
Multipass Communication Systems for Tiled Processor 
Architectures 

by 

Nathan Robert Shnidman 

Bachelor of Science in Electrical Engineering and Computer Science 
Massachusetts Institute of Technology, 1995 

Master of Engineering in Electrical Engineering and Computer Science 
Massachusetts Institute of Technology, 1996 

Submitted to the Department of Electrical Engineering and Computer Science 
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy in Electrical Engineering and Computer Science 

at' the 

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

February 2006 

@ Massachusetts Institute of Technology 2006. All rights reserved. 

# - Author ................. /[.. ..........-....- -. -.-:Y. ................................... 
Department of Electrical Engineering and Computer Science 

February 3, 2006 .n 
Certified by. ............. : 

Anant Agarwal 

Thesis Supervisor 

- - Accepted by. ............... .-. . .  : ........... -.-=./A ,,or./- y.. ........... 
rthur C. Smith 

Chairman, Department Committee on Graduate Students 
MASSACHUSETI'S INSTITUT 

OF TECHNOLOGY 

I LIBRARIES I 





Multipass Communication Systems for Tiled Processor Architectures 

by 

Nathan Robert Shnidman 

Submitted to the Department of Electrical Engineering and Computer Science 
on February 3, 2006, in partial fulfillment of the 

requirements for the degree of 
Doctor of Philosophy in Electrical Engineering and Computer Science 

Abstract 

Multipass communication systems utilize multiple sets of parallel baseband receiver func- 
tions to balance communication data rates and available computation capabilities. This 
is achieved by spatially pipelining baseband functions across parallel resources to perform 
multiple processing passes on the same set of received values, thus allowing the system to 
simultaneously convey multiple sequences of data using a single wireless link. 

The use of multiple passes mitigates the effects of data rate on receiver processing 
bottlenecks, making the use of general-purpose processing elements for high data rate com- 
munication functions viable. The flexibility of general-purpose processing, in turn, allows 
the receiver composition to trade-off resource usage and required processing rate. For in- 
stance, a communication system could be distributed across 2 passes using 2x the overall 
area, but reducing the data rate for each pass and the resultant overall required processing 
rate, and hence clock speed, by 112. Lowering the clock speed can also be leveraged to 
reduce power through voltage scaling and/or the use of higher devices. 

The characteristics of general-purpose parallel processors for communications processing 
are explored, as well as the applicability of specific parallel designs to communications 
processing. In particular, an in depth look is taken of the Raw processor's tiled architecture 
as a general-purpose parallel processor particularly well suited to portable communications 
processing. 

An example of a multipass system, based on the 802.1 l a  baseband, implemented on the 
Raw processor along with the accompanying hardware implementation is presented as both 
a proof-of-concept, as well as a means to explore some of the advantages and trade-offs of 
such a system. A bit-error rate study is presented which shows this multipass system to 
be within a small fraction of 1dB of the performance of an equivalent data rate single pass 
system, thus demonstrating the viability of the multipass algorithm. 

In addition, the capability of tiled processors to maximize processing capabilities at the 
system block level, as well as the system architectural level, is shown. Parallel implemen- 
tations of two processing intensive functions: the FFT and the Viterbi decoder are shown. 
A parallelized assembly language FFT utilizing 16 tiles is shown to have a 1 , 0 0 0 ~  im- 
provement , and a parallelized 48-tile assembly language Viterbi decoder is shown to have 
a 10,000 x improvement over corresponding serial C implementations. 
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Title: Professor of Electrical Engineering and Computer Science 
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Chapter 1 

Introduction 

Increased functional demands on portable digital devices such as PDAs, cell phones, hand- 

held gaming consoles, and laptops have led to a corresponding demand for more powerful 

processing capabilities in such devices [I]. Portable devices have become integrated into 

everyday life to such an extent that it is often impractical to carry an individual device 

to perform each desired user task. Thus, the trend and expectation is toward merging the 

functionality originally distributed among multiple devices into a single device [2]. Wireless 

connectivity is a capability which is increasingly important to the portability of such devices. 

The integration of wireless networking into portable devices enables them to perform a much 

fuller and more fully-functioned set of tasks. Future device designs will continue further 

along this trend [3]. 

This growing array of tasks assigned to portable devices is rapidly precluding the use of 

highly specialized digital processing elements. To satisfy the diversity of applications envi- 

sioned, more general-purpose processing capabilities are required. In addition, the function- 

ality of such devices requires (or is supplemented by) incorporating faster and more efficient 

wireless capabilities. General-purpose parallel digital processors, which are becoming more 

common [4, 5, 6, 7, 8, 91, can be utilized to meet these coincident demands [lo]. 

1.1 Portable Processing 

Ubiquitous wireless access has quickly become an integral part of everyday life [2, 111. 

As wireless devices have become more commonplace, the competition to incorporate more 

functionality and utility into small portable devices has grown [12]. Cell phones are expected 



to play videos, search the Internet, and act as portable email clients [13]. Game devices 

are used to watch movies and play Internet-linked games, in addition to their traditional 

functions [14, 151. Laptops, tablet PCs, and PDAs come equipped with wireless capabilities 

such as Wi-Fi and Bluetooth connectivity 116, 17, 181. 

Thevaried and disparate nature of the applications bundled on a single wireless device 

create a technology and design challenge. Powerful general-purpose processing will be re- 

quired to provide the myriad set of functions envisioned for portable devices. Given the 

need for such processors, these processing resources can also be utilized for communications 

processing. 

The advantages of reusing a system's general-purpose processor (GPP) for performing 

digital communications processing, as opposed to using a separate application-specific imple- 

ment ation, are threefold. First, there is the obvious reduction in cost. Since port able devices 

will already require powerful processing units, these units can be reused for communica- 

tions. This will help amortize the costs already associated with providing such processors 

and preclude further expenditure to provide communications baseband processing. 

A second major advantage is the ease of development and use associated with a general- 

purpose processing solution. By using a GPP, communications functions can be imple- 

mented in software. Implementation using a high level language, compiler infrastructure, 

and debugger can allow quicker and easier implementation of communication algorithms. 

This translates to a reduction in development costs and time. 

Finally, the flexibility afforded by a general-purpose processing solution is extremely 

valuable. A software implement at ion allows the communication algorithms used, and even 

the baseband structure itself, to be modified or replaced as needed. Applications can adapt 

or change the algorithms applied in response to current conditions. For instance, the type 

of equalization used can be changed depending on the amount and types of noise observed 

on the communication channel. Under poor conditions, a more ambitious but complex 

equalization could be used to try and maximize the received signal. When conditions 

are more favorable, a simpler but less effective equalization algorithm might be sufficient, 

with the reduced processing overhead freeing up resources for other tasks or enabling a 

corresponding reduction in the frequency of operation. 

Using a software implementation also allows system changes at a later date. Changing 

standards, additional functions, improved algorithms, or even bug fixes can be easily im- 



plemented in the communications chain simply through a software update. In a hardware 

system, a whole new revision of the hardware would be required. 

1.2 Digital Computation for Communication 

The majority of modern portable devices operate on digital information. As such, most 

wireless systems used by portable devices are digital communication systems. They are 

systems which have digital bits as both the input to and output from the communication 

link, but which convert this digital information to an analog waveform for transmission 

across a physical wireless link [19, 201 

The general properties and makeup of a digital communication system will be discussed 

in general in Section 1.2.1 and in greater detail in Chapter 2. Section 1.2.2 then addresses 

the bottleneck problem - the issue of the processing requirements of certain communications 

functions increasing dramatically as data rates increase. Such bottlenecks are of particular 

concern in the uniprocessor GPP or DSP case where processing requirements can rapidly 

outstrip the capabilities of the available resources. 

1.2.1 Digital Communications Overview 

A communication system is a system which conveys information from a transmitter to 

a receiver across a medium. The information is input at the transmitter, is conveyed 

across the channel, and is then output by the receiver. A digital communication system 

is a communication system in which the system inputs and outputs are digital bits, see 

Figure 1-1. 
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Figure 1-1: A canonical wireless digital communication system block diagram. 

The receiver is often the focus of communication system design as its mandate is the 

most difficult. The data presented to the transmitter is deterministic. The transmitter 

knows exactly what information is to be sent. The job of the transmitter is to generate 

a minimal representation of the information to be sent which is, at the same time, robust 



under the rigors of communication and then to condition and t ransduce this representation 

onto the channel. 

The process of transmitting the information across the channel inherently distorts the 

representation of that information and makes reception a probabilistic, instead of a deter- 

ministic, enterprise. The transmitter itself introduces non-linearities and component noise 

to transmitted signals. In addition, the channel adds uncertainty to the system through 

path loss and propagation effects and obfuscates the information sent by the transmitter. 

The receiver itself further distorts the transmitter signals through the nonlinearities and 

noise of its own components. 

In this environment, it is the job of the receiver to overcome the distortion and uncer- 

tainty of the received signals and attempt to retrieve the information originally sent. The 

receiver must attempt to recover the signal which was intended to be communicated from 

the noise which obscures it. Due to the inherent challenges of the job of reception, receivers 

are necessarily more complex and difficult to design than transmitters in a duplex1 commu- 

nication system. The ability to successfully perform reception therefore implies sufficient 

capabilities to perform transmission. Consequently, this dissertation will focus more heavily 

on the receiver functions than transmitter functions. 

1.2.2 Bottleneck Problem 

In an ideal communication system data would flow across the wireless link at the fastest rate 

which the channel and applications could sustain. The ability of the receiver to process this 

data would never be an issue. Ideally, the applications producing and consuming the data 

and the channel are the drivers in setting the communication data rate. There are some 

receiver functions, however, whose processing requirements grow very large with increasing 

data rates. These functions can require more temporal reuse, and thus faster operation, than 

the receiver components will allow. The system then fails to meet its steady-state real-time 

deadlines. This is especially a problem for single GPP or DSP receiver architectures where 

a single set of hardware must be reused in time to try and perform all necessary functions. 

Even if such processors have the capability to implement a receiver and meet the real-time 

system requirements, there is little ability to increase temporal reuse to accommodate any 

increased processing required by higher data rates. This issue commonly limits the usage 

'A duplex system is one in which all devices can both transmit and receive information. 



of GPPs and DSPs in communications systems. 

Single Receiver System 

The problem of receiver processing limiting functionality can severely impact the maximum 

achievable data rate of the system. Depending on the channel conditions, the wireless appli- 

cation may be able to utilize a higher communication data rate. The receiver components, 

however, may not be able to sustain that higher rate, see Figure 1-2. 

Transmitter Receiver 
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Figure 1-2: Effect of growing data rate on a single receiver system. 
(a) For low data rates, the receiver can sufficiently process the received data. 
(b) As the data rate increases, the increased reuse of the same receiver begins to push the 
temporal limits of the hardware. 
(c) If the desired data rate is too high, the receiver hardware can no longer keep up. 

For case (a), above, at a low data rate, the receiver can successfully process the flow of 

data. The receiver has been designed such that, with accommodating channel characteris- 

tics, the requested data rate is one which is available and sustainable. As the amount of 

data increases in case (b), however, the receiver starts to have problems keeping up. The 

high data rate requires more temporal reuse of the receiver resources, as well as a receiver 

design compatible with the higher data rate. When the desired data rate goes too high, 

as in case (c), the hardware resources can no longer keep up with the flow of information. 

Temporal reuse of the same receiver is no longer feasible and the communication link can 



no longer be sustained. 

This problem is a reflection of the bottlenecks encountered at many of the receiver 

elements. Two types of bottlenecks are the main limiters of the processing data rate in 

receive chains. These bottleneck types are referred to here as data expansion and data 

chunking. 

Data Expansion 

Data expansion occurs when a change in data representation increases the rate of processing 

within a receiver functional block. This is similar to a multiplication factor being applied 

to the processing rate seen prior to the data expansion block. The receiver's ability to deal 

with this faster processing requirement then becomes the limit to the rate at which data 

can be sent across the wireless channel. 

For instance, a receiver demapping stage converts received symbols, the complex values 

which represent the received sinusoids, into the corresponding bits used to generate the 

symbol. Since the bandwidth of the wireless channel is generally fixed, an increase in 

data rate is achieved by having the symbols represent a larger number of bits. When the 

received data symbols are converted back into bits, the receiver data flow rate grows from 

the symbol rate into the symbol rate times the number of bits represented. This potentially 

large increase in the rate of data passed through the system means that the allowable 

number of bits per symbol must be limited by the receiver's ability to process this higher 

rate of bits. 

Another example of data expansion can be seen in a Viterbi decoder [21, 221, where 

each set of bits generates a large amount of processing as they are used to create a new 

set of nodes in a trellis structure. As the data rate increases, the number of bits to be 

processed grows and the amount of processing work becomes very difficult to schedule. 

Viterbi decoders, and especially an optimized tiled Viterbi decoder implementation, will be 

discussed in Section 7.4.5. 

Data Chunking 

Data chunking occurs when data must be buffered into blocks before processing can occur. 

The negative impact of data chunking is that streaming-type processing is stalled by the 

need to use relatively large memory elements in order to gather sufficient amounts of data for 



processing to proceed. In essence, data pipelining is interrupted by a function which relies 

on correlation of a large amount of data or temporally random access. This interruption 

breaks the streaming model (see Section 4.3). 

The deinterleaving function is an example of a data chunking function in a receiver 

chain. Deinterleaving is a process by which the ordering of bits within a portion of the bit 

stream is pseudo-randomly shuffled. It is the compliment to the interleaving function which 

is performed at the transmitter. The shuffling and unshuffling of bits by the interleaver 

and deinterleaver, respectively, provide a way to mitigate transmission errors. By ordering 

the bits in an essentially random fashion, the system improves the chances of recovering 

from a localized error. This is because many channel coding processes work on consecutive 

bits and can recover from single bit isolated errors much more easily than multi-bit errors. 

By moving these consecutive bits away from each other, the hope is that the impact of an 

error which corrupts multiple consecutive bits will be lessened. When the deinterleaving 

function restores the original bit ordering, it separates these consecutive error bits and turns 

them into isolated errors. In order to reshuffle a section of bits, however, the intermediate 

partial ordering of bits must be stored until the reordering can be completed. Once a whole 

deinterleaving block of bits has been stored, the newly order bits can be streamed out and 

the deinterleaver can begin on the next set of bits. Thus, the flow of processing bits is 

interrupted by the need to accumulate a whole section of bits. 

A data chunking function like deinterleaving can be mitigated by a sufficient amount 

of storage. This is a possibility because the deinterleave function does not perform any 

operations on the bits themselves; it is only focused on the ordering of those bits. A function 

like the Fast Fourier Transform (FFT) [23], however, is a more complicated example of a data 

chunking function as it has a profound effect on both the relative ordering of information 

and the data itself. The FFT processing requires interaction between data values such that 

multiple data values must be accumulated before operation on the data can proceed. As 

such, certain wireless systems, for example, the 802.11a specification [24] (see Section 7.2 

and appendix A), provide a maximum acceptable latency for the FFT. This maximum 

latency represents the amount of time the receiver pipeline can be stalled before disrupting 

the flow of received information. All necessary data must be buffered and all processing 

must be done within this maximum latency limit. A more careful examination of the FFT 

and its impact on receiver processing can be found in Section 7.4.5. 



Multiple Receiver System 

One way to overcome bottlenecks at the receiver and enable higher data rate communication 

is to use multiple receivers. A system with multiple receive chains that could distinguish 

between and appropriately direct data destined for each of these receivers would be able to 

accommodate multiple data streams with higher aggregate data rate than a single receiver 

system. For a given data rate, each of the multiple receivers could operate at a fraction 

of the total data rate, thus mitigating the bottlenecked portions of the receive chain, see 

Figure 1-3. 
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Figure 1-3: Use multiple receivers to try and accommodate higher data rates. 
(a) Only a single receiver might be required for a low data rate. Any other receivers would 
then sit idle with under-utilized resources. 
(b) If the data rate increases, however, a system which could spread the load over multiple 
fixed receivers would allow the system to operate on a higher aggregate data rate. 
(c) A yet further increase in data rate, however, could be too much for even multiple fixed 
receivers. 



The key to such a system would be in the combining and separating of data streams. 

Multiple different data streams or the demultiplexed data from a single data stream could be 

treated as multiple subchannels of data sent in parallel. Subchannels could be distinguished 

by frequency, by time, or by any means which would allow the subchannels to be combined 

and then later distinguished. What would be needed is a combining function which would 

allow multiple streams of data to be joined at the transmitter, but in an orthogonal way such 

that they could be disambiguated at the receiver. One specific approach using superposit ion 

as the combining function is presented in Chapter 5. Some additional potential combining 

functions are discussed in Section 11.1. 

A multiple fixed receiver system reduces the impact of bottlenecks over a single fixed 

receiver system by providing both spatial and temporal reuse of the receive chain, as opposed 

to the temporal-only reuse of the single fixed receiver system. Spatial reuse is the reuse of 

a design to create multiple hardware instances which can operate in parallel. Functions can 

then be migrated onto parallel resources to reduce the load on a single resource. Higher data 

rates may be accommodated by a combination of streaming more data through each receive 

chain (temporal reuse) and by using multiple receive chains in parallel (spatial reuse). 

This type of system does have some drawbacks, however. First of all, the system itself 

is fixed. While multiple receivers do allow higher data rates, there still exists a data rate 

threshold above which the system cannot operate. This threshold is higher than in the 

single receiver case as multiple receive chains must now be saturated to reach the threshold, 

but it still exists. 

In addition, there are much higher costs associated with a multiple receiver system. 

In terms of characteristics important for portable wireless devices, such as physical size, 

dollar cost, and power, the multiple fixed receiver system is more expensive than a single 

receiver system. These costs might preclude building enough receivers to allow the desired 

maximum data rate. In effect, having multiple fixed receivers incurs the cost of the "worst" 

case, even in the more common or "lesser" cases. The system must be design around the 

maximum data rate envisioned. This means the resources required for the maximum data 

rate must be present even if they are not needed or in use. 

From a design point of view, however, there is a significant savings in the use of multiple 

receivers. The spatial reuse of parallel resources means that a receive chain must only be 

designed once and can then be reused with little or no modification for each of the multiple 



receivers. The reuse of a single less ambitious or previously generated design can provide 

similar functionality to a more difficult, new, higher data rate design. The same problem 

still exists as in the single receiver case, though, of having to choose a przorz which data 

rates the receivers will support. Fixing the number and design of receivers results in the 

forced choice of a single system architecture design point with a specific maximum data 

rate. This limits the multiple fixed receiver system both in terms of maximum data rate as 

well as possible combinations of lower data rates distributed among the multiple receivers. 

The multiple receiver system as described above is an application of the multipass al- 

gorithm introduced in Section 1.2.2 and explored more fully in Chapter 5 .  While most 

of the discussion here focuses on the general-purpose processing space and the flexible re- 

ceiver system presented below, the multipass algorithm is applicable to the fixed receiver 

case regardless of implementation method (e.g. GPP, ASIC, FPGA, etc.). The multipass 

algorithm can be used to achieve high data rate processing which trades increased area for 

a lower overall clock rate. A lower clock rate eases the temporal constraints on the system 

which translates to an increased ease of implementation with a corresponding reduction in 

design time. In addition, a lower minimum clock rate can be parlayed into lower overall 

power consumption through a reduction in Vdd and/or the use of higher & devices (see 

Section 5.4.1. 

Flexible Receiver System 

A wireless system which focuses on taking advantage of increases in processing speed pro- 

vided by parallel resources and flexibility of general-purpose processing could do no more 

than slavishly re-implement elements from a traditional analog wireless systems inrece the 

digital domain. A better approach would be a system which could "construct" receivers as 

they are needed. Such a system could retask elements from a group of available resources 

in order to compose these resources into as many receivers as the desired data rate requires, 

see Figure 1-4. If later the data rate were to lower, or if other processing tasks were to take 

priority, these resources could then be freed up and reassigned for use in other tasks. 

Such a flexible system offers the opportunity to trade-off temporal and spatial reuse to 

find a "sweet spot" based on the current conditions. For lower data rates, where temporal 

reuse is sufficient, a single receive chain can be used. When processing speeds begin to exceed 

the available or desired temporal reuse, however, spatial reuse can be employed to create 
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Figure 1-4: A means of flexibly composing receivers out of a set of available resources would 
allow the system to adjust to current conditions as needed. 
(a) For lower data rates using only a small amount of resources to construct a single receiver 
might be sufficient. 
(b) As the amount of data to be communicated grows more resources could be assigned to 
create additional receivers in order to successfully process the higher rate of data. 
(c) A yet further increase in data rate could still be accommodated simply by making use 
of yet more of the available resources.. 



multiple parallel receive chains. This reduces the demands of temporal reuse and allows 

more, but slower and less ambitious, receivers to meet the processing needs. Even higher 

data rates may be accommodated by simply assigning more resources for communication in 

order to build additional receive chains. There is no need to know how many receive chains 

are needed ahead of time, or to design the system to accept every conceivable data rate. 

The system simply composes as many receivers as necessary in whatever configuration is 

necessitated by meet the current data rate. 

This balancing of temporal reuse constraints and spatial reuse constraints allows the 

system to explicitly manage the trade-off between communication and computation. The 

system can offer more resources to communication to achieve higher data rates, but at the 

cost of reducing the resources available for computation of that or other data. 

Such a system also provides the ability to take advantage of design reuse and reuse a 

single receive chain design to compose the additional receivers. This allows the system to 

adjust to data rate needs without having to a przori design in the ability to handle every 

data rate and without having to spend time on multiple receiver designs. A single design 

and verification effort is all that is needed. The system can simply reuse an already existing 

design to gain the use of additional cumulative data rates through the composition of receive 

chains. 

A computer architecture suited for such a communications system, one which provides 

flexible hardware which allows a balance of both temporal and spatial reuse as well as 

concurrent independent computation, will be presented in Chapter 4. Furthermore, a com- 

munication technology, called multipass, which allows a flexible system to dynamically 

trade-off increased resource usage and area for lower processing rates and required clock 

speeds is introduced next and discussed in detail in Chapter 5. 

Multipass 

The Multzpass algorithm is a method of communicating multiple streams of data in parallel 

across a single communication link. Multiple streams of data are processed individually at 

the transmitter and then combined for transmission across the channel. At the receiver, the 

combined data is decomposed into separate data streams, each of which is processed by its 

own baseband receiver processing pass. 

The multipass algorithm allows communication systems to utilize multiple receiver 



passes in parallel to recover the data sent across a communication link. Multiple sets 

of resources distribute the receiver processing load for the "Hard" bottleneck functions, 

see Figure 1-5. For the system discussed in Chapter 7 the Viterbi decoder is this "Hard" 

bottleneck function. The multipass algorithm allows the system to achieve a high cumu- 

lative data rate through the use multiple baseband processing passes, and hence multiple 

Viterbi decoder instantiations, each running at a slower data rate. This enables the system 

to trade increased resource usage and area for a lower required processing rate and system 

clock speed. A slower clock speed can then be translated into a reduction in system power 

through the use of a lower supply voltage, or the use of lower & devices, as explored in 

Section 5.4.1. 

Figure 1-5: Utilizing a single receiver processing pass forces a single set of hardware to 
attempt to overcome bottlenecks. While the "Easy" processing functions do not require a 
high processing rate, a multipass system can distribute the load of the "Hard" bottlenecked 
processing functions across multiple sets of hardware, requiring only half the processing rate 
for each. This reduces the impact of bottlenecks on the system and provides the opportunity 
for either higher data rate processing or lower system clock speeds. In the system discussed 
in Chapter 7, the "Hard" bottlenecked function is the Viterbi decoder. Multiple instances 
of the Viterbi decoder are utilized to mitigate the requirements of this function. 

In a fixed receiver system, this trade-off between area and processing rate must be de- 

cided a priori, but the multipass algorithm allows increased flexibility in the initial system 

design. In a flexible receiver system built with general-purpose processing elements, how- 

ever, the multipass algorithm allows the system to dynamically adjust the number and type 



of passes used to meet communication and computation constraints. The ability to decom- 

pose a high data rate communication stream into multiple lower rate streams makes feasible 

the use of general-purpose processors for high data rate communication processing. A lower 

required processing rate enables system viability by reducing the data rate requirements to 

a level compatible with the computational overhead incurred by general-purpose process- 

ing systems. A flexible multiple receiver system which takes advantage of the multipass 

algorithm is discussed in Chapter 5 .  

1.3 Thesis Contributions 

This dissertation introduces the multipass algorithm, a means of communicating multi- 

ple information streams in parallel as a single higher data rate stream over the channel. 

The multipass algorithm utilizes multiple receiver processing chains, or passes, to extract 

the lower data rate information streams from this single higher data rate received stream. 

Adding additional passes allows the system to trade-off increased area and processing re- 

source consumption for a lower required processing rate for each pass, while maintaining a 

high cumulative data rate. 

Reducing the required processing rate allows a lower minimum clock speed. A lower clock 

speed can, in turn, enable reduced power consumption through the use of voltage scaling or 

lower leakage devices. Lower individual pass processing rates also make possible high data 

rate communications in a general-purpose processing environment and allow a direct trade- 

off between communications and computation in that environment. While the multipass 

algorithm itself is implementation agnostic, it is as appropriate for specialized hardware or 

FPGA implementations as a software implementation, multipass will be discussed here in 

the context of general-purpose processing tiled architectures. 

Multipass communications systems offer a means to utilize tiled architectures in the com- 

munications realm. Such systems take advantage of the multiple parallel general-purpose 

processing elements of a tiled architecture to dynamically compose receive passes. The 

number and rate of these passes can then be flexibly adjusted to balance the overall re- 

quired communication rate with the available computation resources, while maintaining a 

clock rate compatible with a general-purpose processing tiled architecture. 

As a first step in the proof-of-concept of a multipass system, an effort was taken to 



implement an 802.11a software receiver on a tiled architecture. The Raw processor was 

used as a tiled architecture platform to implement this baseband design. A hardware radio 

front-end board, the Raw Wireless Board, was designed and built to interface with the 

Raw handheld motherboard in order to complement and complete the receiver system, see 

Figure 1-6. 

Figure 1-6: Photo of the Raw Wireless System. 

The 802.11a Raw baseband design was then improved and expanded to become the first 

multipass receiver implementation. A multipass system, including a software multipass 

transmitter and a cycle-accurate Raw simulation of a multipass receiver was designed and 

tested. Versions of the multipass system using C and Matlab were also implemented and 

verified with the cycle-accurate results in order to improve simulation speeds. 

As part of the optimization effort to make the 802.11a baseband compatible with real- 

time operation in a general-purpose processing environment, critical path receiver functions 

were parallelized and optimized. Chief among these bottlenecked functions were the FFT 

and Viterbi decoder functions. Assembly versions of both functions consistent with 54Mbps 

operation on a Raw digital processor were designed. This resulted in a 70 cycle 48-tile 

parallelized version of the Viterbi decoder, a 1 0 , 0 0 0 ~  improvement, as well as a 16-tile 



parallelized FFT which resulted in a 1,000 x improvement in performance. 

Given that the multipass approach enables high data rate communication system im- 

plementation on a general-purpose processing substrate, an evaluation of the performance 

of a multipass communication system relative to an application specific single pass sys- 

tem was undertaken. The feasibility of the multipass communication approach is shown, 

with a multipass system using a superposition combining function achieving performance 

reasonably close to the single pass case. System improvements which enhance this per- 

formance to within a small fraction of 1dB of that of the single pass case are discussed. 

In addition, future potential compositions of multipass systems using better-performing or 

application-specific combining functions are discussed. 

1.4 Dissertation Structure 

The rest of this dissertation is structured as follows. Chapter 3 provides motivation for 

digital radios. It discusses the unique aspects of the digital domain which provide oppor- 

tunities for new radio processing techniques. Chapter 2 provides a very brief overview of 

digital communication systems. Readers familiar which such systems can feel free to skip 

this chapter. Chapter 4 explores the characteristics of multiple types of parallel architec- 

tures. The impact of these various designs are discussed in relation to implementation of a 

digit a1 radio communication system. 

Chapter 5 presents the definition and a description of a multipass system, a means of 

utilizing the aspects of parallel architectures to implement a flexible digital radio. Chapter 6 

provides details on the Raw processor, the tiled architecture used as the implementation 

target for the multipass system design. 

Chapter 7 explores the implemented systems. A quick overview of the 802.11a speci- 

fication, as well as the elements of a general 802.1 l a  system are discussed. The details of 

the various system functions are explored. The hardware elements of the system and their 

interaction is also discussed. The software effort, including the simulation infrastructure 

is covered. Finally, the expansion of an 802.11a system into a multipass design, as well 

as the implementation details of a multipass system are presented. The optimization and 

parallelization of critical functions is overviewed. 

Chapter 8 offers the multipass system performance results. The testing methodology is 



presented. Comparison with the single pass case, as well as an analysis of the results and 

methods of improvement, are given. 

Chapter 9 is a summary of the conclusions derived from this work. 

The similarity of the multipass approach to other system solutions is considered in 

Chapter 10, including the commonality between multipass system and multiple user access 

schemes. 

Finally, Chapter 11 envisions future multipass system configurations and applications. 

The use of additional and more complex combining functions is discussed. Also contem- 

plated is the utilization of the general-purpose flexibility enabled by multipass systems to 

implement adapt able algorithms and other flexible receiver architectures. The application 

of multipass designs to other parallel platforms is also briefly considered. 





Chapter 2 

Digital Communications 

This chapter provides a slighly more detailed overview of digital communication systems 

than in Section 1.2.1. Section 2.1 discusses the general aspects of digital communication 

systems, including the design elements of the transmitter and receiver, as well as a model 

for the wireless channel. Section 2.2 provides a more in-depth description of the various 

modulation techniques employed by such systems. These techniques play an important 

role in transforming digital bits into continuous waveforms. Readers who are familiar with 

digital communications can feel free to skip this chapter. 

2.1 Digital Communication Systems 

A digital communication system is comprised of a transmitter and a receiver which com- 

municate digital information across a channel, see Figure 2-1. The transmitter converts 

the digital information, the Bits In, into values for transmission across the channel. These 

values are then sent across the wireless channel to the receiver. The receiver converts these 

values back into bits, the Bits Out. The receiver does this in a manner which attempts to 

maximize the likelihood that the Bits Out output from the receiver matches the Bits In 

input to the transmitter. 

The transmitter typically begins by performing digital processing on the Bits In to 

increase the robustness of the data communication link, as well as its usage efficiency. This 

results in data values which are used to represent the processed Bits In. This processing 

which takes place prior to up-conversion to higher frequencies is commonly referred to as 

baseband processing. These processed digital values then undergo digital-to-analog (D/A) 



conversion to generate analog values from the digital information. The radio front end of the 

wireless transmitter prepares these values for transmission by mixing the analog values with 

sinusoids to generate waveforms at the carrier frequency. The antenna then transduces these 

carrier frequency sinusoids to electromagnetic waves which radiate out from the antenna 

and across the channel. 
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Figure 2-1: A canonical digital communication system block diagram. 

The process of transmitting the information signal across the channel reduces its fidelity. 

The channel conditions, such as fades, path loss, and other propagation effects, as well as 

interference and channel noise contribute to a degradation in signal quality. The main factor 

which distinguishes a wireless channel from a wired channel is the changing nature of the 

channel characteristics and noise. 

A common model used for channel noise is the Additive White Gaussian Noise (AWGN) 

model. While insufficient as an exact channel model, the AWGN model is often used for case 

studies. It provides a tractable and easily computed noise model which provides reasonable 

insight into the functionality of a communications system [19, 25, 261. The AWGN model, 

see Figure 2-2, consists of a white Gaussian source which provides a statistically indepen- 

dent, identically distributed sequence of Gaussian random variables which are added to the 

signal as noise. Gaussian white noise is used because it provides a good approximation 

to the thermal noise of system components [26, 271. The signal, as it travels through the 

communications system, is impacted by a large number of small, statistically independent 

noise sources which cumulatively, as per the Central Limit Theorem, look Gaussian in ag- 

gregate [25, 28, 29, 301. This noise is referred to as white because it looks flat over the 

frequency range of interest and all of the individual noise sources are independent, like in 

true white noise. However, it is not true white noise in the sense that the flat spectrum 

does not extend over all frequencies between h o  (this would require the AWGN source to 

have an infinite amount of power [31]). 

Channel effects also play a large role in the quality of the signal received. Propaga- 

tion effects such as path loss, slow and fast fades, delay spread and multipath, radiation 



resistance, and antenna gains can have a large impact on receiver signal strength. For in- 

stance, path loss results in the signal power falling off quickly as the distance between the 

transmitter and receiver is increased (thus increasing the relative impact of many channel 

noise sources) [32, 27, 33, 34, 351 and is proportional to the inverse of the distance (typi- 

cally between 5 and h). Other effects, such as fades in reception as the receiver moves 

into areas where the transmitted signal can't reach, or multipath effects where multiple 

reflected copies of the incoming signal are received, can distort and negatively impact the 

received signal. Direct interference from other radio sources, such as other transmitters, 

can also add significant non-signal power in the frequency range of interest, thus degrading 

the communication link. Channel effects are often expressed as a channel transfer function 

which is applied to the transmitted signal when it travels across the channel. Receiver 

functions, such as equalization, attempt to quantify and reverse the channel effects on the 

received signal, see Equation 2.1. The presence of noise on the received signal, however, 

makes this reversal of channel effects a non-linear process, and, hence, much more difficult 

to accomplish. 

Figure 2-2: Additive White Gaussian Noise (AWGN) channel model. 

The Signal-to-Noise Ratio (SNR) is often used as a metric of signal integrity. It relates 

the power or signal strength of the desired transmission as seen at the receiver to the power 

of all other extraneous sources observed with that signal. This is sometimes expressed as 

Eb/No, or the energy per bit divided by the noise power spectral density [36, 371. In general, 

the higher the SNR, the more likely the information from the transmitter will be correctly 

communicated to the receiver. 

At the receiver, another antenna t ransduces the resulting electromagnetic waves plus 

the accompanying noise into analog waveforms. The receiver front-end then down-converts 



these analog waveforms from the carrier frequency to a much lower frequency or DC. These 

low frequency signals are again referred to as baseband. The baseband signals are then 

commonly transitioned from the analog to the digital domain by an Analog-toLdigital (AID) 

converter. The resulting digital values are processed by the receiver's baseband receive chain 

in an attempt to recover the information sent and to recreate the transmitted bits, the Bits 

In. These recreated bits are the system output, the Bits Out. 

The purpose of the digital communication system is to maximize the likelihood of correct 

and timely reception of the digital information from the transmitter at the receiver. Multiple 

signal processing techniques are applied to the information to achieve this end. These com- 

munication signal processing techniques generally fall into three categories: source coding, 

channel coding, and channel correction. 

Source coding maximizes the usefulness of each bit to be transmitted in an information 

theoretic sense [19]. This consists of compressing the data such that the most information 

can be represented in the fewest bits possible. This compression has the effect of minimiz- 

ing the correlation between bits and subsequently minimizing the number of bits in total. 

Reducing the total number of bits helps to contribute to the communication system's effi- 

ciency, as it results in more information being transmitted per bit sent while not decting 

the amount of power required to send each bit. For the sake of the systems addressed in 

this dissertation, source coding is assumed to have been done prior to bits being presented 

as input to the digital communication system. The Separation Theorem guarantees that 

this assumption of a source coder separate from the channel coder does not impact the 

opt imality of communication [38, 281. 

Channel coding refers to modulation and error correction and mitigation techniques. It 

is a means by which to improve the likelihood of successful transmission of data across the 

channel. There are multiple possible techniques employed to achieve this goal [39]. Modula- 

t ion techniques map data into waveforms for transmission across the channel. Modulation 

is discussed in greater detail in Section 2.2. Among the error correction and mitigation 

techniques are st ate-based encoding and interleaving. St ate-based encoding, such as conve 

lutional encoding, adds redundancy and locally correlates the bits through the use of state 

information in the encoding. This results in a larger number of overall bits, but with a set of 

bits which are redundant enough, and correlated enough, that errors in bit transmission can 

often be overcome and the correct bits inferred at the receiver. Interleaving, on the other 



hand, is an error mitigation technique. It involves changing the ordering in a set of bits 

such that correlated bits, which have been generated by other channel coding techniques, 

are not transmitted consecutively. This is done to reduce the impact of any multi-bit errors 

which might occur during transmission. It is not unusual for interference or propagation 

errors to effect multiple consecutive bits. Interleaving is a means by which these corrupted 

bits can be spread out throughout a data block thereby isolating errors and giving other 

channel coding error recovery techniques, especially those which rely on mutual information 

between consecutive bits, a higher likelihood of success. 

Channel coding is often at odds with source coding. Source coding focuses on efficient 

representation of bits in order to reduce the number of bits sent, while channel coding inflates 

the number of bits to maximize the tolerance of the communication link. Therefore, it is 

necessary to balance the transmission-level requirements of robustness and functionality in 

the face of error-inducing conditions with the system-level requirements of power efficiency 

and minimized latency. 

Channel correction techniques attempt to undo the effects of the physical wireless chan- 

nel on the transmitted waveforms. They are mainly concerned with compensating for error 

sources which are relatively constant over the course of a transmission. Error sources such as 

current channel effects, hardware offsets, and fading can often be addressed without regard 

to the specific data being sent. This data independence allows the use of meta-information, 

such as headers or pilot tones, which can be standardized a priori and known by both the 

transmitter and receiver to empirically determine the compensation parameters for channel 

correction techniques. Channel correction functions include techniques such as: channel 

equalization, phase correction, and frequency correction. [26, 36, 301 

An example of a digital communication system which implements a set of these signal 

processing techniques is presented in Section 7.2. 

2.2 Modulation Techniques 

Modulation is the mapping of data onto time-varying signals for use by the analog radio 

front-end. [25 ,  26, 27, 321 Transduction of signals by the antenna into electromagnetic waves 

necessarily requires these time-varying signals. Modulation commonly consists of generating 

a sinusoid whose specific aspects convey a piece of data. Sinusoids are typically used as 



the modulating waveform for numerous reasons, among them are: the prevalence of Fourier 

analysis and the ability of sinusoids to act as an orthonormal basis which spans the reals [40]; 

the convenient mixing properties of sinusoids when multiplied together [41, 231; the use of 

frequency as a means of partitioning and dictating the electromagnetic spectrum; and the 

ease of creating sinusoidal sources in analog electronics. 

There are three aspects of sinusoids which are used to encode information: amplitude, 

frequency, and phase. The type of modulation scheme determines which sinusoid aspect or 

aspects are used to distinguish data values. For instance, in terrestrial radio, two differ- 

ent modulation schemes are used: amplitude modulation (AM) and frequency modulation 

(FM) . In amplitude modulation, the amplitude of a radio frequency sinusoid, or carrier 

wave, is directly adjusted so that it matches the data signal. The data signal can then be 

directly recovered from the envelope of the transmitted carrier wave. In frequency modula- 

tion, the frequency of the carrier wave is adjusted based on the data values. The deviation 

of the carrier wave frequency from its nominal frequency is detected at the receiver and 

used to recreate the transmitted data. 

Complex exponentials are often used to represent the modulated sinusoids. The rela- 

tionship between sinusoids and complex exponentials is expressed in Euler's formula, see 

Equation 2.2, and for a negative angle, see Equation 2.3. The value of a sinusoid at a con- 

stant phase, such as cos(B), can thus be represented as the Real part of e". A time-varying 

sinusoid, such as cos(Ot), has a phase component, 8, which changes with time, t ,  where 

8/2n represents the frequency of the time-varying sinusoid. A change in amplitude, A, or 

constant offset in phase, 4, would appear as Acos(8t + 4). Euler's formula can be restated to 

explicitly take into account the sinusoid aspects changed by modulation (phase, frequency, 

and amplitude), as seen in Equation 2.4. 

Euler's formula states that, a single complex exponential can be represented as the sum 

of two sinusoids: a real, or cosine, sinusoid and an imaginary, or sine, sinusoid. Since both 



the real and imaginary sinusoids are at the same frequency, 6, the sum of real and imaginary 

sinusoids combine to form a single sinusoid with a particular phase offset, 4. The phase 

offset desired determines if the complex sum contains only a real cosine part, or only an 

imaginary sine part, or some combination of the two. Regardless of the relative size of the 

real and imaginary parts of the complex sum, the norm of the complex sum equals the 

complex exponential's amplitude, A, as required by Euler's formula. Where, in this case, 

the norm used is the complex norm. 

The complex norm in Equation 2.5, above, is an application of the Pythagorean theorem, 

Equation 2.6, to signal space where x, the Real value, and y, the Imaginary value, correspond 

to cos (6) and sin(6) respectively. 

Euler's formula provides a way of representing the modulation output as a complex 

exponential. Since each of these outputs contains a real and imaginary part, it is common 

to plot the modulator output graphically as a complex vector in what is called signal space. 

Signal space is simply a graphical representation of the complex plane with the x-axis 

representing the real part of a complex vector, and the y-axis representing the imaginary 

part. Since the real part of a complex exponential corresponds to the cosine term in Euler's 

formula, it is referred to as In-phase, and the real axis, the x-axis, is labeled I in signal 

space. The imaginary part of the complex exponential corresponds to the sine term, which 

is 7r/4 shifted in phase from the real term. Thus, the imaginary term is called in Quadrature 

(for the quarter shift), and the imaginary axis, the y-axis, is labeled Q in signal space. 

Signal space is a convenient way of representing constant frequency complex exponentials 

and modulation schemes. In signal space, the phase and amplitude of an exponential 

easily translate into the angle and magnitude of a complex vector respectively. A variable 

frequency modulation scheme would correspond to a rotating complex vector in signal space 

with the angle of the vector changing in time at a rate relative to the frequency value. As 

this situation is not conducive to either easy representation or interpretation, signal space 

modulation diagrams are usually restricted to modulation types that modify phase and/or 



amplitude only. The modulation schemes used by the systems in this dissertation are of the 

constant frequency type and can therefore be readily represented in signal space. 

The modulation diagrams in Figure 2-3 represent three possible types of modulation 

using phase and/or amplitude. Equation 2.7 is the canonical equation used to represent 

these modulation schemes. It shows a complex exponential and its corresponding real and 

imaginary parts. The grouping of terms highlights the phase, 4, and amplitude, A, values 

which are varied by the modulation schemes, while pulling out the frequency term, 8, which 

is held constant. The specific modulation types demonstrated in Figure 2-3 are discussed 

below. 

( ~ e ' ~ )  e'(8t) = A [cos (4) + 2 * sin (4)] e'(Ot) 

Time Domain 
v 

Signal Space Signal Space 
Complex Vectors Constellation Points 

Q Q 

Figure 2-3: Examples of different types of modulation. Each example is shown in three 
forms: time domain signal, complex vectors, and constellation points. There are three 
modulation types shown here: (a) Amplitude Modulation (AM); (b) Phase Modulation 
(PM) ; (c) Quadrature Amplitude Modulation (QAM) 

Figure 2-3 Part (a) shows an amplitude modulation, or AM, modulation scheme. The 



two modulation sinusoids can each be represented by an expression of the form of Equa- 

tion 2.7, and are characterized by a different amplitude values, A. In signal space, the 

length of the complex vector corresponds to the norm of this expression. In this case, the 

vector length is shorter for the sinusoid with the smaller value of A and longer for the larger 

value of A. The signal space vectors lie solely on the I or real axis as both sinusoids here are 

pure cosines. This corresponds to the phase of the sinusoids, 4, being zero and the complex 

exponential containing no imaginary part. The constellation points in Figure 2-3 are simply 

signal space points which correspond to the terminal locations of the complex vectors. The 

(x, y),  or in this case (I, Q), coordinates of the constellation points correspond to the real 

and imaginary parts of the complex exponential and provide a more convenient notational 

format. 

Part (b) of Figure 2-3 displays a phase modulation, or PM, modulation scheme. The 

phase, 4, is modified according to the incoming data and the time domain sinusoid shifts 

accordingly. In signal space, the complex vector rotates in response to the change in phase 

dictated by the data value. The relative magnitude of the real and imaginary parts change 

to reflect the shift in phase and that sinusoid's constellation point is at the corresponding 

location. Since the amplitude remains constant, however, the length of the vector, and the 

distance of the constellation point from the origin does not change. This is equivalent to 

the norm staying constant. 

Part (c) of Figure 2-3 shows a modulation scheme in which four different sinusoids 

are possible. These four sinusoids can be thought of (and implemented) as either a phase 

modulation with four different phases (a rotation of the complex vector to four different 

points): n/4, 37r/4, -37~14, -n/4, or as a combination of phase and amplitude modulation: 

f ~ 1 4 ,  and f A. 

If implemented as a four level phase modulation such a scheme is called Quadrature 

Phase Shift Keying or QPSK. The term quadrature is used because the final modulated 

sinusoid is generated by combining two sinusoids in quadrature (sine and cosine), and Phase 

Shift Keying because there are four keys, or constellation points, which are reached by 

shifting the phase of the complex exponential. Larger PSK modulations are generated 

by adding more constellation points. These points are evenly spaced around the circle 

described by rotating the phase of the constant amplitude complex exponential through a 

full 2n radians. 



As a combination of phase and amplitude modulation, the modulation scheme in Part 

(c) of Figure 2-3 would be called 4-Quadrature Amplitude Modulation, or 4QAM. The 

Quadrature term again denotes that a combination of both a cosine and sine is used to 

generate the modulated sinusoid. This implies that a phase shift is present (for pure am- 

plitude modulation only a single sinusoid would be needed). The Amplitude Modulation 

term is used because a change in amplitude value is also used to convey information. The 

value 4 is used because there are four constellation points. These constellation points are 

typically arranged in an evenly spaced symmetric square pattern for N-QAM as it is easily 

generated and energy efficient. It is easily generated because symmetric variations of phase 

and amplitude are used. It is energy efficient because the constellation points are relatively 

far apart, which helps reduce errors, while keeping the average of the constellation points 

relatively close to the origin, which corresponds to lower transmission power. In a digital 

communication system, the constellation points represent sets of bits and N is commonly a 

power of 2 so that there is a point representing every potential set of bit values in the fully 

populated square constellation. Therefore, 16-QAM, 64QAM, and 256-QAM are the likely 

larger constellation sizes. 



Chapter 3 

Digital Radios 

In recent years, advances in semiconductor fabrication process technology and 

micro-architectural design have continued to increase the computational capabilities of dig- 

ital processors. At the same time, architectural approaches have allowed for increased 

flexibility and low-level parallelism in digital processors. These two aspects combine with a 

renewed interest in parallel processing to create an opportunity to use such digital processors 

to address an improved class of communication problems. 

The use of digital processors in radio systems provides the opportunity to exploit specific 

properties of the digital domain to create a new type of more flexible communication sys- 

tem [lo]. Digital processing in wireless systems is commonly used to slavishly re-implement 

analog techniques in the digital domain. This type of approach may make use of some of 

the flexibility of digital processing, but it commonly fails to take advantage of many of the 

inherent strengths of operating in the digital domain. Among these are: infinitely cascad- 

able functions, inherent data synchronization and ordering, relaxed temporal constraints, 

and the ability to adapt and change the system structure. To profitably operate in the dig- 

ital domain and optimize the use of digital processing for radios, there is a need to design 

systems which maximize these benefits while minimizing the associated negatives of digital 

radio processing: A/D conversion errors, rounding errors, less efficient implementation of 

individual functions, and the need for explicit control mechanisms. 



3.1 Digital Implementation Approach 

The need to convert data from the analog to the digital domain is necessitated by the digital 

nature of the information being sent. There is a design decision, however, in choosing at 

which point in the baseband receive chain to implement this conversion. Most digital 

wireless systems perform this conversion at the earliest feasible point in the receive chain. 

This is commonly just after down-mixing the analog waveforms to a baseband frequency 

where the AID converter can operate with minimal aliasing. There are multiple advantages 

to performing this conversion early in the reception process, both from the point of view 

of using digital hardware in general, and from the point of view of designing a system with 

the specific strengths of the digital domain in mind, see Sections 3.3 and 3.4. 

The AID conversion process adds noise to the received signal in the form of quanti- 

zation noise, sample timing error, and aliasing [42]. Since AID conversion is a required 

function, these noise sources are unavoidable in the receive chain. Once the data has been 

moved to the digital domain, the noise associated with further processing is minimized, see 

Section 3.3.1. Thus, there is an advantage to performing this conversion as early as possible. 

Additionally, once operat ion has moved to the digital domain, digital design techniques 

can be used to implement the baseband functions. This means that the baseband imple- 

mentation has the advantages of digital designs: the portability of design which allows it 

to be reused between implementation technologies; the modularity of design which allows 

it to be built, verified, and tested once and then reused between system implementations; 

the relative ease of simulation; and the ability to use compilation to implement efficient 

functions in high level languages. 

The technologies used to implement digital baseband processing are varied, with full 

custom VLSI, ASIC designs, FPGA designs, and software implementations on both DSPs 

and GPPs all used. These different technologies provide a trade-off between fast fixed- 

hardware implement at ions and flexible software- based implement at ions. 

The fixed-hardware based approaches, such as full custom VLSI or ASIC chips can 

be highly efficient and offer the fastest processing capabilities and correspondingly high 

receiver data rates. These approaches allow the hardware to perform a small set of functions 

extremely well, but at the cost of the flexibility available in other implementation types. The 

fixed-hardware approach relies on the spatial reuse of a large amount of fixed, specialized 



hardware to perform baseband functions. 

Firmware-based approaches try to balance the benefits of the fixed-hardware and soft- 

ware based approaches. Firmware is reprogrammable, which offers more flexibility than a 

fixed-hardware approach. However, the reprogramming of firmware is typically slow and 

infrequently undertaken. In addition, the inability of FPGAs to access or modify their in- 

struction stream or functionality means that flexibility is limited as compared to a software- 

based approach. At the same time, however, FPGAs are capable of higher data rates than 

software-based approaches, although they do not achieve the highest rates of fixed-hardware 

approaches. The firmware-based approach relies on the spatial reuse of a large amount of 

partially fixed, partially specialized hardware. 

Software-based approaches provide flexibility of design and implementation. They have 

the added ability to be relatively easily upgraded or subsequently modified, which makes 

them more cost-effective. This is extremely convenient for fixing errors, adding functionality, 

or improving implementation methods. The need to reuse the exact same hardware to 

perform all of the functions, however, restricts the data rates at which the system can 

operate. These data rates are lower than those of a fixed-hardware solution, depending on 

the capabilities of the processor used. The software-based approach relies on the temporal 

reuse of a small amount of flexible, general hardware. 

Digital wireless systems which use a software-based approach, however, provide the 

ability to collocate digital processing for applications and communication in a single device. 

This provides an opportunity for savings on a number of different fronts. In terms of space, 

cost, power, and adaptability, the integration of data communications and processing into 

a single processor could provide an improved efficiency. For example, space savings could 

be realized reusing already present resources through implementing a single general chip 

capable of providing all functions, as opposed to providing components for multiple distinct 

functions but then only partially utilizing those resources. The reduced component count 

can also translate into reduced system cost. There is an additional improvement from the 

design cost perspective as software is generally cheaper and easier to design than hardware 

and is certainly more forgiving of errors, changes, or later improvements. 

Additionally, the reduction in the number of components, combined with an increased 

usage of a single component, namely the digital processor, could also allow power savings to 

be achieved. The need to power the ancillary specific components is replaced by increased 



usage of the digital processor. Power consumption is limited to that of the processor, which 

is already assumed to be required by the system. On the other hand, the relative amounts 

of power, the ability and time required to shut off the power to various components, coupled 

with the increased demands on the digital processor may mitigate or reverse these savings. 

Finally, by using a general digital processor to implement both communications and 

computation, it is possible to achieve a reduction in implementation complexity and cost, 

as well as improved system control. The two functions can be merged into a single device and 

their usage requirements and capabilities explicitly balanced. This provides an opportunity 

to exploit the trend towards having more powerful and general digital processing available 

at both ends of the wireless link to improve the communication system as a whole. 

3.2 Software Radios 

With the advent of cell phones, pagers, and other wireless devices, the use of digital proces- 

sors for communication-type processing has grown dramatically. Many wireless systems use 

some form of digital processing to provide, at a minimum, baseband functionality. Contin- 

uing in this trend, software radio systems have been proposed which rely on digital proces- 

sors to implement an even larger range of radio functions [43, 44, 451. These software radio 

systems involve various permutations of minimal analog components (filters, mixers, AID 

converters, and amplifiers), along with digital signal processors (DSP) [46, 47, 48, 49, 501 

or general-purpose processors (GPP) [51, 52, 53, 541. The general theme of these systems is 

to minimize the analog portions of the radio by performing as much processing as possible 

in the digital domain. 

Traditionally, the purpose of software radio systems has been to address the issue of inter- 

standard compatibility [44, 53, 451. This dissertation will take a different view of software 

radios. Instead of attempting to use the flexibility of software radios to provide inter- 

operability, this dissertation will examine some of the novel approaches to communication 

enabled by a software-based system. Specifically, it will take advantage of freedom from 

strict temporal constraints imposed by analog circuits and the freedom from static system 

design imposed by a hardware-only implementation. 

There are multiple types of systems associated with the term "software radio". These 

systems range from those which try to perform all functions beyond the transduction of the 



antenna in the digital realm, to those which focus on providing a subset of radio functionality 

in a common programming language on a stock general-purpose processor [55], to those 

implemented in carefully optimized software on a substrate of DSPs [47]. 

For the purpose of this dissertation, a precise definition of software radio is not needed. 

It is sufficient that demodulation and all further processing be performed in the digital 

domain. Down-conversion to an intermediate frequency (IF), or even baseband, prior to 

conversion to the digital domain is assumed to be acceptable and may very well be required 

to build this type of system using present technology. Hence, this type of system will be 

referred to as a digital radio in this dissertation in order to distinguish it from other software 

radio system approaches. 

3.3 Digital Radio Strengths 

Digital radios leverage unique aspects of digital domain to improve communication systems. 

Three digit a1 domain properties in particular lend themselves to new digit a1 communication 

system architectures. These properties, which will be described and discussed in the follow- 

ing sections, are referred to therein as infinite cascade, data synchronization, and temporal 

shij?. 

3.3.1 Infinite Cascade 

Moving to the digit a1 domain allows communication systems to trade the compounding noise 

and loss of analog components for regenerative components in the digital domain, at the 

cost of quantization noise, rounding errors, and possible conversion range and rate issues. 

The rectification provided by digital gates allows these regenerating digital components to 

be chained together without additional signal noise or data degradation. This allows a 

digit a1 system to string together an arbitrarily long chain of processing elements without 

concern for noise. Since the noise of the system is no longer dependent on its structure 

in the digital domain, infinite cascading allows the system to avoid noise considerations in 

determining the length of processing chains, the number of parallel chains possible, or the 

elements which make up these chains. The composition of digital processing can even be 

dynamically chained without impacting the signal noise. 

The ability to infinitely cascade functions without a noise penalty is a powerful tool. 
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Figure 3-1: The digital domain is especially well suited for functions convenient for novel 
digit a1 radio systems. 

Infinite cascade: Move, copy, and access data without loss. 
Data synchronization: Timing by sample count allows splits and merges. 
Temporal shifting: Store and retrieve data. 

As the complexity and functionality of the system grows, the number of components and 

functions through which the data must flow grows quickly. For a long enough chain of 

components, the one-time cost of conversion to the digital domain is dwarfed by the noise 

cost of an analog implementation. Digital operation allows the design to trade-off very 

high, but only instantaneous, precision for a fixed small level of error. While rounding error 

introduced by processing blocks can increase the error in a digital system beyond this fixed 

level, use of a digital representation format sufficient for the processing required can often 

mitigate and trivialize this error. Thus, a system which benefits from multiple processing 

steps is very well-suited to implement at ion in the digit a1 domain. 

The regenerative nature of digital circuits also plays an important role in the flow of 

data through a system. Since data is restored after each processing element in a digital 

system implementation, features which can cause degradation of the information signal in 

the analog domain are trivially overcome in the digital domain. For instance, copying in- 

formation to multiple destinations can be a lossy or difficult process in a discrete analog 

implementation. Impedance matching is required for the same signal to be simultaneously 

delivered to two destinations in parallel, and a careful application-specific circuit design is 

required for each copying or forwarding of the data. In the digital domain, these inter- 



connections are effortlessly composed since the regenerating digital circuits compensate for 

any such losses. Therefore, a digital system can split a received data stream into multiple 

simultaneous streams without affecting the information stored therein. 

3.3.2 Data Synchronization 

Data synchronization and ordering is an inherent property of the A/D conversion process. 

The quantization of continuous time data into samples allows data streams to synchronize 

on these quantized units regardless of time delays. Data flows can then be split and resyn- 

chronized merely by processing samples in lock-step. As long as, for a given throughput, 

samples are processed in order, then their outputs are naturally aligned. This allows the 

system to perform different functions on copies of the same data stream without a need for 

explicit synchronization of the output. Matching the heads of the resulting matching data 

rate streams, regardless of the relative delays introduced by differing processing chains, is 

equivalent to matching the values in time. These streams are then naturally positioned 

for merging, like the two sides of a closing zipper coming together. In an analog system, 

meticulously matched delays would be required to approach the same effect. 

Also, since continuous time is broken up into quanta by the conversion process, any 

characteristic of the data stream may be used as a relative time origin (e.g., a special 

signal which corresponds to the beginning of a data packet) and the relative position of 

any subsequent data value can be determined by its distance in quanta from that time 

origin. Thus, counting data values effectively substitutes for determining time delays since 

the number of data values can be used as a surrogate for the time base. Hence, data 

streams which undergo different processing can still be aligned and cycles within the data 

can be accessed simply by including delays of a fixed number of samples corresponding to 

the period of the cycle. The actual time delay experienced by any such streams becomes 

irrelevant; ordering, causality, delays, and synchronization can all be accessed and used, but 

without the constraints of literal timing. 

3.3.3 Temporal Shift 

Together, Infinite cascadability and data synchronization help to contribute major benefits 

to operating in the digital domain: the ability to copy or operate on data without necessarily 

degrading it, and the ability to merge or compare and temporally correlate data from 



multiple streams. The use of state elements in conjunction with these properties allows 

digit a1 communication systems to take advantage of a powerful third property - temporal 

shifting. 

Persistent state allows a digital implementation to store and/or copy data such that 

it can be used and reused as often as necessary within the real-time constraints on the 

output. Data no longer needs be tied to the real and continuous time flow of the analog 

components. This relaxed temporal constraint creates the opportunity to have multiple 

processing passes on the same set of data. Each pass can then be specialized for a specific 

task, such as maximizing the detection of a single orthogonal component. Since multiple 

passes are available, the deleterious effects on other data components of such specialization 

do not have an impact on the performance of the system. 

The temporal shift ability allows data to be stored or buffered and shifted in time, both 

in an absolute sense and relative to a sample count time base. This is enabled by the 

previously discussed properties of infinite cascade and data synchronization. The infinite 

cascade property ensures the act of copying and storing the data does not degrade the 

signal resolution, while the data synchronization property allows temporally shifted data to 

be used in conjunction with other relevant data streams (since the relative time bases can 

be realigned to allow merging, comparison, correlation, or any other multi-stream function). 

This allows data streams to be stopped and then restarted, subject to latency constraints, 

to allow separate data streams to align even under uneven delays. 

Temporal shifting also allows functions to operate across delays within the same data 

stream. Many correlation-type functions require that data values be compared or operated 

on with regard to previously processed samples. The ability to copy and temporally shift 

these previous data values means that the values remain available for such operat ions. 

3.4 Software Implementation Benefits 

Implementing radio systems in software on a digital processor confers many advantages 

beyond those gained by simply moving to the digital domain. The ability to reuse hardware 

to implement the maximum functionality with the minimum resources provides a large cost 

benefit. The general-purpose nature of digital processors allows for arbitrary changes in the 

composition and function of processing blocks, as well as the data flow in general, to best 



suit the current needs of the system. 

A software implementation on a digital processor allows the same processor hardware 

to be reused to perform multiple processing passes. In constrast, a fixed digital domain 

implementation would require specialized hardware for each such pass, with each of these 

hardware passes incurring a large cost in terms of design time and functional mismatches. 

Additionally, this effort must be repeated for each potential modification to the receiver. By 

reusing already present hardware in the software implementation, however, the resource cost 

for each system modification is minimized because underutilized or superfluous hardware 

(e.g., for a function which is no longer needed) is avoided. Consequently, a change in the 

functionality of the system no longer requires costly changes to the hardware. 

System flexibility is also significantly increased by a software implementation. Passes 

can be added, removed, or modified dynamically; a priori knowledge of system's extents or 

parameters is not required. The system can dynamically adjust to the current channel con- 

ditions or data rate requirements. For instance, the length and number of orthogonalizing 

codewords (see Chapter 5) might be increased for a relatively quiet channel. This would 

allow more data to be sent in parallel over the same channel but would require extra pro- 

cessing passes on reception. A fixed system would not be able to adjust to take advantage 

of the available channel characteristics. 





Chapter 4 

Communication Systems on 

Parallel Processing Architectures 

In recent years, attention in the computer architecture community has increasingly refocused 

on multiple processor systems[4, 56, 5, 6, 71. A shift to increasing concurrency has occurred 

in both the embedded and general purpose domains. This provides the opportunity to design 

communications systems which take advantage of the multiple programmable processors 

available in a parallel processing system. These types of systems have the potential to move 

beyond simple reimplemention of analog designs in the digital domain by making use of 

parallel but independently controlled processors to provide flexible and dynamic wireless 

functionality. 

The use of a multiple processing core architecture in a communication system presents 

many design challenges and opportunities. The specific processing system design elements 

have a large impact on the compatibility of the system with communication processing. 

Design decisions such as the processor interconnection network, I/O capabilities, and overall 

system topology have a profound impact on the communication systems which can be 

successfully built on an architecture. The level and types of parallelism available in a parallel 

processing architecture control what efficiencies, and thus what critical path latencies, can 

be achieved. These architectural elements all play a role in determining whether a given 

architecture is a suitable implement ation environment for a communication system. 



4.1 Parallel Processing Trends 

Traditionally, the incessant need for more powerful digital processors has been satisfied pri- 

marily through temporal reuse. That is, by designing processing elements which can perform 

functions in an increasingly shorter amount of time so as to free up these same elements for 

use in the next task. The dramatic increase in the clock frequencies of processors has been 

the hallmark of this approach [57]. 

A shift toward partial spatzal reuse, the duplication of processing elements to perform 

multiple similar functions concurrently, has been a common element of processor architec- 

tures for decades. Super-scalar, vector, and VLIW processors take advantage of multiple 

parallel functional units to supplement and multiply the performance improvement of tem- 

poral reuse. These types of processors are not fully parallel, however, as there are resources 

which are shared in common by the parallel functional paths. Some subset of issue logic, 

decode logic, caches, register file, and program counter (PC) are typically shared among 

all datapaths in all of the above processor types. The shared resources act as bottlenecks 

and prevent truly independent operation of the multiple datapaths. Attempts to over- 

come these bottlenecks include compiler instruction-level parallelism (ILP) extraction [58], 

multi- t hreading [59], and trace caches [60, 6 11. 

Many limiting factors have made continuing in this trend unattractive. For instance, the 

increased switching frequency and smaller transistors needed for continued improvement of 

temporal reuse leads to problems such as increased power density and excessive leakage 

current. Also, attempts to keep all of the parallel elements of these systems productively 

occupied, while heroic, have begun to yield diminishing returns, while the design complexity 

required to overcome the bottlenecks of partial spatial reuse architectures have become 

prohibitive [62, 63, 641. 

Recently, focus has shifted to full spatial reuse to supplement and continue improve- 

ments in processing capabilities. Full spatial reuse consists of using multiple independent 

processing elements in conjunction. Each processing element may utilize some amount of 

temporal and partial spatial reuse internally, but the sharing of resources does not extend 

beyond the processing element other than interconnect between processing elements and 

external interconnect. 

While research and scientific designs have explored fully parallel processing for years [65, 



66, 67, 681, commercial designs such as Intel's Pentium D series, AMD's Athlon 64 X2 

and dual-core Opteron series, IBM's Cell architecture, and ADI's' and ~ 1 ' s ~  multi-core 

DSPs have begun to follow this trend towards parallel architectures. These commercial 

designs primarily consist of instantiating a small number of previously designed cores on 

the same substrate with bus-based communication between them. This is a logical step from 

traditional uniprocessor designs, but does not attempt to redesign the processor architecture 

specifically with parallel computing in mind. A new class of research designs, however, 

have focused on more tightly coupled chip level parallel architectures [69, 70, 71, 9, 721. An 

overview of one such class of architectures, tiled architectures, is presented in Section 4.5.1. 

A more in depth look at a specific tiled architecture, the Raw processor [69, 73, 741, is 

presented in Chapter 6. 

4.2 Effects of Interconnect on Communication System De- 

sign 

The topology, latency, and bandwidth of the interconnect between processing cores can 

have a profound impact on the overall system design and on the parallelization of individ- 

ual design elements in a communication system. There is a tension between the latency of 

transmitting data over the interconnect and of computation on each processing core. This 

results in a trade-off between the processing load and amount of temporal reuse on any in- 

dividual processor, on the one hand, and the cost of transferring data over the interconnect, 

on the other. 

In communication systems, the size of data to be transmitted between functional blocks 

is typically known at design time. The fixed width of the data allows bandwidth constraints 

to be translated into latency constraints for design purposes. For instance, if the bandwidth 

of an interconnection link is one byte and the width of the data to be transmitted is one word, 

then the system incurs an extra latency penalty equal to the time it takes to communicate 

the additional three words across the link. Since latency, and the associated meeting of 

time constraints, is the true concern for the communication system, considering bandwidth 

in terms of latency is appropriate here. 

le.g., the ADSP-BF561 Blackfin Symmetric Multi-Processor for Consumer Multimedia 
2e.g., the quad-core TMS320VC5441 Fixed-Point Digital Signal Processor 



Assuming that a sufficient number of processing cores are available for the spatial pipelin- 

ing required, the time required to communicate between processing cores becomes critical. 

To maximize performance and keep the data pipeline in constant operation, the system 

needs to move data quickly from one unit to the next. In most cases, the specific functional 

latency (the time each function takes to produce its output) is not as vital as avoiding data 

pipeline stalls. Buffering in the network can be used to absorb this functional latency and 

keep the pipeline filled. There are, however, functions for which the amount of buffering 

available may be insufficient and, consequently, these functions have a maximum tolerable 

network latency to avoid stalls. Examples of this include control functions like header pro- 

cessing, or functions whose latency and data rate combine to require excessive buffering, 

such as the bottleneck functions described in Section 1.2.2. The cumulative latency of the 

full system, however, is always a primary concern in a communication system. 

The interconnect latency plays a pivotal role in determining which types of spatial 

parallelism can be profitably exploited by the system. In general, parallelization efforts 

must attempt to balance computation and interconnection costs. Large computational jobs 

partitioned at the inter-block level can often absorb the latency of slow interconnect with 

sufficient buffering. Tightly coupling short and fast computation across processing elements, 

e.g., at the intra-block level, however, requires similarly short and fast interconnect to 

avoid stalls. The amount of spatial parallelization available on an architecture is the finest 

sustainable level of spatial pipelining for which the amount of computation is on the order 

of the interconnect latency. At that level, further parallelizat ion across processing elements 

would result in interconnect latencies disrupting the computation and waste functional 

resources. 

The amount of data to be processed can also affect the spatial partitioning of functions. 

The goal is to balance computation and interconnection, but the accessibility of data can 

significantly impact the length of computation time and therefore affect functional parti- 

tioning. If the live data set is small enough to be stored in the register file of a processing 

core, then this data is immediately available and will not slow computation. If the partition- 

ing requires too much data to be present on a single processing core, then register spills and 

cache misses could seriously impact the execution time on that core. Spreading these data 

values, along with their functions, over multiple cores may take advantage of the storage 

of multiple processors, as well as buffering of data in the network, to reduce computational 



overheads. This keeps data values live and out of main memory, and reduces or eliminates 

cache accesses, so that values are readily available as needed. This solution is only appro- 

priate, however, if the interconnection latency is less than the memory latency. Otherwise 

such a solution may result in slower processing than just using the memory system. 

The topology of the interconnections between and within functions can have a profound 

impact on the cost of communication [75, 761. How well each problem or function maps onto 

the type of interconnect available can profoundly affect the interconnect latency between 

processing elements, thereby, impacting parallelization efforts. For instance, a function like 

FFT might map well onto an R-network which has logz type connections [77, 681. Each 

consecutive section of the trellis would only require a single hop in such a topology. However, 

implementing the same FFT on a mesh network might require many more hops to achieve 

all the cross routes of the trellis, thereby increasing the cumulative interconnection latency. 

The longer wires used in hops in an R-network, though, may limit the achievable system 

clock speed and reduce overall performance. 

This creates a trade-off between localization of computation and interconnect latency. 

If a processing function requires feedback and/or data reuse, then performing all of the pro- 

cessing on a single core may be very efficient. It avoids concerns about delay and scheduling 

of using the network to move around the appropriate data for the next computation. Per- 

forming all of the computation on a single processor, however, may result in an unacceptable 

increase in computation time, or in a live data set which is too large for the register file or 

cache. Hence, the cumulative interconnect latency of spatially pipelining must be carefully 

balanced against the computational requirements of temporal reuse. 

4.3 Effects of 1 1 0  on Communication System Design 

To take advantage of increased data processing capabilities, it is necessary to have sufficient 

data available on which to operate. The ability to move data into and out of processing cores 

is vital to keeping spatial pipelines and parallel resources profitably occupied. The system 

I/O resources, whether pins or network connections, must provide enough bandwidth to 

allow data to move as needed. 

Efficient operation is predicated on the ability to keep data flowing at a predictable and 

constant average rate compatible with the sink and source rates of processing elements. An 



inability to feed data into the processing elements, even if those elements are sufficiently 

configured to meet all processing and latency requirements, will result in stalls from data 

starvation. If data starvation stalls occur, but the processing elements are st ill capable 

of meeting latency requirements, however, then that implies the desired communication 

system may still be possible. Consequently, the system could potentially be achieved at a 

slower processing rate, or by using fewer resources with more temporal reuse. Conversely, 

if the system is not capable of moving data out to consumers quickly enough, then data 

values can back up and cause stalls through backward pressure on processing elements as 

they attempt to output values. 

The concept of a stream of data is a useful abstraction for the data sets consumed and 

generated by communication systems. Streams are especially useful for signal processing and 

communications, as signals are inherently streams with an infinitesimal time step between 

values. The process of quantizing these signals into discrete time steps does not change the 

fundamental aspects which qualify the now discrete data as a stream. There are four main 

properties which qualify a set of data as a stream: 

Serial ordering Data streams are made up of serial in-order data values. The order of 

arrival of data corresponds to the correct temporal ordering according to the stream's 

time base. The first value presented, the head of the stream, represents the oldest 

temporal value, and the last value seen corresponds to the temporally most recent 

value. This allows temporal relationships to be expressed through relative position 

in the stream. This position can be combined with knowledge of the time interval 

between data values, the stream data rate, to determine exact timings. 

Constant rate Streams require a constant steady-state or average data rate. If the con- 

suming system can operate at this rate, there is no concern for data being lost or for 

data stalls. The possible stream data rates are typically know a priori and directly 

inform the system design. Knowledge of the stream data rate and the amount of time 

available between data values directly influences parallelization and partitioning. 

Liveness Only data in a window around the head of a stream is live. This helps reduce 

the need for expensive memory, as only a small subset of the data is relevant, or live, 

at any given time. The smaller the window, the less storage needed. Data may also 

be output or discarded after its liveness expires and it is not needed for any further 



computation. The amount of time data values are live, and correspondingly, the width 

of the window, is a function of the system latency. 

Semi-infinite The data length of a stream must be much longer than the window of 

liveness. This aspect is import ant to ensure that steady-st ate assumptions dominate. 

Transition costs or anomalies, such as stream startup or ending therefore do not 

dominate and can be mitigated. 

These properties are very similar to and encompass some of the digital radio aspects 

discussed in Section 3.3. This is not accidental - stream processing is a natural approach 

to communication processing and digital radios take advantage of this model. 

Streams are a very useful abstraction in communication systems as they map very well 

to the system elements. The constant discrete output of an A/D converter looks like a 

stream. Therefore, any sort of monitoring of continuous signals looks like a stream. In a 

similar manner, streams can also describe the movement of large amounts of data. While 

not semi-infinite, a large enough block of data moved as serial values will look, for all 

practical purposes like a stream. As long as the data length is much larger than the window 

of liveness, then the streaming model is applicable. The producer/consumer relationship 

between spatial pipeline elements, or function blocks, also acts as a stream of data, with 

the consumer receiving a stream of values from the producer of the network and outputting 

a stream of the processed results to the next consumer in the pipeline. 

In order to satisfy the streaming data model, processing elements need adequate external 

access to move data in the amounts and at the rates required. The system I/O resources 

must allow sufficient bandwidth for all necessary streams to flow and coexist. In addition, 

a system could have more than one communication stream operating at the same time and 

must be able to meet the aggregate system requirements. For instance, a wireless camera 

could be receiving an image stream while wirelessly transmitting a processed data stream. 

4.4 Effects of Reuse on Communication System Design 

One of the primary benefits of implementing a communication system in a general-purpose 

processing environment is the ability to take advantage of multiple different types of reuse. 

The various types and amounts of reuse must provide sufficient benefit to make operating in 



this environment profitable. Designs must be fast enough to meet the latency requirements 

of the communications system and to successfully achieve real-time operation. At the same 

time, the system must retain enough flexibility to justify implementation using general- 

purpose processing elements. 

The use of general-purpose processing allows access to multiple complementary types of 

reuse. These reuse types fall into two broad non-exclusive categories: reuse which improves 

performance to make communication processing feasible, and reuse which enables improved 

functionality or flexibility in the communication system. 

The main barrier to the use of general-purpose processors for high data rate communica- 

tions processing is the limit of temporal reuse. Uniprocessor GPPs are constrained by their 

use of a single program counter and set of fetch and decode logic. This inherently serializes 

the program flow and requires that the same hardware be used repetitively to implement all 

functions. The primary means of improving the performance of such a system is to decrease 

the amount of time required to perform each instruction on the same hardware. In order to 

meet the stream data rate latency constraints of a high data rate communication system, 

however, the time available per instruct ion becomes unrealistically small. 

The cumulative time required to schedule all of a communications system's instructions 

precludes the use of solely temporal reuse to meet real-time operational constraints. What 

is needed is to reduce the amount of work required to a level consistent with the timing 

constraints. This can be achieved through parallel processing. Communication processing 

can commonly be broken down into multiple independent functional blocks connected by 

streams of data in a producer/consumer fashion. Each of these blocks can then be assigned 

to its own set of hardware, assuming sufficient interconnection is available between hardware 

elements. Many communications functions are equally capable of being internally pipelined, 

creating the opportunity for significant improvement in processing latencies through the use 

of spatial reuse for parallelization. By reusing the same design to create multiple instances 

of hardware which can operate in parallel, the workload on any given hardware instance 

can be reduced. 

Spatial parallelization could, and traditionally has been, implemented by application- 

specific hardware design. Multiple instances of functionally specific designs are used to 

minimize the processing time of any given operation. While such designs are the most time 

efficient means of implementing functions, they suffer from a lack of flexibility. A separate 



time-consuming design effort must be undertaken for each operation to be performed, in- 

cluding all testing and verification. These disparate static designs are then fabricated into 

silicon and cannot be changed or modified without fabricating a new revision of all of the 

hardware on a die. There is no potential to change the functionality of any block or set of 

blocks based on conditions, system parameters, algorithm modification or improvement, or 

system upgrades. The best which can be achieved is to decide a przori which conditions, 

parameters, and functions are most likely to occur and explicitly design to meet that limited 

set of possibilities. This results in additional design time and complexity, as well as addi- 

tional hardware which often goes unused except under limited and specific circumstances. 

To achieve the processing power of spatial parallelization while retaining the flexibil- 

ity and adaptability of general-purpose processing requires combining and balancing both 

spatial and temporal reuse. This can be achieved by using multiple processing elements in 

conjunction to meet system timing constraints while retaining the flexibility and benefits 

of general-purpose processing on each element. Spatial pipelining of processing can reduce 

the temporal load on any single general processing core. This would allow these processing 

elements to operate within the functional latency constraints, thus enabling their use in a 

communications system. 

One of the primary benefits of operation in the general-purpose processing domain is the 

ability to make use of software implementations and software reuse. Implementing functions 

in software allows the use of abstraction layers to reduce design times and difficulties. High- 

level languages, compilers, and debuggers can be used to more quickly and easily generate 

designs with a reasonable level of optimization. Designers need not be conversant with the 

underlying low level implementation issues and can instead focus on system and algorithm 

development and optimization. Such a high-level approach might not be sufficient to meet 

the latency requirements for all parts of a system (critical path functions may need to 

be tweaked by hand or done in assembly) but it allows the majority of the system to be 

implemented in a sufficient manner and much more easily. 

In addition, software can be written once and then reused on multiple processors. A 

major benefit of design reuse is in the reduced time and effort in building the larger systems. 

A single design can be used multiple times as part of a larger system. Additionally, the 

system can be easily expanded through the reuse of previously generated designs. 

Additional software instances can be implemented trivially as long as the same type of 



processing element, or one with the same instruction set architecture (ISA), is used. The 

ability to migrate designs is now based on the ISA, not on the hardware. This flexibility 

is a result of software making use of the ISA abstraction layer which is itself more flexible. 

The result is that in order to modify a system to replicate a function multiple times using 

multiple processing elements, say to build another receiver chain, no new design effort 

would be required. The same software implementation can be seamlessly implemented on 

additional elements. 

Another benefit of a parallel general-purpose processing approach is that the system 

functionality and applications are not limited by the hardware design. The system is able 

to accommodate disparate uses and it is not necessary to know all future uses at design time. 

For instance, if a system is composed of multiple general-purpose processing elements, some 

number of these elements could be used for communication processing when the system is 

transferring data. Those same elements could later be retasked to perform completely non- 

communication related functions when no communication is occurring. The freed hardware 

resources could be used in whatever manner is most useful at the time, but the system 

would still retain the ability to switch resources back to communication, if necessary. 

A GPP implementation allows system functions to be predicated on current conditions. 

For instance, the complexity and precision of the channel correction techniques used could 

be based on the current channel conditions. In less-noisy environments, simple channel 

correction techniques could be employed using a minimal number of processing elements. 

Thus, as the noise increased, more ambitious channel correction software could be employed 

using additional processing elements. 

Another benefit is the ability to adjust the level of spatial pipelining employed by the 

system to accommodate the current communication data rate. For a lower data rate with 

longer latency requirements, the system could rely on the temporal reuse of fewer processing 

elements. An increase in data rate, and corresponding reduction in acceptable latency, 

could be addressed by spreading out the work over more processing elements with fewer 

instructions per element. 

A further benefit of operating in a general-purpose processing environment is that sys- 

tem changes can be translated into software changes. Changes can be easily enacted through 

software updates, as opposed to requiring a complete refabrication of the hardware. Up- 

grades, improvement s, bug fixes, and even migration to new communication specifications 



can be realized through a single set of software modifications and then distributed to all 

instances of the hardware. New physical devices are not required for each slight, or major, 

modification. 

4.5 Parallel Architectures for Communication 

The main function of a communication system is the transfer of information in a timely 

manner. The major difficulty in designing communications systems using general-purpose 

processors lies in achieving sufficient performance to guarantee real-time operation. The 

efficiency and type of implementation can easily limit the communication data rate and 

impede communications. 

The key to achieving the performance necessary for high data rate communication using 

general-purpose processing is parallelism. For most systems, it is not possible to run all nec- 

essary functions serially because to achieve suitable performance, an unreasonable amount 

of temporal reuse, and a correspondingly high clock speed, would be required. The solution 

is to spatially pipeline functions across multiple processing units. Functions can be spread 

out among processing cores and the data registered between cores, creating a pipeline of 

functions across multiple cores. Performing multiple functions contemporaneously by dis- 

tributing them across multiple processors reduces the amount of temporal reuse required 

for any single core and allows higher data rate processing to be achieved. 

For sufficiently low latency interconnect between cores, the same design philosophy can 

be applied on an intra- as well as inter-function scale. Some receiver functions require so 

much computation that a single core is insufficient to complete the function in a reasonable 

time frame. For instance, the Viterbi decoder and many of the other bottlenecks discussed 

in Section 1.2.2 require large amounts of processing. Such functions can themselves be 

spatially pipelined and multiple processing cores may be used in conjunction to achieve 

accept able latencies. 

Latency between processing units has a significant impact on the types of parallelization 

which can be used and the level of parallelization employed. A comparison of the various 

types of multi-processor core systems and some of their relevant parameters is presented in 

Table 4.1. An overview of each of these system types is presented below, followed by an 

examination of relevant system aspects for communications. 
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Table 4.1 : Comparison of parallel architecture systems. 

4.5.1 Tiled Architectures 

Number of 
Cores 

Tens to hundreds 

100's of cycles 
> 1000's of cycles 

Tiled architectures are characterized by multiple replicated general-purpose processing cores 

connected by low latency interconnect. Such architectures are designed to improve system 

performance by taking advantage of their high bandwidth, low latency interconnection 

network to harness multiple lower complexity general processing cores in parallel, see Fig- 

ure 4-1. There has been significant recent research interest in tiled architectures, with many 

different design approaches currently being investigated [4, 70, 71, 91. 
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Figure 4-1: An example of a Tiled Architecture [78]. 

Each of a tiled architecture's processing elements can operate independently, with coarse- 

grained parallelism, or tiles can operate cooperatively, with fine-grained parallelism. When 

using coarse-grain parallelism, multiple loosely related functions operate independently on 



different processing elements with little communication between them. When using fine- 

grained parallelism, elements operate in conjunction with large amounts of inter-element 

communication and data value interdependence between elements. This allows tiled archi- 

tectures to offer a significant level of flexibility. Fine-grain parallelization allows processing 

elements to work cooperatively with each element performing a few very small specific soft- 

ware functions in order to achieve performance closer to that of a hardware or firmware 

based solution. But coarse grain parallelism allows these same elements to perform in a 

manner similar to other multi-processor systems, with independent processing tasks as- 

signed to each element. This mix of fine-grain performance and coarse-grain functionality 

is very powerful. 

There are several features which are common to tiled architectures. These are: 

Uniform replication Having multiple processing elements on a single die is achieved by 

replicating a single core element design. All processing elements are identical, thereby 

reducing design time and effort. Having uniform elements also allows application 

implementations to be arbitrarily migrated on-chip. 

General purpose While the level of complexity present in each processing core is a matter 

of research, a common aspect of tiled architectures is that each element is general pur- 

pose in nature. Each core must be able to perform arbitrary computation. This allows 

a tiled architecture extreme flexibility without compromising the uniform replication 

requirement. Some designs implement a superset of this requirement by including 

specialized structures within a core to improve performance on specialized functions, 

yet each core is still capable of arbitrary computation. 

Individual program counter (PC) Each core must be able to have its own control flow. 

The capability to have disparate instruction streams on cores allows coarse-grain par- 

allelism by enabling unrelated functions or applications to run on different cores. The 

availability of both coarse and fine-grain parallelism is imperative to providing enough 

work to keep as many cores productively occupied as possible. 

Low latency, high bandwidth network The interconnection between processing cores 

must be on the order of a few cycles. This is necessary in order to make use of 

multiple cores cooperatively to address fine-grain parallelism. Low level parallelism, 



especially containing data dependencies, requires low latencies between parallel units 

to avoid stalls which reduce or eliminate the performance benefits of parallelization. 

The network must also have high enough bandwidth to minimize communication 

bottlenecks. 

Scalable Tile architectures are designed to be scalable. Scalable designs are insensitive 

to the sizing of the processor, both in terms of the number of cores and the size of 

each core. This means that arbitrarily large tiled structures can be generated through 

uniform replication of cores. Any available die area can be profitably employed simply 

by adding more cores. Additionally, scalability results in a core design which can be 

easily migrated across process generations, as the relative timing of each core must be 

self-consistent. 

Scalability also requires that cores, and their interconnect, contain no global struc- 

tures, such as chip-length wires. Global structures would require significant design 

modifications if the number or size of the tiles were changed, as any change in process 

sizing would change the timing of structures which fail to shrink relative to the new 

process sizing. 

Local communication Short wires are critical to reducing the latency of the interconnect. 

Connecting each core to all its local neighbors results in fast inter-core interconnect 

with high bandwidth between all neighboring cores. Wire distances, which are sized 

relative to the size of a core, provide a logically consistent interconnect with scaling. 

Interconnect which is predicated on distances in number of cores traversed as opposed 

to absolute distance automatically adjust appropriately as cores sizes are decreased. 

Local communication also promotes fine-grain parallelism. Consistent and fast tim- 

ings are necessary for the exacting synchronization necessary for many fine-grain par- 

allelization tasks. Programmable interconnect allows communication patterns to be 

determined and implemented statically to tightly schedule the cooperative utilization 

of cores. 

Support streams Stream support is vital to tiled architectures. The ability to stream 

data allows fine-grain parallelized applications to avoid stalls associated with being 

starved for data. High bandwidth I/O is necessary to allow sets of ordered data 



values, or streams, to be transferred directly onto the interconnection network of a 

tiled architecture. This allows designs which are able to keep consecutive data live 

to allow operation on large amounts of data with minimal memory accesses. The 

interconnection network provides a form of storage as "in flight" values avoid the 

need to process data through memory. 

Tiled architectures are appealing for use in communication systems because they allow 

enough spatial reuse to achieve high processing rates, but enough temporal reuse to retain 

flexibility. Such architectures provide the ability to take advantage of spatial reuse but 

through interconnect which is low enough latency to allow for real-time design. They 

provide the generality and flexibility to allow resources to be accumulated or released as 

needs dictate. They also provide a uniform substrate on which software can run, allowing 

each core to use predefined software to seamlessly change its function and to dynamically 

build new system topologies. 

4.5.2 Chip Multi-Processor (CMP) 

Chip Multi-Processors (CMP) typically consist of multiple previously designed processing 

cores implemented on a single die, typically connected by a bus. These designs usually 

consist of a few small number of cores (e.g. 2, 4, 8) on a single chip. CMP's often represent 

an attempt to more profitably make use of newly available die area than simply increasing 

cache sizes by improving performance through coarse-grain parallelism instead. 

CMP's are currently used most often as replacements for uniprocessor systems, and, 

consequently, are commonly used to run software originally designed for the uniproces- 

sor domain. As a result, CMP's typically use high level parallelism, such as thread level 

parallelism, to try and utilize the additional processors available without significantly re- 

structuring the software being used. 

However, the flexibility of CMP's may be limited by the latency of the interconnect be- 

tween processing elements which is typically on the order of tens of cycles. The opportunity 

for fine-grain intra-function parallelism is reduced by the long latency of the global scale 

interconnect. Fine-grain parallelism is often precluded by the low bandwidth imposed by 

the interconnect ion bus and the limited number of processing elements available. 

CMP designs typically take a relatively short-term view of technology scaling. These 

designs incorporate the ability to increase the number of processing elements and/or amount 





hide interconnect latencies. Multi-chip systems are not capable of supporting parallelism 

at the intra-function latency sensitive level, however. 

Historically, there have been multi-chip systems which made use of very fine-grain par- 

allelism. These systems typically operated in a regime where the clocking of the system was 

so slow that the interconnect latencies were overshadowed by the computational latencies. 

However, processing speeds have increased much faster than the speed of interconnect and 

this assumption no longer holds. 

The relatively long latencies of the interconnect between processing elements make multi- 

chip systems unsuitable for high data rate communications systems which have any data flow 

that is not strictly feed-forward. Even in the feed-forward case the cumulative interconnect 

and processing latencies must be low enough to meet the maximum latency requirements 

of a communication system. 

4.5.4 Networked Clusters 

The logical extension of a multiple processor system is a cluster of independent computers 

connected through an external network, e.g., Ethernet. In this case, communication between 

computers occurs at the application level, as the interconnection network requires such 

niceties as the use a protocol stack. This results in network latencies of at least thousands 

of cycles. 

Networked clusters can be very useful for solving computationally demanding problems, 

but communication is so expensive for these systems that they are typically only used for 

latency insensitive problems where the computation time required is orders of magnitude 

larger than any interconnection time. The long latencies of such systems are mitigated by 

the fact that the individual computers are designed to operate independently and usually 

do not share resources. Networked cluster computing focuses on partitioning problems and 

data across individual computers and then reassembling the results. Therefore, networked 

clusters operate at the coarsest grain of parallelism. 

Networked clusters are typically unsuitable for implementing a high data rate communi- 

cation system. The extremely long interconnection latencies make it impractical to harness 

a cluster of computers to cooperatively implement a high data rate communication sys- 

tem. However a networked cluster solution might be appropriate to implement multiple 

loosely related communication systems. This might be useful, for example, in building a 



base-station system which could simultaneously communicate with multiple users. 



Chapter 5 

Multipass 

Performing wireless radio functions in the digital domain on a digital processor allows 

multiple iterative or parallel sets of operations, or passes, to be performed on an input 

data stream. A system which utilizes multiple processing passes will be termed a multipass 

system and be shown to enable more sophisticated and flexible demodulation, detection, 

and signal processing schemes to be used in recovering information. Multipass systems are 

better suited to take advantage of the trade-offs and benefits of operating in a general- 

purpose processing digital domain. This, in turn, allows multipass systems to provide 

functionality which is more adaptable, cost effective, and convenient than traditional digital 

communication systems. 

The passes of a multipass system can operate independently, giving rise to multiple, 

possibly unrelated, outputs from the same input stream; or passes can be progressive, 

with the output from each pass informing successive passes; or some combination of the 

two. One approach is to use individual passes to maximize the distinctions between different 

information elements. This improved symbol differentiation, or orthogonality, enables better 

communication systems with higher data rates and increased capacity. 

Multipass receivers, like all receivers, precondition the incoming waveform and then 

perform detection to attempt to reproduce the desired data stream. The key to multipass 

systems is that each pass can perform a different type of preconditioning and detection. The 

preconditioning of each pass can be optimized to complement the detection of a specific piece 

of information contained in the data. These data pieces can together form a more accurate 

representation of the transmitted data or form a representation of a larger set of transmitted 



data. 

Multipass systems can also be used to overcome the bottlenecks of baseband communica- 

tion. Multipass provides a means to compose or make use of multiple receivers to meet data 

rate constraints at lower processing rates. Each pass can perform a receive chain function 

and the operation of multiple passes in parallel can reduce the temporal reuse load required 

for any given pass. Multipass allows spatial reuse of functions to act as an alternative to 

temporal reuse and a means to load balance between the two, see Figure 5-1. 
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Figure 5-1: A multipass system has the ability to use multiple receive passes to trade 
temporal reuse (frequency) for spatial reuse (area). An increase in the amount of area used 
translates to a lower minimum clock frequency. A Zpass multipass system can use twice the 
area of a single pass system to operate at half the speed. The reduction in clock frequency 
could make an otherwise unimplementable system feasible. A lower clock speed would also 
enable other benefits, like power savings through voltage scaling or the use of higher Vt 
devices. 

This trade-off between area (in the form of additional processing passes) and required 

processing rate (each pass operates at a fraction of the overall processing rate) allows the 

system to operate at a lower required clock rate. A reduction in required system clock rate 

has multiple benefits. One benefit is an increased scope of viable systems, as the decrease in 

the necessary processing rate allows sufficient computational slack to enable the use of less 

application-specific implementation methods (e.g., FPGAs, DSPs, GPPs, etc.). Another is 

an increased ease of implementation due to relaxed circuit timing constraints. Additionally, 

a lower system clock rate can be leveraged to reduce the power consumption of the system 



(see Section 5.4.1). 

Multipass systems allow the layering of data streams over a channel. A single channel 

may be used to send multiple streams of data which are then separated and individually 

decoded by the processing passes. These layers could be designed to interact in an iterative- 

type approach with each pass providing information for the next (as in the example below in 

Section 5.2); or passes could be distinct in a parallel-type approach, as if multiple separate 

wireless links were in operation which just happened to make use of the same analog front- 

end and channel (see Section 11.1). 

5.1 Concept 

The multipass systems explored here are designed to overcome the bottlenecks of commu- 

nication processing on general-purpose digital processors. The use of a multipass design 

allows the system to explicitly manage the trade-offs between interconnection and compu- 

tation and spatial and temporal reuse in order to find the balance that best suits the given 

implementation and conditions. The multipass design provides a means of utilizing a mul- 

tiple processing core substrate to allow the communication subsystem design to adapt to 

system-level constraints such as current channel capacity, processing resource availability, 

and temporal processing limitations. By utilizing spatial pipelining, multipass systems can 

achieve real-time latencies, as required by communication processing, which would be un- 

achievable using any single general-purpose processor. This becomes especially apparent for 

the "hard" functions which comprise communication system bottlenecks, such as in symbol 

demapping, where there is a potential to generate a large number of bits from a single pair 

of symbol values, and in channel decoding, where a large amount of processing may be 

required for each of those bits. 

Multipass acts as a type of multiplexing and demultiplexing for communication of infor- 

mation across a channel by breaking up the communication workload into multiple, parallel 

sets of work. Multiple streams of communication are layered onto a single radio front-end 

and wireless channel, see Figure 5-2. At the transmitter, multiple streams of data are 

merged into a single stream of multi-layered data. This single stream of data is then trans- 

mitted across the wireless channel and received as a single stream by the receiver front-end. 

The receiver provides a copy of this received stream to each of the receive passes which 



then isolate a specific layer of information. These individual layers are decoded by their 

respective receive pass to retrieve the transmitted data. 
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Figure 5-2: Multipass general concept. 

The merging of multiple input streams at the transmitter is performed by a combining 

function. The choice of combining function has a large impact on the system. The physical 

system constraints, type of orthogonalization, available data rates, impact of various types 

of noise, system latency, and general complexity of the system are all dependent on the 

combining function chosen. The type of benefit derived from using a multipass system is 

also tightly coupled to the combining function used. For example, a combining function 

that merges passes which remain completely independent might be better suited for systems 

where all data is equally relevant and the goal is to achieve higher data rates or lower 

processing rates through parallel data transmission. A combining function which relies on 

multiple progressive processing of passes might be better suited to situations where there 

is a hierarchy of data relevance and reception of one data stream at the potential expense 

of another is desired. The degree of correlation between processing passes is related to the 

combining function used and defines the amount of interdependence of data layers. 

The example multipass system implemented here, as proposed in Section 5.2 and im- 

plemented in Chapter 7, uses superposition as a combining function. Superposition was 

chosen as a simple proof-of-concept combining function. It is by no means the best com- 

bining function in all cases, but it is sufficient to highlight the feasibility and capabilities 



of multipass systems. Other choices of combining function could have a profound impact 

on the useful operating regime and characteristics of a multipass system. Other combining 

functions are left as future work and are discussed in Section 11 .l. 

There are numerous benefits to employing a multipass approach to digital communica- 

tion system design. The benefit of primary interest here is the ability to make use of spatial 

resources to relax temporal constraints. Many of the other benefits of multipass systems 

are discussed in Section 5.4. In this case, the multipass system is a means of utilizing any 

available processing resources to augment the communications system. This can be done 

either by dividing a current transmission link into multiple passes and reducing the overall 

processing rate required while holding the communication data rate constant, or by using 

additional passes to transfer new data streams and increase the overall data rate. 

The decision of which scenario to adopt, higher data rate or lower processing rate, is 

very dependent on the current system conditions. Fortunately, the flexibility of the system 

allows it to readily move between either scenario as needed. Many aspects are factored into 

the decision of how to adjust the multipass system. 

First and foremost, the channel, and more specifically the Signal-to-Noise Ratio (SNR), 

must be sufficient to deliver the required data rate. Depending on the combining function 

used, multipass can have a negative impact on the SNR. Each pass will look like noise to any 

other pass. Therefore, there must be sufficient signal present at the receiver to overcome 

this apparent increase in the noise level (see Section 5.5). If the SNR is not sufficiently high, 

then use of a higher data rate multipass will significantly degrade signal quality and result 

in an insufficient communication system. In the lower processing rate scenario, however, it 

is already assumed that the channel is sufficient for the data rate in current use and moving 

to a multipass system should be feasible. 

In addition, the higher data rate scenario might require more processing to consume 

the larger amount of data arriving at the receiver. This additional processing may require 

those processing resources which were just allocated to increase the communication rate. 

The system will require a careful trade-off between communication and computation in this 

case, but multipass systems have the capability to explicitly and flexibily manage this trade- 

off. In the lower processing rate scenario, there is still a tension between communication and 

computation. While using multiple passes might allow the communication portion of the 

system to reduce its processing rate, if the computation portion cannot follow suit then there 



is no real benefit unless a multi-rate system is used. In fact, depending on the functions 

implemented, computation at the lower processing rate might be feasible but may again 

require those resources recently allocated to communication. Thus, the communication and 

computation trade-off must be closely managed. 

5.1.1 Digital Domain Enablers 

Multipass systems take direct advantage of the strengths of the digital radio discussed in 

Section 3.3, namely, infinite cascade, data synchronization, and temporal shifting. Figure 5- 

3 expands the comparison presented in Figure 3-1 to include a multipass type system. 
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Figure 5-3: Noise source comparison between implementation types: 
A circle represents a function and incurs a noise penalty in the analog case, but may not 
in the digital. A split incurs a noise penalty in the analog case, but not in the digital. 
Noise grows with the processing chain length and width in the analog case, but not in 
the digital. Synchronization of data, while hard in the analog case, requiring specialized 
circuits and resulting in jitter and added noise, is simple in the digital case. The multipass 
system retains all the benefits of the digital case, plus it has the flexibility to dynamically 
implement multiple concurrent processing chains and arbitrarily change functions. 

Infinite cascade is used by multipass systems to copy data for the multiple passes without 

loss of resolution. This allows the same data set to be operated on multiple times in parallel 

without any losses associated with the number of passes or frequency of splits. Another 

benefit of infinite cascade is the ability to modify the number of functions in a pass without 

negatively impacting the data quality. This means that passes do not have to be carefully 



limited in design or carefully matched to avoid or mitigate the accumulation of noise along 

each pass. 

Data synchronization is used in the interaction between the various passes. It allows 

the output of a pass, or part of a pass, to be aligned with and used in a different pass. It is 

also necessary for keeping track of the data outputs of the various passes. It is vital if any 

of the data is to be merged, re-aligned, or compared, or if the data will interact in any way 

between passes. Even if the data passes are independent, though, data synchronization still 

plays a role. Data synchronization is necessary for any splitting or merging of data within 

a pass, but is, even more importantly, needed to keep track of high-level data alignment 

issues. Since all passes use the same physical front-end hardware, all of their data must be 

sent in a single compound packet of information. Data synchronization is needed to keep 

track of the packet-level information, such as detailing where a packet or data chunk starts 

and ends, as well as to trigger the appropriate control and processing. 

Temporal shift also works in conjunction with data synchronization to allow passes or 

data streams to interact without the need for explicit delay matching. Storage elements 

can be used to arbitrarily delay or store data streams until they are needed. The ability to 

perform data synchronization means that when the stored data is ready to be employed it 

can easily be matched to any other data streams. Temporal shift enables iterative interaction 

between passes. Data streams can be stored or buffered in memory. Thus, some passes may 

store a copy of a data stream while other passes are processing. The results of the processed 

passes can then be used to assist with processing the stored data streams. The example 

below, in Section 5.2, shows one way in which this interaction could be used. 

5.2 Multipass System Example 

A 2-pass multipass system is presented in this section, see Figure 5-4. Two data streams, 

Data1 and Data2, are combined at the transmitter. For both ease of implementation and 

didactic reasons, superposition is the system combining function used. The resultant single 

multipass stream is then transmitted across the wireless channel from the transmitter analog 

front-end to the receiver analog front-end. 

At the receiver, the multipass stream undergoes packet level processing, such as header 

processing and channel correction. The corrected multipass stream is then copied, with 



one copy being sent to each pass's receiver chain. The Pass2 data stream is stored pending 

the processing of Passl. The Datal stream is then reconstructed by the processing of the 

Passl receive chain and this output is itself copied. One copy is presented as the Passl 

receiver output, Datal', while the other is used in the recovery of Pass2. This copy of the 

received Datal' is partially retransmitted. The purpose of the retransmission is to attempt 

to recreate a copy of the noise-free Passl stream used prior to the combining function at the 

transmitter. The recreated Passl stream is then subtracted from the stored single multipass 

stream in order to try to remove the effects of Passl from the multipass stream, leaving the 

Pass2 stream as the remainder. The remaining Pass2 stream is then scaled according to the 

combining function scaling used at the transmitter. The scaled Pass2 stream is processed 

by the Pass2 receive chain and the resulting Data2' stream is presented as the other receiver 

output. 
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Figure 5-4: 2-pass multipass system example. 

Each conceptual stage of the example multipass system will be shown in greater detail 

in the following sections. The data rate configuration shown uses a Quadrature Phase Shift 

Keying (QPSK) modulation scheme on both Passl and Pass2. As such, it is referred to 

as a QPSK:QPSK 2-pass multipass system, where the first QPSK preceding the : denotes 

the Passl modulation scheme used, and the second QPSK following the : denotes the 

Pass2 modulation scheme used. This notation will be used throughout this document. The 

QPSK:QPSK system provides the same data throughput as a single pass 16-Quadrature 

Amplitude Modulation (QAM) scheme. An implementation of this system is presented in 

Chapter 7. 



5.2.1 Transmitter 

The transmitter in a multipass system is responsible for individually processing each input 

data stream and then combining these streams into a single multipass data stream. Each 

data stream is individually processed by a transmit chain up until the point where the data 

bits have been channel corrected and mapped into signal space representation. The data 

streams are combined prior to, and independently from, all packet-level information. Since 

non-data-payload information, such as training symbols and packet headers, apply to to all 

data streams, this information is generated in a similar manner to the single pass case and 

then applied to the post-combining multipass data payload. 

Figure 5-5: QPSK:QPSK 2-Pass Multipass System Example - Transmit Phase I. 

The Datal stream undergoes QPSK modulation where each set of two data bits is 

mapped into one of four signal space points, as shown in Figure 5-5. The data would 

then, in the single pass case, be forwarded to the D/A converter and the analog front-end. 

Instead, the Data2 stream also undergoes transmitter baseband processing. Although it is 

not required that both passes be of the same modulation type, for didactic reasons QPSK 

is also used for the Data2 signal. The processed symbols of Data2 are then combined with 

the processed symbols of Datal using a combining function. 

The function used here is superposition with scaling. Superposition is achieved by first 

scaling down one of the inputs to be combined, in this case Pass2, and then superposing 

the scaled signal on top of the unscaled. Superposition is used as a simple proof-of-concept 



combining function, but other functions can be used to optimize different signal properties. 

The use of other possible combining functions is discussed as future work in Chapter 11. 

Figure 5-6 shows the result of the superposition process. Each of the larger, central dots 

in each quadrant represents, in signal space, a possible Passl symbol to be transmitted. The 

smaller four dots surrounding each possible Passl symbol point represent possible Pass2 

symbol points. For any actual set of symbol outputs for Passl and Pass2, the Real and 

Imaginary symbol values resolve in Phase I to the coordinates of one of the four larger dots. 

From there the combined symbol value moves to the coordinates of one of these smaller 

circles. The superposition and scaling combining function can be thought of as using the 

Passl possible values as just an origin shift before applying the Pass2 values. The smaller 

distance of the Pass2 values from their relative origin (the Passl values) as compared to the 

Passl points from their origin are a result of the down-scaling of the Pass2 symbol power. 

Data 2 

Figure 5-6: QPSK:QPSK 2-Pass Multipass System Example - Transmit Phase 11. 

The scaling down of Pass2 is done to minimize the interference of the addition of the 

Pass2 symbol values on the Passl symbols. There is a trade-off between the amount Pass2 

is scaled down and its impact on Passl. The scaling of Pass2 reduces its power and makes 

the signals of this pass more susceptible to noise. Hence scaling can negatively impact the 

ability to receive Pass2. 

From the perspective of Passl, however, Pass2 looks like additional noise as the two 

passes are independent. Therefore, Passl benefits from a large amount of Pass2 scaling. 



There is an imbalance, however, as the results of Passl are used to help in the recovery of 

Pass2 from the combined multipass signal at the receiver. Thus, a too large scaling value 

has a negative impact on both Passl and Pass2. In a system where both passes are equally 

valued, it is necessary to balance the scaling of Pass2 to maximize the likelihood that both 

signals are correctly received. In a case where data can be prioritized, however, the Pass2 

scaling value can easily be adjusted to reflect the relative priority of Passl over Pass2, 

thus increasing the likelihood of correct Passl reception at the expense of Pass2. A more 

in-depth exploration of the impacts and trade-offs of the superposition combining function 

scaling can be found in Section 8.2. 

In this example, the constellation of signal space positions for the combined multipass 

symbols corresponds to the constellation for a 16-QAM modulation scheme. This is by 

design. The 16-QAM constellation was chosen for two reasons. First, it is an efficient 

packing in signal space. It provides a large amount of space between signal points, thus 

increasing the amount of noise power necessary to cause an error, while minimizing the 

signal power in the transmitted signal. This is equivalent to minimizing the distance of 

the signal constellation points from the origin. It is therefore a good overall choice. The 

second reason this constellation is used here is to emphasize some of the capabilities of a 

multipass system. Both symbol streams used here, Passl and Pass2, are QPSK modulated. 

By combining them in this manner the example highlights the fact that the throughput 

of the two streams is equivalent to that of a single 16-QAM symbol stream. One could 

even use the two QPSK streams to transmit a 16-QAM stream of data. That single stream 

of data intended for the 16-QAM system could simply be demultiplexed into two input 

streams before entering the multipass system and then multiplexed at the receiver. This 

would result is the system communicating the exact same information using two QPSK 

passes as a single 16-QAM pass. 

Once the two data streams have been combined into a single multipass data stream, 

that stream is converted to the analog domain and sent through the transmitter front-end. 

There it is up-converted to the carrier frequency and radiated from the antenna across the 

wireless channel. 



5.2.2 Channel 

The combined symbols propagate across the wireless channel and arrive at the receiver 

corrupted by noise. Here, this additional noise will be modeled as Additive White Gaussian 

Noise (AWGN), see Section 2.1, with a noise power spectral density of No/2, see Figure 5-7. 

The addition of noise to the transmitted signal results in a spreading of the possible signal 

space values which can be received at the receiver. Channel noise turns the precise signal 

space points of the symbols which were transmitted into probability clouds of possible values 

at the receiver, see Figure 5-8. 

Figure 5-7: QPSK:QPSK 2-Pass Multipass System Example - Wireless Channel. 

The system assumption is that the size of the noise, and hence these probability clouds, 

is small enough such that the Bit Error Rate (BER) of all passes at the receiver is acceptably 

low. If this is not the case then the channel cannot support the attempted data rate and 

fewer passes and/or lower modulation types must be used. Specifically, the noise power 

must be sufficiently small relative to the Pass2 scaled power. 

5.2.3 Receiver 

The waveforms which arrive at the receiver consist of the multipass data stream plus noise. 

The receiver front-end filters, amplifies, and down mixes this received signal and converts 

it to the digital domain. The digital received signal is then corrected for channel effects 

and copied into two streams. One of these streams is sent through the Pass1 receive chain 



and is processed as through a single-pass system. A second stream, meanwhile, is stored 

to be used as input to Pass2. This splitting into multiple streams occurs just before the 

demapping of symbols into bits. This enables the system to correct global errors on all 

passes but still preserves the information from additional passes for later retrieval. 

These streams consist of symbols in signal space. The real and imaginary symbol values 

which, before transmission, corresponded precisely to the possible Pass2 locations in signal 

space, now have been fogged by noise such that their location can only be represented by 

a cloud of likely possible locations. The small shaded circles in Figure 5-8 represent these 

clouds of likely possible symbol coordinates around each potentially transmitted symbol 

value. For Datal to be correctly recovered from the Passl stream, the shift in location of 

the symbol coordinates from the original Passl location caused by the addition of both the 

Pass2 symbol values and the channel noise must be less than the distance to the decision 

boundaries for the Passl symbol. For the QPSK case, the Passl decision corresponds 

to a choice of quadrant. The decision boundaries are the real and imaginary axes and 

are represented in the figure by the dashed straight lines. If the final received symbol falls 

outside of the intended quadrant in either the real or imaginary dimension, then a reception 

error will have occurred. 

Figure 5-8: QPSK:QPSK 2-Pass Multipass System Example - Receive Phase I. 

The output of the Passl receive chain is the Datal' data stream. Assuming no errors, 

the Datal' stream is a recreation of the Datal stream of the transmitter and is the result 



of the successful transmission of this set of data across the wireless channel. This Datal 

stream is copied and sent to two locations. The first of these is the output of Passl. The 

second destination of the Datal stream is in a retransmission path to assist in the decoding 

of Pass2. 

The Datal' stream is the receiver's most likely construction of the information which 

was sent by the transmitter. It is the best estimate of the receiver as to which bits were 

sent. If these bits were correctly communicated, then the system should be able to recreate 

a perfect, noise-free version of the symbol values which were originally created by the 

transmitter. Since the functions at the transmitter were all deterministic, the intended 

transmitted symbol values can be recreated simply by processing the Datal' bits through 

a copy of the same functions which were originally used by the transmitter. The portion of 

the transmit path needed to transform input bits back into symbol values is used to recreate 

the Passl symbols, labeled Passl', from the Datal' bits, see Figure 5-9. 

Figure 5-9: QPSK:QPSK 2-Pass Multipass System Example - Receive Phase 11. 

The regenerated Passl' symbol values can then be used to inform the reception of Pass2. 

The saved copy of the received multipass symbol stream can be combined with the recreated 

Passl' symbol stream to isolate Pass2 from the multipass values. The Passl' symbols are 

subtracted from the full multipass received symbols so that each multipass symbol is offset 



by the coordinate values of the Passl' symbol. This is equivalent to an origin shift of the 

multipass symbol in signal space, one which removes the Passl' symbol influence leaving 

only the Pass2 symbol plus noise. This resultant symbol stream can then be amplified to 

undo the effects of the Pass2 scaling performed at the transmitter, see Section 5.2.1. The net 

result is to undo the effect of the combining function. The subtraction of the Passl' symbols 

removes the effects of superposition and the amplification of this result undoes the Pass2 

scaling. The consequence is a Pass2 symbol stream which resembles a single-pass received 

symbol stream, see Figure 5-10. 

It is important to note that this amplification process amplifies the noise as well as the 

Pass2 signal, but the ratio between noise and Pass2 signal power stays the same. If the 

noise power is larger than the original scaled Pass2 power then an error will occur. If this is 

consistently the case, then the attempted data rate and/or the combined modulation scheme 

is likely beyond the capabilities of the current channel. A smaller modulation scheme with 

a correspondingly smaller scaling, a different combining function, or a slower data rate is 

needed. 

Figure 5-10: QPSK:QPSK 2-Pass Multipass System Example - Receive Phase 111. 

The Pass2-plus-noise-only portion of the multipass received stream is processed by the 

same type of receiver chain used in Passl, see Figure 5-11. The Pass2 receive chain is a 



second instantiation of the same processing blocks used in Passl, but configured for the 

Pass2 data rate. The output of this pass is the recovered Data2' data stream. 

Figure 5-11: QPSK:QPSK 2-Pass Multipass System Example - Receive Phase IV. 

Very little new design effort is required for the reception of two streams at QPSK instead 

of the single 16-QAM stream required to achieve the same data throughput. The Passl 

and Pass2 receive chains are identical and the partial retransmit chain is simply a copy 

of a portion of the transmitter processing chain. The additional elements are simply the 

necessary routing and storage and the processing to undo the combining function applied at 

the transmitter, in this case subtraction and scaling. This commonality of design elements 

translates to reduced time and effort in implementation. The equivalent data rate design is 

achievable without the need to carefully tweak and iterate designs. 

The multipass system uses two passes to achieve the same throughput as a high data 

rate single pass. It requires more physical resources for the parallel functions of the passes 

and associated processing, but allows all of these resources to operate more slowly. This 

example system allows a trade-off between the amount of processing resources used and the 

rate at which those processing resources must operate. The system spatially pipelines the 

processing across more hardware resources in order to achieve the same throughput without 



the associated increase in clock speed and temporal reuse required by a single pass system 

to achieve the higher data rate. 

5.3 Further Multipass Compositions 

The multipass system concept can be extended beyond two passes to larger compositions. 

Additional passes simply translate into additional iterations of the two pass approach, see 

Figure 5-12. The properties of the two pass case apply equally to the large multipass case. 

Each pass can still operate at its own data rate and the cumulative rates combine to form a 

higher overall rate. The system still benefits from the design reuse of functional blocks as in 

the two pass case. In fact, additional design reuse is enabled as those few multipass-specific 

elements used in the two pass case, such as the combining function blocks (subtraction 

and scaling) and even the storage and routing elements, can be reused for the later pass 

iterations. 
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Figure 5- 12: Beyond 2-Pass Multipass System. 

Larger multipass systems provide the opportunity for even more flexibility of design. 

Passes can be dynamically added and removed, and pass data rates adjusted to provide the 

combinations of rates and passes which are appropriate for the given situation. Additional 

passes can reduce the required processing rate, or enact high data rates as such capabilities 

become available. Composing additional passes using the same combining function becomes 

just a matter of migrating processing resources from other tasks to enacting the already 



written receiver pass software. 

Theoretically, as many passes can be added as there are processing resources available. 

No additional design is required; the software need simply be implemented on the newly 

available hardware. There are real-world limitations on the number of passes which can be 

used, however, as discussed in Section 5.5.  

5.4 Benefits of a Multipass System 

Multipass systems provide the capability of leveraging the properties of the digit a1 realm to 

improve the flexibility of communication systems and enable their implementation through 

general-purpose processing. By using multiple parallel processing passes, multipass systems 

enable the following benefits: 

a Multipass systems give the ability to task processors for communication based on 

channel, data rate, and application needs, not a priori hardware decisions. 

- The capability to dynamically adjust resource usage avoids under-, un-, or over- 

utilized resources. This translates to system-wide savings in terms of physical 

area, power, design time, and cost. 

Multipass systems layer multiple streams of data onto the same transmitted wave- 

form to achieve higher data rates through the use of additional hardware resources 

in parallel instead of through an increased processing rate on the currently available 

hardware. 

Through the spatial distribution of processing loads, multipass systems enable a cor- 

responding reduction in processing rate requirements. This is achieved by limiting the 

impact of hardware processing bottlenecks through the spatial pipelining of functions. 

- Multipass systems make feasible the processing of higher communication data 

rates than previously achievable on GPP/DSPs, while maintaining the flexibility 

of general-purpose processing. 

- Lower processing rates also enable slower clock rates which can translate into 

lower power consumption (see Section 5.4.1). 



Multipass systems allow a trade-off between achievable data rate per pass with the 

number of passes and processing per pass. The system provides the ability to explic- 

itly balance and dynamically modify the system design between communication and 

computation. 

In addition, multipass systems also allow the system structure to mirror the character- 

istics of the data being communicated, for instance, the prioritization of data through the 

combining function used. For the superposition combining function, the earlier passes, with 

larger power, can be used to convey more critical data, while the data in later passes can 

convey increasingly lower priority information. Multipass provides a means of potentially 

transmitting the lower priority information while helping to ensure that the higher priority 

data arrives through the choice of the scaling values used. The use of scaling values to 

prioritize data is discussed in Section 8.2.1. 

5.4.1 Reduced Power Consumption 

The use of the multipass algorithm allows a trade-off between the area of the system and a 

lower required system clock rate. A lower system clock rate can be used to reduce the power 

consumption of the system. This can be done by addressing two of the main sources of power 

dissipation in digital CMOS circuits: dynamic switching power and static leakage power. 

The dynamic switching power can be reduced through a lowering of the supply voltage, Vdd. 

The static leakage power can be reduced by using devices with higher threshold voltage, &, 

in order to minimize subthreshold leakage current. 

The alpha power-law MOS model provides a means of relating the frequency of operation 

to these values [83, 79, 801 

where a models short channel effects and is typically 1.3 for modern devices 1841. 

For a multipass system using 2 passes the frequency of operation could be scaled down 

by a factor of 2 while doubling the area and resources used. The dynamic power dissipation 

is given by 

Pdynarnic = cswitchedv&f (5.2) 

where Cswitched is the total effective switched capacitance. The doubling of area impacts 



dynamic power consumption by increasing the Cswitched This increase in dynamic power 

is linear, however, while the decrease due to lowering Vdd is quadratic, suggesting a net 

reduction in power consumed. 

The transistor subthreshold leakage power dissipation is given by 

where I. is the drain current with Vg, = & and S is the subthreshold slope (typically in 

the range of 60-90 mV/decade) [79, 80, 811. The effect of doubling the area to reduce clock 

speed corresponds to a doubling of transistors in the off state and a corresponding doubling 

of leakage power dissipation. The exponential relationship of & to leakage power, however, 

suggests that an increase in Vt will also result in a net reduction in power dissipation. 

Holding Vt constant at the nominal value and reducing Vdd to match the new operating 

frequency of operation of f /2  results in a new multipass supply voltage of Vgp = -499. 

Comparing the ratio of dynamic power dissipated between the V z m  and v;' supply volt- 

ages -results in at least a 7x reduction in dynamic power dissipation for the lower frequency 

multipass design over a single pass design. 

Similarly, holding Vdd constant and solving for the & value which corresponds to the 

lower operating frequency gives Kmp = .6 13. Choosing a representative subthreshold slope 

of 70 nm/decade the ratio between the static leakage power dissipation of the nominal, 

Knom, and multipass, Kmp, threshold voltages can be determined. This results in at least 

a 397x reduction in static leakage power. 

This example represents the extremes focusing on the reduction of either static or dy- 

namic power dissipation alone. Depending on the ratio of static to dynamic power dissi- 

pation some combination of reducing Vdd and raising & is optimal. It is also important 

to consider that while the option to change the threshold voltage may not be available, 

the prevalence of processor voltage scaling makes adjusting the supply voltage a readily 

available option. 

5.5 Limitations on Multipass Systems 

The number of passes in a multipass system is limited by the channel characteristics and 

the noise associated with the system components. The factors limiting the number of passes 



are combining function dependent and could be the result of front-end system components 

(such as amplifier saturation or non-linearity or the dynamic range of the DAC), system-wide 

components or effects (such as oscillator jitter or self-mixing) or channel characteristics (such 

as interference or inter-symbol interference). For the superposition combining function, the 

noise floor of the system (including the output referred transmitter noise, the input referred 

receiver noise, and channel noise sources) inherently limits the number of passes available. 

The noise floor provides a limit on the number of useful passes. Even in the absence of 

channel effects there is a maximum number of passes. The transmitter noise minimum is 

fixed and amplified along with the signal. This already limits the maximum possible signal 

to noise ratio and thus the minimum noise power. The receiver noise minimum is similarly 

fixed. Increasing the received signal power can minimize the effect of this receiver noise, 

but there are limitations on the maximum useful signal power. A too large received signal 

power can saturate the receiver's lower noise amplifier (LNA) or surpass the dynamic range 

of the DAC. Thus a maximum possible signal to noise ratio is set at the receiver as well. 

This maximum SNR translates into a minimum noise floor which sets a definite limit on 

the number of passes which can be successfully operated, even in the perfect channel case. 

Noise Limitation on Number of Additional Passes 

0 1 2 3 4 5 6 7 

Number of Addtional Multi-pass Passes 

Figure 5-13: The system noise floor limits the number of additional passes in a multipass 
system. 

Each new pass in a superposition combining multipass system must be scaled down to 



provide disambiguation from the previous passes. The attenuation of each subsequent pass 

is cumulative, however, and the signal power for each additional pass falls rapidly while 

the system noise-floor remains const ant, see Figure 5- 13. Fkom an equivalent perspective 

the noise grows exponentially with each processing pass for the superposition combining 

function. The use of superposition results in the signal power decreasing as ( $ ) N ,  where 

S is the scaling used for each pass, while the minimum noise remains constant. Another 

combining function might result in a different relationship between the noise and the number 

of passes, but there will always be a limitation on the number of passes which can be 

sustained. 



Chapter 6 

The Raw Processor - A Tiled 

Architecture 

The Raw processor is a research architecture design undertaken by the MIT Raw research 

group [85, 861. 

Fast moving VLSI technology will soon offer billions of transistors, massive 
chip-level wire bandwidth for local interconnect, and a modestly larger number 
of pins. However, there is growing evidence that wire delays become relatively 
more significant with shrinking feature sizes and clock speeds. Processors need 
to convert the abundant chip-level resources into application performance, while 
mitigating the negative effects of wire delays. 

... 
The Raw project addresses the challenge of whether a future general-purpose 

microprocessor architecture could be built that runs a greater subset of ... ASIC 
applications while still running the same existing ILP-based sequential applica- 
tions with reasonable performance in the face of increasing wire delays. [74] 

The Raw processor is an example of a tiled architecture. It consists of multiple uniformly 

replicated tiles, each of which contains a MIPS-style processing pipeline. These tiles are 

general purpose in nature and each is able to run its own independent instruction stream. 

The tiles are connected in a 2-D mesh arrangement by multiple interconnection networks. 

All interconnections are nearest neighbor in order to keep their lengths short. Tight inte- 

gration of the the interconnects with the tiled processors allows low latency communication 

between tiles. This high speed interconnection network extends off-chip to enable efficient 

usage of pin resources and, consequently, large amounts of fast 110. 



6.1 Design Philosophy 

The stated purpose of the Raw project is given below: 

Rapid advances in technology force a quest for computer architectures that 
exploit the new opportunities. Current architectures, such as hardware sched- 
uled superscalars, are already hitting performance and complexity limits and 
cannot be scaled indefinitely. The Raw Architecture Workstation (Raw) is a 
simple, wire-efficient architecture that scales with increasing VLSI gate densi- 
ties. The Raw architecture's goal is to provide performance that is comparable 
to that provided by scaling an existing architecture, but that can achieve or- 
ders of magnitude more performance for applications in which the compiler can 
discover and statically schedule fine-grain parallelism. 

The Raw project's approach to achieving these goals is to implement a sim- 
ple, highly parallel VLSI architecture, and to fully expose the low-level details 
of the hardware architecture to the compiler so that the compiler or the soft- 
ware can determine, and implement, the best allocation of resources for each 
application. Eliminating a fixed instruction-set interface between the compiler 
and the hardware, Raw is composed of a set of interconnected tiles, each tile 
comprising, instruction, switch-instruction, and data memory, an ALU, FPU, 
registers, and a programmable switch. 

Our approach leverages the same set of features that make application- 
specific custom hardware systems popular for specific applications. First, Raw 
implements fine-grain communication between large numbers of replicated pro- 
cessing elements and, thereby, is able to exploit huge amounts of fine-grain 
parallelism in applications, when this parallelism exists. Second, it exposes the 
complete details of the underlying hardware architecture to the software system 
(be it the software CAD system, the applications software, or the compiler), so 
the software can carefully orchestrate the execution of the application by apply- 
ing techniques such as pipelining, synchronization and conflict elimination for 
shared resources by static scheduling and routing. [86] 

6.1.1 Scalability 

The trend toward reduced transistor sizing has resulted in smaller integrated structures 

and a larger portion of the die area available for other use. An open question is how to 

take advantage of this newly available die area. Adding more transistors to the process- 

ing core dramatically increases the processor complexity and makes design and verification 

prohibitive. As a result, many designs have held the core constant across technology gener- 

ations and simply used the extra die are for larger cache structures. While this does provide 

some benefit, there is a limit to the performance increase achievable through increases in 

memory structures alone. 



In addition to usage concerns, the loss of the wire abstraction due to the increased 

frequency of operation is another primary concern. One of the main reasons for transistor 

shrinkage is the quest for higher performance through frequency scaling. Smaller transistors 

with lower threshold voltages and smaller capacitances may be switched more quickly, thus 

allowing a higher clock frequency. These higher frequencies, however, break the model of 

the wire as an instantaneous connection mechanism. As frequencies increase, the delay 

associated with long global on-chip wires becomes significant and signals can no longer 

traverse long wires in a single clock cycle [87]. As transistors get smaller and frequencies 

increase, the percent age of the die that can be covered in a single clock cycle decreases [88]. 

What is needed is a scalable architecture that would avoid these negative effects of 

transistor and frequency scaling. A scalable architecture is built of structures that can 

continue to operate efficiently in such an environment. A scalable architecture has the 

ability to arbitrarily adjust the size and number of structures without changing design. 

Each structure, or processing core, and the corresponding interconnect between those cores 

is designed in a manner relative to the core's size, instead of in an absolute sense for the 

specific die size and technology. Cores are designed to occupy and interconnect with each 

other in a fraction of the distance a data value can travel in a single clock cycle. So whether 

such a core covers 114 of the die, with appropriate clocking frequency, or 1/100,000 of the 

die, it will operate exactly the same. Therefore, as the transistor technology scales, the 

clock frequency will increase and the distance a signal can travel will decrease, but this is 

offset by the decreased size of the transistors and length of the wires needed to connect 

them. 

6.1.2 Designability 

Scalable processors are often built through the replication of smaller scalable cores. Such an 

approach has multiple benefits. The first of these is, obviously, scalability. If the processing 

elements are individually scalable, then their composit ion is scalable. All the available 

die area can then be used by composing together as many of the small scalable cores as 

will fit. Using this approach, the die can be thought of as a mosaic, with the processing 

cores laid down as tiles filling the space. Long wires are avoided because each tiled core is 

self-contained except along well defined boundary interfaces and is thus scalable. 

Another important benefit of scalable architectures is significantly reduced design effort. 



As processors grow in number of transistors and amount of complexity, the cost of design 

and verification, and the likelihood of errors creeping into the system, becomes unacceptably 

high. By replicating tiled processing cores, a scalable system can reduce the workload and 

cost significantly. Design effort can focus on a single small and relatively simple scalable tile 

which can be built and verified and then reused. This reduces the design time and effort 

required, while still effectively utilizing the entire die and achieving impressive processing 

capabilities. The potential future design efforts are also reduced, as a later scaling in 

technology would not necessarily require a redesign. Since the tiles themselves are scalable, 

a technology scaling could simply result in more tiles per die with no further design effort 

needed. 

6.1.3 Exposed Communication 

The Raw approach treats communication as a first-class design element. The Raw processor 

provides large amounts of fast interconnect between tiles which can be explicitly managed by 

the software. This high speed interconnect communicates directly into each tile processors 

pipeline bypass network for efficiency and speed. The implementation of a scalar operand 

network [89] allows significant fine-grained parallelism to be achieved by providing extremely 

low-lat ency int er-t ile communication. 

The communication in the Raw processor is exposed in the programming model. This 

allows the interconnect between tiles to be explicitly managed and provides the type of low- 

level orchestration of data necessary to achieve efficient fine-grained parallelism. The careful 

scheduling required for the inter-tile data traffic is an example of static communication 

(communication which can be predicted at compile time) and therefore can be automatically 

managed by a compiler for ease of implementation. 

6.1.4 Streaming 110 

The I f 0  model of the Raw approach treats pins as simply an extension of the on-chip 

high bandwidth networks. This provides the processor access to a significant amount of 

I f 0  that feeds directly into the on-chip networks. This type of setup is perfectly suited 

to a streaming data model because data can move on-chip quickly and in large quantities. 

Incoming data can be retrieved from the network, processed, and sent back out without the 

costly intermediate step of storing it in memory. 



6.2 Communication Networks 

The Raw processor has four 32-bit full-duplex on-chip mesh networks, consisting of over 

12,500 wires. There are two classes of network available, static and dynamic. The two static 

networks are explicitly managed and statically scheduled while the two dynamic networks 

are dynamically routed at run-time. 

6.2.1 Low-latency, High-speed Interconnect 

The two static networks of the Raw processor are designed for regular communication that 

is known and can be statically scheduled at compile time. The programmer or compiler 

directly programs the switch processor, the router which controls the flow of data, on the 

static networks: 

The Raw ISA exposes these on-chip networks to the software, enabling the 
programmer or compiler to directly program the wiring resources of the processor 
and to carefully orchestrate the transfer of data values between the computa- 
tional portions of the tiles - much like the routing in a full-custom application 
specific integrated circuit (ASIC). Effectively, the wire delay manifests itself to 
the user as network hops. It takes six hops for a data value to travel from cor- 
ner to corner of the processor, corresponding to approximately six cycles of wire 
delay. [4] 

Each static network provides a 32-bit full-duplex network link between each tile proces- 

sor, its nearest neighbors, and the other network.. These networks extend into the processor 

pipeline itself and are not only register-mapped, but also integrated into the bypass network 

of each tile's processing pipeline 1891. This allows high speed communication on the static 

network between tiles with an ALU-to-ALU latency of 3 cycles. 

6.2.2 Dynamic Networks 

The two dynamic networks are used for communication for which the exact routing is 

indeterminable until run-time. The dynamic networks are used to support cache misses, 

interrupts, dynamic messages, and other asynchronous events. The two dynamic networks 

have different functions: the memory dynamic network (MDN) is used to route memory 

traffic between the Raw tiles and the off-chip main memory and the general dynamic network 

(GDN) is available for application or user use. The MDN is precluded, by policy, from 



deadlocking. The acceptable communication patterns for the MDN avoid deadlock and 

are already enforced for hardware generated memory traffic. User access to the MDN is 

discouraged as is it intended for use only by trusted clients such as data caches, DMA, and 

110. The GDN, on the other hand, is freely available for use by the user or program. It is 

the programmer's responsibility to avoid deadlock on this network; it is not guaranteed not 

to deadlock. The GDN uses a watchdog timer to detect potential deadlock situations and 

to initiate deadlock recovery procedures. 

The dynamic networks are dimension-ordered wormhole routed packet networks. Each 

dynamic network packet consists of a header word followed by message words. Since the 

network is wormhole routed, the header word configures the necessary dynamic network 

path that the data words will follow. This path is dimension-order routed; it follows the 

policy of scheduling all vertical routes before any horizontal routes. Once the header has 

established a route in a dynamic network node, that routing stays in place until the rest 

of the message words have been delivered. No other dynamic message can set up a route 

which interrupts a message already in progress. 

6.2.3 Switch Processor 

The router for the static networks is called the switch processor. It is a route sequencer 

processor which is flow controlled and operates independently from the tile processor. All 

communication between the switch and tile processors occurs through the register mapping 

of the static network into the tile processor register file. The switch processor is designed 

as follows: 

The 5-stage static router controls two routing crossbars and thus two phys- 
ical networks. Each crossbar routes values between seven entities: the static 
router pipeline, north, east, south, west, the compute processor, and the other 
crossbar. The static router fetches 64b instruction words from an 8k-entry cache. 
Each word simultaneously encodes a small command (branch and decrement, 
local register file accesses), and 13 routes, one for each crossbar output. For 
each operand sent between tiles on the static network, there is a corresponding 
instruction in the instruction cache of each router through which the word will 
travel. These instructions are programmed by the compiler. Thus, the static 
routers collectively reconfigure the entire communication pattern of the network 
on a cycle-by-cycle basis, and enable Raw to handle both scalar and streaming 
data types. 



The static router is flow-controlled, and does not proceed to the next in- 
struction until all of the routes in the current instruction have completed. This 
ensures that destination tiles receive incoming words in a known order, even 
when tiles suffer unpredictable delays from cache misses, interrupts, or branch 
mispredictions. The static router provides single-cycle-per-hop latencies and can 
route two values in each direction per cycle. Because Raw's network is point-to- 
point, and because operands are routed only to those tiles that need them, the 
Raw design decimates the bandwidth required for operand transport relative to 
a comparable broadcast-based superscalar. [go] 

6.3 Raw Implementation 

The Raw processor was implemented in the IBM 7SF SA-27E copper process. This process 

is a 180nm 1.8V 6-layer CMOS process. The processor has 16 tiles, each of which consists 

of a single-issue in-order &stage MIPS-style processing pipeline, a 4-stage single precision 

pipelined FPU, a 32KB data cache, two communication routers (one for the static network, 

one for the dynamic), and 96KB of instruction caches. The Raw processor has a total 

transistor count of 122 million transistors. 

The choice of 16 tiles was determined by the die size available. The die area is 18.2mm 

x 18.2mm, although the tiles take up only 16mm x 16mm of this area. The larger die size 

was necessary to accommodate the column grid array (CGA) package in order to achieve a 

higher pin count. The CGA package has 1657 total pins of which 1080 pins are available 

for use as high speed transceiver logic (HTSL) I/O pins. A die photo of the entire 16 tile 

Raw processor can be seen in Figure 6-1. 

6.3.1 BTL Simulator 

The BTL Simulator is a cycle accurate Raw simulator. It has been verified extensively 

against the hardware: 

We verified that the simulator and gate-level RTL netlist have exactly the 
same timing and data values for all 200,000 lines of our hand-written assembly 
test suite, as well as for a number of C applications and randomly generated tests. 
Every stall signal, register file write, SRAM write, on-chip network wire, cache 
state machine transition, interrupt signal, and chip signal pin matches in value 
on every cycle between the two. This gate-level RTL netlist was then shipped to 
IBM for manufacturing. Upon receipt of the chip, we compared a subset of the 
test on the actual hardware to verify that the chip was manufactured according 
to spec. [74] 



Figure 6-1: Raw die photo. 



6.3.2 Technology Scaling 

The Raw processor is a research prototype. The Raw design was not aggressively optimized 

and included numerous research-related features which would not be considered for a com- 

mercial processor. The Raw design was built in an ASIC standard cell process with no 

custom logic at all. The IBM process used, at 180nm, is now somewhat outdated as there 

are multiple subsequent process generations which could be used for a current optimized 

design. This implies that there are large amounts of performance, area, and power savings 

to be had if the design were reimplemented with fully customized logic or in a more recent 

process technology. 

A commercial Raw design would likely be implemented using full custom logic in a more 

aggressive process technology. The estimated effects of a change in design style or process 

can be seen in Table 6.1. 

1 1  Standard Cell Raw 1 130 1 .558 1 331 1 36 I I 

1 Speculative Processor Technology Scaling 

Processor 
PowerPC970 
PowerPC970FX 
Standard Cella Raw 

Standard Cell Raw 
Full Custom Raw 
Full Custom Raw 

"IBM SA-27E ASIC Process 
' ~ ~ 1 1  Custom Raw with 112 the SRAM 

Full Custom Raw 
Full Custom 2b Raw 
Full Custom 2 Raw 
Full Custom 2 Raw 

Table 6.1: Speculative effects of future technology scaling on Raw processors. 

Process 

(nm) 
130 
90 
180 

90 
180 
130 

The PowerPC970(FX) was used as a reference because the change from the 970 to the 

970FX was purely a process shrink. The effects on frequency of technology scaling were 

assumed to be linear per dimension for logic gates. The SRAM structures in the IBM SA- 

27E process are specially implemented and optimized and, as such, are assumed to carry 

over from process to process without shrinking. The effects of moving to full custom design 

from standard cell for both frequency and area were applied as suggested in (911. 

90 
180 
130 
90 

.850 
1.28 
1.77 

# 
Tiles/Cores 

1 
1 
16 

Frequency 

(GHz) 
1.8 
2.5 
.425 

2.55 
1.28 
1.77 
2.55 

Area 

(mm2) 
66 
121 
331 

331 
331 
331 

81 
36 
64 

331 
331 
331 
331 

144 
49 
100 
225 



For research purposes, the various memories on the Raw prototype were sized to be 

quite large. A full custom commercial design would be likely to use on the order of half the 

amount of SRAM implemented in the prototype. The "Full Custom 2" Raw implementation 

reflects this kind of commercial design. It is a full custom version of the Raw design which 

contains half the amount of SRAM. 

Reimplementing a commercial full custom version of the Raw processor in a current, but 

not cutting-edge, technology (90nm) would allow 144 Raw tiles per die and an increased 

in clock speed to over 2.5GHz. If the amount of SRAM were halved, the number of tiles 

available would jump to 225. In future process technologies, these gains would be much 

larger, thus supporting the design philosophy of treating tiles as an abundant resource. 



Chapter 7 

Multipass Implementat ion System 

An 802.11a based multipass system was implemented utilizing the Raw tiled architecture. 

The implementation system provides a proof-of-concept for multipass systems and acts as a 

platform for the exploration of communication systems on tiled architectures. This system 

evolved through multiple iterations. An iterative approach was used to verify correctness 

and congruency between implementation platforms, to improve simulation efficiency, and 

finally, to achieve real-time compatibility. The implementation iterations included software 

implementations in C for an x86 platform; in C targeting the Raw platform in both simu- 

lation and on the Raw hardware itself; and in a mixture of C and Raw Assembly languages 

again targeting both hardware and simulation. 

The initial iteration was solely a single pass 802.1 l a  implementation which was used to 

gain experience with 802.11a systems and with the use of Raw as a platform for communi- 

cation systems. The single pass system provided a well-defined implementation goal, while 

allowing exploration of the implications and intricacies of the system design, the design of 

each building block, as well as the potential for spatially distributing the system. From 

this single pass system targeting a single Raw tile, the next iteration targeted spatially 

pipelining the single pass system across multiple tiles. The next steps involved optimizing 

the bottlenecked elements of this distributed single pass system to make even the lowest 

data rates compatible with the general-purpose processing operation of Raw. Finally, the 

elements of this distributed single pass system were reused, along with the necessary routing 

and retransmission blocks, to build a 2-pass multipass system targeting the Raw processor. 

The evolutionary system design strategy highlights the design reuse aspect of multipass 



systems. The incremental effort required to create a multipass system from a single pass 

system was small. The majority of the design effort went into building the single pass 

system and optimizing it in Assembly language. The multipass system implementation, for 

the superposition combining function, required only a small additional effort. 

7.1 Selection of 802.11a Baseband 

To explore communication on tiled processors, the selection of a relevant and sufficiently 

ambitious wireless specification was needed. The choice of a standard specification, as o p  

posed to a generic wireless system mockup, was deemed vital. The use of a real-world system 

specification provided a means of showcasing as realistic a system as possible, while high- 

lighting the relevance of multipass and tiled architecture-based communications to current 

wireless regimes. As important to the decision to use a currently wireless specification was 

the ability to provide sufficient verification of such a system. A mature and readily available 

specification with accessible example implementations provided a means of grounding the 

simulation results in reality and of confirming the correctness of system operation. The 

growing relevance, relatively high data rates, mature specification, and amenable system 

structure of Wi-Fi made it a logical choice. 

Wi-Fi is a wireless local area network (WLAN) specification which has attained general 

adoption and usage. Wi-Fi is a marketing term used to describe three IEEE 802.11 wireless 

standards: 802.11a [24], 802.1 1b [92], and 802.1 1g [93]. 802.11b represents the original 

Wi-Fi specification which operates in the 2.4GHz ISM band and provides for data rates 

from lMbps to 11Mbps. 802.11a was then instituted as a higher data rate WLAN option 

with operation in the 5GHz band and data rates from 6 to 54Mbps. Later, 802.11g was 

proposed as a combination of the previous two specifications. It was an incremental step 

beyond 802.1 1b which allowed data rates similar to 802.1 l a  while operating in the 802.11b 

frequency band of 2.4GHz and providing compatibility with 802.11b. 802.1 1g makes use of 

the 802.11a baseband to achieve the data rate capabilities of 802.11a, while retaining the 

ability to fall back to 802.11b baseband processing for compatibility. 

The 802.11a baseband (also used by 802.11g) provides the capability for data rates from 

6 to 54Mbps. This large range of possible data rates is well suited to a multipass approach. 

While the low data rates may be possible on certain DSP's or DSP/ASIC combinations, the 



high data rate of 54Mbps is not currently implementable in a general-purpose processing 

environment. 

An additional benefit of 802.11a are the modulation schemes used to achieve the data 

rates. The 802.11a specification requires the use of various levels of modulation from bi- 

nary phase shift keying (BPSK) to 64-point quadrature amplitude modulation (64-QAM) 

to achieve the different data rates. The lower level modulation schemes used, BPSK and 

quadrature phase shift keying (QPSK), can almost be thought of as lower QAM constella- 

tions. In fact, QPSK is often called 4-QAM and the constellations of the two modulation 

schemes are identical. BPSK can be thought of as a single dimension version of 4-QAM. 

This is particularly appealing for the implementation of a superposition combining function 

multipass system, as the symbols of the various passes can be composed in such a way as 

to resemble larger QAM modulations. Thus, the multipass system can be designed as a 

2-pass system which uses QPSK for both passes and has a resultant signal space constella- 

tion identical to 16-QAM, see Section 5.2. Other combinations of pass modulations result 

in similar equivalencies, see Table 7.1. Such equivalent data throughputs are useful as a 

comparison for evaluation of the performance of multipass systems, as will be discussed in 

Chapter 8. 

Data Rate Equivalencies 

I  I  QPSK I  QPSK I  24Mbps I  16-QAM 

Pass 1 
Modulation Type 

QPSK 
QPSK 

Pass 2 I Raw Data I Modulation 

I /  16-QAM / BPSK I 30Mbps / - (32-QAM) 

Modulation Type 
- 

BPSK 

QPSK 
QPSK 

16-QAM 

1 1  64-QAM / QPSK I  48Mbps I  256-QAM 

Throughput 
12Mbps 
18Mbps 

16-QAM 
64-QAM 

- 

16-QAM 
16-QAM 
64-QAM 
64-QAM 

Table 7.1 : Data rate equivalencies of multipass (2-pass) 802.1 l a  modulation types. 

Equivalent 
QPSK 

- (8-QAM) 

Another interesting aspect of the 802.1 l a  specification is its use of Orthogonal Frequency 

Division Multiplexing (OFDM). OFDM is described in more detail in Section 7.2.1, but it 

36Mbps 
48Mbps 
24Mbps 

QPSK 
16-QAM 

- 

BPSK 

64-QAM 
256-QAM 
16-QAM 

36Mbps 
48Mbps 
36Mbps 
42Mbps 

16-QAM 
256-QAM 
64-QAM 

- (128-QAM) 



provides the ability to directly shape the frequency domain represent at ion of the transmitted 

signal. This provides an intriguing opportunity to use a combining function which directly 

takes advantage of this capability, especially in the case of a non-flat channel response. Such 

combining functions will be touched on briefly in Chapter 11. 

The system presented here operates as an 802.11a system, but at the 802.11g frequency 

of operation of 2.4GHz. This was necessitated by the RF circuity which was available for 

use, see Section 7.3.1. Since baseband processing is post down-conversion, it is irrespective 

of carrier frequency and, as such, this difference is not relevant to the baseband operation 

of the systems discussed here. 

7.2 802.1 la Specificat ion Overview 

802.11a is a high speed wireless LAN protocol operating in the unlicensed ISM 5GHz band- 

width. It provides for data rates from 6 to 54Mbps with a channel spacing of 20MHz. 

In order to achieve these relatively high data rates within the given channel bandwidth, 

802.11a employs an OFDM scheme, see Section 7.2.1, to minimize ISI. Some additional as- 

pects of 802.1 l a  are the use of convolutional coding for channel encoding, training symbols 

for channel estimation and detection, and pilot symbols for phase detection. A block dia- 

gram of an 802.11a receiver along with an explanation of the various blocks can be found 

in Section 7.2.2. A quick listing of parameters for the 802.11a specification (data rates, 

timings, etc.) has been included in Appendix A for reference. 

7.2.1 Orthogonal Frequency Division Multiplexing (OFDM) 

Othogonal Frequency Division Multiplexing (OFDM) [94, 36, 30, 95, 321 is a means by 

which to avoid Inter-Symbol Interference (ISI) at high data rates. The essence of OFDM 

is to send multiple symbols of data in parallel over the same channel at once. Each data 

symbol is allocated a small portion of the overall channel width and these data subcarriers 

are then combined to create an OFDM symbol which occupies the full channel and consists 

of multiple parallel data symbols. 

The benefit of OFDM is that, for a given data rate, the rate at which OFDM symbols 

must be sent is a fraction of that of a non-OFDM system since each OFDM symbol en- 

compasses multiple data symbols. This reduced OFDM symbol rate helps to reduce IS1 by 



allowing more time per OFDM symbol for symbol transitions. 

As with many other systems, an OFDM system performs modulation by mapping a 

stream of data bits into data symbols. The mapper divides the bits into groups and assigns 

a complex value (which represents a sinusoid of a specific amplitude and phase) to each 

group based on the bit values contained within, see Section 2.2. 

The OFDM symbols are explicitly constructed from the data symbols in the frequency 

domain, see Figure 7-1. The stream of data symbols is demultiplexed into as many parallel 

data symbols as there are OFDM data subcarriers. Each data symbol is then allocated to an 

OFDM data subcarrier by assigning it to the corresponding frequency location. The process 

of frequency assignment is achieved simply by feeding each data symbol into the input for 

the appropriate frequency bin of an Inverse Fast Fourier Transform (IFFT). The IFFT 

transforms the constructed frequency domain symbol into the time domain for transmission 

across the channel. At the receiver, the time domain symbol is transformed by an FFT 

back into the frequency domain so that the subcarrier data symbols can then be separated 

and multiplexed back into a data stream. 
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Figure 7-1: OFDM Overview. 
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7.2.2 802.11a Block Diagram 

A block diagram of the implemented 802.1 l a  receiver is shown in Figure 7-2. Descriptions 

of the individual blocks appear below. 
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Figure 7-2: 802.1 l a  receiver block diagram. 

Packet Detect Detects the packet header which denotes the start of a data packet. The 

packet detection block correlates the incoming stream of values from the front-end 

against the known packet start OFDM training symbols. If the correlation power 

rises above a threshold, then a packet is assumed to have begun. 

Frequency Synchronization & Adjust Uses the OFDM training symbols to detect sys- 

temic frequency offsets between the received signal and the receiver. Frequency offsets 

are mainly the result of slight frequency differences in the oscillators of the transmitter 

and receiver. Once a packet has been detected, the received packet header OFDM 

training symbols are compared with the known OFDM training symbol values. The 

data stream is then multiplied by an exponential to adjust its frequency accordingly. 

Symbol Timing Detects the end of the OFDM training symbols and the beginning of the 

OFDM header and data symbols in the packet. Correlation with the known OFDM 

training symbols is used to find this demarkation point. The OFDM symbol timing 

value is used as a relative reference for all of the subsequent OFDM symbols in the 

packet. 

Cyclic Prefix (CP) Remove Discards the Cyclic Prefix values. The cyclic prefix is a 

repetition of 16 data values in the OFDM symbol which provide buffering. The cyclic 

prefix provides extra data values to compensate for the possibility of the first few 

data values being lost due to the symbol timing being slightly off or to corruption by 



multipath ISI. 

Fast Fourier Transform (FFT) Transforms the Time Domain OFDM symbols back into 

the Frequency Domain. Performs the Fast Fourier Transform function, see Sec- 

tion 7.4.5. 

Channel Estimation & Equalization Estimates the channel system function and then 

attempts to compensate for it through equalization. The channel estimator uses the 

difference between the known transmitted OFDM training symbols and the received 

OFDM training symbols to infer channel characteristics. The channel equalizer then 

uses this channel estimate to try and remove the channel effects from the symbol 

values. 

Phase Tracking & Rotate Tracks and fixes the shift in phase of the symbol values using 

known pilot symbols. Phase errors can be detected by comparing the received values 

of the pilot symbols embedded in each OFDM symbol to the known transmitted pilot 

symbol values. Phase error is usually the result of mismatches in the timings between 

oscillators at the transmitter and the receiver. While the frequency synchronization 

block addresses this in an overall packet sense, residual error remains on a symbol- 

by-symbol basis. These slight frequency offsets appear as phase drift at the receiver. 

A rotation is applied to the received symbol values to compensate for the detected 

phase offset. 

Quadrature Amplitude Modulation (QAM) Demap Performs the demapping from 

complex values in symbol space back into bits. QAM is used in a general sense and 

could apply to QPSK or BPSK here. The demapper compares the corrected complex 

data symbol values against decision boundaries to determine each data symbol's cor- 

responding Veronoi region. The demapper then outputs the bits associated with that 

region. 

Deinterleave Undoes the interleaving of bits performed at the transmitter. The deinter- 

leaver stores the demapped bits in a buffer so that they can be retrieved from the 

buffer in the uninterleaved order. It is the inverse of the transmitter interleave block 

which reorders the data bits before mapping. This shuffling of bits is an error mitiga- 

tion technique. At the receiver, the reordering of bits is undone by the deinterleaver 



in an attempt to spread out the errors resulting from any symbol demapping mistakes 

throughout the bit stream. This increases the likelihood that the Viterbi decoder can 

compensate for and correct these errors. 

Depuncture Fills in the gaps in the bit stream caused by puncturing at the transmit- 

ter. Certain data rates in the 802.11a specification are achieved by dropping bits in 

a regular pattern from the output of the convolutional encoder output bit stream. 

Depuncturing is the process of adding back in null values to allow the Viterbi decoder 

input rate at the receiver to match the convolutional encoder output rate at the trans- 

mitter. These null values are ignored by the Viterbi decoder and do not contribute to 

the decoding process. 

Viterbi Decoder The Viterbi decoder [21, 221 restores the pre-channel coded data bit 

stream. It is the receiver complement to the channel coder (the convolutional encoder) 

at the transmitter. The function of the Viterbi decoder is to try to re-create the bit 

stream input to the convolutional encoder at the transmitter. The Viterbi decoder 

does this by estimating, given knowledge of how the convolutional encoder operates 

and the received bit stream seen so far, which sequence of bits would be the most 

likely to have produced this received bit stream from the convolutional encoder. 

The Viterbi decoder operates by creating a trellis of all possible convolution encoder 

states and inputs. This trellis is then compared with the received bit stream and for 

each set of received bits, the convolutional encoder input bit and state most likely 

to have produced those received bits is chosen. The convolution encoder input bit of 

that most likely trellis state is then chosen as the output of the Viterbi decoder. The 

Viterbi decoder is addressed in more detail in Section 7.4.5. 

Descramble Undoes the effects of the transmitter's scrambler. The scrambler/descrambler 

is simply a linear feedback shift register whose output is XORed with the data stream. 

This turns the data bit stream into a pseudo-random sequence containing almost equal 

numbers of 1's and 0's. The purpose of scrambling is to ensure a lively mix of bit 

values to prevent the DC offset issues cause by a long strings of 1's or 0's. The 

descrambler is the exact same function as the scrambler and begins in the exact same 

initial state. This results in a descrambler which presumably, in the error-free bit 



stream case, applies an XOR of the same value applied by the scrambler XOR at the 

transmitter. The net result is to negate the effects of the scrambler. 

7.3 System Hardware 

A prototype Raw wireless system was built as a proof-of-concept. The hardware system 

provides a platform for the testing of 802.11a and multipass Raw baseband processing in 

a more realistic environment. It is also a means of verifying the software simulation for 

correctness and realism. An advantage of the hardware system is that it provides a much 

higher wall-clock speed equivalent to the software simulation. This was of particular use in 

verifying the Raw 802.1 1 a single and mult i-tile implementations, see Sect ion 7.4. 

7.3.1 Raw Wireless System 

The Raw wireless system performs both baseband processing and front-end transmission 

and reception. The 802.11a communication protocol is used for baseband processing. The 

front-end radio system operates in the 2.4GHz band. Since all of the Raw related baseband 

processing occurs post down-conversion, the use of the 802.11a protocol versus the more 

frequency appropriate 802.11g is irrelevant. The use of 2.4GHz is solely an artifact of the 

RF chip-set used, which was generously donated by the Engim Corporation. Operation 

at the more traditional 5GHz could easily be achieved by using the wireless board's 5GHz 

radio path and a 5GHz RF chip-set instead, see Section 7.3.3. 

The wireless system (see Figure 7-3) consists of two boards: the Raw Wireless board 

(see Section 7.3.3) which performs the front-end radio functions for both transmission and 

reception from the antenna through conversion between the analog and digital domains; 

and the Raw Handheld motherboard which performs the baseband processing of the digital 

data stream and control functions for the wireless board. The two boards mate directly 

through an expansion connector interface through connector headers on both boards. A 

picture of the full system can be see in Figure 7-4. 

7.3.2 Raw Handheld Board 

The Raw Handheld Board acts as a motherboard for the Raw processor. The board consists 

of a Raw processor surrounded by FPGAs which are in turn connected to various types of 



Raw Handheld Board 

Figure 7-3: An overview of the Raw Wireless System. The system is shown here in receive 
mode. 

Figure 7-4: Photo of the Raw Wireless System. 



I/O interfaces and memory, see Figure 7-5. The FPGAs provide a flexible interface between 

Raw and the rest of the world. They enable translation between Raw and any connected 

devices in terms of data formating and clocking. The FPGAs also provide sufficient logic to 

perform control functions, such as memory control, and minimal data processing. Multiple 

signaling standards are supported on the FPGAs and enable the ability to translate the 

electrical signaling standard applied to the data traveling across the expansion connectors 

between the Raw 110 signaling standard, HSTL, and those used on the expansion boards. 

Figure 7-5: Block diagram of the Raw Handheld Board. 

The ring of FPGAs act as both logical extensions to the on-chip Raw mesh network and 

as translators between that mesh network and the rest of the system. As such, the FPGAs 

can be considered in terms of the Raw ports to which they connect. The two FPGAs on 

the east ports contain the memory controllers and connect the Raw processor's memory 

interface to the four 512MB DIMMs which act as system memory for the handheld board. 

The north and south FPGAs translate between their respective ports and the handheld 

board's expansion connectors. The expansion connectors allow custom boards, like the 

wireless board, to interface with the Raw handheld system. The FPGAs provide multiple 

signaling standards and allow the ability to reformat data coming into and out of the 

expansion connectors between the Raw network standards and those used on the expansion 



boards. The west FPGAs provide interfacing with some standard 110 devices and systems. 

The USB and PC1 connections allow the system to interface with standard components 

and cards. There is also a serial port, a keyboard port, an LCD port and other I/O 

ports connected to these FPGAs. Currently, the USB interface is used to connect the Raw 

handheld board to a host computer. This USB acts as a surrogate for a network interface 

and allows programs and data to be downloaded to and uploaded from the handheld board. 

A picture of the Raw handheld board situated in its chassis along with an extra Raw chip 

can be seen in Figure 7-6. 

Figure 7-6: Raw Handheld Board. 

7.3.3 Wireless Board 

The Raw wireless board is a version of an Engim 802.11a/g board design which has been 

modified to interface with the Raw handheld board. Details of the wireless board imple- 

mentation and testing can be found in [96]. The wireless board contains Engim chips which 

provide radio functionality and A-to-D and D-to-A conversion. The converters operate on 

a 180MHz bandwidth at 12 bits. This is more than is strictly necessary for an 802.11a 

channel, but should provide the ability to explore multiple channel or larger bandwidth 



systems, see Section 11. 

The wireless board was designed to send and receive data at both 2.4GHz and 5GHz. It 

is compatible with both the 802.11g and 802.11a specifications. As only the 2.4GHz Engim 

RF chips were readily available, only the 2.4GHz data path is enabled. This resulted in the 

scenario of an 802.11a baseband operating with a 2.4GHz front-end. Since, in this case, the 

front-end processing does not directly affect the baseband processing, the use of a 2.4GHz 

radio is not incompatible with the use of an 802.11a-only baseband. This is especially true 

as the system only addresses the PHY layer and operates in a closed environment. As such, 

there is no need to be concerned about MAC processing capabilities or interoperability with 

802.11g headers or other compatibility issues which might arise from operating at 2.4GHz. 

The wireless board moves streams of data back and forth between the converters and the 

FPGA on the Raw handheld board. An expansion connector mates with the Raw handheld 

board and driverslreceivers on the wireless board communicate the data and clocks between 

the converters and FPGAs. A picture of the wireless board showing various components 

along with its connection to the handheld board can be seen in Figure 7-7. 
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Figure 7-7: Raw Wireless Board. 

The wireless board provides three consecutive 802.11a channels of data with 12 bits of 

precision. This data is streamed from the wireless board into the FPGAs on the handheld 

board, where it is packetized into messages for injection onto the Raw memory network. In 

this way, the data stream is stored in the Raw main memory by DMA. The Raw processor 



can then operate on the data from memory and filter this data down to a single 802.11a 

channel and begin baseband processing. 

The Raw wireless board has been successfully operated in conjunction with the Raw 

handheld system. The full Raw wireless system has been used to both send and receive 

data through the wireless interface. The Raw wireless system demonstrates the feasibility 

of building a wireless radio utilizing Raw. 

7.4 System Software 

The system software evolved through multiple iterations encompassing single pass versions 

of the 802.1 l a  baseband running on a single processor, to single pass versions of the 802.1 l a  

baseband running on multiple processors, to multipass versions of the baseband running 

on both multiple and single processors. The implementations focused on the receiver ar- 

chitecture, as this is the most difficult part of a communication system. This stems from 

the fact that all of the values are deterministic at the transmitter. The uncertainty of the 

received signal makes the receiver processing much harder and more complex and, as such, 

the receiver provides an upper bound on the processing required by the communication 

system. The following receiver software systems have been implemented: 

1. C language - we call this Sequential, Single Pass. 

2. Matlab - we call this Matlab, Single Pass. 

3. Raw single tile targeted C language - we call this Single Tile, Single Pass. 

4. Raw multiple tile targeted C language - we call this Multi-tile, Single Pass. 

5. Raw optimized multiple tile mixed C and Assembly language - we call this Optimized 

Multi-tile, Single Pass. 

6. Raw optimized multipass mixed C and Assembly language - we call this Optimized 

Multi-tile, Multipass. 

7. Optimized multipass C language - we call this Simulated Optimized Multi-tile, Mul- 

tipass. 

These systems will be addressed in the following sections, with a general overview below. 



The first step in building the system software was to generate a generic C language 

version of the 802.11a receive baseband - the Sequential, Single Pass design. This provided 

a means of better understanding the specification, as well as a functioning baseband. In 

order to verify the performance of this single pass design, a Matlab version of the 802.11a 

baseband - the Matlab, Single Pass design - was created utilizing internal Matlab functions 

whenever possible. This Matlab system provided verification that the C language baseband 

functions were implemented correctly and that the C language baseband operated in a 

similar fashion to the Matlab baseband. From there, the C language design was re-targeted 

to operate on a single Raw tile - the Single Tile, Single Pass design. This re-targeting was 

necessary to in order to allow the design to operate on the Raw hardware and the cycle 

accurate Raw simulator, called BTL, and mostly consisted of adjusting the system to utilize 

the Raw static network to stream data in and out of the Raw processor. This design was 

then expanded across multiple tiles - the Multi-tile, Single Pass design. The major baseband 

function blocks were each assigned a tile and modified to communicate information through 

the static networks. The slowest operating of these functional blocks, the FFT and Viterbi 

decoder blocks, were then themselves parallelized across multiple tiles to optimize system 

performance - the Optimized Multi-tile, Single Pass design. The multipass functionality was 

then added to this optimized design - the Optimized Multi-tile, Multipass design. Finally, 

a C functional simulation of this multipass design - the Simulated Optimized Multi-tile, 

Multipass design - was created to improved system simulation run-time for performance 

data gat hering. 

7.4.1 Sequential, Single Pass Design 

The initial step in the system design was a C implementation of the 802.11a baseband. 

This implementation was intended as an introduction to the 802.1 l a  baseband design and 

an opportunity to understand and debug the algorithms necessary for the baseband to op- 

erate correctly. Using a simple implementation platform, the C language on a Pentium 4 

processor, allowed the use of the debugging infrastructure and high compilation and pro- 

cessing speeds available in that environment. This helped ease the initial implementation 

effort and allowed algorithm exploration and development to be the primary focus of this 

implement at ion. The example message given in the 802.1 1 a specificat ion [24] was used 

heavily to verify this implementation and the implement ations to follow. This implemen- 



tat ion included transmitter, channel, and receiver portions. The transmitter and channel 

were needed to generate input for this and later receiver designs. 

Figure 7-8 plots the Bit-Error Rate (BER) curves for the C language single pass system 

implementation operating with two modulation schemes, QPSK and 16-QAM. A BER curve 

gives a metric of communication system performance. It plots the log of the probability 

of a bit error (the likelihood that a bit input to the system is not the bit output by the 

system) against the relative adversity through which the system must operate (denoted 

in decibels). The measure of this relative adversity is called Eb/No and is the ratio of 

the energy per information bit, Eb, to the noise power spectral density, No. Eb/No is a 

measure of the Signal-to-Noise Ratio (SNR) of the symbols received scaled by the number 

of information bits per symbol. The performance of a communication can be represented by 

how reliably the system performs (how many errors it makes in communicating information 

bit) in the presence of noise. Given that any correctly operating communication system can 

transmit information with negligible probability of error with large enough signal power, or 

equivalently small enough noise, the goal is to minimize the power required to do so. This 

corresponds to achieving more reliable performance for smaller Eb/No. 

BER curves are typically monotonically decreasing, as can be seen in Figure 7-8, as 

increased signal power (or decreased noise) translates into more bits being correctly com- 

municated. Better communication system performance corresponds to curves which are 

shifted further to the left. In Figure 7-8, the QPSK curve falls to the left of the 16-QAM 

curve showing that the QPSK system is more reliable in noisy conditions. The trade-off here 

is that a 16-QAM system can operate at twice the data rate of a QPSK system. Therefore, 

if the noise power is low, it is more efficient to use a 16-QAM modulation scheme; otherwise, 

the QPSK system is more reliable. 

The two curves presented in Figure 7-8 are the BER curves for the single pass 802.11a 

baseband using QPSK modulation and 16-&AM modulation. These curves represent a 

baseline metric for the multipass system. For a multipass system to be useful, it must deliver 

communication performance on the order of that of an equivalent data rate single pass 

system. These two single pass curves are provided on all future BER plots (in Chapter 8) 

as a point of reference. 
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Figure 7-8: The Bit-Error Rate (BER) curve for the C language single pass system imple- 
mentation. The x-axis show Eb/No in decibels. Eb/No represents the ratio of the energy 
per bit to the system noise power. It is a measure of the Signal-to-Noise Ratio (SNR) of 
the system scaled by the number of information bits per symbol. The y-axis denotes on a 
log scale the probably that a bit input to the communication system is output erroneously. 
The performance of each of the single pass systems is mapped by plotting the how likely 
the system is to make a bit error as the relative amount of noise changes. 



7.4.2 Matlab, Single Pass Design 

A Matlab version of the 802.11a baseband was also implemented. The Matlab version 

was built using built-in Matlab functions whenever possible. This provided an additional 

validation of the C implementation results. An additional benefit was the ability to test both 

the C and Matlab versions with an AWGN source added to the channel model. This provided 

an additional test of the noise compensat ion abilities of the baseband implementations. 

A graph of the bit error rate (BER) of the Matlab and C single pass versions can be 

seen in Figure 7-9. The outputs closely align and provide confidence in the C language 

implementation. The relative choppiness of the Matlab BER curve is a result of fewer 

packets being used to generate the Matlab curve than the C model curve. 
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Figure 7-9: The BER of the Matlab implementation of the single pass system is compared 
to the C implementation. 

The Matlab model was also used to validate the final optimized C language model in 

Section 7.4.6. 

7.4.3 Single Tile, Single Pass Design 

Following the validation of the C implementation on the P4, the software was ported to 

run on a single tile of Raw. This version of the baseband targeted a single tile of the Raw 



processor and could take advantage of the Raw gcc back-end, or rgcc, which targets a single 

Raw tile [74]. The porting to Raw simply involved removing any unsupported system level 

calls and building the software infrastructure to stream the data into and out of the tile 

running the baseband. This was achieved using the static network. 

The initial single tile design was tested on BTL, a cycle-accurate simulator of the Raw 

processor [74], due to its superior debugging capabilities. The Raw hardware was used 

in conjunction with BTL for debugging, however, as it operated significantly faster than 

the simulation. The single tile system, running on both BTL and the Raw hardware, was 

validated against both the 802.11a specification and the previous C implementation using 

the P4 model. 

The single tile 802.11a baseband provides an intermediate step in the porting of the 

baseband to Raw. It is a means of verifying that the software used is Raw compatible, 

but, as it only uses a single tile, it fails to utilize most of the advantages of the Raw 

processing platform. This results in the single tile system being very, very slow, requiring 

many thousands of cycles to operate on each received data symbol. This is much too slow 

to contemplate real-time communications operation. 

7.4.4 Multi-tile, Single Pass Design 

To improve the sustainable data rate of the 802.1 l a  receiver baseband, the single tile Raw 

port was spatially pipelined over multiple Raw tiles. This allowed the baseband to use mul- 

tiple processors in parallel to reduce the load on each individual tile. The design was broken 

up primarily along functional block lines, although compatible functions were combined on 

some tiles. The mapping of functions to tiles can be seen in Figure 7-10. The final multiple 

tile implementation used 10 tiles and distinct input and output ports. 

The multiple tile design makes heavy use of the Raw static network and required pro- 

gramming the switches for both data flow and control flow. Hand coding the static net- 

work necessitated careful orchestration of communication between tiles which, in turn, gave 

greater insight into the best means of parallelizing across multiple tiles. The final mapping 

is as close to a linear flow of data as possible. The distribution among tiles generally follows 

functional boundaries, but functions which operate in mutually exclusive and/or comple- 

mentary phases, such as channel estimation and equalization, or cyclic prefix remove and 

FFT, were collocated on the same processing tile. 
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Figure 7-10: Multiple tile receiver mapping on Raw. Map receiver blocks to a different tiles 
to create a spatially pipelined receiver chain. 

Since all of the functions were migrated from the single tile implementation, they are 

in the C language. The primary modification to the functions themselves was to reformat 

their inputs and outputs to use the network instead of memory structures. The use of C 

was very helpful in speeding up the implementation process and led to a functional system 

which could then be used to determine the major system bottlenecks. 

A significant benefit of the multiple tile design was its relatively small size. By only 

using 10 tiles, the entire multiple tile design could fit on the current Raw hardware. This 

allowed the use of both BTL and the hardware for debugging, as in the single tile case. The 

significantly faster hardware running time was extremely helpful in quickly converging on a 

fully functional system. Once again, the 802.11a specification example, as well as the single 

pass version outputs, were used to verify and validate the identical Raw hardware and BTL 

multiple tile baseband. 

The BTL simulator provided detailed information on the number of cycles required to 

perform each function in the multiple tile baseband implementation. This demonstrated two 

functions which significantly impacted system performance: FFT, and the Viterbi decoder. 

It is not surprising that these functions were throttling critical path performance, as each 

acts as one of the bottlenecks described in Section 1.2.2. In order to achieve processing rates 

compatible with real-time communication system operation, it is necessary to significantly 

improve the efficiency of each of these bottlenecked functions. 



7.4.5 Optimized Multi-tile, Single Pass Design 

The multiple tile baseband simulation highlighted two main functions which impeded high 

data rate baseband operation. These bottleneck blocks needed to be optimized and par- 

allelized to achieve necessary processing speeds. This was done by rewriting the functions 

to spread them out over multiple tiles. The code for each tile was rewritten in optimized 

Raw Assembly language and the communication between the tiles was carefully orches- 

trated. The two major bottlenecks to high speed operation were the FFT function, a data 

chunking bottleneck, and the Viterbi decoder function, a data expansion bottleneck. The 

optimization of these functions was key to creating a system compatible with real-time 

operat ion. 

The other functions in the multiple tile baseband system were not optimized. These 

other functions were not major contributors to system slowdown. Such functions could be 

relatively easily rewritten in Raw Assembly language if their operation began to impact 

system performance. The non-optimized functions fall into two categories: those operating 

on symbols and therefore, at the symbol data rate, and those operating on bits. 

The symbol functions, those functions which come before the demapping stage, operate 

at the 20MHz symbol rate or slower. This slow rate allows ample time for the temporal 

reuse necessary for the symbol functions to perform their operations using a single tile. The 

FFT, which experiences the data chunking bottleneck, is the only block of primary concern 

here. 

The bit functions suffer from a much more constrained timing as the rate of bits is 

higher than that of the symbols. Since each symbol can carry up to six bits, the rate of bits 

can grow by many multiples through the demapping stage. The only bit function for which 

this increase in bit rate is of major concern is the Viterbi decoder function as it requires 

significant amounts of processing for each bit input. All of the other bit function blocks 

either perform no computation on the data, only reordering or reformatting, or else very 

minimal computation, such as a single XOR in the descrambler. 

FFT 

The Fourier Transform and its inverse are functions which convert data between the time 

and frequency domain[41, 421. Fourier Theory states that time domain signals can be 



losslessly decomposed into the superposition of complex sinusoids. The Fourier Transform 

is a means of quantifying the relative contribution of each of a set of harmonically related 

complex sinusoids at set frequencies in the composition of a time domain signal. The 

transform takes in N data values in the time domain and outputs N frequency values, or 

points. Each frequency point corresponds to the relative amount of a complex sinusoid 

at each of N frequencies, equally spaced by % between 0 and (%)(N - I), in the time 

domain signal. The Fast Fourier Transform (FFT) is a computationally efficient version 

of a Fourier Transform for transform sizes which are exponents of 2 (size = 2N) [23]. The 

Inverse Fast Fourier Transform (IFFT) performs the dual function to the FFT. The IFFT 

takes N frequency points and transforms them into N time domain data values. An example 

FFT flow diagram can be seen in Figure 7-11. 

Figure 7-11: A small example FFT dataflow. The size of the FFT is 8-points ( N  = 8). 

The core element of the FFT is the butterfly, see Figure 7-12. The butterfly is applied 

repeatedly with different constant coefficients to different sets of data to implement the 

FFT. The flow diagram of Figure 7-11 is simply repeated stages of butterflies using different 

coefficients and different strides in the communication between data values. While the basic 

structure of the FFT butterfly stays the same for each stage, or column, of the FFT flow 

diagram, the stride, or distance between each butterfly's input data, grows logarithmically 



with each stage. 

previous 
stage 

next 
stage 

Figure 7-12: The butterfly is the core functional element of the FFT. 

The key questions for the parallelization effort of the FFT are how to trade-off com- 

munication versus computation and how to manage that communication which is required. 

The distribution of the butterflies has a direct impact on the amount and types of commu- 

nication, as well as the efficiency of computation of each butterfly. 

The FFT butterflies do not map well to mesh networks in two regards. As only vertical 

and horizontal nearest neighbor connections are present in a mesh, but not diagonal connec- 

tions, the elements of a butterfly do not map well across tiles. This diagonal routing makes 

locating all of a butterfly on a single tile much more efficient. Secondly, if each butterfly 

is located on a single tile, and not spread across tiles, the gathering of the butterfly input 

data requires a larger amount of communication with each FFT stage. The stride between 

stages of butterflies, however, grows logarithmically. This logarithmic growth of the butter- 

fly strides between stages of the FFT requires the reshuffling of data in between every stage 

before the next set of butterflies can commence. That makes mapping individual butterflies, 

or even sets of butterflies, onto a single tile relatively communication expensive as, for the 

later FFT stages, every tile requires a large amount of communication over a long distance. 

This issue is addressed in the optimized Raw FFT by partitioning the FFT into phases 

(see Equations 7.1- 7.5). Each phase is assigned a number of consecutive stages of the FFT 

flow diagram. A stage's worth of butterflies are then allocated across the number of tiles to 

be used. With intelligent partitioning of the butterflies across the tiles, a single set of data 

is all that is required during a phase. That is, the butterflies of a phase can be distributed 

across the tiles in such a manner that the output of each butterfly stage is consumed by 

a butterfly in the next stage located on that same time. This reduces the communication 

problem to a shuffling of the data between phases to marshal the correct data values on 



each tile for the phase to come. While this requires an all-to-all communication in between 

phases, it results in a smaller amount of overall communication. 

N = number of FFT points (7.1) 

T = number of processing elements available (7.2) 

X = number of FFT points assigned to each tile (7.3) 

Phases Required(@) = 

The optimized Raw FFT used here is designed with two phases of 8 tiles, each requiring 4 

FFT butterflies and 8 complex data values per tile, see Figure 7-13. The phases are allocated 

to two different sets of 8 tiles. This simplifies the communication patterns involved as the 

all-to-all communication becomes a forwarding of values between phases as each of the 8 

outputs of each Phase 1 tile is sent to a different Phase 2 tile. 

Load & Compute Phase Transition Compute & Out~ut 

Phase 1 Phase 1 Phase 2 Phase 2 

Figure 7-13: The optimized FFT operates in phases: 

Load & Compute The data is loaded into each tile (darker arrow signifies ear- 
lier communication). When each tile has loaded all its FFT 
values it begins computing, while the next tile in the load 
order receives its values. 

Phase Transition The values from each tile in Phase 1 are distributed to the 
tiles in Phase 2. As soon as a Phase 1 tile is finished com- 
puting its output, values are sent to each of the Phase 2 tiles 
(darker arrow signifies earlier communication). 

Compute & Output The second set of FFT butterflies are performed and the re- 
sults output. When all tiles have finished their Phase 2 but- 
terflies, their final values are output in a round-robin ordering 
(darker arrows signifies earlier communication). 



The FFT performance is also improved by the pipelined nature of the communication 

involved. Each Phase 1 tile can begin its butterfly computations as soon as all of its data 

values are present. The butterflies are allocated across the Phase 1 tiles in a manner such 

that each consecutive set of 8 data values are all of those necessary to allow one whole 

tile's worth of FFT computation. Thus, once the first 8 data values are input to the FFT, 

the first tile to receive data can start its computation, even while the later tiles are still 

receiving data. 

The staggering of the Phase I computations eases the forwarding of data values for 

Phase 2. When each Phase 1 tile finishes its computations, it must forward each of its 

output values to a different tile. The staggering of the start of computation on Phase 1 tiles 

translates to a staggering of the end of computation on those tiles and similarly staggers the 

communication for each tile between Phase 1 and Phase 2. This helps to reduce the amount 

of network traffic at  any given time and thus the routing between Phase 1 and Phase 2 is 

significantly simplified and is as efficient as possible. 

The use of multiple phases on separate sets of tiles also allows the FFT to be pipelined 

for even greater efficiency. The two FFT phases are disjoint and only interact during the 

interphase forwarding of data. The operation of each phase is also independent for each set 

of FFT input data. Therefore, each phase can begin to work on the next FFT operation as 

soon as it completes. For instance, once a Phase 1 tile has completed its computation on a 

set of data and forwarded that data on to Phase 2, it can immediately begin computation 

on the next FFT operation's set of data. This reduces the data chunking bottleneck and 

improves the throughput of the overall FFT. 

The number of phases and tiles per phase were carefully chosen to balance the compu- 

tation and communication latencies for each tile. This allows the pipelined FFT to remain 

fully occupied. It should be noted, however, that this balance is dependent on the spe- 

cific architectural latencies involved and cannot necessarily be maintained with increased 

parallelization. Therefore, spreading the FFT across more th in  the 16 tiles used here will 

provide diminishing returns. 

Table 7.2 compares two different FFT implementation approaches using Raw. Both 

implementations use the same basic algorithm for the FFT utilizing repeated radix-2 but- 

terflies. Both FFT's implement an 802.11 a specification-compatible 64-point FFT. 

The first of these is a straightforward C implementation on a single tile. This version 



Table 7.2: Comparison of FFT Implement at ion Properties. 

Fast Fourier Transform (FFT): 
3 . 2 , ~  to perform 64-point FFT 

is written in C and compiled with rgcc, which targets a Raw tile. This implementation 

avoids the communication overhead of a spatially parallelized version of the FFT, but is 

significantly slowed down by the memory bottleneck of performing the butterflies. This 

occurs in spite of the fact that the memory footprint of the FFT is smaller than a single 

tile's data cache size of 32KB. A lot of memory traffic is generated by the FFT both in 

terms of the need to store large chunks of data, see Section 1.2.2, and in the shuffling of data 

and constants to perform the shifting butterflies. By using a single processor, the register 

file is constantly being spilled to swap out the values from the last butterfly and this creates 

a lot of churn in the memory subsystem. 

Implementation 
C 
Raw optimized 

This large overhead results in a relatively large cycle count per 64point FFT of o 

100,000 cycles. The 802.11a specification allows a maximum time of 3 . 2 ~ s  per FFT (or 

IFFT). This results in a minimum clock speed of 31.25GHZ to perform the FFT, an uncom- 

fortably high frequency, especially since, in a single processor design, the entire processor 

would be required to perform nothing but FFT's in order to operate at that rate. 

The optimized Raw FFT implementation is also presented in Table 7.2. This is a 

parallel Raw Assembly language implementation which uses 16 tiles to carefully trade-off 

the computation and communication requirements of the 64point FFT. The optimized 

Raw FFT distributes the FFT butterflies over many tiles to avoid the use of the memory 

subsystem on any given tile. The number of butterflies per tile was carefully chosen to 

match the register file size. The use of the network to forward data between the computation 

phases of the optimized Raw FFT also avoided the use of the much slower memory network 

to reorder data, as was required in the C language FFT version. These efficiencies are 

reflected in the large improvement in performance of the optimized Raw FFT over that of 

the C language version. The clock cycles per FFT function were reduced by three orders of 

magnitude and the minimum clock speed was lowered to a very manageable 75MHz. 

Number of Tiles 
1 
16 

This large performance increase is a result of improvements to the optimized FFT over 

Cycles 
100,000 

240 

Raw Clk 
31.25GHz 

75MHz 



the C language FFT on multiple fronts. First, the optimized FFT achieves a 16x improve- 

ment through the parallelization of the function across 16 tiles. The FFT was carefully 

pipelined to keep all of the tiles working all of the time and to balance the latencies of 

computation and communication to keep them roughly equivalent, resulting in the linear 

speedup with 16 tiles. Second, the careful scheduling of instructions and precomputat ion of 

necessary constant coefficients translates to a 4x reduction in the number of cycles required 

for each butterfly computation. Third, the optimized FFT achieves an additional 5 x im- 

provement in cycle count by minimizing the number of instructions required for operations 

other than the butterflies. These extra instructions in the C language FFT are primarily 

the result of the reading, writing, and reordering of memory structures, all of which are 

inherently handled through the careful communication of values across the network in the 

optimized FFT. Finally, the optimized FFT achieves an additional performance benefit of 

approximately 1 . 5 ~  through the careful scheduling of instructions to avoid processor stalls. 

Though the C language version was compiled using rgcc with optimization level of -0 3, 

this version still encounters a number of stalls (bypass, misprediction, and resource stalls) 

which the optimized FFT has been designed to avoid completely. 

Viterbi Decoder 

The Viterbi decoder is a receiver processing function which decodes the channel coding 

performed by the convolution encoder at the transmitter. Convolutional encoders provide 

channel coding by correlating consecutive data bit values through the encoder's state infor- 

mation. The robustness of this channel coding and correlation can be improved by having 

the convolutional encoder use multiple bits to represent each combination of current coder 

state and data. At the receiver, this convolutional encoding must be undone to retrieve the 

originally intended bits. The Viterbi decoder block performs this retrieval process. In order 

to regenerate the pre-encoded bits, however, the Viterbi decoder must build a trellis repre- 

senting all of the possible states and inputs which might have occurred at the convolutional 

encoder in the transmitter. The Viterbi decoder then performs a winnowing process to 

restrict the trellis outputs to only the most likely states. Eventually, this process converges 

on the most likely data bit for the transmitter to have sent and this is considered to be the 

received data bit value. 

Data expansion occurs in the building of the Viterbi decoder trellis. In order to represent 



all of the possible states and input, the amount of processing required at the receiver rapidly 

blows up to many times that of the data rate. For each two bits input to the Viterbi decoder, 

a large trellis must be constructed and operated on. This represents a very large relative 

increase in processing rate. 

Most of the focus in Viterbi decoder design has been on ASIC and custom logic [97, 98, 

99, 100, 101, 1021. This is a consequence of the current generation of GPPs and DSPs not 

having the processing capabilities to perform high speed Viterbi decoder operations [72]. 

There are just too many instructions required in too small a period of time and the related 

growth in bit rate makes implementing the Viterbi decoder on a single general processing 

element infeasible, see Section 1.2.2. Even using simply connected multiple cores, as in 

many CMPs, is insufficient. This is because the trellis structure of the Viterbi decoding 

requires a large number of differing computations for each stage of the decoder. These 

computations must therefore be distributed with a very fine grain of parallelism to achieve 

accept able performance. In addition, the different processing tasks of the Viterbi decoder 

are interrelated, requiring very low latency interconnect between the distributed processing 

elements [103, 1041. 

The Viterbi decoder is used as a maximum likelihood estimator of the data bit stream 

input to the transmitter's convolutional encoder [21, 221. The Viterbi decoder attempts to 

determine, given the bits seen at the receiver, which bits were most likely to have been input 

to the convolutional encoder at  the transmitter. The decoder is attempting to re-create the 

convolutional encoder input stream using only the demapped bits of the received noisy 

values. The use of the convolutional encoderlviterbi decoder pair provides channel coding 

for the communication system. This method of channel coding increases the likelihood of 

successfully recovering the transmitted data stream in two ways: 

First, the convolutional encoder output for each input bit is influenced by the previous 

few bits input to the convolutional encoder through the convolutional encoder state ele- 

ments, see Figure 7-14. This spreading of the bit information allows the Viterbi decoder 

to use a number of consecutive bits in estimating the most likely convolutional encoder 

input to have created those bits. Thus, even if some of the received bits are in error, the 

information contained in the correct bits around those errors can help to promote or recover 

an accurate decoding and re-creation of the convolutional encoder input bit stream. 

Second, the convolutional encoder uses the redundancy of using a coding rate of less 



than one to improve the robustness of the system. A coding rate of less than one means 

that for a given number of input bits, a larger number of output bits is generated. These 

extra output bits give the decoder extra information to help determine the decoded bit 

stream. The rates used in 802.11a coding are 112, 213, and 314. A rate of 112 corresponds 

to two convolutional encoder output bits for each input bit, a rate of 213 means there are 

3 output bits for every 2 input bits, and a rate of 314 has 6 output bits for every 4 input 

bits. The higher the coding rate, the more data bit information is encoded in the coded 

data stream (hence the use of these rates to help increase the system data rate). This also 

results in a smaller amount of redundancy and a corresponding higher probability of error 

in the decoded bit stream. 

Input Data 

- Output Data A 

Figure 7-14: 802.11a Convolutional Encoder of depth K = 7 and rate R = 112 with 
generator polynomials go = 133f3 and gl = 1718. 

The Viterbi decoder can be broken down into multiple blocks or units which collectively 

perform the decoding [105], see Figure 7-15. The required blocks for performing Viterbi 

decoding are the Branch Metric Unit (BMU) block, the Add-Compare-Select (ACS) block, 

the Memory (MEM) block, and the TraceBack Unit (TBU) block. The specific Assembly 

language implementation used on Raw adds two more blocks to perform the general TBU 

functions more efficiently: a second stage pipeline of the TraceBack Unit (TBU2) block, 

and an Accumulate (ACC) block which accumulates and condenses the TBU/TBU2 output 

into a single bit decision. The functions of the various units/blocks used in the optimized 

Raw Viterbi decoder are described below and the Raw mapping used can been seen in 

Figure 7-16. 

BMU (Branch Metric Unit) Compares the bit pair input to the Viterbi decoder with 

the output of every possible combination of inputs and states for a convolutional en- 
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BMU: Branch (or Transition) Metric Unit 
- Determines all possible branches (or next-states) from each current-state 

and their likelihood (branch metric) given the decoder input. Each branch 
corresponds to a possible input bit to the Convolutional Encoder. The 
metric is the difference between the potential encoder output and the 
actual decoder input. 

ACS: Add-Compare-Select Unit 
- For each next-state, adds the branch metric for all incoming branches to 

likelihood we were in that branch's current-state (path metric). Compares 
results and selects the "best" total metric. This becomes the new path 
metric and the corresponding next-state becomes the current-state. 

TBU: Trace-Back (or Survivor Memory) Unit 
- Stores the input bit value for each new current-state into that state's 

survivor memory. The oldest value from the current-state with the "best" 
path metric is the decoder output. The oldest value from all survivor 
memories is then dropped. 

Figure 7-15: An overview of the general functional blocks of the Viterbi decoder. 

Figure 7-16: Parallel Viterbi decoder layout. The communication pattern for a single row 
is show in black. 



coder. The resulting branch metrics are the inverse hamming distance (or the number 

of matching bit positions) between the Viterbi decoder input pair and the possible 

convolutional encoder outputs. The branch metric for a state-input combination rep- 

resents the likelihood that a given Viterbi decoder input pair was generated by a 

convolutional encoder in that state with that value as the input. A branch metric is 

determined for each convolutional encoder state and possible convolutional encoder 

input. These branch metrics are generated for each pair of inputs to the Viterbi de- 

coder. (The Viterbi decoder operates on pairs of bits because the base coding rate for 

this system is 112. Hence, two convolutional encoder outputslviterbi decoder inputs 

for each data bit .) 

There are K - 1 possible state values for a depth K convolutional encoder. These 2K-1 

states correspond to the 2K-1 bit permutations which could be stored in the K - 1 

state elements of the convolutional encoder. In addition to the 2K-1 possible states, 

there are 2 possible bit values (0 or 1) which could have been input to the convolutional 

encoder for each state. Therefore, for the 802.11a convolutional encoder which has an 

encoding depth of K = 7, there are 2K-1 = 64 possible states and 2 possible inputs 

which leads to 64 * 2 = 128 branch metrics. The BMU assigns each one of these 128 

branches a metric based on the bit pair presented to the input of the Viterbi decoder. 

ACS (Add-Compare- Select) Chooses the most likely state-input combinations, reduc- 

ing the total number of state-input combinations to 12812 = 64. 

Each possible state of the convolutional encoder has a value called a Path Metric 

(PM) associated with it. This PM value represents the likelihood that a possible 

convolutional encoder state was the actual state of the transmitter's convolutional 

encoder at a given point in the data stream. 

The add part of the ACS adds the BM, which is supplied by the BMU, to the PM 

for each state, which is supplied by the MEM unit. By adding the BM to the PM, 

the ACS finds the cumulative likelihood that the convolutional encoder was in a given 

state (the PM) and that that state and a given input produced the incoming Viterbi 

decoder pair (the BM). The ACS then compares these cumulative likelihoods and, 

for each resultant state of the Viterbi decoder, selects the state-input combination of 

the aliasing pair which is more likely. The cumulative BM and PM of each selected 



state then becomes the new PM of the resultant state. This new PM value is sent 

to the MEM unit to make it ready for the next Viterbi decoder input. The input 

value of each selected state-input combination is also sent to the TBU as the chosen 

convolutional encoder input for that convolutional encoder time step. 

MEM (Memory shuffle unit) Provides the PM for each state-input combination to the 

ACS, receives the new PM's from ACS following the ACS computations, and then 

shuffles those PM's through the network such that the PM for each state is stored in 

a readily available location for usage in the next time step's ACS. 

TBU (Trace Back Unit) Keeps track of the input bits selected by the ACS for each state 

selected by the ACS. The TBU is the first 32 bits of a 64 bit FIFO. Each input bit 

sent to the TBU from the ACS is added to the front of the FIFO which corresponds 

to the selected state while the oldest bit is sent on to TBU2. 

The TBU contains a FIFO word for each possible state of the convolutional encoder. 

The TBU input for each state is the selected bit from the ACS unit. This ACS selected 

bit is used for two related functions in the TBU. First of all, it tells the TBU which of 

the two possible aliasing states resolved into a given state for the next time step. The 

TBU uses the information to assign the selected aliasing state's FIFO word to become 

the state word of the resultant state. Secondly, the ACS selected bit is then input to 

the resultant state's FIFO word to become the newest entry. The oldest entry from 

this FIFO word is sent to the TBU2 along with the ACS selected bit. 

TBU2 (Trace Back Unit 2) Keeps track of the input bits selected by the ACS for each 

state selected by the ACS. The TBU2 is the second 32 bits of a 64 bit FIFO. The 

TBU2 has two input bits for each state. The selected bit from the ACS determines 

which FIFO word is assigned to which state, t i  la the TBU. The second input bit is the 

FIFO output bit of the TBU, as the TBU2 simply acts as a second 32 bit continuation 

of the TBU function. 

A second TBU unit is needed to achieve 64 bits of state word storage. The use of 64 

bits allows better convergence of the traceback function. The output of each of the 

TBU2 FIFOs is sent to the ACC in order to resolve a final Viterbi decoder output. 

ACC (Accumulate unit) Uses a majority decision among the TBU2 output bits to make 



a final Viterbi decoder output data bit decision. Performs an accumulation of all the 

TBU2 output bits to determine if there are more 1's or 0's. The majority value among 

these bits is used as the Viterbi decoder output. In the absence of errors, all of the 

Viterbi states will trace back to the same originating convolutional encoder state and 

input bit. As the amount of error increases, not all states will have this perfect case 

traceback, but for recoverable errors, a majority of states will. The convolutional 

encoder input value of this majority vote state-bit combination is then the maximally 

likely convolutional encoder input bit and the best re-creation of the data stream bit 

and is presented at the Viterbi decoder output. This majority vote method is slightly 

suboptimal to performing a full trace back through of the path metrics, but it is much 

more comput at ionally efficient [106]. 

A comparison of the performance of the Raw optimized Viterbi decoder written in 

Assembly language with C language implementations targeting a single Raw tile is shown 

in Table 7.3. The naive C language implementation is a reasonably written, but only 

marginally optimized, Viterbi decoder implement at ion. It is an accept able implement at ion 

which faithfully reproduces the vanilla Viterbi decoder algorithm. It was compiled with rgcc 

using an optimization level -0 3. The result is a Viterbi decoder which requires 300,000 

cycles per Viterbi decoder output bit. A prohibitively fast processor of 16.2THz would be 

required to allow this Viterbi decoder to operate at 54Mbps (the maximum rate for the 

802.11a specification). The main impediment to fast operation for this Viterbi decoder is 

the huge amount of memory traffic required. All of the trellis structures, metrics, and FIFOs 

must be stored and retrieved from memory. The large number of trellis states, and the need 

to access every state's information for every input, results in frequent memory accesses. 

The representation of data is not wasteful, but neither is it especially concise, leading to 

a large amount of data to be processed for each input. The memory accesses account for 

a large part of this Viterbi decoder's latency. Another impediment to fast Viterbi decoder 

operation is the algorithms used in this implementation. No algorithmic short-cut s are used 

here. The algorithms are not tailored to the specific Viterbi decoder design or the processor 

used. 

The second line of Table 7.3 represents a more sophisticated C language implementation 

of the Viterbi decoder using the same streamlined algorithms as in the Raw Assembly ver- 

sion, but still targeting just a single tile. The non-Naive C language implementation uses 



Table 7.3: Comparison of Viterbi decoder Implementation Properties. 

Viterbi Decoder: 
At Maximum 802.11a Rate of 54Mbps 

similar algorithmic approaches to that of the Raw Assembly version in an attempt to nor- 

malize that aspect of the design. More computationally efficient versions of the algorithms 

were applied and algorithms were specifically adjusted to match the Raw processor charac- 

teristics (e.g., to allow the use of specific ISA instructions, or designed to take advantage of 

the Raw word size). This design also attempted to minimize memory usage. Smaller, more 

efficient and Raw-friendly data structures were used and a minimal set of state information 

was saved. This optimization effort resulted in a significant reduction of requirements. The 

number of cycles per output observed fell 2x to = 150,000 cycles. While this is a large 

improvement, such an implementation would still require a dedicated processor operating 

at an exceptionally high rate of 8.1 THz. 

The multi-tile Raw optimized Viterbi decoder is capable of fully utilizing the paral- 

lelism of the Raw processing platform to achieve a much higher rate Viterbi decoder. The 

algorithms used in this implementation were chosen to work well with the underlying Raw 

hardware and were specifically tailored for the specific Viterbi decoder implemented. The 

design was distributed across 48 tiles in order to minimize the processing load on any given 

tile and to minimize critical paths. In addition, the design was partitioned to take ad- 

vantage of the static networks and streaming nature of Raw. The design was carefully 

crafted to keep all currently useful data values live and to avoid cache accesses at all costs. 

The register files of the tiles, as well as the buffers in the static network, were used for 

storage in lieu of the memory subsystem. The partitioning used was chosen to equalize 

the computation requirements for each tile with the communication costs of transporting 

the data to and from those tiles across the network. For example, the number of cycles 

needed to permute all of the data across the static networks in the MEM units is roughly 

equivalent the number of cycles required for the ACS unit to complete its computations 

which prevents either unit from stalling while waiting for the other unit. This maximizes 

the benefits of parallelization, but means that further parallelizat ion would not result in 

Implementation 
Naive C 
Non-Niiive C 
Raw optimized 

Number of Tiles 
1 
1 

48 

Cycles 
=300,000 
=150,000 

70 

Raw Clk 
16.2THz 
8.1THz 

3.78GHz 



additional speedups, as the communicat ion-computation balance would be skewed. 

The result was an optimized Viterbi decoder capable of operating at 70 cycles per output. 

In order to build a 54Mbps data rate using such a Viterbi decoder, a Raw processor running 

at 3.78GHz would be needed. While this is a relatively high clock rate, it is in line with the 

clock speeds of current commercial processors. 

Most of the increase in performance of the optimized Viterbi decoder is the result of dis- 

tributing the Viterbi decoder workload evenly across 48 tiles, with a corresponding 48 x im- 

provement in performance. An additional improvement of approximately 1 7 . 5 ~  is achieved 

through a reduction in the number of processor instructions. Some of this is due to avoiding 

the overhead of C infrastructure instructions resulting from things like function calls, but 

the large majority is due to the memory operations needed to read, write, and modify the 

memory structures used by the Viterbi decoder. The optimized Viterbi decoder avoids these 

instructions by using the tiled architecture's interconnection networks to achieve the same 

results with live data, studiously avoiding memory operations. In addition, the optimized 

Viterbi decoder enjoys a further 2 . 5 ~  improvement in performance by avoiding the stalls 

associated with these additional instructions. 

Integration of Optimized Functions 

The multiple tile design was re-implemented utilizing the optimized functions, see Fig- 

ure 7-17. The replacement functions, however, required many more tiles than were readily 

available on the hardware. Therefore, the optimized multiple tile design was implemented 

on the BTL simulator. The 802.11a specification and the previous implementations were 

again used to validate the implementation for correctness. 

The optimized FFT and optimized Viterbi decoder implementations have both been par- 

allelized to the largest extent possible on the Raw architecture. Further efforts to distibute 

either function across additional tiles would result in reduced performance. The optimized 

multiple tile design therefore achieves the highest performance available for this 802.1 1 a 

baseband implemention. Additional increases in the achievable system data rate must be 

attained by other means. 



Legend 
0 - Packet Detect 
1 - Freq. Adjust & Sync 
2 - Symbol Timing & CP Remove 
3-FFT 
4 - Channel Estimate & Equalize 
5 - Phase Track & Rotate 
6 - QAM Demap 
7 - Depuncture & Deinterleave 
8 - Viterbi Decode 
9 - Descramble & Setup Constants 

Figure 7-17: The mapping of the optimized multiple tile receiver onto Raw. The bottle- 
necked FFT and Viterbi decoder functions have been replaced by their spatially pipelined 
and optimized versions. 

7.4.6 Optimized Multi-tile, Multipass Design 

The optimized multiple tile baseband provided a starting point for a 2-pass multipass target- 

ing the Raw platform. The multiple tile implementation was expanded to include a partial 

retransmit and second reception pass. A block diagram of the Zpass multipass receiver can 

be seen in Figure 7-18. The single pass multiple tile optimized C/Assembly receiver blocks 

were reused. All that was required for the multipass receiver version was additional routing, 

a small bit of control functionality, and the partial retransmission and combining function 

blocks. These blocks were taken directly from the C language version of the transmitter. 

The transmitter was augmented to operate on two passes. Functionality was added to 

read a second pass through the transmit chain (in addition to the first pass), to perform 

the combining of the two passes, and to generate the appropriate header symbol with the 

multipass information. 

A small bit of additional control functionality was also added to read the slightly modi- 

fied Zpass headers and route the appropriate control information. For the multipass system, 

the dynamic network was used to distribute the control information, making this aspect easy 

to implement and allowing long distance communication of control values without impacting 

static network routing. 



Figure 7-18: Multipass 802.1 l a  receiver block diagram. 

The full multipass implementation was again too large for the available hardware. The 

BTL simulator was used to simulate a sufficiently large Raw processor. 

The mapping of the 2-pass multipass Raw implementation can be seen in Figure 7-19. 

The symbol stream is split into the two passes immediately preceding the demapping stage 

of Passl (block 6 in the figure). One copy proceeds to the Passl receive chain, while the 

second copy is injected into the static network. This second copy is buffered in the network 

of the tiles in between the split and the combining function block (the subtract block) to 

await the retransmission of the Passl output. Once the Passl reception is complete, its 

output is also split. One copy becomes the Datal' output, while the other output is sent 

to the partial retransmit path. The retransmit path is simply the transmitter C functions 

ported to the Raw processor using the rgcc. The retransmitted output is then combined 

with the waiting received symbol stream and the result sent on to the Pass2 receive chain. 

The output of this receive chain then becomes Data2'. The functions used in Pass2 are 

exact copies of the functions used in Passl. No new effort was required along this front. 

The multipass design concept, as well as tiled architecture and the Raw processor itself, 

are predicated on the vision of future process generations where a huge number of tiles 

are available. Even using an estimated Raw processor design in a current process technol- 

ogy, however, the multipass optimized receiver achieves the goal of being compatible with 

communication at a 54Mbps data rate on a general-purpose processing substrate. 54Mbps 
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Figure 7-19: Multipass receiver Raw mapping. Each block represents a Raw tile with its 
functions listed. Tiles without functions act purely as static network routers. The arrows 
represent data flow with black arrows as forward data flow on SN1, gray arrows as explicit 
backward control flow on the GDN (other control flow is not shown), and green arrows as 
forward data flow on SN2 which also acts as static network storage. 

operation could be achieved in a 2-pass multipass system by using a 36Mbps 16-QAM pass 

plus an 18Mbps QPSK pass. This generates a combined constellation similar to 64-QAM, 

the modulation scheme used by the 54Mbps data rate. Such a multipass system would 

need to be able to run at the processing rate of the higher of the two passes. The critical 

bottleneck for the system is the Viterbi decoder, as the data rate does not effect the FFT 

stage. As such, the processor would need to be able to operate at a speed compatible with 

a 36Mbps Viterbi decoder. The optimized Viterbi decoder requires 70 processing cycles per 

output: 

70 
cycles 

x 36Mbps = 2.52GHz 
outputbit 

Therefore, a Raw processor with a minimum clock speed of 2.52GHz would be required. 

However, there is also a requirement to have sufficient parallel resources to implement the 

multipass system. The 2-pass multipass system of Figure 7-19 requires at least 141 active 

tiles to operate. Therefore, a second requirement of more than 141 tiles is imposed. Both of 

these requirements are met by the technology scaling estimates for the full custom version 



of Raw implemented in a 90nm process, as shown in Table 6.1. The full custom 90nm 

Raw is estimated to operate at 2.55GHz and to have from 144 to 225 tiles depending on 

the amount of SRAM in each tile. Either of these speculative processors would meet the 

minimum requirements for a 54Mbps multipass Raw implementation. 

A 3-pass multipass system using the full 90nm Raw with smaller SRAMs would meet 

the requirements even more handily. Three 18Mbps QPSK passes could be used. The com- 

bination of passes would again resemble the 64-QAM constellation of 54Mbps. Combining 

two QPSK passes looks like a 16-QAM constellation, then adding in an additional third 

QPSK pass grows that to a 64-QAM constellation. The Viterbi decoder still operates as 

the bottleneck at 70 cycles per output: 

70 
cycles 

x 18Mbps = 1.26GHz 
outputbit 

This is well below the 2.55GHz estimated clock speed for such a processor. While the 

minimum tile requirement would be the 141 active tiles for the first two passes, plus an 

additional 56 active tiles for the third pass, this is again below the 225 tile estimate for the 

full custom 90nm Raw processor. 

7.4.7 Simulated Optimized Multi-tile, Multipass Design 

The BTL simulator, while a very accurate representation of the Raw hardware, proved to 

be exceptionally slow. In order to speed up simulation times, C language versions of the 

algorithms and structure used for the multipass design were implemented. This C-only 

version of the multipass system was verified against the BTL version using mixed C and 

Assembly language. The BTL multipass system provided a baseline of operation and was 

compared with the C-only version for correctness. The much faster C-only version was used 

to generate the BER curves in Chapter 8, however, as the running time required for the 

BTL versions would have been prohibitive. 





Chapter 8 

Results and Analysis 

Multipass systems allow high data rate communications processing to be performed using 

general-purpose processing elements. Such systems bring the flexibility and ease of imple- 

mentation provided by the general-purpose processing realm to communication systems. 

The usefulness of the multipass approach, however, depends on the ability of multipass 

systems to deliver communications performance comparable to a similar single pass com- 

municat ion system. 

The performance of a communication system is a measure of how accurately the system 

transfers information under inclement conditions. The Bit Error Rate (BER) is a typical 

measurement of communication system performance. The BER is a ratio of the number 

of erroneous output bits (bits generated by a communication system which differ from the 

bits input to the transmitter) divided by the total number of output bits. BER curves 

are graphs plotting the system BER under different relative amounts of noise power. Such 

graphs provide a visual representation of how robust a communication system is to the 

impact of noise and, hence, how well the system performs. 

The multipass implement at ions discussed previously provide a means of testing the per- 

formance of one type of multipass system relative to an equivalent non-multipass (or single 

pass) system. This begs the question of how well such a multipass system performs. Testing 

can help determine whether and how much performance degradation might be incurred by 

using a multipass system instead of a single pass one. Under a range of operating condi- 

tions, does a multipass system provide equivalent functionality to an comparable data rate 

single pass system? In what ways do the use of multiple passes impact the communication 



system performance and cause it to differ from the single pass case? Are there ways to 

mitigate any negative effects of multipass and/or take advantage of the multipass structure 

to improve performance? What performance trade-offs and design choices are enabled by 

using a multipass system? Performance testing of the superposition combining function 

multipass system was undertaken to address these questions. An analysis of these results 

appears in the following sections. 

The multipass system tested here is a C language simulation of the optimized mixed C 

and Raw Assembly language multipass system which targets the Raw platform, as described 

in Section 7.4.6. The C language simulation executes on a Pentium 4 running Red Hat Linux 

7.2. This C-only simulation uses the same algorithms as the mixed C and Assembly version 

and mimics the data communication patterns of the Raw version. A sufficiently large Raw 

hardware platform is not currently available and so the BTL cycle-accurate simulator must 

be used for the Raw implementation instead. The C language simulation was undertaken to 

compensate for the relatively long simulation times of the BTL simulator implementation. 

The C-only simulation was used for testing purposes as the running time for each simulation 

run was orders of magnitude faster than an equivalent C and Assembly simulation on BTL. 

The C language simulation output was verified against representative BTL simulations, 

however, to ensure congruence between the results. 

8.1 Testing Methodology 

The system BERs were determined by communicating multiple data packets and comparing 

the system output to the system input. The BER was found and plotted for a number of 

signal-to-noise ratio (SNR) values. Eb/No, the ratio of the energy per data bit transmitted to 

the noise power, was used as the SNR metric. The BERs for Eb/No values from OdB to 20dB 

were plotted. The range 0 to 20 was chosen to be inclusive: OdB represents equal signal and 

noise power, a case where correct reception is unlikely; while 20dB represents 100x more 

signal than noise, making correct reception highly likely for the systems presented here. 

This allows the salient features of the BER curves to appear in the plots. 

The test data for each SNR value consisted of 3200 packets of randomly generated data. 

The number of packets, 3200, was chosen to convey sufficient bits through the system to get 

meaningful BER results. The maximum payload length for each data packet is, as per the 



802.11a specification, 4095 bytes (per pass). In order to generate results with BERs down 

to a reasonable error rate of at least one hundred times more than l/(error rate) bits 

must be run through the system and, therefore, 3200 packets were used. 

The test data was generated using the ran1 function taken from [107]. The input bits 

were saved and compared against the system output bits to determine each run's BER. A 

new set of input bits was generated for each packet sent through the system. The total 

number of errors for all 3200 runs was compared against the total number of bits for all 

3200 runs to find an overall BER. 

The white noise source used in the system was generated as a zero mean, unit variance 

Gaussian. The various SNRs were implemented as attenuation on the Gaussian generator 

output [37]. The attenuation factor was determined by finding the signal power for each 

OFDM symbol and then dividing by the number of bits in that OFDM symbol to get Eb. 

For a desired value of Eb/No, in decibels (dB), the Eb value was divided by the inverse log 

of Eb/No divided by 10 (the non-decibel ratio of Eb/No ) to find the noise power, No. The 

noise power was then converted to an attenuation factor which was applied to the AWGN 

output. Thus, the AWGN magnitude is adjusted to create the desired SNR. 

8.2 Pass2 Scaling 

The Pass2 scaling values in the 2-pass multipass simulations were chosen to create combined 

signal space constellat ions identical to those of a comparable throughput single pass system. 

This was done for a number of reasons. 

First, the QAM constellations which the multipass system mimics are an efficient signal 

space packing, both from the point of view of energy savings, as well as of minimizing the 

error probability. Hence, the popularity of the QAM constellations. 

Second, while the scaling could be adjusted to favor one pass over another, that is not 

the case for the tests performed here, as the aggregate throughput is being observed, as well 

as the individual throughputs. The QAM constellations maximize the minimum distances 

between constellation points and thus balance the needs of both passes. 

A smaller scaling factor would reduce the impact of Pass2 on Passl, but negatively 

impact Pass2 reception. Since Pass2 appears as noise on the Passl signal, moving the 

Passl symbol away from its original location, a smaller Pass2 magnitude would help reduce 



the susceptibility of Passl to noise. A reduction in Pass2 power would at the same time, 

however, increase the susceptibility of Pass2 to noise. Less noise power would be required 

to move the Pass2 symbol across the decision boundaries between the Pass2 symbols based 

on the same Passl symbol value, see Figure 8-1. 

A larger scaling factor would be detrimental to Passl and thus Pass2. The larger Pass2 

power would move Passl symbol values farther away from their original location and make 

them more prone to error. This larger Pass2 power would have a negative impact on Pass2 

as well, however. The increased Pass2 power would provide more spacing. between Pass2 

symbols based on the same Passl symbol, and thus reduce the likelihood of an error between 

such Pass2 symbols. The correct reception of Pass2, however, relies on the correct reception 

of Passl. The increase in Passl error probability would translate into an increased Pass2 

error probability and thus be a detriment to both passes, see Figure 8-2. 

Figure 8-1: The effect of scaling down Pass2 by a large amount. Heavy scaling down of 
Pass2 leaves only a small amount of Pass2 power, reducing the likelihood of correct Pass2 
reception. This scaling improves the likelihood of correct Passl reception, however, since 
the combined constellation points are close to their Passl-only locations. 

Figure 8-2: The effect of scaling down Pass2 by only a small amount. Light scaling down of 
Pass2 reduces the likelihood of correct Passl reception. As the correct reception of Pass2 
is predicated on the Passl received data, this negatively impacts Pass2 reception as well. 

Matching the QAM constellations, however, places the Pass2 constellation points in the 

middle as a compromise between these two scenarios. The Pass2 power is large enough 

to provide a reasonable likelihood of correct Pass2 reception, while being small enough to 

maintain an accept able Passl probability of error. 



Finally, by matching constellations with the single pass system, the average output power 

of the two systems also match. This provides a more accurate apples-to-apples comparison. 

If the multipass system were allowed to generate a larger output power for the same data 

throughput, it would skew the comparison of the two systems. 

8.2.1 Asymmetric Passes 

In a multipass system where both passes are of equal importance and multiple passes are 

used only to reduce the computational load, the goal is to choose a Pass2 scaling which bal- 

ances maximizing Pass2 performance with minimizing Passl errors. The system discussed 

in Section 8.3 is such a system. It is possible, however, to prioritize some passes over others 

by adjusting the Pass2 scaling used. The relative power assigned to passes, and their cor- 

responding likelihood of correct reception, can be asymmetrically skewed to favor one pass 

(or possibly some passes in a larger multipass system) over others. If the lower priority data 

is not successfully received, then appropriate action can be taken. Depending on the data 

involved, unsuccessfully transmitted lower priority data could be discarded, retransmitted, 

or retransmitted as higher priority information. 

The Pass2 scaling value can easily be adjusted to reflect the relative priority of Passl over 

Pass2. A smaller Pass2 scaling will reduce the impact of Pass2 on Passl and improve Passl's 

performance, at the expense of decreasing the performance of Pass2. This increases the 

likelihood of correct Passl reception at the expense of Pass2. This might be an acceptable 

trade-off in a situation where the Passl data is vital and the Pass2 data is useful, but not 

critical. An example of one such situation could be conveying images across the wireless 

link. Passl could be used to transmit the lower frequency data necessary to form the basic 

image, while less critical higher frequency details could be transmitted on Pass%. In a low 

SNR situation, the Pass2 data might be lost while the boosted Passl data is still available. 

This would result in the image details being lost, but the general image still coming through, 

allowing a graceful degradation of image performance with worsening channel conditions. 

Another situation where asymmetric passes might be appropriate is one where two dif- 

ferent types of information with different latency requirements, for instance speech and 

data, are being communicated in parallel. The speech information has a real-time require- 

ment and might take priority over the transfer of less time-sensitive data (like a web page). 

Assigning the voice communication to Passl would help ensure that the speech data was cor- 



rectly received without a need for retransmission. If the secondary data were lost, however, 

a later retransmission might suffice. 

8.3 QPSK:QPSK 2-pass Multipass System 

A QPSK:QPSK' 2-pass multipass system was used to evaluate multipass performance rela- 

tive to single pass systems. The QPSK:QPSK multipass system has comparable cumulative 

throughput to a 16-QAM single pass system. Each QPSK pass provides a data rate of 

12Mbps for a combined rate of 24Mbps. This is equivalent to the single pass 16-QAM 

system data rate of 24Mbps. The QPSK:QPSK multipass system is also scaled in such a 

fashion that the combined modulation constellation of the two passes is identical, in terms 

of both configuration and power, to a 16-QAM constellation. Therefore, it is natural to 

compare the QPSK:QPSK multipass system to a 16-QAM single pass system in order to 

evaluate the performance of such a system. 

8.3.1 QPSK:QPSK Passl 

The first Pass of the QPSK:QPSK 2-pass multipass system can be thought of as a single 

pass QPSK system distorted by the addition of Pass2. The data rates, decision boundaries, 

and receive chains of Passl and a single pass QPSK system are the same. This suggests 

that a reasonable performance comparison would be between a single pass QPSK system 

and Passl of the multipass system. Such a comparison is presented in Figure 8-3. 

From the point of view of Passl, Pass2 looks like an additional noise source. The two 

data s t rems are independent and the purpose of the scrambling and interleave functions 

at the transmitter is to minimize correlations among the bits sent and thus help ensure this 

independence. As such, the Pass2 data stream appears as an additional random source and 

can be thought of as noise with one important additional property. The addition of the 

Pass2 "noise" power will never, on its own, cause an error in the Passl output. Only in 

conjunction with other noise can the Pass2 symbol power contribute to errors. 

For large noise powers (small SNR) the impact of Pass2 on Passl is negligible as the 

noise power is greater than, or on the order of, the Pass2 power. As the noise power shrinks, 

QPSK:QPSK denotes Passl modulation:Pass2 modulation. In this case, the Passl modulation scheme 
is QPSK and the Pass2 modulation is QPSK. If it were QPSK:l6-QAM, then the Passl modulation scheme 
would be QPSK and the Pass2 modulation scheme would be 16-QAM. 
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Figure 8-3: BER comparison between Passl of an optimized C simulation of the 
QPSK:QPSK 2-pass multipass system and the 802.11a single pass data rate (12Mbps) with 
the equivalent signal space constellat ion. 

however, the impact of Pass2 becomes more prominent. For the low SNRs on the left side 

of Figure 8-3, the BER of the multipass system is similar to that of the single pass system. 

As the noise power decreases (larger SNR), however, the influence of Pass2 becomes more 

apparent and the Passl BER curve begins to pull away from the single pass curve. 

At larger SNR values, the Passl BER begins to approach the Pass2 BER curve as the 

impact of Pass2 dominates the noise power. As the noise power is reduced, the Passl 

symbol locations begin to resemble those of a Pass2 constellation (16-QAM) plus noise, 

see Figure 8-4. This has the effect of positioning some constellation points closer to Passl 

decision boundaries, and the corresponding smaller noise power needed to move symbol 

values across those boundaries causes more decision errors. As the noise power falls, it 

reaches a level where the noise would be unlikely to cause an error if the Passl symbol 

value were at the QPSK location, but in those instances where Pass2 has moved the Passl 

symbol value closer to a decision boundary, an error still occurs. 

Passl experiences BERs similar to QPSK for low SNRs and worse than QPSK for higher 

SNRs, but the Passl BER is still better than what would have been the case for 16-QAM. 

This is a result of the superposition combining function allocating more of the symbol power 



Figure 8-4: At higher SNRs the influence of Pass2 can cause an error in what would other- 
wise have been a successful demapping of Passl. 

to Passl and fits well with the concept of an asymmetric multipass communication system 

where earlier passes are prioritized and carry more critical information than later passes. 

The second pass of the QPSK:QPSK 2-pass multipass system has the same signal space 

constellation positions as a 16-QAM single pass system. The logical choice for comparison 

with Pass2 performance is therefore the 16-QAM single pass system. Such a comparison is 

presented in Figure 8-5. 

The BER curve of Pass2 of the multipass system follows the shape of that of the 16- 

QAM single pass system quite well. This is not surprising as the decision boundaries of 

Pass2 are equivalent to those of the 16-QAM system, while those of the multipass system 

are just broken into a two-stage decision instead of a single decision. The first stage, the 

demapping of Passl, incorporates errors which cause the symbol values to cross quadrant 

boundaries. The second stage, the demapping of Pass2, encompasses those errors which 

cause symbol values to cross intra-quadrant decision boundaries. The scaling up of Pass2 

at the receiver, following the removal of Passl (see Section 5.2.3), is a linear function which 

scales the noise along with the signal. This linear scaling preserves the relative impact 

of noise on the Pass2 signal. Consequently, the Pass2 symbol decision produces the same 
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Figure 8-5: BER comparison between Pass2 of an optimized C simulation of the 
QPSK:QPSK 2-pass multipass system and the 802.11a single pass data rate (24Mbps) with 
the equivalent signal space constellat ion. 

result as if the 16-QAM decision boundaries were applied to the still-combined multipass 

symbol in the quadrant corresponding to the Pass1 decision. Therefore, it is logical that 

the Pass2 result is similar to that of the 16-QAM. The Pass2 BER curve is slightly shifted 

to the right, however, denoting a decrease in performance of Pass2 over that of the single 

pass 16-QAM system. This is the result of an increased frequency of errors being presented 

to the Viterbi decoder of Pass2. 

In a single pass system, such as the 16-QAM system, the two passes are demapped 

together and the combined results are presented to Viterbi decoder. Consequently, in the 

16-QAM system, four bits of data are sent to the Viterbi decoder for each symbol received. 

The number of errors in this demapping, if any, are likely small for higher SNRs. This is 

a result of the Gray encoding of the mapping chosen for the 16-QAM system. The Gray 

encoding ensures that the Hamming distance is one between any two adjacent regions. 

Thus, an error which carries a symbol across a single decision boundary will incur only a 

single bit error. 

In a multipass system, however, the bit demapping is broken into two stages, one for 

each pass. The two stages are not equivalent. For the combining function and Pass2 scaling 



used here, Passl retains the majority of the signal power and, as has been shown, has a 

correspondingly lower BER. Pass2, conversely, has a smaller share of the signal power and 

a significantly larger BER. If an error were to occur in symbol space demapping, the bits 

demapped by Passl are those which are least likely to have changed. Errors are much more 

likely to have occurred in the Pass2 demapping. As compared to the 16-QAM system, an 

error which would cause a single bit error in the 16-QAM demapping is much more likely 

to appear as an error in the Pass2 demapping. The larger likelihood of error at the output 

of the Pass2 demapping stage is augmented by the fact that each pass produces half the 

number of output bits than the 16-QAM system for each demapping. This translates into 

an increased Pass2 demapping error rate which impairs the ability of the Pass2 Viterbi 

decoder to mitigate the errors encountered. 

The Viterbi decoder uses state information to infer when an error has occurred and 

overcome it. The ability of the decoder to recover from errors is related to the quality of the 

state information available. A higher rate of errors results in a larger amount of corruption 

of the state information and reduces the ability of the Viterbi decoder to recover from future 

errors. In spite of the increased errors on Pass2, the performance of Pass2 is within 1dB of 

that of the 16-QAM system. 

8.3.3 QPSK:QPSK Cumulative Throughput 

The overall performance of a 2-pass multipass system can be determined by averaging the 

BERs of the two passes. A multipass system may be used as a means of distributing the 

processing load of a communication system. Multiple lower processing rate passes are used 

instead of a single higher rate pass. In this case, the same set of information must be 

communicated as in the single pass case, but that information is just distributed across 

the passes. For this type of system, the metric of performance is the cumulative bit error 

rate across both passes. The individual BERs of each pass is less important than the total 

number of bits correctly sent. 

The data rate for each pass in the QPSK:QPSK 2-pass multipass system is 12Mbps. 

This is the equivalent of the 24Mbps 16-QAM single pass system in terms of overall data 

throughput. A graph of the cumulative throughput BER as compared to the 16-QAM 

BER is presented in Figure 8-6. For very low SNRs, the cumulative BER is actually 

better than that of the 16-QAM BER. This is a result of the good performance of Passl 



at low Eb/No values. For higher SNRs, the cumulative BER is worse than, but close to, 

the 16-QAM BER. This is caused by the decreased performance of Pass2 at these higher 

SNRs relative to the 16-QAM single pass system. The cumulative BER is improved by the 

performance of Passl, but not enough to mitigate the errors on Pass2. In spite of this, the 

cumulative BER performance is within approximately 0.5dB of the BER performance of 

the 16-QAM single pass system. 
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Figure 8-6: BER comparison between the cumulative throughput of both passes of an 
optimized C simulation of the QPSK:QPSK 2-pass multipass system and the 802.11a single 
pass data rate (24Mbps) with the equivalent signal space constellation. 

8.3.4 QPSK:QPSK Multipass 

The performance of the individual passes and cumulative results are put into context in 

Figure 8-7. Passl performs worse than the QPSK system, but its performance is still 

much better than that of the 16-QAM system. The Pass2 and cumulative performances 

are slightly less than that of the 16-QAM system, but are still reasonably close to single 

pass performance. This performance is quite good, given that the use of a 2-pass multipass 

system may make a 24Mbps system feasible in a situation where the 16-QAM system is not. 

The multipass approach provides the flexibility, the ease-of-implement ation, and the 

adaptability of a communication system enabled by operating the general-purpose process- 
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Figure 8-7: All curves of the BER comparison between an optimized C simulation of the 
QPSK:QPSK 2-pass multipass system and the equivalent 802.11 a single pass systems. 

ing domain. In some cases, the feasibility of operating in this domain is reliant on the 

use of a multipass approach. In addition, the close to single pass BER performance of the 

multipass system demonstrates that the system provides justifiable performance. 

8.4 Scaled QPSK:QPSK Performance 

The relatively high error rate exhibited by Pass2 of the QPSK:QPSK multipass system keeps 

the overall system from quite achieving single pass performance. If the errors on Pass2 could 

be reduced, however, while not incurring too many errors on Passl, the overall performance 

of the multipass system would more closely match that of the single pass system. 

8.4.1 Scaling Revisited 

One way to improve the performance of Pass2 is to allocate a larger share of the signal power. 

How can this be done? A change in the scaling used in the superposition combining function 

could achieve a relative increase in Pass2 power. The scaling referred to in Section 8.2 allows 

too many errors on Pass2 relative to Passl. A more equitable distribution is needed. 

The original Pass2 scaling value used attempted to create a combined multipass symbol 



constellation which mimicked that of the 16-QAM system. The output of this system needed 

to be normalized, however, to ensure the same average output power across all systems. 

This was done to create equivalent comparisons across the systems. A consequence of this 

normalization was to move the relative location of the multipass symbol points and distort 

the signal constellation, resulting in a distribution of power favoring Passl over Pass2. The 

scaling must be readjusted, therefore, to take this normalization into account. Doing so 

results in a more equitable distribution of power and corresponding similarity in BER. 

Equation 8.1 represents the desired relationship between the Passl and Pass2 final sym- 

bol locations necessary to match the 16-QAM constellation. Equation 8.2 states in a reduced 

form the relationship between the multipass constellation point locations and the average 

symbol power. For all the systems discussed here, this average power was normalized to 

Power = 1. 

Where Pl and P2 are the magnitudes of the Passl and Pass2 symbol values, Kmod is the 

initial QPSK power normalization of I applied to Passl as per the 802.11a specification, JZ 
N is an additional power normalization applied to the multipass power output necessitated 

by the addition of Pass2 to Passl, and S is the combining function Pass2 scaling. Let 

PI = P2 = 1, as the constellation of each pass before scaling and power normalization 

resembles that of QPSK. Substituting in the known values for PI, P2, and Kmod and reducing 

results in a more concise set of equations, 

Equations 8.1 and 8.2 form a system of equations which can be solved to find for S and 

N. This yields a larger Pass2 scaling value than used previously. 

A larger scaling applied to Pass2 provides a greater distance between Pass2 symbol 

values in the same quadrant. This translates into a larger probability that once a Passl 

quadrant has been isolated, the Pass2 symbol therein will be correctly demapped. Hence, 



an increased scaling helps to improve the Pass2 error rate if the symbol decision for Passl 

is correct. The issue, though, is that an increased Pass2 scaling increases the likelihood of 

an incorrect Passl symbol decision. What is needed to reap the benefit to Pass2 reception 

of an increased scaling is a means of helping to ensure correct Pass2 symbol decisions even 

if the Passl decision is in error. Applying a Gray encoding to the Pass2 symbols provides 

this means. 

8.4.2 Gray Encoding 

In most communication systems, the bits mapped to each constellation point in signal 

space are Gray encoded. Gray encoding is a way of structuring the mapping of bits to 

constellation points such that the Hamming distance, or number of differing bits, between 

adjacent constellation points is always 1. This is done to minimize the impact of errors. If 

the noise were to push a received symbol value across a decision boundary, it most likely 

moves the received symbol into an adjacent decision, or Vernoi, region. Noise of a large 

magnitude would be required to move a symbol value into a non-adjacent region, and even 

then Gray encoding ensures that the number of bit errors only grows as the number of 

regions crossed. If the Hamming distance between adjacent regions is minimized, then the 

number of bit errors incurred by a noise event which causes a symbol demapping error is 

also minimized. As the number of demapping mistakes decreases, the rate of bit errors 

decreases, and the likelihood that those fewer bits in error will be corrected by the Viterbi 

decoder increases. 

The mapping of bits to constellation points used in the multipass system, as it was 

initially presented, breaks this Gray encoding property. While the bit assignment within 

each pass is Gray encoded, the Gray encoding property is not migrated across passes. When 

the combining function is applied to the passes in the original system, the Hamming distance 

for errors which cross both Passl and, necessarily, Pass2 decision boundaries sums and the 

result is a combined Hamming distance of more than 1, see Figure 8-8. 

In order to address this problem for the superposition combining function, the two 

passes must be more tightly coupled. If the Passl values were to influence the bit encodings 

applied to symbol values for Pass2, then the bit encodings for the combined Passl and 

Pass2 constellation could be made Gray encoding compatible, see Figure 8-9. 

With Gray encoding applied, an error in the Passl symbol decision does not automati- 
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Figure 8-8: The bits assigned to constellation points in the QPSK:QPSK multipass case 
and the 16-QAM single pass case. The Hamming distances of the multipass and single pass 
systems are not equivalent. 
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Figure 8-9: Adjusting the Pass2 bit mapping based on the Passl symbol value results 
in a fully Gray encoded combined constellation. The highlighted regions show how Gray 
encoding creates redundancy of the Pass2 values across Passl decision boundaries. This 
helps insulate Pass2 symbol decisions from Passl symbol decisions. 



cally translate into an error in the Pass2 decision. The Pass2 Vernoi regions have effectively 

been extended for those regions along the Passl decision boundaries. This extension of 

Pass2 regions helps insulate Pass2 symbol decisions from Passl symbol errors. 

8.4.3 Scaled QPSK:QPSK Multipass 

The BER performance of the scaled QPSK:QPSK multipass system can be seen in the BER 

curves below. The increased Pass2 scaling provides a more equitable distribution of power 

between the two passes. This trade-off can be seen by the decreased performance of Passl 

(see Figure 8-10) as compared to the increased performance of Pass2. The impact of Passl 

errors on Pass2 is minimized by the application of Gray encoding to Pass2. This results in 

a decreased impact of the lowered Passl performance on Pass2 (see Figure 8-11). 
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Figure 8-10: The application of Gray encoding coupled with a new larger Pass2 scaling for 
the optimized C simulation of the QPSK:QPSK multipass system makes a more equitable 
trade-off between the power and performance between Passl and Pass2. The increased 
scaling of Pass2 reduces the performance of Passl over that of the original QPSK:QPSK 
system. 

The BER curve for the Gray encoded and scaled Pass2 remains slightly higher than 

that of the single pass 16-QAM system even though the Gray encoding helps insulate Pass2 

bit decisions from Passl decision errors. This is due to the fact that the multipass system 
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Figure 8-11: The application of Gray encoding coupled with a new larger Pass2 scaling for 
the optimized C simulation of the QPSK:QPSK multipass system makes a more equitable 
trade-off between the power and performance between Pass1 and Pass2. The increased 
scaling of Pass2 increases the performance of Pass2 over that of the original QPSK:QPSK 
system. 



Pass2 still has fewer correct bits couching each Pass2 error as the QPSK Pass2 has only two 

bits per symbol decision, as opposed to the four bits per decision in the single-pass 16-QAM 

system. 

For lower SNRs, while the total number of errors might be similar to that of the single 

pass case, the rate of errors (which is what matters for the Viterbi decoder's ability to error 

correct) is higher. As the SNR increases, however, the lower number of overall multipass 

Pass2 decision errors begins to have an effect. As long as errors are relatively infrequent, 

then the higher relative frequency of the Gray encoded and scaled multipass Pass2 system 

decision errors is dominated by the lower number of overall errors. 

The effect of the change in the combining function scaling is readily apparent in the 

Gray encoded and scaled multipass system Passl BER curve. The shift of power to Pass2 

through the scaling adjustment increases the BER of Passl. The Passl curve now moves 

beyond the QPSK single pass BER curve and approaches the 16-QAM single pass curve as 

the SNR increases. This is a result of the larger Pass2 scaling moving the multipass symbol 

locations closer to the Passl decision boundaries, with the predictable result that less noise 

power is needed to cause Passl decision errors. Only the fact that the Passl QPSK decision 

boundaries are along the quadrant axes, as opposed to the smaller 16-QAM Vernoi regions, 

allows Passl to slightly outperform the 16-QAM single pass case, even with the less evenly 

space signal space locations. In other words, a smaller noise power is required at this scaling 

to push those scaled multipass symbols which are close to a Passl decision boundary across 

that boundary and cause a decision error. But this is overshadowed by the fact that in 

a majority of cases, the effect of the AWGN will be either to move the symbol location 

farther away from the Passl decision boundary or  to move it towards a boundary which is 

not nearby, see Figure 8-12. 

The net result is a cumulative BER which is much closer to that of the 16-QAM single 

pass BER (see Figure 8-13). The trade-off of Passl and Pass2 performance through scaling 

and Gray encoding pushes both passes towards convergence at the cumulative BER (see 

Figure 8-14). The performance of the scaled and Gray encoded 2-pass QPSK:QPSK mul- 

tipass system is almost identical to that of the single pass 16-QAM system. Therefore, the 

multipass system gains the benefits of a general-purpose processing environment, as well as 

the opportunity for reduced processing rates, while achieving the same data rates as and 

similar performance to that of a non-multipass system. 



Figure 8-12: The potential effects of noise on Passl in the Gray encoded and scaled 
QPSK:QPSK system. In the Gray encoded and scaled QPSK:QPSK system, Pass2 has 
more power, which results in the combined multipass symbols being moved closer to the 
Passl decision boundaries. In spite of this, in a majority of cases, the AWGN noise still 
fails to move the symbol locations across Passl decision boundaries. The arrows show the 
possible effects of noise on I and Q individually for each of the potential signal locations. 
Only in 4 of the 16 scenarios would the addition of noise be likely to cause a Passl decision 
error. 
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Figure 8-13: The application of Gray encoding coupled with a new larger Pass2 scaling for 
the optimized C simulation of the QPSK:QPSK multipass system makes a more equitable 
trade-off between the power and performance between Passl and Pass2. The net trade-off 
between the Passl and Pass2 performances is an improved cumulative BER over that of 
the original QPSK:QPSK system. 
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Figure 8-14: An overview of the performance of the optimized C simulation of the 
QPSK:QPSK multipass system using Gray encoding and with a new larger scaling ap- 
plied. The single pass QPSK and 16-QAM BERs are provided for reference. The increased 
scaling of Pass2 reduces the performance of Pass1 while improving that of Pass2. The net 
effect is an improved overall performance as can be seen by the minimal distance between 
the cumulative BER and the 16-QAM single pass BER. 



8.5 Summary 

The multipass system presented here was shown to achieve performance similar to that of an 

equivalent data rate single pass system. This demonstrates that it is possible to implement 

a communication system of a desired data rate using a multipass approach without suffering 

a reduction in BER performance. By allocating power evenly among the passes, a multipass 

system can be implemented which achieves a cumulative BER which is comparable to that 

of a single pass system at the cumulative data rate. 

The multipass approach provides other opportunities, however, by allowing the system 

to individually trade-off the performance of the various passes. By tailoring the scaling 

used in the superposition combining function a multipass system can change the allocation 

of power among the various passes to favor some over others. This results in a lower BER 

on the higher power passes at the expense of the BER of the other passes. 



Chapter 9 

Conclusions 

The multipass approach successfully makes available general-purpose processing for com- 

munication applications. The multipass approach is capable of achieving performance on 

par with the equivalent throughput single pass system while providing the flexibility to 

dynamically adjust the number and type of passes used. As systems move to multiple-core 

processors, especially embedded processors in handheld devices, multipass enables the sys- 

tem to fold the baseband processing into the already present general processing resources. 

This provides the opportunity to use a multipass approach to remove the need for special- 

ized communication processing components, as well as allows communication processing to 

be managed, in terms of scheduling and allocation of resources, in conjunction with the rest 

of the system tasks. 

The system presented here, utilizing a superposition combining function, has been shown 

to be capable of achieving bit-error-rates comparable to that of a single pass system. This 

demonstrates that a multipass system is feasible from a communication performance per- 

spective and is implementable on a current process technology tiled architecture. A general- 

purpose processing architecture can therefore be used for high data rate communication 

baseband processing, a feat which is unattainable using current GPPs and a single pass 

approach. 

Specifically, it has been shown that with current and future process technologies, a mul- 

tipass system based on the Raw tiled architecture is sufficient to implement an 802.11a 

54Mbps baseband. Such a system requires an implementation of the current Raw archi- 

tecture in a process technology of 90nm or smaller. In addition, it is necessary to use an 



optimized implement at ion, particularly for bottleneck prone functions. Such a system is 

consistent with 54Mbps operation, however, which is not the case for current generation 

GPPs and is not likely for any uniprocessor. 

The necessary system hardware components (including the Raw processor, the Raw 

Handheld mot herboard, and the Wireless Board) were built to explore the implementation 

requirements and to show the feasibility of an actual system. While not utilized in the 

BER testing, the hardware confirms the plausibility of the system and provides additional 

confidence in the results. 

A number of other aspects of multipass became apparent through this work. Among 

them are: the impact of the specific combining function used and the need to specialize the 

system accordingly; the necessity of intra-function parallelism, in conjunction with inter- 

function and system-level parallelism; the specific features of tiled architectures which help 

to promote the multipass approach; and the additional system characteristics which become 

available and can then be explicitly controlled when using a multipass approach. 

In order for the system presented here to achieve single pass performance using multiple 

passes, it was necessary to specialize the system to take advantage of and adapt to the 

combining function used. For the superposition combining function, this entailed modifying 

the combining function to preserve the Gray encoding of the bits across passes, as well as 

adjusting the scaling used in the combining function itself to balance the power distribution 

across passes. These combining function specific modifications were crucial to optimizing 

the performance of the multipass system. 

The use of multiple passes in the system reduced the data rate requirements for any 

given pass, but successful system operation is also predicated on the optimization of the 

functional blocks themselves in order to achieve even these lower data rates. The multipass 

approach allows the system to trade the use of additional resources for lower data rate 

processing. This reduces the stress on the system of performing bottleneck functions and 

makes the operation of these functions possible. These bottleneck functions still require 

significant processing resources (hence the need to reduce their processing requirements) 

and parallelizing them across multiple processing cores can help to reduce the load on any 

given core. The exact trade-offs between the clock speed necessary to operate at a given data 

rate, the amount of processing resources allocated to intra-function parallelism (reducing 

the clock speed requirements of the bottleneck functions for a given data rate), and the 



amount of processing resources allocated to increasing the number of passes (reducing the 

data rate requirement of each pass in order to reduce the bottleneck function requirements) 

are a function of the specific implement at ion parameters and the architectural platform. 

For the system built here, a tiled architecture, the Raw architecture, was used. A tiled 

architecture provides a number of features that are particularly useful for communication 

systems and the multipass approach. Among them are: the ability to readily accommodate 

streams of data through the use of high-bandwidt h 110; the availability of multiple tightly- 

coupled processing cores across which to distribute even intra-function spatial pipelines; 

and the ability to minimize the overhead of memory interactions by communicating values 

between processing cores through the use of low-latency networks. Using the Raw processor 

and leveraging the features of tiled architectures enabled a superlinear speedup in critical 

path communication functions. The FFT function experienced a 1 , 0 0 0 ~  speedup using 

16-tiles, while the Viterbi decoder function, the primary system bottleneck, experienced 

a 10, OOOx speedup using 48-tiles. While these attributes of tiled architectures were very 

helpful for the system presented here, depending on the desired communication application 

and its requirements and the specific architecture features of the platform used, the multi- 

pass approach could be utilized on other multiple processing element systems (e.g., CMP, 

DSPs). 

Splitting up the communication processing into multiple passes allows extra degrees of 

freedom for the system which can be managed by the user or system. One new parameter 

available to the system is the allocation of power among the various passes used. The 

reliability of passes can be traded-off to allow prioritization of passes. Another degree of 

freedom is the trade-off between communication and computation. This provides more 

flexibility to the system with the ability to use just enough resources while operating at just 

a high enough clock rate to get the job done. This enables potential savings in power, cost, 

space, and/or time. 

Finally, the use of the multipass algorithm allows a trade-off between area (in the form of 

resources consumed) and processing rate (in the form of the required minimum clock rate). 

This trade-off allows additional area to be used to reduce the processing rate. The resulting 

lower clock rate can be used to make viable a communication system platform which would 

otherwise be too slow (as discussed above), be used to improve the ease of implementation 

and time to market for the system design by relaxing circuit timing constraints, or be used 



to reduce the system power consumption through the use of voltage scaling or lower & 

devices. 



Chapter 10 

Related Work 

The multipass system presented here touches on multiple different areas of research and 

related work. To our knowledge, multipass is a new concept and, consequently, directly 

related work does not exist. There are, however, multiple of areas of work which share 

conceptual roots with multipass or are enablers for the multipass approach. The multipass 

approach to communication, as a means of orthogonalizing for disambiguation in order to 

successfully transmit multiple data streams in parallel, is similar in nature to approaches 

used in other types of systems. The use of software on a general-purpose system as a means 

to perform communication processing relates to other software radio work. And finally, 

while the specific hardware implementation platform used in this case was the Raw tiled 

architecture, the multipass concept is applicable to other research tiled architectures and 

commercial CMPs. 

10.1 Multipass-like Systems 

Many current systems use multipass-like approaches for orthogonalization, albeit in a very 

limited or distributed manner. These systems provide a means of orthogonalizing data, 

communicating the results contemporaneously, and then distinguishing and processing the 

individually restored data sets. 

For instance, the splitting of data into in-phase (I) and quadrature (Q) data streams to 

isolate the real and imaginary elements of each symbol is a common practice [25, 27, 1081. 

The separation, detection, and demodulation of each channel, the I and the Q, represents 

a processing pass on the data (see Figure 10-1). 
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Figure 10-1: Direct conversion quadrature receiver block diagram. Band pass filtering is 
necessary to remove out-of-band noise and interferers. Low noise amplification then gains 
up the input waveform while adding as little additional noise as possible. The power splitter 
performs a copy operation to create two identical data waveforms. Note that this operation 
is lossy and the output waveforms each contain less than half the input power. Each copy 
then goes through its own down-conversion pass. Each waveform is mixed with an in-phase 
or quadrature oscillation to down-convert the I or Q channel, respectively, to baseband. 
Low pass filtering is necessary to remove the resulting images before detection. Amplitude 
detection then recovers the bit information stored in each orthogonal symbol component, I 
or Q. These bits are then interleaved to produce the final demodulated bit stream. Note 
that two orthogonal components, I and Q, results in an output data stream of twice the 
data rate. 



I and Q channels are demodulated separately to take advantage of orthogonalization 

along the real and imaginary axes in the complex plane. Such systems often avoid data 

synchronization issues by digitizing the I and Q outputs before combining them. There is 

added noise, however, from the analog components in the two different paths, as well as 

from the lossy power splitting required to copy the input waveform. This type of system is 

also limited to two dimensions of orthogonal data streams, as only the two single real-time 

passes (I and Q) are available to extract information from the data. 

Multiple access schemes are another example of using orthogonalization to improve 

system performance. Whether creating uniqueness in time (TDMA), frequency (FDMA), 

or through convolution with a code word (CDMA), each scheme imposes orthogonality on 

the data such that the output from each transmitter can be uniquely identified (25, 321. 

Such schemes represent a distributed and very primitive form of multipass. They either fail 

to take optimal advantage of the available resources (TDMA and FDMA), or they provide 

only a minimum of orthogonal dimensions per data link (CDMA) . 

Interest has been increasing in an additional class of multiple access schemes those which 

use spatial locality to help differentiate between data. Adaptive beamforming 1109, 110, 11 11 

and space-time [112] coding are examples of using differences in location to provide improved 

orthogonality and isolation between data streams. Adaptive beamforming focuses energy in 

a specific direction in order to maximize and isolate inputs located in that direction. Space- 

time coding provides an arbitrary number of dimensions of orthogonality given a suitable 

scattering environment. The advantages of such a large number of orthogonal components 

can be seen in the large achievable data rates of space-time systems. Unfortunately, both 

beamforming and space-time systems rely upon an individual antenna and accompanying 

radio front end per dimension of orthogonality. In addition, the various antennas must be 

spread over a suitable distance. This results in an expensive, large, and fixed system. In 

this case, each receiver can be thought of as a separate processing pass for each data stream. 

An example of perfect spatial orthogonality can be found in the wired communications 

world. Fiber optics is the epitome of spatial orthogonality in that there is zero coupling 

between fibers in a bundle. Each data signal is completely contained by a fiber and has no 

effect on any other signal. So, again, each data stream is processed by a separate pass, in 

the form of a receiver chain, on reception. 

The optical fiber realm also provides another interesting analog to an multipass sys- 



tem. Wavelengt h-division multiplexing (WDM) is a means of transmitting multiple data 

streams in parallel over a single optical fiber [25]. The different streams are distinguished by 

their associated wavelengths. Multiple streams can be used in parallel to provide a higher 

aggregate data rate [113, 1141. 

10.2 Software Radios 

As discussed earlier, software radios bring the adaptability of digital processing to radio 

functions. Most software radio systems have focused on inter-operability, as their primary 

function. As processors get faster and cheaper, however, software radios are also being 

considered for their commercial viability in allowing a single inexpensive COTS platform 

to bring multiple standard compatibility. 

The Speakeasy Multiband Multimode Radio (MBMMR) [46, 47, 481 was one of the first 

software radio systems. It was a software radio project commissioned by the military to 

create an inter-operable radio system. Speakeasy used multiple TI TMS320C40 DSPs in 

conjunction to perform low data rate (less than 20kb/s) baseband functions. 

The SpectrumWare work done at MIT [51, 115, 531 was some of the first to take an 

in-depth look at some of the advantages of performing communication processing on a 

general-purpose processor. SpectrumWare describes using temporal decoupling to provide 

a softening of real-time constraints in order to accommodate the overhead of operating in 

a fully general-purpose environment. The focus of SpectrumWare is on how to implement 

composable communications functions for inter-standard operability while accommodating 

the operating system and other unrelated system functions. While the opportunity for soft- 

ware radios to enable new communications algorithms is mentioned in [51], this possibility 

is not explored there. 

Gnuradio [54] is an open source freely available software radio for general-purpose pro- 

cessors. It allows users to download optimized baseband radio functions and combine them 

with an available RF front and ADC/DAC to create a reconfigurable radio on their desk- 

top [116]. Gnuradio is Open Source and accepts contributions from willing developers as 

its stated purpose is to allow decentralized communications systems which do not rely on 

establish telecommunication companies. 

The commercial viability of software radios has been proven by Vanu, Inc. [117]. Vanu, 



Inc. has deployed cellular basestation systems running software radio functions. These 

systems provide inter-operability as well as upgradability for celluar systems. The majority 

of the software used is written in high-level portable code to allow software reuse among 

systems. These systems target general-purpose stock CPUs in order to take advantage of 

the highly optimized compiler infrastructure available. 

10.3 Other Tiled Architecture Platforms 

The Raw tiled architecture was the implementation platform for the work presented here. 

The multipass approach, however, is system independent and could be applied to other 

parallel general-purpose processing architectures and specifically, other tiled architectures . 

The TRIPS architecture [9] uses ALUs as its tiled entity and operates on data in a data- 

flow manner. This dynamic execution and routing of data contrasts with Raw's statically 

scheduled instructions and routing. The dynamic data-flow model offers the promise of 

simpler network routing as long as sufficient bandwidth is present. The primary concern 

for a TRIPS implementation would be the mechanism for streaming input data. High- 

bandwidth memory access channels have been suggested, but not implemented. 

Another data-flow based tiled architecture is Wavescalar [71]. Wavescalar is similar to 

Raw in that it provides a processing substrate which scales with technology changes and 

die sizes. Data-flow processing occurs on processing elements within a tiled unit, called a 

cluster. Inter-cluster communication takes place using dynamic routing with a "hop" of 

a cluster per cycle. This would allow low latency communication between the clusters as 

long as contention were kept to a minimum. The dynamic nature of this communication, 

however, makes it more difficult to assure known latencies, as is the case in a statically 

scheduled system. The variable latencies of a data-flow style system can be an issue for 

communication processing in general, although an average latency model would probably 

suffice for most applications. 

Smart Memories [I181 uses a two-tiered structure with the processor tiles organized into 

quads of four tiles. Communication within each quad is over nine busses. Beyond the quads, 

this architecture uses a dynamically-routed packet- based network to communication data 

between quads and off-chip. These limitations on routing resources could potentially cause 

issues for communication functions which do not neatly fit within a tile or a quad. 



The work closest in nature to multipass on Raw is Synchroscalar [72]. Synchroscalar 

operates on a similar design space to the multipass on Raw system, namely 802.11a, but it 

is focused specifically on low power and voltage and frequency scaling. The Synchroscalar 

architecture is another two tiered tiled design. It groups processing elements based on the 

AD1 Blackfin DSP ISA [I191 into four processing element columns. These columns are 

then replicated. Each column operates in a SIMD manner and represents a single thread 

of control. Tiles communicate intra-column through a 256bit segmented bus, and intra- 

column through a lower bandwidth bus. The design networks were optimized around a single 

802.11a 54Mbps Viterbi ACS. As this is the most demanding part of the 802.11a receive 

chain, it is likely possible to connect together multiple copies of the current Synchroscalar 

design in order to generate a platform large enough to implement all of 802.11a or a multipass 

system. The bus-based approach would not scale with larger designs, however. 

Summary 

While each of these areas of research (multipass-like communication systems, software ra- 

dios, and multiple-core processors) have been considered individually, the multipass system 

presented here is unique in its combining of all three of these aspects. 

10.4 Viterbi Decoder Work 

The Viterbi decoder parallelization effort drew upon much previous work. The high-level 

block diagram structure of the software Viterbi decoder presented here is similar to many 

hardware designs. The low-level intra-function partitioning and algorithmic implement a- 

tion, however, are design specific and are heavily optimized to take advantage of the Raw 

architecture. 

Works by Viterbi [I201 and Forney [22] were very useful in understanding the Viterbi 

algorithm in general, while Butler [97] and [I051 provided insight into some of the specific 

implementation details required of a fully functional Viterbi decoder implementation, such 

as the choice of path metric computation and the normalization of metric values. 

[121] and [loll provided useful overviews of the common Viterbi decoder parallelization 

approaches, with the decoder used here falling into the node-parallel class of Viterbi decoder 

architectures. 



A number of parallelizat ion approaches provided context for the parallelizat ion effort 

by addressing the limitations imposed by the feedback loop internal to the Viterbi decoder. 

[122, 103, 1041, [123, 1241, and [125, 1021 discuss methods for operating on multiple feedback 

paths concurrently, thereby minimizing the recursion and improving the decoder speed. 

[126] presents an algorithmic approach to speeding up the Viterbi decoder through the use 

of a Viterbi transform operation. While the Viterbi decoder used here is not directly based 

on these ideas, these approaches were useful in examining the space of Viterbi decoder 

implementations and in highlighting the parallelization challenges presented by the decoder 

components. 





Chapter 11 

Future Work 

There are numerous avenues of further research suggested by the multipass algorithm and 

system. The multipass approach provides multiple new degrees of freedom in system design. 

From an algorithmic point of view, the choice of combining function can have a large 

impact on the usefulness of the system for given communication needs and under anticipated 

operating conditions. In order to fully evaluate such approaches, however, the system must 

undergo additional testing with more complex and realistic channel models and radio effects. 

From an implementation perspective, there is much freedom in the choice of platform. 

The multipass algorithm itself is equally applicable to many different types of system de- 

signs, whether general-purpose, application specific, or anywhere in-between. 

From a general-purpose processing perspective, the use of the multipass algorithm on 

GPPs, while making possible the use of this implementation medium, only begins to take 

advantage of the flexibility enabled by the use of GPPs for communication processing. 

The ability of digital radios to algorithmically modify their processing chains and functions 

to adapt to current channel conditions and needs is a powerful tool and invites further 

investigation. 

11.1 Alternate Combining Functions 

Multipass functionality can be exploited in a number of different modulation and detection 

schemes. Different types of orthogonalizing combining functions could be appropriate de- 

pending on the scheme used. The purpose of the combining function is to join passes in an 

orthogonal manner so that they can later be distinguished at the receiver. 



Superposition is a less than optimal combining function in some important ways. Super- 

position itself provides no orthogonality. There is no way to distinguish between combined 

signals if superposition were directly used to combine the signals. The scaling function pro- 

vides the means of disambiguating the combined signals. Scaling down one of the signals, 

however, reduces the power in that signal and makes it more susceptible to noise. This 

creates an asymmetric situation where Passl has a higher probability of being correctly re- 

ceived. In fact, given that the only way to recover Pass2 signal at the receiver is to subtract 

an estimate of the Passl signal (thus undoing the superposition), the reliability of Pass2 is 

coupled even more tightly to the correct reception of Passl. In addition, the superposition 

combining function has a limit on the amount of scaling which can be applied as any passes 

which are scaled to a power level below the system noise floor become unrecoverable (see 

Section 5.5). Another issue with the superposition combining function is that it creates 

dependencies between the passes where none might otherwise exist. Earlier passes must be 

decoded before later passes can be, and the correctness of this earlier pass decoding can 

impact the ability to correctly decode the later passes. 

A choice of combining function other than superposition could have a dramatic impact 

on the system. Other combining functions may avoid some of the limitations of the superpo- 

sition combining function, but could well introduce others. It would therefore be logical to 

explore other possible combining functions and determine for which scenarios, and for which 

types of data, they might be a more suitable option. A few possible alternate combining 

functions are discussed below. 

11.1.1 Data Layering 

Data layering is a combining function technique. Data layering uses a code-based orthogo- 

nalization which layers multiple virtual channels on the same transceiver into a single data 

channel. At the receiver, a pass for each codeword retrieves these individual virtual data 

channels. Codewords are a mechanism to provide an explicit and configurable means of 

ort hogonalization. 

Data layering uses multiplication at both the transmitter and receiver to provide filtering 

on each virtual data stream (see Figure 11-1). The first multiplication by a codeword at the 

transmitter decorrelates each virtual channel from all others. The second multiplication at 

reception then correlates a copy of the incoming data stream with a corresponding codeword, 
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Figure 11-1: Data layering: virtual channels are multiplied in the time domain with cor- 
responding orthonormal codewords. The transmitted data stream can then be copied into 
correlating passes at the receiver. Each pass multiplies (correlates) the data with a codeword 
to retrieve that codeword's virtual channel. 

suppressing the presence of the other virtual data streams. 

Virtual 
Channel Symbol Code 

Data channel 

Figure 11-2: Data layering example. Three virtual channels are multiplied in the time 
domain (convolved in frequency) with corresponding orthonormal codewords. The resulting 
data stream can then be multiplied (correlated) at the receiver with each codeword in turn 
to retrieve each virtual channel. 

A simple example of data layering at the transmitter is shown in Figure 11-2. The use 

of very small arbitrarily chosen codes and an on-off keying modulation scheme make this 

example a trivial case, but a didactic one. To combine three virtual channels, A, B, and 

C, the data value, or symbol, from each channel is modulated and then multiplied by a 

codeword. The results are then summed into a single data stream. This stream can then be 

sent across the communication channel. At the receiver, the digitized input stream is split 

into three copies, one copy for each reception pass. Each copy is then multiplied by one of 



the codewords. The output of this operation then has the zero code elements removed and 

is demodulated to produce the corresponding virtual channel data. 

The choice of codewords has a profound impact on the functionality of the system. 

Codewords must form an orthonormal basis in order to minimize ambiguity and maximize 

the likelihood of correctly detecting each symbol at the receiver. For the codewords to be 

orthonormal they must satisfy the following properties: 

and 

where each 4 represents a codeword. Property 11.1 guarantees the multiplication by each 

codeword at the receiver produces a unique and independent output. Property 11.2 ensures 

that the transmission energy is evenly distributed across all virtual channels. 

Single 
Channel 
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'r 
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Channels 

Mag 

Correlation of 
1 Virtual 
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Figure 11-3: Data layering frequency spreading. Figure (a) represents the original spectrum 
of a single data channel. Figure (b) represents the spreading of each virtual channel's 
bandwidth, as well as the layering of the energy from each virtual channel to form the 
final spectrum of the data. Figure (c) shows the despreading resulting from correlating 
(multiplying) the data stream with the desired virtual channel's codeword. 

The price for the increased throughput of data layering is increased bandwidth. The 

most efficient way of layering N virtual channels is by choosing codewords which form 

an N dimensional orthonormal basis. Multiplying a data stream by a codeword corre- 

sponds to convolving the data and codeword in the frequency domain. Thus, the frequency 



characteristics of the resulting waveform is spread to the bandwidth of the codeword (see 

Figure 11-3). 

Data layering uses codewords as a mechanism for imposing orthogonality on the virtual 

data channels. The freedom to choose and dynamically modify these codewords provides 

significant fine grain control of the transmitted signal. For instance, the number and length 

of codewords can be scaled to match the desired data throughput. 

One can think of data layering as a superset of CDMA and many of the multiple access 

schemes used today. These multiple access schemes are simply more rigid instances of data 

layering with a fixed set of codes. Specific classes of codes can create the functionality of 

CDMA, TDMA, or FDMA. For instance, a set of codewords which have a relatively flat 

spectrum, are very long, and result in a chip rate significantly higher than the data rate, 

would result in data layering very similar to CDMA. A set of codewords which emulated 

sinusoids at varying frequencies would emulate FDMA. And a set which had non-overlapping 

shifted contiguous blocks of ones would resemble TDMA. Severely limiting the flexibility of 

these codes is a necessity for systems in which the codes are distributed across an unknown 

number of devices. For this case, the best that can be done is to choose codes which will 

allow for a large, possibly fixed, number of devices. 

Using multiple passes to implement data layering for a single transmit-receive link, how- 

ever, allows for great flexibility in choice of codeword set. Since only one link is involved, 

only two devices, the transmitter and receiver, need coordinate codeword changes and the 

effects of changes are easily observable and modifiable. The codeword set can then be de- 

signed to optimally match the current conditions. The basis type, codeword length, number 

of codewords, and codeword frequency characteristics, can all be dynamically adjusted to 

tune system performance. The number and length of orthogonal codewords used can be 

adjusted to match the number of virtual channels required. Also, the length of the code- 

words determines the amount of frequency spreading in the system and can be modified to 

produce a narrower or wider channel as needed. The frequency content of the codewords, 

and hence the combined output spectrum, can be dynamically shaped to match the channel. 

An example of this is explored further in Section 11.1.2. 

Theoretically, any codeword which provides an orthonormal basis is available and can 

be used. This means that practical limitations on the codewords are due to externally 

imposed constraints and reflect the limitations of other parts of the system. The main 



limiting factors in codeword choice are the amount of frequency spreading which can be 

accommodated by the operating environment, the maximum data conversion rate of the 

system, and the linearity of the analog circuits needed as an interface to transduction. 

11.1.2 Colored Data Layering 

The ability to choose the codes used for orthogonalization creates the opportunity to pick 

codes which have especially nice properties. Colored data layering is a technique which takes 

advantage of this fact. In colored data layering, the orthogonal codewords are picked such 

that their frequency characteristics maximize the usage efficiency of the current channel 

(see Figure 11-4). The spectrum of the output waveform, when all the colored data layers 

have been added together, then conforms to this current channel. In this way, codewords 

optimally make use of the available bandwidth. Data layering is maximized where there 

is little noise or interference and minimized where the channel is worst. The result is a 

channel usage model similar to that of the water-filling algorithm [28]. 

3 Virtual 
Channels 

Figure 11-4: Colored data layering frequency spectrum. Codewords are chosen to shape the 
data frequency spectrum appropriately. 

11.1.3 Frequency Bits 

Multipass could be used to implement a wide-band dynamic non-contiguous OFDM system. 

The whole spectrum (all that is available from the ADC) could be broken down into small 

frequency sections, or frequency bits. The combining function could then be used which 

orthognalizes by frequency bit by assigning a set of frequency bits to each pass. A pass 

of the multipass system would then filter out the frequency bits of interest. The output 



data from each pass would then correspond to the information in a set of frequency bits of 

interest to form the desired system output. 

Unlike OFDM, where the frequency sections assigned to each link must form a subsection 

of a predefined channel, in this multipass scheme, frequency bits can fall anywhere within the 

range of the data converter. This has the advantage that frequency bits with similar SNR 

characteristics can be assigned to each pass, thus allowing a single consistent modulation 

scheme to be used across all frequency bits in a pass. The assignment of frequency bits, and 

the modulation used for each pass can then be dynamically adjusted to take into account 

the changing channel characteristics over time (see Figure 1 1-5). 

frequency bit 

Figure 11-5: The spectrum is broken up into frequency bits. The shaded regions represent 
frequency bits dynamically assigned to a particular communication link. Frequency bits 
could be selected for a given pass based on having a similar SNR available in each frequency 
bit, allowing each pass to use a consistent modulation scheme across all its frequency bits. 
Frequency bit assignment could be dynamically adjusted to spectrum changes over time. 

11.2 Alternate Channel and Radio Models 

A simple noise model, AWGN, was used for the multipass system simulation presented 

here. While this model is appropriate for a simple evaluation of a multipass system, the 

application of more complex and realistic channel models is a reasonable next step. The use 

of a Raleigh and other more ambitious channel models [26, 251 would simulate the system 

operating under more realistic conditions with effects like multi-path present. This would 

demonstrate the impact of such suboptimal, but unavoidable, conditions on a multipass 

system relative to a single pass one. 



A closer examination of the effects of system noise (from non-idealities such as converter 

resolution, system linearity, power amplifier saturation, etc.) and the limit at ions of the 

system in conjunction with the multipass combining function used would be revealing. 

In addition, an investigation into the suitability and ramifications of using the multipass 

approach with other communication system configurations, e.g. WiMAX [127, 1281 or 

802.1 1n [129], is a logical extension of this work. 

11.3 Implementation on Alternate Platforms 

While the multipass system presented here focused on implementation using a general- 

purpose tiled architecture, the multipass algorithm is applicable to other parallel systems. 

The multipass algorithm is a means of using spatial resources to reduce temporal constraints 

and is appropriate for systems which are application-specific, as well as those which are 

general-purpose. 

11.3.1 Other Parallel GPP Systems 

The multipass system addressed here made use of a specific tiled architecture, the Raw 

processor. The system itself is not Raw specific, however, beyond the intra-function opti- 

mizations. 0 t her tiled architectures, and in fact other parallel processing solutions, could 

take advantage of the multipass approach to implement communication processing. 

The architectural features available on a given platform dictate the level of parallelism 

attainable for a communication system, and the corresponding temporal requirements. The 

specific implementation platform capabilities determine the applicability of a multipass com- 

munication system approach. Specifically, the abilities discussed in Chapter 4 are key to 

successful implementation and use of a multipass, or potentially any, high data rate commu- 

nication system. The use of other tiled processors (like those mentioned in Section 10.3) and 

other parallel processing systems like CMPs (especially those making use of tightly coupled 

DSP cores) could provide a fruitful implement at ion environment for multipass communica- 

tion systems. 



11.3.2 ASICs 

The multipass algorithm, splitting up the communication workload into multiple portions 

transmitted in parallel, could easily be applied in an ASIC solution. Multiple passes could 

be statically incorporated into the receiver design. While this would negate the ability 

to dynamically adjust the number and possibly the type of passes, it would reduce the 

processing load required of each pass. This reduced processing load could be translated into 

lower power consumption (through higher & devices and slower clocking speed or through 

the application of asynchronous clocking techniques) and/or simpler design requirements 

(through the lower critical path latency and ability to reuse function designs across passes). 

The smaller area per function might make such a solution appealing in a system where 

communication is a constant high priority function. 

11.3.3 FPGAs 

The hybrid nature of FPGAs make the multipass algorithm particularly appealing in this 

realm. FPGAs provide a modicum of the reconfigurability of GPPs with a much improved 

processing rate. The ability to implement ASIC functionality while retaining the ability 

to reconfigure the system for debugging, altering, or upgrading the system with software 

design tools leads to a decrease in the design time and effort of FPGAs over ASICs. FPGAs, 

however, while faster than GPPs (on the order of 2-3x faster [130]), are consistently slower 

than ASICs (on the order of 2-3x slower [130]). The application of the multipass algorithm 

in communication systems based on FPGAs would allow these systems to utilize the benefits 

of FPGAs while regaining much of the performance capabilities of an ASIC solution. 

11.4 Adaptable Systems 

A significant benefit of digital radios, and software radios in general, is the ability to dy- 

namically modify the communication system. The use of software to implement the system 

on a GPP allows the system to be adapted based on current conditions, a feat which is not 

allowed by the static nature of hardware design. The ability to modify the number and 

types of passes in a multipass system is just a single instance of the flexibility of a software 

radio based approach. There is ample opportunity for research into software-based systems 

which are dynamically adaptable in other ways. Just a few possible areas for additional 



adaptation in the current system are highlighted below: 

The algorithms used can be modified based on the current state of the channel. For 

example, the packet detection function in the receive chain (Figure 7-2) can be ad- 

justed based on the amount of noise and interference observed on the channel. A 

simple algorithm based on a direct measurement of the receiver energy can be used 

to estimate the start of a packet in low noise conditions. If the channel noise were to 

increase, however, and the number of false positives rise too high, the algorithm could 

be modified to a more complex, but less error prone packet detection scheme like the 

double sliding window algorithm. 

The protocol can be altered to take best advantage of the current conditions. For 

example, in a situation with significant amounts of multi-path, the cyclic prefix (CP) 

might be extended to allow a longer settling time between symbols. 

In a multipass system, the combining function could be changed to optimize the system 

for the current conditions. If the current data to be sent contained streams with 

differing priorities, then a superposition combining function might be appropriate. If 

all of the data were equally important, then a code-based combining function might 

work better for the current channel. 



Appendix A 

802.1 l a  Specification Values 

Some of the specifications values for the 802.1 l a  baseband are presented below. The major 

system parameters are shown in Table A.1. Table A.2 displays the available data rates, 

along with the data rate specific parameter values. Some overall system values, such as 

timing and frequency allocations, are enumerated in Table A.3. 

I / 802.11a Major Parameters 

1 1  Coding Rate 1 1/2, 2/3, 314 

Information Data Rate 

Modulation 

Error Correcting Code 

6, 9, 12, 18, 24, 36, 48, and54 
Mbit/s 

(6, 12, and 24 Mbit/s are mandatory) 

BPSK OFDM 
QPSK OFDM 
16-QAM OFDM 
64-QAM OFDM 
K = 7 (64 states) convolutional code 

Table A.l: Major Parameters of the 802.11a OFDM PHY [24]. 

Number of subcarriers 
OFDM symbol duration 
Guard Interval 
Occupied Bandwidth 

52 
4.0 ps 

0.8 PS @GI) 

16.6 MHz 



n 802.11a Data Rate Values 

Data rate 
(MBits/s) 

Modulation 

Table A.2: 802.1 l a  Data Rate Values [24]. 

BPSK 
BPSK 
QPSK 
QPSK 

I 

Data Length 1 1-4095 Bytes I 

Coding rate 

(R) 

112 
314 
112 
314 

I 

I NsD: Number of data subcarriers 1 48 I 1 

Coded bits 

Per 
subcarrier 
(NBPSC) 

Coded bits 
per OFDM 

symbol 
( % B P S )  

Data bits 
per OFDM 

symbol 
(NDBPS) 

1 
1 
2 
2 

802.11a System Values 
Parameter 

NSP: Number of pilot subcarriers 
NST: Number of subcarriers, total 
AF: Subcarrier frequency spacing 
TFFT: IFFTIFFT period 
TPREAIlfBLE: PLCP preamble duraction 
TSIGNAL: Duration of the SIGNAL BPSK-OFDM symbol 

1 TSHORT: Short training sequence duration I 8ps (10 x v) u 

48 
48 
96 
96 

Value 

4 

52 (NSD + NSP) 
0.3125MHz (= w) 
3 . 2 ~ ~  (&;r) 
1 6 ~ s  (TSHORT f TLONG) 
4.Ops (TGI + TFFT) 

TGI: Guard Interval (GI) duration 
TG12: Training symbol GI duration 
TsyM: Symbol interval 

I TLONG: Long training sequence duration I BPS (TGIZ + 2 x W) /I 

24 
36 
48 
72 

0 . 8 ~ ~  (9) 
1 . 6 ~ ~  (9) 
4 ~ s  (TGI + TFFT) 

Table A.3: 802.1 l a  System Values [24]. 
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