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Abstract
The 4x4 bidirectional routing board is the primary building block for the message
passing network used in StarT-NG, a message passing machine with support for
shared memory being developed at the Laboratory for Computer Science at MIT.
The board uses Arctic chips, 4x4 unidirectional packet routing chips, to implement
a fat tree network. These boards can be interconnected through a backplane to
create a larger fat tree network, like a 16x16 bidirectional or 32x32 bidirectional fat
tree network. In addition to implementing the network, the board includes the link
technology necessary to transmit and receive data over long cabling to either another
node in the tree or to a processor, and insures the proper handling of JTAG signals
for control and testing of the Arctic chips.
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Chapter 1

Introduction

The StarT-NG project at MIT is the development of a message passing machine with

support for shared memory. The processors of the StarT-NG system are intercon-

nected through a fast switching fabric. Depending on the number of processors in the

system, either eight or sixteen 4x4 boards will be used. The eight board system will

handle sixteen processors, and the sixteen board system will handle thirty-two pro-

cessors. The plan is to design and construct a sixteen board system which is scalable

to an eight board system. My project is to design the 4x4 routing board to interface

with the processors and the backplane, which interconnects the 4x4 routing boards

and supplies the test and control signals for the Arctic chips.

1.1 Arctic and JTAG Signals

The primary component of the 4x4 bidirectional board is a 4x4 unidirectional routing

chip named Arctic. The chip was designed by a group of students and staff led by

Professor Arvind at MIT. In addition to handling the routing of packets, the Arctic

chips receive JTAG signals for test and control.
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1.1.1 Arctic Chip

The Arctic chip as shown in Figure 1-1 [1] has four independent input sections and

four independent output sections. Each input section contains three buffers. Each

buffer is connected to each output section over the crossbar. Therefore, any of the

four inputs can direct packets to any of the four outputs. In the network two links are

needed between an Arctic chip and another Arctic chip or processor. The two links

allow data packets to travel both up and down the network. In other words, one link

connects to an Arctic input section and the other link connects to the output section.

Arctic

Figure 1-1: Actic Chip

Each network link contains sixteen bits wide of data, two bits wide for the clock
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signals, a bit for the frame, and a buffer free bit. All the signals are GTL levels. The

sixteen data bits are transmitted at a rate of 80 MHz. The two clock bits are two

different phases of a 40 MHz clock. The two different clock bits are 180 degrees out

of phase. The falling edges of both of these lines are used to latch the 80 MHz link

data. The frame bit indicates the transmission of data. The buffer free bit comes

from the receiving Arctic chip to indicate that the chip can still accept data, since its

input buffers are not full.

1.1.2 JTAG Signals

Each Arctic chip receives JTAG signals from the JTAG controller board. These signals

are primarily for providing a control mechanism for the Start-NG switch fabric, but

they provide testing for the Arctic chips as well. The five JTAG signals are: tdi -

test data input; tms - test mode select; trstb - test port reset; tclk - test port clock;

and tdo - test data output.

The tdi, tms, trstb, and tclk are input signals to Arctic. The tdo signal is an output

signal from Arctic. The trstb signal is an asynchronous reset signal. It resets the

state of an Arctic chip. The tclk signal clocks in data from the tdi and tms signals

and clocks out data out of tdo. The tms signal specifies the state of a Test Access

Port Controller (TAP) in the Arctic chip [1], which in turn specifies the state of the

chip. The TAP Controller starts out in a reset state and through a series of "l"s and

"O"s on the tms signal changes the state of the TAP Controller for loading certain

registers. The tdi and tdo signals are used to scan data into and out of the Arctic

manufacturing test rings or registers.

1.2 4x4 Bidirectional Board Setup

The 4x4 routing board will have two major sections (Figure 1-2). An Arctic section

handles all the networking of the board. The GTL/ECL converter section will convert

the network links of the Arctic chips from GTL to ECL and then back to GTL on

the receiving side.

10



Arctic Network

GTUECL converter

Figure 1-2: 4x4 Routing Board Sections

1.2.1 Arctic Network

The Arctic section of the board is set up in a fat tree format using four Arctic chips.

As shown in Figure 1-3 the two Arctic chips on the top act like a single node of a

tree. The reason for using the two Arctic chips, instead of one, as a single node is to

keep the same bandwidth at each level of the tree. In this 4x4 bidirectional setup the

two Arctic chips on the bottom of Figure 1-3 have a bandwidth of 4 lines (8 links).

With each of the two Arctic chips on the top of the diagram connected to each of

the two Arctic chips on the bottom, the bandwidth between these levels of the tree is

still 4 lines. Keeping the bandwidth between different levels of the network constant

helps to reduce congestion of packets going through different levels in the network.

The 4 lines at the top of the diagram which will connect to the backplane can be

interconnected with other Arctic chips in a similar fashion to increase the size of the

fat tree.

1.2.2 GTL/ECL Converter

The GTL/ECL converter section of the board is necessary to convert the Arctic sig-

nals to ECL levels so that the signals can be transmitted over long coaxial cabling
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Figure 1-3: 4x4 Arctic Network

to processors or other nodes of the fat tree network. When signals travel over long

cabling, noise gets mixed in with the signal which can corrupt the data. Using dif-

ferential ECL signals reduces the amount of corruptive noise better than the single

ended GTL level signals. Differential ECL uses the difference in voltages of two wires

in order to transmit data. Both wires are subject to the same electromagnetic inter-

ference which adds noise to the signals, so taking the difference in voltages essentialy

filters out the noise.

1.3 Thesis Outline

The following chapters explains the challenges and solutions involved in designing the

4x4 routing board. Chapter 2 goes over the link technology for connecting the board

to processors and interconnecting the 4x4 routing boards. Chapter 3 explains the

complications involved with the JTAG signals for control and testing of the Arctic

chips. Chapter 3 covers concerns not only with the 4x4 routing board but for the

JTAG interface as a whole. Chapter 4 goes over power and area considerations for the

board. Chapter 5 concludes the thesis by summarizing what I have done for designing

the 4x4 routing board, mentioning some physical constraints for fabricating the board,

and suggesting possible testing of the board since the Arctic chips will not be available

12



until after this thesis is due.
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Chapter 2

ECL Links

The conversion from GTL level signals to ECL level signals is not a simple task. The

conversion involves translating GTL and ECL signals back and forth and making sure

the timing going across the ECL links meets the Arctic chip timing requirements.

Because of these timing issues, the conversion from GTL to ECL is not straight

forward. The minimum time for clock to data out of an Arctic chip is 0.2ns and the

maximum time is 3.15ns (Figure 2-1). If the clock signal were delayed by 0.2ns with

Arctic Clock

Outputs

Arctic Data

Outputs

O. 2ns ' A } 0.2ns--'~, } ':/\ ~ ~~~ ~ ~~~~~~~ 'l I\
::~~ ~ ~~~ : : :

0. 2ns 9F : : 0. 2ns - ' :
I I

3. l15ns 3. 15ns

Figure 2-1: 4x4 Arctic Output Timing

respect to the data signals then the receiving Arctic or processor would not latch
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the correct data. The variances between the clock signal and the data signals can

occur from variances in the ECL drivers' and receivers' timing specifications. There

are three possibilities for resolving this problem. The first possibility is to delay the

data signals from Arctic, but this requires many delay lines. The second choice is

to delay the clock line by almost the length of the period of the clock. The effect of

delaying the clock signal by this amount is similar to a small advance of the clock.

The problem with this method is that a long delay with a small timing tolerance

is required. The last possibility is to reclock the signals. The reclocking idea is a

more complicated implementation, but a more reliable one as compared to the clock

delaying idea.

2.1 Voltage Level Translation

The voltage levels for GTL and ECL level signals are different for logical "high"s and

"low"s; therefore, the first consideration is how to change the GTL level signals to

ECL levels. Pseudo ECL (PECL), referenced at +5V, was chosen over ECL level

signals since the PECL levels help to simplify the voltage translation, especially on

the receiving side.

On the transmitting side, the GTL level outputs and PECL level inputs are the im-

portant signal levels to examine. A GTL level "low" output varies between OV and

0.4V, and a GTL level "high" output varies around 1.2V, the termination voltage.

For the PECL devices of interest a valid "low" input varies between 3.OV and 3.55V,

and a PECL level "high" input varies between 3.855V and 4.4V. In reviewing these

voltage levels, there appears to be a 3V difference between the GTL and PECL levels.

Adding 3V to the GTL level signals gives: 3.0V to 3.4V for a "low" and around 4.2V

for a "high". One other constriction for the PECL inputs is that the peak to peak

swing has to be less than 1V and greater than 0.15V for the PECL devices to remain

in the common mode range. From these calculations, it is possible for the peak to

peak voltage swing to be larger than 1V. However, looking more closely at the GTL

signals, the "low" level signal comes from the voltage across a transistor. This volt-
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age, realistically, is never zero. A safe assumption for the GTL "low" is 0.2V (3.2V).

In a spice simulation with a GTL driver over a transmission line, the signal output of

the driver was approximately 0.125V.[4] The voltage at the termination was approx-

imately 0.5V. Since the point of importance is at the termination, the peak to peak

voltage swing should be less than 1V, keeping the PECL devices in the common mode

range. Also, the PECL devices are capable of much faster than 40MHz. Exceeding

the common mode range may not be necessary for the PECL device to function at

40MHz.

On the receiving side, the PECL outputs and GTL inputs are the signals of impor-

tance. Based on the 100E series ECLPS, a PECL "low" is between 3.19V and 3.38V,

and a PECL "high" is between 3.975V and 4.12V. A GTL valid "low" is at most

0.75V, and a valid "high" is at least 0.85V. Shifting the GTL signals by 3V translates

to a requirement of between 3V and 3.75V for a valid "low" and at least 3.85V for a

valid "high". The PECL outputs meet these valid signal requirements; therefore, the

translation is straight forward.

V8 V5V8 Aft~~

(5v)

I II T
+1 1

2V PECL (5V

V4.2
A&

q-

PI

VO

V3

Figure 2-2: Voltage Translation
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With these analysis, referencing the GTL devices up by 3V translates the voltages

properly to PECL and back to GTL (see Figure 2-2). The GTL ground (3V) supplies

the termination voltage for the PECL devices, and a 1.2V (4.2V) source supplies the

GTL termination voltage.

2.2 ECL Link Transmission

2.2.1 Hardware

The additional components necessary to reclock the data to be sent out as PECL

signals are: an ECL phase lock loop (PLL), ECL delay line, ECL clock buffer, ECL

registers, and an ECL flip flop (see Appendix B, Figure B-1). The ECL PLL along

with the ECL delay line converts the two 40 MHz clocks from the Arctic chips into

an 80 MHz ECL clock which is slightly advanced in time to reclock the 80 MHz data

from the Arctic chips into the ECL registers. The ECL clock buffer is needed to

distribute the clock signals to the ECL registers and flip flop since there is only one

ECL clock output from the ECL PLL. The ECL flip flop is needed to reclock the

Arctic clocks with an inverted version of the 80 MHz signal. The inverted Arctic

clock is used as the input of the flip flop since the non-inverted Arctic clock is used

as input to the PLL, and a GTL signal should drive only one input since it needs a

termination. The inverted Arctic clock is reinverted by connecting the signal to the

negative input of the differential ECL flip flop. The reason that the flip flop uses the

inverted 80 MHz signal for its clock is so that the data and clock on the receiving

side meet the necessary setup and hold times. If the non-inverted 80 MHz clock were

used, then there would be race conditions which would develop between the data and

clock signals. The inverted 80 MHz clock is generated by flipping the differential

signals from the clock buffer to the flip flop clock inputs. The reason why only one of

Arctic's 40 MHz clock signals is transmitted is because both of the differential ECL

signals can be used at the receiving side to generate both the 40 MHz clock and its

inverse.
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2.2.2 Timing

The biggest concern for the timing is in generating the 80 MHz clock for clocking the

Arctic data and Arctic clock. Seeing from Figure 2-1, if the PLL simply outputs a

synchronized 80 MHz clock signal, the clock signal out of the buffer could be too late

to clock the data. Therefore, the clock out of the PLL must be advanced in time, at

least enough to compensate for the clock buffer delay. In calculating the appropriate

advance in time needed, four different scenarios must be checked: the clock is early

enough for the Arctic data, the clock is late enough for the Arctic data, the clock is

early enough for clocking the Arctic clock, and the clock is late enough for clocking

the Arctic clock. From these calculations, the minimum amount of advance needed

is 1.28ns and the maximum amount of advance is 2.905ns (see Appendix C.1).

In order to advance the PLL PECL clock output, the feedback reference clock has

to be delayed. Since the feedback reference clock must be a TTL level signal, a 2ns

TTL delay is needed. The problem is that it is very difficult to find such a small

TTL level delay line. Since the PLL has several TTL level clock outputs with varying

phase relationships (see Appendix A, Table A.1), one of these outputs is used as the

reference feedback clock. The smallest increment in phase difference varies with the

clock speed. For 40 MHz, the smallest increment is 6.25ns (Appendix A, Table A.2).

This advances the clock by too much, and so a 4ns ECL delay line before the PLL

makes the effective advance 2.25ns.

2.3 ECL Link Reception

2.3.1 Hardware

For the ECL to GTL translation of the 4x4 bidirectional routing board, only ECL

receivers, besides the ECL termination resistors, are needed. From the output of the

ECL receivers, only the positive side of the differential outputs is used to translate

back to GTL levels, except for the clock signals. For the clock signals, both the

positive and negative side of the differential ECL are used to translate to the Arctic

18



clock and inverted Arctic clock. (Appendix B, Figure B-l)

2.3.2 Timing

The timing for the ECL receiving side depends mainly on meeting the setup and

hold times of the receiving Arctic chips. The propogational delays and skews of the

transmitting and receiving devices are a potential problem. The clock signal should

transition around the middle of the valid data, but the skews in the ECL clock buffer,

ECL registers, ECL flip flop, and ECL receivers may shift the clock enough so that

the clock does not meet the Arctic setup and hold times (see Figure 2-3). However,

from the calculations in Appendix C.2, this problem does not appear to exist.

X2 Clock

Reg Data .

Reg Clock

trd+tbd tfd+tbd

Figure 2-3: 4x4 Arctic Receiver Timing
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Another consideration for the JTAG signals on the 4x4 routing board is the reflec-

V8

tclk

Figure 3-1: tclk Termination on 4x4 Board

tions due to transmission line effects. The tclk signal would be affected the most by

the reflections since it is the clock for the TAP controller on the Arctic chips. Dou-

ble clocking can occur because of the reflections. Therefore, the tclk signal should

be end terminated to 4V (7V) through a 50 ohm thevenin equivalent resistor with

the stripline being 50 ohms. The tclk signal is terminated both into the buffer and

into the Arctic chips (Figure 3-1). The considerations for chosing the termination

scheme are a 50 ohm stripline, the amount of drive current available, which is -24

ma for driving "high" and 64 ma for driving "low", and meeting the Arctic CMOS

logic levels. The stripline was restricted to 50 ohms because in order to change to

a higher impedance stripline another layer of the board would be needed. Since the

cost of adding another layer to the board would be very costly, especially for just a

few signals, the stripline impedance is restricted to 50 ohms. Considering these re-

strictions, the tclk termination scheme should produce at least 4V (7V) for a "high"

and 0.55V (3.55V) for a "low". Since the Arctic CMOS level requirements are less
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than 1.5V (4.5V) for a logic "low" and greater than 3.5V (6.5V) for a logic "high",

this termination scheme should work fine. The signals, tms, tdi, and trstb do not

need terminations since the trace lengths are short compared to the amount of time

the signals have to settle.

3.2 Voltage Translation

The voltage problem occurs because of the voltage offset of the GTL devices on the

4x4 routing board. As mentioned earlier the GTL devices, including the Arctic chips,

are referenced at 3V and 8V. The PC board is referenced at ground and 5V. Since

the backplane is referenced at the same voltages as the 4x4 routing board the voltage

translation occurs where the PC board connects with the backplane. The drivers and

--------- I Backplane
Driver I | Receiver

tdi

trstb

tms

tclk

PC
3oar

tdo

…-- - -_ - - - - I - - - - - -
0-5V Reference 3-8V Reference

Figure 3-2: Voltage Translation Diagram

receivers between the PC board and backplane connection, as shown in Figure 3-2, are

special ECL drivers and receivers. The drivers convert TTL signals to ECL levels, the

22

r- -
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

II I
I
I
I
I
I
I
I
I
I
I - -



receivers convert ECL signals to TTL signals, and the receivers have a large common

mode range of -1.2V to 7.2V. Because of these special features the drivers can take in

the four JTAG output signals from the PC board which are referenced between OV

and 5V and convert them to ECL signals, and then the receivers convert the ECL

signals into TTL levels which are referenced between 3V and 8V. Since the output of

the drivers is between 1.8V and 5V and the receivers' common mode range is between

1.8V and 10.2V (common mode range shifted by 3V), the translation from 0-5V to

3-8V is straight forward. The termination for the ECL signals is a Y termination

resistor taken from the built-in Y termination resistor in one of the receiver packages.

The reason that an external Y termination resistor is used instead of the internal

one is that the ground for an internal termination is actually 3V. Since the driver

output is between 1.8V and 5V, the driver might have to sink current. However, the

drivers cannot sink current and must drive a minimum amount of current to function

properly. For this reason, the termination must be external to the receiver package in

order to connect to ground. The signals are converted to CMOS levels through buffers

which are already necessary to fan out the signals to all the 4x4 routing boards. The

tdi signal only connects to one 4x4 routing board, but the signal still needs to be

translated to CMOS levels so the tdi signal passes through a buffer on the backplane,

as well.

Since the tdo signal needs to be sent from the 4x4 routing board to the PC board,

a voltage translation in the other direction is required. This voltage translation is

a little more complicated. The output of the drivers varies between 4.8V and 8.OV,

and the common mode range of the receivers on the PC board is between -1.2V and

7.2V. Since the output of the drivers can be higher than the common mode range of

the receivers, the termination scheme has to scale down the voltage that the receivers

see. The termination scheme is basically the same as the standard Y resistor in the

receiver package, except that the differential receiver inputs are tapping the 60 ohm

resistors and the pull down resistor is changed from 90 to 180 ohms (see Figure 3-3).

The taps are chosen so that the receivers see one-half of the voltage dropped across

the 60 ohm resistors; therefore, the receivers receive voltages in the range of 4.425V

23



to 6.85V. The pull down resistor is doubled to reduce the current demand on the

drivers. The drivers are specified for driving 8ma "low" and 40ma "high". The total

current required for the same 90 ohm pull down would be approximately 63ma which

exceeds the driver current specificaitons. Since the voltage across the pull down is

approximately doubled from 3V to 6V, the pull down resistor is doubled to keep the

current through it approximately the same as the normal setup which is within the

driver specifications. Unlike the translation of voltage from the PC board to the 4x4

routing boards, the signal going to the PC board can be TTL levels; therefore, a

buffer is not used in conjunction with the receivers.

60 60

DO+/RI+ DO-/RI-

90g

30 30 30 30

DO+ DO-
RI+ 2 RI-

180

Figure 3-3: PC Board tdo Termination

3.3 Timing Requirements

Since the PC board has to clock data out to the 4x4 routing board and also clock

in data from the 4x4 routing board using only the clock generated on the PC board,

the entire JTAG interface must be considered for doing timing calculations (Figure
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3-4). First of all, the tms and tdi signals must arrive in a certain window of time for

the tclk signal to clock them into the TAP controller on the Arctic chip. The next

important timing consideration is to make sure that the tdo signal coming back from

the 4x4 routing board to the PC board arrives in a certain window of time so that

the PC board's clock can capture the signal.

The delays for sending the signals to the Arctic chips on the 4x4 routing boards from

tm4
I I

PC Clock

PC Output Signals

4x4 Clock

I I II I I
II

I I

I I

I I I

II
II III

I I 
4x4 Input Signals

4x4 tdo Signal

PC tdo Signal

II I
I

I

__ i,-I
Il 

-

I I * i: - tao

I I

Ii I
, <tc: t4m
I I

I -
I___________I _____ I

I I

tm4c/" Ia It4mc

Figure 3-4: JTAG Signals' Timing

the PC board mainly are: the cabling from the PC to the backplane, the differential

line drivers and receivers for the voltage conversion, the buffers on the backplane,

and the buffers on the 4x4 routing board. Because of the standard for JTAG signals,

the signals tms, tdi, and tdo transition on the falling edge of the clock, while the
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PC board or TAP controller clocks in the signals on the rising edge of the clock.

Therefore, as long as the skew between the data signals and tclk is less than half the

period of the clock, there should not be a timing problem in clocking the tms and

tdi signals at the Arctic chips. Appendix C.3 shows the calculations for this timing

consideration with tclk at 8 MHz, 125 ns.

In considering the other problem of being able to return the tdo signal back in time

to be clocked, the total amount of delay from when the PC sends out the tclk signal

to when the tdo signal returns to the PC needs to be less than one period of tclk,

125ns. Originally, the total delay needed to be less than half the period; however,

the PC board has been modified to capture tdo on the falling edge of tclk so that

the total roundtrip delay can be as much as a period of tclk. Besides all the delays

mentioned earlier for clocking the signals into the TAP controller on Arctic, the total

length of stripline from the backplane to the Arctic chips on the 4x4 routing board

and back to the backplane needs to be added, as well as, the differential line drivers'

and receivers' delay, and the cabling delay to the PC board. The calculations in

Appendix C.3 show that the total amount of delay is less than a period of tclk. One

last timing consideration for the tdo signal is to insure that the hold time for the

tdo signal is met. The hold time of the FIFO receiving the tdo signal is zero, but

the clock that clocks the FIFO is generated through a programmable logic device

with a maximum delay of 10ns. With this in mind, the effective hold time is 10ns.

The shortest round trip path to the 4x4 routing board passes through two voltage

translation drivers and receivers, two lengths of cabling, two lengths of trace, and

two buffers. The minimum delay of the drivers, receivers, and buffers alone is 11ns

([2*1.5]+[2*2.5]+[2*1.5]); therefore, the hold time is not a problem.
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Chapter 4

Power and Area

4.1 Power

Besides ground, four different voltage levels are required for the 4x4 routing board.

Two 5V supplies isolate the GTL from the ECL devices. A 2V supply (ECL 2V)

between the 5V supplies shifts the GTL supply 3V higher than the ECL supply (see

Figure 2-2). Since the ground for the GTL supply is 3V, it is used for terminating

the ECL signals. The terminating voltage for the GTL signals needs to be 4.2V. An

additional 1.2V supply referenced off the GTL ground (3V) would be the best choice;

however, a reliable 1.2V supply is difficult to construct. For this reason an additional

2V supply across a voltage divider is required to supply the 1.2V termination voltage.

This setup has the same advantages of a seperate 1.2V power supply except for a

slightly higher power consumption. The advantage of a seperate power supply is that

it helps to keep the GTL and ECL terminations seperated. The reason for keeping

these terminations seperate is because the noise from the GTL terminations could

shift the ECL signals out of the common mode range. However, due to the power

constraints on the power supplies, the GTL clock signals for the Arctic chips will be

terminated across the ECL 2V supply.

For calculating the power requirement of the power supplies needed, Appendix A,

Tables A.3 and A.4 show the power dissipation of all the devices used on the board

and all the termination resistors. From these tables, the ECL 5V supply needs to
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be capable of handling 20.01 watts per a board, the GTL 5V supply needs to be

capable of handling 26.94 watts per a board, the ECL 2V supply needs to be capable

of handling 10.93 watts per a board (including the GTL clock terminations), and the

GTL 2V supply needs to be capable of handling 12.13 watts per a board . For a 16

board system, the power supplies should be at least 321 watts and 432 watts for the

5V supplies, and 175 watts and 195 watts for the 2V supplies. Currently, the 16 board

system will have two 500 watt 5V supplies and two 200 watt 2V supplies. The only

other limitation on the power supplies is that the total power be less than 1200 watts.

The total power requirement for the 16 board system is 1123 watts. Even though

one of the 2V supplies is almost at its maximum output, since the total power in the

system is less than 1200 watts, the power supply company has assured that the 2V

power supply will not have a problem with supplying the power, especially since this

is the absolute maximum amount of power required on the 2V supply. The average

power requirement of this 2V supply will be approximately 75% of the maximum,

which is approximately 150 watts.

Concerning the GTL clock terminations mentioned earlier, the total power demand

on the GTL 2V supply, including the GTL clock terminations, would be just over 200

watts for the worst case scenario in a sixteen board system. By moving the GTL clock

terminations to the ECL 2V supply, which has extra power to spare, the requirement

for the GTL 2V supply falls to just under 200 watts for the worst case scenario as

shown in the previous paragraph. The reason that the GTL clock signals out of all

the other GTL signals were chosen to be moved to the ECL 2V power supply is that

the GTL clock signals are differential pairs which means the current is approximately

constant and so the GTL clocks do not add much noise across the ECL 2V supply.

4.2 Area

The area of the board is mainly due to the area needed by the chips. The board has

four layers and five power planes. The four layers of the board should be sufficent

to handle all the routing; therefore, only the area needed to mount the chips and
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thermal cooling of the chips dictate the area of the board (Appendix B, Figure B-3).
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Chapter 5

Conclusion

In summary, I designed the 4x4 routing board in its entirety. I designed the sections

for transmitting and receiving signals to the processors that connect to the 4x4 routing

board and to other 4x4 routing boards. I designed the section for transmitting the

JTAG signals from the PC board to the 4x4 routing board and back to the PC board,

including modifications to the PC board and signal distribution on the backplane. As

part of designing these sections, I selected components (Appendix A, Table A.5) and

created an inital layout of the board for calculating the power and area requirements

for the board (Appendix B, Figure B-3). Finally, with these selected components,

I carried out detailed calculations for timings, voltage conversions, transmission line

effects, and power requirements (Appendix C). In the following sections, I will cover

the remaining concerns with designing the 4x4 routing board and possible testing

procedures for when the board is fabricated.

5.1 Other Board Design Issues

For the link technology, there are two constraints for trace lengths in order to insure

the GTL to ECL conversion. The trace lengths for the Arctic data signals to the

ECL registers should be equal or greater than the sum of the lengths of trace from

the Arctic chip through the AMCC PLL, through the delay line chip, and through the

clock buffer to the ECL registers. The reason for this restriction on the trace lengths
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is because if the trace lengths for the Arctic data to the ECL registers were much

shorter than the sum of the traces for generating the ECL clock signal to the ECL

registers, then the clock received at the ECL registers could be too late for clocking

the Arctic data. The other constraint is that the trace length for the inverted Arctic

clock to the ECL flip flop should be equal to or less than the sum of the lengths of

trace from the Arctic chip through the AMCC PLL, through the delay line chip, and

through the clock buffer to the ECL flip flop. If the trace between the Arctic chip and

the ECL flip flop were much longer than the sum of the trace lengths for generating

the ECL clock to the flip flop, then the flip flop may be clocked too early to capture

the Arctic clock. Both these restrictions should be clear from Appendix C.1. The

receiving side of the 4x4 routing board does not have any strong constraints for the

trace lengths since the receiving side can handle a large amount of skew (Appendix

C.2).

Both the AMCC PLL and the Arctic chip require some additional hardware for these

chips to function properly. The AMCC PLL requires an external PLL filter and an

external power supply filter. Suggested designs are in the data sheet. The Arctic

chip requires a 0.8V (3.8V) reference voltage and a 40 MHz clock. A voltage divider

network across the GTL voltages (V5 and V3) with a capacitor should be sufficient for

the reference voltage. A single 40 MHz crystal oscillator will supply each Arctic chip

with the necessary 40 MHz clock by passing through a buffer which has a fanout of

five. The 40 MHz clock to each Arctic chip should be terminated at the Arctic chips.

These signals should be terminated to 4V (7V) exactly the same as the JTAG clock

signals are terminated (Figure 3-1). The only difference between the termination of

the JTAG clock signals and the 40 MHz clock signals is that the crystal oscillator

connecting to the buffer should not be terminated going into the buffer, but the

crystal oscillator needs to be very close to the buffer.

One last consideration for the 4x4 routing board is the placement of the Arctic chips

and its heat sink. The Arctic chip which receives the tdi JTAG signal into the board

and the Arctic chip which sends the tdo JTAG signal off the board should be close

to the GTL connectors. The reason for this is that the Arctic tdo signal drivers are
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somewhat weak so the shorter the distance for the tdo signal drivers to drive across

the better. In addition, the heat sinks on the Arctic chips need to be setup such that

a maximum of two heat sinks are in the same plane of air flow, and the minimum

distance between them is one and a half inches. Some termination resistors for the

Arctic chips can be placed under the heat sink, but not all of them. A suggested

placement of the devices is shown in Appendix B, Figure B-3.

5.2 Possible Testing Procedures

Assuming that the Arctic chips will have been tested, the main testings on the 4x4

routing board should check the JTAG signals and the link technology for getting data

to and from Arctic. The testing can be taken care of mostly in software. For testing

the JTAG signals, the PC board can be connected to the backplane and into a single

4x4 routing board. The backplane should be available by the time that the 4x4 routing

board is fabricated; however, a dummy backplane can be constructed easily to connect

the PC board to the 4x4 routing board. The PC board should then be programmed to

shoot and capture data to setup the registers in the Arctic chips. After checking out

the JTAG signals and programming the registers, packets of information can be sent

to the 4x4 routing board with the links looping back to themselves in order to check

the link technology. These tests, which another researcher will be working on, should

verify most of the functionality of the 4x4 routing board. Additional multi-board

tests should be used to verify the links between 4x4 routing boards.
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Appendix A

Tables
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Table A.1: AMCC PLL Phase Selections
PHSEL1 PHSELO Phase Relationship

0 0 All at same phase
0 1 Outputs skewed by 90 degrees from

each other
1 0 FOUT1 leads FOUTO by minimum

phase, FOUT2 lags FOUTO by
minimum phase, and FOUT3 lags

FOUTO by 90 degrees
1 1 Outputs skewed by minimum phase

(determined by the divider selection,
and the VCO frequency) from each

other.

Table A.2: AMCC PLL Phase Resolution

FOUTO-3 Divider VCO PECL Min Phase
Freq Select Freq Freq Resolution

80 MHz 4 320 MHz 160 MHz 3.125 ns
66 MHz 4 266 MHz 133 MHz 3.75 ns
50 MHz 4 200 MHz 100 MHz 5.0 ns
40 MHz 4 160 IlMHz 80 MHz 6.25 ns
40 MHz 8 320 MHz 160 MHz 3.125 ns
33 MHz 8 266 MHz 133 MHz 3.75 ns
25 MHz 8 200 MHz 100 MHz 5.0 ns
20 MHz 8 160 MHz 80 MHz 6.25 ns

Note: The PECL output is not affected by the phase select inputs.

Table A.3: Device Power

Quantity Max Power (Watts) Device
4 6 Arctic chips
2 0.075 CMOS Clock Buffer
1 0.2 40 MHz crystal oscillator
4 1.125 AMCC PLL
2 0.9203 ECL Delay line
4 0.345 ECL Clock Buffer
4 0.145 ECL flip flop
16 0.51 ECL registers
16 0.2 ECL receivers
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Table A.4: Termination Power

Quantity Max Power (Watts) Termination Type
224 0.0300 Diff ECL 3V termination
72 0.0448 SE ECL 3V termination
32 0.0305 GTL Clock 4.2V termination
288 0.0419 GTL 4.2V termination
4 0.0095 GTL 0.8V (3.8V) reference
4 0.0048 ECL 3.8V reference
9 0.2874 JTAG 4.OV termination

Table A.5: 4x4 Board Component Listing

Part # Quantity Description
536297-3 4 AMP Connectors (GTL)

102A0-52XXVC 4 3M Connectors (ECL)
??? 4 Arctic chips

MX045-40.000 1 TTL 40.0 MHz Xstal osc.
IDT49FCT805A 2 CMOS buffer/clock driver

S4405 4 AMICC PLL
DECLDL-2-4 2 Dual ECL delay line
SY100Elll 4 ECL clock buffer
SY100E452 16 ECL register chip
SY100EL52 4 ECL flip flop

SY100E116 16 ECL line receiver chip
768201???G?? 8 50 ohm resistor pack
766141???G?? 2 50 ohm resistor pack
766081???G?? 10 50 ohm resistor pack

??? 8 50 ohm resistor

766165???G?? 16 125/86 ohm resistor pack
766085???G?? 16 125/86 ohm resistor pack

??? 9 250 ohm resistor
??? 9 62.5 ohm resistor
??? 4 334 ohm resistor
??? 4 501 ohm resistor
...... ??? . 4 168 ohm resistor
??? 4 252 ohm resistor
??? ??? 0.luf capacitor
??? ??? O.Oluf capacitor
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Appendix B

Figures
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Figure B-1: GTL to ECL Conversion
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Appendix C

Calculations

C.1 ECL Transmission

Table C.1: ECL Transmission Timings
Name Min(ns) Max(ns) Description

tpll 1.5 AMCC PECL clock advance
tv 1.0 AMCC clock advance tolerance

tskew 0.4 AMCC clock skew
tsl 0.15 ECL register setup time
thl 0.2 ECL register hold time
ts2 0.125 ECL flip flop setup time
th2 0.15 ECL flip flop hold time

tslop 0.75 Arctic edge to edge variance
tperiod 12.5 Arctic data transition time

tda 0.2 3.15 Arctic clock to data out
tea 0 0.2 Arctic contamination delay

tbuff 0.43 0.63 Clock buffer delay

1) The X2 clock is early enough for Arctic data?

min(tpll - tv - tskew - tbuf f + tdelay) > max(-tca + thl + tslop)

1.5 - 1 - 0.4 - 0.63 + tdelay > -0.2 + 0.2 + 0.75

tdelay > 1.28

2) The X2 clock is late enough for the Arctic?
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max(tpll + tv + tskew - tbuf f + tdelay) < min(tperiod - tda - tsl - tslop)

1.5 + 1 + 0.4 - 0.43 + tdelay < 12.5 - 3.15 - 0.15 - 0.75

tdelay < 5.98

3) The X2 clock is early enough for Arctic clock?

min(tperiod - tpll + tv + tskew + tperiod/2 + tdelay - tbuf f) > max(tslop + ts2)

12.5 - (1.5 + 1 + 0.4 + 6.25 + tdelay - 0.43) > 0.75 + 0.125

tdelay < 2.905

4) The X2 clock is late enough for Arctic clock?

max(tperiod - tpll - tv - tskew + tperiod/2 + tdelay - tbuf f) <

min(tperiod - tslop - th2)

12.5 - (1.5 - 1 - 0.4 + 6.25 + tdelay - 0.63) < 12.5 - 0.75 - 0.15

tdelay > -4.82

Result: 1.28ns < tdelay < 2.905ns

C.2 ECL Reception

Table C.2: ECL Receiver Timings
Name Min(ns) Max(ns) Description

tperiod 12.5 Arctic data transition time
tas 1.3 Arctic link setup time
tah 0 Arctic link hold time
tcbs 0.2 ECL clock buffer skew
trd 0.475 0.80 ECL register clock to out delay
tfd 0.335 0.62 ECL flip flop clock to out delay
tbd 0.15 0.55 ECL line receiver delay

1) Reg Clock is early enough to clock the data?
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max(tf d + tbd + tcbs) < min(tperiod/2 - tah)

0.62 + 0.55 + 0.2 < 6.25 - 0

1.19 < 6.25

2) Reg Clock is late enough to clock the data?

max(trd + tbd + tas) < min(tperiod/2 - tcbs + tf d + tbd)

0.80 + 0.55 + 1.3 < 6.25 - 0.2 + 0.335 + 0.15

2.63 < 6.535

Result: Still able to handle almost 4 ns more of skew.

C.3 JTAG Signals

Table C.3: JTAG Signal Timings
Name Min(ns) Max(ns) Description

tperiod 125 JTAG clock period
tas 20 - Arctic TAP controller setup time
tah 20 - Arctic TAP controller hold time
tpcs 12 - PC board FIFO setup time
tpch 10 - PC board FIFO hold time
tattd 1.5 2.5 AT&T Driver propogational delay

tattds 0.2 0.5 AT&T Driver skew
tattr 2.5 4.0 AT&T Receiver propogational delay
tcb 1.5 5.5 Fast CMOS Buffer/Clock Driver delay

tcbs 1.0 1.2 Fast CMOS Buffer/Clock Driver skew
tp 7.0 26.0 PC Board clock to output delay
tao 10.0? Arctic clock to output delay

C.3.1 Clocking tdi and tms

Ignoring the skew of the cabling and trace:
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skew(tm4) + tp + tas < tperiod/2

max(tattds + max(tattr) - min(tattr) + 3(tcbs) + tp + tas) < tperiod/2

0.5 + 4.0 - 2.5 + 3(1.2) + 26 + 20 < 62.5

51.6 < 62.5

Result: Capable of handling 10.9ns of more skew due to the cabling, trace, etc.

C.3.2 Clocking tdo

Assuming 6ft cabling at 1.5ns/ft and 0.5m of trace at 1.38x108m/s (er = 4.7):

max(tm4 + tao + t4m + tpcs) < tperiod

max(tattd+cabling+tattr+3(tcb)+trace+tao+trace+tattd+cabling+tattr+tpcs) <

tperiod

2.5 + 6/1.5 + 4.0 + 3(5.5) + 0.5/0.138 + 10 + 0.5/0.138 + 2.5 + 6/1.5 + 4.0 + 12 < 125

66.75 < 125

Result: An extra 58.25ns for longer cabling, trace length, or Arctic clock to output

delay.
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