplitudes at each horizontal wavenumber pair (k,, ky) separately.

The plane wave amplitudes in all layers have to be solved simultaneously. To do

that, a global equation is set up. Assume there are N layers,

[Al, 1] [-A 2,,]

[A2 ,1] [-A3 ,u]

[AN-1,1] [-AN,]

0

B 1

B 2

BN

R2,u

R3,u

RN,u

R1,1

R2,1

RN-1,1

(3.39)
We can see that the global matrix at the left hand side is rather sparse; only

some sub-matrices near axis are populated. Bi is a vector with elements correspond

to the unknown plane wave amplitudes in layer i. The exact forms are shown in

Appendix A.

After solving the amplitudes of various plane waves in each layer, the correspond-

ing displacement and stress fields can be calculated following Eq. (3.37). A summation

of the effects of these plane waves at various direction (inverse Fourier transform) will

give the total field in the spatial domain.



Chapter 4

Numerical Simulations of 2-1/2D

Facet Reverberation

4.1 A Sanity Check: Comparison with Analytic

Solution

To make sure our model and code work properly, comparison with other independent

solution is in order. As stated earlier, no existing model is capable of dealing with

the three dimensional scattering with elastic effect. So the only thing we can do is

to reduce the complexity of the problem we deal with and compare with some other

method that is capable of solving that reduced problem.

A very simple environment is chosen, where an elastic cylinder is submerged in a

homogeneous elastic environment. A line array parallel with the cylinder generates

an acoustic beam whose main lobe lies between 350 and 54.60 with the axis. It is

worthwhile to emphasize that the beam pattern is rotational symmetric (Fig. 4-1).

We derive an analytical solution for this problem and compare it with numerical

solutions from our model.
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4.1.1 The Analytic Solution

Naturally, for this problem, cylindrical coordinates should be used.

equation for the homogeneous displacement field U(r, 0, z, t) is :

The governing

02A(A + 2p)VV * 0 - pV x V x U = pt 2 . (4.1)

The displacement field is assumed to be harmonic:

(4.2)

The displacement field can be represented by three potential fields O(r, 9, z),

A(r, 0, z) and /(r, 0, z):

ui(r, 9, z) = Vq + V x V x (0, 0, , ) + V x (, 0, 0, ), (4.3)

which satisfy Helmholtz equations:

(V2 + Kg2)(r, 0, z) = 0;

(V 2 + K,2)A(r, 0, z) = 0;

(V2 + K2),z(rg, 0, z) = 0.

(4.4)

In the equation above, K, and K, are media compressional and shear wavenumber,

respectively.

Now, we transform the quantities:

g(r,0, z) = (4.5)E f g(r, m, kz)eikzzdkz,
M= -00

where kz is the wavenumber measured in the axial direction. g can be any one of

V, , A, uor a.

After the transform, the Helmholtz equations will separate and can be solved

easily. The solutions are as follows

U(r, 0, z, t) = U(r, e, z)e-iwt.



0(r, m, k,) = A+Hm,)(hr) + A-H2)(hr);

A(r, m, kz) = B+H$) (krr) + B-Hm) (k7r); (4.6)

(r, m, kz) = C+Hl)(krr) + C-H2)(krr).

hr and kr are radial wavenumbers for compressional and shear waves, respectively:

h2 = -k2- k 2r z(4.7)

k 2 = k2 - k2

In Eq. (4.6), the Hankel functions of the first kind Hm)(hrr) and Hm)(kr) repre-

sent outgoing compressional waves and shear waves, respectively. And Hankel func-

tions of the second kind H2)(hrr) and H2)(krr) represent incoming waves toward

the axis. ' A +, A-, B B, B-, C+ , C- are unknown amplitudes to be determined that

are functions of k,.

Notice that, unlike the horizontally stratified media case, where we Fourier trans-

formed the Helmholtz equation with respect to X and Y, here we perform the trans-

form with respect to Z. This is due to the geometry of the boundary. In the horizon-

tally layered case, the interface between layers are planes. k, and ky are continuous

across the boundaries. In the case where the cylinder is submerged in the hori-

zontally stratified media (Fig. 3-1), the only wavenumber component that remains

constant across all boundaries is ky, so Fourier transform with respect to Y was per-

formed. Here in our scenario, Z is the only direction along which environment stays

unchanged. So, only k, is continuous across boundary between layers with different

elastic properties. Fourier transform with respect to Z should be performed.

Now, to complete the problem and solve for the unknown amplitudes of the various

wave components, we state the boundary condition.

The boundary condition is that the displacement and stress components should

be continuous across the boundaries. To link the boundary conditions to the un-

1Which kind of the Hankel functions represent outgoing or incoming waves depends on the choice
of the time dependency representation. Here, time dependency is assumed to be e- iwt . If we reverse
the sign in the exponential, the role of the two kinds of Hankel functions will be reversed.



known amplitudes, we can express the displacements and stresses in terms of the

displacement potentials:

ir(r, m, kz) = + - + --
O 2i Ks (4-8)do(r, m, k) = - m•, (4.8)

iz (r, m, kz) = ikzq + k-K,

and

dr (r, m,kz) =L [ (--- + ) - +•g ( )],2 (4.9)

or (r, m, k,) = t[2ik, - a, + A].

The Treatment of the Source

Ricks [58] developed the source field solution for the ring forces. It could be in radial,

circumferential or axial direction. Here we use a point explosive source located at

(ro, 00 = 0, zo = 0). The equations for the source potentials are

r 4r (r, 9, z)] + (, , z) + -q-(r, 0, z) = -S,~(r - ro)6(0)6(z);

0(r, 0, z) = 0;

A(r., , z) = 0.
(4.10)

By applying the transforms 1 fx e-imed0 and - f, e-ikzzdz on Eq. (4.10), we

get

-r o- -a r h(r,, kr) 4 •- 07r[r (r,m, kz)] - $(r, m, kz) + h(r, m, k) = - 6(r - ro);

4(r,m, kz) = 0; (4.11)

A(r, m, kz) = 0.

Because the source is explosive, only compressional waves are generated. So the

shear potentials are all zero. The resulting compressional potentials can be solved to



be:

-, -,-rmk) = (h Jm(hro)Hm)(hrr) for r > ro;
(r, m, kz) 4= (4.12)-Hm)(hrro) Jm(hrr) for r < ro.

From this source generated potential, and using the relationship between the

potentials and the displacements and stresses, we get the source influence on the

boundary. Those are the discontinuities of the displacements and the stresses of the

homogenous field (Right Hand Side).

To this point, we have obtained a system of linear equations for A+ , A-, B+ , B-,

C+ and C-. Now we can proceed to solve for these amplitudes of the various wave

types.

The Result of the Analytic Solution

To produce the cone-like beam, the wavenumber spectrum of the source field was

filtered such that the resulting beam form a 450 angle with the cylinder axis.

The scattered field (incoming field excluded) is calculated in the zero azimuth

plane where the source located. The result is shown in Fig. 4-2. Two wave types are

clearly present.

Simple calculations can be performed to identify these wave types appearing in

the scattered field. The incoming beam is compressional and is 450 to the cylinder

axis. So the axial wavenumber is

ki = Kp cos 450. (4.13)

The axial wavenumber k~cat for any scattered wave should be the same as that of the

incoming wave. So the scattered compressional and shear wave will have different

radial wavenumber:

(hscat) 2 = K2 - (Kscat)2 = K2(1 - cos450 );

(kat 2  - (K 2  K 2450 (4.14)scat 2 = K2 - (Kscat 2 K2 - K2Cos245o.
(r, ) Z K8 -(P)=
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The most strongly scattered compressional wave is at 450 to the cylinder (the

specular scattering). While the direction of the shear wave form an angle with the

cylinder which satisfies:

ha K CS 400
shear= arccos( cos450) = arccos( ) = arccos( )= 79.820. (4.15)

Ks Cp v1600* V2

From Fig. 4-2, we see the direction of the two strong wave types are approximately

around those two angles. This confirms that for this compressional insonification case,

both compressional and shear scattering waves are excited.

4.1.2 WI-BEM Simulation

The 2-1/2 D WI-BEM is very computational intensive. So we shall be careful to

choose the scenario in the testing stage, at least. To reduce the computational inten-

sity, we want to reduce the grid size for the kernel computation. That is, reduce the

number of k. and ky samples.

Among the two, the number of ky samples is more vital. As described in the

last chapter, the way we approach the 2-1/2D problem is to reduce it to a series

of two dimensional problems, one for every ky value. So, for each ky sample, a

miniature of two dimensional WI-BEM problem has to be solved from scratch. All

the computations of influence matrices, nodal values and scattered field have to be

done again. But it is a different story for k, samples. Since the computation and

integration of the k, samples are separated for the three parts. Even if a large number

of k, samples are required for the scattered field computation, we only has to do that

for the last part. The most time-consuming influence matrices computation can be

performed using limited k, samples.

Thus, it is desired to use small number of ky samples. First, we will use as coarse

a sampling rate as possible. But it has a lower limit associated with the maximum

axial distance of the scattered field we want to compute. The other resort is to reduce

the extent of the integration on ky. From the first glance, the range of integration is



dictated by the desired resolution of scattered field in Y direction. But fortunately

we can do better.

We notice that in the 2-1/2 D problem, there is no mechanism to destroy the ky

continuity. If a part of the ky wavenumber spectrum of the source is zero, it will still

be zero in the scattered field. Thus, by confining the extent of ky spectrum of the

source, we can greatly reduce the number of ky samples need to be computed.

As evident in Fig. 4-3, for a fixed ky, all possible directions of the acoustic beams

form a cone surface. So, for a narrow range of ky, possible directions of beams will

be confined by two closely spanned cones. That is why we choose the source field in

Fig. 4-1.

We use Cartesian coordinate for WI-BEM calculation of the problem, where Y

axis is aligned with the cylinder axis. And Z axis is chosen such that the depth' of

both the cylinder axis and the source is zero. So the coordinates of the source is

(0, 0, 0), while that of the cylinder axis is (x = 18m, z = 0).

First, to make sure we did generate the desired beam pattern, the background

field of normal stress and its wavenumber spectrum in the Z = 0 plane is calculated

(Fig. 4-4 and Fig. 4-5). Essentially, this is how the field would look like without the

facet scatterer (cylinder).

Before we go into the details of these results, it is worthwhile to compute some

benchmark wavenumbers for future reference.

In Fig. 4-3, it is shown that all propagating P-waves are confined within a cone,

and it is similar for the S-wave, just the confining cone is bigger since the shear media

wavenumber is larger. Mapped onto the kx - ky plane, we get Fig. 4-6. All the

propagating P-waves in the outer medium have wavenumbers within two center lines

(P-P). Outside, P-waves become evanescent. Propagating S-waves is confined between

the two outer lines (S-S). Outside these two lines, all waves become evanescent.

It is noted that the lines are inward tilted. The reason can be seen from

k X (4.16)
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The bigger ky is, the smaller the maximum value of k, is needed to keep kz real.

Physically, we anticipate the source field on the Z=0 plane being a cut through the

center of the cone. That is exactly shown in Fig. 4-5. Two beams of 450 with the Y

axis is present. One traveling towards the cylinder, which located at 12m < X < 24m.

The other traveling away from the cylinder. On the plot of the kernel (Fig. 4-4), it

is evident that only the compressional wave is present, which is what we anticipated

with the explosive source.

In Fig. 4-5, the main beams in 450 are outlined by stair-line contour. They are

caused by the coarse sample rate in ky direction. As stated earlier, it is very expensive

to compute new ky values. Only 16 samples are calculated in this case. Also present

in Fig. 4-5 are some thin lines. They are the aliases caused by the relative steep cut

off in k. and ky direction.

Fig. 4-7 and Fig. 4-8 show the scattered normal stress field and its wavenumber

spectrum on the Z = 0 plane. Again, it should be emphasized that the incoming field

is excluded in these figures. If hydrophones are deployed in that plane, what they

receive would be the sum of the scattered field shown here and the incoming field

shown in Fig. 4-5.

On the scattered kernel plot (Fig. 4-7), several wave components are present. By

far the strongest one is the P-wave traveling in the forward direction. This is the

wave component that creates the "shadow zone" behind the cylinder. On the field

plot (Fig. 4-8), it can be seen that this wave component overlaps with the forward

traveling incoming field in Fig. 4-5. They more or less canceled out and create a

relatively "quiet" zone behind the cylinder.

Now, let's return to Fig. 4-7. Though much weaker than the forward traveling

P-wave, S-wave and P-wave traveling backward from the cylinder can be seen. On

Fig. 4-8, we can see the backward traveling P-wave at 450 and the S-wave at 800 with

the Y-axis. This agrees with the result of the analytic solution and our analysis in

the last subsection.
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4.2 Sediment Covered Ridge: Wave Type Con-

version

Now that we have checked our 2-1/2D model and code, next we can use it to solve

a much more realistic scenario. The environment is shown in Fig. 4-9. The sea bed

consists of two layers, a 10-meter thick slower sediment layer overlays on top of the

faster rock bottom. To investigate the effects of elasticity on the discrete scattering, a

half cylinder ridge consists of rock protrude into the sediment layers. This destroys the

environmental invariance along X direction and plays the role of the facet scatterer.

The source is 50m above the water column/sediment interface and 50m away

horizontally form the cylinder axis. The source generates P-wave, and as in the last

section, the beam pattern is confined between two cone surfaces. As before, this beam

pattern is chosen to reduce the number of ky samples required.

4.2.1 The Background Field

First, we remove the ridge and calculate the normal stress field in the plane 0.2 meters

above the water column/sediment interface. It should be emphasized that this is not

the source generated field in a homogeneous medium. The acoustic wave reflects from

the first interface, and part of energy penetrates into the sediment and encounter the

sediment/hard bottom interface and reflects and penetrates again, ...

Actually, some modes are excited in the sediment layer 2. Because the P-wave

speed in the water column is slower than that of the sediment, all of these modes leak

into the water column. So we shall be able to notice these modes from the receiver

array. For a particular ky, these different mode corresponds to different directions of

propagation. (Fig. 4-3)

The normal stress field in the horizontal plane 0.2 meters above the water col-

umn/sediment interface and its wavenumber spectrum are shown in Fig. 4-10 and

Fig. 4-11.

2some of them might be S-wave modes
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The multiple modes are clearly visible in the kernel plot as evidenced by the

separated bright spots and lines (Fig. 4-10). It was noticed that the spectrum is

confined between P lines in Fig. 4-6. The reason is that without the ridge, the

environment is both Y and X invariant. There is no mechanism to "steer" one part

of the spectrum on the k, - ky map to another part from the source field to the

reverberant field. And because in the water column, the source generates P-wave only,

the propagating part of it is confined between P lines 3. Thus, all the reflected and

refracted spectrum in the water column, sediment and bottom are confined between

P-lines.

Now, let's look at the field (Fig. 4-11). It is not as easy to identify the different

modes here as in the kernel plot. Because the modes are so close together that they,

together with the direct arrival and the first reflection form a wide blurred beam. Its

direction form an angle a bit smaller than 450. Although the source cone has 450

angle, the water column/sediment interface cut the cone off-axis.

4.2.2 The Scattered Field

Now, we add the ridge into the picture, which turns it to a 2-1/2 Dimensional facet

reverberation problem. The circumference of the cylinder is 37.70m. At 250Hz, the

compressional and shear wavelengths in the sediments are 6.4m and 1.6m respectively.

And the compressional and shear wavelengths in the ridge are 20m and 10m respec-

tively. We placed 40 nodes around the cylinder, which is dense enough compared

with these wavelengths.

First, we put our receiver arrays in the horizontal plane 0.2 meters above the

water column/sediment interface. The received (more precisely, simulated) scattered

pressure field and its wavenumber spectrum are shown in Fig. 4-13 and Fig. 4-12.

To clarify, the figures show only the scattered field. If receiving arrays are placed in

the water column, the received signal will be the sum of this scattered field and the

background field as shown in Fig. 4-11.

3actually, water wave speed is slightly different from the P-wave speed in the sediment (1527m/s
vs. 1600m/s). But the different location of P-lines will be hardly noticeable
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Again, the strongest component is the forward traveling P-wave (near the right P

line) and the backward traveling P-wave (the specular reflection is also present).

It is interesting to note that the spectrum (Fig. 4-12) is no longer confined between

P lines, as was the case for the kernel of the background field (Fig. 4-10). The

reason is that the ridge destroyed the X invariance of the environment. In effect, it

"steers" some energy from part of source spectrum (between P lines) into other part

of the spectrum (outside P lines). Clearly, some of the S-wave modes are excited

in the sediment layer, especially in the backward direction approximately between

kX = -2m - 1 and kx = -3m -1 . These wavenumbers exceeded the water wavenumber,

so these S-wave modes are trapped in the sediment layer. Its trace in the water

column is evanescent from the interface, and the reason we can see it is that we are

very close to the interface. For an estimation of the rate of decay along the Z-axis of

the evanescent wave, here we calculate for one point on the mode, where kx = -2m -1 ,

ky = 0.7m - 1. The pressure field caused by it in the water column has a z-dependence

of the form:

P - eikzZ = ei -_ k + k -KZ 0.5 e 0.540. (4.17)

Our receiving plane here is 0.2m above the water colume/sediment interface. Ac-

cording to Eq. (4.17), the pressure field decayed to 0.69 of that on the interface. So

we still can see the effects of these S-wave modes.

On the field plot (Fig. 4-13), the forward traveling P-wave is clearly visible. Much

weaker, but still clearly visible is the backward traveling P-wave little less than 450

with the Y-axis. It is the result of the source wave penetrating into the sediment,

specular reflected from the cylinder, and penetrating back into the water column.

The evanescent effect of the S-wave modes in the sediment travels in the direc-

tion little less than 900 from Y-axis. Because of their close vicinity and the limited

resolution, they can hardly be identified separately.

Next, we move the receivers to the horizontal plane 30 meters above the water col-

umn/sediment interface. The scattered pressure field and its wavenumber spectrum



are shown in Fig. 4-14 and Fig. 4-15. The forward and backward traveling P-waves

are still clearly present. But the sediment S-wave mode effect has decayed out as we

are far removed from the interface (Eq. (4.17) gives a factor of 7.5 * 10-25).

This example clearly shows that the facet causes the wave type conversion. With-

out the presence of the cylinder, no shear wave is excited. But with the cylinder, a

certain amount of energy is converted into shear waves in the sediment layers and

the rock bottom. It accounts for the energy loss as well as changes the scattered field

pattern, especially near the bottom. To have this wave type conversion, two factors

are of essence: facet and elasticity. If we model the sediment layers and the bottom

as fluid or rigid body, we would not be able to model the shear wave and the wave

type conversion. Elasticity is crucial in this scenario.

4.3 Shallow Water Scenario

In shallow water facet scattering case, the excitation of the facet and the propagation

of the scattered waves are strongly affected by the waveguide. So we should integrate

the facet scattering mechanism and the waveguide physics in a unified approach. That

is exactly what the hybrid WI-BEM is capable of doing. Here, a numerical example

is given to illustrate these capabilities.

The environment is shown in Fig. 4-16. The water column is 20m deep, beneath

which is a 5m sediment layer overlaying a hard bottom. The facet is a 6m diameter

cylinder centered at the sediment/hard bottom interface. Its material properties are

identical to that of the hard bottom. Sound speeds and densities of various layers

are shown in the figure. It is assumed that the water column is lossless. And the

compressional and shear attenuations in the sediment layer are 0.2dB/A and 0.5dB/A

respectively. While the compressional and shear attenuations in the hard bottom are

0.1dB/A and 0.2dB/A.

The source beam is similar to that in Fig. 4-1, with the inner cone at 38.40 and

outer cone at 56.40. The scattered field is shown in Fig.4-17. We can see clearly the

modal patterns. And the main feature are the two beams at 450 in the forward and
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Figure 4-16: The environment for the shallow water facet scattering case

backward direction. What happens is that the incoming field hit the cylinder. And

as a secondary source array, the cylinder emits a similar cone-like beam pattern. Of

course, this beam pattern will not be rotational symmetric as the original source. As

stated before, the ky value will remain constant. So the portion of the scattered field

in the water column will be a cone surface at approximately 450 from the Y-axis. As

the receiver array is at the horizontal plane, what we get in Fig. 4-17 is the off-axis

horizontal cut from this cone. That is why in the figure, towards the end, the two

450 beam curves up instead of continuing as straight lines (hyperbolae).
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Chapter 5

Perturbation Approach in the

Diffuse Reverberation Problem

5.1 Statement of the Problem

In the actual reverberation problems occurred in sonar detection, only the interaction

of sound wave with some small areas of sea bed (so called Sonar Footprint) matters.

So, in this and the next chapters, we will confine the rough interface to a small area.

We model the ocean environment as a horizontally stratified (range independent)

body of fluid with the seabed consisting of elastic layers. The number of layers and

the thickness of each fluid (elastic) layer is arbitrary, so the sound speed profile and

other environmental parameters can be approximated with desired accuracy, as long

as computation power is sufficient. On top of this smooth picture, a finite area at

the ocean body / seabed interface is rough with some particular statistics. By the

finiteness and the possible roughness anisotropy, the problem is inherently three-

dimensional.

We feel that by confining the rough area the computation time will be cut signifi-

cantly. Practically, as stated earlier, this scenario is actually what needed in the sonar

detection problem. Also, the scenario has theoretical significance. Our patch model

provides a tool to isolate an area and investigate the effect of a particular roughness

statistics on the scattered field, both at near field and far field.



Figure 5-1: The Rough Interface Patch Problem in the Ocean Waveguide

83



5.2 Choice of Approach

There have been a fair amount of research work on the general topic of wave scattering

from rough surfaces [53]. In what follows, we shall try to explore their relative merits

and shortcomings and select one approach that would suit our endeavor here.

5.2.1 Rayleigh Method

Since the first treatment of rough surface scattering by Rayleigh [55, 56] his method

has been extended to plane waves of arbitrary angles of incidence and to scattering by

random rough surfaces. For a wave of wavevector k incident onto a periodic surface

given by

h(x) = ocos(Kx), (5.1)

the scattered field is assumed to be a sum of plane waves propagating in the directions

02m, where

sinO2m = sin81 - mK/k. (5.2)

We have, therefore, that the total field is given by

)(rj) = pinc(r + E Ameigm . (5.3)m=-oo
Equation (5.3) is substituted into the appropriate boundary conditions and the

resulting equation is expanded as a Fourier series. The resulting Fourier coefficients

are equated, leading to an infinite set of linear equations which can be solved by

iteration. In practice the series converges quickly only if ka << 1. Rice [57] extended

this work to random rough surfaces. He considers the scattering of electromagnetic

waves and expands the rough surfaces as a Fourier series in which the coefficients

themselves are random

h(x, y) = P(m, n)e - i K(mx+ny), (5.4)
m,n

where the P(m,n)'s are independent and distributed normally about zero. Evalua-



tion of the mean reflection coefficient is, in practice, feasible only for slightly rough

surfaces. The Rayleigh method has, in general, no significant advantage over the

Kirchhoff method (we will discuss it later in this section) for slightly rough surfaces.

The only advantage of the Rayleigh method is that no restriction on surface radius

of curvature is necessary. Surfaces for which the Kirchhoff method is inappropriate

due to rapid changes in surface profile can therefore be considered using the Rayleigh

method.

The major assumption of the Rayleigh method is that the scattered wave is com-

posed of waves traveling away from the surface. This method cannot, therefore,

include all multiple scattering, where waves traveling towards parts of the surface

will also exist. In addition it has been shown that with this assumption of outward

traveling waves it is impossible to satisfy the required boundary conditions exactly.

5.2.2 Boss Approximation

One school of interesting approaches to the rough surface scattering problem is to

model the rough surface as a random array of scatterers. One approach was proposed

by Ament, who described a rough surface as an array of planar facets with known

reflection properties [4]. Spetner modeled the rough surface as an array of randomly

placed point scatterers [67].

Along the similar line, a more general "boss" model was proposed. Biot modeled

a rigid surface as an array of hemispherical bosses whose separation and size are both

small relative to the incident wavelength [6]. Later Tolstoy generalized his theory to

allow for non-spherical scatterers which form a rough surface separating two acoustic

media of different density and wavespeed. Twersky took a slightly different approach

to the problem of the scattering of waves by a rough surface of bosses. He used a

Green function formulation to determine the effective coherent reflection coefficient

and incoherent scattering cross section. In what follows, we will examine Twersky's

Boss model in more detail. He has been developing this model for many years, and

the results were reflected in a series of papers. [76, 77, 78, 79, 75]

Twersky modeled the random rough surface as completely rigid or free plane with



identical protuberances (bosses) distributed on it. The bosses had known shape and

were symmetrical with respect to the mean plane. Together with its image it formed

a ellipsoid, whose scattering characteristic is known. The randomness was introduced

by the random distribution of the bosses on the mean plane.

As one of the results, Twersky predicted that when we had nearly grazing inci-

dence, the reflection coefficient would approach -1, hence the total field near zero -

the so called "zone of silence". This agreed with the results of Biot [6] and Howe [31].

Some assumptions were made in the boss theory. Their merits and implications

are discussed in the following.

About Order of Scattering

It was assumed that the average field with two scatterers fixed was equivalent to that

with one scatterers fixed. Here the recursive multi-order scattering method was used.

It was equivalent to starting a successive scattering process with the average single

scattered wave. This implied that each stage of scattering was averaged separately

and thus prevented the occurrence of mutual path differences in subsequent stages of

scattering. But no discussion of conversion of such recursive method was given.

Alternatively, we can regard this treatment as substituting one of the fixed bosses

by one random placed boss. The error thus introduced was small since only one of

the large number of bosses was altered. This is only a loose justification, a rigorous

conversion study is still needed.

About Boss Excitation

When determining the excitation of bosses, the random part of the field scattered by

all the other bosses was neglected. This treatment is not always legitimate and could

lead to an erroneous result. Specifically, the average over the derivative of a function

is not equivalent to the derivative of the average function.



About Boss Distribution Statistics

Twersky treated two kinds of statistical distribution of bosses: uncorrelated (lattice

gas statistics) and pairwise correlated (Percus-Yevick function). A discussion of a

more general distribution might be interesting and make the treatment complete.

But considering this work will have limited practical application anyway, it's only

the qualitative results that counts. It is probably not worthwhile to go through the

troubles to consider more complex statistics.

Overall Evaluation

The boss model is far from realistic and has extremely limited practical application.

Nevertheless it gave us some insight into one of the problems that have been hard to

handle with other methods - multiple scattering. By intuition, we expect that the

multiple scattering effect is more important as the incidence angle gets away from

normal, which occurs frequently in underwater acoustics where we often have grazing

incident on the seasurface and seafloor.

We anticipate that the boss model should generate good results when the rough

surface spectrum approaches that of white noise.

5.2.3 Kirchhoff Approximation

Kirchhoff theory was originated from the study of light diffraction through an aperture

by Kirchhoff [40, 5]. The formulation is based upon an exact integral formulation,

but approximation to the wave field is made on the surface of the interface. The

basic idea is that, at any point on an interface, the surface is treated as though it

is part of an infinite plane, parallel to the local surface tangent. Thus the theory is

exact for an infinite, smooth, plane scatterer but is approximate for scatterers that

are finite-sized, non-planar, or rough. It is expected that the method performs well if

the surface gradient changes slowly. There is no restrictions on the maximum surface

height or gradient. A rule of thumb for the validity of Kirchhoff approximation is:



Kasin381 >> 1, (5.5)

where K is the wavenumber of the incident wave, a is the local radius of curvature of

the surface, 01 is the grazing angle.

A restriction is therefore placed on the radius of curvature of the surface, relative to

the wavelength of the incident wave, the severity of this restriction being dependent

on the angle of incidence. It is clear that any surface to which the approach is

applied must have a height profile with no rapid changes in its gradient. No explicit

restrictions on the magnitude of the height or gradient are required.

In the case of penetrable media additional difficulties arise. The main reason is

that the transmitted field must also satisfy equation (5.5), which means that the

transmitted field must not propagate at grazing incidence. The result is that the

scattered field in penetrable media which has been calculated using the Kirchhoff ap-

proximation may quite seriously deviate from exact solutions when the local incident

angle on the rough sourface 01 approaches the critical grazing angle of the second

media. Thus a modified requirement in terms of the incident field and the media

properties is:
K 1K1asin201sin( • 1) >> 1, (5.6)
K2

where K 1 and K 2 are the bulk medium wavenumbers in the first and second medium.

With this modified version of the Kirchhoff criteria it is clear that when • is large,

as is the case with a fast bottom, the modified criteria is more stringent than its

non-penetrable media counterpart.

The literature on Kirchhoff theory applied to acoustic wave scattering from rough

surfaces is extensive. Application to elastic wave scattering is analogous but compli-

cated by the presence of mode conversion and has not been so extensively developed.

In acoustic scattering problems there are two quantities to be specified on the

scattering surface, the pressure (or potential) < and its gradient relative to the surface

normal, ?. One of these is known from the boundary conditions satisfied at the

surface. The second quantity is specified at the surface with the aid of the Kirchhoff



approximation. If the pressure is to be specified then we have that the scattered

pressure may be replaced on the surface by the incident pressure multiplied by some

reflection coefficient R, which may itself be a function of F, the surface coordinate.

The total potential on the surface is then given by

(r) = (1 + R)Onc(r). (5.7)

If the gradient of the potential is to be specified, we have that

00(M inc,(.(r)- = (1- R) (5.8)

where n is the unit normal to the rough surface.1

The scattered field at some observation point away from the surface is written in

terms of the field quantities on the surface using the Helmholtz scattering formula

G(,o G(, O) ]dSo, (5 9)
= (.1 + [SC(7)G\ - (5.9)

where the integral is over So, the rough surface, and the quantity ¢Sc appearing in the

integral is the scattered field on the surface, n is the unit outer normal to the surface.

By substitution of (5.7) or (5.8) into (5.9), together with the boundary conditions,

an expression is obtained for the scattered field at some point r', in terms of known

quantities. This gives the general result of the scattering problem in the Kirchhoff

approximation. The integral to be evaluated depends on the incident wave, the form

of the rough surface and the nature of the reflection coefficient. We see that this

approach is the next level of improvement on the theory based on geometric optics,

where incident rays are assumed to be reflected in the "local specular" direction with

unit amplitude.

1The negative sign of R arises from the reversal of direction of the incident and scattered waves,
relative to the surface normal.



5.2.4 Perturbation Theory

The perturbation theory is particularly useful for low frequency wave scattering. The

basic idea is that, since the roughness is "small" compared to the "scale" of the

problem for slightly perturbed surfaces, the resulting wave field is expected to devi-

ate from the unperturbed ones at most the order of the ratio of roughness to wave

length. Thus, by Taylor expansion, the total field at a point may be expressed as an

unperturbed solution with an addition of small correction due to the perturbation.

If the surface height and its gradient are "small", and the surface profile is slowly

varying with no discontinuities, then the field scattered from the rough surface may

be expanded in an infinite series:

O0
¢)= ¢inc(-) + E , (5.10)

n=O

where inc(£) is the incident wave field and 0`(Y) is the nth-order approximation to

the scattered field. The n = 0 term is given by the scattered field which would exist

if the surface were smooth (the unperturbed solution). It is also assumed that if the

boundary conditions obeyed on the rough surface are of the form

f(x, y, z) Iz=h(x,y)= 0, (5.11)

then they may be expanded in a Taylor series about the mean plane z = 0, of the

form

af h2 02 ff(x, y, z) z=h(x,y)= f(x, y, z) z=o +h Iz=o + - z=o +... (5.12)

Here f(x, y, z) is, for example, the displacement or traction components on the

rough surface. Effective boundary conditions may then be found for the smooth

surface, z=0, the form of these depending on the true boundary conditions and on

the order of the terms retained in equation (5.12).



Range of Validity

For the perturbation method to be valid, both the height and the slope of the rough

surface have to be small:

{ Kh << « 1; (5.13)
Vh << 1.

Again, with K being the wavenumber of the incident wave, and h(£) being the height

of the rough surface.

Questions have been raised as to whether the smallness requirement in (5.13) guar-

antees the success of the perturbation theory, and what defines the explicit criterion.

Thorsos and Jackson tried to address these issues.

In their paper [73], the authors used the perturbation method to study a two-

dimensional acoustic wave scattering from a pressure-release surface with a Gaussian

roughness spectrum. Emphasis was placed on the first-order perturbation theory, i.e.

only two terms on the right-hand-side of Eq. 5.12 were retained. Using an integral

equation method and higher-order analysis, the authors concluded that the often

cited criterion (Eq. 5.13) is not sufficient to guarantee the success of the first-order

perturbation theory. Another parameter Ki, where 1 is the roughness correlation

length, plays an important role in defining the region of validity. There are cases

which demonstrated that for a fixed value of kh, increasing kl (equivalently reducing

the RMS slope) worsens the performance of the theory particularly for the backward

scattering. The fact is that increasing kl will reduce the resonance wavenumber

for the 4th order term, leading to a contribution larger than the 2nd order term.

However, the performance of the lower order theory is in general very good in forward

scattering. Moreover, it should be remembered that since their analysis is based upon

the Gaussian roughness spectrum, the results may not necessarily apply to roughness

spectra that exhibit power laws.

The explicit criteria which define the region of validity were established in the

paper. An important guideline is that if Gaussian roughness spectrum is used the

lower order analysis is appropriate for Kh << 1 and K1 < 6.



5.2.5 Comparison of the Approaches

These different approaches have their respective advantages and shortcomings. They

shall be used with discretion, being aware of their range of validity. The different

approaches are, in general, a compromise between the need for accurate predictions

of the effects of surface roughness and the requirement for reasonable mathematical

simplicity.

In Kirchhoff approximation, the mean and the scattered field are intrinsically com-

bined in one solution, while in perturbation theory the total field is the superposition

of the mean and scattered field along the mean interface. The fact that the field is

collapsed to the interface highlights one of the limitations of the theory.

One strength of perturbation theory is that it does not require locally flat surfaces,

so that scattering from fine detail is well modeled. Another strength of perturbation

theory is its versatility at low grazing angles. It does not canonically fail near or

at critical angles for penetrable media like the Kirchhoff approximation does, and

the scattered cross section is never overpredicted for low angles of backscattering. A

further accidental advantage of perturbation theory is that it is possible to incorporate

into wavenumber domain models. This is because the expansion of the scattered field

need not be evaluated along the scattering surface as in Kirchhoff theory, only along

the mean interface. Thus for perturbation theory the surface integral over the rough

interface is approximated by the summation of two straight line integrals, one for the

mean field, which may be obtained easily by other method, and one for the scattered

field which is a function of the boundary discontinuities.

There has always been some ambiguities about which result is better when the

smallness condition is satisfied for both the perturbation theory and the Kirchhoff

theory, but the results differ. Thorsos and Jackson [73] pointed out that if the surface

is such that the Kirchhoff approximation is valid (kl > 6 for the Gaussian spectrum

with average slope less than 200) and Kh << 1, then the complete Kirchhoff ap-

proximation is superior to the perturbation approximation. However, if kh << 1 and

kl < 6, then the higher-order terms make little contribution, and thus perturbation



theory is the preferred approach.

Perturbation approach is the choice of method in this thesis because of the tremen-

dous speed gains realizeable over full elastic solutions, and because of their ability

to treat large extent roughness on waveguide boundaries. For general evaluations of

scattering from fairly benign roughness features, distributed according to some law

along an arguably mean interface (5.13), the perturbation theory performs beautifully.

For larger, distinctive scattering features, WI-BEM method is well suited.

5.3 Previous Developments of Perturbation The-

ory as Applied in the Ocean Acoustics

The structure of the reverberant field from the interface scattering in a ocean fluid

elastic waveguide should be studied using the combined physics of scattering from

rough interface and the waveguide physics governing the mean field propagation.

Along this line, Schmidt and Kuperman developed a self-consistent approach using

perturbation method [41, 63]. Their model can be used to predict the effect of rough

interfaces on the mean field as well as the the higher-order statistics of waveguide

reverberation.

Subsequently, Liu et al. [47] combined the perturbation theory with a model of

random surface sources to provide a unified theory for rough bottom scattering of

ambient noise in the ocean, demonstrating the significance of scattering into seis-

mic modes in shaping the spectral behavior of the deep ocean noise field observed

experimentally. LePage et al. [42] used a full three dimensional implementation of

the theory to model transmission loss in the Central Arctic, and based on excellent

agreement with historical loss data, provided theoretical evidence for scattering into

the flexural ice modes being the dominant loss mechanism in the Arctic.



5.4 An Overview of the Boundary Operator Ex-

pansion Approach

In the following we review one perturbation approach developed by Schmidt and Ku-

perman : the Boundary Operator Expansion Approach for rough interface scattering

in stratified elastic waveguide [41, 44].

As we have described, the perturbation method does not appeal to the integral

equations to model the effects of rough surface scattering. Instead a Taylor series ex-

pansion of the local boundary conditions in the parameter of surface height is used to

seek a series solution for the scattered field. To each order the inhomogeneous equa-

tion for the scattered field are forced by terms which are effective source distributions

spread along the mean scattering interface. Thus the boundary integral equations

are no longer utilized, and instead the scattered field is determined through a volume

integral over these sources and the free space Green's functions. The forcing terms at

each order are generally functions of lower order solutions. Within the validity range

of perturbation theory, higher order terms have less significant contributions to the

total solution.

In a homogeneous and isotropic elastic medium, the seismo-acoustic field produced

by one or more sources of time dependence e- iwt can be expressed in terms of three

scalar displacement potentials,

S(Y), P waves
x(k) = O(F), SV waves (5.14)

A(s), SH waves

satisfying Helmholtz equations of the form:

V24'(y) + K2 (z)d(I) = -6(5- xi). (5.15)

At each interface between layers, the potentials must satisfy the boundary condi-

tions of continuity of tractions and displacements, which can be stated in an operator



form:

U -U 4+ u(1
S= - (5.16)

T(-) U T () U D- ti(*)

where #+ is a vector of wavefield potentials in upper layer of the interface and 4-

being that in the lower layer. U and T are matrices of differential operators, the

number and type of which depends on the type of interface i (separating layers i and

i+1). n' is the local unit normal vector of the interface. ui and ti are the forcing of

displacements and tractions on the interface caused by real sources. Here we used

the term "real" to distinguish it from the "virtual" source which will be used later in

the section.

In Eq.( 5.16), the displacement operator is

a 0 aax9 az
U - a a 0 (5.17)ay az(517)

a a a
8z ay Ox

and the normal traction operator is

T(n-) n=i n, nz ] A B c, (5.18)

where

ax 9y Tz

a a 1(

B A A (A + 2M)• A ' (5.20)o a

A-!2 0 A a
SO a a



We can rewrite Eq. (5.16) in condensed notation:

B()*#)±( ) = -f(M). (5.22)

It is well known that in a range-independent environment with smooth boundary,

the problem is solved by Fourier transforming the Helmholtz equation into the depth-

separated wave equation:

d2 -,z) [k2 - k2(z)](,z) = (z- z (5.23)
dz2  2ir

with ki being the compressional wavenumber for the compressional potential and

shear wavenumber for the shear potentials. The solution of this equation can be

expressed as a superposition of a particular solution satisfying the inhomogeneous

equation and a linear combination of the two independent homogeneous solutions.

The exact amplitudes of various terms are readily determined by the smooth boundary

conditions and source terms.

Now, in our rough interface case, the wave equations are the same. But the

boundary conditions (actually, boundary shapes) are not trivial.

The solution technique entails expanding the scattered potentials and the bound-

ary operators at the rough interface in the series expansions in increasing order of the

surface height parameter rj(V),

00

eY M E (), (5.24)
m=O

B() = Bo() + o bo=o + ( O0(q2) (5.25)

In Eq. (5.25), the rotational transformation has been incorporated into the oper-

ator b. The exact form of o will be given in the next section.

Now, we can solve the resulting boundary value problems at various orders of the

expansion parameter. So, the zeroth order solution corresponds to the unperturbed

smooth elastic interface problem, while the first order solution contains the scatter-



ing behavior for small interface roughness, and the higher order solutions contain

correction terms which account for larger roughness effects. When the roughness am-

plitudes are small compared to the acoustic wavelength, the higher order effects will

be progressively less significant. In this thesis, only the zeroth and the first order

effects are considered.

The zeroth order equation for the scattered field is simply the smooth boundary

problem with inhomogeneous forcing by the real source on the RHS

Bo(5)o(£) = -f (±). (5.26)

The first order equation for the scattered field incorporates the first effects of the

roughness parameter both as a scalar multiplier in the translational term and a cou-

pling term controlling the rotational operator:

Bo(g)ol(g) = [-, aBo 0() - ,j o boo()]6(z - zi), (5.27)

where zi is the depth of interface.

First, the following two terms are computed,

d(Q) -= OBo() = f iqlo() (f)eik.Xdk; (5.28)

r(Y) = bo0()¢O •() - - if biko(\ )o ()ei k*dk. (5.29)

These spatial displacement and rotation terms are then multiplied directly by the

surface roughness height and gradient to yield the spatial boundary discontinuities in

stress and strain that the scattered field must satisfy at each interface:

Bo(i)¢I (X) = -r(Y)d(Y) + ?j(i)r(Y) = -f,,(Y). (5.30)

Comparing this with equation (5.26), It is obvious that we can treat the first

order rough interface scattering problem as if the boundaries were smooth, with dis-

tributed virtual sources replacing the interface roughness, while the virtual sources



are functions of the zeroth order potential.

5.5 The Perturbation Approach in the Rough Patch

Scenario

5.5.1 Spatial Convolution Treatment of the Virtual Sources

As mentioned in last section, equation (5.30) shed light on the way we can solve for

the scattered field. Thus, because of the form of of Eq. (5.30), the first order potential

can be expressed as a spatial convolution of a simple potential term / and the virtual

source distribution:

x= J +: - r7)f,(xi)dx. (5.31)

+ is the wavefield potential in the waveguide with smooth interfaces generated

by a point interface discontinuity:

Bo()•(Y () = -W6(J), (5.32)

where X' = X- xS.

Eq. (5.31) has a straight-forward physical interpretation. For a particular field

point F, if we know the field generated by a unit source at each point on the patch

1 (W), then the total field at X is simply the superposition of these point source fields,

weighted by the actual source strength at each source point.

Convolution in the spatial domain translates into multiplication in the wavenum-

ber domain, so,

(k) = •()(j). (5.33)

Thus,

( ) = e • '± (if~ (i•)d . (5.34)

The key to efficient computation is a hybrid spatial-wavenumber approach. The



virtual source distribution f,(ix) is evaluated directly in the spatial domain. From

Eq. (5.30), we can see that in spatial domain, the virtual source vanishes outside

the patch. Thus this direction spatial domain evaluation is extremely numerically

efficient. The wavenumber domain evaluations are used only to obtain derivatives of

the various elastic boundary conditions and to efficiently obtain the Greens function

for the layered media.

5.5.2 Cylindrical Representation of the Virtual Sources

For the moving coordinates used in last section, it is natural to choose Cartesian

coordinate system. Such a model has been developed [44, 42] for the scattering

from roughness patches on an interface separating a fluid and an elastic halfspace.

However, due to numerical effort required, it allows for modeling of the scattered near

field only. More importantly, it prohibits the incorporation of waveguide effects, thus

totally unapplicable to the shallow water environment.

In this section, instead of the moving coordinates ('), we choose the fixed co-

ordinates (Y). As virtual sources are confined in the small patch area, a cylindrical

coordinate system with origin within the patch is a more natural choice:

S(r, 9) = [cos(mO) Jm(kr)+, (k)fimf(k)dk+sin(mO) Jm(kr)0+2 (k) fm(k)dk].
(5.35)

Representing the virtual sources in cylindrical coordinates overcomes the afore-

mentioned shortcomings of the previous model. First, it is compatible with the 3-D

version of the SAFARI code, which has can be modified to provide extremely efficient

numerical simulation of the waveguide effect.

Second, this cylindrical representation greatly enhance the numerical efficiency

of the scattered field computation, thus enable the far-field computation. This is

because the smaller the area of source distribution, the lower the Fourier order we

need to include to represent the field. The rule of thumb is that for a patch of

radius a and media wavenumber ko, the Fourier expansion terms of order m > Koa

have insignificant contribution to the field. For example, in the numerial examples



described later, the patch has maximum radius of approximately 100m, and the water

wavenumber is approximately lm- '. We only need to calculated terms up to Fourier

order 100. To avoid alias and at the same time cover the whole wavenumber spectrum,

approximately 2000 samples in the wavenumber domain have to be calculated for the

scattered field computation. If using Cartesian coordinate system, we have to compute

4,000,000 samples, but if using cylindrical coordinate system, only 200,000 samples

are needed, translating into only 5% the computation time.

There is one caveat. Due to the simplicity to manipulate, the incident wave and the

spatial domain discontinuities of displacements and tractions are most conveniently

described in Cartesian coordinate system. The transform into cylindrical representa-

tion in a form that is compatible with the 3-D DGM is not a trivial mathematical

excercise. In the following, we shall establish the relationship of the virtual sources

(displacement and tractions discontinuities) under these two different coordinates.

5.5.3 The Coordinate System Transform

In cylindrical coordinates, the displacement UG(r, 9, zo) at interface z = zo will be

decomposed as:

U (r, 0, zo) = eur (r, 0, zo) + e^euo(r, 0, zo) + e^zuz(r, 9, zo), (5.36)

and the components will be further expanded as:

ur(r, 0, zo) = EZm[Um(r, zo)cos(mO) + U•r(r, zo)sin(mO)],

uo(r, 0, zo) = Em[Uom(r, zo)sin(mO) - UB2(r, zo)cos(mO)], (5.37)

UZ(r, 9, zo) = Em [Uzm(r, zo)cos(mO) + Uz(r, zo)sin(mO)],
in which

Uzm(r, zo) = f Z (kr, zo)Jm(krr)krdkr,
UrT(r, zo) + Um (r, zo) = f[Rm(kr, zo) + E'(k,, zo)]Jm+l(krr)krdk,, (5.38)

U,7(r, zo) - Uom(r, zo) = f[RM(kr, zo) - EO(kr, zo)]Jm-1(krr)krdkr,
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for i = 1, 2.

Note the way Ur (r, zo) and Uom(r, zo) are represented. Only the combinations of

them give us single Bessel function orders in the integral. Of course, we can choose

the representation arbitrarily, which corresponds to different definition of RT(kr, zo)

and 0• (kr, zo). But U,•r(r, z0 ) and Uom(r, zo) alone will introduce at least two orders

of Bessel functions in the integral, which would severely complicate the expression

and calculation. [62, 60]

Now, the displacement discontinuities is represented in Cartesian coordinate sys-

tem as

l(x,, y, z0) = exu.(x, y, Zo) + e(,uy(x, y, ZO) + ezUz(x, y, z). (5.39)

We proceed by taking the 2-Dimensional Fourier Transform to get

U(k , ky, zo) = e~.Ux(k., ky, zo) + 6e^ U(k., kI, zo) + ejUz(kx,ky zo), (5.40)

then change variables from (kx, ky, zo) to (kr, ,, zo) and expand into Fourier series:

SU(kr, 3, Zo) =mIm[Xlm(kr, zo)cos(mp) + X 2
m (kr, zo)sin(ml)];

Uy(kr, 73, z0) = Em[Ylm (kr, zo)sin(mp) - Y2m (kr, zo)cos(mp)]; (5.41)

Uz(kr, i, zo) = Em[Zim (kr, zo)cos(mp) + Z2m(kr, zo)sin(mp)].

It can be shown that (see Appendix C) there is a very simple relationship be-

tween the expansion coefficients in cylindrical (Eq. (5.38)) and Cartesian (Eq. (5.41))

coordinate systems:

Zim(k, zo) = 2x(-i)m±1Zim(kr ,zo),
mfl -mfl (5.42)

RY(kr, z0) OT?(kr, zo) = 27(-i)m±11[Xi (k,, z0) Yi (kr, zo)],

where i = 1, 2.

5.5.4 Summary

To summarize, the algorithm is shown in Fig. 5-2.
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OASES, Fourier Xform of (5.26)
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at the boundary

c boundary operators

wavenumber integration (5.28)
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discontinuities at the boundary
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Figure 5-2: The Algorithm For Calculating the Scattered Field From a Rough Inter-
face Patch, Using Hybrid Wavenumber-Spatial Domain Method
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Chapter 6

Numerical Simulations of

Three-Dimensional Diffuse

Scattering from a Rough Interface

Patch

In this chapter, we will use the model developed in last chapter to investigate the

acoustic scattering from a rough interface patch. First, we discuss how to characterize

and simulate the rough interfaces. Then, a deep water environment representing some

scenarios in the ARSRP experiment is considered. How the roughness statistics affect

the inherently 3-D scattering pattern is examined. In the following section, shallow

water scenarios are considered, highlighting the waveguide effects on the scattering

from the rough patch. The final section is engaged to the discussion of Lambert's law:

its validity and its relationship with the roughness statistics and bottom material.

6.1 Simulating the Rough Interface

Representing the rough interface in the ocean environment is an interesting issue.

We have quite good understanding of the mechanism that caused and continues to

change the landscape of the seabed at scales larger than tens of kilometers, and
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accurate bathymetry maps are available. But for small scale profiles, life is not that

easy. First of all, to have accurate bathymetry maps with fine details, tremendous

efforts are required. A global survey is impossible beyond a certain resolution. And

again, no matter how fine the existing maps are, there are always finer details that

are not covered.

A more important question is : is it worthwhile to produce such a fine scale map?

The answer is No. The fine details of the ocean bottom are constantly changing.

Unlike large scale features such as seamounts and fault scarps that stay constant for

quite a long time, small scale features are changing so fast that the aforementioned

map will be outdated very soon. To make matters worse, we are not sure how they

evolve.

The only resort for the description of the small scale features is statistical ap-

proach. As Mandelbrot put it [49]:

"...the goal of achieving a full description is hopeless, should not even be en-

tertained. In physics, for example the theory of Brownian motion, the key out of

this difficulty lies in statistics. In geomorphology, statistics is even harder to avoid.

Indeed, while the laws of mechanics affect molecular motion directly, they affect geo-

morphological patterns through many ill-explored intermediaries. Hence, even more

than the physicist, the geomorpologist is compelled to forsake a precise description

of reality and to use statistics."

Goff and Jordan [28] developed a stochastic model for the estimation of seafloor

statistics that takes into account the finite precision, resolution, and sampling ob-

tained by actual echo sounding systems. They modeled the seafloor as a stationary,

zero-mean, Gaussian random field completely specified by its autocovariance function.

First, a bathymetry function b(F) is introduced. It is defined as the depth of the

seafloor as a function of the coordinate vector Y, which ranges over a two-dimensional

domain M. Represented on the map b()) : FE EM will be the large scale bathymetric

information associated with plate subsidence, major volcanoes, seismic ridges, oceanic

plateaus, abyssal plains, the larger fracture zones, etc., as well as small scale features

such as abyssal hills, small volcanic cones, lava flows, and sediment ponds. As we
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mentioned earlier, geologically, the large scale features can be treated in a determin-

istic point of view. And acoustically, their scattering effect can be modeled by facet

scattering models, provided their dimensions are close to the wavelength.

The small features, as aforementioned, are too variant to be treated deterministi-

cally, and numerous enough to be represented by their ensemble properties.

Thus the bathymetric function b(i) can be partitioned into deterministic compo-

nent bo(Z) and a stochastic component h(Y):

b(Y) = bo0 () + h(F). (6.1)

The small scale seafloor topography is considered to be a random field, generalizing

h(Z) from a particular function to a two dimensional stochastic process specified by

a joint probability density function f(h(j), h(), ... : •,, i, ... E M).

Now, for stochastic modeling to be practicable, the statistics of h(Y) must be ap-

proximated as being spatially homogeneous or stationary. This is a tricky assumption.

Obviously, the ocean bottom landscape varies. Not only the shapes of bathymetry

change from area to area, more importantly, the trend and characteristics change,

i.e., the stochastic process is by no means spatially stationary. But arguably we can

assume that the change of the stochastic process is a function of the distance.

So, in the use of the stochastic model we should be extremely careful. The region

over which the bathymetry is assumed stationary should be neither too large or too

small. It has to be small enough so that the stationary assumption is still a good

approximation. On the other hand, the region has to be large enough so that the

stochastic ensemble of the bathymetry function is big enough to ensure the estimation

of the parameters can be done with adequately small uncertainty.

The expected value of the bathymetry is taken to be the reference surface bo(£),

so the topography h(7) is defined to be a zero-mean process:

(h()) = f h(Y)f(h(Y))dh = 0. (6.2)
ts higher-order properties are contained in the N-point moment functions

Its higher-order properties are contained in the N-point moment functions
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CN(,..., ) = (h()...h( X()) = ... hi...hyf (h, ..., hN)dhl...dhN, (6.3)

where h, = h(xn).

As we assume the process is spatially stationary, the moments of seafloor topog-

raphy are invariant with respect to spatial translation,

c, (, + 3, ..., -+ •Y) = CN(;X(, ..., s). (6.4)

Because of this translational symmetry we can invoke an ergodic hypothesis to

identify spatial averages with ensemble averages. That is, for any fixed set x- we can

construct an unbiased estimator of the form

CN(x1, ..., x) = - Xh( + )...h(+ + ̀ )dA(~), (6.5)

where the domain of integration M has an area A.

The Goff-Jordan model considers Gaussian processes. So the process is fully

described by its first two moments. As mentioned earlier, the first moment, i.e., the

expected value of the random part of the depth, is zero by definition. So that leaves

us only the two - point moment, or autocovariance function. Translation symmetry

allows us to write

Chh(c) = C2 (ý, (-+ 9) = (h(()h( + i)). (6.6)

Hence, for a stationary process, the autocovariance function depends only on the

spatial lag vector :. Given the autocovariance and the zero mean, the joint probability

density function for hi = h(xi) and h2 = h(i ) is

1 - hT2-2phhhlh2+h2

f(h, h2) = 2H 1 e 2H2(1-ph) (6.7)

where Phh H- hh ( -- X') is the correlation coefficient.
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Alternatively, the Gaussian process can be specified by its power spectrum

Ph(k) = Chh( )e-ik° *d 2 . (6.8)

A good model for the functional form of the power spectrum Ph(k) or the auto-

covariance Chh (i) should capture the general trends 1, and the parameters should be

linked intuitively to the geological attributes of the rough interface. The reason we

use Goff-Jordan [28] model is that they did a good job on this, as shown below.

They proposed the functional form of the power spectrum as

Ph(k) = 4w7rH 2  1 (6.9)
VI Q I [ul() + 1](v+1)

In Eq. (6.9), Q is a positive-definite, symmetric matrix whose Cartesian elements

qij have dimensions of (length)- 2 . It can be expressed in terms of its normalized

eigenvectors e' and e' and its ordered eigenvalues k <_ kI,

2.2 T -2 T

Q = knen + ki ee . (6.10)

The Q matrix carries information about the orientation of the anisotropy of the ran-

dom part of the bathymetry process. Specifically, e' is the direction of the maximum

correlation length, e the minimum, and k, and kn correspond to the inverses of the

maximum and minimum correlation lengths respectively.

In Eq. (6.9) u is the dimensionless norm of k defined in terms of its modulus k

and azimuth (,

k k )k k
u(k) = [kE'Qk-' ]/ -1y/2 ) 2cos2 (~ -> + k2 - ( (6.11)

1otherwise, too many parameters have to be introduced and estimated, and the use of the model
becomes forbiddenly cumbersome. In fact, a model with infinite parameters can be fit on any
experimental result. Then the introduction of the model doesn't say anything about the physics of
the reality. On the other hand, too few parameters leave too few degrees of freedom. In effect, too
much physics was read into the model. As a result, it would be too restrictive to have a meaningful
range of validity. When constructing a model, we should say something about the physics, but not
too much. The tradeoff is an art. It partly depends on the intended scope of the model.
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where C, is the azimuth of e'.

The roll-off rate of the power spectrum -2(v + 1) can be related to the fractal

(Hausdorff) dimension of such a stochastic process D as:

D = 3 -v. (6.12)

Hence, decreasing the parameter v increases the roughness, with the limiting cases of

unity and zero corresponding to a random field with continuous derivative (Euclidean

surface, D=2) and one which is "space-filling" (Peano surface, D=3), respectively. In

this thesis, it is assumed that the rough interface has fractal dimension 2.

So, in the Goff-Jordan model, the random process of the bathymetry is fully

described by the topographic amplitude H, orientation of the anisotropicity (,, char-

acteristic scale lengths of the elongations As and An, and the fractal dimension of

seafloor roughness D.

In this chapter, we will consider five different roughness statistics. Their parame-

ters are given below. For the sake of identifying, they are named "A", "B", "C", "D"

and "E".

Table 6.1: The parameters for the roughness statistics used in this chapter.

statistics correlation length correlation length RMS angle between fractal
along major axis along minor axis height maj. axis and X dimension

A 15m 15m Im 45 deg. 2
B 20m 5m Im 45 deg. 2
C 80m Im lm 45 deg. 2
D 80m 20m Im 45 deg. 2
E 4m Im Im 45 deg. 2
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6.2 The Deep Water Scenario with Beam Inci-

dence

The first example concerns a ocean environment representing some scenarios in the

Acoustic Reverberation Special Research Project (ARSRP) experiment. The water

column is 4km deep and is assumed to be horizontally stratified, with the sound

speed profile as measured in the experiment. A roughness area of size 150 meters by

1.50 meters is located at the water column/sea bed interface. The roughness profile

is assumed to satisfy the Goff-Jordan statistics with fractal dimension 2 (Euclidean

surface) and RMS height 1 meter [28]. To eliminate the edge effect, we apply a

Hanning window on the roughness profile. (Fig. 6-1) A beam is insonified on the

rough patch. The beam pattern has a wedge like shape, with its axis parallel to the

y axis, and Gaussian tappered in the X-Z plane. The center beam aims at the center

of the patch and has a 60 grazing angle. The insonification of the beam is shown in

Fig. 6-2.

6.2.1 The Isotropic Patch Case

First we consider an isotropic patch. The correlation length is assumed to be 15

meters in both X and Y directions. We call this roughness statistics statistics A. A

realization of the patch profile with statistics A is shown in Fig. (6-3) (profile Al). The

scattered pressure field at 150m above the interface is shown in Fig. (6-4). Pressure

in decibel is represented in color scale, which is plotted as a function of X ranges

and Y ranges from the center of the patch. The result is normalized such that the

insonification pressure is 1 at the center of the patch. We can see that the scattered

pressure field is symmetric along the direction of the incoming wave (positive X axis),

which is what we expected.
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Figure 6-1: The Hanning Window Applied on the Rough Patch to Reduce the Edge
Effect
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6.2.2 The Anisotropic Patch

Now, we consider an anisotropic patch whose main axis lies at 450 away from X

axis with correlation lengths 20 meters and 5 meters in the main and minor axes

respectively (roughness statistics B). A realization is shown in Fig. (6-5). Again, the

scattered pressure field at 3850m depth (i.e. 150m above the bottom) is calculated

and shown in Fig. (6-6). It is obvious that the anisotropy of the patch "steered"

part of energy out-of plane, which can not be adequately accounted for using a 2

dimensional model. It is interesting to note that the dominating scattering is in the

first quadrant, that is, along the alignment of the roughness features of the patch. It

should be reiterated that it is the one REALIZATION of the roughness profile out

of the probability space that generates this result. We can in no means draw any

conclusion in a statistically certain manner from such one result. Thus we use the

same stochastic process to generate another realization of th e patch (B2) (Fig. 6-7)

and calculate the scattered fields at the same depth, which is shown in , Fig. 6-8. We

can see the same "steering" effect.

6.2.3 Strongly Anisotropic Patch

To isolate important features from the other complicated scattering pattern, we run

another strongly delineated case, where the correlation length along the major and

minor axis on the patch are 80m and Im respectively. The major axis is still at

450 from X axis (statistics C). One particular realization is shown in Fig. 6-9 (patch

C1). As seen on the image of the patch, the roughness features are strongly lineated

and form very long and narrow valleys. The scattered field 150m above the bottom

is shown in Fig. 6-10. It is very "clean", with few strong features in geometrically

special locations. The strong scattering in the X and Y direction are easy to under-

stand physically. They correspond to the shadow effect and the specular reflection

respectively.

If we think of the strongly lineated features in the patch as cylinders lying in the

45'3 direction, we will expect the two group of scattered beams in the forward direction,
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Figure 6-7: The Anisotropic Rough Patch Realization B2. Correlation Lengths of
20m and 5m Along the Major and Minor Axes

117

-2
100

50

-50



ARSRP J218. 6 deg. Basalt.
$

-4 -3 -2 -1 0 1
Range (kinm)

Figure 6-8: The Scattered Pressure Field 150m above the Botom. Beami centered at6 degree grazing insonifies on the rough patch B2,

I 18

-4

L~Cu

0

-6

-12

-18

-24

-30

-36

-42

-48

-54

2 3 4



ANISO PATCH C1

-50
Y range (m) -100 -100

X range (m)

Figure 6-9: The Strongly Anisotropic Rough Patch Realization: C1. Correlationlengths are 80m and im along the major and minor axes
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just as observed in the sediment covered ridge case in Chapter 4 (Fig. 4-14).

6.2.4 Average Over Realizations

As we mentioned, our model computes the scattered field from particular realizations

of the rough patch. It is arguable that some of features we observed in the previous

result might have very small probability of occurrence and might not be statistically

significant at all.

To address that question, we generate 10 realizations for each of the three rough-

ness power spectra used above, and compute the resulting scattered fields. The

average scattered pressure fields at 150m above the bottom are shown in Fig. 6-11,

Fig. 6-12, Fig. 6-13. From these figures we can see that the basic features we men-

tioned are still there. Of course, the details are different. So, we conclude that the

power spectrum of the rough interface patch is the decisive factor at shaping up the

pattern of scattering, while the details of the scattered field depend on the particular

realization.

6.3 Shallow Water Scenarios: The Waveguide Ef-

fects

In this section, we examine the scattering and reverberation effects of the rough patch

with the presence of the waveguide.

In the deep ocean scenarios presented in last section, the upper surface has little

effect in the reverberation field until at very far field. But in shallow water, the

upper boundary plays an important role in the scattering and reverberation. Here,

the waveguide not only affects the propagation of the scattered waves, but also affects

the excitation of different scattered waves. Waveguide and roughness scattering forms

an integral problem. This is exactly the strength of our approach.

The environment we consider is as following: 20m deep water column with com-

pressional sound speed of 1530m/s and density of 1g/cm 3 . Beneath is elastic bottom
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with compressional sound speed of 5200m/s, shear sound speed of 2500m/s and

density of 2.4g/cm3 . The water is assumed lossless and the elastic bottom has com-

pressional attenuation of 0.2dB/A and shear attenuation of 0.5dB/A. We used the

patch Bl(see Fig. 6-5) throughout this section.

In contrast to the deep ocean scenario, where a beam is the natural way to describe

the acoustic wave propagation, in the shallow water waveguide scenario, a modal

description should be used. So, instead of have a beam insonification on the patch, a

single mode is generated as the incoming field.

First, to examine the modal situations in this waveguide, a SAFARI run is per-

formed. A point explosive source of 250Hz is placed at 2m beneath the vacuum/water

interface and receiver is placed at 5m deep. The point source excites the whole

wavenumber spectrum, which is filtered by the waveguide. Those waves which satisfy

modal conditions remain strong at the receiver. The wavenumber spectrum at the

receiver depth is shown is Fig. (6-14). In our calculation below, we have a plane wave

incident whose direction of propagation only excites the 5th mode (k.- = 0.67m - 1) as

the zeroth order field. The quantities calculated are normalized such that the pressure

field in the water column generated by the plane wave has amplitude of 1 (0dB).

To understand the effects of the waveguide on scattering and reverberation, it is

illustrative to examine the cases both with and without the upper boundary. Next,

we calculate the scattered pressure field when the upper boundary is absent, i.e., the

environment with just two half spaces: the water and elastic bottom. The scattered

pressure field at the horizontal plane 14m above the water/bottom interface is shown

in Fig. (6-15). Notice the scattered pattern is different from that from the same

patch (Fig.6-6) in the deep water case. The incoming field was a beam back then,

but here we use an incident plane wave. More importantly, the grazing angles are

quite different. In the last section, 60 grazing angle was used. Here it is 480. This

difference shows how important the inherently three-dimensional effect is.

Now, we examine the waveguide effect. Fig. 6-16 shows the scattered pressure

field 14m above the bottom in the 20m deep waveguide. The modal propagation

is clearly visible. To check which modes are present in the scattered field, a close-
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up picture of the same field is shown in Fig. (6-17). It can be seen that the radial

period of the strong scattering region is approximately 60m. But from Fig. (6-14)

we know that the horizontal wavenumber of the 5th mode in this waveguide is 0.67

m- 1, which gives the radial wavelength at approximately 10m. So the 5th mode

alone could not generate the propagation pattern observed - actually no single mode

alone can generate this pattern. Checking Fig. (6-14) again, it is noticed that half

the difference of wavenumbers between the 5th mode and mode 3 is roughly 0.1 m - 1.

Thus the interference between these two modes can generate a pattern with radial

period of around 60m.

So, we have one mode coming in; and at least one other mode scattered out. The

rough patch converts part of the energy from the one incident mode to other modes.

Actually, the rough patch scatters the incoming two wavenumber vectors into a whole

array of wavenumber vectors which fill the three dimensional space (not uniformly, of

course). Among these wavenumber vectors, only those satisfy the modal conditions

for this particular waveguide survive. Specifically, each mode has a fixed kz, so all

the possible directions of that mode forms a cone with the vertical axis. Higher order

modes have larger kz, thus the corresponding cones span a narrower angle. There

are six modes in our waveguide, so only those scattered wavenumber vectors that fall

into one of these six cone surfaces will not be filtered out during propagation.

Now we have illustrated that the rough surface scattering in shallow water is

an integral problem involving the waveguide propagation, scattering mechanism and

three dimensional effect, and that our approach can treat this problem elegantly.

Next, we examine whether elasticity is important here. We rerun the same scenario

as above, except using a fluid bottom. The scattered pressure fields are shown in

Fig. (6-18) and Fig. (6-19) with the bottom sound speed being 5200m/s (same as

the compressional sound speed of the old elastic bottom) and 2500m/s (the old shear

speed) respectively.

It can be seen that neither of the two scattered fields in the fluid bottom cases

portray the right level, or even the pattern of the original elastic bottom case. So we

conclude that the elasticity is important in the rough surface scattering in shallow
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water environment.

Now, we reduce the sound speed of the fluid bottom to 1600m/s. Again, using

plane wave incidence (k. = 0.67m- 1 ), the scattered pressure field 14m above the

bottom is calculated and shown in Fig. (6-20). Let's investigate the modes closely.

Of course, with different bottom, the wavenumbers of the modes will be different from

those in the elastic case. We used SAFARI to calculate the wavenumber spectrum

received at 15m above the bottom generated by a point source at 18m above the

bottom (Fig. 6-21). Again, six modes exist in this waveguide, but at different location

in the wavenumber domain. The incident plane wave lies between the 5th and 6th

modes. No modes would be excited if all boundaries were smooth. But Fig. (6-20)

clearly shows modal propagation, especially in the far field. The radial period of the

interference pattern is approximately 600m. Going back to the SAFARI result, we

see that no mode alone can generate this pattern. Actually, the wavenumber of the

bottom is 0.982 m-'. So all the modes except 1st and 2nd are leaky modes, which

will lose energy due to penetration into the bottom. So only the first two modes can

contribute to the far field. The wavenumber difference of the two modes is around

0.02 m - 1, and the envelope of the interference of them gives exactly the radial period

of 600m. Thus the rough patch converts energy and excites the modes far away in

the wavenumber domain as well as the neighboring modes.

In the previous examples we considered the waveguide with basalt bottom. It was

for the illustrative purpose and to compare with the deep water scenario. This is

another example of the "controlled experiment" function of models. The factor we

want to examine is the waveguide effect, so we keep bottom property the same and

single out the waveguide factor, which could not be done in real experiment.

Typical shallow water seabed is covered by silt. Now we calculate the rough patch

scattering for a more realistic shallow water scenario: Same 20m deep waveguide and

same plane wave insonification, but with silt bottom (Cp=1600 m/s, Cs=400 m/s,

d== 1.8 g/cm**3, compressional attenuation = 0.2dB/wavelength, shear attenuation

= 0.5dB/wavelength). The scattered pressure field 14m above the bottom is shown

in Fig. 6-22. It can be seen that the level of the scattered field is much lower than
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Figure 6-21: The Wavenumber Spectrum 5m below the Free Surface Calculated by
SAFARI. Generated by a Point Source 2m below the Free Surface. The Waveguide
is 20m Deep with Fluid Bottom, where Sound Speed is 1600m/s
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that in the basalt bottom case. The reason is that we have a slow shear wave in the

bottom (400m/s < 1530m/s). So for all the modes some energy will leak into the

bottom as they propagate.

6.4 About Lambert's Law

As mentioned in Chapter Two, Lambert's law is a simple classical model of rough

surface scattering. It proposes that the scattered sound intensity is proportional to

the sine of the angle of scattering:

I, = pli sin 0 sin CdA. (6.13)

Traditionally, Lambert's law has been used in the monostatic sense, i.e., for the

backscattering direction. However, because of the way it is formulated, it is tempting

to use the Lambert's law in the bistatic sense, too. Indeed, there are discussions in

the academic community to apply it in the bistatic scenario.

In this section, we shall investigate the validity of the Lambert's law in the bistatic

sense. We shall consider a fixed incoming wave and consider the scattering in various

direction (¢).

The Lambert's law as we cited in the above equation is for 2-D environment.

Many real scattering problems will be in 3-D scenario. We shall extend the above

equation into 3-D case.

First, we establish the spherical coordinate system as shown in Fig. 6-23. The

direction of propagation is determined by vertical angle a and azimuthal angle 3. The

basic assumption in Lambert's law is that the scattered sound intensity is proportional

the the sine of the grazing angle, i.e., the cosine of angle a. The most straight forward

extension into 3-D is to assume that this is the only directional dependence of the

scattering intensity. Under this assumption, the azimuthal angle does not matter and

the scattering pattern will be rotational symmetric around the vertical axis.

Is(a,/3) = C cos a, (6.14)
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where C is a constant independent of a and 0.

Now, let us run a series of simulations use our model to investigate the validity of

this assumption.

6.4.1 Roughness Statistics

Since we are only interested in the scattering pattern, wave guides effects are not of our

concern. Here we will choose environment with two half spaces. Our first example

concerns the water/basalt environment with patch B1 (with correlation lengths of

5m and 20m along the minor and major axes), with 60 grazing beam incidence. The

angular spectrum at 150m above the bottom is shown in Fig. 6-24.

The figure plots the scattered sound intensity as a function of its direction of

propagation. It can be seen as the half-sphere in Fig. 6-23 folded out, looking down

at the patch. The radial distance from the center corresponds to vertical angle a; the

azimuthal corresponds to angle 0.

It is obvious from Fig. 6-24 that the scattered sound intensity is not rotational

symmetric. And the maximum strength is not at the vertical direction, but approx-

imately at 500 vertical angle and 200 azimuth from the forward scattering direction.

None of these two features can be explained by Lambert's law.

To make sure this pattern is not a small probability event. We run 16 realizations

with the same patch statistics and average the angular spectrum. The result is shown

in Fig. 6-25.

Again, we can see the same features:

* it is not rotational symmetric.

* the maximum scattering does not occur at the vertical direction.

This deviation from Lambert's law is not caused by anisotropy. In Fig. 6-26 the

averaged scattering angular spectrum over 16 realizations of statistics A (isotropic,

correlation length 15m) is shown. The aforementioned two features are still present.

Now we concluded that patches with statistics A and B does not scatter sounds

according to Lambert's law. Naturally, the next question is: if the roughness statistics
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or the bottom property is changed, will the scattering pattern become closer to the

Lambert's law behavior?

Up to this point, our definition of Lambert's law behavior has been characterized

by two features of the scattering intensity: the rotational symmetry and the cosine of

vertical angle dependence. These two features might not change in the same way as

patch changes. For example, as we change the patch, we might get a more symmetric

scattering but the scattering deviates further from cos a dependence. Of the two

characteristics, cos a dependence is more essential to Lambert's law assumption. We

can relax the azimuthal symmetry and allow the coefficient C in Eq. (6.14) to be a

function of azimuthal angle f. Thus, from now on, we speak of "more Lambertian" or

"less Lambertian" scattering in reference to how close the scattering intensity changes

proportional to cos a, regardless of azimuthal dependence.

First, we would like to examine the effect of changing the rough statistics of

the patch. We keep all the parameters in statistics B, only change the correlation

lengths proportionally: from 5m/20m on minor/major axis (statistics B) to 20m/80m

(statistics D) and lm/4m (statistics E).

The scattering angular spectra for D and E realizations are shown in Fig. 6-27 and

Fig. 6-28 respectively. Comparing these two figures with Fig. 6-24, it can be seen that

the rougher the patch is (shorter correlation length), the stronger the scattering close

to vertical direction. So we can say loosely that rougher patches are more Lambertian.

However, in all three scenarios, the maximum is at the direction far from vertical. To

find out whether the maximum will move to the vertical for extremely rough patch

is beyond the capability of our model. One of the basic restrictions of perturbation

method is that the gradient of the roughness be much smaller than one. To have

extremely short correlation length, the gradient of roughness can be very large, which

caused that higher order terms in the expansion not being neglicable.

6.4.2 Bottom Properties

Next, let us examine the effect of changing the bottom material. The scattering

angular spectra from fluid patches with sound speed of 5200m/s and 2500m/s are
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shown in Fig. 6-29 and Fig. 6-30 respectively. The patch profile is assumed to be

B131. There are no significant differences between these two figures and Fig. 6-24.

Thus, we conclude that the Lambert's law is not a good description of the bistatic

rough surface sound scattering for the rough statistics we used here. The scattering

pattern is far more sensitive to the rough statistics than to the material property of the

bottom. Lambert's law is a better description for rougher surface. If we use Lambert's

law in the monostatic sense, comparing our simulation with Eq. (6.13), , a coefficient

p around -20dB is obtained. This is consistant with experiment observation.

So far, we have examined the effects of the roughness statistics, waveguide physics

and bottom property on the rough patch scattering. In the following examples, these

individual effects and their interplay are clearly shown. Fig. 6-31 shows the scattered

wavenumber spectrum at 150m above the bottom with rough patch C1 with 60 grazing

beam incidence. A ring structure is visible. The outer circle corresponds to the

compressional wavenumber of the water column. The inner circle corresponds to the

shear wavenumber in the bottom. Those waves having wavenumber spectrum inside

the inner circle will be refracted into propagating shear waves in the bottom. These

waves have grazing angle larger than the critical angle. Part of the energy is lost into

the bottom. Thus in the wavenumber spectrum, we see a hole inside the inner circle.

In the first quadrant of the figure, a lineated feature is visible. This corresponds to the

roughness spectrum of the patch. Remember, the roughness in this patch is lineated

at 450 between X and Y axis, so its spectrum is perpendicular to that direction. It

runs through the point which corresponds to the specular reflection, i.e., the point

on the positive ky axis. This roughness spectrum, together with the ring structure,

determines the scattered field.

Now, instead the half space, we consider the ARSRP waveguide. The scattered

wavenumber spectrum 170m below the sea surface is shown in Fig. 6-32. The patch

and incident beam are the same as those in the last example. Now, many circle struc-

tures emerge. These are the modes in the waveguide. These two examples showed that

the wavenumber integration approach gives us a clear picture of the basic physical

mechanism. By just looking at the picture, it is easy to pick up the information about
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the medium properties (the width of the ring structure), the roughness spectrum (the

direction of lineation and the width of the straight band), and the waveguide height

(the circle pattern).

There are discussions in the academic community as regard to whether the elas-

ticity is important to the rough interface scattering. In the last two scenarios shown,

elasticity is very important. Without the shear wave in the bottom, wavenumber

spectrum of the scattered field will extend inward all the way to the circle corre-

sponds to the compressional wavenumber of the basalt. Thus, there will be a much

smaller hole in the wavenumber spectrum. As a result, more steep propagating modes

will be received at the sonar array.
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Chapter 7

Summary

7.1 Accomplishments and Conclusions

The motivations of this thesis are the improvement of sonar array performance and

seismic exploration. We set out to model the seismo-acoustic reverberation in the

ocean environment. It is our hope that the model can facilitate our understanding

of the underlying physics and ultimately can be incorporated in solving the inverse

problem (e.g. MFP).

The accomplishments and conclusions of this study can be summarized as follows:

* A 3D Wavenumber Integration approach in Cartesian Coordinate system for

arbitrary fluid/elastic stratification is developed. This is vital for the devel-

opment of 2-1/2D WI-BEM modeling. It will also be very useful for the 3D

WI-BEM model and for the extension of the range-dependent OASES to N by

2D scenario.

* The emphasis of the thesis has been on the combined effects of 3D, Elastic-

ity, and Waveguide Effect on the seismo-acoustic reverberation in the ocean

environment. It is shown that all three of these factors are important in most

scenarios. The traditional 2D, fluid model and separated treatment of scatter-

ing/propagation is extremely restrictive and is only applicable to a small subset

of the many possible scenarios in the realistic ocean environment. Furthermore,
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all these factors are different aspects of an integrated problem. This calls for

unified approaches like those used in the thesis.

* Although because of their different attributes, two models are developed for

facet and diffuse scattering problem. But the centerpiece is the same: the

Wavenumber Integration approach. This is the key to the efficiency of the

algorithms based on the models. Since the background ocean waveguide is

horizontally stratified, the waveguide effect can be efficiently accounted for by

means of the existing SAFARI code.

* Because the Wavenumber Integral approach is used, the reverberation field can

be expressed in terms of different wave components, which facilitates easy phys-

ical understanding. This is even more important in 3D, elastic scenarios. Since

the geometry and environment are so complicated, it is extremely difficult, if

not outright impossible to conceive what's going on intuitively.

* The choice of the BEM approach in treating the facet scattering problem is

another key to the numerical efficiency, since only the facet boundary need to

be discretized, limiting the size of equations to be solved as compared to FEM

or FD approaches. Also the radiation condition problems in FEM and FD are

eliminated.

* The hybrid spatial-wavenumber domain approach used in the rough interface

patch scattering modeling further increases the numerical efficiency by the direct

evaluation of the source distribution in a compact spatial domain.

* Although our modeling work has been geared to somewhat special cases (2hD

facet scattering instead of full 3D problem, and rough interface patch instead of

infinite extended roughness), the results are very illustrative and give us some

insights to the underlying physics in the ocean seismo-acoustic reverberation.

For example, it is shown that both the scattering mechanism can convert energy

to different wave types and different modes. These models have significant

applications to realistic ocean environments. Furthermore, the approaches and
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philosophies employed here can be extended to developing more generalized

models.

7.2 Suggestions for Future Work

The models developed in this thesis are for somewhat special case scenarios. The

logical next step will be to generalized them.

* It is desirable to develop a 3D WI-BEM facet reverberation model. The major

principles and approaches are clear. But there are some issues remained to be

addressed.

a) In the 2D and 2hD WI-BEM model significant computational savings have

been obtained by performing element integrations analytically in the wavenum-

ber domain. Similar techniques must be developed in 3D.

b) As the author has experienced throughout this study, the choice of coordinate

system can be a tricky problem in 3D case. It might be necessary to use both

cylindrical and Cartesian coordinates at different part of the code. (Cylindrical

for propagation and Cartesian for BEM formulation). This calls for proper co-

ordinates transforms. Some of the coordinate transform formulations derived by

the author might be useful, both between cylindrical and Cartesian (Appendix

B) and between cylindrical coordinates with different axis (Appendix A).

* The diffuse scattering cases treated in this thesis have been for realizations of

a rough interface patch. So the results are samples from the probability space.

It is desirable to obtain the mean and variance of the scattered field. An easy

way to get statistical results is to perform Monto-Carlo simulations. Each one

using our code on one of the realizations. This algorithm is naturally suitable

to large scale parallel machines. The average scattered field was calculated this

way and was shown in Chapter 6. Next step is to compute the covariance of

the field.
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Appendix A

3-D DGM Formulation

A.0.1 Equation of Motion

The displacement field can be described by a scalar potential and a vector potential.

il = V(x, y, z) + Vx (z, y, z) (A.1)

We can expand the vector displacement potential b as following:

(x, y, z) = Vx (0, 0, A) + (0, 0, 0z) (A.2)

For homogeneous part of the field, the displacement potentials satisfy the Helmholtz

equations:

(V2 + K,2))(x, y, z) = 0
(V2 + Kf,)A(x, y, z) = 0
(V2 + K2)zO (x, y, z) = 0

(A.3)

where, Kp is the compressional media wavenumber, and K, the shear media wavenum-

ber.

We apply the Fourier Transform:

F(x, ky, z) = f+.o f(x, y, z)eikYYdy

f(x,y, z) = L fý F(x, ky, z)e-iky dk
(A.4)
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on the Helmholtz equations to get:

(-2- + - (k - kp))(x, ky, z) = 0
(92 d2 (k2(- + -! (k 2 - k2))A(x, kY, z) = 0 (A-5)
(- • 2 _+ -! (k - kE ))(, zx, z) = 0

Similarly, apply Fourier Transform with respect to x, we get:I( - a2) (k, z; ky) = 0
( - 32)A(kX, z; k,) = 0 (A.6)

(- - 02)Oz (kx, z; ky) = 0
where a = k2 + k - k2 , and = k+ k - k.

Thus, we can solve the displacement potentials for the homogeneous field:

I(k, z; ky) = A-(kr, ky)e - z + A+(kX, ky)e z

Vz(km, z; ky) = B-(kx, ky)e - Oz + B+(kX, ky)eP#  (A.7)

A(k , z; ky) = C-(kx, ky)e -PO + C+(kx, ky)e 'Z

A.0.2 Homogeneous Field

We have

G(x, , z) = V(x, y, z) + V x (V x (0, 0, A) + (0, 0, Oz)) (A.8)

= V + Vx ( A, - ,Aw, )

that is,

U(x, y, z) = (x, y, z) + O (x, y, z) + A(x, y, z)
v(x, y, z) = (x, y, z) - j(x, y, z) + 9 (x, y, z) (A.9)

w 0(2 0
2

Iw(x, y,z) = q(x, y, z) - (• + )A(x, y, z)
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so, substitute in the potential solution, we get displacements,

u (kx, z; ky) = -ikx(A-e - "z + A+eaz) - ik,(B-e -3 z + B+ez) + ikP(C-e- z - C+ePz)

v(k, z; ky) = -iky(A-e - az + A+eaz) + ikx(B-e - Oz + B+e. z) + iky(C-e-P z - C+e3z)

w(k,, z; ky) = -a(A-e -az - A+eOz) + (k2 + k±)(C-e- Z + C+ez)

(A.10)

For stresses, we have

Szz(2, y, z) = ( + + a + 2,2 = (A + 2,) ! + A(2 + 2)

az(x, y, z) = p(O + a) (A.11)

Uzy(x, y, z) = (-•- + a)

Ozz (kx, z; ky)

S(A + 2,)(a 2(A-e - z + A+e*z) - (kx + ky)P(C-e -p z - C+ez))

+ A(-k(A-e - z + A+eaz) - kxky(B-e- Oz + B+ePz) + k 2(C-e- Oz - C+eOz))

+ A(-ky(A-e -Qz + A+eQz) + kxky(B-e - oz + B+eaz) + kIp(C-e -Pz - C+eP))

= p/(2(k2 + k+) - k)(A-e - z + A ) - 2(k + k)(C-e-  C+ez) (A.12)

zx(kx, z; ky)

-= (ikxa(A-e - c z - A+eaz) - ikx(k• + kI)(C-e - z + C+ePZ))

+ p(ikxa(A-e- ~ - A +eaz) + iky,(B-e-Pz - B +ePz)

- ik~ 2(C-e-z + C+ez))

= 2ipkxa(A-e -" z - A+eQz) + itk,3(B-e -6 z - B +ePz)

- ipukm(2(k + k~) - k2)(C-e - z + C+e3 z) (A.13)

ay (kx, z; k,)

=.L(ikya(A-e - az - A+eaz) - iky(k2 + k2) (C-e - , z + C+ePz))
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+ p(ikya(A-e -Q - A+eOQ) - ik Y 2 (C-e- + C+ePz) - ikxO(B-e-Oz - B+ez))

2ijlkya(A-e -aZ - A+eaz) - ijpk;(B-e-Pz - B+eez)

- ipky(2(k2 + k2) - k2)(C-e-3z + C+e1 z) (A.14)

A.0.3 Source Field

Compressional Point Source

The source field O(x, y, z) safisfies the following equation,

(V2 + k)(x, , z) = -S,6(x)6(y)6(z - z,) (A.15)

where S, is the source strength. Apply Fourier Transform with respect to x and y,

we get
a2 SW(-2 a2)(kx, z; ky) =- 6(z - Z,) (A.16)OZ2 47r2

SO

(ke, z; k,) = S e-•Z-Zs (A.17)

from equation (A.9), we get

Sit(kx, z; ky) = - kxS e-alz-zlI
z(ks, z; kY) = - S e-alz-zI (A.18)

?J(kx, z; ky) = -- sign(z - z,)e-alz-zi

from equation (A.11)

S= (Aa k2 S) k 2S'
zz (A+ 2) w2 e-elz-z + A(kx2 S )e-az-z,

87r2  87r2a 87r2a
= (2(k + k2) - k2)e- 'lz-zal (A.19)
87r2oa k

= ikxSw . ikxS,,,
z = t8( 872 sign(z - z )e- 8

- l + sign(z - Zs)e -a lz-z8l)

= iltkSWsign(z - Zs)e -a• z-z1  (A.20)
47(2

- (87 sign(z - za)e-azz- + 7S2l)8wsn2
8z2-sig(z - zz)e~)Iz- zs )
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-= ikySwsign(z - z,)e-a z-zI
47r2

Point Force Source of Arbitrary Direction

Assume the source is (F,, Fy, Fz), define

o(k, z; k) = - 2P e- lz-

o0(k., z; ky) = p e-2 8 z-z-l

the displacement potentials for the source field are

¢(x, y, z) = F 0 V0o(x, y, z)
y(x, z) = V x (-Fx4o(x, y, z), -Fy o(x, y, z), -FzOo(x , Z, z))

SO,

Fzsign(z - z,)PW2 __ e-alz-zl
87r 2

(A.24)

= {=[O + psign(z - z,)Fy - ikyF,]

+ e'[-psign(z - z,)Fx + 0 + ikxFz ]

1 213 e+ e-z[ikyF, - ikgF, + 0]} e-P z-zp
PW2 87r20

From equation (A.9)

u(kz, z; k) =

[k FX + kxkF,

+ [(k: - kx)F

1 1
- ikxasign(z - z,)Fz] 1 e--alz-z l

PW2 27r2a
1 1

- kkFy + ikxpsign(z - z,)Fz] e-OlZ-zs

pw2 87 2P

v(kz, z;ky) =

[kxk -F + k2Fy - ikyasign(z -
11

z,)F] 1 e-alz-zl
PW2 87r 2a
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(A.22)

(A.23)

¢(k, z; k) = ikxFx 1 -alz-zI +
p,2 87r2a e

ikF 1 e-alz-z,lI
pW2 87r2a

(A.25)

(A.26)

O(kx, z; ky)



1 1
+ [--kkyFx + (k - k2)Fy + ikyfsign(z - z,)Fz] e-63Iz-z. (A.27)pw2 8F20

w(kz, z; ky)=

[-ikoasign(z - z,)F- ikasign(z - x,)F, - z2Fz , 8- " z

1 1
+ [ikpsign(z - z,)F, + ikysign(z - z,)Fy + (kx + ky)Fz]] 2 e-8zAYzl8)

and from equation (A.11)

ý zz (kx, z; k,) =
11

p[2(k 2 k2) - k 2] e-Pz-z, {ikxFx + ikF, + asign(z - z,)Fz8x y s ~p w 2 8 72 a
- 2-18 2 e-lz-zs{ikf3PFx + ikyFy + (k2x + k)sign(z - z,)Fz} (A.29)

pb.)2  8 2 y

pw2 872:

+2k 1 - k 21sign(z - z)Fk + 2kxksfsign(z z,)Fy

+ 1--- - kf]/3sig(z - z)F -F+ 2kmk3sigr(z - z)F
pw2 82;T/

- ikx[2(k 2 + k) - ks]Fz} (A.30)

(zy(kx, z; ky) =
2,k: 1 .E-lz-Z, I{-kxsign(z - zs)Fx - kysign(z - z,)F, + iaFzs

pw2 8w2

p 1 le-z-zl{2kxkyf/sign(z - z,)F, + [2k - k]sign(z -z)Fy
pW 2 8w:'3 --

- iky[2(ký + k2) - k2]Fz} (A.31)y
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A.0.4 Fluid Medium

Homogeneous Solution

The results before are for the elastic medium, for fluid we have the acoustic wave
equation

(V 2 + k- ) k)(x, y, z) = 0 (A.32)

Applying the Fourier Transform for x and y, it becomes

02

(0z2 - 2)¢(kx, z; k%) = 0 (A.33)

where a = (kI2 + k - k 2)1/ 2

The solution is of the form

¢(kx, z; ky) = A-e - az + A+eoz (A.34)

but we have

Ui(x, y, z) = V•(x, y, z) (A.35)

Szz(x, y, z) = AV2 = -pw2q

Orzzx(, y, z) = 0 (A.36)

uzy(x, y, z) =0
thus

u(kx, z; ky) = -ikx(A-e - z + A+eoz)
v(kx, z; k) = -iky(A-e -az + A+eaz)

w(k,, z; k~) = -a(A-e -az - A+eaz) (A.37)
0zz(kx, z; kI) = -pw2(A-e-oz + A+e z)

zzx(k, Iz; ky) = 0

azy(kx, z; ky) = 0
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Source Field

Similar to compressional source in solid, here for fluid we also have

(k, z; k,) = Swe-a z-z' (A.38)

SO,

i(kC, z; k )= -kk) e-0z-z,

i)(kx, z; ky) = -y0•e•- lz-z,

ef(k ne; k)= - sign(z -~z,)e-•k, S
Kzz(kx , z; k ) = _ S• _allZ,-

7zx(kxI z; kv) = 0

&zy(kx, z; ky) = 0

A.0.5 Solution Technique

Define S2 -: kx + ky, S = (S2)l/2,

con1 = p

con2 = p[2(kx2 + k ) - k2]
con3 = p2So

con4 = p2S3

con5 -tk= k [2(k + k) - k (A.40)8 x y ( A .4 0 )con6 = p k[2(kI2 + k2) - kI]

con7 = /p2ikzxa

con8 = p2ikky

con9 = pik,/3

conl0 = pik3xo

162



Then the field can be writen as

w

U

V

o-zz

o-zx

ozy

= [A] [B] + [R]

wher [R] is the contribution of source,

[B] =

SC-
B-

A+

SC+

Assume there is N layers, the global set of equations is

[AN-1,1] [-AN,] u
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(A.41)

(A.42)

B 1

B 2

BN

R 3,u

RN,u

R2,1

RN-1,I

(A.43)

[AI,,] [-A2,u]

[A2,1] [-A3,u]



For elastic media,

[An,u] =

a

ikx

ik,

-con2

-con7

-con8

For fluid medium, conl = pw2

[An,u] =

a!

ik,

iky

conl

0

0

-a

ikx

iky

conl

0

0

[An, (kX, z; ky)] = [A,,,(k,, z; ky)]In(kx, z; ky)

where

[In(ks: z; ky)] =

e- azn 0 0

e- pzn 0

Now that we have defined all matrix [A] and right hand side vector R in Eq. (A.43),

it can be solved for the vector B, i.e., the amplitudes of the up-going and down-going

potentials in each layer.
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-S

-ikylp/S

con4

con5

con6

0

iky

-ik,

0

-con9

conlO

-a

ikx

ik,

-con2

con7

con8

-S
ikxO//S

ikufl/S

-con4

con5

con6

0

iky

-ikx

0

con9

-conlO

(A.44)

(A.45)

(A.46)

0

0

0cOz

0 0

0 0

0 0

0 0

ePz" 0

0 ePzn

(A.47)
-- 17
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Appendix B

The Point Force Field Under

Cylindrical Coordinate

Transformation

B.1 Transformation of Bessel Functions

Here, we try to transform the sources to (ro, zo, 00o). From Graf's Theorem (Abramowitz

et. al., "Handbook of Mathematical Functions", P.363), for the geometry in Fig. B-l,

we have:

Jk(w)
Cos

sin

00

ka = E AJ+m(u) Jm(V)
M=:---Oo

cos

sin
m/. (B.1)

In Fig. B-2, we illustrated our coordinate transform. From Eq.(B.1), we have:

00

k(O - o) = Z
•=-00

Jk+m(sro) Jm(sr)
COS

sin
m(r - (6 -Oo)).

For k = 0, we get:

Jo(s) = (-1)Jm(sro)Jm(sr)cos(m(O - 00));
m=-o00
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Jk(s~)
Cos
COS
sm

(B.2)

(B.3)



w

Fig.B-1

r

old cordinates

new one

Fig.
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for k = 1, we get:

J (sf) () - 0o)
sin

m=-oo

Cos

sin
m(O - 0o).

By simple linear combination, we end up with:

COS 00 COS

Ji(sr) 0 = E (-1)mJm+i(sro)Jm(sr) ((m + 1)00 - mO).
sin m=-oo sin

B.2 Scalar potential expression of the field

Let:

(r, 0, z) = Vx (0, 0, A) + (0, 0, ),

then U = V¢(r, 0, z) +

nents:

V x (r, 0, z) is the displacement field. Expressed in compo-

af(r 12 A) 1 -9 A ,

U 1 az= r- r'-0 r'2  - 2 a2j U o9 r a zra o r
U9 s vT azao ar 4 "/

and stresses are:

0M = AV20 + 2p.u ;
+zz 8z ( r) +

azr z0 aýz- (Ur ± kar+(2-T 1)UzP L )

(B.8)

B.3 Transformation of point force field

Notice that potentials 0, A and 4 are invariands under our coordinates tranformation.

We just have to utilize the transformation of the Bessel functions to express them in

the new coordinate system. The potentials generated by a point force at the origin
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(B.4)

(B.5)

(B.6)



have been derived [39].

B.3.1 Fz Source

For a force in Z direction, the integrand of the potentials are (omitting 4 w):{ = Fz~se- az-zoIJo(si),
A = Fze-Iz-zoIJo(sf),

= o0,

where ( = sign(z - z0 ), h is the media compressional wavenumber, k is the media

shear wavenumber and a = /s 2- h2 , = s2 - k 2. By eq. (B.3), the potentials

can be expressed in the new coordinates:

(B.10)

Then, by eq. (B.7) and (B.8), the displacement and stress field expressed in the new

coordinates is:

COS
uM = (-1)m Fz(-sae- lI z - zol + !e-z`-zol) Jm(sro)Jm(sr)

sin

u" ± uu = T(-1)mFz(s 2 (e - a jz - zo - e-~Iz-zol)Jm(sro)Jm-l(sr)

mOO,

COS

sin

am = (-1)mtFz((s(2S2 - k2)e-a z -zo - 2s 3e-z-zol)Jm (sro) Jm (sr)

moo,

COS

sin
mOo,

am ± ae = ±(-1)mpFz(2as2e-a lz-zol -_2(2s2 - k 2 )eIz-zoI )Jm(sro)Jm±l(sr)
COS

sin
mo00

(B.11)
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(B.9)

S= Fz~sef- ol• - ol  (-1)m Jm(sro)Jm(sr)cos(m(6 - o));
oo

A = Fze - i z - zo l  (-1)mJm(sro)Jm(sr)cos(m(O - 0o));
m ---o

=0.



B.3.2 F, Source

In old Coordinates (f, 0, z), omitting 4 , pw 2
,

- F -2 e-az-zol J1 (s) cosO;

A = Fx(C-iz-zOl J1(sf)cos8; (B.13)

= Fx e-flz-Izl J (sf)sinz.

In the new coordinates (r, 0, z),

o00

Fx e - a'lz - zo (-1) Jm+i(sro)Jm(sr)cos((m + 1)00 - mO);
m=-o0

A =Fe- - (-1)n+(sro)Jm(sr)cos((m + 1)00 - mtO); (B.14)
m=-oo00

S= Fx 'e zol (-1)m Jm+l(sro)Jm(sr)sin((m + 1)0o- mO).
mr--oo
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where we have used the notion:

uz - u mO,
m=-oo sin

COS

Ur = um mO,
m=-oo sin

s sin
us = S uct mO,

(B.12)
S COS

m=-oo sir

m=-oo sin

oo sin

m=-oo -COS



Then, we have, in the new coordinates:

"• = ( 1)ms 2 (e - a lz - zol e-ZZo m+)J+l(ro)Jm(S COS

sin
(m + 1)Oo,

m ± M = (1)mF -(T lzzol + (k 2 ± z2 )e-•jzzol)Jm+l(sro)Jm(sTOr) Cos

sin
(m + 1)0o,

Cz = (--1)mpF(- (2S2 - k2)e-l zo_ -2 s2e_-lzzol)jm+1 (sro)Jm(sr) COS 1)
sin

M ± =- (- )mLF ((±2s 3e-az-zol + Q±e-lzol)Jm+l (S)mil (ST)

COS

sin

(B.15)
where Q == -2S3, and Q = 2s 2 .
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where Q+ = -2,•,a,and Q_ 
= 2sfl
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Appendix C

The Relationship of Kernels in

Cartesian and Cylindrical

Coordinates

In cylindrical coordinates:

?I(r, 0, z) = er uL(r, 0, z) + e~Bou(r, 0, ) + z uz (r, 0, z)

and the components can be expanded as:

'ur (r, , z) = Em[Urm (r, z)cos(m) + Urm(r, z)si'(mO)]
'U(r, 0, z) = Em[Um(r, z)siz(m0) - UOm(r, z)cos(mO)]
uz (r, 0, z) = Em [Uz, (, z)cos(mO) + Uz (r, z)sin,(mO)]

where

Uz (7(r, z) = Zm (kr, z) Jm (kr) krdkr
UTm(r,z) + U~;(r, z) = f[Rm(kr, z) + • n(kr, z)]Jm+l1(krr)krdkr

L/n(r, z) - UOm(r, z) = f[RTm(kr, z) - Om(kr, Z)]Jm- 1 (krr)krdkr

for i = 1,2.
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In Cartisian Coordinates:

i7(r, 0, z) = eCxu((r, 0, z) + ýu•y(r, 0, z) u(r, 0, z) (C.4)

uI(r, ( , ) = Em[U, (r, z)cos(mO) + Ux(r, z)sim(mO)]

y (r, 0, z) = Zm[Uy,(r, z)sin(m ) - Uy (r, z)cos(m)] (C.5)
Ttz(r, 0, z) = E[Umj (, z)cos(m0) + Uz (r, z)sin(m0)]

I u(r, z) - f Xm (kr, z)Jm(kr) krdk,

uym(r, z) - f m(kr, z)Jm(krr)krdkr (C.6)

Um(r, z) = Z7m(kr, z) Jm(krr)krdkr

for i = 1, 2.

But,

ur (r, ,) z)

ux(r, 0, z)cos0 + uy(r, 0, z)sin0

I= I[U(r, z)cos(mO) cosO + Ux"(r, z)sin(mO)cos0
m

+Uy(r, z)sin(m0)sinO - Uym2(r, z)cos(m0)sin
1

S 2 Ul(r,z)[c(m - 1) + cos(m - 1)0]
m

+Ujx(r, z) [sin(m + 1)0 + sin(m - 1)0]

+UI(r, z)[-cos(m + 1)0 + cos(m - 1)0]

+Um(r, z)[-sin(m + 1)0 + sin(m - 1)0]} (C.7)

uo(r, 0, z)

-u(r, o, z)sir0 + u± (r, o, z)cosO

= [-Ux(r, z)cos(mO)sinz - U"(r, z)sin(m•)sino
m
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+UY(r, z) sin(mO)cos0 - UY' (r, z)cos(mO) cos
1

= 2 {U(r, z)[-sin(m + 1)0 + sin(m - 1)0]
m

+U"x(r, z) [cos(m + 1)0 - cos(m - 1)0]

+U"(r, z) [sin(m + 1)0 + sin(m - 1)0]

+Uy"(r, z)[-cos(m + 1)0 - cos(m - 1)0]} (C.8)

From (22), (23) and (17), we get:

Um(r, z) = 1[Uxm-1(r, z) + Uxm+ (r, z) - Ul-'(r, z) + Ul, +(r, z)]

Ur (r, z) = [Um2-1 (r, z) + Um+1 (r, z) - Uy2- 1 (r, z) + U' + 1 (r, z)]

Ug (rT, z) = 1[- Ul7 (r, z) + Uxl+(r, z) + Uy-j (r, z) + UY+I 1 (r, z)]

Um(r, z) = '[-U (r, z) + Uxm+l (r, z) + U( 1 (r, z) + U "1 (r, z)]

So

Ur(r, z) + Uo (r, z) = Uv+ 1 (r, z) + Uy,+ 1(r, z)

Ur, (r, z) - Ul (r, z) = Ux -1 (r, z) - Uv -'(r, z) (C.1)

Ur(r, z) + U2(r, z) = Ux+' (r, z) + U1 +l(r, z)

Ur"(r, z) - U(r(r, z) = Ug-l(r, z) - U j-(r, z)

Thus, from equations (25), (18) and (21), we conclude that

Rm(kr, z) ± 8m(kr, z) = Xml (kr, z) ± Yiml 1(kr, z) (C.11)

for i = 1, 2.

From perturbation code, we got ux(x, y, zo), Uy(x, y, zo) and want to find Xm(kr, zo),

Y m"(k,, zo), then Rm(kr, zo) ± OT(kr, zo). We can proceed by changing variables in

u:I (x, y, zo) to ux(r, 0, z0 ), and expanding it in Fourier series, then performing Hankel

transform. Alternatively, we can perform a 2D-FFT on ux(x, y, zo) to get Ux (kX, ky, zo)

and change variables to Ux(kr, 0, zo), then expand it in Fourier series. The Fourier

components thus obtained (fm(kr, zo)) are not exactly Xim (kr, zo), etc. We will try

to find out their relationship in the following.
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(x (X, y, zo)

--= r o L U(k, ky, zo)e -i kxxe - ikyydkxdk,
700. -Z J f• 7 (kr, a, Zo)e-°ik-rcos()krdkrdcy

-= J. [X7r(k~, zo)cos(ma) + Xfm(kr, zo)sin(ma)]e-ikrrcos(a-0)krdadkr

=- Y= [f X : (k1 , zo)cosm(3 + 0) + X•(kr, zo)sinm(/ + 9)]e-ikrcos°k.d/dkr
o00 J -- T"

=J [j i e&ikrrcoscosm/3d/[ Xfm (kr, zo) cosmO + Xm (k,, zo) sinmO]k.d1( C.12)

but, from Abramowitz, et.al [1],

- ickkrcsr3 csn.dcosmd = 2 e-ikcoscosmpd = 2immJn(-_krr) = 27(-i)mJm(krr)
(C.13)

So,

Xm (kr, zo) = 2-(-i) m Xn(kr, zo) (C.14)

where i=1,2.

Similarly

Yim(kr, ZO) = 2(-iT) m m (kr, zo) (C.15)

Zi (kr, zo) = 2 1(- i)mZi (kr, zo) (C.16)
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