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Abstract
The human body is composed primarily of dielectric tissue with spatially varying
permittivity and conductivity. Traditional MRI does not measure these properties.
Instead, the conductivity of the patient is a nuisance, causing unpredictable detuning
of coils and field inhomogeneities. This thesis presents a method for mapping the elec-
trodynamic properties of the patient's body with both MR and non-MR techniques.
Such mapping has direct applications for medical imaging and SAR calculation.
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Chapter 1

Background

1.1 Introduction

MRI coil designers commonly attempt to maximize the SNR of images acquired with

their coils. The SNR of a coil depends strongly on its sensitivity, and a coil's sensitivity

is determined by the strength of its magnetic field at each location. A human body,

as a conductive object, distorts these fields, so coil designers must model the patient

as part of the design process.

The effect of the patient on the coil's sensitivity becomes more noticeable in high-

field imagng, as this effect grows with increasing field strength. At very high fields,

nonuniformity in the sensitivity of the coils results in seriously detrimental distortion

of the image. Not only does the nonuniformity of the sensitivity grow with increasing

field strength, the strength of the dependence of the nonuniformity on the underlying

permittivity and conductivity also increases. High-field imaging also suffers from an

increase in SAR due to the B1 fields, so detailed knowledge of the fields is important

for patient safety.

The different effect of each patient on the MRI imaging coils is well known in

clinical MRI, and has traditionally been seen as a nuisance. However. the strong

sensitivity of high-field imaging to this inter-patient variation raises a question: can

this variation be seen as data, rather than as noise?
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1.2 A New Technique

The effect of the patient on the unloaded coil is often described as "detuning," mean-

ing that the patient alters the coil's resonance structure. Resonances are directly

measurable as peaks in the impedance of each coil at the resonant frequency. In a

system with many coils, each coil is most sensitive to changes in a corresponding

small region of space. The many measurements from different coils collectively form

a spatial map of the electrical properties of the patient. Accordingly, this approach

is tentatively named Radio-Frequency Impedance Mapping, or RFIM. RFIM makes

no use of MR effects, so an RFIM device would not need a static field or gradient

coils. At the start of this research, Aaron Grant and others in the Laboratory for

Biomedical Imaging Research had already been investigating RFIM for several years

[1].

1.3 Direct RFIM

1.3.1 Method

Direct RFINI is the simplest form of RFIM. A typical Direct RFIM device would

consist of a large number of small coils held in fixed relative positions around the

exterior of the patient. All the coils have nearly identical resonant frequencies. This

description is based on a manuscript by Aaron Grant and Daniel Sodickson [2].

To acquire an image, the device tests the cross-impedance of every pair of coils at

a frequency w close to the resonances of all the coils. Consider a system with N coils

indexed by i, j from 1 to N. Then the complex cross-impedance between two coils i

and j is given by the integral over volume

Zij= | i jd3v

where fi is the electric field produced by the i'th coil and JOj is the current den-

sity produced by the j'th coil. This formula neglects radiation to infinity, which is

14



presumed to be small compared to the interaction with nearby objects. Note that

all of these quantities are complex. For consistency, complex quantities represent-

ing the magnitude and phase of oscillations occurring at frequency w will appear in

MATHSCR typeface throughout, e.g. , X'.

The currents induced by this impedance measurement should be small enough that

the tissue of the patient may be viewed as having linear conductivity and permittivity.

The further approximation that these quantities are isotropic allows us to rewrite the

preceding equation as

Zij = 9 t ((O' + i) d3v (1.1)

j (a + ie) Gi jd3v (1.2)

where a is the conductivity and is the permittivity. The purpose of RFIM is to map

the values of these two parameters.

To convert the measurements of Zij into a spatial map of and a, laboratory

implementations of Direct RFIM employ an iterated electrodynamic simulation. In

particular, a finite-difference time-domain (FDTD) simulation of the entire system is

used to determine the A-fields that would be produced by each coil in the presence of

some initial , a map. The above integral is evaluated numerically to determine the

Z for this map. A Levenberg-Marquardt optimizer is then applied to the (, a) map.

The optimizer changes the map until the simulated Z matches the measured Z.

1.3.2 Difficulties

The reconstruction of Direct RFIM images requires a tremendous amount of com-

putation. Hardware that can reconstruct high-resolution 32-channel parallel-imaging

MRI data in seconds takes days to reconstruct low-resolution RFIM using the method

described here. The computation time is almost entirely in the FDTD simulation,

which must be reevaluated with every iteration of the optimizer [3].

Direct RFIMI is also difficult to consider analytically. The reconstruction process

15



is highly nonlinear, so its noise characteristics and stability are poorly understood.

1.4 MRI and RFIM

This thesis is concerned with extensions to the RFIM concept incorporating MRI

technologies. Section 2.1 describes the potential for MRI to accelerate and stabilize

the RFIM reconstruction process by providing additional information about the &-

fields. Section 2.2 describes a method by which MRI may improve the quality of

R.FIM images by determining where edges are likely to appear in the (, ) map.

Section 2.3 describes a technique to extract the property map directly from MRI

data, without any impedance measurements at all.
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Chapter 2

MRI-Assisted RFIM

If RFIM is implemented inside an MRI machine, MRI images may be used to im-

prove the RFIM technique. In particular, MRI may provide extra information about

image structure, accelerate image reconstruction, and even add more data to the

map. Equipped with these three additional components, RFIM is referred to as MRI-

assisted RFIM.

RFIM is highly compatible with MRI. RFIM requires only a set of resonant coils,

much like the imaging coils commonly used in MRI. RFIM is not likely to be affected

by the presence of a strong static field, as the Hall effect and similar static-field effects

are not significant at MRI field strengths. If the RFINI resonant frequency is chosen

to be the Larmor frequency, then the only additional requirements for RFIM-capable

MRI are the ability to transmit with the surface coils and appropriate hardware for

measuring their cross-impedances.

17



2.1 Linear RFIM

Overview

One approach to accelerating RFIM reconstruction is to linearize the problem. Specif-

icallv, consider the expression

= Consider (j as a single index, so that Z is d (2.1)

Consider ij as a single index, so that Z is a length-N 2 column vector. Let J be a

N2-by-xo miatrix containing the "field overlap" information, defined by

ij, = giv(x) ·- (x). (2.2)

Finally. let i be all oo-by-1 column vector defined by

< = r7(5) + ic6(). (2.3)

Then we may represent the integral above as the continuous matrix inner product

Z = : . (2.4)

In this formulation, the goal of RFIM is to extract . If F is known, then determining

§ is reduced to the relatively simple matter of solving a linear matrix equation. While

not computationally trivial, this linear reconstruction would require far less compu-

tational effort than the iterative nonlinear approach required without knowledge of

A, the field overlap matrix.

2.1.1 Field Mapping

Maglnetic Resonance Imaging can be used to accelerate RFINI by providing the field

maps to calculate . . is determined by the electric fields generated by the coils.

Concep)t ally, MIRI is capable of measuring the harmonic magnetic field .. In a
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harmonic field, V x g = -iw. Therefore knowledge of o is sufficient to reconstruct

g up to a potential field V0. This field is expected to be negligible, as it corresponds

to the local deviation of the body from charge neutrality. Such deviation is strongly

suppressed by the conductivity of tissue.

The details of MRI field mapping are slightly more complicated and preclude

true linearization of the type described so far. To understand this process, ignore

the problems of gradients and localization. Instead, consider a very small sample

placed in the bore of the imager. This sample must be small enough that all fields

are approximately uniform throughout its volume. Take the following definitions, as

given by Hoult in [5]:

Table 2.1: Variable definitions for field mapping, following Hoult
Variable

I
Ba

rs

,I

Definition
the current applied to the transmitting coil
the magnetic field generated by coil a at the sample location

when a current I is applied
the component of B in the x direction
the complex harmonic voltage induced in coil s when coil r transmits
the angular Larmor frequency
the sample magnetization
the gyromagnetic ratio of the nuclei in question

Since the nuclear interactions are largely rotational about the z-axis (defined par-

allel to the Bo field), it is useful to define positively and negatively circularly polarized

coordinate systems rotating about this axis at the Larmor frequency. As a notational

device, for each harmonic field .7 let 'i be the ±-circularly polarized complex har-

monic component of S. From Hoult's Equations 14 and 15,

=sZ +ia9: (2.5)
2

-_ (~ - i.~y)* (2.6)
2

From Hoult's Equation 27,

Gab = wc'/g+ (bx - iby) (2.7)
19
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Suppose the magnetization was at equilibrium, but has just been subjected to a

uniform pulse of length T from coil a. Let Il/0 be the equilibrium magnetization, and

ignore magnetization decay. Then

gab(T) = wMo sin ('r a ) {b (2.8)

By the previous definitions,

-_ (b -i4by)* (2.9)
2

-2iwMo - Ma+ 2.1+0
ab(T) 2= . 0 sin ('-YT J ) .(2.10)

In Equation 2.10, M is unknown, so the fields cannot be pulled out directly. However,

we may cancel Mo:

Gb(2T) sin (2-yT 1 -a+ 2) c (T = co ) (2.11)
(ab(T) sin (yT )

+ ,=-Iarccos b(2T-) . (2.12)

1-4+1 -Y7 it k, 2Gb (T) 

Equation (2.12) is the basis for standard B1 mapping in MRI.

Although the magnitude of the field is of primary interest for MRI, other properties

are useful in RFIM. In particular, if coil a is the only coil that can transmit, three

other independent quantities are available from . The first quantity is the ratio of

the magnitudes of the negative circularly polarized field amplitudes:

aib( it - =t (2.13)

Tile other available quantities are relative phases. Let u(x) x/lxl. Take the phase

20



of 5Ja to be zero. Then

(iBtb( (4) (214)U (ieab(T))=u( u (*) )( (2.14)(
U(

(&aa(T)) = 4U (a U ( )= ( )*(2.15)

If it is possible to transmit with a coil b, then symmetrically we may additionally

find and u ( ) /u ( ). Note that it is not possible to determine a|

or the absolute phase of any field. If these two quantities were known, they would

be sufficient to reconstruct -x and My for both coils. Since magnetic fields are

divergence-free, the x and y components are sufficient to find .,.

By letting a and b range over all the pairs of coils in the set of N coils, we find that

there are 4N real scalar parameters necessary to describe the fields at each location,

of which we can find 4N - 2. The only additional knowledge required is the magni-

tude and phase of a single coil's negatively polarized field. Thus, although there is

insufficient information available to calculate 9 directly, the amount of computation

necessary to do so is expected to be reduced by approximately a factor of N compared

to Direct RFIM reconstruction. The system's degrees of freedom are sufficiently re-

duced that its noise characteristics are expected to be comparable to those of fully

linear RFIM.

2.1.2 Field Mapping Experiment

The field mapping procedure described in Section 2.1.1 was executed on a phantom

in a 1.5T General Electric MRI. Values were taken by a simple gradient-echo pulse

sequence, transmitting with the body coil (Coil a) and receiving with both the body

coil and the elements of a head coil array (Coil b). The scans were made with cubic

voxels of size (2.8mm)3 . All scans were taken using TR = 1000 ms, and only the body

coil was capable of transmit. The pulse length was chosen to make a (nominally)

45° pulse.
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One slice through the scans is shown in Figure 2-1, from the body coil and one

element of the head array. Notably, the phases 2.1.2 and 2.1.2 are identical up to

measurement noise, exactly as predicted by Equation (2.8).

(a) [lab(T)i. (b) [~ab(27)I. (c) aa(T)I.

(d) arg(6b(r)). (e) arg(6ab(2-r)). (f) arg(aa(r)).[

Figure 2-1: Phantom scans in preparation for field mapping

Four independent properties of the B1 fields are available: +bdyl, [ head/bodyl,

arg (+dy) - arg (head), and arg ( -body) - arg (9head) Maps of these properties

are shown in Figure 2-2.

Figure 2.1.2 displays the difference between the phases of the two coils' receive

fields. It is much more uniform than the other phase images. This appears to be due

to the cancellation of the phase introduced by Bo inhomogeneity. We may therefore

conclude that the other phases are dominated by Bo inhomogeneity, and that any

experimental implementation of these protocols will require a Bo map to cancel this

artificial phasing.

2.1.3 Voxelization

In any real digital measurement, it is necessary to discretize the continuum. The

continuous variable in this case is x, and it is discretized by introducing a voxel matrix

V/. In a discretization with voxels, V is a oo-by-l real matrix whose 1 columns are
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(c) arg( +) - arg(Y-b). (d) arg(7-) - arg(.1 ).

Figure 2-2: Field properties extracted directly from data in Figure 2-1

the voxels: orthonormal distributions over the patient volume. One obvious choice

for V is adjacent nonoverlapping cubes, forming a grid voxelization, but the voxels

ineed not have any regular spatial pattern.

To approximate we introduce s, a length-i column vector such that Vs .

Because the columns of V are orthonormal, the best approximation of c is achieved

bv choosing s Vtk. By this definition s is the projection of onto the basis set

described by V. We may then rewrite Equation (2.4) as

Z = S (Vs + ( - Vs)). (2.16)

The term --- I's is the component of the original image that is orthogonal to all of

the voxels. Ve use the following definitions:

t _ - Vsl; (2.17)

U - (2.18)
t

U is a normialized colmn vector, like any column of V and is its magnitude, like a

23
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single element of s. We may rewrite Equation (2.4) in more symmetrical form

Z = (Vs + Ut). (2.19)

2.1.4 Error

RFIM is fraught with sources of error. Analysis of errors in Direct RFIM is intractable

due to the complex behavior of iterative solvers in intermediate stages. As shown

above, MRI is not sufficient to measure all of the components of the B1 fields, so

some iterated simulation is necessary. Nonetheless, an error analysis of Linear RFIM

places an upper bound on the fidelity of more realistic RFIM approaches. There

are two main sources of error in Linear RFIM: voxelization error and measurement

noise. To distinguish exact and measured values, x will represent a measurement

whose correct value is x, with error Ax - x. In this notation, the Linear RFIM

reconstruction satisfies

= V3. (2.20)

There are two measurements that contribute to the Linear RFIM reconstruction:

the impedances and the field map. Rewriting Equation 2.19 in terms of measured

values and errors,

Z - AZ = (q - Ag) (V (s - As) + Ut). (2.21)

The value of s is determined from Z by introducing a new matrix G such that

G#V = I. (C is a reconstruction matrix, and for sufficiently many coils (N 2 > 1) there

are infinitely many choices for G. The fundamental equation of linear reconstruction

is

s = GZ. (2.22)
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To calculate the error in the final image, we note that

As =GZ- s (2.23)

=G (AZ + ( - A) (V ( - As) + Ut)) - s (2.24)

=G (AZ - AVs + gUt) . (2.25)

If we make the simplifying Linear RFIM assumption that the field maps are highly

accurate, i.e. A\ = 0, then

As = G (AZ + Jut). (2.26)

Consider the case where there is also no error in the measurement of impedance,

i.e. AZ = A = 0. If the body is completely representable by the voxels of V, then

Vs = and t = 0. In this case, a noise-free reconstruction can exactly reproduce

the correct map of . The t = 0 case is conceptually equivalent to taking a digital

photograph of a perfectly aligned mosaic. If t $ 0 then we will in general have S s.

Specifically,

As = GgUt. (2.27)

In RFIM, the component of the image orthogonal to the chosen voxels still contami-

nates their measured values. This error only disappears when G9U = 0.

2.2 Image Segmentation

The voxel matrix V has been mentioned previously. In most imaging systems the vox-

elization is considered a detail. It is simply taken to be a square lattice, with a voxel

profile specified as a point spread function. In RFIM, the relatively small number

of measurements available (bounded above by N2 ) limits the number of independent

voxels. If the number of voxels exceeds N2 then the system is underdetermined, and

there are infinitely many possible images that satisfy the measurements.

In cases where there is no prior information available about the body being imaged,
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the best choice of voxels may be a lattice of cubes. Consider a case where 128

coils are used to image a cubic volume. These coils provide approximately 8000

independent measurements, so the resolution of the resulting image can be no higher

than 20 x 20 x 20. In practice, the smoothness of the fields is expected to reduce

the amount of information available, so the achievable resolution is likely to be even

lower. This low resolution may be acceptable in many situations, but we would

ideally like to increase the resolution. Any higher resolution reconstructions will be

underdetermined.

One approach to solving underdetermined (and overdetermined) systems is

Tikhonov Regularization. In Tikhonov Regularization, one adds an additional con-

straint: the solution must minimize some penalty function. For an image I(x), one

commonly chosen penalty is

m(I) = VI2d3 X. (2.28)

Minimizing m(I) will generate the smoothest image that is consistent with the mea-

surements.

For medical imaging, smooth images are not particularly desirable. The most use-

ful medical imaging systems produce images with very sharp edges at the boundaries

between different tissues. It is possible to construct a regularization that encourages

this behavior. Suppose that an MRI image P(Y) is acquired along with the RFIM

data. Then a penalty that encourages edges to fall in the right places is

(I JP) + VI X VP|

_me(I)' =M' | I 4 -d3i. (2.29)

me is an ellipsoidal penalty based on the variations in P. Like m(I), it penalizes all

gradients in I, but it does so with weighting based on the gradient in P. Regions

with a great deal of variation in the MRI image are also likely to have a great deal of

variation in the RFIM image, so the penalty for variation there is lowered. Similarly,

smooth regions in the MRI image are more likely to be smooth in the RFIMI image.
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If a > 1 then the penalty for variation increases in the direction perpendicular to the

gradient in P. One might visualize an ellipsoid of acceptable variation at each point

with aspect ratio a and major axis VP. For a = 1, this me simplifies to the spherical

penalty

m,(I)= 2 d3 (2.30)

In practice, Tikhonov Regularization is computationally expensive. The particular

difficulty lies with the current approach to Direct RFIM, which uses an optimizer on

the voxel values to reconstruct the image. The computational complexity of this

optimization is superlinear in the number of voxels. Thus, increasing the number of

voxels far beyond the number of measurements is infeasible.

In the hope of gaining many of the benefits of regularization with reduced com-

putational requirements, we may take a less rigorous approach. Instead of applying

the regularization throughout the reconstruction, we may apply it at the beginning

by choosing a highly regular basis set. If the image is also highly regular, then this

process should not greatly increase the penalty on the reconstructed image.

To choose the basis set, an analogy from quantum mechanics is helpful. Suppose

we regard the penalty function as an energy, the Hamiltonian of a system whose state

is the image. Given a low-energy state of the system, we expect from perturbation

theory that it may be represented as a linear combination of low-energy eigenstates.

To find the 1 lowest-energy eigenstates, we may use an iterative procedure. First, the

procedure locates the ground state. In each subsequent step, it determines the lowest

energy state that is orthogonal to all previously chosen states.

The basis set produced by this procedure can be used as the voxel matrix V

for RFIM reconstruction. These voxels are very much unlike traditional voxels, as

they overlap, and each one is nonzero over most of the volume. The analogy is also

imperfect, as the penalty function is unlikely to be linear. Nonetheless, the procedure

does generate a basis set that places edges in the same places as in the MRI prior.

Traditional image segmentation algorithms are also suitable for producing voxels
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for the reconstruction.

2.3 Direct Map Extraction

It might seem intuitively that the field map, A, need not be measured, and can

simply be determined from the coil geometry by simulation. This is not the case,

because the conductivity and permittivity distributions of the body affect the fields.

The field map will be different for every scan, so it must be acquired anew each time.

This variability seems to imply that there is information available in the field.

The question is how much information, and whether it can be medically useful. This

question is best answered experimentally, but a theoretical analysis is required first.

As previously, we consider a system with the same permeability as free space,

harmonic time variation at angular frequency w, and linear conductivity. Maxwell's

Equations are therefore

Vx = - iwn; (2.31)

V x - =Po(a + Eiw)). (2.32)

Since the MRI-based field mapping techniques more nearly map the magnetic fields

than the electric fields, it seems sensible to combine these equations to express a and

c in terms of :

V x =-iw . (2.33)

Applying vector identities and V 4 = 0,

V2i + (V x ) ~ x ) ( . ) = iWn. (2.34)

For ease of notation in discussing Equation (2.34), we introduce a variable P that

encapsulates the electrical properties of the body at each location:

P:.= 1
P o(O + i.) ' (2.35)

28



Then we may transform Equation (2.34) to obtain

PV 2 + (V x ) x VP = iw. (2.36)

Given complete information about A, there exists a unique P that satisfies Equation

(2.36).

Our goal is to determine the electrical property map, i.e., the value of P at each

location. In principal, the condition imposed by Equation (2.36) is sufficient to pro-

duce such a map. We may simply consider every possible property map, checking

to see if each one satisfies Equation (2.36). If we discretize the problem on a finite

grid of points and set some tolerance for numerical errors, then such a search might

even complete in finite time. In practice, it is not feasible to do an exhaustive search

over the possible distributions of properties. Such a search would take years, conser-

vatively, to produce a single property map. Thus, we require a feasible algorithm for

computing a, property map from .

2.3.1 Iterative Reconstruction

In typical clinical applications, we expect that often P is nearly piecewise constant.

Therefore, it may be sufficient to assume VP - 0 in many areas of the sample. In

areas where this approximation is exact, Equation (2.36) becomes

PV 2~ = iw-. (2.37)

It is trivial to determine P from this equation, and the results in simulation confirm

its correctness when VP = 0. However, when VP is large, such as at boundaries

between tissues, the results are incorrect by orders of magnitude.

One suggested exact algorithm attempts to improve this approximation by iter-

ation. This iteration has not been proved to converge, and current implementations

yield divergent results. Mathematically, it remains possible that the divergence is

merely due to an implementation detail.
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The iterative reconstruction starts with Po = 0, and generates each subsequent Pi

using the recurrence relation

Pi+lV2 - + ( X ) X VP = iO. (2.38)

With this recurrence, P1 is a solution to Equation (2.37). If the sequence converges,

then P is a solution to Equation (2.36). In practice, this sequence does not appear

to converge.

2.3.2 Variational Reconstruction

The variational reconstruction algorithm is based on the calculus of variations. In

this approach, we calculate the difference between the right and left sides of Equation

(2.36) at each location. The gradient of this error with respect to P may be deter-

mined by the Euler-Lagrange equations, and taking small steps down the gradient

should reduce the error until a local minimum is found. This approach is expected to

converge for sufficiently small step size, but current implementations diverge instead.

The observed divergence may be caused by a software bug, or by the approximation

of derivatives on a discrete lattice.

In our formulation, the Euler-Langrange equations contain both three-dimensional

position vectors and abstract vectors and matrices. To reduce confusion, position

vectors are labeled by a vector arrow (e.g., ), and abstract vectors are printed in

boldface (e.g., f). The Euler-Lagrange equations can describe the behavior of a

vector-valued function f(Y) and a scalar-valued "action" functional L(f, Df, Y). The

second argument, Df, is a matrix containing the gradient of each component of f(Y).

In this formulation, the Euler-Lagrange Equations state that the functional gradient

of L with respect to f is given by

(VL)i a = fL L (2.39)

where := (a, superscripts are indices, and x has n = 3 components.
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In the case of property-map reconstruction, the variable function is the complex-

valued scalar function P(i). We may analyze P by defining fl as the real part of P

and f2 as the imaginary part. It quickly becomes apparent that the gradient of L

with respect to P is given by

(L aLt 3 a (tL AL 
VpLZ fl+i af 2 )L X -y + if-) (2.40)

To make L represent the error in Equation (2.36), we first introduce Q, defined

by

Q(P) = PV2 + (V x I) x VP - iw. (2.41)

Under this definition, Q is a complex vector functional of P with the property that

Equation (2.36) is equivalent to Q = 0. Finding the function P that most nearly

satisfies Equation (2.36) is equivalent to minimizing the magnitude of Q. This equiv-

alence allows us to use the Euler-Lagrange method. To apply the Euler-Lagrange

method to this minimization we choose L := Q Q*.

Computing all of the functional derivatives is a relatively straightforward matter

of algebra, and the result is most easily written as follows:

C := V x , (2.42)

VpL 2 V2a *

(d (, - 1) Qa~Yd ( I I +Z (2Q(.-C |) - . (2.43)

To minimize L, it should be sufficient to use simple Euler integration on this

first-order differential equation. Specifically, by using a recurrence of the form

Pi+ = Pi - aVpL, (2.44)
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it should be possible to reach a local minimum of L for a sufficiently small positive

step size a.

Current implementations of this algorithm do not converge. This matter is a topic

of current investigation.

2.3.3 Explicit Formulation

In Section 2.3, we considered the problem of reconstructing the electrical properties

of a body from a complete map of the magnetic field. Both the iterative and the

variational reconstructions rely on complete knowledge the magnetic fields of the coils.

As noted in Section 2.1.1, complete knowledge of the fields is not actually available.

Therefore, the approaches described in Sections 2.3-2.3.2 are insufficient to treat the

problem at hand. In this section, we determine whether the available knowledge

about the fields is theoretically sufficient to determine the electrical properties of the

body. To do so, we formulate explicitly the system of equations relating the measured

field attributes to the desired electrical properties. This formulation does not require

complete information about the magnetic fields of the coils.

For simplicity, we consider the case of two coils, labeled a and b. As shown

in Section 2.1.1, a system with two coils has six different independent measurable

quantities related to the magnetic fields of the coils. In this section, we show that

these six quantities are sufficient to uniquely determine the electrical properties of

the body.

To distinguish between quantities that are known from measurement and quanti-

ties that are to be determined by the system of equations, measured quantities are

set off in square brackets. All other quantities are unknown complex scalar functions

of position, including P, which represents the electrical properties that we seek to

map.

As stated in Section 2.1.1, in order to complete our description of the fields,

we require two additional real variables, or a single complex variable. There are

many possible choices for this additional variable. For this derivation, that additional

complex variable has been chosen for convenience to be a. From this circularly

32



polarized field component, we may introduce equations to reconstruct the other three:

-a [l~ al] [( ( [ )/] (2.46)
L i| A+ |] (I) JU(t() 1 (2.47)

-x = + + ; (2.48)
(2.49)

gay =-/'( "+ - a *); (249)
bz = ~b+ ~b*; (2.50)

by = - (4a -) (2.51)

The divergence of a magnetic field is always zero, so we may introduce two more

equations into the system to provide the z-component of both magnetic fields:

-AyBaz + a +- A ; (2.52)a a aax ay / az 

a 4 b + a by + a bz = 0. (2.53)

From the complete Cartesian components of the fields, we may now expand Equa-

tion (2.36). The z-component of that vector equation is redundant in this formulation

because the ,'az and bz were computed from the x- and y- components. Therefore,

we write only the x- and y-components of Equation (2.36):

PV a + ( a - + az) ay -- +a) = iwa; (2.54)
0?ax -Z a ax az az ay a
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PV2ay+ -yz - -= iwOay (2.55)

p2 a y 0 a Ap aa a aAxPV + -+ z - Z by--- A iWyb;x (2.56)
az ax /a az ay =ay

pV2 9a aP a a N
-PV4 by + (x- b y - Xbj a -y(- bzy -- a = iZWby. (2.57)

19X a y aOx Oaz az

There are thirteen independent relations in this system, most of which are trivial

transformations between different bases. In total, the dependent variables in these

equations are the four circularly polarized components, the six cartesian components,

and P. There are eleven dependent variables and thirteen distinct relations among

them. Therefore, for two coils, the system is overdetermined. Because the system is

determined, it must be possible to solve for the values of all the variables, including

P, the variable of interest.

This statement of determinacy generalizes easily to systems with more than two

coils. A system with many coils may be regarded as a two-coil system by disregarding

all but two of the coils. Therefore, all systems with at least two coils are completely

determined. A closer analysis shows that the degree of overdeterminacy increases

rapidly as the number of coils increases.

Finding a solution to this system of equations is regarded as significantly more

challenging than finding a solution to Equation (2.36) given full knowledge of A.

Given that no method has yet been found to solve Equation (2.36), a great deal of

ingenuity is expected to be required to solve this system of thirteen equations. In

fact, an ideal method of solution would not only solve the entire system, but would

find the approximate solution with minimum error if no exact solution exists due to

measurement error.

2.4 Data Fusion Impedance Mapping

Both the impedance of MRI coils and MRI images themselves provide data about

the underlying permittivities and conductivities. Combining the data from both

methods should provide improved images. A simultaneous reconstruction might use
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the impedance data to stabilize the low spatial frequencies and the MRI data to image

local details.
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Chapter 3

Applications

3.1 New Imaging Modalities

Different tissues in the body have significantly different values of and at radio

frequencies. Thus, RFIM could provide images of anatomy. The effects of most

pathologies on permittivity and conductivity have not yet been examined, but em-

bolisms, edema, and other pathologies that affect the geometry of the body should

be recognizable in an RFIM image [6].

The key question for diagnostic imaging is image quality. The technology will be

effective for clinicians only if it provides sufficient detail and clarity to distinguish

diagnostic features. It is not yet clear whether the RFIM techniques discussed here

will have sufficiently high resolution and SNR to be of clinical use.

3.2 Improving Existing Imaging Modalities

3.2.1 SAR Mapping

In MRI, the greatest danger to the safety of patients (after proper screening for metal

objects) is tissue heating. This heating is produced by the absorption of radiation. In

recognition of the danger posed by radiation heating, it is subject to the US federal

guidelines on Specific Absorption of Radiation, or SAR. These guidelines specify
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maximum allowed power deposition densities. All medical MRI machines are designed

with these guidelines in mind, but they do not attempt to determine the exact induced

SAR distribution.

In order to determine SAR, it is necessary to know the fields of the coils and the

conductivity map of the body. Given these two parameters one may calculate the

SAR from the strength of the transmitting B1 field. Specifically, at each location the

power density p is given by

P= If ) (3.1)
Exact mapping of SAR has not been seen as crucial in current clinical MRI equip-

ment, but at higher fields it is seen as a major problem [7]. The amount of heating

grows with the square of the field strength, so the potential for injury to the patient

is greater in stronger fields. The SAR pattern depends on the electrical properties of

the patient's body, and the strength of this dependence increases with field strength

as well, reducing the effectiveness of one-size-fits-all models. Finally, the spatial fre-

quencies in the SAR map increase with field strength, providing further amplification

of SAR beyond square-law in small regions. Thus, a complete map of the B1 fields

may be critical for ensuring patient safety in future MRI machines.

3.2.2 Coil Sensitivity Modulation

The advanced field mapping techniques described here may prove necessary in high-

field MRI machines. Normally, MRI images are reconstructed under the assumption

that the magnitude of some large coil's field is uniform. This assumption is explicit in

parallel imaging, but it is also implicit in non-accelerated MRI. The assumption yields

a good approximation at low Larmor frequencies, but as the field strength increases

to 3T and beyond, this assumption breaks down and artifacts appear.

Electrical property mapping provides a potential solution to this problem. If the

fields can be quantified at each location, then the images produced by the scanner

may be normalized to remove artifacts. Since the magnitude of the fields is likely

to be smooth compared to anatomical details, this application is less demanding of
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resolution than diagnostic imaging.
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Chapter 4

Conclusion

The family of RFIM techniques contains three classes of modalities: Direct RFIM,

MRI-Assisted RFIM, and Map Extraction. All of these techniques have hardware

requirements very similar to the newest generation of parallel imaging MRI scanners.

The major remaining barriers to implementation are theoretical and algorithmic. For

Direct RFIMI, an algorithm exists for reconstruction, but it is very slow and probably

produces suboptimal results. For MRI-Assisted RFIM, no algorithm has successfully

recovered the unknown receive field. Finally, for Direct Map Extraction, no algorithm

has demonstrated correct reconstruction of electrical properties from fields.

This situation may sound unfortunate, but there is reason for optimism. The

problem has not yet been analyzed by researchers whose focus is on numerical algo-

rithms. Moreover, current approximate solutions may prove clinically useful, even if

they are not theoretically defensible. The final goal of this research is unequivocally

clinical, and on that front things are looking up.

41



42



Bibliography

[1] Grant, Aaron. Radio Frequeny Impedance Mapping for Medical Imaging. NIH

Grant 5R21EB003306-03. 1 July 2003.

[2] Grant, Aaron and Daniel Sodickson. "Dielectric Imaging Using Resonant RF Cir-

cuits". Unpublished. January 2004.

[3] Private communications with Aaron Grant and Daniel Sodickson, Summer 2005-

January 2006.

[4] Haacke, E. Mark et. al. "Magnetic Resonance Imaging: Physical Principles and

Sequence Design," Wiley-Liss, 1999.

[5] Hoult, D. I. The principle of reciprocity in signal strength calculations - A math-

ematical guide, Concepts Magn. Reson. 12 (2000), 173-187.

[6] H. Scharfetter, R. Casafias, and J. Rosell. "Biological Characterization by mag-

netic induction spectroscopy." IEEE Trans. Biomed. Eng. vol. 50, pp. 870--880,

2003.

[7] Hu, Xiaoping, and David G. Norris. "Advances in High-Field Magnetic Resonance

Imaging." Annu. Rev. Biomed. Eng. 2004., pp. 157-184.

43


