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Abstract

This thesis describes a speech recognition system that was built to support spon-
taneous speech understanding. The system is composed of (1) a front end acoustic
analyzer which computes Mel-frequency cepstral coefficients, (2) acoustic models of
context-dependent phonemes (triphones), (3) a back-off bigram statistical language
model, and (4) a beam search decoder based on the Viterbi algorithm. The context-
dependent acoustic models resulted in 67.9% phoneme recognition accuracy on the
standard TIMIT speech database.

Spontaneous speech was collected using a "Wizard of Oz" simulation of a simple
spatial manipulation game. Naive subjects were instructed to manipulate blocks on
a computer screen in order to solve a series of geometric puzzles using only spoken
commands. A hidden human operator performed actions in response to each spo-
ken command. The speech from thirteen subjects formed the corpus for the speech
recognition results reported here. Using a task-specific bigram statistical language
model and context-dependent acoustic models, the system achieved a word recogni-
tion accuracy of 67.6%. The recognizer operated using a vocabulary of 523 words.
The recognition had a word perplexity of 36.

Thesis Supervisor: Deb Roy
Title: Assistant Professor
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Chapter 1

Acoustic Modeling

In this section, the acoustic models will be explained and discussed. First, the math-

ematics behind the training of context independent phoneme units will be discussed,

including some basic math for HMMs, initialization via Segmental K-means, and the

training using an Expectation Maximization algorithm (Baum-Welch). Second, the

extension of this to context-dependent phoneme units will be covered. Third, the

evaluation method and results for the units as trained on the TIMIT database will

be discussed.

1.1 Basic Math for HMMs

HMMs are often used for modeling Markov processes. A process is considered Marko-

vian if:

P(o[n]|o[n - 1], o[n. - 2]. o[n - 3], ...) = P(o'n.I1o~n - 1])

That is, if the probability of an observation at time n (o[n) depends only on the

observation at time n - 1. If all of the information ini a process can be contained in

the current observation, the description of - iprocess can be thought of in terms of

transitions between states where each state is enougli to represent everything known

about the process. Although this is not true of speech. it can be used as a good

simplifying assumption and has been successfully applied in state-of-the-art speech
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recognition systems.

Following the conventions of [1], we introduce some basic math and terminology

which is useful for dealing with HMMs. An HMM consists of a matrix of transition

probabilities with elements ai3 being the probability of transitioning from state i

to state j, and output probabilities bj(o) being the probability of outputing the

observation vector o in state j. In a discrete density HMM, the HMM can output a

number of discrete values. In this case, the output probabilities for each state specify

the probability of outputing the discrete values. In the continuous density case, the

probability density must be specified for the observation vector o. This specifies the

output probability for all possible values of o.

The set of all of the HMM parameters is given by A. Two basic problems of

dealing with HMMs and their solutions are briefly discussed here to introduce the

appropriate terminology (see [1] for a complete discussion). The two basic problems

are determining the probability of an observation sequence given A for an HMM,

and determining the most probable state sequence for a given observation sequence

(given A). The additional problem of choosing model parameters so as to maximize

the observation probability P(O!A) is discussed in the section on training using the

Baum-Welch method.

1.1.1 Determining the Probability of an Observation Sequence

Given an observation sequence O = (01, 02,03, --, OT) of length T and HMM parame-

ters A, the goal is to determine P(O1A). One solution to this is known as the forward

procedure. Defining the variable

at(i) = P(o1, 02, 03, ... ot, qt = ilA)

where qt is the state at time t, and i is the current state. Given an initial probability

distribution over the states 7ri (7ri is the probability of the sequence starting in state i)

and a final probability distribution over states p, (pi is the probability of the sequence

ending in state i), at(i) can be solved inductively:

14



1. Initialize a at time t = 1:

a,(i) = ibi (ol)

2. Inductive step
N

at(i) = [I at_,(i)aijf b(ot)

To determine P(OIA), all that remains is to sum the as for the final observation

over all states:
N

P(OIA) = Z piaT(i)
i=1

Thus the evaluation takes e(N 2 T) operations which scales linearly with the length

of the observation sequence.

Another similar way of solving the problem is to work backwards from the ending

state. The variable #i(i) can be defined as

A(i) = P(ot+1, Ot+2, Ot+3, -- , oTt = iIA)

Thus i3(i) is the probability of the HMM accounting for observations after time t and

being in state i at time t. Similar to the forward procedure given above, one can find

an inductive solution which is given by:

1. Initialize 3 at time t = T:

OTW)= p

where again pi is the probability of ending in state i.

2. Inductive step
N

#(i) = Eaibj(ot+)f3t+i(j)
j=1

This induction, working backwards from a final distribution is typically called

the "backward procedure". The HMMs used for the acoustic modeling are left-to-

right. This means that the only legal transitions are to either the same state, or to

a state further on (the transition matrix specifying ai is upper triangular) As the

15



HMMs used here are three state left-to-right and require the observation sequence to

enter at the beginning and exit the HMM at the end, the values of ri and pi can be

updated with the other HMM parameters using the Baum-Welch algorithm discussed

in section 1.2.3.

There are also a few variables which are of use later and are derived from the

forward and backward variables. One variable, (ij) is the probability of being in

state i at time t and state j at time t + 1.

&t(i,7j) = P(qt = i,qt+1 = j|O, A)

. .=P(qt = i, qt~i = j, O|A)
P(OJA)

(i,j)- at(i)aij b(ot+1)8t+ 1(j)

P(O|A)

This is useful when reestimating transition probabilities with the Baum-Welch algo-

rithm. Another useful variable, yt(i) is the probability of being in state i at time t

given the observations:

yt(i) = P(qt = iO, A)

P(0, qt = i|A)
P(O A)

P(0, qt = i|A)
'yt(i) =

>=1 P(0,qt = iIA)

Eli,=,at(i)ot(i)

The variable -yt(i, k), the probability of being in state i at time t with the kth mixture

accounting for the observation, is also useful for continuous density HMMs:

yt(i, k) = P(qt = i, mixture = kIO, A)

yt(i, k) = t(i)
1 k, Uk)

= =1 cjmN(ot, pim, Uim)

16



State1 40 9

State 2 40 . 0

State 3 0 ,-40 4

1 2 3 4

Frame Number (time)

Figure 1-1: Trellis for a three state HMM

Where (as discussed later) Pik is the vector of means and Uik is the matrix of variances

for gaussian mixture k in state i of the HMM.

1.1.2 Finding the Optimal State Sequence

Now that several useful quantities can be calculated for HMMs, it is relatively easy

to determine the most probable state sequence for an observation sequence 0. This

algorithm, called the Viterbi algorithm is one which will be used extensively for other

tasks such as word and phoneme recognition. Consider a trellis which is essentially

a matrix with the number of rows being the number of states (N) and the number

of columns being the length of the observation sequence (T) shown in figure 1-1. For

each element in the trellis, it is necessary to store its current probability and the

state that it most likely transitioned from. Consider the states in frame one. Their

probability is simply 7,ib(ol) or the probability of starting in state i and outputting

the first observation. For the remaining frames, the probability for a state j is given

by:

maxjot-1(i)aig bj(ot)

where it-I(i) is the probability stored in the lattice at the previous time step. Only the

maximum is required, because the state contains all of the information of the process.

If the same state can be reached several different ways, only the most probable needs

to be kept. When this maximum is found, the state that created the maximum is

stored at the node as well as the maximum probability. Repeating this process until
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Input acoustic Pre-EmphassIWindowing Filterbank DCT] Liftering Feature Vector
waveform

Figure 1-2: Feature Extraction Method

the end of the observation sequence creates probability values and the previous state

information (backtraces) for all elements of the trellis. It is then possible to read back

the most probable state sequence by finding the most probable state at time T and

following the backtraces until the first state is reached. The result is a time ordered

sequence of states corresponding to the most likely state sequence. This algorithm

also runs in O(N 2 T) time and so is not more costly than the calculation of the P(OIA)

It should be noted that in all of the calculations for the HMMs, the precision

of the floating point values used is important. For long observation sequences, the

probability of the observations will drop and eventually exceed the precision of the

float. As a solution to this, the logarithms of probabilities are used for probabilities

throughout. This also simplifies the evaluation of the probabilities for gaussians as

the logarithm function cancels out the exponential greatly speeding up computation

for decoding. Multiplications also become less costly, although the sums given in

many of the previous formulae become more expensive. Details on this approach can

be found in [1].

1.2 Training Context Independent Units

Training HMMs from speech consists of several steps. First, the data passes through

a feature extractor which replaces a waveform with evenly spaced features at discrete

times. Next, an HMM structure is assumed, and the model is initialized with a

Segmental K-means algorithm. Finally, the model is trained with the Baum-Welch

algorithm which increases the probability of observations given the model.

1.2.1 Feature Extraction.

Feature extraction takes place as shown in figure 1-2. First of all, the waveform is

18



pre-emphasized with a filter whose z-transform is 1 - .97z-1. This compensates for

the "radiation load" which sound undergoes as it exits the mouth. The radiation

load is an effect of the sound exiting from the vocal tract (which is often modeled as

a tube) into an open space through the mouth. The result of the pre-emphasis filter

is to accentuate high frequencies. The waveform is then windowed with a Hamming

window of length 20 ms, and the window is moved in increments of 10 ms. across the

length of the waveform. This creates a vector of features every 10 ms. The samples

within this window are passed through a filter bank to determine the amount of each

frequency range present in the signal. The filter bank consists of triangular filters

spaced according to the Mel Scale (see [1], p. 190). The Mel scale on the filter bank

is used because it mimics the design of the human ear: it provides good resolution

at low frequencies and progressively coarser resolution as the frequency increases.

Following this, the log of each filter bank coefficient is taken. This helps to separate

out constant components of the cepstra, as it turns the multiplication in the frequency

domain into an addition. As the average is subtracted off of each component at the

end, this allows the feature extraction to concentrate mostly on feature differences.

In this specific instance, 24 mel scale filters were used, and with the data given being

sampled at 16 kHz, the 24 triangular filters in the filter bank were spread between 0

and 8 kHz.

Next, the output of the filter banks is transformed using a discrete Cosine Trans-

form (DCT). This is useful later on as it removes some of the dependencies between

outputs so that the covariance matrices can be assumed diagonal. The DCT is im-

plemented using the following equation (see [3], p. 591):

N-1 7rk(n + 0.5))
X[k] = x[n] cos N

where A is the number of filter banks, and k is the index to the transformed coeffi-

cients. In this specific case, 12 transformed coefficients were used.

Third, liftering was done to attempt to smooth these coefficients (see [1], p. 169).

The idea is that the first few cepstral coefficients are mostly due to variability in the
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shape of an individual speakers glottal pulse and other speaker related factors [1].

Thus the liftering attempts to de-emphasize these cepstral coefficients as they do not

contain much information. This liftering takes the form

X[k] = 1+hsin n-,
(L

where h is typically L/2 and L was chosen to be 22 for an 8 kHz bandwidth. As

discussed later, in tests on phoneme recognition, this improved performance by about

.2%, which is only a small improvement, but as the extra processing time is negligible,

it was included anyway.

Next, log energy is included as an extra coefficient. The log energy was calculated

before the window was applied, and was found by summing the square of all of the

samples in the windowed region:

N-1

E = log x[n]2
n=O

Calculating the energy using a windowed signal was also attempted. As figure 1-3

shows, the energy computed without windowing is more smoothed, as it depends

equally on all samples within the window. It was found empirically that the phoneme

recognition performance did not depend on whether the energy was first windowed

or not.

As a final step, the average coefficient was computed over the utterance. This

average was then subtracted from the coefficient at each frame. The goal of this step

is to remove the constant factors of the speech so that the differences can become

more noticeable. In addition, as the waveform is not stationary, the set of coefficients

were augmented to include first and second order derivatives. The derivatives were

calculated using the following regression equation:

, t egrion(i + n - [i - n])X [i] =Lo= N 22 En 2

where N is the size of the regression radius (how many frames are included in cal-

20
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Figure 1-3: Comparison of windowed and non-windowed
"She had your dark suit in greasy wash water all year."

energy for the utterance

culating a derivative). A large regression radius will not be very sensitive to noise,

but will lack time resolution whereas a small regression radius will have good time

resolution but may be affected more by noise. In the current system, the regression

radius is fixed at 2. The second derivative is calculated from the first derivative by

use of the same regression formula. This produces three times the original number of

features for a total of 39 features per frame for the current system.

1.2.2 HMM initialization through Segmental K-means

The next step after running the data through a feature extractor is to initialize the

HMM through a Segmental K-means algorithm. The output and transition probabil-

ities can be iteratively improved through the Baum-Welch method for Expectation
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al I a22  a33

Start end
41 a12  a23  a34

a02  a13  a24

Figure 1-4: Left to right HMM structure with single state skips.

Maximization. However, this method may only reach a local maxima, so it is im-

portant to initialize these probabilities to reasonable estimates. The HMM structure

assumed is a three state HMM with single state skips allowed (as shown in 1-4). This

allows for greater variability in speaking rate, as a phoneme no longer has to last at

least 30 ms. in order to pass through the HMM.

The HMM transition weights (a23) consist of the probability of transitioning from

state i to state j, and are shown in figure 1-4. An observation sequence starts at

the "start" label in 1-4 where it undergoes null transitions (not providing any output

observations) into one of the first states. The observation sequence is also required

to end by transitioning to the "end" state, so the transition matrix is actually of size

N +2 where N is the number of states in the HMM. For recognition purposes, these

HMMs can easily be chained together to form words or other units.

The HMM outputs are modeled as continuous density output probabilities by rep-

resenting each output probability as a gaussian mixture. Thus the output probability

for an HMM in state j is given by:

M
b (o) = ckjN(o, pik, Uk)

k=1

where N(o, Pjk, Ujk) denotes a gaussian distribution for observation vector o with

mean vector Pik and covariance matrix Ujk. Here the sum is over the mixtures (k),

o is the observation vector, Cjk are the mixture weights for each state, and Pjk and

Ujk are the mean vector and covariance matrix for the gaussians respectively. As the
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probability distribution for the output probabilities must integrate to one,

M

E Cjk 1
k=1

Also, because the DCT tends to remove dependencies between the MFCC coefficients,

the gaussians are assumed to be diagonal. This simplifies many of the calculations

which are described later.

The training data for the HMMs consists of a set of observation sequences 0 =

[01, 02, 03, 04, ...]. Each observation sequence consists of a frames, O = (oi) 10, , ... ).

The more observation sequences available, the more accurately and robustly the HMM

can be trained since the parameters will accurately reflect the variation in the obser-

vations.

The first step in initialization is to give reasonable values for the output and

transition probabilities. This is done by taking all of the observation sequences 0

with more frames than states and segmenting them so that an equal number of frames

lie in each state. This provides a set of observations points ([01,02,03, ...]) for each

state which are produced by the output probabilities. These observations can be used

to initialize the output probability (a gaussian mixture) of a given state through a

k-means procedure as given below:

1. Choose k of the observation points as the initial means of the gaussians.

2. Label all of the points with the mixture of the gaussian that is the closest (in

Euclidean distance) to it.

3. Recalculate the means and variances for each mixture by calculating the mean

and variance of all of the points with the same label as the mixture. Recalculate

the mixture weights by taking the fraction of points which are associated with

the mixture divided by the total. If a mixture weight falls below a threshold,

than reinitialize the mixture with a new random point and return to Step 2.

4. Recalculate the labels. If they do not change then quit, otherwise return to

Step 3.
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This initializes the output probabilities. The transition probabilities can be set to

reasonable default values and then updated iteratively along with the output proba-

bilities.

Next, these initial guesses are iteratively refined by using a hard alignment of

states. For each observation sequence, the Viterbi Algorithm is applied to find the

most likely state sequence for the observation sequence. The transition weights are

updating by counting the number of transitions from a given state to another state

divided by the total number of transitions from the state:

number of transitions from i to j
aij -E= number of transitions from i to j

The output probabilities are refined by getting the set of observations given by the

Viterbi Algorithm to be most likely in that state. These output probabilities are then

used to run the Segmental k-means algorithm but without the initialization of the

means given by Step 1 of the procedure.

1.2.3 HMM Training Through Baum-Welch

While the above procedure will often improve the P(OIA), it is not guaranteed to do

so. Usually after several iterations of Segmental k-means the benefits are negligible.

There exists an Expectation Maximization (EM) algorithm which is guaranteed to

iteratively improve the P(OIA). An instance of EM, the Baum-Welch algorithm

provides a way of updating the HMM parameters iteratively so that either the P(O|A)

increases or a "stable point" has been reached so that further iterations will not

improve the parameters.

Let -yt(i, k) be defined as before to be the probability of being in state i at time t

with the kth mixture accounting for the observation given the observation sequence

and the HMM parameters:

I at(i),3t(i) Cik N(ot, Pik,Uik)
Ti~i~k)= =1 at(j)#t(j) E^,_cj. N (ot 7pimU })2((M=k)4= I

24



The re-estimation formula for the mixture weights consists of the expected number

of times the observation sequence was in the ith state with the kth mixture component

accounting for the observation divided by the expected number of times in the ith

state.
zt= Iyt(i, k)

Cik k = M Tyt(i, k)

Similarly, the re-estimation formulas for the mean vector pik and the variance matrix

Uik of the kth mixture component of the ith state can be given as follows:

EI T 'Mi, k) -ot
Zi ET=1N(i, k)

E= 1 yt(i, k) - (Ot - Pik) (Ot - Pik)
Ui = 1

t=17ik

An important issue in updating the variances of continuous density HMMs is that

the variances of the gaussians must be appropriately floored such that they do not

become too sharply peaked and account for only one data point. These floor variances

are calculated by reading in all of the observation sequences for a particular HMM

and calculating the mean for all of the dimensions of the observation, P = ot.

The variances are then estimated for each dimension by taking the difference from the

mean and squaring, U = ET I(Ot - P)(ot - p). These variances are then divided by

a constant factor (10 in this case) to give the floor values of the variances reasonable

values.

The transition weights are implemented by taking the expected number of transi-

tions from state i to j divided by the expected number of transitions from state i. As

the number of total transitions from a state is the same as the number of observations

in the state, the formula can be given as:

al- EjT_1I jj)

It is possible to implement the Baum-Welch algorithm according to the above

formulas such that all of the observation data does not have to be in memory at one
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time. This can be done by use of accumulators. Three accumulators must be stored

for each state and mixture. The fourth must be stored for each combination of states.

The accumulators are:

1. Et yt(il k)

2. Et yt(i7 k) -o

3. Et yt(i, k) - (ot - pi k)(Ot - Pik)

4. Et & (i7 A

As can be seen from the re-estimation formulas, these accumulators provide enough

information to update the HMM parameters using the Baum-Welch algorithm. Ob-

servation sequences are read in one at a time, and yt(i, k) and t(i, j) are calculated for

all mixtures and states. From these, Et yt(i, k) -ot and Et yt(i, k) - (Ot - pik)(Ot - Pik)

are calculated and then used to update the four accumulators by summing these values

over time. A graph of the improvements per iteration for the Baum-Welch algorithm

of the phoneme "aa" is shown in figure 1-5. This phoneme was initialized using Seg-

mental k-means, and then trained for 10 iterations with the Baum-Welch algorithm

described above. Notice that each iteration increases the observation probability.

1.3 Context Dependant Phoneme Units

Ideally the base units chosen for word recognition are independent of context, so that

they don't depend on the other units around them. In practice, however, the way

phonemes are pronounced varies depending on the phonemes around them. Much of

this has to do with co-articulation, where the movements made by the mouth and

vocal cords are coordinated to produce smooth speech. This coordination means that

adjacent phonemes are produced from one fluent motion, and thus the pronuncia-

tion of any phoneme is tied to the other phonemes around it. In order to deal with

this effect, models which depend on the context need to be developed. The typical
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Figure 1-5: P(O A) vs. Baum-Welch iteration for phoneme "aa"

approach is to use "triphones", phoneme models that depend on the previous and fol-

lowing phonemes (context independent models are often referred to as "uniphones").

As there are usually around 50 phonemes to be trained, training an HMM for all pos-

sible contexts requires 503 = 125,000 models. This is clearly impractical, especially

since many phoneme contexts are rare and acquiring enough data to robustly train

HMMs for rarely occurring contexts would take a very large training corpus. One

approach is to cluster those contexts which have similar effects on the phoneme in

question. For example, the "ey" phoneme in the words "came" and "game" may be

similar even though it is preceded by different phonemes.

1.3.1 Clustering Algorithm

The clustering algorithm used here is similar to that used in [4]. This approach

is appealing because it does not depend on any extra phonetic knowledge to do

the clustering. If context dependent units need to be trained for new languages or
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situations, no extra phonetic knowledge needs to be used. The algorithm also scales

well: not all of the training data needs to be in memory at the same time and the

length of time necessary to run depends primarily on the number of different contexts

present for a given phoneme.

The clustering is done on a state level so as to better model the effects of the

surrounding phonemes. For example, the first state will usually depend more upon

the preceding phoneme than the following one, and the last state will depend more

upon the following phoneme than the preceding one. The first step is to calculate

the variance for each dimension of the observation vectors. This provides a good

way of scaling the importance of the information of each dimension. This variance

is used both in the distance metric between output distributions and for the floor

variances assigned to each state. As before, pI = ETI ot is estimated, and from this

U = J!1(ot - IL)(ot - M) is estimated and U is assumed diagonal. The variances

for each dimension, o are these diagonal elements of U. The next step is to get

a list of observations for each state (keeping track of the preceding and following

phoneme for each observation). We do this by finding the optimal state sequence

for each observation sequence by use of the Viterbi algorithm. All of the observation

sequences have can then be split into observations occuring in each state. We proceed

with the following sequence of steps for each state:

1. Separate all of the different contexts into different "bins".

2. Calculate the mean vector P = E, o/N for each bin.

3. Find the smallest distance between all pairs of contexts. If this distance is lower

than a threshold, merge these two bins. Here the distance between two groups

is defined as:

d(i j ) (= - 2 )

SKk Uk

h-ere k is the dimension being summed over and K is the number of dimensions.

The two bins are merged by combining their observations and then creating a

mean vector which is a weighted sum of the mean vectors of the bins being
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merged.

4. Repeat step 2 until the distance exceeds the threshold.

5. Merge those bins with fewer counts than a minimum count threshold to the

bins closest (in distance) to them.

The cutoff threshold was set to 0.3 and the minimum number of counts to 200. This

gave an average of about 10 clusters per state for trigrams. Of course, more clusters

were created for phonemes for which there were many observations, and fewer clusters

were created for phonemes for which there were only a few available observations.

The values for the cutoff threshold and the minimum number of counts were found

empirically to give decent results, although changing these values (especially the cutoff

threshold) did not produce noticeable changes.

As an example of this algorithm, consider three different contexts for the "ey"

phoneme which will be used to train the "ey" acoustic model. Suppose there are

several observation sequences all of which come from the words "came", "game", and

"same". First of all, the variance for each dimension is calculated using all of the

observation vectors to set the floor variance for all of the states. Second, the optimal

state sequence for all of the observation vectors is found using the Viterbi algorithm.

All of the observations in the first state are then used to find the clustering for the

first state of the "ey" phoneme. As there are three separate contexts, "c ey m", "g

ey m" and "s ey m", there are three different bins created, and the mean and the

variance is calculated for each bin. If the variance for any of the bins is smaller than

the floor variance, it is set to the floor variance. Next the distance metric is applied,

and suppose contexts "c ey m" and "g ey m" are similar enough to be merged. The

observations from the two bins are merged, and the mean and variances are updated.

Now suppose that the "s ey m" context is different enough from the merged context

"c ey m" and "g ey m" that it does not fall within the threshold of the distance metric

and that both bins have enough data to train an output distribution. Two separate

output distributions are created for the first state of the HMM, and the process is

repeated for the remaining two states.
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After the clustering algorithm is run, the new output distributions need to be

retrained. This can be done with a modified Baum-Welch algorithm. The output

distributions used in the re-esumation formulas depend on the phoneme context.

When re-estimated using Baum-Welch, first the output distributions for each state

are determined from the phoneme context. Next, the variables -Yt(j, k) and &t(i, j) are

calculated as before using these output distributions. Finally, the accumulators are

updated. As there are now multiple output densities for each state (dependent on

phoneme context), there are accumidators for each state, mixture, and output distri-

bution. For a specific observation sequence, only those accumulators corresponding

to the output distributions for the given phoneme context need to be updated.

At first, the output distributions for each phoneme context were initially set to

those of the uniphone distributions. The output distributions were then updated

using Baum-Welch for the triphones. This was found, however, to produce many

mixtures of weight 0 (no counts were found to be accounted for this mixture). This

occurred when the context dependent output distribution for a particular phoneme

context differs from the context independent distribution significantly. The simple

solution to this difficulty is to reinitialize the mixtures with further applications of a

k-means algorithm. After this re-initialization, mixtures better modeled the output

distributions, as there were many more non-zero mixtures. The re-initialization is sim-

ilar to the segmental k-means procedure. The observation sequences are segmented

into groups of observations for each output distribution using Viterbi alignment and

then initialized using a k-means procedure. (There may be several output distribu-

tions for each context dependent cluster.) The Viterbi alignment for triphones only

differs from that of uniphones in that the output distributions for each state must be

determined from the phoneme context.

1.4 Evaluation and Testing of Acoustic Units

Once the phoneme models have been trained, it is important to evaluate their per-

formance. First of all, a brief discussion of a common speech corpus (TIMIT) will
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be presented. Next, methods for evaluating performance through a modified Viterbi

search will be covered. Finally, the recognition results will be presented for several

different choices of parameters.

1.4.1 The TIMIT database

A common benchmark for these results is their performance on the TIMIT database

[8]. The TIMIT database consists of 6,300 utterances of roughly 5-10 sec. in length.

These sentences consist of speakers from different dialect regions throughout the

United States reading ten sentences. Of these ten sentences, two are identical across

all speakers ("SA" sentences), three are "phonetically compact" sentences designed

at MIT ("SI" sentences), and five are "phonetically diverse" sentences selected by TI

("SX" sentences). The TIMIT database comes sectioned into a "test" database and a

"train" database so that results can be compared across different systems. The data

provided includes the utterance, as well as phoneme and word level transcriptions.

Because of the hand labeled phoneme level transcriptions, the TIMIT database pro-

vides a good way of creating initial phoneme models. Initial models can be trained

from the phoneme level transcriptions. These models can then be used as a starting

point to segment utterances from other speech corpa for which phoneme level tran-

scriptions are not available. This segmentation is discussed later. A complete list of

the phonemes used in the TIMIT database can be found in 4.

1.4.2 The Phoneme Recognizer

In order to evaluate performance, the acoustic models are used on unseen utterances

in phoneme recognition. As shown in figure 1-6, the process begins with the feature

extraction which takes the raw audio and extracts MFCCs as described earlier in

Section 1.2.1. The MFCCs are fed into a phoneme recognizer which will produce

the sequence of most likely phonemes. Finally, the generated list of phonemes are

compared with the actual phonemes by use of a program by NIST which does the

scoring.
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Audio MFCC Phoneme Recognizer NIST Scoring - Results

t
Phoneme Level Transcript

Figure 1-6: Phoneme Recognition Process

Root

aa ae ah ao zh

aa ae ah zh

Figure 1-7: Tree for uniphone recognition

Phoneme recognition is achieved using a modified Viterbi algorithm. If the Viterbi

algorithm were carried out unmodified (as discussed earlier), the trellis would consist

of approximately 2,000 states (there are around 15 context dependent output distri-

butions per state for about 50 three state HMMs). The Viterbi search runs in N2 T

time, so decoding an utterance of 5 sec. duration would take on the order of 2 billion

operations and is clearly unreasonable.

An alternative is to use what is called a "beam search" [1]. The idea is that many

of the states present in the trellis are of low probability and are unlikely to be part of

the decoded sequence. Instead of visualizing the decoding method as a trellis, it may

be helpful to view as a tree search. As shown in figure 1-7, the tree can be expanded

for each phoneme, and a full level search will provide the same results as the trellis

implementation. The difficulty with this approach is that the number of leaves in the

tree grows as N' where t is the depth of the tree and N is the number of phonemes.
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This ignores the fact that when two leafs at the same level are being evaluated for

the same phoneme, only the most probable one needs to be evaluated, and the other

one can be pruned. Thus one of the two leafs can be removed, keeping only the most

likely one. To remove leafs which have a low probability, the beam is applied, and any

leafs which are too unlikely are pruned. This is summarized in the following steps:

1. Expand the tree. For all of the current leafs, create new leafs that can be

reached from the current state. Add the transition costs to the leafs. If the leaf

to be created is the same as an existing state, keep only the most probable one.

2. Update the leaf probabilities by adding their probability of creating the current

observation to their probability.

3. Renormalize the leaf probabilities by finding the probability of the most likely

leaf, and subtracting this probability from all of the leafs. As probabilities

are given in log terms, this corresponds to setting the most likely leaf to a

probability of 0 (1 in non-log terms), and making all of the other nodes more

probable by the same amount.

4. Apply the beam. Prune all leafs that fall below a threshold.

Note that this approach is still O(N 2 T) in the worst case, as N2 new leafs may be

created (and most of these merged) for any time frame. However, as many transitions

have a probability of zero, many of these states will never be created, thus speeding

up the process. Transitions have a probability of zero, if, for example, a node is in the

first state of a phoneme, and the probability of it transitioning out of the phoneme is

zero (as has been assumed in the HMM structure). In additioa, this approach allows

leafs with probabilities which fall below the beam width to be removed removed, thus

allowing many more states never to be considered.

In order to effectively use the triphones generated earlier, the search needs to

have knowledge of the phoneme following the current one. The search can thus be

expanded slightly by considering the following phoneme as well. Figure 1-8 shows an

expansion of this with unknown phonemes denoted with a "??" identifier.
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Root

?? aa aa ??aaae ... ?? ae aa ?? zh zh

?? aa aa aaaaa-aa aaaaae aaaazh

Figure 1-8: Tree for triphone recognition

Transition probabilities between phonemes can be included for better recognition.

In this case, bigrams were used for the phoneme recognition, so P(p2Ipl) (the prob-

ability of phoneme p2 following phoneme pl) is calculated for all pairs of phonemes.

This is calculated by taking all of the phoneme transcripts in the test section of the

TIMIT database, calculating the number of times p2 follows pi, and dividing by the

total number of times pi occurs:

P(P21P-) = N(p1,p 2)
~~PiP~ -N(pi)

where N(pi, p2) is the number of times phoneme p2 follows phoneme p, and N(pi) is

the number of times phoneme pi occurs.

For word recognition, the number of words is usually large enough that not all

possible word bigrams occur, and so a backoff needs to be done for the word bigrams

from the word unigrams (see section 2.1.1). However, for phoneme level decoding,

the number of phonemes (usually around 50) is small enough that there virtually all

of the possible phoneme contexts occur. Thus such a backoff was not used.

In addition, a scaling factor is applied to the phoneme bigrams which allows them

to be more comparable with the acoustic probabilities (see the section on language

modeling in the next chapter). Otherwise, the recognition would be dominated by
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the acoustic models, rather than a mix of the phoneme level language model and

the acoustic model. The scaling factor exponentiates the probability of one phoneme

following another:

P(p2 |PI) -+ P(p 2 |P1)P

where P is the scaling factor. In this particular system, 3 was set to 8.0 which also

seemed to balance insertion and deletion errors (insertion and deletion errors are

covered in section 1.4.3).

1.4.3 The NIST scoring method

In order to ensure that the scoring of the recognizer is standardized, NIST (National

Institute of Standards and Technology) provides an evaluation program [9]. As input,

the scoring program takes a list of transcripts created by the recognizer (a "hypoth-

esis" file), and a list of correct transcripts (a "reference" file) which are provided

with the test data. Next, the program aligns the transcripts from the hypothesis

and reference file in such a way that the total number of errors is minimized. Errors

include insertion, deletion and substitution errors all of which are weighted equally.

The program then calculates results for each speaker including the percent correct,

the percent accuracy, and the percentage of insertion, deletion, and substitution er-

rors. The total error is the sum of the deletion, insertion, and substitution errors.

The percent correct is the number of phonemes which were the same after alignment,

while the percent accuracy is the percent correct minus the insertion errors.

1.4.4 Recognition Results

The following results were run on the entire TIMIT "test" set excluding the "SA"

sentences. Including the "SA" sentences produces abnormally good results as these

sentences all have similar phonetic context. Phoneme bigrams were used as discussed

previously and HMMs trained using the TIMIT training data. The baseline system

was created with the following parameters:

Using these settings, the following phoneme level accuracies were reached: These
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Table 1.1: Basic parameters for HMM training
Merge threshold for clustering algorithm 0.3
Minimum counts for clustering algorithm 200

Factor to divide overall variance by for floor variances 10.0
Phoneme language model scaling factor 8.0

Table 1.2: Baseline results
correct accuracy substitution insertion deletion total error
72.4% 66.0% 20.6% 6.9% 6.4% 34.0%

results are competitive with other phoneme recognition results using continuous den-

sity context-dependent HMMs (for example, [4], [7], and [11). In addition, several

other runs were made to determine how parameter choices affected recognition.

One choice was to determine what effect the liftering (discussed earlier in the

section on the front end) had on the recognition accuracy. Using the same set of

parameters, the recognition was run with and without liftering, and the following

results were obtained: As can be seen by this table in comparison to the baseline

Table 1.3: Comparison of recognition accuracy with and without liftering

correct accuracy substitution insertion deletion total error
with liftering 73.3% 66.9% 20.4% 6.3% 6.4% 33.1%

without liftering 73.1% 67.0% 20.6% 6.3% 6.1% 33.0%

results, the percentage correct increased by .2% while the accuracy decreased by .1%,

showing that the liftering has little, if any effect. However, since the extra processing

time was minimal, the liftering was left in by default.

Another exploration of parameters dealt with the effect of frame boundaries on

phonemes. Before the baseline results were obtained, there was a bug in the assign-

ment of frames into phonemes. If the phoneme boundary for the end of phoneme

"aa" and the beginning of phoneme "b" was between frame 17 and 18, either frame
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17 would be assigned to both phonemes or frame 18 would be assigned to both

phonemes. The recognition accuracy of this system is given in table 1.4. Apparently,

Table 1.4: Results with some frames duplicated
correct accuracy substitution insertion deletion total error
73.3% 66.9% 20.4% 6.3% 6.4% 33.1%

duplicating frames here improved recognition accuracy by almost 1%, increasing the

percentage correct and decreasing the total errors. The reason that the results im-

proved is believed to be because of the placement of the phoneme boundaries in the

TIMIT database.

The TIMIT database consists of phoneme level information which is hand seg-

mented. However, either these are a few frames off (a frame is only 10 ms., so this is

entirely possible), or the boundaries are not modeled well by the HMMs being used.

One way to alleviate this problem is to train models using the hand segmented data,

re-segment the utterances using the trained models, and then to retrain the models

using the new segmentation.

Re-segmenting the utterances is done using a forced alignment algorithm. This

takes as input a set of precomputed models, an utterance to segment, and a list of

the phonemes that occurred in the utterance (in order). Decoding is done similarly to

the tree search described earlier, but the only phoneme it can transition to is the next

phoneme in the sequence. Thus the output of this phoneme level forced alignment

program is the sequence of phonemes given it with new frame numbers attached. In

general, most boundaries stayed the same, but occasionally boundaries would shift

by a few frames.

Using this program, all of the training utterances were re-segmented using the

baseline models, and then new phoneme models were retrained from these alignments.

These new phoneme models were then run on the "test" data and the following results

from table 1.5 were obtained.

As shown in table 1.5, the results obtained here are slightly better than the results
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Table 1.5: Results after re-segmenting training utterances
correct accuracy substitution insertion deletion total error
73.9% 66.9% 20.2% 5.9% 6.8% 32.9%

a,, a22  a33

a01  a12  aa2334

Figure 1-9: Left to right HMM structure with no state skips.

where duplicated frames were included (table 1.4). Thus a reasonable explanation

to the increase in performance is that the duplicate frames slightly offset the slight

inaccuracies in the phoneme boundaries, and that once these are fixed, the duplicate

frames are no longer necessary. To test this theory, new models were trained using

the same segmentation but with duplicate boundaries. The results are listed in table

1.6. This shows that recognition performance decreased when duplicate frames were

Table 1.6: Recognition accuracy with re-segmenting and then duplicating frames
correct accuracy substitution insertion deletion total error
72.9% 67.0% 20.4% 6.7% 5.9% 33.0%

introduced when the utterances are properly segmented (as expected).

The last change of parameters was to change the HMM structure itself. A set of

HMMs were trained with no state skips, as shown in figure 1-9. Training results were

run with this HMM structure as opposed to that with state skips (see figure 1-4), and

the results in table 1.7 were obtained. As can be seen from this, the main difference

between the two is the insertion error dropped by almost 1% when no state skips

were allowed. This shows that HMMs without state skips do a better job of modeling

phone duration, which is often included in the decoding. In terms of substitution and

deletion errors, the two were virtually identical.

38



Table 1.7: Comparison of recognition accuracy for HMMs with and without state
skips

correct accuracy substitution insertion deletion total error
with state skips 73.9% 67.1% 20.2% 5.9% 6.8% 32.9%

without state skips 74.0% 67.9% 20.2% 5.9% 6.0% 32.1%

In order to compare the recognition of the triphones (context dependent) HMMs to

the uniphones (context independent) HMMs, one final test was run with the uniphone

HMMs. Run on the same task, the recognition results are listed in table 1.8. The

Table 1.8: Comparison of recognition accuracy for uniphone and triphone HMMs
correct accuracy substitution insertion deletion total error

triphone 74.0% 67.9% 20.2% 5.9% 6.0% 32.1%
uniphone 70.2% 64.2% 22.0% 7.7% 6.1% 35.8%

results show that phoneme recognition accuracy for uniphones was about 4% lower

than that achieved by triphones. Thus training more model parameters using the

contextual information of surrounding phonemes was beneficial.
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Chapter 2

Extension to Word Recognition

In this chapter, the use of the acoustic models discussed in the first chapter are used

to recognize English words. First, basic word recognition is discussed including the

use of a basic language model. Next, this recognition is applied to a specific task,

and descriptions of the language model and acoustic models used for recognition are

discussed for the specific task. Finally, the recognition results and a discussion of the

results are presented.

2.1 Basic word recognition

A reasonable goal for a word recognition system is to maximize P(WIO), that is the

probability of W, a word string, given 0 the acoustic observations. While this may

not be optimal in all cases, it provides a reasonable starting point. For instance, this

assumes that all words are equally important which is usually not the case. Using

Bayes' law,

maxP(WIO) = maxP(OIW)P(W)

The first term, P(OjW) can be calculated from the acoustic models described earlier,

while the second term P(W) is computed from the language model.
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2.1.1 The language model

The goal of a language model is to provide the recognizer with estimates of P(W)

the probability of a word string. However, if there are N words in the vocabulary and

the word string W = W1, W2 , W3 ,.. . , WM is of length M, then there are NM possible

word probabilities that would need to be stored. For vocabularies of at least a few

hundred words, the storage space required quickly becomes immense. Another issue

is that these probabilities are typically trained from a large corpus of text. There may

be many word sequences that do not occur in the training text which are possible

word sequences. For these reasons, it is necessary to develop an approximation which

can be used to calculate the probability of a word sequence.

The approximation typically used is that of an n-gram model. For example, using

a unigram model,

P(W1, W2, W3 , ..., WM) = P(W1)P(W2)P(W3)...P(WM)

which assumes that the probability of any word does not depend on any of the words

before it. While this is clearly a bad assumption for natural speech, it can be improved

by using a higher level n-gram model such as a trigram or bigram model. The bigram

model,

P(W1 , W2 , W3, ... , WM) = P(W1)P(W2 |Wl)P(W3|W2)...P(WMIWM-1 )

assumes that the probability of a word depends only on the word directly before it.

Trigrams and other higher level n-grams can be used to obtain more accurate word

probabilities.

A difficulty with this approach is that it that the amount of information required

for a language model is still quite large. For a bigram language model, it is still

possible to have a bigram P(WV211WI) which does not occur in the training corpus and

yet is still a possible word combination. One way to address this problem is through

the use of discounted probabilities.
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Consider a vocabulary of five words W = {A, B, C, D, E} and their associated

bigrams given the context A: P(AIA), P(BIA), P(CIA), P(DIA), P(EIA). Suppose

that three of the bigrams, P(A|A), P(BIA), and P(CIA), all occur in the training

corpus, but P(DIA) and P(E|A) do not. Discounting works by taking some of the

probability mass from the given bigrams (P(Disc)) and assigning it to the unseen

bigrams. As not much is known about the bigrams, it is logical to assign it in

proportion to the unigram values:

P(Disc) =&aAP(D) + aAP(E)

where aA is the "back-off weight" for the unigram A. Thus the assigned bigram

probabilities are given as P(DIA) = aAP(D) and P(EIA) = aAP(E), and the equa-

tion asserts that the probability mass taken from the known bigrams of context A

(P(Disc)) is assigned to the unknown contexts.

The language models used here were calculated using Good Turning discounting

[6]. The discounting applied here is calculated as follows:

d(r) =_(r+ 1)n(r + 1)
rn(r)

where n(r) is the number of events which occur r times. There are several other

methods for calculating the discounted probability, and these can be found in [6].

2.1.2 Word recognition, beam search

The approach implemented for word recognition is very similar to that developed for

phoneme recognition in the previous chapter, except that the basic recognition unit is

a word. Words are made from concatenation of phonemes as supplied by a phonetic

dictionary. States in the tree consist of a word, a phoneme in the word, and a state

within the phoneme. Transitions can then can take place on several different levels:

1. Between states in a phoneme model. The current state in a phoneme can

change according to the states allowed by the transition matrix in the HMM.

43



The transition probability is that given by the transition matrix.

2. Between phonemes in a word. If the transition matrix allows a transition out

of the phoneme model, it transitions to the next phoneme in the word. The

possible starting states in the next phoneme are those allowed by its transition

matrix. The transition probability is the sum of the transitions required (the

transition to get out of the current phoneme, and the transition to get into the

next phoneme).

3. Between different words. If the transition allows an exit from the last phoneme

of a word, it can transition to a new word. The transition probability is the

sum of the probability of transitioning out of the last phoneme, the probability

of transitioning to the new word (supplied by the language model based on the

current word), and the probability of transitioning into the first phoneme of the

new word.

One difficulty immediately encountered in the recognition is the weighting of the

acoustic and language models. The probabilities given by the language model and the

acoustic model are typically on different levels. The acoustic model probabilities are

typically much less than the language model probabilities, and thus count for much

more than the language model. In order to counteract'this, a weight is applied to the

language model probabilities so that they are more important,

P(W1JW 2) -+ P(W1jW2)"

where here a is the language model scaling factor. As everything is done in log

probabilities, this corresponds to multiplying the language model by a weight before

combining it with the acoustic probabilities.

Another factor which is used is the "word insertion" penalty. This factor is applied

primarily to adjust for changes in the speaking rate. Each time a transition to a new
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word occurs, this factor is multiplied by the word insertion penalty, /:

P(W1IW 2) - /P(W 11W2)a

where P is the word insertion penalty. Low values of this parameter allow transitions

to take place with fewer penalties for fast speaking rates. High values, on the other

hand, condition the language model toward slow speakers. This parameter is usually

adjusted by attempting to balance the word insertion and deletion errors after the

recognizer is run on a test corpus.

Other than these parameters, the procedure used is basically the same as that for

phoneme recognition:

1. Expand the tree. For all of the current leafs, create new leafs that can be

reached from the current state. Add the transition costs to the leafs, including

the cost from the language model if appropriate. If the leaf to be created is the

same as an existing state, keep only the most probable one.

2. Update the leaf probabilities by adding their probability of creating the current

observation to their probability.

3. Renormalize the leaf probabilities by assigning the most probable leaf a proba-

bility of 0 in log probability (corresponding to a probability of 1), and scaling

all of the other nodes appropriately.

4. Apply the beam. Prune all leafs that fall below a threshold.

At the end of this procedure, a simple backtrace starting from the most probable leaf

provides the best guess as to the most likely word sequence.

2.2 Task specific recognition

In order to evaluate the methods given above for word recognition, a specific task

was created that would supply the recognizer with a corpus of medium vocabulary
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spontaneous speech. In this task, subjects were given three puzzles consisting of

several magnets and different colored balls which would move deterministically when

the puzzle was activated. To solve a puzzle, magnets needed to be placed in locations

around the screen so that when the simulation started, the balls would go to the places

required by the solution. When the simulation stopped, the position of all objects

would reset and the user would be able to adjust the position of the magnets. The

physics simulation would cause the balls to drop as if under the presence of gravity

when the puzzle was executed. Magnets would repel the balls as they dropped, with

a force inversely proportional to their distance from the magnet. 1

The experiment was a Wizard of Oz setup where commands given by the sub-

ject were responded to by an experimenter sitting in another room. Subjects were

seated in a room and could were instructed to use voice commands to manipulate

the objects. The setup allowed the collection of unscripted, unprompted speech as

people attempted to solve the puzzles. An example screen shot is given in figure 2-1.

This shows that even for this simple task many words occured only once. The data

collected for use with the recognition system was taken for one hour per person in a

single session, and 13 sessions were included. Utterances of single word commands

(such as "start" and "stop") were thrown out so as not to artificially inflate the

recognition accuracy. The vocabulary size consisted of 523 words, and a graph of the

counts of the number of times words occur is given in figure 2-2. The complete word

list including the number of word counts is given in 5. The collected speech generally

included simple commands. Several successive commands from session 5 are listed

below as a representative sample:

1. "OK, move the magnet to the left a little bit." (Wizard moves magnet to the

left slightly).

2. "Move it to the right a little bit." (Magnet moves a small amount to the right)

3. "Put the second magnet in the upper right hand corner." (The second magnet

moves to the upper right hand corner).

IPeter Gorniak developed the simulator and one of the puzzles used for the experiment.
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Figure 2-1: The first puzzle. The goal was to move the magnets so as to cause the
red balls to fall into the right bin and the blue balls to fall into the left bin.

4. "Move it to the left a little bit." (The second magnet moves to the left slightly).

5. "Go." (Simulation starts).

6. "Stop." (Simulation stops and resets).

7. "Move the second magnet to the left a little more." (The second magnet moves

to the left).

8. "Put the third magnet above the small blue ball."

above the small blue ball).

(The third magnet moves

47

FOrWOFN [--e%, , ze, S hdw Lba



1501 1 1 1 1 1 1 1 1 1 1 9 -

0 100-

0

E
C5 0 -

0 Ii
1 2 3 4 5 6 7 8 9 10 11 12 13 14

number of times word occurs

Figure 2-2: The number of times words occur. Most words occur only one or two
times in the corpus.

2.2.1 Training of the acoustic models used for recognition

The acoustic models used for this task were trained using the same methods described

earlier. However, for effective recognition, more data is needed to train the acoustic

models (results in section 2.3 show a comparison between acoustic models trained

only on TIMIT, and those trained on the Wall Street Journal database). As a result,

the acoustic models used for this task were trained on the WSJ1 (Wall Street Journal

Phase 1) corpus. This corpus consists of 78,000 training utterances (around 73 hours

of speech) and is stored on 34 CDROMs. Unlike the TIMIT data, this data only

comes with a word-level transcription, with no time boundaries. In order to train

acoustic models using this corpus, such boundaries first had to be created.

The creation of phoneme level boundaries from the supplied transcript is done

using a forced alignment procedure. This is done using the same tree based algo-

rithm developed for the word and phoneme level recognition. The piece of extra

48



Move <sil> 2 <-( <s2P>1 -- <giet

Figure 2-3: Possible word transitions for forced alignment with two possible pronun-
ciations for the word "the", and optional silence (<sil>) between words

information is that the transcription provides the next possible word, or in the case

of multiple pronunciations, several words. Optional silence is created between words,

as depicted in figure 2-3. The transition constraints provided by the transcription

allowed accurate determination of the phoneme boundaries. Although no scientific

measure was used to determine the accuracy of boundaries, it was observed after

listening to several utterances that the phonetic boundaries lined up reasonably well.

The acoustic models used for the forced alignment were those trained on the TIMIT

data. Thus the TIMIT database though it provides a limited amount of data, allowed

the bootstrapping of more effective models.

After the forced alignment was completed for the utterances in the WSJ1 database,

context dependent phonemes were trained from the accumulated information. The

training included initialization via segmental k-means, as well as 5 rounds of EM

(Baum-Welch) for the uniphones, left and right biphones, and triphones, as described

previously.

2.2.2 Training of the Language Models used for recognition

The given task was specific enough that specific language models needed to be gener-

ated using the accumulated text. To accomplish this with a limited amount of data,

the following technique was used:

1. Create a corpus of text from all of the subjects except for the one on which the

recognizer is running.

2. Create a language model for the current subject using the collected text and

the CMU statistical language modeling toolkit (see [5] for details).
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3. Repeat for all of the subjects.

This method allowed the creation of speaker independent language models that were

related well to the task. Originally, it was thought that a linear interpolation between

this task specific language model, and a more general language model might provide

better results.

For small vocabularies, this could be done by computing the word-level bigrams

for all possible word pairs in the vocabulary, and mixing the two together:

P(W1 |W 2) = aP'(WIW2) + (1 - a)P2 (W1IW 2 )

where P'(W1 IW2) gives the bigram probability calculated from the general language

model, and P2 (W1 1W2 ) gives the bigram probability from the task specific language

model. Here a determines the amount of back-off. A large value of alpha will depend

almost exclusively on the general language model, while a small value will depend

mostly upon the task specific language model.

To evaluate this, the perplexity of the language models was evaluated. The per-

plexity of a language model depends on a supplied text which was held out from the

training of a language model:

LP = lim, oologP(WI, W2 , W 3, ... , WN)

where LP is the log of the perplexity. For a bigram language model,

LP = limn*oo11og (P(W1)P(W2IW1)P(W|W2)...P(WNIWN-1))

The perplexity was computed for several different values of a, and the results can be

seen in figure 2-4.

As shown in figure 2-4, the best weight to use is a = 0, namely to depend only

on the task specific language model. The general language model used for these

calculations was also created by the CMU statistical language modeling toolkit, but

was created from radio broadcast texts. As a result, the general language model was
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Figure 2-4: Graph of perplexity for varying levels of language model back-off (a).

a poor predictor of words, and thus did not help in reducing the perplexity as much

as the task specific language models.

2.3 Recognition results

The recognizer was run on 11 of the one hour sessions using the language model

and the acoustic models described above. The perplexity of the language model on

the test set is 36, and the vocabulary consists of 523 words. In order to set the

language model scaling factor, the system was run on the test set with various values

of this constant. Figure 2-5 shows these results for different values of the language

model scaling factor. The best recognition was acheived when the language scaling

factor was set to 20. This value was somewhat higher than expected because of the

natural constraints of the task. Although there were no instructions ahead of time

to the subjects detailing what kind of language they should use (in fact, they were

encouraged to use whatever came naturally to them), the task itself was constrained

enough that similar constructs occurred.

It is impressive to note the effect with which the language model can have upon
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Figure 2-5: Recognition results for recognizer run at different language model scaling
rates.

recognition for this specific task. With no language model, recognition has an error

rate of around 50%, while with the scaling on the language model set correctly,

recognition achieves an error rate of almost 30%. The full table of results is listed in

table 2.1.

As can be seen from these results, there was a large variance in recognition ac-

curacy ranging from 49.7% to 88.9%. Much of this is related to speaker dependent

factors. While some speakers spoke quite clearly and evenly, others had large vari-

ations in speaking rate, as well as possibly backing up to correct themselves. In

addition, some speakers may have been acoustically clear, and yet used vocabulary

which was unique. Here the language model taken from the other speakers may have

depressed their scores as well.

For example, speaker 10 (88.9% accuracy) spoke very clearly and evenly and

also used relatively simple commands. The speech recorded here sounded more like

dictated speech, and things were often overly annunciated. The commands used were

often simpler than other users, allowing the language model to compute accurate

probabilities for the speech. On the other hand, speaker 3 (55% accuracy) spoke with

a wide variety of inflections and variability. The beginning of utterances often were
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speaker number

1
2
3
4
5
6
7
8
9

10
11
12
13

total

Table 2.1: Results for the recognition task

correct |Iaccuracy |Isubstitution |Iinsertion

78.1
71.1
62.4
84.7
60.3
77.9
61.9
87.8
79.6
91.7
59.4
70.6
60.0
73.3

75.3
66.0
55.0
79.1
58.3
74.8
56.0
84.2
65.5
88.9
49.7
62.7
53.2
67.6

16.0
12.9
27.9
12.6
26.3
15.4
28.0
10.4
16.0
4.5
30.3
20.8
28.1
18.9

2.8
5.1
7.5
5.6
2.0
3.1
5.9
3.6
14.1
2.8
9.7
7.9
6.8
7.8

deletion | total error

5.9
16.0
9.7
2.7

13.3
6.8

10.2
1.9
4.4
3.8
10.2
8.6
11.9
5.7

24.7
34.0
45.0
20.9
41.7
25.2
44.0
15.8
34.5
11.1
50.3
37.3
46.8
32.4

stretched out (as if to give time to think), while by the end the subject was speaking

rapidly.

To compare the acoustic units used for this recognition with those trained on the

TIMIT database, the recognition was run again with new acoustic models. These

results are listed in table 2.2. This shows that the extra information from the WSJ

Table 2.2: Recognition results for acoustic units trained on the TIMIT and WSJ
databases

database correct accuracy substitution j insertion deletion I total error

WSJ
TIMIT

73.3
57.8

67.6
49.0

18.9
32.8

7.8
9.4

8.7
8.8

32.4
51.0

database greatly improved recognition as the recognition accuracy improved by over

20%.
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Chapter 3

Conclusions

In this thesis, a method for spontaneous speech recognition has been outlined and the

results presented. The acoustic models were combined with the language model and

word recognition was performed. In attempting to increase word recognition, several

important features were required.

3.1 Importance of Context Dependant Acoustic

Models and Task-Specific Language models

First of all, the use of context dependent phonemes increases phoneme recognition

accuracy by about 4% for models trained and tested on the TIMIT database. While

phoneme recognition results were not done with the WSJ database, the availability

of more data should further increase the performance of the triphones compared to

the uniphones, as the clustering algorithm used for triphones allows new model pa-

rameters to be trained dependent upon the available data. In contrast, the uniphones

depend on only a fixed number of parameters independent of the data size.

In addition, use of an accurate language model for this task was very important.

Recognition accuracy improved by almost 20% when the scaling of the language

model was adjusted appropriately. Also, as can be seen in figure 2-4, the use of a

task specific language model helped in reducing the perplexity from 460 to 36. Using
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a more general language model computed from news broadcasts only increased the

perplexity and would hurt recognition.

3.2 Future Directions

Many of the results presented here could benefit from further work. First of all, im-

provements in the recognizer could be very beneficial. Supporting a trigram language

model instead of just bigrams could decrease the perplexity of the language models

significantly. In addition, the dictionary which was used for the decoding of words

into phoneme sequences could be augmented by including other possible pronunci-

ations. This would better allow for speakers who may pronounce the same word

slightly differently or with different accents. Another important change which should

help recognition would be the acoustic modeling of function words such as "the",

"a", and "and". These words occur so often that training HMMs for these specific

words would be beneficial, rather than treating them as a concatenation of several

phonemes.
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Chapter 4

Appendix I: List of phonetic units

used for the TIMIT database

Stops
Symbol [ Example

b
d

g
p
t
k

bee
day
gay
pea
tea
key

Affricativs
Symbol Example

jh joke
ch choke

Fricatives
Symbol Example

s sea
sh she
z zone

zh azure
f fin
th thin
v van

dh then

Nasals
Symbol J Example

m
n

ng
em
en

mom
noon
sing

bottom
button

Semivowels and Glides
Symbol I Example

r
w
y

hh
el

lay
ray
way

yacht
hay

bottle
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Vowels
Symbol JIExample

iy
ih
eh
ey
ae
aa
aw
ay
ah
ao
oy
ow
uh
uw
er
ax
ix

axr

beet
bit
bet
bait
bat
bott
bout
bite
but

bought
boy
boat
book
boot
bird

about
debit
butter

Others
Symbol Description

sil silence
sp short pause
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Chapter 5

Appendix II: List of word

frequencies for recognition task

1. THE (1782)
2. MAGNET (835)
3. MOVE (697)
4. TO (449)
5. LEFT (416)
6. RIGHT (367)
7. A (303)
8. BALL (281)
9. OF (257)
10. LITTLE (197)
11. DOWN (159)
12. IT (151)
13. BIT (147)
14. AND (143)
15. UP (138)
16. MIDDLE (138)
17. SMALL (125)
18. BOTTOM (124)
19. BLUE (124)
20. THAT (121)
21. OK (117)
22. PLACE (114)
23. ABOVE (111)
24. TOP (100)

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.

GO (88)
RED (86)
IN (86)
PUT (83)
OBJECT (78)
PLEASE (77)
STOP (75)
ON (71)
SO (70)
SCREEN (69)
MOST (63)
TWO (59)
SLIGHTLY (59)
IS (57)
TARGET (56)
PUZZLE (56)
DIRECTLY (53)
INCH (52)
LOWER (50)
CORNER (50)
MAGNETS (48)
UNDER (45)
AN (45)
JUST (41)

49.
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.

BETWEEN (39)
BELOW (38)
MORE (37)
NEXT (35)
LARGE (35)
CURRENTLY (34)
I (33)
VERY (31)
THIRD (30)
SECOND (29)
ONE (29)
AT (29)
THAT'S (28)
HAND (28)
OKAY (27)
BACK (26)
WAY (25)
ALL (25)
NEW (24)
IT'S (24)
GET (23)
EXECUTE (23)
HALF (21)
FIRST (21)
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73. BY (20)
74. AGAIN (20)
75. REMOVE (19)
76. AS (17)

77. QUARTER (16)

78. PINK (16)

79. NO (16)

80. LAST (16)

81. CENTER (16)

82. WALL (15)

83. UPPER (15)

84. TINY (15)

85. OTHER (15)
86. BORDER (15)
87. TAKE (14)

88. INCHES (14)

89. FAR (14)
90. BUT (14)
91. TOWARD (13)
92. FURTHER (13)

93. UNDERNEATH (12)

94. TARGETS (12)

95. LOWEST (12)
96. BASKETS (12)

97. ANOTHER (12)

98. WAS (11)
99. SIDE (11)
100. SAME (11)
101. RID (11)

102. CAN (11)

103. THIS (10)

104. OH (10)

105. WHERE (9)

106. LET'S (9)

107. ALONG (9)

108. YOU (8)

109. OUT (8)

110. NOT (8)
111. LEVEL (8)

112. FROM (8)
113. EDGE (8)
114. ARE (8)

115. TOUCHES (7)

116. RAISE (7)

117. OVER (7)

118.
119.
120.
121.
122.
123.
124.
125.
126.
127.
128.
129.
130.
131.
132.
133.
134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.
154.
155.
156.
157.
158.
159.
160.
161.
162.

GOOD (7)
DO (7)

CLOSER (7)

CENTIMETER
BIG (7)

BASKET (7)
WHAT (6)
UNDO (6)

THREE (6)
THEY (6)
THEN (6)
SOLVE (6)
SOCCER (6)

OR (6)

NOW (6)

NEAR (6)
MAKE (6)

(7)

L (6)
HAVE (6)
BLOCKS (6)
BALLS (6)
ALRIGHT (6)
ADD (6)
WAIT (5)
TOUCHING (5)
THEM (5)
SEE (5)
ME (5)

LIKE (5)
HIGHER (5)
EACH (5)
ABOUT (5)
YEAH (4)
WORK (4)

WHITE (4)
WALLS (4)
THATS (4)
START (4)
SQUARE (4)

SAY (4)
ONTO (4)

ITS (4)

HOW (4)
HIGHEST (4)
HALFWAY (4)

163.
164.
165.
166.
167.
168.
169.
170.
171.
172.
173.
174.
175.
176.
177.
178.
179.
180.
181.
182.
183.
184.
185.
186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201.
202.
203.
204.
205.
206.
207.

GRAY (4)
FIGURE (4)
FARTHER (4)

BRACE (4)

BOTH (4)

BIN (4)
BEFORE (4)
ALMOST (4)
ACTUALLY (4)
WITH (3)
UNTIL (3)
TOWARDS (3)
THANK (3)
SHAPE (3)
RUN (3)

ROTATE (3)
POSITION (3)
MOVING (3)
LOT (3)
LOAD (3)
LESS (3)

KEEP (3)
INTO (3)
IMMEDIATELY (3)
HIT (3)
HEIGHT (3)
GIVE (3)
FOUR (3)
EVEN (3)
AWFUL (3)
WHICH (2)
WHEN (2)
WELL (2)
VERTICAL (2)
UPSIDE (2)
TURN (2)
TRYING (2)
TOO (2)

THINK (2)
THESE (2)
TELL (2)
SUCH (2)
STUPID (2)
SOME (2)
SITS (2)
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208.
209.
210.
211.
212.
213.
214.
215.
216.
217.
218.
219.
220.
221.
222.
223.
224.
225.
226.
227.
228.
229.
230.
231.
232.
233.
234.
235.
236.
237.
238.
239.
240.
241.
242.
243.
244.
245.
246.
247.
248.
249.
250.
251.
252.

SHAPED (2)

SHAFT (2)
RESTART (2)
REALLY (2)
PULLS (2)

POSSIBLE (2)
PART (2)
ONLY (2)
OFF (2)
NEAREST (2)
MEAN (2)
LINE (2)
LETS (2)
JOB (2)

INSIDE (2)

I'M (2)
HELP (2)
GOT (2)

GOES (2)

GOAL (2)

DISTANCE (2)

DELETE (2)

COLUMN (2)

CLOSE (2)

CENTIMETERS (2)

CAN'T (2)

BOWLING (2)

BENEATH (2)

BARRIERS (2)

BARRICADES (2)
BARRICADE (2)

AWAY (2)
AMOUNT (2)

AM (2)

ACTION (2)

ACROSS (2)
YOU'RE (1)
YOUR (1)
YES (1)

WILL (1)

WHY (1)

WHOA (1)

WHAT'S (1)
WE'RE (1)

WENT (1)

253.
254.
255.
256.
257.
258.
259.
260.
261.
262.
263.
264.
265.
266.
267.
268.
269.
270.
271.
272.
273.
274.
275.
276.
277.
278.
279.
280.
281.
282.
283.
284.
285.
286.
287.
288.
289.
290.
291.
292.
293.
294.
295.
296.
297.

WEIRD (1)
WANT (1)
UPWARD (1)
UNIT (1)
UM (1)
UH (1)
TRY (1)
'TILL (1)
THROUGH (1)
THOUGHT (1)
THOUGH (1)

THOSE (1)
THING (1)
THEY'RE (1)
THERE (1)
THAN (1)
TEN (1)
TARGET'S (1)
TAKEN (1)
SURROUND (1)
STRONGER (1)
STRAIGHT (1)
STACK (1)
SORRY (1)
SOMETHING (1
SOLVED (1)

SIMULATION (
SHUT (1)
SHALL (1)
SESSION (1)
SAYING (1)
SAVER (1)

ROW (1)

ROOM (1)
RETURN (1)
RESET (1)
REMOVED (1)
REFER (1)

READ (1)
PROGRAM (1)
PEOPLE (1)
PAIRS (1)
PAIR (1)
PAIN (1)
ORIGINAL (1)

)

1)

298.
299.
300.
301.
302.
303.
304.
305.
306.
307.
308.
309.
310.
311.
312.
313.
314.
315.
316.
317.
318.
319.
320.
321.
322.
323.
324.
325.
326.
327.
328.
329.
330.
331.
332.
333.
334.
335.
336.
337.
338.
339.
340.
341.
342.
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ONCE (1)
NINETY (1)
NEED (1)
MY (1)
MOVES (1)

MOVED (1)
MONITOR (1)
MILLIMETER (1)
MEANING (1)

MAYBE (1)
LOW (1)
LIFE (1)
LENGTH (1)
LEFTHAND (1)
LEDGE (1)
LEAVING (1)
LEAVE (1)
KAIYUH (1)
K (1)
JOSH (1)
I'VE (1)

INVERTED (1)
IMAGE (1)
I'D (1)

HURRAY (1)
HOVERING (1)
HOLE (1)
HITS (1)
HIGH (1)
HERE (1)
HEAD (1)
HAPPENS (1)
HANG (1)
GUYS (1)
GREY (1)
GREAT (1)
GONNA (1)
GETTING (1)
GAP (1)
GAME (1)
FURTHERMOST (1)
FUDGE (1)
FORM (1)

FOR (1)

FIVE (1)



343.
344.
345.
346.
347.
348.
349.
350.
351.
352.
353.
354.
355.
356.
357.
358.

(1)

FINISH (1)
FIND (1)
FIGURED (1)

FIELD (1)

FEET (1)

EVIL (1)
EVERYTHING
EQUAL (1)

END (1)

EITHER (1)
EIGHTH (1)

EIGHT (1)
DON'T (1)

DONE (1)

DOING (1)
DOESN'T (1)

359.
360.
361.
362.
363.
364.
365.
366.
367.
368.
369.
370.
371.
372.
373.
374.

375.
376.
377.
378.
379.
380.
381.
382.
383.
384.
385.
386.
387.

BLOCK (1)
BINS (1)
BEN (1)
BEING (1)
BEEN (1)
BASES (1)
BARS (1)
BACKWARDS (1)
APPEARING (1)
APPEAR (1)
ALREADY (1)
ALLRIGHT (1)
AGAINST (1)
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DOES (1)
DIRECTION (1)
DID (1)

DEGREES (1)
CURRENT (1)

CORNERS (1)
COMPLETELY (1)
COMMAND (1)
COMING (1)
COMES (1)
COME (1)
CLOSEST (1)
CLOCKWISE (1)

BROUGHT (1)
BOXES (1)
BOO (1)
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