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Endothelial cells and basement membrane interact as a biochemical and 
mechanical co-regulatory unit. The wide spectrum of manifestations of diabetic vascular 
disease could be related to altered kinetics of vasoactive compounds within this 
regulatory unit. We hypothesized that hyperglycemic stress mediates storage, release, 
and function of fibroblast growth factor-2 (FGF-2) through changes in interaction 
between endothelial cells and basement membrane. 

We discovered that basement membrane associated FGF-2 increased linearly 
with culture glucose concentration. Using novel assays, we demonstrated that FGF-2 
binding kinetics were surprisingly unchanged over a range of basement membrane 
culture glucose. Instead, the combination of increased endothelial cell apoptosis- 
associated FGF-2 release and enhanced endothelial cell permeability allowed more 
FGF-2 to bind into the basement membrane. Such high levels of basement membrane 
FGF-2 abrogated the effects of h ypergl ycemia on proliferation but not a poptosis. An 
FGF-2 stimulus returned endothelial cell proliferation close to euglycemic levels, but 
increased apoptosis was still evident as FGF-2 signaling down an intracellular survival 
pathway was inhibited by glucose. These same findings were confirmed in vivo where 
FGF-2 levels were elevated in the aortic subendothelial space of diabetic animals. 

This thesis suggests a new paradigm for active cellular control of basement 
membrane and indicates the complexities of growth factor signaling in endothelial cells. 
Characterization of the interaction between endothelial cells and basement membrane 
in health and disease may advance our understanding of diabetic vascular disease and 
lead to development of novel biomimetic materials for therapeutic intervention. 
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CHAPTER 1 

BACKGROUND AND SIGNIFICANCE 

Thesis Overview 

Diabetes is reaching epidemic prevalence worldwide. With cardiovascular 

disease as the major cause of morbidity and mortality in diabetics, a mechanistic 

understanding of diabetic vascular dysfunction is critical to preventing a 

subsequent cardiovascular disease epidemic. Hyperglycemia, the hallmark of 

diabetes, has been linked to vascular abnormalities, but hyperglycemia alone 

does not correlate with diabetic morbidity and mortality. While glucose is known 

to induce osmotic effects on a timescale of hours and protein glycation on a 

timescale of weeks, the effect of physiologic glucose fluctuations on the 

vasculature over the course of days-such as what might occur even in a patient 

with tight glucose control-is unknown. 

Diabetes and cardiovascular disease intersect at the endothelium-the 

single cell layer lining blood vessels. While the endothelium was once thought to 

be vascular "cellophane," we now know that endothelial cells perform a delicate 

balancing act by sensing signals from the bloodstream and communicating them 

into vessel functional alterations (1). Diabetes is a complex disease with a 

plethora of biochemical abnormalities, but altered glucose metabolism alone is 

sufficient to cause endothelial cell dysfunction. 

Diabetic vascular dysfunction takes varied forms in different vascular 

beds, but since much of the dysfunction involves disordered vascular remodeling, 

angiogenic growth factors are prime candidates for dysregulation. Fibroblast 

growth factor-2 (FG F-2) in particular has key implicating features, including a lack 

of release mechanism other than endothelial cell injury and a storage reservoir in 

basement membrane, the protein matrix that supports endothelial cells both 

physically and biochemically. By perturbing endothelial cells and proteins with an 
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environmental stress such as hyperglycemia, we can learn not only about 

diabetic vascular dysfunction but also about cooperative FGF-2 regulation by 

endothelial cells and basement membrane. 

This thesis investigates how external stress modulates vasoactive 

compound kinetics within the endothelial cell - basement membrane co- 

regulatory unit. We hypothesize that a physiologic glucose range mediates 

altered storage and release of FGF-2, as well as altered FGF-2 functional effects 

through changes in endothelial cell - basement membrane interaction. 

Understanding FGF-2 regulation by cells above and basement membrane below 

may shed additional light on diabetic vascular disease. 

In support of these concepts, this thesis consists of a series of studies to 

elucidate the role of FGF9 in glucose-induced vascular dysfunction, in particular 

as FGF-2 is cooperatively stored, released, and metabolized by endothelial cells 

and basement membrane. The specific aims of this work are: 

Chapter 2: Develop novel methods to examine FGF-2 binding kinetics 

with isolated basement membrane in vitro. 

Chapter 3: Investigate the effect of glucose on basement membrane 

FGF-2 storage and binding kinetics (capacity, association, and 

dissociation). 

Chapter 4: Define the role of altered endothelial cell function (FGF-2 

release, apoptosis, and permeability) with glucose in controlling FGF-2 

basement membrane storage. 

Chapter 5: Examine how FGF-2 released from basement membrane 

affects endothelial cell proliferation and survival with glucose. 

This thesis provides both an improved understanding of unregulated 

vascular remodeling in diabetes and a clearer picture of interaction between 

endothelial cells and basement membrane in vascular homeostasis. These 

systematic studies lead towards a quantitative model of the endothelial cell - 
basement membrane co-regulatory unit, which in turn will help us develop novel 

biomaterials and basement membrane therapies. 
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1 .I Clinical Background 

1 .I . I  Epidemiology of diabetes 

Public health improvements have drastically reduced mortality from 

communicable diseases. At the same time, technological advances have created 

modern conveniences, which lead to sedentary lifestyle and poor nutrition. With human 

progress, globalization, and unprecedented control over our environment has come a 

growing diabetes epidemic (2). The worldwide diabetes prevalence is estimated to rise 

from the current figure of 150 million affected to 300 million affected over the next 

twenty years. The majority of new cases will be type 2 diabetes, which is strongly 

associated with a sedentary lifestyle and obesity (3, 4). 

In the United States, according to national health survey data analyses from 

1999 to 2003 by the American Diabetes Association, 20.8 million children and adults- 

around 7% of the population-have diabetes. This figure includes 14.6 million with 

diagnosed disease and 6.2 million who are undiagnosed but does not account for 41 

million in a pre-diabetic state. These astonishing figures continue to grow. In 2005, 1.5 

million new diabetes cases were diagnosed in people aged 20 years or older. 

Diabetes is a deadly disease. While improvements in health care have reduced 

death rates due to heart disease, stroke, and cancer, the diabetic death rate has risen 

by 45% since 1987. Diabetes ranks as the fifth-deadliest disease in the United States, 

but it is widely considered underreported on death certificates, especially in persons 

with multiple chronic conditions. The diabetic death toll is likely significantly higher than 

officially reported. Diabetes also does not strike equally across racial and social 

backgrounds. Asians, blacks, Native Americans, and Hispanics are 1.5 to 1.8 times as 

likely to have diabetes as non-Hispanic whites. 

1 . I  .2 Diabetic biochemistry 

Diabetes is defined as a heterogeneous group of disorders with impaired glucose 

tolerance and subsequent hyperglycemia in common (5). Type 1 diabetes (insulin 

dependent, juvenile onset) accounts for -10% of the total, whereas type 2 diabetes 

(non-insulin dependent, adult onset) accounts for 80-90% of diabetics. The third 
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diabetes class, maturity-onset diabetes of the young (MODY), is caused by a genetic 

defect and accounts for the remaining -5%. 

Type 1 diabetes, marked by an absolute lack of insulin, is caused by destruction 

of pancreatic islets where insulin is produced (5). While no clear event sequence 

leading to this destruction has been identified, current theory postulates that people are 

genetically predisposed to type 1 diabetes. Disease is then triggered by an 

environmental insult, leading to autoimmune islet destruction. Interestingly, children only 

become symptomatic after 90% of their islet mass has been destroyed. 

Type 2 diabetes, on the other hand, is caused by both derangement of insulin 

secretion and decreased peripheral tissue response to insulin (5). lnsulin resistance 

results in a lack of directed glucose deposition, and hence a persistent hyperglycemia 

following a glucose load. Type 2 diabetes has an even stronger genetic predisposition, 

but rather than being linked to a single gene, a collection of defects or polymorphisms 

exists, each with its own modifiable environmental risk. 

Diabetic biochemistry revolves around glucose and insulin. Glucose homeostasis 

is regulated by several mechanisms, including hepatic glucose production, glucose 

metabolism by peripheral tissues, and insulin secretion. lnsulin is produced in 

pancreatic islet p cells. After insulin gene expression, preproinsulin is synthesized in 

rough endoplasmic reticulum and delivered to the Golgi apparatus, where proteolytic 

cleavage generates mature insulin and C peptide (6). Both are stored in secretory 

granules and secreted together when extracellular glucose rises and more glucose is 

brought into the cell through membrane glucose transporters, in particular GLUT-2. 

lnsulin is important for hepatic and muscular glycogen formation as well as 

nucleic acid and protein synthesis, but its primary function is transmembrane glucose 

transport induction. lnsulin particularly increases glucose transport into striated muscle 

cells, fibroblasts, and fat cells which constitute two-thirds of body weight. lnsulin binds 

its receptor, composed of two glycoprotein subunits, and activates intracellular response 

cascades to translocate glucose transport proteins (primarily GLUT-4) from the Golgi 

apparatus to the plasma membrane. 

Data suggest that primary diabetic complications are associated with 

hyperglycemia, in particular because strict glucose control decreases both prevalence 
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and severity of these complications (7). In tissues that do not require insulin for glucose 

transport, which include nerves, lens, kidneys, and blood vessels, plasma 

hyperglycemia in diabetes causes increased intracellular glucose as well. High 

intracellular glucose leads to both nonenzymatic glycosylation and glucose metabolism 

pathway abnormalities, both of which are examined in greater detail when the glucose 

effect on endothelial cells is discussed. 

1.1.3 Vascular morbidityand mortalityin diabetes 

1 .I '3.1 Accelerated atherosclerosis 

Diabetics suffer from accelerated atherosclerosis affecting vessels ranging in 

size from the aorta to capillaries (8). Diabetic atherosclerosis is indistinguishable from 

that of non-diabetics, and while the reason for the accelerated process is unclear, it is 

likely related to a combination of blood lipid alterations, hypertension, and increased 

lipoprotein deposition in and platelet adherence to the vessel wall. Diabetic 

atherosclerosis is so severe that myocardial infarction is the leading cause of death in 

diabetics. According to the American Diabetes Association, heart disease and stroke 

combined account for -65% of diabetic deaths, two to four times higher than for non- 

diabetic adults. Of modifiable risk factors for cardiovascular disease, including 

hypertension, hypercholesterolemia, smoking, and diabetes, only diabetes prevalence 

continues to rise. 

1 .I .3.2 Diabetic retinopathy 

Diabetic retinopathy causes 12,000 to 24,000 new blindness cases each year, 

making diabetes the leading cause of new onset blindness in adults aged 20-74 years. 

Early background retinopathy is characterized by capillary basement membrane 

thickening, capillary microaneurysms and hemorrhage, loss of endothelial cells and 

pericytes, and microvascular obstructions that can lead to tissue hypoxia. This 

background, or non-proliferative, retinopathy is often succeeded by a proliferative 

retinopathy characterized by neovascularization. The shift from non-proliferative to 

proliferative retinopathy is thought to occur in response to vascular endothelial growth 

factor (VEGF) produced by pericytes in response to retinal ischemia and hypoxia (9). 
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1 .I .3.3 Diabetic nephropathy 

Diabetes is the leading cause of kidney failure. In the United States in 2002, 

153,730 people with end stage renal disease due to diabetes were living on chronic 

dialysis or with a kidney transplant. Glomerular lesions include capillary membrane 

thickening, diffuse glomerulosclerosis, and nodular glomerulosclerosis. Both 

glomerulosclerosis forms involve increased mesangial matrix deposits, leading to renal 

ischemia and scarring. Basement membrane changes show more type IV collagen and 

fibronectin and less heparan sulfate proteoglycan, which are thought to contribute to 

glomerular filtration function loss and eventual kidney failure (7). 

1 .I .3.4 Microangiopathy 

More than 60% of nontraumatic lower-limb amputations occur in people with 

diabetes, with the diabetic amputation rate ten times higher than for non-diabetics. 

Amputations are generally related to infection and gangrene of chronic wounds resulting 

from diabetic microangiopathy. In diabetic microangiopathy, diffuse basement 

membrane thickening primarily from increased type IV collagen makes capillaries 

leakier and inhibits angiogenesis and healing response. Diabetic microangiopathy is 

indistinguishable, although more severe, from similar alterations with aging (1 0). 

I .I .3.5 Role of hyperglycemia 

A prospective study of the effect of strict glucose control on type 1 diabetics 

showed that intensive insulin therapy delays onset and slows progression of diabetic 

retinopathy, nephropathy, and neuropathy (1 1). However, hyperglycemia, which was 

considered the hallmark of diabetes, cannot singlehandedly account for diabetic 

morbidity and mortality. Certainly other biochemical alterations contribute, including 

variable insulin and lipoprotein levels. 

A question that remains unanswered is the effect of physiologic fluctuations in 

blood glucose that occur on the timescale of days-even in a person with tight glucose 

control. Extreme hyperglycemia can lead to osmotic effects in just hours, and chronic 

hyperglycemia can lead to protein glycation over the course of weeks. However, 
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supposedly benign physiologic fluctuations that last for around a day may contribute 

significantly to vascular dysfunction over the course of a lifetime. 

Basement Membrane 

1.2.1 Normal vascular anatomy 

Large blood vessels are composed of three layers, or tunics. The innermost 

layer, in direct contact with the bloodstream, is the tunica intima. This layer consists of 

an endothelial cell monolayer resting on a protein network called basement membrane. 

The tunica intima is separated from the middle blood vessel layer, the tunica media, by 

a fenestrated elastin sheath called the internal elastic lamina. The tunica media itself 

consists of circumferentially oriented smooth muscle cells embedded in an extracellular 

matrix of collagen, elastin, and proteoglycans. This layer is separated from the 

outermost vessel layer by another elastin sheath, the external elastic lamina. The tunica 

adventitia, which includes collagenous tissue, vascular nerves, vasa vasorum (small 

blood vessels that feed outer large blood vessel layers), and fibroblasts, forms the outer 

vessel support (5). 

Blood vessel composition varies depending on vessel size and function. Large 

veins have the same three layer structure as large arteries, but since they operate in a 

low pressure environment, the layers are less distinct and the tunica media significantly 

thinner. Capillaries and postcapillary venules, whose main function is nutrient diffusion 

across blood vessels, are tubes with a single endothelial cell layer on a basement 

membrane and pericytes adherent to the outside. 

I .2.2 Endothelium 

The endothelium is a confluent monolayer of thin cells lining the intimal surface of 

all blood vessels. Until the late 1960s, the endothelium was considered a relatively inert 

nonthrombogenic cellular barrier. However, in 1966 Florey challenged these beliefs, 

stating that endothelium was more than a nucleated cellophane sheet (1). In thirty years 

since endothelial cells were first cultured as a homogeneous population, endothelial 
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cells have been shown to sense mechanical, chemical, and humoral stimuli, process 

these signals, and respond by synthesizing and releasing a myriad of factors (1 2, 13). 

The endothelium maintains a delicate balance between influx and efflux from the 

vasculature, growth promotion and in hibition, vasoconstriction and vasodilation, blood 

cell adherence and nonadherence, and anticoagulation and procoagulation. In this way, 

endothelium modulates vascular permeability, angiogenesis, vasomotor tone, 

inflammatory response, and hemostasis. The endothelium is strategically situated 

between the bloodstream and tunica media to sense changes in humoral substances as 

well as blood flow and vascular mechanics, responding through vasoactive factor 

production and release (1 4). 

The blood vessel wall forms a selective permeability barrier, with an estimated 

area of 350 square meters, for molecule transport between blood and tissue (15). The 

endothelium maintains this barrier through cell-cell linkages via two main intercellular 

junctions: tight junctions and adherens junctions (1 6). In both junction types, adhesion is 

mediated by hemophilic protein interactions with adjacent cells, resulting in a dynamic 

pericellular zipper (1 7). 

Tight junctions are formed of transmembrane proteins called claudins and 

occludins (1 8). In extracellular space, these proteins from adjacent cells join together to 

form sealing strands. Intracellularly, claudins and occludins anchor the actin 

cytoskeleton via ZO proteins (19). Endothelial cell adherens junctions are formed 

primarily of the transmembrane protein vascular endothelial cadherin (Ve-cadherin), 

which connects to intracellular anchor proteins such as catenins, vinculin, and a-actinin 

that then connect to actin filaments (20). Both junctions require association with 

cytoskeletal actin for dynamic regulation of junction opening and closure. In some 

cellular systems, adherens junctions are required for tight junction formation. 

Endothelial cell permeability changes in response to cytokines or permeability 

regulators such as VEGF are associated with occludin and cadherin redistribution (21). 

Permeability changes lead to both tissue edema and blood protein and lipoprotein 

deposition in the vascular wall (22, 23). Often such permeability changes are associated 

with inflammation or abnormal blood flow (23, 24). 
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Endothelial cells respond to injury by inducing blood vessel growth, therefore 

they must maintain their cell division capacity. In the normal state, cells divide slowly but 

can rapidly proliferate and even recruit precursor cells from the blood stream when 

needed. Angiogenesis is defined as sprouting of new vessels from existing vessels. 

This process is governed by endothelial cells, which produce proteases to digest 

basement membrane, migrate towards a tissue hypoxia-induced VEGF signal, 

proliferate, form tubes, and finally differentiate (25, 26). 

In 1980, vascular smooth muscle relaxation in response to acetylcholine was 

demonstrated to be dependent on an intact endothelium (27). Several years later, 

endothelial cell derived relaxing factor was identified as nitric oxide (NO) (28). NO, in 

conjunction with a second endothelial cell-produced vasodilator prostacyclin (PGI2), 

regulates not only stimulus-induced vascular dilation but also basal motor tone (29). As 

part of the counterregulatory balance endothelial cells produce proendothelin, which is 

cleaved extracellularly to form the long-lasting potent vasoconstrictor endothelin. Many 

factors which induce endothelin synthesis similarly induce NO or PGI2, demonstrating 

the complex, multifaceted balance of constriction and dilation in endothelial cell 

vasomotor tone control. 

Endothelial cells respond to inflammatory signals from cytokines such as 

lipopolysaccharide (LPS), tumor necrosis factor-a (TNFa), or interleukin-I (IL-I) by 

producing their own chemokines and cytokines as well as upregulating cell adhesion 

molecules (30). Endothelial cell-derived cytokines recruit leukocytes and cell surface 

selectins modulate leukocyte rolling, after which adhesion molecules such as 

intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) 

mediate firm adhesion and eventual transmigration through the endothelial cell layer 

(31, 32). Endothelial cells tightly tune the inflammatory response since inappropriate, 

excessive, or chronic inflammation leads to pathological conditions (33). 

The healthy endothelial surface is anticoagulatory and antithrombotic. 

Vasodilators PGI2 and NO are constitutively released to prevent platelet adherence to 

the vessel wall, and the intact endothelial cell surface is rich in proteoglycans that 

inactivate thrombin to prevent blood clot formation (34). Vessel damage or cytokine 

exposure shifts endothelium toward a procoagulant phenotype, leading to release of 
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platelet activating factor, von Willebrand factor, and tissue factor which promote platelet 

adhesion and thrombus formation (35-37). 

1.2.3 Endothelial alterations in diabetes 

Just as normal endothelial cell function is critical to healthy vascular regulation, 

diabetic endothelial cell dysfunction plays an important role in vascular dysregulation. 

Endothelial cells do not require insulin for glucose uptake and are therefore particularly 

susceptible to intracellular hyperglycemia in a high glucose environment. Endothelial 

cells appear to downregulate glucose transporters in hyperglycemia, but this reaction 

takes 24 to 48 hours to fully manifest, therefore endothelial cells are particularly 

susceptible to short term glucose loads (38). Each critical endothelial cell function 

discussed previously is altered in diabetics, and the combination likely leads to diabetic 

vascular morbidity and mortality. 

The endothelial cell permeability barrier is compromised in diabetes. In retinal 

microvasculature, fluid and proteins pass through capillary walls causing increased 

pressure (39). In glomerular capillaries, endothelial cell and basement membrane 

defects lead to filtration function loss, albuminuria, and eventual kidney failure (7). In 

macrovasculature, increased permeability sites due to flow abnormalities allow plasma 

protein and lipoprotein deposition in the vascular wall, and a similar mechanism is 

suspected in diabetes (40, 41 ). 

Angiogenesis is markedly disordered in diabetics. Endothelial cells have been 

reported to suffer from both reduced proliferation and increased apoptosis, yet 

angiogenesis can be magnified or diminished depending on vascular bed (42, 43). 

Renal filtration function loss in diabetic nephropathy follows glomerular capillary 

hypertrophy, and fragile new vessels formed by excessive angiogenesis create a unique 

retinopathy (44). In contrast, reduced angiogenesis in extremities contributes to poor 

wound healing (45). Vascular growth factors, including VEG F and FGF-2, have been 

implicated in these conditions but with no consensus as to their absolute role (45, 46). 

Glucose-induced alterations in endothelial cell vasomotor tone control vary with 

exposure time. Early in diabetes, blood flow preferentially increases to certain areas, in 

particular to kidneys resulting in damaging hyperfiltration. Early flow abnormalities are 
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thought to be related to glucose-induced alterations in polyol pathway, protein kinase C 

(PKC), VEGF, and NO (47-50). Later in diabetes, vasomotor tone balance tips in favor 

of vasoconstrictors (51). Hyperglycemia in particular leads to a reduced endothelial cell 

response to NO, decreased available NO, and increased endothelin-I (52, 53). This 

imbalance could contribute to diabetic vascular disease and mortality. 

Finally, in both inflammatory response as well as hemostasis, endothelial cells 

present a more adherent surface for leukocytes, platelets, and thrombi. Hyperglycemia 

induces abnormal leukocyte adhesion molecule expression, with increased selectins, 

ICAM, and VCAM, and spontaneous platelet aggregation due to tissue plasminogen 

activator also occurs (54, 55). Leukocyte and platelet adhesion could cause vessel 

occlusion, leading to downstream hypoxia, which could in turn trigger compensatory 

angiogenesis. 

While diabetes is a complex disease with many biochemical abnormalities, 

hyperglycemia in particular has been linked to the described endothelial cell 

dysfunctions. Three main mechanisms have been proposed for how hyperglycemia 

leads to diabetic complications: increased polyol pathway flux, increased advanced 

glycation end product (AGE) formation, and PKC activation (56). Only recently has a 

hypothesis been suggested that may unify these three mechanisms. 

The polyol pathway, which begins with the enzyme aldose reductase, rarely 

metabolizes glucose in normal conditions. However in hyperglycemia, as much as 33% 

of glucose is reduced through the polyol pathway. While the mechanism by which 

increased polyol flux leads to endothelial cell damage is unclear, aldose reductase 

inhibitor clinical trials have proven effective in decreasing diabetic neuropathy (57). 

Since animal trials showed no effect on retinopathy or capillary basement membrane 

thickening, results are inconsistent and suggest that the polyol pathway does not 

encompass the entire mechanism of hyperglycemia-induced cellular damage (58). 

In nonenzymatic glycosylation, also referred to as glycation, glucose chemically 

attaches to a protein amino group without aid of enzymes. While the process starts out 

as reversible, eventually protein and glucose rearrange to become irreversible 

advanced glycation end products (AGE). AGE form crosslin ks between collagen 

peptides, trapping plasma proteins such as low density lipoprotein and albumin in the 
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vessel wall and impairing proteolytic extracellular matrix digestion. For several cell 

types, including endothelial cells, AGE binds to a specific AGE receptor to induce 

cytokine and growth factor release, increase permeability, enhance proliferation, and 

increase extracellular matrix synthesis (59). 

AGE were originally thought to form through nonenzymatic extracellular reactions 

between proteins and glucose, but they now seem more likely to occur intracellularly 

because extracellular sugars such as glucose glycate proteins at a much slower rate 

than intracellular sugars such as fructose (60). AGE induce endothelial cell damage via 

alteration of both intracellular and extracellular matrix protein functions, and AGE bound 

to their endothelial cell receptors induce intracellular reactive oxygen species 

production. Increased AGE are found in diabetic retinal vessels and renal glomeruli, and 

AGE inhibitors block vascular hyperglycemic complications both in animal models and 

in humans (61,62). 

lntracellular hyperglycemia increases the lipid second messenger diacyl glycerol 

(DAG), which in turn activates many PKC family members (63). PKC activation 

mediates blood flow abnormalities, endothelial cell permeability, and altered matrix 

accumulation (48, 64, 65). Treatment of animals with a PKC inhibitor partially 

normalizes glomerular filtration rate, glomerular mesangial expansion, and urinary 

a1 bumin excretion (66). 

Although inhibition of each pathway blocks some diabetic complications, only 

recently has superoxide overproduction by the mitochondrial electron-transport chain 

been proposed as the common element (67). Hyperglycemia increases the inner 

mitochondria1 membrane proton gradient above a threshold value due to electron donor 

overproduction by the TCA cycle. This causes the lifetime of superoxide-generating 

electron-transport intermediates to be prolonged, consequently leading to a marked 

increase in endothelial cell superoxide production (68). Overexpression of manganese 

superoxide dismutase, the mitochondrial specific superoxide dismutase, not only 

abolished reactive oxygen species but also prevented increased polyol pathway flux, 

AGE formation, and PKC activation (67). While specific mitochondrial superoxide 

inhibition is challenging, a common hyperglycemic pathway opens new avenues for 

research and therapeutics. 
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1.2.4 Basement membrane composition and function 

The vascular basement membrane is a 40 to 120 nm thick protein network 

basolateral to endothelium (6). It is synthesized primarily by endothelial cells and 

contains type IV collagen, perlecan, laminin, and entactinlnidogen as its major 

components. The basement membrane has important structural and filtering roles, 

along with determining cell polarity, influencing cell metabolism, organizing adjacent 

plasma membrane proteins, promoting cell survival, proliferation, or differentiation, and 

serving as the highway for cell migration. 

The basement membrane is formed by interconnected networks of type IV 

collagen and laminin (6). Type IV collagen, a triple stranded helix more flexible than 

fibrillar collagen, interacts with its own uncleaved terminal domains to assemble 

extracellularly. Laminin, a large three chain glycoprotein shaped like an asymmetric 

cross held together by disulfide bonds, self-assembles into a sheet via interactions 

between neighboring laminin arms. Nidogen and perlecan bind to both type IV collagen 

and laminin and are thought to hold the two sheets together. 

Perlecan is a large basement membrane heparan sulfate proteoglycan formed of 

glycosaminoglycans (GAGs) covalently linked to a core protein (6). GAGs are repeating 

disaccharide chains, most of which have sulfate or carboxyl groups. For this reason, 

GAGs are highly negatively charged, strongly hydrophilic, and can take up a large 

volume for a relatively small mass. Proteoglycans, in addition to being critical for 

compressive force resistance in tissue such as cartilage, provide important filtration and 

binding functions in vascular basement membrane. 

Historically, vascular basement membrane was viewed purely from a structural 

perspective as a platform on which endothelial cells function. More recently, it has 

become clear that basement membrane supports a plethora of biochemical activities. 

Endothelial cells interact with basement membrane through integrins, transmembrane 

proteins composed of two noncovalently associated glycoprotein subunits. lntegrins 

connect intracellularly to actin filaments and extracellularly to basement membrane, 

coupling cell to matrix for both structural support and signaling capabilities. lntegrins 

demonstrate low affinity binding to basement membrane proteins, allowing cells to 
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migrate and proliferate rather than become permanently glued to a surface. Many cell 

types, including endothelial cells, are anchorage dependent and require integrin 

attachment to basement membrane for growth, survival, and proliferation (69, 70). 

In addition to mechanically and biochemically supporting cells through integrins, 

basement membrane is a reservoir for local vasoactive factor delivery. Proteoglycans 

bind cytokines and growth factors, potentially restricting their range of action, 

temporarily blocking their activity, providing a storage reservoir, and protecting proteins 

from degradation. VEGF, FGF-2, interleukins, and interferon-y all bind to and are 

released from basement membrane, which extends their lifetime and efficacy in the 

vasculature (71-74). Even in degradation, basement membrane produces protein 

fragments that promote or inhibit angiogenesis (75, 76). 

1.2.5 Basement membrane alterations in diabetes 

Alterations in vascular basement membrane may help unify the diabetic vascular 

disease spectrum. Throughout varied vascular beds, from kidney to eye to aorta, 

basement membrane becomes consistently thicker over the course of months to years 

(44). Increased membrane size results from a combination of increased synthesis and 

decreased degradation (77-80). The relative quantity of major protein components also 

changes, with increases in type IV collagen and fibronectin and decreases in laminin 

and heparan sulfate proteoglycans (44, 80-82). While no single biochemical diabetic 

alteration has been identified as the cause of these changes, hyperglycemia has been 

implicated (83, 84). In vitro, high glucose increases basement membrane protein 

production and leads to glycation of these proteins, altering both matrix-matrix and 

matrix-cell interactions (85-87). 

Glucose-induced changes in basement membrane present an interesting 

hypothesis for the cause of hyperglycemic memory. In animal models, restoration of 

euglycemia after a hyperglycemic period does not reverse or even prevent diabetic 

vascular complication progression, in particular retinopathy (88, 89). Instead, disease 

progression appears to depend on the hyperglycemic period length (88, 90). This 

phenomenon has similarly been observed in human trials. In multiple cohorts that 

received either intensive therapy or normal therapy and then were followed for up to 
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eight years after returning to the same therapy (with statistically similar blood glucose 

levels), both retinopathy and nephropathy rates were consistently significantly lower in 

the intensive therapy group (91, 92). Furthermore, a transient worsening of retinopathy 

with intensive glucose therapy was observed (1 1). While other mechanisms, such as 

AGE and mitochondria1 DNA mutations due to superoxide, have been suggested, it is 

equally possible that basement membrane changes would persist long after euglycemia 

is reinstated (56, 59, 93). 

1.3 Fibroblast Growth Factor-2 

1.3.1 Biological significance 

Fibroblast growth factor-2 (FGF-2) is an extensively studied member of a large 

heparin binding protein family. FGF9 is a pleiotropic factor which affects multiple cell 

types and induces a multiplicity of differential gene expression. In endothelial cells in 

particular, FGF-2 influences cell proliferation, survival, migration, and differentiation. 

FGF-2, which is highly conserved among species, was originally isolated from 

the pituitary and is translated as a 155 amino acid protein (94). Longer and shorter 

FGF-2 versions are formed in different tissues by means of alternative translation and 

proteolytic degradation respectively (95, 96). The three dimensional FGF-2 structure 

consists of 12 antiparallel P-strands, six in a P-barrel closed at one end by remaining P- 
strands. The barrel core includes hydrophobic amino acid side chains, and the barrel 

surface has charged amino acids (97). 

Scientists agree that FGF-2 is released from endothelial cells, stored in 

basement membrane or extracellular matrix, and then released from basement 

membrane to bind to endothelial cell receptors. Upon binding, FGF-2 is re-internalized 

by the cell and finally delivered to the nucleus (97, 98). Initiation of this process is a 

mystery, as FGF-2 has no signal sequence for secretion yet appears in abundance both 

inside and outside cells. It is known that FGF-2 does not progress through the 

endoplasmic reticulum, Golgi apparatus, and on through the plasma membrane through 

the normal secretory pathway (99). It has been proposed, therefore, that FGF-2 is 
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released either through an alternative secretory pathway or during cell damage and 

non-lethal plasma membrane disruptions (1 00, 101 ). 

FGF-2 interaction with heparin, and in particular with heparan sulfate 

proteoglycans, plays a critical role in FGF-2 biology. FGF-2 binds heparan sulfate 

proteoglycans both in basement membrane and on the cell surface which allows growth 

factor storage and mediates binding to cell surface receptors. FGF-2 bound to heparin 

or heparan sulfate is also resistant to denaturation by acid or heat, attack by proteases 

such as thrombin or trypsin, as well as nonenzymatic glycation by high intracellular 

glucose (1 02, 103). 

The pleiotropic nature of FGF-2 makes it important in diverse organ and 

biological processes, from the more obvious blood vessel genesis to more subtle 

neuronal development in brain and spermatogenesis in the reproductive system (97). In 

vasculature in particular, FGF-2 is critical to both angiogenesis and smooth muscle cell 

growth (104, 105). In vivo, FGF-2 administration has been demonstrated to initiate 

angiogenesis in the chick embryo, avascular mouse cornea, and subcutaneous Matrigel 

(1 06- 1 08). 

FGF-2 has varied effects on endothelial cells in particular, most of which relate to 

angiogenesis or vascular wound healing. When FGF-2 binds to its receptor, receptor 

autophosphorylation is followed by recruitment of adaptor molecules Shc, FRS2, and 

Crk which lead to MAP-kinase signaling pathway activation and proliferation (1 09). PKC 

is also needed for a full mitogenic response (1 10). Via the same MAP-kinase and PKC- 

dependent pathway, FGF-2 stimulates chemotaxis and migration of endothelial cells 

(1 1 1-1 13). In order for cells to proliferate and move, FGF-2 must alter cell to cell binding 

via cadherins and cell to matrix binding via integrins (1 14, 115). FGF-2 regulation of 

matrix - endothelial cell interaction is complex, as FGF-2 both promotes matrix 

destruction to initiate angiogenesis and later promotes matrix rebuilding to strengthen 

the new vessel (1 16). Finally, FGF-2 alters endothelial cell morphology and phenotype 

from a quiescent to an angiogenic state. 

1.3.2 Binding and signaling 
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FGF-2 binds heparan sulfate proteoglycans both in basement membrane and on 

the cell surface, as well as specific cell surface FGF receptors. The basement 

membrane serves as an FGF-2 reservoir, storing FGF-2 released from endothelial cells, 

protecting it from degradation by coupling it to heparan sulfate proteoglycans, and then 

releasing it later for use by endothelial cells (72, 1 17). FGF-2 is released from storage in 

basement membrane by heparin, thrombin, and several other mechanisms, which may 

be natural pathways for FGF-2 to manifest its paracrine activity (71, 11 8). 

FGF-2 cell surface binding sites include high affinity FGF receptors and low 

affinity heparan sulfate proteoglycans. The latter are in far greater abundance than the 

former, and together they create a complex means of local retention and release (1 19). 

There are four FGF receptor (FGFR) types, which increase in expression with an FGF-2 

stimulus, but endothelial cells primarily express FGFRI (120, 121). All FGF receptors 

have an N-terminal extracellular region with immunoglobulin-like domains, a single 

transmembrane domain, and an intracellular tyrosine kinase domain. Heparan sulfate 

proteoglycans, which bind both FGF-2 and FGF receptors, are required for maximal 

binding and internalization but receptors can still internalize FGF-2 without them (1 22). 

When FGF-2 binds cell surface receptors and heparan sulfate proteoglycans, a 

receptor dimer is formed. lntracellular receptor tyrosine kinases are activated, resulting 

in tyrosine residue phosphorylation on receptors. These then serve as docking sites for 

adaptor proteins or signaling enzymes. In particular, FRS2 phosphorylation allows a 

signaling complex of Shp2, Grb2, and GAB1 to form. The FRS2 complex recruits 

guanidine nucleotide exchange factor SOS via Grb2, which in turn causes MAP-kinase 

pathway activation (1 23). MAP-kinase activation could take the form of Erk leading to 

proliferation or p38IJNK leading to an inflammatory or stress response (124). While 

p381JNK activation is generally considered pro-apoptotic, this depends highly on cell 

type. Alternatively, FRS2 through GAB I can activate Akt, providing an anti-apoptotic 

signal (1 25). Finally, receptor tyrosine residue phosphorylation can induce PLCy to form 

DAG, activating PKC and calcium/calmodulin dependent protein kinases (125). FGF-2 

can also translocate to the cell nucleus where it appears to initiate DNA synthesis and 

proliferation. 
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The differential intracellular response to a homogeneous extracellular FGF-2 

signal may be mediated by binding modalities. While FGF-2 can be internalized on its 

receptor or heparan sulfate proteoglycan, it only stimulates DNA synthesis and 

proliferation when internalized with the FGF receptor (1 26). Alternatively, different 

receptor subtypes may result in variable downstream signaling. The presence or 

absence of intracellular secondary molecules could enhance or inactivate certain 

pathways, as could signaling molecule abundance. Finally, response of a particular cell 

to FGF-2 stimulation could be regulated at the transcriptional level. 

1.3.3 Implications in diabetes 

Both FGF-2 and VEGF have been implicated in dysregulated angiogenesis in 

diabetes, but with no consensus as to their absolute role. VEGF, which is upregulated in 

hypoxia, has been reported at abnormal levels in aberrant diabetic angiogenesis (45). 

Patients with proliferative diabetic retinopathy have elevated vitreous VEGF, whereas 

ocular VEGF is normal in controls and diabetic patients without retinopathy (46, 127). 

Renal VEGF and VEGF receptor are increased in rat diabetic models (128, 129). A 

VEGF antibody decreased hyperfiltration, albuminuria, and glomerular hypertrophy in 

streptozotocin-induced diabetic rats (130). Alternatively, decreased VEGF has been 

reported in both human and animal wounding models (131-133). 

Data for FGF-2 are similar to VEGF but not as extensive. Patients with diabetic 

retinopathy have elevated FGF-2, and in type 2 diabetics, high plasma FGF-2 correlated 

with poor glycemic control, diabetic retinopathy, and albuminuria (134, 135). In contrast, 

gastric wounds in diabetic rats showed impaired healing which was ameliorated by 

exogenous FGF-2 addition (136). As FGF-2 binds to basement membrane and is stored 

there for long time periods, FGF-2 is potentially related to the diabetic memory effect. 

1.4 Central Hypothesis 

Questions abound regarding the vascular effects of diabetes. How can diabetes 

lead to vastly different vascular dysfunction across vascular beds? Why do effects from 

hyperglycemia persist long after euglycemia is restored? What role do growth factors 
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play in disordered ang iogenesis? This thesis leverages loss of vascular homeostasis in 

diabetes to study the co-regulatory system of endothelial cells, basement membrane, 

and FGF-2. By perturbing the system with an environmental stress, we can uncover 

fundamental properties which govern complex interactions in the vessel wall. 

This thesis investigates how external stress modulates vasoactive compound 

kinetics within the endothelial cell - basement membrane co-regulatory unit. We 

hypothesize that a physiologic glucose range mediates altered storage, release, and 

function of FGF-2 through changes in endothelial cell - basement membrane 

interaction. Understanding FGF-2 regulation by cells above and basement membrane 

below may shed additional light on diabetic vascular disease. 

1.5 Thesis Organization 

In support of these concepts, this thesis consists of a series of studies which 

attempt to elucidate the role of FGF-2 in glucose-induced vascular dysfunction, in 

particular as FGF-2 is cooperatively stored, released, and metabolized by endothelial 

cells and basement membrane. The specific aims of this work are: 

Chapter 2: Develop novel methods to examine FGF-2 binding kinetics 

with isolated basement membrane in vitro. 

Chapter 3: Investigate the glucose effect on basement membrane FGF-2 

storage and binding kinetics (capacity, association, and dissociation). 

Chapter 4: Define the role of endothelial cells (FGF-2 release, apoptosis, 

and permeability) in controlling FGF-2 basement membrane storage with 

glucose. 

Chapter 5: Examine how FGF-2 released from basement membrane 

affects endothelial cell proliferation and survival with glucose. 

This thesis provides both an improved understanding of unregulated vascular 

remodeling in diabetes and a clearer picture of interaction between endothelial cells and 

basement membrane in vascular homeostasis. These systematic studies lead towards a 

quantitative model of the endothelial cell-basement membrane co-regulatory unit, which 

in turn will help us develop novel biomaterials and basement membrane therapies. 
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CHAPTER 2 

MEASURING GROWTH FACTORS IN THE BASEMENT MEMBRANE 

Abstract 
Investigation of the endothelial cell - basement membrane unit begins 

with development of an interaction model. Porcine aortic endothelial cells were 

selected for the in vitro hyperglycemic model because they retain their phenotype 

in culture up to 30 mM glucose and produce a basement membrane that remains 

adherent to tissue culture plates. While binding kinetics protocols designed for 

endothelial cells were robust when applied to basement membrane, results were 

confounded by FGF9 binding to tissue culture polystyrene in a manner strikingly 

similar to basement membrane. A technique was developed to account for 

polystyrene FGF-2 binding by subtracting FGF9 bound to exposed polystyrene 

from basement membrane experiments, and the method was validated using 

bacteriologic plates. The validated in vitro hyperglycemic cell culture model 

created in this chapter provides the basis for the remainder of the thesis. 
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2.1 Introduction 

Endothelial cells, due to their unique role in controlling vascular homeostasis, 

have been implicated in diabetic vascular complications. For this reason, endothelial cell 

reaction to high glucose has been extensively studied (40-43, 45, 56). However, in vitro 

hyperglycemic cell culture systems use a wide range of glucose levels, include or omit 

insulin, and evaluate a variety of effects in and on endothelial cells from different 

species and vascular beds. This diversity highlights the importance of carefully 

constructing a hyperglycemic culture model appropriate for a given cell type so glucose 

effects can be studied while maintaining otherwise healthy cells. 

Beyond hyperglycemic endothelial cell culture itself, the cell culture model must 

produce a basement membrane that remains attached to tissue culture plates when 

endothelial cells are removed. Similar to endothelial cell culture in high glucose, 

endothelial cell basement membrane has been isolated using a variety of cell lysis 

techniques on a range of endothelial cell types (1 37, 138). As corneal and porcine aortic 

endothelial cells are reported to produce the highest quality basement membrane in 

culture, we selected porcine aortic cells as the basis of our cell culture model. We tested 

different published and novel cell removal methods to isolate a basement membrane 

closest to that on which endothelial cells naturally reside. 

Vlodavsky et al. first showed that endothelial cell basement membrane is a 

potential storage site for growth factors (72). Specifically, basement membrane heparan 

sulfate proteoglycans bind and release fibroblast growth factor-2 (FGF-2) produced by 

endothelial cells. While previous studies on basement membrane and growth factors 

examined binding sites, release mechanisms, and transport through tissues, none 

examined the unique growth factor binding kinetics to basement membrane binding 

sites (71, 118, 139). We now demonstrate new methods for measuring basement 

membrane FGF-2 binding kinetics, based on proven techniques used to study 

endothelial cell FGF-2 binding kinetics. 

This chapter details logistics of establishing a new cell culture model, validates a 

method for isolating basement membrane from that model, and identifies techniques 
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and challenges involved in studying basement membrane FGF-2 binding kinetics in 

vitro. These initial experiments lay the groundwork for the remainder of the thesis. 

2.2 Materials and Methods 

2.2.1 Cell isolation and culture 

Porcine aortic endothelial cells (PAEC) were isolated from porcine aortae by the 

collagenase dispersion method and maintained in Dulbecco's modified Eagle's medium 

(DMEM) supplemented with 5% fetal bovine serum (FBS), 1% penicillin-streptomycin, 

and 2% glutamine (140). All cell culture reagents, unless otherwise specified, were from 

Gibco. Culture media was changed every 48 hours, and cells were used between 

passages four and nine. High glucose media was produced by adding D-glucose to 

supplemented low glucose DMEM (5 mM, 90 mgIdL) to a final 30 mM concentration 

(530 mg1dL). For osmotic controls, mannitol or L-glucose was added to base media to 

achieve a 30 mM osmolar solution. To culture cells for basement membrane, PAEC 

were seeded near confluence and grown for four days in multiwell tissue culture 

polystyrene plates (6, 12, 24, or 96 well; Corning). 4% wlv 40 kDa dextran (Sigma) was 

added to media for the last two days to increase cellular basement membrane 

production (1 41 ). 

2.2.2 Fluorescent microscopy 

PAEC cultured on cover slips were washed with PBS and fixed in 4% wlv 

paraformaldehyde (pH 7.4; Sigma). Fixed cells were then thoroughly washed in PBS to 

remove residual paraformaldehyde, after which cells were incubated with a primary 

antibody to platelet endothelial cell adhesion molecule (Pecam) (1:100, MCA1746, 

Serotec) for 60 minutes at room temperature. After three phosphate buffered saline 

(PBS) washes, fixed cells were incubated with Alexa Fluor 488 goat anti-mouse 

secondary antibody (1 : 100, A1 101 7, Molecular Probes) with Hoescht nuclear stain 

(1:1000) for 60 minutes at room temperature. Dil-Ac-LDL, acetylated low density 

lipoprotein labeled with I ,I '-dioctadecyl - 3,3,3',3'-tetramethyl-indocarbocyanine 

perchlorate, was used to phenotypically label endothelial cells. Lysosomal enzymes 
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found specifically in vascular endothelial cells degrade Dil-Ac-LDL, and the Dil 

fluorescent probe accumulates in intracellular membranes, whereas other vascular cells 

(fibroblasts, smooth muscle, pericytes, epithelial cells) are not labeled (142). Dil-Ac-LDL 

(10 pglml; Biomedical Technologies) was added to PAEC in culture for four hours, after 

which cells were fixed as described previously. Cover slips were mounted onto 

microscope slides with 1 : 1 glycerol-PBS and stored at 4 OC. 

2.2.3 Cell removal methods 

After four days in culture, PAEC were removed by four different methods to 

determine which best produced an intact basement membrane free from cellular debris. 

The first two methods used a combination of detergent Triton X-100 and base 

ammonium hydroxide (NH40H) to lyse cells and remove them from basement 

membrane (143). The second method additionally included Complete Protease Inhibitor 

(Roche) and DNAse (Invitrogen) to ensure that basement membrane proteins were not 

degraded in the lysis process and that any remaining DNA was removed from basement 

membrane. The third tested method used 4% sodium deoxycholate as an alternative 

detergent treatment. The last method tested whether cell lysis with water alone was 

adequate to isolate basement membrane. Isolated basement membrane was stored at 

4 OC in sterile PBS for up to one week. 

2.2.4 Sample preparation for scanning electron microscopy 

PAEC were cultured on glass cover slips (WVR) as described previously in 

preparation for scanning electron microscopy (SEM). After basement membrane 

isolation, samples were dehydrated in solutions of 70%, 80%, 90%, and three times 

100% ethanol for 10 to 30 minutes each. Samples were then transferred to 50% ethanol 

- 50% hexamethyldisilazane (HMDS, Sigma) for thirty minutes, followed by two times 

100% HMDS. HMDS was evaporated overnight in a fume hood, and basement 

membrane samples were stored in a desiccator for a minimum of three days to ensure 

complete dehydration. HMDS, with its low surface tension and protein cross-lin king 

properties, is as effective at preserving biological SEM sample structure as critical point 

drying with no required equipment and lower time and cost (144, 145). After drying, 
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samples were mounted on stubs and coated with 20 nm gold to allow electron 

conduction during imaging. Samples were examined with a JEOL 5910 SEM. 

2.2.5 Basement membrane extraction and measurement 

After thorough PBS washing of each sample, basement membrane FGF-2 was 

extracted using a salt buffer (2 M NaCI, 20 mM Hepes, pH 7.4) for 10 minutes with 

gentle shaking (146). This incubation was deemed sufficient after subsequent 

extractions failed to produce additional FGF-2. Basement membrane FGF-2 was 

quantified using an FGF ELlSA (R&D Systems). Extraction buffer alone did not alter 

FGF ELSA accuracy. Since each ELSA varied slightly, and FGF-2 degraded quickly in 

salt buffer, FGF-2 for each experiment was quantified immediately using a single ELlSA 

whenever possible. 

2.2.6 FGF-2 binding kinetics 

FGF-2 basement membrane binding kinetics were evaluated using a modification 

of the method of Nugent and Edelman for FGF-2 binding kinetics to endothelial cells 

(1 19). To determine FGF-2 equilibrium binding capacity, recombinant human FGF-2 

(Peprotech) in binding buffer (25 mM Hepes, 0.05% wlv gelatin, pH 7.4; Sigma) was 

added to isolated basement membrane at concentrations from 0 to 1 pglml. Equilibrium, 

defined as time at which association and dissociation occur at equal rates resulting in 

no change in FGF-2 bound to basement membrane, occurred approximately three 

hours after growth factor addition. The FGF-2 solution was aspirated, basement 

membrane washed quickly in binding buffer to remove unbound FGF-2, and bound 

FGF-2 extracted as previously described. Basement membrane FGF-2 association was 

measured by adding 5 nglml FGF-2 in binding buffer to isolated basement membrane 

for 0 to 360 minutes. This concentration (5 nglml) is well within the linear binding range 

and results in physiologically relevant bound FGF-2 levels. After the incubation period, 

FGF-2 was aspirated, basement membrane washed quickly in binding buffer, and 

bound FGF-2 extracted as described above. 

FGF-2 basement membrane dissociation kinetics were determined by incubating 

isolated basement membrane with 5 nglml 1 2 5 1 - ~ ~ ~ - 2  (Perkin Elmer) in binding buffer to 
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equilibrium (3 hours). The 1 2 5 1 - ~ ~ ~ - 2  solution was removed, followed by three quick 

washes in binding buffer. Binding buffer containing unlabeled FGF-2 (1 pglml) was 

added to each well for 0 to 360 minutes. Unlabeled FGF-2 was included in dissociation 

buffer to decrease rebinding of released 1 2 5 1 - ~ ~ ~ - 2  to basement membrane. After the 

dissociation period, dissociation buffer was removed and basement membrane bound 

1 2 5 ~ - ~ ~  F-2 was extracted. 1 2 5 1 - ~ ~ ~ - 2  in dissociation buffer and salt extraction buffer was 

quantified in a gamma counter (Packard). 

2.2.7 Statistics 

All statistical analyses were performed with Prism software (Graphpad). Data 

were normally distributed and expressed as mean k standard deviation. Comparisons 

between two groups were analyzed by Student's t test, and comparisons between more 

than two groups were analyzed by ANOVA. A value of p < 0.05 was considered 

statistically significant and is indicated in the text as such or in figures with a pound sign 

(#). A value of p < .O1 is indicated with an asterisk (*). If no statistical significance is 

reported, none was observed. 
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2.3 Results 

Hyperglycemic cell culture model 

PAEC maintained uniform Dil-Ac-LDL 

labeling at all glucose levels, indicating retention of 

their unique phenotype throughout various glucose 

conditions (FIGURE 2.1 ). PAEC proliferation was 

consistent from 5 to 30 mM glucose media at day 

3, but as cells approached confluence, cell number 

decreased with increasing culture glucose (23% 

less in 17.5 mM $lucose, 35% less in 30 mM 

glucose as compared to 5 mM glucose) (FIGURE 

2.2). When cells were visualized using Pecam 

labeling to outline cell borders, high glucose PAEC 

had larger intracellular area at confluence (3260 k 

153 to 5033 A 310 p,m2, p < ,0001; FIGURE 2.3, 

FIGURE 2.4). High glucose cells were faster to 

differentiate and begin to form vessels than low 

glucose cells once confluence was achieved. 

$ a M  -. glucose 

30 mM alucose 

FIGURE 2.1 : ENDOTHELIAL CELLS 
MAINTAIN PHENOTYPE IN HIGH GLUCOSE 
CULTURE. Porcine aortic endothelial 
cells were incubated with dil-Ac-LDLfor 
4 hours. Endothelial cells are unique in 
their ability to degrade dil-Ac-LDL to 
release the Dil fluorescent probe (red). 
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FIGURE 2.2: ENDOTHELIAL CELLS PROLIFERATE AT SIMILAR RATES IN LOW AND 
HIGH GLUCOSE. Porcine aortic endothelial cells cultured in 5, 17.5, or 30 mM 
glucose growth medium show similar proliferation rates, but cell number at 
confluence decreases with increasing glucose concentration. (#) p < .05 
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r i FIGURE 2.3: ENDOTHELIAL CELL INTRACELLULAR AREA 
INCREASES WlTH GLUCOSE CONCENTRATION. After 
four days in culture, porcine aortic endothelial cells 
were labeled with Pecam (green) to outline cell 
borders and Hoescht nuclear stain (blue). Intra- and 
intercellular area increase with culture glucose 
concentration. 
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FIGURE 2.4: CELL SEE HISTOGRAM SHOWS INCREASED INTRACELLULAR AREA 
WlTH GLUCOSE CONCENTRATION. Cell size was quantified from PECAM 
images (Figure 2.3) by tracing cell borders in Adobe Photoshop and 
measuring intracellular area. 
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Basement membrane isolation 

Four endothelial cell removal methods were tested to determine which method 

best produced an intact basement membrane devoid of cellular debris. When examined 

by scanning electron microscopy, basement membrane resulting from three detergent 

lysis buffers similarly showed a dense protein network with little to no cellular debris 

(FIGURE 2.5). There was no significant qualitative difference among the three methods 

based on SEM micrographs alone. However, when cells were lysed with water, no 

fibrillar protein mesh was observed on the cover slip. Additional functional tests showed 

no significant differences in native FGF-2 or endothelial cell ability to re-seed and 

Triton in NH,OH 

Triton in NH,OH with 
protease inhibitor 
and DNAse 

Sodium deoxycholate 

Water 

5 mM Glucose 30 mM Glucose 

I 

FIGURE 2.5: TRITON-NHsOH LYSlS BUFFER PRODUCES AN INTACT BASEMENT MEMBRANE. Scanning 
electron micrographs show isolated basement membrane after porcine aortic endothelial cells (four 
days in culture) were lysed and removed using different buffers. 
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proliferate on basement membrane isolated by different methods. 

2.3.3 Basement membrane FGF-2 binding kinetics 

The methodology for measuring endothelial cell FGF-2 binding kinetics was 

modified to allow measurement of basement membrane FGF-2 equilibrium capacity, 

association, and dissociation. However, in each case, basement membrane FGF-2 

binding kinetics were confounded by FGF-2 binding to tissue culture polystyrene 

underneath basement membrane. 

Basement membrane equilibrium FGF-2 binding capacity increased linearly over 

a large FGF-2 range, from 0 to 2500 nglml, and reached a maximum at around 5000 

nglml (FIGURE 2.6). Similarly, FGF-2 bound to tissue culture polystyrene at equilibrium 

increased linearly with added FGF-2 over the same range and reached equilibrium at 

around the same point, albeit at a slightly lower value. On average, FGF-2 bound to 

basement membrane on tissue culture polystyrene was 25% higher than FGF-2 bound 

to the same area of tissue culture polystyrene alone. 

FGF-2 association to basement membrane and tissue culture polystyrene had 

similar equilibrium dissociation constants (3.07 x lo-" M vs. 3.08 x 1 0-l1 M, TABLE 2.1 ), 

both increasing rapidly to equilibrium at approximately 60 minutes (FIGURE 2.7). FGF-2 

bound to basement membrane on tissue culture polystyrene at equilibrium was about 

15% higher than that bound to the same area of tissue culture polystyrene alone (p < 

.0 1 ). While less FGF-2 associated with polystyrene, more FGF-2 dissociated from 

polystyrene as opposed to basement membrane (FIGURE 2.8). FGF-2 rapidly 

dissociated from basement membrane and polystyrene up to - 60 minutes, but rather 

than reach equilibrium, FGF-2 continued to dissociate at a slow rate for up to six hours. 

FGF-2 dissociated from basement membrane was - 50% of that dissociated from 

polystyrene. 
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FIGURE 2.6: BASEMENT MEMBRANE FGF-2 BINDING CAPACITY IS HIGHER THAN TISSUE CULTURE 
POLYSTYRENE. FGF-2 was added to tissue culture polystyrene with or without basement 
membrane for three hours in binding buffer, after which the FGF-2 solution was removed. Bound 
FGF-2 was extracted with 2M NaCl and quantified via FGF ELISA. (p < .05) 
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FIGURE 2.7: FGF-2 ASSOCIATION TO BASEMENT MEMBRANE IS GREATER THAN TO TISSUE CULTURE 
POLYSTYRENE. 5 nglml FGF-2 was added to tissue culture polystyrene with or without basement 
membrane in binding buffer for various time points. The FGF-2 solution was removed after which 
bound FGF-2 was extracted with 2M NaCl and quantified via FGF ELISA. (p < .01). 

Basement membrane 
TC polystyrene 
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While similarities in binding kinetics between basement membrane and tissue 

culture polystyrene were interesting, we wanted to study basement membrane FGF-2 

binding alone. Therefore we attempted to block FGF-2 binding to polystyrene, as well as 

modify extraction timing to decrease FGF-2 component from polystyrene. However, we 

were unable to block FGF-2 binding using media proteins or gelatin or by trying to 

remove binding sites using a detergent or heparinase polystyrene pre-treatment (FIGURE 

2.9). Decreased extraction time also did not alter extracted FGF9 from polystyrene 

instead of basement membrane. 

0 60 120 180 240 300 360 

Time (min) 

FIGURE 2.8: FGF-2 DISSOCIATION FROM BASEMENT MEMBRANE IS LESS THAN THAT FROM TISSUE 
CULTURE POLYSTYRENE. 5 nglml ' 2 5 1 - ~ ~ ~ - 2  was added to tissue culture pol st rene with or without Y basement membrane for 3 hours in binding buffer, after which the ' '1-FGF-2 solution was 
removed. Fresh binding buffer was added for various time periods, and dissociated '"I-FGF-2 
was quantified in a gamma counter. (p < .01) 

k- 

- -- --- 

TABLE 2.1: EQUILIBRIUM DISSOCIATION CONSTANTS ARE SIMILAR FOR BASEMENT MEMBRANE AND TISSUE 
CULTURE POLYSTYRENE. On and off rate constants (k,, and kOR) were calculated from association and 
dissociation experiments, and then used to calculate the equilibrium dissociation constant (Kd). 
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FIGURE 2.9: FGF-2 BINDING TO POLYSTYRENE COULD NOT BE BLOCKED. Tissue culture polystyrene 
was incubated in media or media followed by Triton X-100 for three hours, but there was no 
significant difference in FGF-2 that could be extracted from the polystyrene plate. 

2.3.4 Correction for substrate binding 

Since FGF-2 tissue culture polystyrene binding could not be blocked, we created 

a model to account for it in basement membrane FGF-2 binding kinetics calculations. 

First we converted SEM basement membrane images to black and white to roughly 

calculate (Adobe Photoshop) tissue 

culture polystyrene area exposed 

underneath basement membrane 

proteins (FIGURE 2.10). On average, 

30% of polystyrene area on the bottom 

of the tissue culture well was not 

covered by basement membrane. We 

then used this figure, in addition to 

calculating exposed polystyrene on the 

side of the well, to subtract FGF-2 

bound to exposed polystyrene. 

FIGURE 2.10: BLACK AND WHITE SCANNING ELECTRON 
MICROGRAPH OF BASEMENT MEMBRANE. The 
percentage black space was used to calculate 
exposed polystyrene in Adobe Photoshop after 
image conversion to black and white. 
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For example, at a radius of 0.32 cm, 96 well plates have an area of 0.32 cmz. 

The FGF-2 volume added was V ~ l ~ m e ~ ~ ~ - ~  = .lml = .lcm3. This FGF-2 volume contacted 

not only the bottom but also the sides of the well, therefore the area of the sides of the 

well exposed to FGF-2 was: 

VozumeFGF-2 
Area,, = height ,,, -, x circumferencewell = x circumferencewell = .626cm2 

The total contact area between added FGF-2 solution and tissue culture 

polystyrene without basement membrane was: 
2 

Areacontact-BM = Area + Areaside = .946cm 

The total contact area between added FGF-2 solution and tissue culture 

polystyrene with attached basement membrane was: 
2 = .33 x Area + Area,, = .73 3cm 

Then corrected FGF-2 basement membrane binding capacity was determined by 

measuring FGF-2 bound to basement membrane on polystyrene (FGF2BM+TCPS) and 

FGF-2 bound to polystyrene alone (FGF2Tcps). FGF-2 bound to polystyrene when 

basement membrane was present was calculated using the ratio of polystyrene areas 

with and without basement membrane. This was then subtracted from measured FGF-2 

binding to basement membrane on polystyrene and divided by area only of the bottom 

of the well: 

This methodology was validated by growing basement membrane on 

bacteriologic plates, which hardly bind FGF-2 at all. When the correction methodology 

was used, calculated FGF-2 bound to basement membrane on tissue culture 

polystyrene was very close to the amount bound to basement membrane on 

bacteriologic plates (FIGURE 2.1 1 ). 

The same method was applied to correct basement membrane FGF-2 

equilibrium capacity, association, and dissociation data for polystyrene. In each case, 

the correction lowered absolute bound FGF-2 values but did not change the shape of 
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the curves, indicating that relationships for FGF-2 basement membrane binding kinetics 

were correct despite additional FGF-2 binding to polystyrene (FIGURE 2.12, FIGURE 

2.13). 

The importance of correction is evident in basement membrane FGF-2 binding 

with glucose in binding buffer (FIGURE 2.14). Without the correction, high binding buffer 

glucose appeared to decrease FGF-2 binding to basement membrane. However, high 

binding buffer glucose actually decreased FGF-2 binding to tissue culture polystyrene 

(FIGURE 2.15), and when FGF-2 binding to polystyrene was subtracted from FGF-2 

bound to basement membrane, the glucose effect disappeared. 
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FIGURE 2.1 1 : CORRECTED FGF-2 ASSOCIATION TO BASEMENT MEMBRANE ON POLYSTYRENE IS SIMILAR 
TO BACTERIOLOGIC PLATES. FGF-2 association with time was measured on bacteriologic plates 
and tissue culture polystyrene plates with basement membrane. The tissue culture polystyrene 
results were then corrected using the methodology presented above (p > .05) 
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FIGURE 2.13: CORRECTED BASEMENT MEMBRANE ASSOCIATION IS LOWER THAN UNCORRECTED 
VALUES. Basement membrane association follows the same time course but reaches equilibrium 
at a lower value after the correction is applied (p < .01). 
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FIGURE 2.12: CORRECTED BASEMENT MEMBRANE FGF-2 CAPACITY IS LOWER THAN UNCORRECTED 
VALUES. Correction for FGF-2 binding to tissue culture polystyrene decreases measured 
basement membrane FGF-2 binding capacity. (p < -01 ) 
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FIGURE 2.14: DECREASED BASEMENT MEMBRANE ASSOCIATION WlTH GLUCOSE IS DUE TO TISSUE 
CULTURE POLYSTYRENE. When basement membrane association with glucose (p < .01) is 
corrected, the glucose effect is no longer significant (p > .05). 
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FIGURE 2.15: ASSOCIATION TO TISSUE CULTURE POLYSTYRENE IS LOWER WlTH GLUCOSE. 5 ng/ml 
FGF-2 was added to tissue culture polystyrene in 0 or 100 mM glucose binding buffer, and bound 
FGF-2 with time was measured as described previously. (p < .05). 
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FGF-2 binding and release from polystyrene also made it similar to basement 

membrane in its ability to support endothelial cell proliferation. By incubating 

polystyrene with FGF-2 prior to seeding PAEC, we increased cellular proliferation to be 

nearly equivalent to basement membrane (FIGURE 2.1 6). 
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FIGURE 2.1 6: ENDOTHELIAL CELL GROWTH INCREASES ON BASEMENT MEMBRANE OR TISSUE CULTURE 
POLYSTYRENE WITH ADDED FGF-2. Tissue culture polystyrene with or without basement membrane 
was incubated with 100 nglml FGF-2 for one hour prior to cell seeding. Endothelial cell number 
was measured by trypsinizing cells and counting with a Coulter counter (p < .01). 
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Discussion 

Study of endothelial cells and basement membrane in hyperglycemic conditions 

required method development both to culture cells in high glucose and isolate basement 

membrane. Existing methods for endothelial cell FGF-2 binding kinetics were also 

modified to account for unique basement membrane properties. 

Porcine aortic endothelial cells maintain both their phenotype and proliferative 

capacity in high glucose culture, metabolizing LDL and multiplying at a rate similar to 

low glucose cells. High glucose culture was maintained at 30 mM glucose for all 

experiments, but successful PAEC culture was achieved as high as 50 mM glucose 

without noticeable change in endothelial cell phenotype. 30 mM glucose was used as 

the high glucose point for the majority of experiments as it defines the high range of 

physiologic values; 50 mM glucose culture was only used to clarify linearity of critical 

effects. 

High glucose cells appear larger than low glucose cells by microscopy, and upon 

cell count, consistently show a lower cell number at confluence. This phenomena has 

been cited in the past and attributed to increased intracellular metabolism in high 

glucose, however we found that PAEC grown under osmotic controls such as mannitol 

similarly show decreased cell number at confluence. Therefore, we believe that the 

increase in cell size and decrease in cell number at confluence is an osmotic rather than 

a metabolic effect. However, without confocal microscopy, it remains unclear if the cell 

size increase holds for cell volume or just for cell area. Another significant difference 

between low and high glucose cells is a greater difficulty in maintaining cells more than 

a few days beyond confluence. This limited long term study of hyperglycemic conditions 

and will be discussed in greater detail in Chapter 3. 

Detergent buffers are commonly used to perforate and solubilize cell 

membranes. Both Triton X-100 and sodium dexoycholate remove endothelial cells and 

leave an intact basement membrane adherent to the tissue culture plate. However, 

sodium deoxycholate is an ionic detergent which modifies protein structure to a greater 

extent than non-ionic detergents such as Triton X-100. Additionally, ionic detergents are 

more sensitive to pH, which might be an issue when a base such as ammonium 
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hydroxide is used in conjunction with detergent to aid in quickly lysing cells. Because of 

its effectiveness in thoroughly removing cells while causing minimal apparent damage 

to basement membrane, we decided to use the Triton X-100 NH40H solution to isolate 

basement membrane throughout thesis experiments. As protease inhibitor and DNAse 

addition did not significantly alter growth factor in basement membrane or cellular debris 

on basement membrane, these additional reagents were not included in the cell lysis 

buffer. While the basic Triton solution was the best lysis solution we tested, it could still 

cause damage to basement membrane or incorporate cellular contents into basement 

membrane when cells are lysed. We did test a urea cell removal method that avoided 

cell lysis altogether and did not observe a significant change in basement membrane 

characteristics. 

To study basement membrane FGF-2 binding kinetics, modifications were made 

to a previously developed methodology for endothelial cell FGF-2 binding kinetics. Many 

modifications are actually simplifications. For example, binding temperature was 

relatively unimportant as there was no requirement for cell viability maintenance and 

cellular growth factor metabolism was not an issue. Basement membrane also only has 

one specific FGF-2 binding site, heparan sulfate proteoglycans, whereas cells have 

both heparan sulfate proteoglycans and cell surface FGF receptors. This allows 

basement membrane FGF-2 extraction using only high salt buffer as salt conditions 

isolate heparan sulfate proteoglycans. 

However, a unique complication does arise in basement membrane FGF-2 

binding kinetic measurements. Tissue culture polystyrene, which is exposed underneath 

the fibrillar basement membrane, binds and releases FGF-2 in a manner similar to 

basement membrane. We accounted for this effect by determining exposed polystyrene 

area and subtracting FGF-2 bound to that area from the total amount bound to 

basement membrane on polystyrene. Through this calculation, we show that FGF-2 

bound to basement membrane is significantly lower at equilibrium, but the shapes of the 

equilibrium capacity, association, and dissociation curves are similar. 

This correction methodology is limited by our ability to determine how much 

tissue culture polystyrene is exposed. The basement membrane is fibrillar and porous, 

complicating the situation significantly. While we validated our method with bacteriologic 
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plates which bind little to no FGF-2, it remains unclear if we have accurately corrected 

for FGF-2 binding to polystyrene. Because binding relationships themselves are 

unchanged, we restrict use of the correction to this chapter. FGF-2 binding to tissue 

culture polystyrene was determined for all conditions presented in the thesis, and the 

only case in which it was significant to binding kinetics is with buffer glucose. 

The fact that FGF-2 binds and releases in a controlled manner from tissue 

culture polystyrene likely contributes to polystyrene's effectiveness as a cell culture 

substrate. FGF-2 is present in media supplemented with FBS, therefore when cells are 

seeded, some FGF-2 binds to polystyrene. This FGF-2 is then slowly released as 

soluble FGF-2 stores are consumed by cells. This polystyrene property can be taken 

advantage of further by simply incubating tissue culture polystyrene plates with FGF-2 

prior to cell seeding. Polystyrene plate coating with FGF-2 achieves long term improved 

proliferation comparable to coating a plate with basement membrane or a matrix 

derivative. 

2.5 Conclusions 

Porcine aortic endothelial cells maintain their phenotype at glucose levels up to 

30 mM and additionally produce a high quality basement membrane that remains 

adherent to the culture plate. Based on these two factors, PAEC were selected as the 

cell choice for the in vitro hyperglycemic system. Basement membrane binding kinetics 

measurement was confounded by FGF-2 binding to tissue culture polystyrene in a way 

that is strikingly similar to binding to basement membrane. However, FGF-2 bound to 

basement membrane could be calculated by subtracting off FGF-2 bound to exposed 

polystyrene, as was confirmed by studies on bacteriologic plates. Overall, basement 

membrane FGF-2 binding kinetics protocols proved to be robust throughout glucose 

conditions. 
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Abstract 

Disordered angiogenesis in diabetic vascular disease points to 

dysregulation of angiogenic growth factors such as FGF-2. We therefore 

examined FGF-2 storage in the endothelial cell basement membrane. Our data 

suggest for the first time that basement membrane FGF-2 increases with glucose 

over the course of mere days of exposure to high but still physiologic glucose 

levels. Surprisingly, basement membrane FGF-2 binding kinetics are unchanged, 

indicating that the alteration in FGF-2 storage occurs on a timescale faster than 

that of significant basement membrane changes. Aortic tissue harvested from a 

porcine diabetic model was used to validate the FGF-2 increase in vivo. 
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3.1 Introduction 

Vascular dysfunction in diabetes takes varied forms in different vascular beds. 

While excessive angiogenesis in the retina and kidney leads to retinopathy and 

nephropathy respectively, insufficient angiogenesis in peripheral vasculature is 

associated with poor wound healing (44, 45). In macrovasculature, diabetics experience 

accelerated atherosclerosis, rapid and more extensive restenosis following 

endovascular intervention, and decreased collateral vessel formation around blockages 

(8, 147). The complex range of vascular morbidity can perhaps be summarized as 

disordered angiogenesis through endothelial cell dysfunction. 

Angiogenic growth factors such as vascular endothelial growth factor (VEGF) 

and fibroblast growth factor-2 (FGF-2) have been implicated as being in excess or in 

deficiency in these varied conditions, but no clear causative mechanistic role for these 

growth factors has been established. VEGF concentration in ocular fluid of diabetics 

with active proliferative retinopathy is higher than that of non-diabetics, and VEGF 

blockade with monoclonal antibodies reduced hyperfiltration, albuminuria, and 

glomerular hypertrophy in streptozotocin-induced diabetic rats (1 27, 130). However, 

initially low VEGF mRNA in diabetic mouse keratinocytes decreased further upon 

wounding, in contrast to the elevation in VEGF with wounding found in normal mice 

(132). For FGF-2, increased plasma FGF-2 has been reported in diabetic patients with 

microal buminuria or proteinuria, yet in a gastric wound model, streptozotocin-induced 

diabetic rats showed decreased FG F-2 and delayed lesion healing which improved 

upon exogenous FGF-2 administration (134, 136). Interestingly, these animal models 

have also shown continued vascular dysfunction after restoration of normoglycemia 

(148, 149). 

The vascular basement membrane, in particular in its role in growth factor 

storage and release, may help unify the spectrum of diabetic vascular disease. In both 

micro- and macrovasculature, basement membrane changes in size and composition in 

diabetes. Throughout varied vascular beds, from kidney to retina to aorta, basement 

membrane becomes consistently thicker (44). In addition, relative quantities of major 

protein components change, with increases in type IV collagen and fibronectin and 
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decreases in laminin and heparan sulfate proteoglycans (44, 80-82). Large scale 

changes in basement membrane occur over the course of weeks and months rather 

than days. While no single biochemical diabetic alteration has been identified as the 

cause of these changes, hyperglycemia has been implicated (83, 84). In vitro, high 

glucose affects basement membrane protein production and leads to glycation of these 

proteins, altering both matrix-matrix and matrix-cell interactions (85-87). 

Since it was first shown that cell-derived growth factors such as FGF-2 are stored 

in basement membrane for later release, the effect of disease states on basement 

membrane growth factors has been left largely unexplored (72). We examined the 

hypothesis that glucose modulates FGF-2 storage in basement membrane. Basement 

membrane FGF-2 was measured in increasing glucose conditions and validated using 

osmotic controls. We then examined the role of basement membrane FGF-2 binding 

kinetics in altered FGF-2 storage, including specific binding to heparin moieties. Finally, 

these findings were correlated with in vivo data to confirm physiological relevance. In 

this chapter, we show for the first time that basement membrane FGF-2 increases with 

glucose in vitro and in vivo, but without alterations in binding kinetics. 

3.2 Materials and Methods 

3.2.1 Basement membrane growth 

To measure native basement membrane FGF-2, porcine aortic endothelial cells 

(PAEC) were cultured for two, four, or six days in 12 well tissue culture plates at 5, 17.5, 

or 30 mM glucose as described previously (Chapter 2). Mannitol and L-glucose were 

used as osmotic controls. After two days, media was changed to growth media with 4% 

w/v 40 kDa dextran. Dextran increases media viscosity, which is thought to induce 

endothelial cells to produce more basement membrane. Basement membrane for 

binding kinetics studies was grown by seeding PAEC near confluence and culturing 

them for four days at varying glucose, with the last two days in growth media with 

dextran. Basement membrane was isolated using NH40H-Triton X-100 lysis buffer 

described in Chapter 2 and thoroughly washed with PBS. Samples were stored in PBS 

at 4 OC and used within several days. 
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3.2.2 FGF9 and total protein assays 

FGF-2 was extracted from basement membrane using 2 M NaCl in 20 mM 

Hepes (pH 7.4) for 10 minutes with gentle shaking. The extraction buffer was then 

collected and stored at -20 OC until use. As FGF-2 degraded quickly in salt buffer, 

extracted FGF-2 was quantified immediately via FGF ELlSA whenever possible. Total 

protein in extraction buffer was measured using the BCA Total Protein Assay (BioRad) 

96 well plate procedure. Each sample was measured in triplicate and compared to 

bovine serum albumin standards. 

3.2.3 FGF9 binding kinetics 

Basement membrane FGF-2 binding kinetics were investigated as described in 

Chapter 2. Due to well-documented variability among FGF-2 samples, expected and 

significant FGF-2 integrity loss in storage, and variability among FGF ELISAs, 

comparable experiments were performed at the same time and measured in the same 

ELSA whenever possible. When this was not possible, results were normalized to the 

FGF-2 level at equilibrium. For experiments determining the glucose effect on FGF-2 

association to or dissociation from basement membrane, 100 mM glucose was added to 

either association or dissociation buffer respectively. Glycated FGF-2 was prepared by 

incubating 1 pglml FGF-2 in 0.25 M fructose for 24 hours at 37 OC (1 50). 

For basement membrane heparan sulfate proteoglycan measurement, 

endothelial cells were grown for four days in 5, 17.5, or 30 mM glucose. On the fourth 

day, growth medium was removed, cells were washed with PBS, and labeling medium 

with 100 pCi1ml 3 5 ~  (Perkin Elmer) was added for 24 hours. After media removal, cells 

were washed once with ice cold wash buffer (25 mM Tris, 0.15 M NaCI). Ice cold 

scraping buffer ( I0  mM Tris, 1 M Urea, 1 mM DTT, 10 mM EDTA, 2 mM PMSF, pH 7.4) 

was added, and cells and basement membrane were immediately scraped from the dish 

and transferred to a microcentrifuge tube. After a 10 minute incubation on ice, tubes 

were centrifuged to pellet cells, and basement membrane protein supernatant was 

collected and transferred to a new tube. Samples were stored at -20 OC until analysis. 
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Samples were analyzed using the Bio-Dot Microfiltration System (BioRad). A 

Zeta-Probe membrane (BioRad) was prepared by soaking in tris-buffered saline (TBS) 

for 30 minutes. The membrane was then placed into the Bio-Dot apparatus, and each 

well was washed thoroughly with TBS. 200 p1 of basement membrane extract was 

added to wells in quadruplicate and pulled through the membrane with vacuum. The 

membrane was again thoroughly washed, after which it was removed from the Bio-Dot 

apparatus and rinsed in TBS followed by ddHzO. The membrane was dipped in 95% 

ethanol and air dried. When the membrane was dry, dots for each well were separated, 

placed into scintillation vials with UltimaGold scintillation fluid (PerkinElmer), and 

measured in a liquid scintillation counter (Packard). 

3.2.4 Heparin column 

1 ml of 0.5 mglml FGF-2 in sodium phosphate buffer (10 mM sodium phosphate, 

pH 7.0) was applied to a 1 ml Heparin HiTrap HP column (Amersham) prepacked with 

heparin sepharose. After the column was thoroughly washed with phosphate buffer, 

bound FGF-2 was eluted from the column using a 0 to 2 M NaCl linear gradient in 

sodium phosphate buffer at a 1 mllmin flow rate. 1 ml fractions were collected in an 

automated fraction collector, and FGF-2 in each fraction was quantified via FGF ELISA. 

All chromatography was performed using an FPLC system equipped with a conductivity 

meter and UV monitor, set at 280 nm, under computer control using the Director 

software package (Pharmacia Biotech). 

3.2.5 Porcine diabetic model 

Male domestic pigs, initially 27 to 29 kg, were assigned to a control (n=2) or 

diabetic group (n=4). Prior to the study a vascular access port (VAP, Access 

Technologies) was surgically implanted into each pig via left external jugular vein 

catheterization (1 51). All pigs received intramuscular buprenorphine (0.03 mglkg) on the 

day of surgery. Anesthesia was induced with intramuscular xylazine (2 mglkg), atropine 

(0.04 mglkg), butorphanol (0.55 mglkg) and telazol (6.6 mglkg). The pigs were 

intubated and anesthesia was maintained with isoflurane inhalant (0.5-1.5%) via an 

endotracheal tube. 
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Diabetes was induced by streptozotocin injection (STZ, 50mglkg in 0.1 molll Na- 

citrate, ph 4.5) each day for three days (152). All animals were fed a normal diet. 

Fasting blood glucose concentrations were measured once a week using a standard, 

portable glucometer. Blood glucose concentrations were maintained at 200 to 250 mgldl 

by adjusting daily insulin injections for the duration of the 9 week study period (151). 

Serum lipids were measured at endpoint in a routine diagnostic analyzer using 

enzymatic colorimetric assays. Insulin therapy consisted of a mixture containing regular 

and NPH insulin (Eli Lilly). At study completion, the animals were anesthetized and 

euthanized with KC1 40 mEq IV. An abdominal aortic segment was rapidly excised, 

washed thoroughly in PBS, and frozen in liquid nitrogen. Aortic samples were stored at - 
80 OC until use. 

3.2.6 lmmunohistochemistry 

lmmunohistochemical analysis was performed on frozen sections (8 pm). 

Sections were acetone fixed and air-dried for 24 hours. Endogenous peroxidase activity 

was first quenched by incubating sections with peroxidase block, after which sections 

were incubated with mouse monoclonal antibody to FGF-2 (1:250, MC-GFI, Abcam). 

Mouse nonspecific IgG was used as negative control. The sections were incubated with 

a peroxidase labeled dextran polymer conjugated to goat anti-mouse IgG (Dako 

Cytomation). Staining was completed by incubation with 3,3'-diaminobenzidine (DAB)+ 

substrate-chromogen, which results in a brown-colored precipitate at FGF-2 sites. 

Slides were counterstained with hematoxylin and mounted. 

3.2.7 Statistics 

All statistical analyses were performed with Prism software (Graphpad). Data 

were normally distributed and expressed as mean k standard deviation. Comparisons 

between two groups were analyzed by Student's t test, and comparisons between more 

than two groups were analyzed by ANOVA. A value of p < 0.05 was considered 

statistically significant and is indicated in the text as such or in figures with a pound sign 

(#). A value of p < .O1 is indicated with an asterisk (*). If no statistical significance is 

reported, none was observed. 
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3.3 Results 

Native FGF-2 extracted from basement membrane 

PAEC basement membrane associated FGF-2 increases with time and with 

culture glucose concentration (FIGURE 3.1 ). After only four days in culture, basement 

membrane cultured in 30 mM glucose stored two to three fold more FGF-2 than that 

from cells cultured in 5 mM glucose (p < .Ol). The difference between basement 

membrane FGF-2 in low and high glucose culture increased up to six days, however 

culture beyond that point was inhibited by endothelial cell differentiation, in particular for 

high glucose cells. At four days, measurement of additional glucose gradations shows 

that basement membrane FGF-2 increased linearly from 5 mM up to as high as 50 mM 

glucose (p < .01) (FIGURE 3.2). Only D-glucose increased basement membrane FGF-2; 

osmotic controls mannitol and L-glucose did not (FIGURE 3.3). Total protein in the 

extraction buffer ranged from 30 to 70 pglml and was not significantly different for low or 

high glucose basement membrane or any osmotic controls (FIGURE 3.4). 
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FIGURE 3.1: BASEMENT MEMBRANE FGF-2 INCREASES WITH TIME AND CULTURE GLUCOSE. Porcine 
aortic endothelial cells were cultured for two, four, or six days in supplemented media of 5, 17.5, 
or 30 mM glucose. At the end of each time period, cells were removed, basement membrane 
FGF-2 extracted, and measured via FGF ELISA. p < .0001 (ANOVA), (*) p < .O1 for time point. 



40- 

- 35- 
CY 

E * 30- \ 
Oa 
Q 
' 25- 
CV 

& 20- 
LL 

15- I 
10 I I I I I 

0 I 0  20 30 40 50 

Glucose (mM) 
FIGURE 3.2: BASEMENT MEMBRANE FGF-2 INCREASES LINEARLY WITH CULTURE GLUCOSE. 
Porcine aortic endothelial cells were cultured for four days in supplemented media with 
glucose ranging from 5-50 mM. After four days, cells were removed, FGF-2 extracted 
from basement membrane, and measured via FGF ELISA. p < .0001 (ANOVA). 
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FIGURE 3.3: INCREASED BASEMENT MEMBRANE FGF-2 IS SPECIFIC TO GLUCOSE. Endothelial 
cells were cultured in 5 mM glucose supplemented media, and D-glucose, mannitol, and 
L-glucose were added to increase media osmolarity. Cells were removed at four days, 
FGF-2 extracted from basement membrane, and measured via FGF ELISA. (p < .01). 
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FIGURE 3.4: INCREASED EXTRACTED BASEMENT MEMBRANE FGF-2 IS INDEPENDENT OF 
MEMBRANE BREAKDOWN. Total protein extracted from basement membrane with salt buffer 
was quantified and shown not to significantly change with glucose or osmotic controls. 

3.3.2 Basement membrane FGF-2 association and dissociation 
kinetics 

Since basement membrane protein content and structure are known to change in 

hyperglycemia, we investigated whether the increase in FGF-2 extracted from high 

glucose basement membrane was related to altered basement membrane FGF-2 

binding kinetics. The increased native FGF-2 could result from increased basement 

membrane amount, capacity, or association, or decreased dissociation. As previously 

described in Chapter 2, FGF-2 bound to basement membrane at equilibrium increased 

linearly from 0 nglml to 5000 nglml FGF-2 added, after which bound FGF-2 reached a 

maximum around 10,000 nglml FGF-2 added. For basement membrane isolated from 

cells cultured at 5, 17.5, or 30 mM glucose, both the linear section and maxima of the 

binding capacity relationship were similar in values. Since physiologic basement 

membrane FGF-2 levels are well within the linear range, we examined this portion of the 

equilibrium capacity curve in greater detail (FIGURE 3.5). Independent of glucose, 

basement membrane FGF-2 equilibrium binding capacity was linear with a slope of 1 

nglcm2 FGF-2 bound : 40 nglml FGF-2 added. No significant difference existed in 

equilibrium binding capacity for any basement membrane glucose concentration. 
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FIGURE 3.5: BASEMENT MEMBRANE FGF-2 EQUILIBRIUM BINDING CAPACITY IS UNCHANGED FOR 
DIFFERENT GLUCOSE CULTURE CONDITIONS. Endothelial cells were grown in 5, 17.5, or 30 mM 
glucose supplemented media for four days, after which cells were lysed to leave an intact 
basement membrane. FGF-2 was added to basement membrane in binding buffer to equilibrium 
(three hours), after which bound FGF-2 was extracted and quantified via ELISA. (p > .05). 
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FIGURE 3.6: BASEMENT MEMBRANE FGF-2 ASSOCIATION IS UNCHANGED FOR DIFFERENT GLUCOSE 
CULTURE CONDITIONS. Endothelial cells were grown in 5, 17.5, or 30 mM glucose supplemented 
media for four days, after which cells were lysed to leave an intact basement membrane. 5 nglml 
FGF-2 was added to basement membrane in binding buffer for increasing times, after which 
bound FGF-2 was extracted from basement membrane and quantified via ELISA (p > .05). 
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Basement membrane grown at different glucose concentrations showed strikingly 

similar association kinetics (FIGURE 3.6). FGF-2 basement membrane association 

increased rapidly for the first 60 minutes, leveling off between 60 and 360 minutes at 

approximately 1 nglcm2 bound : 40 nglml added. The addition of 100 mM glucose to 

binding buffer at first appeared to slightly decrease FGF-2 association with basement 

membrane, however this was discovered to be a confounding effect of FGF-2 

association to tissue culture polystyrene (FIGURE 3.7). As detailed in Chapter 2, when 

FGF-2 binding to polystyrene was taken into account, the slight difference in association 

with glucose in binding buffer was eliminated. 

Just as FGF-2 association to basement membrane was unchanged for basement 

membrane grown at different glucose concentrations, FGF-2 dissociation from 

basement membrane was also unchanged. FGF-2 dissociated from basement 

membrane, whether from basement membrane grown under different glucose 

conditions or with glucose in dissociation buffer, increased rapidly up to 60 minutes, and 

then equilibrated between 60 and 360 minutes (FIGURE 3.8, FIGURE 3.9). FGF-2 that did 

z 
Z 

I 
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FIGURE 3.7: BASEMENT MEMBRANE FGF-2 ASSOCIATION IS DECREASED WITH GLUCOSE IN BINDING 
BUFFER. 5 nglml FGF-2 was added to 5 mM isolated basement membrane with either 0 or 100 
mM glucose in the binding buffer. Association of FGF-2 to basement membrane with time was 
slightly lower in 100 mM glucose (p < .01), but this is an artifact of the glucose effect on FGF-2 
binding to polystyrene as discussed in Chapter 1. 
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FIGURE 3.8: BASEMENT MEMBRANE FGF-2 DISSOCIATION IS UNCHANGED FOR DIFFERENT GLUCOSE 
CULTURE CONDITIONS. Endothelial cells were grown in 5, 17.5, or 30 mM glucose supplemented 
media for four days, after which cells were lysed to leave an intact basement membrane. 5 nglml 
125 I-FGF-2 was added to basement membrane in binding buffer to equilibrium (3 hours). Fresh 
binding buffer was added, and dissociated FGF-2 was measured in a gamma counter (p > .05). 

not dissociate was also measured and showed no significant change with glucose. 

Differences in equilibrium dissociation constants for 5, 17.5, and 30 mM glucose (8.63 x 

10-1 1 M, 2.86 x 10-1 0 M, 2.034 x 10-1 0 M; TABLE 3.1), as well as 0 and 100 mM binding 

buffer glucose (4.01 x 10-10 M, 1.26 x 10-10 M; TABLE 3.2) were not statistically 

significant. 

The only case in which FGF-2 basement membrane binding kinetics were altered 

by glucose was when FGF-2 was glycated (FIGURE 3.10). The shape of the FGF-2 

association curve was significantly flattened, and glycated FGF-2 bound to basement 

membrane at equilibrium was only about 20% of non-glycated FGF-2. Excepting FGF-2 

glycation, FGF-2 basement membrane association and dissociation kinetics were 

unchanged despite decreased heparan sulfate proteoglycans in basement membrane 

with increasing culture glucose (FIGURE 3.1 1 ). 
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FIGURE 3.9: BASEMENT MEMBRANE FGF-2 DISSOCIATION IS UNCHANGED WITH GLUCOSE IN UNBINDING 
BUFFER. 5 nglml 1 2 5 1 - ~ ~ ~ - 2  was added to 5 mM isolated basement membrane to equilibrium. 
Fresh binding buffer with either 0 or 100 mM glucose was then added, and dissociated FGF-2 
was quantified in a gamma counter (p > .05). 

TABLE 3.1: EQUILIBRIUM DISSOCIATION CONSTANTS ARE SIMILAR FOR 5, 17.5, AND 30 MM BASEMENT 
MEMBRANE. On and off rate constants (b, and koff) were calculated from association and dissociation 
experiments, and then used to calculate the equilibrium dissociation constant (&). 

kon 

kobs 

ko, 
K d  

TABLE 3.2: EQUILIBRIUM DISSOCIATION CONSTANTS ARE SIMILAR FOR BINDING BUFFER GLUCOSE. On and off 
rate constants (k,, and koff) were calculated from association and dissociation experiments, and then used 
to calculate the equilibrium dissociation constant (&). 

5 mM glucose 
.00334 k .0013 min-' 
.02457 k .0014 min-' 
3.87 x 10' M-' min-' 

8.63 x lo-" M 

kni~ 
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17.5 mM glucose 
.00956 k ,0053 min-' 
.02791 & .0021 m i d  
3.34 x lo7 M-' min-' 

2.86 x 1 0-lo M 

0 mM glucose 
.00640 k .0035 min-' 

30 mM glucose 
.00714 * .0043 min" 
,02646 k .0023 min-' 
3.51 x 10' M-' min-' 

2.034 x 1 0-lo M 

100 mM glucose 
.00303 k ,0024 min-' 
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FIGURE 3.10: GLYCATED FGF-2 ASSOCIATION WlTH BASEMENT MEMBRANE IS SIGNIFICANTLY LOWER 
THAN NON-GLYCATED FGF-2. FGF-2 was glycated by 24 hour incubation in 0.25 M fructose at 37 
OC. Association experiments as described previously were done on 5 mM glucose basement 
membrane with glycated and unglycated FGF-2 (p c .01). 
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FIGURE 3.1 1 : BASEMENT MEMBRANE HEPARAN SULFATE PROTEOGLYCANS DECREASE WlTH CULTURE 
GLUCOSE. Endothelial cells were cultured for four days in 5, 17.5, or 30 mM glucose media. On 
the fourth day, cells were switched to labeling media with 1 00 pCi/ml %S for 24 hours. Cells were 
scraped, the basement membrane portion isolated, and sulfation quantified using a Bio-Dot 
Microfiltration system and a liquid scintillation counter. (*) p c .O1 
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3.3.3 FGF-2 heparin binding kinetics 

The basement membrane is a complex protein mesh, with potential for 

nonspecific FGF-2 binding to either basement membrane itself or tissue culture 

polystyrene underneath basement membrane. We simulated FGF-2 binding specifically 

to heparan sulfate proteoglycans using a heparin Sepharose column and determined 

that this specific binding was not altered by glucose in binding buffer. 

FGF-2 that passed through the heparin column is indicated by the peak location 

at fractions 1 to 5 (FIGURE 3.12, INSET A). Little FGF-2 passed directly through the 

heparin column with either 0 or 100 mM buffer glucose, indicating that glucose does not 

significantly decrease FGF-2 binding to heparin. The large peak at fractions 45 to 50 

shows FGF-2 dissociated from heparin at a given salt gradient. With either 0 or 100 mM 

buffer glucose, FGF-2 began to dissociate from heparin at 1.3 M NaCl and peaks at 

1.55 M NaCI. Less than 1 % of FGF-2 dissociated from heparin below 1 M NaCl with or 

without buffer glucose (FIGURE 3.1 2, INSET B). 

When the same experiment was repeated with glycated FGF-2, glycated FGF-2 

that passed directly through the heparin column was more than six times greater than 

unglycated FGF-2 (FIGURE 3.13, INSET A). The major peak for glycated FGF-2 

dissociation still occurred at 1.55 M NaCI, however nearly 10% of glycated FGF-2 

dissociated below 1 M NaCl (FIGURE 3.13, INSET B). 

3.3.4 In vivo correlate 

We measured FGF-2 in aortas from control and streptozotocin-treated pigs to 

validate that the increase in basement membrane FGF-2 was not restricted to 

endothelial cells in culture but was a real and valid effect in intact vessels in vivo. On 

average, the fasting blood glucose of pigs treated with streptozotocin was 267*100 

mgldl vs. 68k4 mgldl in control animals. Porcine aortic tissue immunohistochemical 

analysis for FGF-2 showed greater FGF-2 throughout the arterial wall in hyperglycemic 

animals but particularly in the subendothelial layer (FIGURE 3.14). When FGF-2 was 

measured in tissue extracts, FGF-2 normalized to total protein was 44% higher in 

diabetic animal tissue (FIGURE 3.15). 
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FIGURE 3.12: ELUTION OF FGF-2 FROM A HEPARIN COLUMN WITH DOES NOT CHANGE WITH GLUCOSE IN 
THE BUFFER. 1 ml of 0.5 pg/ml FGF-2 solution was added to heparin Sepharose column in either 0 
or 100 mM glucose buffer. FGF-2 was eluted with a salt gradient from 0 to 2 M, and FGF-2 in 
each fraction was quantified via FGF ELISA. 
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FIGURE 3.12: INSET A (MAGNIFICATION OF 
FRACTIONS O - 10) SHOWING FGF-2 PASSING 
THROUGH THE COLUMN. 

I - 0 mM glucose I 

Fraction # 
FIGURE 3.12: INSET B (MAGNIFICATION OF 
FRACTIONS 35-45) SHOWING FGF-2 ELUTION AT 
LESS THAN 1.5 M NACL. 
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FIGURE 3.13: GLYCATED FGF-2 DEMONSTRATES LOWER AFFINITY FOR HEPARIN SEPHAROSE COLUMN. 
0.5 yglml FGF-2 either in 0.25 M fructose or incubated for 24 hours in 0.25 M fructose was added 
to a heparin Sepharose column. FGF-2 was eluted with a salt gradient from 0 to 2 M, and FGF-2 
in each fraction was quantified via FGF ELISA. More glycated FGF-2 passes through the heparin 
column and glycated FGF-2 elutes from a heparin column at a lower salt concentration. 
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FIGURE 3.13: INSET A (MAGNIFICATION OF 
FRACTIONS 0-1 0) SHOWING INCREASED GLYCATED 
FGF-2 PASSING THROUGH THE COLUMN. 
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FIGURE 3.13: INSET B (MAGNIFICATION OF 
FRACTIONS 35-45) SHOWING GLYCATED FGF-2 
ELUTION AT LESS THAN 1.5 M NACL. 
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FIGURE 3.1 4: DIABETIC PORCINE AORTIC 
TISSUE HAS HIGHER FGF-2 THAN CONTROLS. 
Diabetes was induced in male domestic 
swine by streptozotocin injection. Blood 
glucose concentrations were maintained at 
200-250 mgldl by adjusting daily insulin 
injections for the duration of the nine week 
study period. At the end of the study, 
animals were euthanized, aortic tissue 
extracted, and rapidly frozen. Frozen 
sections were labeled with a monoclonal 
antibody for FGF-2 (brown). Higher levels 
of FGF-2 are evident in the sub-endothelial 

Control Diabetic 
Aortic tissue sample 

FIGURE 3.15: EXTRACTS FROM DIABETIC PORCINE AORTIC TISSUE SHOW INCREASED FGF-2 COMPARED 
TO CONTROLS. 3x3 mm porcine aortic tissue sections were homogenized in lysis buffer with 
protease inhibitors. After centrifugation to remove insoluble material, FGF-2 levels were 
measured in the extracts via FGF ELISA. (#) p c .05 compared to control (Student's t-test). 
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3.4 Discussion 

Our data show that basement membrane FGF-2 storage increases with glucose 

but not osmotic controls. While others have demonstrated altered protein levels in 

basement membrane with diabetes or hyperglycemia, this is the first time that a 

vasoactive factor has been shown to increase (80-82). Our initial hypothesis that 

inherent changes in basement membrane composition and structure would be linked to 

altered FGF-2 binding kinetics proved false, despite measured changes in heparan 

sulfate proteoglycans. 

3.4.1 FGF-2 in the media and basement membrane 

From two to six days, basement membrane FGF-2 increases exponentially with 

time across glucose culture conditions. As cells grow and proliferate, increased 

basement membrane production may combine with increased basement membrane 

exposure time to FGF-2 to raise basement membrane FGF-2. Similarly, in vivo, 

increased vascular basement membrane thickness in disease states such as diabetes 

could increase overall basement membrane FGF-2 capacity by increasing total binding 

sites. Even sites far from endothelial cells could contribute as FGF-2 can diffuse through 

basement membrane with rapid reversible binding (139). The increase in basement 

membrane FGF-2 with time should reach equilibrium, as in our association experiments; 

however we were unable to investigate long term hyperglycemic effects on basement 

membrane FGF-2 because of endothelial cell differentiation. After six days in culture, 

cells lost their cobblestone appearance, especially in high glucose conditions. Any 

difference in basement membrane FGF-2 beyond six days could be attributed to 

endothelial cell phenotypic change. We therefore turned to an in vivo model for long 

term results. 

Basement membrane FGF-2 increases insignificantly with osmotic controls 

mannitol and L-glucose, indicating that the increase in basement membrane FGF-2 is 

primarily associated with glucose rather than osmotic pressure. The linear increase in 

basement membrane FGF-2 with glucose is likely related to either an inherent change 

in basement membrane that facilitates increased storage or an alteration in endothelial 
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cell function that allows increased basement membrane exposure to soluble FGF-2. 

Before investigating these possibilities, we measured total protein in FG F-2 extraction 

buffer to ensure that the increase in basement membrane FGF-2 with glucose is not an 

artifact of increased hyperglycemic basement membrane breakdown. Total protein was 

in fact not significantly different with glucose or osmotic controls. 

Study of basement membrane FGF-2 could be confounded by basement 

membrane exposure to supplemental, exogenous FGF-2 from FBS in the culture media. 

Porcine aortic endothelial cells used in these experiments required a minimum of 5% vlv 

FBS for growth. At a measured value of 50 pglml FGF-2 in FBS, supplemented media 

contains 2.5 pglml exogenous FGF-2. The total exogenous FGF-2 to which cultured 

endothelial cells are exposed over four days is 2 pglcm2. As only 1140'~ of soluble FGF- 

2 is bound by basement membrane at equilibrium, the maximum FGF-2 that FBS might 

contribute to the basement membrane is 0.05 pglcm2. This value is less than 0.7% of 

total FGF-2 extracted from basement membrane, indicating that exogenous FGF-2 

contribution to basement membrane FGF-2 is minor compared to endothelial cell- 

derived FGF-2. 

3.4.2 FGF9 basement membrane binding kinetics 

Our results indicate that FGF-2 binding kinetics, including equilibrium capacity, 

association, and dissociation, are unchanged for basement membrane grown under 

increasing glucose concentrations. This is surprising given the extensive alterations in 

diabetic vascular basement membrane composition and structure, in particular the 

reported decrease in heparan sulfate proteoglycans to which FGF-2 binds (82). Vogl- 

Willis et al. measured small decreases in sulfation of basement membrane heparan 

sulfate proteoglycans in short term hyperglycemic culture of both bovine and human 

endothelial cells (1 53). We similarly show a decrease in basement membrane sulfation 

with glucose, but this appears to have no effect on FGF-2 binding kinetics. When we 

drastically decreased basement membrane heparan sulfate proteoglycans by growing 

cells with sodium chlorate, binding kinetics did change. Therefore, we believe that 

changes in basement membrane heparan sulfate proteoglycans with glucose are not 

large enough to significantly affect FGF-2 binding kinetics. 
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We further demonstrate that glucose in either binding or dissociation buffer does 

not alter basement membrane FGF-2 association or dissociation respectively. We had 

hypothesized that, because heparan sulfate and glucose are both polysaccharides, 

glucose itself might displace FGF-2 from heparan sulfate proteoglycans in basement 

membrane. However, extremely high glucose does not alter FGF-2 association to or 

dissociation from basement membrane, or FGF-2 binding specifically to heparin in a 

heparin Sepharose column. 

Glucose modifies basement membrane FGF-2 binding kinetics only through 

FGF-2 glycation, which decreases binding to both basement membrane and specifically 

to heparin in a heparin Sepharose column. This agrees well with the literature showing 

that glycation decreases FGF-2 activity and affinity for heparan sulfate proteoglycans 

(150). Heparan sulfate protects FGF-2 from glycation, implying that the increased 

basement membrane FGF-2 store should remain unglycated and therefore active over 

long hyperglycemic episodes (103). Since glycation would decrease basement 

membrane FGF-2 in high glucose, and our samples were exposed to glucose for a 

relatively short time period, FGF-2 glycation does not appear to be significant in 

basement membrane FGF-2 modulation with glucose in our experiments. 

3.4.3 In vivo model 

lmmunohistochemical porcine aortic tissue analysis confirms that FGF-2 in the 

vessel wall increases in hyperglycemic states. The in vivo model is not without 

limitations, as these animals were exposed to far greater stress than hyperglycemia 

alone. For example, treated animals were periodically injected with exogenous insulin, 

showed increased trigl ycerides, and decreased weight at the study endpoint. 

Nonetheless, the in vivo data do extend the in vitro findings by suggesting that long term 

hyperglycemia can lead to increased FGF-2 vascular storage. lmmunohistochemical 

identification of increased FGF-2 was noted in the subendothelial layer and throughout 

the aortic media. This could result from FGF-2 transport through the arterial wall through 

reversible binding to heparan sulfate proteoglycans (1 39). 

3.4.4 Limitations 
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While these data suggest that basement membrane FGF-2 storage increases 

without a change in basement membrane FGF-2 binding kinetics, there are limitations 

to these studies. Alterations in basement membrane FGF-2 could be an artifact of the 

cell removal process, although we achieved similar results by removing cells without 

lysis. Similarly, increased FGF-2 could be a phenomenon only at the basement 

membrane surface, since the salt buffer likely only removes FGF-2 from accessible 

surface binding sites. Even if this is the case, our data show that the available surface 

fraction of basement membrane FGF-2 is increased. 

Basement membrane binding kinetics experiments were performed entirely on a 

macro size scale. There could possibly be differences, either in timing or quantity of 

bound FGF-2 that could not be detected at this level. Additionally, some dissociation 

data were collected on separate days and therefore had to be normalized to account for 

changes in radiolabeled FGF-2 over time. This limited our ability to detect small 

changes in FGF-2 basement membrane dissociation. We were able to show decreased 

glycated FGF-2 association to basement membrane, however our heparin column 

experiments showed a smaller loss of FGF-2 affinity for heparin with glycation. This 

could be related to either incomplete FGF-2 glycation, or early dissociation of glycated 

FGF-2 from the heparin perhaps in unmeasured column washes. 

As with any in vitro experiments, extension of tissue culture findings to in vivo 

situations is limited. It is nearly impossible to create an in vivo model that replicates in 

vitro conditions without additional environmental influences. The porcine diabetic model 

limitations were discussed above, but there are also limitations to our aortic tissue 

processing. We were unable to extract or label just endothelial cell basement 

membrane FGF-2, therefore these data represent FGF-2 in the entire vessel wall 

including intracellular stores. Our in vitro data suggests that intracellular FGF-2 is not 

increased, and we normalized FGF-2 to total protein to account for changes in total cell 

number and increased intracellular size, but it is possible that increased measured FGF- 

2 in diabetic porcine aorta is an artifact of cellular changes. 
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3.5 Conclusions 

Our data show that glucose mediates a linear increase in basement membrane 

FGF-2. Surprisingly, this change occurs without an alteration in basement membrane 

FGF-2 binding kinetics. Only FGF-2 glycation, which might occur intracellularly over the 

course of weeks, decreases FGF-2 association with heparin moieties in basement 

membrane. This chapter suggests that the increase in basement membrane FGF-2 

occurs on a time scale that is faster than other basement membrane changes, and 

therefore is more likely to be mediated by cellular dysfunctions that occur with glucose 

on a shorter time scale. 
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Abstract 

The endothelial cell - basement membrane co-regulatory unit produces, 

releases, stores, and metabolizes FGF-2. In chapter 3, we demonstrated that the 

increase in basement membrane FGF-2 with glucose was not related to inherent 

changes in basement membrane FGF-2 binding kinetics. We now show for the 

first time that endothelial cells actively control basement membrane FGF-2 

through FGF-2 release and cell permeability. These two changes in cell function 

with glucose occur on a timescale of hours to days, which correlates well with the 

rapid increase in basement membrane FGF-2. This cell-mediated dysregulation 

of FGF-2 storage in the endothelial cell - basement membrane unit could 

contribute to vascular dysfunction. 
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4.1 Introduction 

Basement membrane FGF-2 storage increases with culture glucose 

concentration, but basement membrane FGF-2 binding kinetics are unchanged with 

glucose. While this was surprising given the reported extensive alterations in basement 

membrane structure and protein composition, it is likely that large changes in basement 

membrane composition occur over the course of weeks rather than days. We now 

hypothesize that changes in endothelial cell function that occur on a timescale of hours 

to days could lead to altered basement membrane FGF-2. 

Through equilibrium capacity studies (Chapter 3), we showed that FGF-2 bound 

to basement membrane increases linearly with available soluble FGF-2. Based on this 

model, if endothelial cells released more FGF-2 into the media, more FGF-2 would bind 

to basement membrane. However these capacity studies were performed on bare 

basement membrane, whereas our native basement membrane is grown beneath an 

endothelial cell layer. Not only does more FGF-2 need to be released by cells, but cells 

also must allow FGF-2 through to bind to basement membrane. In this chapter, we 

explore how FGF-2 release from endothelial cells and endothelial cell permeability could 

lead to increased basement membrane FGF-2 with glucose, focusing in the end on 

glucose-induced stress mechanisms. 

The FGF-2 release mechanism remains an intriguing mystery. FGF-2 does not 

have a signal sequence for secretion, and therefore is not released through the classic 

signal sequence pathway (97). The primary current hypothesis is that FGF-2 is released 

from endothelial cells at times of sub-lethal injury or cell death. Cellular stresses such as 

UV irradiation, mechanical wounding, and shear stress have been observed to result in 

FGF-2 release (1 54-1 56). An alternative hypothesis asserts that a non-classical release 

pathway exists, but no specific pathway has yet been identified. 

Cell injury or death could lead to FGF-2 release through the apoptotic pathway. 

The term apoptosis was first coined in 1972 to describe a form of cell death 

morphologically distinct from necrosis (157). Apoptotic morphological changes include 

cell rounding, chromatin condensation, nuclear fragmentation, and plasma membrane 

blebbing. Most of these changes are attributed to activation of caspases, cysteine 
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proteases specific to apoptosis (158). Because caspases, and in particular caspase 3, 

are a common mediator across the spectrum of stimuli for apoptotic cell death, caspase 

blockade is an attractive means of controlling apoptosis. 

Endothelial cell apoptosis increases in high glucose conditions. Human umbilical 

vein endothelial cells showed 1.5 fold greater apoptosis in 30 mM than 5 mM glucose 

culture, and intermittent high and low glucose proved even more damaging than 

constant hyperglycemia (159, 160). Inhibitors of this effect have been investigated and 

several pathways suggested, but a common apoptotic pathway clearly leads through 

caspase 3 (1 61 -1 64). As apoptosis is linked to both angiogenesis and atherosclerosis, 

there is strong potential for a link between glucose-induced endothelial cell apoptosis 

and vascular dysfunction in diabetes (1 65, 166). 

In addition to increasing endothelial cell apoptosis and potentially FGF-2 release, 

glucose increases endothelial cell permeability, in particular to inert proteins such as 

albumin and dextran (167). This change has further been linked to aldose reductase or 

protein kinase C (PKC) activation, which provide potential pathways for glucose-induced 

cellular dysfunction as described later (64, 167). This increased permeability has been 

demonstrated in vitro and in vivo but data are limited to inert, rather than vasoactive, 

proteins. Altered endothelial cell permeability is linked to retinopathy, nephropathy, and 

atherosclerosis in vivo, providing yet another potential relationship between glucose- 

induced endothelial cell dysfunction and vascular morbidities in diabetes (22, 168, 169). 

Glucose induces endothelial cell dysfunction such as apoptosis and altered 

permeability through three seemingly independent pathways: PKC activation, advanced 

glycation end product (AGE) formation, and increased flux through the aldose reductase 

pathway. Suppression of these pathways can enhance glomerular filtration and albumin 

secretion in the kidney, suppress normally accelerated atherosclerosis, and improve 

microvascular function amongst a spectrum of effects (48, 170, 171). More recently, 

Nishikawa et al. showed that all three pathways of glucose-induced cellular stress could 

be blocked through normalization of mitochondria1 superoxide species, either by 

inhibiting the electron transport chain, uncoupling oxidative phosphorylation, or directly 

inhibiting reactive oxygen species through manganese superoxide dismutase, (67). 

Many other environmental stressors similarly cause an increase in reactive oxygen 
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species, pointing to oxidative stress as a potential common mediator for endothelial cell 

dysfunction. 

In this chapter, we explore endothelial cell effects on basement membrane FGF- 

2. We show that endothelial cell FGF-2 release increases with glucose, and this 

increase occurs concomitant with an increase in apoptosis. Our data also indicate that 

this released FGF-2 has greater access to basement membrane binding sites due to 

enhanced endothelial cell permeability, extending the concept of glucose-induced cell 

permeability to include vasoactive proteins. While attempts to block caspases, PKC, 

and reactive oxygen species did not abrogate the increase in basement membrane 

FGF-2 with glucose, they did elucidate potential mechanisms by which the increase 

could occur. Finally, reactive oxygen species were identified as a potential common 

mediator for endothelial cell dysfunction that leads to increased FGF-2 release and 

permeability. 
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4.2 Materials and Methods 

4.2.1 Endothelial cell culture 

Porcine aortic endothelial cells (PAEC) were cultured in growth media with 5, 

1 7.5, or 30 mM D-glucose as described, with mannitol as osmotic control. Porcine tumor 

necrosis factor-a (TNFa; R&D Systems), a potent inflammatory cytokine, and tert-butyl 

hydroperoxide (tBHP; Sigma), which is broken down intracellularly to produce reactive 

oxygen species, were used as alternative methods to induce environmental stress. 

TNFa was added for 24 hours and tBHP for 48 hours. 

For PKC inhibition, PAEC were exposed to 1.0 nM bisindolylmaleimide 

(Calbiochem), which binds to the catalytic domain to inhibit PKC a-, PI-, PI,-, y-, 6-, and E- 

isoforms, for one hour before glucose-replete media addition. For caspase in hibition, 

either Z-VAD-FMK (25 pM;Calbiochem), a general caspase inhibitor, or Ac-DEVD-CHO 

(100 pM; Calbiochem), a specific caspase 3 inhibitor, was added to media 30 minutes 

prior to high glucose exposure. A neutralizing VEGF antibody (AF-293-NA; R&D 

Systems), with a reported ND50 of 0.01 pglml, was used at 0.1 pglml for two days. 

Superoxide dismutase, either from horseradish (Sigma) or a cell-permeable mimetic 

(Calbiochem) was used to block reactive oxygen species formation. Each inhibitor was 

tested to ensure that it adequately blocked the appropriate factor. 

4.2.2 FGF-2 quantification 

To measure intracellular FGF-2, endothelial cells were trypsinized, washed, 

pelleted, and frozen overnight at -80 OC. The following morning, cells were resuspended 

in PBS with complete protease inhibitor and homogenized. Samples were centrifuged to 

pellet insoluble cell debris, and the supernatant was stored at 4 OC until use. Total cell 

extract protein showed no significant difference between 5, 17.5, and 30 mM glucose 

samples. FGF-2 released from PAEC was collected in cell culture media and 

centrifuged to remove cellular debris. The conditioning media contained FGF-2 from 

FBS, but this was quantified at 2.5 pglml, which is less than 1% of measured values of 

released FGF-2. The conditioning media with FGF-2 was stored at 4 OC until use, and 
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all samples were quantified using an FGF ELlSA (R&D Systems). While FGF-2 was 

more stable in cell extracts and conditioning media, samples were analyzed 

immediately using a single ELSA whenever possible and always within 24 hours. 

4.2.3 Apoptosis 

PAEC apoptosis was measured using four complementary methods: cell counts, 

annexin V - propidium iodide, caspase 3 activation, and terminal deoxynucleotidyl- 

transferase dUTP nick end labeling (TUNEL). Optimal cell exposure to environmental 

stress for apoptosis was determined for glucose, TNFa, and tBHP individually as their 

cell kinetic effects differ greatly. For example, cells exposed to TNFa showed a rapid 

apoptotic response within 24 hours (FIGURE 4.1). Cells exposed to high glucose, on the 

other hand, required at least 48 hours of exposure before a significant difference in 

apoptosis could be measured. Apoptosis was no different after eight days of exposure 

than after four days, likely because culture media with floating cells, of which the 

majority are apoptotic, was entirely removed every 48 hours (FIGURE 4.2). Therefore 

cells were exposed to glucose for four days, TNFa for 24 hours, and tBHP for 48 hours. 

Cell counts were performed by trypsinizing cells and counting with a Coulter counter 

(Beckman Coulter). 

The annexin V - propidium iodide assay binds annexin V to phosphatidylserine 

which is translocated from inner to outer cell membrane in apoptosis. Cells are also 

identified to be alive using the vital dye propidium iodide. Therefore, cells in early 

apoptosis are classified as annexin V positive and propidium iodide negative. Several 

cell removal methods, including scraping, ethyl diamine tetraacetic acid (EDTA), and 

trypsin were compared to determine how to remove attached cells with the least 

damage (FIGURE 4.3). Scraping produced a wide cell size array, shown by extensive 

distribution along the forward scatter axis (FSC-H), indicating many fragmented or 

clumped cells. Scraping also produced extensive cell damage as seen by the high cell 

fragment concentration, indicated by the yellow color in the lower left comer of the plot. 

Cells removed by EDTA still had a large size distribution but showed less fragmentation. 

Trypsin produced the least cell fragmentation with the most uniform cell size, as 

indicated by the high cell concentration focused in one plot area (FIGURE 4.3, yellow). 
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FIGURE 4.3: FLOW CYTOMETRY DATA 
FOR CELL REMOVAL METHODS: CELL 
SCRAPING, EDTA, AND TRYPSIN. 
Trypsinization produced the tightest 
cell size distribution (FSC-H) and the 
lowest percentage of cell fragments 
(population in lower left corner). 
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The latter two techniques were further evaluated in the annexin V - propidium 

iodide assay. Cells harvested with trypsin were less likely to be propidium iodide 

positive (damaged, dead) than those harvested with EDTA, indicating less potentially 

confounding damage from cell removal (FIGURE 4.4). Therefore, PAEC were prepared 

for the annexin V - propidium iodide assay by removing attached cells with trypsin and 

combining them with floating cells from the media. Samples were centrifuged to pellet 

cells, washed thoroughly in PBS, resuspended in annexin binding buffer, and labeled 

with annexin V-FITC and propidium iodide as per kit instructions (BD Pharmingen). 

Samples were analyzed immediately by flow cytometry. 

Caspase 3, a cysteine protease activated during early apoptosis, is considered 

the point of "no return" for apoptotic cells. Activated caspase 3 was measured in PAEC 

by a spectrofluorometric assay and flow cytometry (BD Pharmingen). For 

spectrofluorimetry, PAEC were lysed per kit instructions, and 50 pl of cell lysate was 
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incubated with 5 p1 Ac-DEVD-AMC in a multiwell plate for one hour at 37 OC. Ac-DEVD- 

CHO, a caspase inhibitor, was used as negative control. AMC liberated from Ac-DEVD- 

AMC by activated caspase 3 was measured using a Fluoroskan plate reader at 

excitationlemission wavelengths of 3801450 nm. For flow cytometry, PAEC were 

collected as for the annexin V assay. Cells were fixed and permeabilized, then labeled 

with FITC-conjugated monoclonal rabbit anti-active caspase 3 antibody as per kit 

instructions. Samples were analyzed immediately by flow cytometry. 

The TUNEL assay employed an APO-BrdU kit (BD Pharmingen) in which TdT 

catalyzes 5-bromo-2-deoxyuridine (BrdU) addition to 3'-OH ends of double and single 

stranded DNA fragments in late apoptosis. PAEC were collected in the same way as for 

the annexin V assay, after which cells were fixed in paraformaldehyde, washed, 

resuspended in 70% vlv ethanol in PBS, and stored at -20 OC until use. For each 

experiment, samples were thawed, labeled as per kit instructions, and analyzed 

immediately by flow cytometry. 

4.2.4 Endothelial cell permeability 

Cell permeability assays were performed on PAEC cultured for four days on 0.4 

pm Costar Transwell inserts (Corning). After washing cells with PBS, serum-free media 

with 1 mglml 10 kDa tetramethylrhodamine-labeled dextran (Molecular Probes) was 

added to the insert. At this size dextran has a molecular radius near that of the FGF-2 

monomer (3 nM) (1 72). 50 p1 samples were collected from media outside the insert well 

from 30 to 480 minutes and measured at 5441590 nm in a Fluoroskan 

(ThermoLabsystems). Cell permeability to FGF-2 and subsequent binding to basement 

membrane was measured by adding 1 pglml FGF-2 in serum-free media to PAEC 

cultured for four days in tissue culture plates. Short and long term glucose exposure 

effects were tested by growing cells in either 5 or 30 mM glucose media (long term), 

and at the time of experiment, adding the FGF-2 load in either 5 or 30 mM glucose 

serum-free media (short term). Following a two hour incubation at 37 OC, basement 

membrane was isolated and FGF-2 extracted as described previously. 

4.2.5 Fluorescence microscopy 
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PAEC cultured for four days on coverslips were washed with PBS and fixed in 

4% W/V paraformaldehyde (pH 7.4). Fixed cells were thoroughly washed in PBS and 

labeled with a mouse monoclonal antibody to Pecam (1 : 100, MCAI 746, Serotec), Ve- 

cadherin (1 50, MCA1748, Serotec), and collagen IV (1 :loo, C1926, Sigma). After 

thorough washing, cells were labeled with Alexa Fluor 488 goat anti-mouse secondary 

antibody (1 : 100, A1 101 7, Molecular Probes) with Hoescht nuclear stain (1 : 1000). 

Coverslips were mounted on microscope slides with 1:l glycerol-PBS and stored at 4 

OC. 

A similar process was used for imaging PKC and reactive oxygen species, 

however instead of antibodies, fluorescently labeled moieties targeted intracellular 

agents. Fim-I diacetate (Molecular Probes), a fluorescein labeled bisindolylmaleimide 

derivative, imaged and quantified intracellular PKC. After fixation, cells were 

permeabilized in ice cold methanol for 10 minutes, washed, and incubated with 200 nM 

Fim-I for 30 minutes at room temperature. Cells were then washed again and mounted 

as described previously. A chemically reduced and acetylated form of 

dichlorofluorescein (DCF), which is not fluorescent until acetate groups are removed by 

intracellular esterases and oxidation occurs within cells, was used to measure reactive 

oxygen species. Attached or trypsinized live cells were incubated with 2.5 pM carboxy- 

H2DCFDA (Molecular Probes) for 30 minutes at 37 OC, after which cells were washed 

with PBS and imaged using either flow cytometry or fluorescent microscopy. 

4.2.6 Statistics 

All statistical analyses were performed with Prism software (Graphpad). Data 

were normally distributed and expressed as mean + standard deviation. Comparisons 

between two groups were analyzed by Student's t test, and comparisons between more 

than two groups were analyzed by ANOVA. A value of p < 0.05 was considered 

statistically significant and is indicated in the text as such or in figures with a pound sign 

(#). A value of p < .O1 is indicated with an asterisk (*). If no statistical significance is 

reported, none was observed. 
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4.3 Results 

Basement membrane FGF-2 increases with media glucose concentration without 

any change in binding kinetics or amount of basement membrane produced (chapter 3). 

Binding kinetics further showed that basement membrane bound FGF-2 increased 

linearly with available soluble FGF-2. We therefore sought to determine whether the 

increase in basement membrane FGF-2 is related to an alteration in endothelial cell 

release of or permeability to FGF-2. 

4.3.1 FGF-2 release and apoptosis 

FGF-2 is produced by and 

released from endothelial cells. FGF-2 

inside endothelial cells increased slightly 

with glucose, although the difference was 

not statistically significant (.01 < p < .05) 

(FIGURE 4.5). In response to an 

environmental stress such as glucose or 

TNFa, endothelial cells released FGF-2 

into conditioned media. Released FGF-2 

increased with stress and time, yet 

released FGF-2 was consistently higher 

in 30 mM glucose rather than 5 mM 

independent of other stressors (FIGURE 

4.6, FIGURE 4.7, FIGURE 4.8). We are the 

first to show that with glucose alone, endothelial cells released twice as much FGF-2 

over 48 hours when exposed to 30 mM instead of 5 mM glucose media (FIGURE 4.9). 
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FIGURE 4.5: ENDOTHELIAL CELL INTRACELLULAR 
FGF-2 INCREASES SLIGHTLY WITH GLUCOSE. 
Endothelial cells were cultured for four days in 5, 
17.5, or 30 mM glucose growth media, after which 
they were removed and homogenized. FGF-2 was 
determined by ELISA. (.01 < p < .05) Cell extract 
total protein was unchanged with glucose. 
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FIGURE 4.8: ENDOTHELIAL CELL FGF-2 RELEASE WlTH TNFa IS HIGHER IN 30 MM 
GLUCOSE MEDIA. The amount of FGF-2 released by endothelial cells across all 
TNFa exposures and time points is higher for cells cultured in 30 mM glucose 
media. Data shown here is for 1 nglml TNFa. (p < .01) 
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FIGURE 4.6: ENDOTHELIAL CELL FGF-2 RELEASE 
INCREASES WlTH TNFa ADDITION OVER A 24 HOUR 
PERIOD (5 MM GLUCOSE). Endothelial cells were 
grown in 5 mM growth medium for four days, after 
which cells were exposed to TNFa. FGF-2 in 
media was quantified via ELISA. 
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FIGURE 4.7: ENDOTHELIAL CELL FGF-2 RELEASE 
INCREASES WlTH TNFa ADDITION OVER A 24 HOUR 
PERIOD (30 MM GLUCOSE). Endothelial cells were 
grown in 30 mM growth medium for four days, 
after which cells were exposed to TNFa. FGF-2 in 
media was quantified via ELISA. 
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FIGURE 4.9: ENDOTHELIAL CELL FGF-2 RELEASE INCREASES WITH CULTURE GLUCOSE 
CONCENTRATION. Endothelial cells were cultured in 5, 17.5, or 30 mM glucose growth 
media for four days. On day four, media samples were collected, pelleted to remove 
floating cells, and FGF-2 were quantified via ELISA. (*) p < .O1 

Since FGF-2 has no signal sequence for secretion, we hypothesized that FGF-2 

release in high glucose might occur through cell membrane damage or cell death by 

apoptosis. Cell counts could not be used to assess differences in viable cell numbers 

with glucose, as high glucose decreases overall cell number by increasing cell size 

(Chapter 2). However, apoptosis increased with culture glucose concentration in a dose 

dependent fashion as confirmed by three independent assays: annexin V - propidiurn 
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FIGURE 4.10: ENDOTHELIAL CELL APOPTOSIS INCREASES WITH CULTURE GLUCOSE 
CONCENTRATION (ANNEXIN V - PROPIDIUM IODIDE). Endothelial cells were cultured for four days 
in graded glucose media, after which cells were trypsinized, labeled with annexin V and 
propidium iodide, and analyzed by flow cytometry. Correlation p < .0001 (ANOVA); R~ = .88 
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Or 30 mM glucose growth after 
which cells were trypsinized, labeled with a 
specific antibody to active caspase 31 and 
analyzed by flow cytometry. (#) p < .05 

FIGURE 4.12: ENDOTHELIAL CELL APOPTOSIS 
GLUCOSE MEASURED BY 

Endothelial cells cultured for four days in 5 or 30 mM 
glucose growth medium were trypsinized, fixed in 
paraformaldehyde, suspended in 70% ethanol, and 
frozen overnight. An APO-BrdU kit was used to label 
apoptotic DNA fragments, which were quantified via 
flow cytometry. (#) p < .05. 24 hour exposure to 10 
nglml TNFa was the positive control. 



4.3.2 Endothelial cell permeability 

Increased FGF-2 release from 

endothelial cells raises FGF-2 available 

to bind to basement membrane, but 

FGF-2 must still access basement 

membrane through the endothelial cell 

layer. We therefore examined changes 

in endothelial cell permeability with 

glucose. Cell permeability to 10 kDa 

dextran increased in a dose-dependent 

manner with glucose (FIGURE 4.1 3), 

peaking at -90 minutes and returning 

to baseline conditions by 180 minutes 

for 17.5 mM glucose and 360 minutes 

for 30 mM glucose. Specific endothelial 

cell permeability to FGF-2, measured 

by extracting FGF-2 in basement 

membrane after applying a two hour FGF-2 load, rose over three fold with exposure to 

glucose but not with exposure to osmotic control mannitol (FIGURE 4.1 4, FIGURE 4.15). 
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FIGURE 4.1 3: ENDOTHELIAL CELL PERMEABILITY TO 10 
KDA TMR LABELED DEXTRAN INCREASES WlTH 
GLUCOSE. Endothelial cells were cultured for four 
days in 5, 17.5, or 30 mM glucose on 0.4 pm cell 
culture inserts. 1 mglml of TMR-dextran was added 
inside the culture well, and fluorescent samples from 
outside the well were quantified with a Fluoroskan. 
Data are a representative experiment of three, and 
samples are normalized to 5 mM glucose (p < .01). 
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FIGURE 4.14: ENDOTHELIAL CELL PERMEABILITY TO 
FGF-2 INCREASES WlTH GLUCOSE. Endothelial 
cells were cultured in 5, 17.5, or 30 mM glucose 
for four days. After a two hour 1 pglml FGF-2 
load, cells were removed, FGF-2 extracted, and 
measured via FGF ELISA. (#) p < .05 (*) p < .O1 
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FIGURE 4.1 5: ENDOTHELIAL CELL FGF-2 
PERMEABILITY DOES NOT INCREASE WlTH MANNITOL 
OSMOTIC CONTROL. Endothelial cells were 
cultured for four days in mannitol, after which 
cells were exposed to a two hour 1 pglml FGF-2 
load. Cells were removed, FGF-2 extracted, and 
measured via FGF ELISA (p > .05). 
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Increased endothelial cell permeability to FGF-2 has both short and long term 

exposure components (FIGURE 4.16). When cells cultured in 5 mM glucose are exposed 

to 30 mM glucose concurrent with FGF-2 load, they are more permeable (+33%) than 

cells maintained in 5 mM glucose (p < .05). Similarly, when cells cultured in 30 mM 

glucose are exposed to 5 mM glucose concurrent with FGF-2 load, they are less 

permeable than cells maintained in 30 mM glucose (-20%). However, their permeability 

does not return to the 5 mM level but is still 33% higher than cells maintained at 5 mM 

glucose (p < .05). 

FIGURE 4.16: HIGH GLUCOSE-INDUCED INCREASE IN CELL PERMEABILITY TO FGF-2 HAS SIGNIFICANT 
SHORT (P < .05) AND LONG (P < .01) TERM COMPONENTS. Endothelial cells were cultured in 5 Or 30 
mM glucose growth media for four days (long term). An FGF-2 load was then added in either 5 or 
30 mM glucose serum-free media for two hours (short term). Cell were lysed, FGF-2 extracted 
from basement membrane with 2M NaCI, and quantified via ELISA. (*) p < .Ol ;  (#) p < .05 
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This increase in endothelial cell permeability occurred without significant changes 

in cell-cell junctions, as indicated by continuous Pecam and Ve-cadherin along cell 

borders independent of glucose concentration (FIGURE 4.1 7). The osmotic increase in 

cytoplasmic area was accompanied by an increase in intercellular area with glucose 

concentration. 30 mM glucose cells additionally showed 15 fold greater luminosity of 

fluorescently labeled collagen IV in basement membrane, perhaps visually 

demonstrating increased small molecule access to basement membrane in 

hyperglycemia. 

Glucose 

PECAM Ve-cad herin Collagen IV 

FIGURE 4.1 7: GLUCOSE INCREASES CELL SIZE, BUT INTERCELLULAR JUNCTIONS REMAIN INTACT. Fluorescent 
micrographs of PAEC cultured for 4 days in 5, 17.5, or 30 mM glucose. Cells were labeled for PECAM 
(CD31), Ve-cadherin, or collagen IV (FITC, green) in addition to a Hoescht nuclear stain (UV, blue). 
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4.3.3 Protein kinase C and VEGF 

Protein kinase C (PKC) has been reported as a mediator of glucose-induced 

endothelial cell dysfunction. We investigated whether PKC blockade with the specific 

inhibitor bisindolylmaleimide would abrogate glucose effects on basement membrane 

FGF-2 storage, apoptosis, and endothelial cell permeability specifically to FGF-2. 

Endothelial cells labeled with a fluorescein tagged bisindolylmaleimide derivative show 

elevated PKC in high glucose cells (FIGURE 4.18). However, when PKC was inhibited 

with bisindolylmaleimide, cells appeared unhealthy with jagged cellular edges and 

altered shape. We further showed that when PKC was inhibited in endothelial cells 

exposed to high or low glucose, no decrease in basement membrane FGF-2 storage 

5 mM glucose 30 mM glucose 

-I n 
Fim-I 

Pecam 

Pecam 
with PKCi 

FIGURE 4.18: ENDOTHELIAL CELLS CULTURED IN HIGH GLUCOSE HAVE HIGHER PKC, BUT LONG TERM 
PKC INHIBITION DAMAGES CELLS. Endothelial cells were cultured in 5 or 30 mM glucose growth 
media for four days. PKC was inhibited by adding 1 nM bisindolylmaleimide to culture media on 
day 2. Cells were then labeled with either Fim-I for PKC or a Pecam antibody (green) as well as 
Hoescht nuclear stain (blue). 
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occurred (FIGURE 4.19). Interestingly, apoptosis assays showed no change in annexin V 

positive - propidium iodide negative cells, but a significant (p < .05) decrease in 

caspase 3 positive cells (FIGURE  FIGU FIGURE 4.21). As opposed to reported accounts of 

PKC inhibition blocking endothelial cell permeability with glucose, in our experiments 

PKC inhibition only seemed to increase endothelial cell FGF-2 permeability in high 

glucose conditions (p < .01) (FIGURE 4.22). 

VEGF is similarly thought to be a factor in hyperglycemic endothelial cell 

dysfunction. Despite VEGF's function as an important permeability enhancer, FGF-2 

extracted from basement membrane in high glucose did not decrease significantly (p > 

.05) with VEGF inhibition (FIGURE 4.23). 

30 mM glucose 0 

Bisindolylmaleimide (nM) 
FIGURE 4.19: PKC INHIBITION DOES NOT DECREASE BASEMENT MEMBRANE FGF-2 IN HIGH 
GLUCOSE. Endothelial cells were cultured in 5 or 30 mM glucose media, and increasing 
bisindolylmaleimide was added on day two to inhibit PKC. At four days, cells were lysed, 
after which FGF-2 was extracted from the basement membrane and quantified via FGF 
ELISA. 
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U 30 mM glucose 

0 nM I nM 
Bisindolylmaleimide 

4m20: CELL APoPTosIS 
NOT CHANGE WlTH PKC INHIBITION (ANNEXIN V - 
PROPIDIUM IODIDE). Endothelial cells were cultured 
for four days in Or 30 mM glucose growth 
medium, and 1 nm bisindolylmaleimide was 
added for the final two days to inhibit PKC. Cells 
were then trypsinized, labeled with annexin V and 
propidium iodide, and analyzed by flow cytometry. 
(p > .05). 

-- 
0 

0 nM I nM 
Bisindolylmaleimide 

FIGURE 4.21 : PKC INHIBITION DECREASES ACTIVE 
CASPASE 3+ ENDOTHELIAL CELLS. Endothelial Cells 
cultured for four days in or 30 mM glucose 
media with or without bisindolylmaleimide for PKC 
inhibition were trypsinized and labeled with a 
specific antibody to active caspase 3, Cell 
percentages were quantified with flow cytometry. 
(#) p < .05 compared to no PKCi 
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FIGURE 4.22: ENDOTHELIAL CELL PERMEABILITY TO FGF-2 IN HIGH GLUCOSE INCREASES WlTH 
PKC INHIBITION. Endothelial cells cultured for four days in 5 or 30 mM glucose media with 
or without bisindolylmaleimide as a PKC inhibitor were exposed to 1 pglml FGF-2 for two 
hours. Cells were lysed, FGF-2 extracted from basement membrane with 2 M NaCI, and 
quantified via FGF ELlSA (*) p < .O1 



4.3.4 Caspases 

Caspases are considered the "point of no return" in apoptotic cell death. To 

determine if apoptosis plays a critical role in increased basement membrane FGF-2, we 

blocked caspase activation with either a general caspase inhibitor (Z-VAD-FMK) or a 

specific caspase 3 inhibitor (Ac-DEVD-CHO). Caspase inhibition with either caspase 

inhibitor did not abrogate the increase in basement membrane FGF-2 storage with 

glucose (p > .05) (FIGURE 4.24). Similarly, FGF-2 release from endothelial cells exposed 

to TNFa decreased only slightly with caspase inhibition for low TNFa concentrations (1 

nglml) but actually increased at high TNFa concentrations (5 nglml) (FIGURE 4.25). 

When cell viability was assayed, we were surprised to find that attached viable cell 

number among endothelial cells exposed to TNFa did not increase with caspase 

inhibition (FIGURE 4.26). Similarly, the percentage of annexin V positive - propidium 

5 mM glucose 
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FIGURE 4.23: A NEUTRALIZING VEGF ANTIBODY DOES NOT ABROGATE INCREASED BASEMENT 
MEMBRANE FGF-2 WITH GLUCOSE. Endothelial cells were cultured for four days in 5 or 30 
mM glucose media. Increasing neutralizing VEGF antibody was added to remove 
permeability effects from cell-released VEGF. Cells were then lysed, basement 
membrane FGF-2 extracted with 2 M NaCI, and quantified via FGF ELISA. (p > .05) 
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iodide negative cells did not decrease (FIGURE 4.27). The only apoptotic indicator that 

decreased was the percentage of active caspase 3 positive cells, indicating effective 

caspase inhibition (FIGURE 4.28). However, loss of caspases did not alter other 

apoptotic measures. 

100- 
Q) 
C 

3 E n 
CI - 50- 

I = x = 
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0.0 2.5 5.0 7.5 10.0 

2-VAD-F- -- i ( pglml) 
FIGURE 4.24: A GENERAL CASPASE INHIBITOR DOES NOT ABROGATE INCREASED BASEMENT 
MEMBRANE FGF-2 WITH GLUCOSE. Endothelial cells were cultured for four days in 5 or 30 
mM glucose media. Increasing Z-VAD-FMK was added to block endothelial cell apoptosis 
by limiting caspase activation. Cells were then lysed, basement membrane FGF-2 
extracted with 2 M NaCI, and quantified via FGF ELISA. (p > .05) 
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FIGURE 4.26: VIABLE ENDOTHELIAL CELL NUMBER DOES NOT INCREASE WITH CASPASE INHIBITION. 
Endothelial cells were cultured for four days in 5 or 30 mM glucose, with TNFa added to 5 mM 
samples for 24 hours. Prior to exposure to glucose or TNFa, 100 pM Ac-DEVD-Cho was added 
to block caspase 3 activation. Cells were trypsinized and counted with a Coulter counter. 
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FIGURE 4.25: TNFu INDUCED ENDOTHELIAL CELL FGF-2 RELEASE DOES NOT DECREASE WITH CASPASE 
INHIBITION. Confluent endothelial cells were exposed to TNFa for 24 hours. Some cells were pre- 
incubated with a caspase inhibitor. FGF-2 was quantified in media samples via FGF ELISA. 
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FIGURE 4.27: CASPASE INHIBITION DOES NOT 
DECREASE APOPTOSIS MEASURED BY THE ANNEXIN 
V - PROPlDlUM IODIDE ASSAY. Endothelial cells 
cultured in 5 or 30 mM glucose were incubated 
with general caspase inhibitor Z-VAD-FMK for 
the final two days of culture. Cells were then 
trypsinized, labeled with annexin V and 
propidium iodide, and analyzed by flow 
cytometry. (p > .05) 
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FIGURE 4.28: CASPASE INHIBITION DECREASES 
APOPTOSIS MEASURED BY THE CASPASE 3 ASSAY. 
Endothelial cells cultured in 5 or 30 mM glucose 
were incubated with general caspase inhibitor Z- 
VAD-FMK for the final two days of culture. Cells 
were then trypsinized, labeled with a specific 
antibody to active caspase 3, and analyzed by 
flow cytometry. (*) p < .O1 

4.3.5 Reactive oxygen species 

Nishikawa et al identified reactive oxygen species production as a common 

pathway for glucose-induced endothelial cell dysfunction. We measured higher reactive 

oxygen species in endothelial cells cultured in high glucose both by fluorescent 

microscopy (FIGURE 4.29) and flow cytometry (FIGURE 4.30). The flow cytometry studies 

quantitatively show that with either long or short term exposure to high glucose, 

intracellular reactive oxygen species increase. However, reactive oxygen species 

reduction with superoxide dismutase did not abrogate the increase in basement 

membrane FGF-2 seen with glucose (FIGURE 4.31). In fact, reactive oxygen species 

blockade was unable to alter endothelial cell apoptotic markers, either by annexin V - 

propidium iodide or caspase 3 activation (FIGURE 4.32, FIGURE 4.33). 
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5 mM 
glucose 

FIGURE 4.29: CELLS CULTURED IN 30 MM 
GLUCOSE HAVE GREATER REACTIVE OXYGEN 
SPECIES. Endothelial cells were grown in 5 or 

I 30 mM glucose growth media for four days. 
Carboxy-H2DCFDA, which is broken down by 
intracellular reactive oxygen species to 
release a fluorophore, was added to the cells 

30 mM 
for thirty minutes. Cells were then fixed in 
paraformaldelyde and imaged in a fluorescent 

glucose microscope. I00 pM tBHP exposure for one 
hour was the positive control. 

I 

Positive 
control 

I 

30 mM glucose 
FIGURE 4.30: ENDOTHELIAL CELLS 
EXPOSED TO HIGH GLUCOSE HAVE 
GREATER REACTIVE OXYGEN SPECIES 
WITH EITHER SHORT OR LONG TERM 
EXPOSURE. Endothelial cells were 
grown in 5 mM glucose media. 
After one hour or two days of 
exposure of 5 mM glucose cells to m2 15- 30 mM glucose media, carboxy- 
H2DCFDA was added to cells for 
thirty minutes to measure reactive 
oxygen species. Cells were 
trypsin ized and reactive oxygen 
species quantified by flow 
cytometry geometric mean. 100 pM 
tBHP exposure for one hour was 
the positive control. 1 hour 2 days 

Time of exposure 
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FIGURE 4.31: BASEMENT MEMBRANE FGF-2 INCREASES WITH ADDITION OF 
SUPEROXIDE DISMUTASE. Endothelial cells were cultured for four days in 5 or 30 mM 
glucose, with increasing cell permeable superoxide dismutase added at day two. 
Cells were lysed, basement membrane FGF-2 extracted with 2 M NaCI, and 
quantified via FGF ELlSA (p < .01) 
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FIGURE 4.32: SUPEROXIDE DISMUTASE INCREASES 
ENDOTHELIAL CELL APOPTOSIS (MNEXIN V - 
PROPlDlUM IODIDE ASSAY). Endothelial cells were 
cultured for four days in 5 or 30 mM glucose 
growth media, with 100 Ulml cell-permeable 
superoxide dismutase added for the final two 
days. Cells were then trypsinized, labeled with 
annexin V and propidium iodide, and analyzed by 
flow cytometry. (p < .01) 
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FIGURE 4.33: SUPEROXIDE DISMUTASE DOES NOT 
CHANGE ENDOTHELIAL CELL CASPASE 3 ACTIVATION. 
Endothelial cells were cultured for four days in 5 
or 30 mM glucose growth media, with 100 Ulml 
cell-permeable superoxide dismutase added for 
the final two days. Cells were then trypsinized, 
labeled with a specific antibody for active caspase 
3, and analyzed by flow cytometry. (p > .05) 



4.3.6 Alternative environmental stressors 

Since we were unable to block the increase in basement membrane FGF-2 with 

glucose, we applied alternative forms of environmental stress to determine if the effect 

was reproducible. Indeed, either TNFa or tBHP at low concentrations led to increased 

FGF-2 release from cells (p < .01) (FIGURE 4.34, FIGURE 4.35). At high TNFa and tBHP 

concentration, extensive cell death occurred, marked by few viable attached cells, 

resulting in very high media FGF-2. This FGF-2 release was associated with increased 

apoptosis (p < .01), as indicated by the annexin V - propidium iodide assay (FIGURE 

4.36, FIGURE 4.37). TNFa and tBHP also both enhanced endothelial cell permeability 

specifically to FGF-2 six fold over cells not exposed to environmental stress (FIGURE 

4.38, FIGURE 4.39). Therefore it was not surprising that at low doses, both TNFa and 

tBHP resulted in increased basement membrane FGF-2 storage (Table 4.). 

TABLE 4.1: BASEMENT MEMBRANE FGF-2 INCREASES WITH ENVIRONMENTAL STRESS. Porcine aortic 
endothelial cells were exposed to graded glucose (4 days), TNFa (24 hours), or tBHP (48 hours). After 
the environmental stress exposure, cells were removed, FGF-2 extracted from basement membrane, and 
measured via FGF ELISA. Levels of each environmental stress are: glucose (low = 5 mM, medium = 17.5 
mM, high = 30 mM), TNFa (low = 0 nglml, medium = 0.1 nglml, high = 0.5 nglml), and tBHP (low = 0 yM, 
medium = 5 pM, high = 10 pM). (#) p < .05, (*) p < .01. 

Environmental 
Stress 

Low 
Medium 

High 
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Glucose (mM) 

15.6 k 1.2 
23.6 k 4.3' 
30.0 k 3.6* 

TNFa (nglml) 

17.9 + 2.6 
25.4 k 2.4' 
41.3 2 6.4* 

tBHP (pM) 

13.6 k 0.7 
20.3 k 2.5' 
59.3 k 4.6* 
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FIGURE 4.34: ENDOTHELIAL CELL FGF-2 RELEASE INCREASES WlTH TNFa EXPOSURE. Porcine 
aortic endothelial cells were incubated in graded concentrations of TNFa for 24 hours. I00 pl 
of culture media was collected and FGF-2 quantified via FGF ELISA. (p < .01) 
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FIGURE 4.35: ENDOTHELIAL CELL FGF-2 RELEASE INCREASES WlTH REACTIVE OXYGEN SPECIES. 
Porcine aortic endothelial cells were incubated in graded concentrations of tBHP for 24 
hours. 100 p1 of culture media was collected and FGF-2 quantified via FGF ELISA. (p < .01). 
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FIGURE 4.36: ENDOTHELIAL CELL APOPTOSIS INCREASES IN A DOSE DEPENDENT MANNER WITH 
TNFa. Porcine aortic endothelial cells were cultured for four days in 5 mM glucose and 
exposed to TNFa for 24 hours. Floating and attached cells were harvested, labeled with 
annexin V and propidium iodide, and analyzed by flow cytometry. (p < .01) 
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FIGURE 4.37: ENDOTHELIAL CELL APOPTOSIS INCREASES WITH REACTIVE OXYGEN SPECIES. 
Porcine aortic endothelial cells were cultured for four days in 5 mM glucose and exposed 
to tBHP for 48 hours. Floating and attached cells were harvested, labeled with annexin V 
and propidium iodide, and analyzed by flow cytometry. (p < .01) 
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FIGURE 4.38: ENDOTHELIAL CELL PERMEABILITY TO FGF-2 INCREASES WlTH TNFa 
EXPOSURE. Porcine aortic endothelial cells were cultured for four days at 5 mM 
glucose and incubated with TNFa for 24 hours. Cells were exposed to a I pglml 
FGF-2 load for 2 hours, after which cells were removed, basement membrane 
FGF-2 extracted with 2M NaCl and measured via FGF ELISA. (*) p < .O1 
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FIGURE 4.39: ENDOTHELIAL CELL PERMEABILITY TO FGF-2 INCREASES WlTH 
REACTIVE OXYGEN SPECIES. Endothelial cells were cultured for four days at 5 mM 
glucose and incubated with tBHP for 48 hours. Cells were exposed to a 1 pglml 
FGF-2 load for 2 hours, after which cells were removed, basement membrane 
FGF-2 extracted with 2M NaCl and measured via FGF ELISA. (") p < .O1 
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4.4 Discussion 

Investigation of endothelial cell regulation of basement membrane composition 

brings us closer to understanding the cooperative loop between cells and surfaces on 

which they grow. Though FGF-2 storage in basement membrane is well documented 

and well defined, it remains an incompletely understood observation of unclear 

regulatory significance (72). We now show that endothelial cells control FGF-2 storage 

by altering vascular basement membrane exposure to FGF-2 through modulation of 

cellular FGF-2 release and permeability. Environmental stress in disease, such as 

hyperglycemia in diabetes, adjusts the basement membrane protein balance via 

endothelial cell function. 

4.4.1 Endothelial cell FGF-2 release and apoptosis 

With no change in the amount of basement membrane produced or FGF-2 

basement membrane binding kinetics (Chapter 3), the increase in basement membrane 

FGF-2 could be related to increased basement membrane FGF-2 exposure. The two 

components of increased exposure, which could occur individually or in combination, 

are increased available soluble endothelial cell-derived FGF-2 and/or increased FGF-2 

access to basement membrane. Each component is controlled by an inherent 

endothelial cell function: FGF-2 release and permeability. Endothelial cell released 

FGF-2 increases with culture glucose without a significant increase in intracellular FGF- 

2 (FIGURE 4.9). Since FGF-2 has no signal sequence for secretion, FGF-2 release from 

endothelial cells is postulated to occur only at cell injury or death (98). In fact, for cells 

exposed to any of the environmental stresses applied in these experiments, the 

increase in FGF-2 release with dose and time correlates well with an increase in cellular 

apoptosis with dose and time (FIGURE 4.10). When environmental stressors TNFct and 

tBHP are added to cells in low or high glucose, high glucose cells release more FGF-2 

and undergo apoptosis at a higher rate than low glucose cells. Thus glucose 

accentuates effects of both inflammatory and reactive oxygen species induced stress. 

CHAPTER 4: ENDOTHELIAL CELL INFLUENCE ON BASEMENT MEMBRANE FGF-2 



Despite association between FGF-2 release and apoptosis, caspase blockade by 

either a specific caspase 3 inhibitor or a general caspase inhibitor does not alter FGF-2 

release, viable cell number, the percentage of annexin V positive - propidium iodide 

negative cells, or the increase in basement membrane FGF-2 (FIGURE 4.24). This is true 

for both high glucose and alternative chemical stressors. The only distinct effect of 

caspase inhibitors is that they effectively inhibit caspase activation, as shown by the 

decrease in caspase 3 positive cell percentage (FIGURE 4.28). Several possible 

conclusions arise from these data. In each case, FGF-2 release is associated with 

annexin V labeling. Annexin V binds to phosphatidylserine after it translocates from 

inner to outer cell membrane early in the apoptotic process likely prior to caspase 

activation (1 73). FGF-2 release from endothelial cells could occur concomitant with 

early membrane integrity loss, and therefore would not be prevented with caspase 

inhibitors that block apoptosis at a later stage. An appealing teleologic explanation could 

be that an injured cell releases a survival factor to save itself from death. 

Alternatively, it has recently been postulated that a form of cell death similar to 

apoptosis can occur without caspase activation or despite caspase inhibition. Caspase- 

independent cell death has been defined as "the loss of cell viability that is induced by 

pro-apoptotic conditions, and which proceeds despite the inhibition or disruption of 

caspase function" (1 74). While caspase 3 activation increases with endothelial cell 

exposure to high glucose, when caspases are blocked high glucose cells continue to 

show higher annexin V labeling and death by cell counts. These endothelial cells 

exposed to high glucose may continue to die through caspase independent pathways, 

resulting in cellular FGF-2 release. 

FGF-2 release concurrent with endothelial cell apoptosis is in itself interesting. 

Apoptosis has classically been thought of as a clean cell death, with little to no cellular 

content release. This is in direct contrast to necrosis, where cell death causes cellular 

contents spillage which affects surrounding cells. However, this apoptotic paradigm is 

also coming into question. Rabinovitch et al. recently showed that caspases are 

released during apoptosis, and that these released caspases affect the surrounding 

environment by degrading elastase (175). We hypothesize that FGF-2 is similarly 

released from endothelial cells in sub-lethal membrane injury, apoptosis, and caspase 
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independent cell death. Since FGF-2 promotes endothelial cell survival and 

proliferation, FGF-2 release could be critical in limiting surrounding cell death and 

promoting regrowth both during initial injury and over time through FGF-2 basement 

membrane storage. 

4.4.2 Endothelial cell permeability to FGF9 

lncreased cellular FGF-2 release provides only part of the formula for increased 

basement membrane FGF-2 storage. Soluble FGF-2 must access basement membrane 

binding sites through the endothelial cell barrier, which requires an increase in 

endothelial cell permeability. High glucose increases endothelial cell permeability to 

inert proteins such as albumin in vitro (64). lncreased permeability in atherosclerosis 

prone areas in hyperglycemic states in vivo has been linked to increased albumin, 

fibrinogen, and LDL cholesterol deposition in the arterial wall (22, 64). We similarly 

show that endothelial cell permeability to 10 kDa dextran, an inert molecule chosen for 

its similarity in size to FGF-2, increases transiently with glucose concentration (FIGURE 

4.13). The permeability increase peaks at around 90 minutes, indicating that 

permeability changes occur with short term exposure to glucose. However, we did not 

observe the permeability change when cells cultured in 5 mM glucose were suddenly 

exposed to 30 mM glucose, suggesting that a component of the effect takes days to 

develop. 

Our data extend these observations on dextran to vasoactive compounds by 

definitively demonstrating an increase in endothelial cell permeability to FGF-2 (FIGURE 

4.14). This permeability increase results in more FGF-2 bound to basement membrane. 

Similar to dextran, we show both short and long term glucose exposure effects on 

endothelial cell permeability (FIGURE 4.16). Permeability of cells cultured in 5 mM 

glucose and changed to 30 mM glucose at time of FGF-2 load is enhanced in contrast 

to cells maintained in 5 mM glucose for the entire experiment. Similarly, cells cultured in 

30 mM glucose and changed to 5 mM glucose for the FGF-2 load show decreased 

permeability to cells maintained in 30 mM glucose. However, in neither case does 

switching the glucose level at the time of FGF-2 load bring permeability entirely to the 

long term level. Both short and long term components of endothelial cell permeability 

CHAPTER 4.' ENDOTHELIAL CELL INFLUENCE ON BASEMENT MEMBRANE FGF-2 



changes with glucose occur on the time scale of hours to days of stress exposure, 

which is similar to the time scale of endothelial cell FGF-2 release, endothelial cell 

apoptosis, increased basement membrane FGF-2, and physiologic glucose fluctuations 

in vivo. 

Short and long term glucose exposure permeability effects differ whether the test 

molecule is dextran or FGF-2. For dextran, four days of high glucose culture was 

required to see a permeability change. When dextran was added in high glucose media 

to low glucose cells, no permeability increase was observed. With FGF-2, however, 

cells cultured in 5 mM glucose and given FGF-2 in 30 mM glucose do show an 

increased permeability. Since FGF-2 does induce changes in cytoskeleton and cell-cell 

junctions, there is undoubtedly some interaction between glucose, FGF-2, and 

endothelial cell permeability regulation. 

High glucose induced permeability likely occurs through loss of intercellular 

junction integrity. Pecam endothelial cell labeling indicates a larger intracellular area in 

high glucose, as well as an increase in intercellular area. The intracellular area change 

had been attributed to increased cellular metabolic function in high glucose (1 76). Since 

we observed similar changes in cell area for cells cultured in 30 mM mannitol, we 

believe increased cell area is an osmotic effect nonspecific to glucose. The intercellular 

area increase, which has also been noted in transmission electron microscopy studies, 

could potentially cause an increase in permeability, perhaps through cell-cell junction 

loss (177). Although AGE has been shown to decrease Ve-cadherin in endothelial cells, 

Ve-cadherin was unchanged with glucose as measured either qualitatively by 

fluorescence microscopy or quantitatively by cellular ELISA, implying that adherens 

junctions remain intact in hyperglycemia (1 7, 178). The intercellular area and 

permeability alterations could be related to tight junctions instead. 

4.4.3 lnhi bition of glucose effects 

Though both PKC and VEGF are specifically implicated in endothelial cell 

permeability control, neither appear to control the increase in basement membrane 

FGF-2. While VEGF does increase endothelial cell permeability, a VEGF antibody 

which neutralized any cell-released VEGF only led to a minor decrease in basement 
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membrane FGF-2 (FIGURE 4.23). Permeability changes in high glucose have also been 

linked to PKC, as others were able to block glucose-induced permeability increases 

using staurosporine as a PKC inhibitor (64). PKC inhibition is complicated by the critical 

role of PKC in cellular signal transduction. PKC is increased in high glucose cells, but 

when a PKC inhibitor is applied in culture for longer than several hours, cell physical 

structure is altered. Cells remain viable for several days but undoubtedly have altered 

cellular function beyond permeability (FIGURE 4.1 8). Contrary to the literature on cellular 

permeability to inert proteins, endothelial cell permeability specifically to FGF-2 actually 

increases with PKC inhibition, possibly due to interaction between PKC and FGF-2 in 

cytoskeletal reorganization (FIGURE 4.22). PKC inhibition does decrease caspase 3 

activation but not annexin V labeling, supporting a role for PKC in preventing cell 

apoptosis but not initial membrane damage. In keeping with these findings, no PKC 

inhibition level decreases basement membrane FGF-2 in 30 mM glucose. 

The failure of VEGF and PKC inhibition to alter high glucose basement 

membrane FGF-2 led us to reactive oxygen species, which are thought to be a common 

mediator among different pathways of glucose-induced endothelial cell dysfunction. 

Reactive oxygen species increase in cells cultured in 30 mM glucose, whether culture is 

short or long term. However, study of reactive oxygen species is complicated by the 

lack of effective inhibition. Superoxide dismutases decrease intracellular reactive 

oxygen species but so inhibit vital cell functions that long term experiments are not 

possible. Endothelial cells carefully balance reactive oxygen species levels, with small 

quantities critical for intracellular signaling but large quantities severely impairing cell 

viability. It is therefore not surprising that long term culture with superoxide dismutase 

actually increases endothelial cell apoptosis. 

4.4.4 Reactive oxygen species induction 

As high glucose effects were difficult to counteract in vitro, we instead used 

alternative methods of stressing endothelial cells to recreate the glucose effect. 

Glucose, TNFa, and tBHP all increase FGF-2 release from endothelial cells, increase 

endothelial cell permeability to FGF-2, and thereby increase basement membrane FGF- 
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2. Each factor functions using intracellular reactive oxygen species (ROS), perhaps 

indicating that ROS are common mediators (1 79). 

The TNFa-induced endothelial cell permeability increase is critical to 

inflammation. TNFa causes FGF-2 release from endothelial cells, which in concert with 

the permeability increase, results in increased basement membrane FGF-2 deposition. 

This dual process is of interest in inflammatory processes, especially chronic 

inflammatory states. Several cytokines also bind basement membrane, including 

interleukins and interfer~n~y (73). Recent data have shown that basement membrane 

binding of these factors drastically increases their half life and effect. High TNFa 

concentration in inflammation could cause increased endothelial cell permeability, 

perhaps resulting in interleukin and interferon-y deposition into the vascular wall where 

they may contribute to inflammatory process extension. 

4.4.5 Limitations 

While our data support the concept that endothelial cells control vascular 

basement membrane FGF-2 storage by modulating cellular FGF-2 release and 

permeability, there are limitations to these data. A primary limitation is the difficulty in 

determining the role of apoptosis. Since cells were trypsinized and apoptosis measured 

by flow cytometry, increased apoptosis measured in high glucose could be due to 

increased cell damage in the removal process. We were able to validate high glucose 

apoptosis by measuring the process at different phases, however alternative methods to 

the annexin assay were challenging. The active caspase 3 antibody had a low affinity 

for endothelial cells, and in TUNEL, it was difficult to maintain adequate cell number to 

achieve statistical significance. Despite using these varied assays, we could not 

correlate FGF-2 release with any particular apoptotic stage. More specific means of 

measuring membrane changes and blocking apoptosis at particular stages would be 

necessary. 

To measure endothelial cell permeability to FGF-2, creative measures had to be 

employed. We were unable to extend cell culture insert experiments from dextran to 

FGF-2 because FGF-2 bound to proteins and the cell culture insert itself, and therefore 

was not detectable outside the well. To further complicate matters, FGF-2 can alter cell 
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permeability, in particular in the setting of pharmacological PKC inhibition. All 

permeability experiments were extremely sensitive to monolayer quality, and loss of 

monolayer integrity could and did often lead to false results. 

It is also difficult to determine the permeability change mechanism. We believe 

that FGF-2 moves between cells, but our intercellular junction measurements have 

limitations. Increase in intercellular space could be a fixation artifact, and while Ve- 

cad herin was constant by fluorescence microscopy or cellular ELISA, Ve-cad herin 

changes could be transient or occur in a different plane than the one we were able to 

measure. Again, more detailed techniques to closely analyze intercellular junction 

integrity would be needed. The fluorescent collagen IV images are interesting as the 

labeling pattern appears diffuse rather than as an ordered network. We cannot, 

however, be sure if increased labeling was caused by increased cell permeability or an 

increase in total basement membrane collagen IV. 

The true challenge in these experiments came in inhibiting increased basement 

membrane FGF-2. Neither PKC, reactive oxygen species, nor caspase inhibition was 

able to block the glucose effect. We believe that blockade of the first two factors 

compromises cellular health and thereby monolayer integrity. Cells are still damaged 

and die despite caspase inhibition, so perhaps a genetic modification could be 

programmatically introduced to counter this phenomenon. However, since we do not 

know at what apoptotic stage FGF-2 release occurs, we might still see FGF-2 release if 

we blocked apoptosis at too late a phase. As we were unable to block basement 

membrane FGF-2 increase, we alternatively relied on inducing the increase through 

alternative means to show that endothelial cells control basement membrane FGF-2 

through modulation of FGF-2 release and cell permeability. 
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4.5 Conclusions 

Endothelial cells actively control FGF-2 storage in basement membrane through 

a combination of FGF-2 release and cell permeability. We are the first to demonstrate 

that the environmental stress of glucose causes increased FGF-2 release from 

endothelial cells, perhaps mediated by early membrane changes in apoptosis. 

Increased cell permeability with glucose has been linked to a variety of factors, including 

VEGF and PKC. We were unable to block endothelial cell permeability to FGF-2 using 

any of these methods, but we were able to induce permeability increases by creating 

intracellular reactive oxygen species. Cell functional alterations occur on a timescale of 

hours to days, which correlates well with the rapid increase in basement membrane 

FGF-2. 
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Abstract 

Endothelial cell basement membrane FGF-2 increases with culture 

glucose, as mediated by changes in endothelial cell FGF-2 release and 

permeability. This effect becomes more intriguing in light of the FGF-2 effect on 

endothelial cell proliferation and survival in varied glucose conditions. In this 

chapter, we show that glucose decreases endothelial cell proliferation and 

increases apoptosis, resulting in an overall decreased viable cell number. 

Increased basement membrane FGF-2 partially mitigates this effect by 

enhancing proliferation, but the anti-apoptotic FGF-2 effect is decreased in high 

glucose conditions. Since endothelial cell FGF-2 binding is independent of 

glucose, the functional change is likely related to intracellular alterations in Erk 

and Akt signaling pathways. 
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5.1 Introduction 

Endothelial cells and basement membrane form a co-regulatory unit for FGF-2. 

In previous chapters, we demonstrated that FGF-2 basement membrane storage is 

modulated by glucose-induced endothelial cell dysfunction. In this chapter we 

investigate how the FGF-2 effect on endothelial cells is in turn modulated by glucose. 

FGF-2 induces varied endothelial cell functions, including proliferation, migration, 

survival, and phenotype (1 09, 11 1, 114). However, we will focus on the role of FGF-2 in 

viable endothelium maintenance through balance of cell proliferation and death. 

FGF-2 binds to endothelial cells through a cooperative process between two cell 

surface molecules: heparan sulfate proteoglycans and FGF receptors. Heparan sulfate 

proteoglycans, considered low-affinity binding sites, facilitate dimerization of FGF 

receptors, which are high-affinity binding sites, and hence intracellular FGF-2 signaling 

(1 19). Normal levels, structure, and function of both cell surface molecules are critical 

for FGF-2 to influence endothelial cells. 

FGF-2 induces varied endothelial cell functions via different intracellular signaling 

pathways. Upon FGF-2 binding and receptor dimerization, intrinsic receptor tyrosine 

kinase is activated leading to multiple receptor tyrosine residue phosphorylation. These 

residues provide docking sites for SH2 or signaling enzyme PTB domains, which allows 

signaling complex assembly. Depending on which signaling complex attaches to the 

activated FGF-2 receptor, signaling can occur down the RAS-MAP kinase pathway 

(proliferation), PI-3-kinase1Akt pathway (survival), or PKC pathway (cytoskeletal 

organization) (1 23-1 25). The particular mechanism by which one pathway is selected 

over another is an active research area, but it appears to depend on nature of the 

ligand, the particular receptor, the signal transduction pathways utilized, or the 

transcriptional regulation of specific genes (1 80). 

The glucose effect on FGF-2, as well as the FGF-2 effect on cells in high 

glucose, has not been extensively studied. Patients with diabetic retinopathy have 

elevated FGF-2, and in type 2 diabetics, high plasma FGF-2 correlated with poor 

glycemic control, diabetic retinopathy, and albuminuria (1 34, 135). In contrast, gastric 

wounds in diabetic rats showed impaired healing which was ameliorated by exogenous 
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FGF-2 addition (136). In vitro documentation of glucose effects on FGF-2 show that 

intracellular FGF-2 stores are glycated, and therefore rendered less potent, in high 

glucose culture (150). However, FGF-2 that is bound to heparin and heparan sulfate is 

protected from glycation and hence inactivation (1 03). 

A critical function of the endothelial cell-basement membrane unit is regulation of 

cell proliferation and death. We investigated whether glucose modifies the FGF-2 effect 

on endothelial cells. We did not study glycated FGF-2, specifically because FGF-2 

bound to basement membrane seems protected from glycation both by binding heparan 

sulfate and by short exposure to an extracellular high glucose environment. As we had 

already measured an increase in FGF-2 concomitant with an increase in endothelial cell 

apoptosis, we focused on the role of FGF-2 in the balance between endothelial cell 

proliferation and apoptosis. 

5.2 Materials and Methods 

5.2.1 Endothelial cell culture 

Porcine aortic endothelial cells were cultured in 5, 17.5, or 30 mM glucose growth 

DMEM with 5% FBS, 2% glutamine, and 1% penicillin-streptomycin as described 

previously. For basement membrane growth, cells were seeded in 6, 12, or 24 well 

tissue culture plates (Corning) near confluence and cultured for four days with a change 

to supplemented DMEM with 4% wlv dextran on day three. Basement membrane was 

isolated by lysing cells using a Triton-NH40H cell lysis buffer followed by thorough 

washing in PBS. Prior to addition of new endothelial cells, basement membrane was 

incubated with serum free DMEM for thirty minutes. Basement membrane FGF-2 was 

extracted using a 2 M NaCl salt buffer followed by thorough washing. Additional FGF-2 

(Peprotech) was added to basement membrane by incubating it for three hours at room 

temperature in binding buffer with the appropriate FGF-2 concentration, after which the 

FGF-2 solution was removed and basement membrane washed with PBS followed by 

serum free DMEM to remove any unbound FGF-2. 

5.2.2 Endothelial cell FGF-2 binding kinetics 
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Endothelial cell FGF-2 binding kinetics were investigated using similar protocols 

to those used for basement membrane binding kinetics, except all experiments were 

performed on ice to decrease cellular metabolism and minimize FGF-2 internalization 

( I  19). As FGF-2 binds both to cell surface heparan sulfate proteoglycans as well as cell 

surface receptors, two extraction methods were used. FGF-2 bound to heparan sulfate 

proteoglycans was released by 10 second incubation with high salt buffer (2 M NaCI, 20 

mM Hepes, pH 7.4). FGF-2 bound to cell surface receptors was released by 5 minute 

incubation with acidic salt buffer (2 M NaCI, 20 mM sodium acetate, pH 4.0). 

To determine FGF-2 equilibrium binding capacity, endothelial cells were plated in 

a 96 well plate and grown to confluence. Prior to each experiment, cells were washed in 

ice cold binding buffer (25 mM Hepes, 0.05% wlv gelatin, pH 7.4) and incubated on ice 

for 10 minutes. 1 2 = 1 - ~ ~ ~ - 2  (Perkin Elmer) in binding buffer was added to endothelial 

cells at concentrations from 0 to 25 nglml. Equilibrium, defined as the time at which 

association and dissociation occur at equal rates resulting in no change in bound FGF- 

2, occurred between two and three hours after growth factor addition. The 1 2 5 1 - ~ ~ ~ - 2  

solution was aspirated and cells were washed quickly in cold binding buffer to remove 

unbound ' 2 5 1 - ~ ~ ~ - 2 .  Bound ' 2 5 1 - ~ ~ ~ - 2  was extracted from both heparan sulfate 

proteoglycans and cell surface receptors as previously described and quantified in a 

gamma counter (Packard). 

Basement membrane FGF-2 association was measured on confluent endothelial 

cells in 24 well plates. 5 nglml FGF-2 or 1 2 5 1 - ~ ~ ~ - 2  in binding buffer was added to cells 

on ice for 0 to 360 minutes. This concentration (5 nglml) is well within the linear binding 

range and results in physiologically relevant levels of bound FGF-2. After the incubation 

period, FGF-2 was aspirated, cells washed quickly in cold binding buffer, and bound 

FGF-2 extracted and measured as previously described. 

To determine FGF-2 basement membrane dissociation kinetics, confluent 

endothelial cells in 24 well plates were incubated on ice with 5 nglml 1 2 5 1 - ~ ~ ~ - 2  in 

binding buffer to equilibrium (3 hours). The I z 5 1 - ~ ~ ~ - 2  solution was removed, followed 

by three quick washes in cold binding buffer. Binding buffer containing unlabeled FGF-2 

(1 pgtml) was added to each well for 0 to 360 minutes. Unlabeled FGF9 was included 

in dissociation buffer to decrease rebinding of released 1 2 5 1 - ~ ~ ~ - 2  to cells. After the 
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dissociation period, dissociation buffer was removed and cell bound ' 2 5 1 - ~ ~ ~ - 2  was 

extracted from heparan sulfate proteoglycans and cell surface receptors. ' 2 5 1 - ~ ~ ~ - 2  in 

dissociation buffer, salt extraction buffer, and acid extraction buffer was quantified in a 

gamma counter. 

5.2.3 Cell counts and proliferation 

Viable endothelial cell number was determined by removing media with floating 

(nonviable) cells, washing the cell monolayer with PBS, and adding trypsin-EDTA 

(Gibco) to cover the bottom of the dish. After a five minute incubation at 37 OC, DMEM 

with 5% FBS was added and the trypsin-media-cell solution was counted with a Coulter 

counter (Beckman Coulter). 

Propidium iodide intercalates into the major groove of double-stranded DNA and 

produces a highly fluorescent adduct that can be excited at 488 nm with a broad 

emission centered around 600 nm (181). Cells can be identified as being in GI ,  S, or 

G2lM phase of the cell replication cycle based on their cellular fluorescence, which is 

directly proportional to DNA content. Since propidium iodide also binds double-stranded 

RNA, cells must be treated with RNAse for maximum resolution. For cell cycle analysis, 

endothelial cells were seeded in 6 well tissue culture plates at 80,000 cells per well, and 

1 nglml FGF-2 was added at the appropriate time point. At time of analysis, endothelial 

cells were harvested by trypsinization and washed by repeated centrifugation and 

resuspension in PBS. After the final wash, cells were incubated for 20 minutes at 37 OC 

in propidium iodide staining solution consisting of 3% wlv polyethylene glycol 6000 

(Sigma), 50 pglml propidium iodide (Molecular Probes), 180 Ulml RNAse (Worthington 

Biochemical), and 0.1% vlv Triton X-100 in 4 mM citrate buffer (pH 7.2). Following 

incubation, an equal salt solution volume was added (3% wlv polyethylene glycol 6000, 

50 pglml propidium iodide, and 0.1 % vlv Triton X-100 in 0.4 M NaCI, pH 7.2). Cells were 

stored overnight at 4 OC and analyzed the following morning by flow cytometry. 

Tritiated ( 3 ~ )  thymidine provided a second method to assess DNA replication, 

and hence cellular proliferation, in response to FGF-2. Radioactive thymidine is a 

nucleoside that is incorporated into newly formed DNA during cell proliferation, therefore 

proliferation is directly proportional to sample radioactivity by liquid scintillation counting. 
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Cells were seeded near confluence in 24 well tissue culture plates at either 5 or 30 mM 

glucose. At two days, cells were given fresh media, and at four days, cells were given 

fresh media with the appropriate FGF-2 amount. 21 hours after FGF-2 addition, 1 pCi 

3~-thymidine was added to each well for three hours. Cells were thoroughly washed 

and then lysed with 1 mL 1 M NaOH. Cell lysate was added to UltimaGold liquid 

scintillation fluid (PerkinElmer) and measured in a liquid scintillation counter (Packard). 

5.2.4 Apoptosis 

Endothelial cells were analyzed for apoptosis using the annexin V - propidium 

iodide assay described in Chapter 4. Briefly, annexin V binds phosphatidylserine 

translocated from inner to outer cell membrane in programmed, rather than 

catastrophic, cell death. Cells in early apoptosis are identified as annexin V positive 

while negative for the vital dye propidium iodide. PAEC were prepared for the annexin V 

- propidium iodide assay by combining floating and attached cells, which were removed 

by trypsinization. Samples were centrifuged to pellet cells, washed thoroughly in PBS, 

resuspended in annexin binding buffer, and labeled with annexin V-FITC and propidium 

iodide as per kit instructions (BD Pharmingen). Samples were analyzed immediately by 

flow cytometry. 

For experiments testing the combined effect of FGF-2 and environmental stimuli 

on apoptosis, cells cultured in 5 or 30 mM glucose media were given either a saturating 

dose of additional exogenous FGF-2 (1 0 nglml) or neutralizing FGF-2 antibody (1 pglml; 

Upstate Biotechnology) for the final two days of culture. Cells were then exposed either 

to TNFa (5 nglml; R&D systems) for 24 hours or tBHP (1 0 pM; Sigma) for 48 hours. 

5.2.5 Western blot 

lntracellular signaling pathway activation was analyzed by Western blot. 

Confluent endothelial cells in 10 cm tissue culture dishes were washed with PBS and 

then lysed with ice cold lysis buffer (20mM Tris, 150mM NaCI, 1% Triton-X-100, 1 % 

sodium deoxycholate, 0.1% SDS, 2mM EDTA, 2mM Na3V04, 2mM PMSF, 50mM NaF, 

Complete protease inhibitor pellet and 10% glycerol) for 15 minutes at 4 O C .  Cells were 

scraped using a rubber policeman and spun at 10,000 g for 10 minutes to pellet 
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insoluble material. Supernatant protein concentration was measured by bicinchoninic 

acid assay (Pierce), after which samples were aliquoted and stored at -20 OC. 

For Western blot, samples were boiled for 5 minutes with Laemmli sample buffer, 

and equal protein amounts were run on a 10% SDS-polyacrylamide gel, transferred to 

PVDF membrane and blocked for 1 hour with 5% nonfat dry milk. Membranes were 

incubated overnight at 4 OC with anti-Akt, anti-ERK (p441p42 MAP kinase), anti- 

phospho-Akt (Ser473) and anti phospho-ERK (p441p42 MAP kinase; Thr202lTyr204) 

(1 : 1 000, Cell Signaling). Horseradish peroxidase-la beled IgG secondary anti bodies 

(1:2000, Santa Cruz) with an enhanced chemiluminescence kit (Perkin Elmer) were 

used to visualize protein bands. 

5.2.6 Statistics 

All statistical analyses were performed with Prism software (Graphpad). Data 

were normally distributed and expressed as mean & standard deviation. Comparisons 

between two groups were analyzed by Student's t test, and comparisons between more 

than two groups were analyzed by ANOVA. A value of p < 0.05 was considered 

statistically significant and is indicated in the text as such or in figures with a pound sign 

(#). A value of p < .O1 is indicated with an asterisk (*). When no statistical significance 

was observed none are reported. 

CHAPTER 5: FGF-2 EFFECTS ON ENDOTHELIAL CELLS IN HYPERGLYCEMIA 



5.3 Results 

As a co-regulatory unit for FGF-2, endothelial cells and basement membrane 

cooperate in FGF-2 storage and release to ensure effective delivery. We showed 

previously that basement membrane FGF-2 increases with culture glucose, and this 

increase is mediated through changes in endothelial cell FGF-2 release and 

permeability rather than inherent changes in basement membrane FGF-2 binding 

kinetics. We now show that higher FGF-2, whether added in soluble form or released 

from basement membrane, enhances endothelial cell proliferation to a similar degree in 

both low and high glucose culture. For apoptosis, however, the ability of FGF-2 to 

increase cell survival is dependent on secondary mediators. 

5.3.1 Endothelial cell response to FGF-2 

Viable endothelial cell number depends on basement membrane FGF-2. 

Endothelial cells were seeded on isolated basement membrane, basement membrane 

with FGF-2 extracted, basement membrane with exogenous FGF-2 added, or basement 

membrane with added soluble tissue inhibitors of matrix metalloproteinases. Cells were 

grown in 5 or 30 mM glucose media and counted on the seventh day. Basement 

membrane with its FGF-2 extracted surprisingly did not lower cell number from the 

native basement membrane level. However, endothelial cells showed 40% higher cell 

number on basement membrane with added FGF-2 compared to native basement 

membrane, whether media glucose was 5 or 30 mM (FIGURE 5.1). Cell number was 

lowered by tissue inhibitors of matrix metalloproteinases (20% lower for 5 mM glucose, 

46% lower for 30 mM glucose; p < .O1 for glucose effect). This suggests an important 

role for basement membrane breakdown in viable endothelial cell maintenance, in 

particular in high glucose. 
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Exogenous FGF-2 addition to low glucose basement membrane equalized high 

glucose basement membrane effects on endothelial cells. (FIGURE 5.2, FIGURE 5.3). At 

seven days of culture in growth media, basement membrane samples showed twice the 

viable cell number as tissue culture polystyrene controls. Furthermore, endothelial cells 

on 30 mM glucose basement membrane had 30-35% higher viable cell number than 

cells on 5 mM glucose basement membrane (p < .01), a difference that was negated 

fully by FGF-2 addition. Basement membrane glucose exposure predominated over 

media glucose exposure as this basement membrane effect was observed across 

media glucose conditions (FIGURE 5.1 - FIGURE 5.3). 
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Substrate 

FIGURE 5.1: BASEMENT MEMBRANE FGF-2 INCREASES ENDOTHELIAL CELL PROLIFERATION. 
Endothelial cells were seeded on 5 mM glucose basement membrane (BM), 5 mM basement 
membrane with FGF-2 extracted with 2 M NaCl (BM - FGF), 5 mM basement membrane with 
added FGF-2 (BM + FGF), or 5 mM basement membrane with soluble tissue inhibitors of matrix 
metalloproteinases in the media (BM + TIMP). Cells were cultured for seven days in either 5 or 30 
mM glucose media, after which they were trypsinized and counted in a Coulter counter. All 
samples are compared to 5 mM baseline. 30 mM samples of BM + FGF and BM + TIMP are also 
significantly different from 30 mM baseline (p < .01). (") p < .01; (#) p < .05 
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FIGURE 5.2: ENDOTHELIAL CELL NUMBER ON 5 MM GLUCOSE BASEMENT MEMBRANE WlTH ADDED FGF- 
2 IS EQUIVALENT TO 30 MM GLUCOSE BASEMENT MEMBRANE (5 MM GLUCOSE MEDIA). Porcine aortic 
endothelial cells were seeded in 5 mM glucose media on 5 mM glucose basement membrane (5 
mM BM), 5 mM glucose basement membrane pre-incubated with FGF-2 (5 mM + FGF), 30 mM 
glucose basement membrane (30 mM BM), or tissue culture polystyrene (TCPS). At each time 
point, cells were trypsinized and counted in a Coulter counter. 
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FIGURE 5.3: ENDOTHELIAL CELL NUMBER ON 5 MM GLUCOSE BASEMENT MEMBRANE WlTH ADDED FGF- 
2 IS EQUIVALENT TO 30 MM GLUCOSE BASEMENT MEMBRANE (30 MM GLUCOSE MEDIA). Porcine aortic 
endothelial cells were seeded in 30 mM glucose media on 5 mM glucose basement membrane (5 
mM BM), 5 mM glucose basement membrane pre-incubated with FGF-2 (5 mM + FGF), 30 mM 
glucose basement membrane (30 mM BM), or tissue culture polystyrene (TCPS). At each time 
point, cells were trypsinized and counted in a Coulter counter. 
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Basement membrane 

preserved endothelial cell health in 

the most stressful conditions. Viable 

cell number is a balance of 

proliferation and survival. When 

proliferation was decreased by 

starving cells in serum free media 

for 'seven days, endothelial cell 

overall survival increased 9% when 

seeded on 30 rather than 5 mM 

glucose basement membrane (p < 

.05), and both were greater still 

than cells seeded onto a serum- 

coated tissue culture polystyrene 

control (p < .05) (FIGURE 5.4). 

Viable endothelial cell count 

depends on FGF-2 dose, whether 

FGF-2 is soluble or bound to 

basement membrane. Endothelial cell number increased in a dose dependent manner 

with both time and soluble FGF-2 (p < .01), whether cells were cultured in 5 or 30 mM 

glucose media (FIGURE 5.5, FIGURE 5.6). After five days, cultures with 5 nglml FGF-2 

had 93% greater cell number in 5 mM glucose and 63% greater cell number in 30 mM 

glucose compared to control. For all FGF9 concentrations, endothelial cells cultured in 

5 mM glucose consistently showed 15 to 20% higher cell numbers than endothelial cells 

cultured in 30 mM glucose (p < .01) (FIGURE 5.7). 

FGF-2 affects endothelial cells in a similar manner whether it is added in soluble 

form or released from basement membrane. Cells seeded on basement membrane with 

added FGF-2 demonstrated increasing cell number with time (p < .01) and basement 

membrane bound FGF-2 (p < .01) (FIGURE 5.8). At five days, the maximum response to 

basement membrane FGF-2 was a 40% increase in viable cells. 
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FIGURE 5.4: ENDOTHELIAL CELL SURVIVAL IS HIGHER ON 30 
MM GLUCOSE BASEMENT MEMBRANE. Endothelial cells 
were seeded in 5 mM serum-free media on 5 mM 
glucose basement membrane, 30 mM glucose basement 
membrane, or serum coated tissue culture polystyrene. 
After seven starvation days, cells were trypsinized and 
counted. (#) p < .05 
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FIGURE 5.5: VIABLE ENDOTHELIAL CELL NUMBER 
INCREASES IN A DOSE-DEPENDENT MANNER WlTH 
TIME (P < .0001) AND ADDED SOLUBLE FGF-2 (P < 
.0001) (5 MM GLUCOSE MEDIA). Endothelial cells 
were cultured in 5 mM glucose growth media 
with increasing exogenous FGF-2. At each time 
point, cells were trypsinized and counted. 
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FIGURE 5.6: VIABLE ENDOTHELIAL CELL NUMBER 
INCREASES IN A DOSE-DEPENDENT MANNER WlTH 
TIME (P < .0001) AND ADDED SOLUBLE FGF-2 (P 4 

.0001) (30 MM GLUCOSE MEDIA). Endothelial cells 
were cultured in 30 mM glucose growth media 
with increasing exogenous FGF-2. At each time 
point, cells were trypsinized and counted. 
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FIGURE 5.7: ENDOTHELIAL CELL NUMBER IS CONSISTENTLY HIGHER IN 5 MM GLUCOSE THAN 30 MM 
GLUCOSE IN RESPONSE TO FGF-2. Endothelial cell count at five days is compared for 5 and 30 mM 
glucose media with various exogenous FGF-2 levels. 
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FGF-2 endothelial cell binding kinetics 

Endothelial cell FGF-2 binding kinetics were investigated to determine if FGF-2 

bound to endothelial cells in a similar manner whether cells were grown in 5 or 30 mM 

glucose or whether there was 5 or 30 mM glucose in binding buffer. As was the case for 

heparan sulfate proteoglycans in basement membrane, endothelial cell surface heparan 

sulfate proteoglycan equilibrium capacity for FGF-2 was unchanged with glucose 

throughout the linear, physiologic range (p = 0.96) (FIGURE 5.9). Cell surface receptor 

FGF-2 binding was also similar for all glucose conditions (p = 0.93) (FIGURE 5.10). 
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FIGURE 5.8: VIABLE ENDOTHELIAL CELL NUMBER INCREASES WITH BOTH TIME (P < .01) AND 
BASEMENT MEMBRANE BOUND FGF-2 (P < . O I )  (5 MM GLUCOSE MEDIA). Endothelial cells 
were seeded on 5 mM basement membrane that had been incubated with various 
amounts of FGF-2 prior to cell seeding. Cells were cultured in 5 mM glucose growth 
media, and at each time point, cells were trypsinized and counted. 
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FGF-2 association with endothelial cell heparan sulfate proteoglycans and cell 

surface receptors was unchanged with glucose culture (p = .73) or glucose in binding 

buffer (p = .71). For cell surface heparan sulfate proteoglycans, bound FGF-2 increased 

rapidly within the first hour of exposure and reached equilibrium by two hours at 

approximately 1 nglcm2 FGF-2 bound : 40 nglml added (FIGURE 5.1 1). This ratio of 

bound : soluble FGF-2 was the same for basement membrane and cell surface heparan 

sulfate proteoglycans (Chapter 3). Association with cell surface receptors followed the 

same time course and did not vary with glucose (p = .90) but reached equilibrium at a 

slightly lower level of 1 nglcm2 FGF-2 bound : 66 nglml added (FIGURE 5.12). A second 

set of experiments using radiolabeled FGF-2 were performed to avoid confounding by 

native endothelial cell produced growth factor. These experiments confirmed that 

culture glucose concentration did not affect endothelial cell FGF-2 association kinetics 

for either heparan sulfate proteoglycans (p = .75) or cell surface receptors (p = .91) 

(FIGURE 5.13, FIGURE 5.14). Finally, FGF-2 association with endothelial cells did not 

change with glucose in binding buffer (FIGURE 5.15, FIGURE 5.16). 
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FIGURE 5.14: FGF-2 ASSOCIATION WlTH ENDOTHELIAL CELL SURFACE HEPARAN SULFATE 
PROTEOGLYCANS DOES NOT CHANGE WlTH CULTURE GLUCOSE. Endothelial cells were cultured for 
four days in 5, 17.5, or 30 mM glucose media. On day four, cells were incubated on ice with 5 
nglml FGF-2 in binding buffer. At each time point, FGF-2 was extracted from cell surface heparan 
sulfate proteoglycans with a ten second 2 M NaCl wash and quantified via FGF ELISA. (p > .05) 
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FIGURE 5.12: FGF-2 ASSOCIATION WlTH ENDOTHELIAL CELL SURFACE RECEPTORS DOES NOT CHANGE 
WlTH CULTURE GLUCOSE. Endothelial cells were cultured for four days in 5, 17.5, or 30 mM glucose 
growth media. On day four, cells were incubated on ice with 5 nglml FGF-2 in binding buffer. At 
each time point, FGF-2 was extracted from cell surface receptors with a five minute acidic salt 
wash and quantified via FGF ELSA (p > .05) 
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FIGURE 5.15: FGF-2 ASSOCIATION TO CELL SURFACE HEPARAN SULFATE PROTEOGLYCANS IS 
UNCHANGED WlTH BUFFER GLUCOSE. Endothelial cells were cultured for four days in 5 mM glucose 
growth media. On day four, cells were incubated on ice with 5 nglml FGF-2 in binding buffer of 5 
or 30 mM glucose. At each time point, FGF-2 was extracted from cell surface heparan sulfate 
proteoglycans with a ten second 2 M NaCl wash and quantified via FGF ELISA. (p > .05) 
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FIGURE 5.16: FGF-2 ASSOCIATION WlTH CELL SURFACE RECEPTORS IS UNCHANGED WlTH BUFFER 
GLUCOSE. Endothelial cells were cultured for four days in 5 mM glucose growth media. On day 
four, cells were incubated on ice with 5 nglml FGF-2 in binding buffer with 5 or 30 mM glucose. At 
each time point, FGF-2 was extracted from cell surface receptors with a five minute acidic salt 
wash and quantified via FGF ELISA (p > .05) 
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FGF-2 dissociated from endothelial cells with time was unchanged for either 

culture glucose or glucose in dissociation buffer. For both cases, dissociated FGF-2 

rose rapidly until one hour and reached equilibrium at around two hours (p = .71 for 

culture glucose, p = .54 for glucose in buffer) (FIGURE 5.17, FIGURE 5.18). FGF-2 that 

remained bound to cell surface heparan sulfate proteoglycans or receptors decreased 

similarly with time independent of culture or buffer glucose (FIGURE 5.19, FIGURE 5.20, 

FIGURE 5.21, FIGURE 5.22). Similarly, FGF-2 that remained bound to either heparan 

sulfate proteoglycans (p = .96 for culture glucose, p = .98 for glucose in buffer) or cell 

surface receptors (p = .66 for culture glucose, p = . I9  for glucose in buffer) did not 

change significantly with cell culture or binding buffer glucose. 
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Endothelial cell proliferation with FGF-2 

Endothelial cell proliferation was measured through cell cycle phase and DNA 

production in response to FGF-2. Timing studies for both cell cycle analysis and DNA 

production showed a peak response approximately 24 hours after growth factor 

exposure and remained elevated up to 72 hours (p < .01) (FIGURE 5.23). Cells cultured 

in 30 mM glucose showed the same response timing as those in 5 mM glucose but the 

percentage of S phase cells was -10 percent lower throughout all time points (p < .05). 

The percentage of S-phase cells increased four fold as FGF-2 was added up to a 

concentration of 0.5 nglml and reached equilibrium afterwards with -30% of cells 

actively entering the mitotic cycle (FIGURE 5.24). The percentage of S-phase cells 

remained consistently 10% lower (p < .01) for cells cultured in 30 mM glucose as 

opposed to 5 mM glucose (FIGURE 5.24, FIGURE 5.25). However, when these data were 

normalized to percentage of S-phase cells without any FGF-2 added, normalized values 

for 30 mM glucose were no different from 5 mM glucose (p = .I 9) (FIGURE 5.26). 
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FIGURE 5.23: ENDOTHELIAL CELL S-PHASE RESPONSE TO FGF-2 PEAKS AT 24 HOURS BUT IS 
LOWER IN 30 MM GLUCOSE. Subconfluent endothelial cells were incubated with 1 ng/ml 
FGF-2. At each time point, cells were trypsinized, labeled with propidium iodide, stored 
overnight at 4 OC, and analyzed by flow cytometry the following morning. (p < .05) 
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FIGURE 5.24: ENDOTHELIAL CELLS ENTER S PHASE IN A DOSE DEPENDENT MANNER IN 
RESPONSE TO FGF-2, BUT 30 MM GLUCOSE LOWERS THE RESPONSE. Subconfluent 
endothelial cells were incubated with increasing levels of FGF-2 for 24 hours. Cells were 
trypsinized and labeled with propidium iodide, stored over night at 4 OC and analyzed by 
flow cytometry the following morning. (p < .0001) 
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FIGURE 5.25: ENDOTHELIAL CELLS IN 30 MM 
GLUCOSE ENTER S-PHASE AT A LOWER RATE THAN 
CELLS IN 5 MM GLUCOSE 24 HOURS AFTER 
EXPOSURE TO FGF-2. Endothelial cells cultured in 
5 or 30 mM growth medium, with either 1% or 5% 
fetal bovine serum (FBS), show consistently 
decreased 30 mM cells in S-phase after 24 hour 
exposure to FGF-2. (p c .01) . 
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FIGURE 5.26: DECREASED HIGH GLUCOSE ENTRY 
INTO S-PHASE IS NOT MEDIATED BY FGF-2. Though 
high glucose media appeared to inhibit cell entry 
into S phase in response to FGF-2, when data are 
normalized to the case without added FGF-2, 
there was no statistical difference between 5 and 
30 mM glucose cells. 
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Endothelial cell DNA production measurement via 3~-thymidine incorporation 

confirmed cell cycle results. Endothelial cells increased DNA production in a dose 

dependent manner to FGF-2, with 3~-thymidine incorporation increasing nearly four fold 

at 5 nglml added FGF-2 (FIGURE 5.27). DNA production by cells in 30 mM as opposed 

to 5 mM glucose media decreased by an average of 15% (p < .01) (FIGURE 5.28). 

However, cell number was lower in 30 mM glucose due to increased cell size. When 3 ~ -  

thymidine incorporation was normalized to cell number, there was no difference in DNA 

production with glucose. 
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FIGURE 5.27: ENDOTHELIAL CELL DNA PRODUCTION IN RESPONSE TO SOLUBLE FGF-2 IS 
DOSE DEPENDENT. Confluent porcine aortic endothelial cells were incubated with 
increasing levels of FGF-2. After 21 hours, 1 pCi 3~-thymidine was added for three hours. 
Cells were then lysed with 1 M NaOH, and the cell lysate was measured in a liquid 
scintillation counter. (p < .0001) 
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Endothelial cell apoptosis with FGF-2 

The FGF-2 effect on endothelial cell survival was elucidated in the annexin V - 
propidium iodide assay using both added FGF-2 and a neutralizing FGF-2 antibody. We 

demonstrated in Chapter 4 that endothelial cells release FGF-2 concomitant with 

apoptotic membrane damage, therefore neutralizing antibody removed native FGF-2 

released from cells themselves. We first determined that the FGF-2 antibody effectively 

neutralized FGF-2 added in media FBS, added exogenously, or released from 

endothelial cells. For all FGF-2 types, the neutralizing antibody reduced active FGF-2 by 

two to three fold (FIGURE 5.). 

Endothelial cell apoptosis increased by 20% in 30 mM glucose conditions, as 

described in Chapter 4. Addition of a saturating FGF-2 dose did not significantly 

decrease apoptosis for either 5 or 30 mM glucose cells (p > .05), although standard 

deviation did decrease (FIGURE 5.). However, neutralizing antibody addition increased 

apoptosis by 50% for 30 mM glucose cells compared to those with added FGF-2 (p < 

75000- 
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FIGURE 5.28: GLUCOSE DECREASES ENDOTHELIAL CELL DNA PRODUCTION IN RESPONSE TO FGF-2, 
BUT THE DIFFERENCE DISAPPEARS WHEN DATA IS NORMALIZED TO THE CASE WITHOUT ADDED FGF-2. 
Confluent porcine aortic endothelial cells cultured in 5 or 30 mM glucose were incubated with 
increasing levels of FGF-2. After 21 hours, 1 pCi 3~-thymidine was added for three hours. Cells 
were lysed with 1 M NaOH, and cell lysate was measured in a liquid scintillation counter. (p < .01) 



.05). Similarly, when reactive oxygen 

species production was induced in 

endothelial cells using tBHP, 

presence of tBHP increased 

apoptosis for all conditions (p < .05), 

and FGF-2 neutralizing antibody 

addition increased apoptosis for cells 

with high reactive oxygen species (p 

< .05) (FIGURE 5.). 
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FIGURE 5.30: ENDOTHELIAL CELL APOPTOSIS IS HIGHER IN 30 MM GLUCOSE CULTURE, WHICH 
IS PARTIALLY INHIBITED BY FGF-2. Endothelial cells were cultured for four days in 5 or 30 
mM glucose media. For the final two days, exogenous FGF-2 or a neutralizing FGF-2 
antibody was added to media. Cells were trypsinized, labeled with annexin V and 
propidium iodide, and analyzed by flow cytometry. (#) p < '05 
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FIGURE 5.29: A NEUTRALIZING FGF-2 ANTIBODY 
DECREASES AVAILABLE CELL RELEASED FGF-2. 
Endothelial cells were cultured for four days in 5 or 30 
mM glucose media. 1 pglml of a neutralizing FGF-2 
antibody was added on day three, and on day four, 
media FGF-2 was quantified via FGF ELISA. (p < .01); 
(#) p < .05 when compared to 30 mM without antibody. 



Studies of endothelial cell exposure to TNFa showed the complex role of FGF-2 

in the apoptotic process. At 12 hours, apoptosis for cells exposed to TNFa was almost 

twice that of unexposed cells (FIGURE 5.32). FGF-2 neutralizing antibody eliminated the 

difference between cells exposed and not exposed to TNFa (p > .05). After 24 hours 

TNFa exposure, apoptosis was significantly decreased by FGF-2 antibody addition (p c 

.05) but was still higher than that of cells not exposed to TNFa (p < .01) (FIGURE 5.33). 

Antibody addition shows that part of the TNFa apoptotic effect was increased through 

FGF-2 release. 
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FIGURE 5.31: ENDOTHELIAL CELL APOPTOSIS DUE TO REACTIVE OXYGEN SPECIES IS PARTIALLY 
ABROGATED BY ENDOTHELIAL CELL FGF-2 RELEASE. Endothelial cells cultured for four days 
in 5 mM glucose media were exposed to tBHP for the final two days, along with either 
exogenous FGF-2 or a neutralizing FGF-2 antibody. Cells were trypsinized, labeled with 
annexin V and propidium iodide, and analyzed by flow cytometry. (*) p < .01; (#) p < .05 
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FIGURE 5.32: FGF-2 INCREASES ENDOTHELIAL CELL APOPTOSIS DUE TO TNFa (12 HOURS). 
Porcine aortic endothelial cells were exposed to TNFa for 12 hours in the presence of 
exogenous FGF-2 or a neutralizing FGF-2 antibody. Cells were then harvested, labeled 
with annexin V and propidium iodide, and analyzed by flow cytometry. (*) p < .O1 
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FIGURE 5.33: FGF-2 INCREASES ENDOTHELIAL CELL APOPTOSIS DUE TO TNFa (24 HOURS). 
Endothelial cells were exposed to TNFa for 24 hours in the presence of exogenous FGF- 
2 or a neutralizing FGF-2 antibody. Cells were then harvested, labeled with annexin V 
and propidium iodide, and analyzed by flow cytometry. (*) p c .01; (#) p < .05 
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5.3.5 Signaling pathway alterations 

FGF-2 intracellular signaling pathways were investigated by Western blot. 

Endothelial cells cultured in either 5 or 30 mM glucose showed similar 1.7 fold increases 

in phosphorylated-Erk with constant Erk after FGF-2 exposure, indicating normal 

progression along the proliferative pathway (TABLE 5.1, FIGURE 5.34). However, active 

phosphorylated-Akt increased 50% in 5 mM cells with FGF-2 exposure but did not 

increase at all in high glucose cells exposed to FGF-2. Signaling down the anti- 

apoptotic survival pathway appears to be disrupted in high glucose cells. 

TABLE 5.1: FGF-2 INDUCES A 50% INCREASE IN P-AKT IN LOW BUT NOT HIGH GLUCOSE CULTURE. Endothelial 
cells were cultured for four days in 5 or 30 mM glucose media, after which an FGF-2 stimulus was 
applied. Densitometry of the Western blot (FIGURE 5.34) shows that p-Erk increases by 1.7 fold for both 5 
and 30 mM glucose cells, whereas p-Akt increases 50% for 5 mM glucose cells only. 

Erk 
p-Erk 
Akt 

p-Akt 
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FIGURE 5.34: HIGH GLUCOSE CULTURE DECREASES ENDOTHELIAL CELL FGF-2 AKT SIGNALING 
WITHOUT CHANGING ERK SIGNALING. Endothelial cells cultured in 5 or 30 mM glucose were serum 
starved overnight and then incubated with FGF-2 for 10 minutes. Cells were lysed and cell 
extracts run on a gel. After transfer, specific antibodies to Erk, phospho-Erk, Akt, and phospho- 
Akt were used to identify specific signaling proteins. Decreased intensity of the phospho-Akt band 
indicates lower FGF-2 signaling down the anti-apoptotic Akt pathway in high glucose culture. 
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5.4 Discussion 

The increase in basement membrane FGF-2 in high glucose is interesting in 

itself, in that it shows how endothelial cells actively control basement membrane protein 

content. However, the data become far more intriguing when we consider how 

basement membrane FGF-2 in turn affects endothelial cell function. In this chapter, we 

propose a new model for the role of FGF-2 in the basement membrane-endothelial cell 

co-regulatory loop under high glucose stress conditions. 

5.4.1 Viable cell count and FGF-2 

The population of endothelial cells that retain their viability is determined by a 

balance between proliferation and death. Since FGF-2 promotes both proliferation and 

survival, cell number provides a starting point for determination of FGF-2 effects on 

endothelial cells. Cell number increases in a dose dependent manner with FGF-2 

addition independent of delivery method and culture glucose, indicating a favorable 

balance of proliferation and apoptosis. Cell number consistently peaks at 5 days and 

maximal response is at approximately 5 ng/ml added FGF-2 (FIGURE 5.5). 

We now show that the increase in basement membrane FGF-2 with glucose has 

a measurable effect on endothelial cell number. Cells seeded on basement membrane 

grown in 30 mM glucose have higher cell numbers than cells seeded on basement 

membrane grown in 5 mM cell glucose, whether put in growth media to measure 

proliferation and survival or in starvation media to examine survival in particular (FIGURE 

5.2 - FIGURE 5.4). Incubation of 5 mM basement membrane with FGF-2 prior to cell 

seeding abrogated the difference in cell number between 5 and 30 mM basement 

membrane, pointing to FGF-2 as the critical factor (FIGURE 5.2, FIGURE 5.3). 

However, basement membrane post-FGF-2 extraction does not show decreased 

endothelial cell number when compared to basement membrane with its native FGF-2 

(FIGURE 5.1). This could indicate that salt extraction removes only the surface FGF-2 

fraction, and as cells break down the basement membrane, they are still able to release 

adequate FGF-2 from deeper in the basement membrane to support cell proliferation 

and survival. This concept is supported by the lower cell number when tissue inhibitor of 
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matrix metalloproteinases (TIMP) is added to media to inhibit basement membrane 

breakdown. For all conditions, TIMP addition decreases cell number. 

Exposing endothelial cells to serum-free media begins to dissect out survival 

versus proliferation FGF-2 effects, as cell proliferation is severely impeded in starvation 

media. After extended starvation, cells seeded on 5 mM glucose basement membrane 

have decreased survival over cells on 30 mM glucose basement membrane, but both 

are still improved over serum-coated tissue culture polystyrene (FIGURE 5.4). The 

increased survival with high glucose basement membrane is only -lo%, which 

accounts for only part of the total change in growth media (30-35%). Basement 

membrane FGF-2 appears to have additive survival and proliferation effects on 

endothelial cells. 

Throughout all cell count experiments, endothelial cell number is lower in high 

glucose media even for the same FGF-2 level (FIGURE 5.1, FIGURE 5.7). Since it is 

unclear whether this effect is related to decreased proliferation or increased apoptosis, 

more experiments are needed to dissect out the particular mechanism. 

5.4.2 Endothelial cell FGF-2 binding kinetics 

Similar to basement membrane FGF-2 binding kinetics, equilibrium capacity and 

association of FGF-2 to endothelial cell surface heparan sulfate proteoglycans are 

unchanged with either culture glucose or glucose in the environment. The ratio of bound 

to soluble FGF-2 (1:40) is the same for both basement membrane and cell surface 

heparan sulfate proteoglycans, indicating similar binding conditions in both locations 

(FIGURE 5.1 1 ). FGF-2 capacity and association to cell surface receptors are also 

unchanged with glucose, but the bound to soluble FGF-2 ratio is about a third lower 

(1:66). At first, this seems counterintuitive since the cell surface receptor is a high 

affinity binding site. However, there are 10 to 10000 times more cell surface heparan 

sulfate proteoglycans than cell surface receptors (146). The increased binding ratio of 

bound to soluble FGF-2 for heparan sulfate proteoglycans is likely an effect of quantity 

overriding affinity. 

FGF-2 dissociation from both cell surface heparan sulfate proteoglycans and 

receptors similarly does not change with glucose. The FGF-2 off rate from heparan 
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sulfate proteoglycans is reported to be an order of magnitude higher than that for cell 

surface receptors (1 19). Especially for samples with glucose in the buffer, we show a 

higher off rate for heparan sulfate proteoglycans, indicating good agreement with the 

literature (FIGURE 5.20, FIGURE 5.22). These data show that FGF-2 is able to bind 

normally to endothelial cells independent of glucose, which points to intracellular 

signaling changes as the cause of altered endothelial cell response to FGF-2. 

5.4.3 FGF-2 effects on proliferation and apoptosis 

Individual analyses of endothelial cell proliferation and apoptosis are necessary 

to determine the cause of decreased cell number in 30 mM glucose after exposure to 

FGF-2. We show that endothelial cell entry into S-phase is highly dependent on FGF-2. 

The level peaks at 24 hours and remains elevated for at least 72 hours, indicating a 

prolonged proliferative effect without additional FGF-2 stimulation (FIGURE 5.23). The 

extended FGF-2 effect could be related to continued elevation of FGF-2 in culture 

media, FGF-2 binding and slow release from basement membrane, slow internalization 

of bound FGF-2, or lasting effects of internalized FGF-2. 

Both cell cycle and DNA production show dose dependent proliferative 

responses to FGF-2. Both also show less proliferation for cells cultured in 30 mM 

glucose. However, when the percentage of S-phase cells with 1 nglml FGF-2 added is 

normalized to the percentage of S-phase cells with no FGF-2 added, the difference 

between high and low glucose cells becomes insignificant. Similarly, when the 

difference in 3~-thymidine incorporation is normalized, the difference between high and 

low glucose becomes insignificant. Thus glucose clearly has an anti-proliferative effect 

on endothelial cells, but the effect does not seem to be mediated through FGF-2. 

Apoptosis is an altogether different situation. Apoptosis increases with culture 

glucose, as seen in Chapter 4, and FGF-2 is released concomitant with apoptotic 

membrane damage. When endothelial cells are cultured with a high FGF-2 level, the 

apoptotic difference between low and high glucose cells becomes statistically 

insignificant (FIGURE 5.29). These data imply a protective survival role of FGF-2 in high 

glucose apoptosis, but question the role of cell-released FGF-2 with apoptotic cell 

membrane damage. The cell-released FGF-2 does have some protective effect, 
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however, as when an FGF-2 neutralizing antibody is used to block cell- released FGF-2, 

apoptosis does increase. 

These data imply that FGF-2 release with apoptosis is protective, but constant 

high FGF-2 levels are more protective. Apoptotic FGF-2 release occurs slowly over 

time, so perhaps high FGF-2 levels are needed before or early in the process of 

environmental stress to be protective. In fact, when we examined short term intracellular 

signaling in response to FGF-2 in low and high glucose, survival signaling was 

diminished. A detailed analysis of FGF-2 intracellular survival signaling over time with 

glucose would clarify the difference in added versus apoptosis-released FGF-2. 

5.4.4 Importance of secondary mediators 

Glucose effects on FGF-2 survival signaling begin to elucidate the importance of 

secondary mediators. In particular, we show here that reactive oxygen species and 

TNFa have opposite effects on FGF-2 survival signaling. Similar to the case for glucose, 

reactive oxygen species cause increased apoptosis, which only increases when FGF-2 

is removed with a neutralizing antibody (FIGURE 5.). Apoptosis due to TNFa, on the 

other hand, actually decreases when an FGF-2 neutralizing antibody is added (FIGURE 

5.32, FIGURE 5.33). Removal of FGF-2 completely removes any significant increased in 

apoptosis with TNFaat 12 hours. At 24 hours, it is likely that high endothelial cell- 

released FGF-2 does not allow the antibody to fully neutralize FGF-2, so some effect is 

still seen. 

The increase in TNFa-induced apoptosis with FGF-2 has been previously 

presented in the literature in glomerular endothelial cells, but the signaling remains 

unclear (182). It has been proposed that FGF-2 increases cytochrome C release from 

mitochondria. However, as both TNFa and FGF-2 signal through NFKB and JNK, 

dysregulation of these pathways may contribute to the pro-apoptotic FGF-2 effect with 

TNFct (1 83). The implications of this finding are far-reaching in terms of diabetic wound 

healing. If a wound becomes infected, and a high TNFa level is present, then increased 

FGF-2 released by basement membrane would only further inhibit healing. 
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5.4.5 A mechanistic model for the endothelial cell - basement 
membrane unit 

We now propose a mechanistic model for interaction between endothelial cells 

and basement membrane in cooperative FGF-2 regulation (FIGURE 5.35). Glucose 

increases intracellular reactive oxygen species formation, which decreases signaling 

down the Akt pathway and leads to increased apoptosis and FGF-2 release. By an 

unknown mechanism, but possibly also reactive oxygen species-mediated, glucose 

increases endothelial cell permeability. High FGF-2 release and cell permeability lead to 

increased basement membrane FGF-2, which likely builds with time. Basement 

membrane FGF-2 then helps to modulate decreased cell proliferation due to glucose 

stress (FIGURE 5.36). However, FGF-2 cannot completely abrogate glucose-induced 

apoptosis due to loss of Akt activity. 

5.4.6 Limitations 

While these data point to a critical role for basement membrane FGF-2 in cell 

proliferation and survival, they are not without limitations. We demonstrated similar 

effects of soluble and basement membrane bound FGF-2 on viable endothelial cell 

number, but subsequent experiments were performed entirely with soluble FGF-2 due 

to ease of controlling FGF-2 levels. However, it is possible basement membrane bound 

FGF-2 differentially affects specific endothelial cell processes such as proliferation and 

apoptosis. 

The endothelial cell FGF-2 binding kinetics data is of lower quality than basement 

membrane FGF-2 binding kinetics data. This makes it challenging to determine if 

alterations in FGF-2 binding could lead to some functional cell changes because in 

some cases it appears as though slightly more FGF-2 binds endothelial cells in high 

glucose, and in some cases it appears as though less binds. Even more important is 

internalization, since FGF-2 must not only bind to cells but be brought inside the cell to 

begin signaling cascades. Our preliminary data show no significant change in FGF-2 

internalization with glucose, but the issue was not fully explored. Similar to limitations of 

basement membrane binding kinetics experiments, each cell binding kinetics 

experiments was performed on a macro time and quantity scale. Smaller transient 
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changes at the cell surface level could cause larger cell signaling alterations, so more 

detailed measurements of micro- and nano-binding kinetics would be needed. 

Limitations of endothelial cell apoptosis measurements have been described in 

Chapter 4. Endothelial cell proliferation measurements have their own limitations. 3~ 

thymidine has been shown to affect cell function, therefore the assay cannot 

independently measure cell proliferation. Determination of cell entry into S-phase can 

be confounded by low data quality, but our data was of a relatively high quality and 

showed clear cell differentiation between cells with normal, intermediate, and twice 

normal levels of DNA. 

FGF-2 effect on endothelial cell survival with different secondary mediators is 

complicated and likely dependent on FGF-2 signal timing. Our experiments only 

investigated FGF-2 addition or neutralization at one time point. In addition, the ability of 

the FGF-2 antibody to completely remove any FGF-2 signaling over time is limited, and 

it is likely that some FGF-2 could still bind to cells. Since FGF-2 is potent at extremely 

low levels, any neutralizing antibody failure could have profound effects. 

Finally, we used Western blot to detect intracellular signaling pathways in 

response to FGF-2. The sample amount added to each lane was normalized to total 

sample protein to reduce any inconsistencies, however total Erk and Akt varied slightly 

among samples. Our data also could be confounded by protein and signaling molecule 

glycation, or reduced ability of antibodies to bind to altered Akt and Erk forms. The 

phospho-Akt signal was difficulty to detect, and it is therefore possible that the 

decreased level in high glucose cells is an artifact. 
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5.5 Conclusions 

Viable endothelial cell number is decreased in high glucose, in particular 

because proliferation decreases and apoptosis increases. Increased basement 

membrane FGF-2 in high glucose helps mitigate these effects by increasing 

proliferation. However, the anti-apoptotic FGF-2 effect is lost in high glucose likely due 

to decreased signaling down the intracellular Akt pathway. These data illustrate the 

complexities of a new mechanistic model for endothelial cell - basement membrane 

FGF-2 co-regulation. Furthermore, FGF-2 has the opposite effect on apoptosis in the 

presence of TNFa, which demonstrates that glucose is not the only factor to modulate 

growth factor effects on endothelial cells. 
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Thesis Summary 

With the rising worldwide diabetes epidemic and its associated vascular 

morbidity and mortality comes the need to understand diabetic vascular 

dysfunction. Diabetes is a complex disease that causes a wide array of 

molecular, cellular, and tissue effects over a range of time. We investigated one 

diabetic change (hyperglycemia) in one system (FGF-2 regulation in the 

endothelial cell - basement membrane unit) over one time range (hours to days). 

We have shown that over the course of days, basement membrane FGF-2 

storage increases linearly with glucose. This change is not caused by alterations 

in basement membrane protein composition and structure, which seem to occur 

on a longer time scale. Rather, endothelial cells actively control FGF-2 basement 

membrane storage through FGF-2 release and cellular permeability. These 

endothelial cell dysfunctions with glucose are perhaps mediated through early 

membrane changes in apoptosis and intracellular reactive oxygen species. 

Glucose in turn mediates basement membrane FGF-2 effect on endothelial cells 

by inhibiting signaling down the anti-apoptotic Akt pathway without altering the 

proliferative Erk pathway. Thus glucose disturbs FGF-2 storage, release, and 

signaling within the endothelial cell - basement membrane unit. 

This thesis helps elucidate the complex interaction between endothelial 

cells and basement membrane, as well as the role of FGF-2 in diabetes. Perhaps 

most important clinically, we have shown that physiologic glucose fluctuations on 

the order of hours to days can have long term detrimental effects in the 

vasculature. This may help explain why tight glucose control does not correlate 

with decreased vascular morbidity and mortality in diabetes. 



6.1 Specific Findings 
7 

This thesis investigated the interaction between endothelial cells and basement 

membrane as a co-regulatory unit, focusing in particular on biochemical cooperation. 

We hypothesized that glucose could perturb this system, altering interaction at a level 

with biochemical impact that then translates to functional impact. Our specific model 

tested how a physiologic glucose range mediated altered handling of vasoactive 

compounds such as FGF-2 within the endothelial cell-basement membrane unit. This 

dysregulation between cells above and basement membrane below could contribute to 

disease initiation and progression. 

In support of these concepts, this thesis consisted of a series of studies designed 

to elucidate the role of FGF-2 in glucose-induced vascular dysfunction, in particular as 

FGF-2 is cooperatively stored, released, and metabolized by endothelial cells and 

basement membrane. 

In Chapter 2, we developed novel methods to examine FGF-2 binding kinetics 

with isolated basement membrane in vitro. In addition to demonstrating techniques to 

measure capacity, association, and dissociation of FG F-2 with isolated basement 

membrane, we showed that FGF-2 binds to tissue culture polystyrene and developed a 

correction scheme to account for this binding in the basement membrane model. 

In Chapter 3, we used an in vitro hyperglycemic cell culture model to show that 

basement membrane FGF-2 increases with culture glucose. Basement membrane 

binding kinetics methods clearly demonstrated that this change was not related to 

alterations in basement membrane FGF-2 binding kinetics. 

In Chapter 4, we redefined endothelial cell control of basement membrane FGF- 

2. We discovered that endothelial cells released more FGF-2 in high glucose and were 

more permeable to FGF-2, which combined to allow more FGF-2 to bind into basement 

membrane. Our data further suggest that FGF-2 release is associated with reactive 

oxygen species mediated apoptosis, in particular with early apoptotic cell membrane 

changes. 

In Chapter 5, we examined how FGF-2 released from basement membrane 

affected endothelial cell proliferation and survival. After confirmation of consistent 



endothelial cell FGF-2 binding kinetics with physiologic glucose concentrations, we 

demonstrated similar proliferation but increased apoptosis in response to FGF-2 in high 

glucose. This change appeared to be mediated through decreased signaling down the 

Akt pathway with glucose. 

This thesis has made significant progress towards understanding the cooperative 

activity of endothelial cells and basement membrane. We have shown that endothelial 

cells actively control basement membrane content, which is particularly important in 

terms of vasoactive factors which can in turn affect cells. By elucidating interaction 

between cells and natural materials, we can move closer to smart biomimetic material 

design and therapies that target natural basement membrane as a therapeutic device. 

6.1 . I  FGF9 release and storage as protection 

The endothelium functions as an endocrine organ composed of a single cell 

monolayer along all blood contacting surfaces in the body. It is logical that injury to or 

death of one cell induces protective mechanisms to rescue not only itself but cells 

around it. Thus when an endothelial cell is injured by environmental stress, it releases 

FGF-2 in an attempt to save its own life and protect its neighbors' lives. In addition to 

the protective effect, the FGF-2 signal induces neighboring cells to migrate and 

proliferate in case the injured cell does die. 

The system seems more ingenious when basement membrane is factored in. 

Upon cell injury, FGF-2 is released not only into the temporary soluble environment but 

into the lasting bound basement membrane storage reservoir. Thus a previous injury 

can actually help protect cells against a future injury. In the case of repeated glucose 

loads, this system may become dysfunctional as FGF-2 builds up in basement 

membrane and contributes to diabetic vascular disease. As with many physiologic 

adaptations, what starts out protective turns destructive. 

6.1.2 Time scale of glucose effects 

While hyperglycemia has been linked to diabetic vascular dysfunction, tight blood 

glucose control does not correlate with decreased morbidity and mortality. We therefore 



asked the fundamental question: do short term glucose fluctuations within the range 

defined as normal lead to vascular dysfunction? 

Certainly short term deleterious effects of glucose extremes, whether osmotic or 

ketoacidotic, are well recognized clinically. Long term protein-based advanced glycation 

end products have been extensively studied in their role in diabetic complications. We 

now show through this thesis that physiologic fluctuations in glucose on the order of 

hours and days have important effects on vascular function. 

Clinical definitions of dangerous hyperglycemia may need to be reconsidered. 

Recent studies have shown that our strict cut-offs for normal blood lipoproteins or blood 

pressure oversimplify biological processes. In fact, clinical evidence has shown that a 

reduction in blood lipoproteins or blood pressure-even from high normal range to low 

normal range -is beneficial. We may need to consider glycemia in the same manner. 

Patients with glucose in the high normal range, in particular those with other risk factors 

leading to endothelial cell dysfunction, should possibly be treated to reduce their 

vascular disease risk. 

6.1.3 Hyperglycemic memory 

The vascular effects of hyperglycemia do not disappear once the glucose load 

has been removed. Restoration of euglycemia in both animals and humans does not 

reverse or even prevent diabetic vascular disease progression (1-5). This suggests 

some means of hyperglycemic memory, in which glucose causes an effect that lasts 

long after the stimulus has been removed. 

Others have suggested AGE, or even mitochondria1 DNA damage, as potential 

mechanisms for hyperglycemic memory (6). However, this thesis shows that basement 

membrane serves as a memory device. FGF-2 is released from endothelial cells and 

stored in basement membrane during hyperglycemic episodes, only to be released 

later. If FGF-2 is released in a euglycemic period, it may in fact have a completely 

different effect on endothelial cells given the alteration in intracellular signaling 

pathways with glucose. 

For example, streptozotocin-induced diabetic dogs showed no proliferative 

diabetic retinopathy until after they were returned to euglycemia (2). It is possible that 



the prolonged hyperglycemic period led to FGF-2 buildup in retinal capillary basement 

membranes, but FGF-2 did not have a net proliferative effect on endothelial cells 

because of the high glucose-induced apoptosis rate. However, once the glucose load 

was removed, cells were stimulated both to proliferate and survive by stored FGF-2 

release. Also, in diabetic wounds, the combination of high stored FGF-2 in concert with 

inflammatory TNFa could block the normal angiogenic process by inducing endothelial 

cell apoptosis. 

The basement membrane provides a means for vascular memory. In 

understanding endothelial cell - basement membrane co-regulation, we need to 

consider long term effects of short term hyperglycemia even when glucose is not 

beyond what we define as normal. And when we target growth factors for a drug 

therapy, we need to consider both soluble and bound growth factors. 

6.2 Next Steps - 

6.2.1 A quantitative basement membrane model 

This thesis examined how the endothelial cell - basement membrane unit 

regulates one particular growth factor, with a specific release mechanism, binding site, 

and cellular signaling scheme. To truly understand interaction between endothelial cells 

and basement membrane, we must examine other growth factors and cytokines with 

different release, binding, and signaling properties to determine their binding and 

release kinetics. In this way, we can develop a quantitative model of the endothelial cell 

- basement membrane co-regulatory unit which will be useful for biomaterials design as 

well as predicting functional changes in disease. 

Vascular endothelial growth factor (VEGF) binds and releases basement 

membrane in a similar way to FGF-2, yet it has an alternative release mechanism and 

cellular signaling (7). Cytokines, such as interferon-y and interleukins, similarly bind 

basement membrane heparan sulfate proteoglycans, but again have different release 

and signaling (8). Using molecules with varied release, transport, binding, and signaling 

mechanisms, we can probe kinetics of the endothelial cell - basement membrane 

system and thereby develop a quantitative understanding of these critical parameters. 



Growth factor and cytokine basement membrane binding kinetics form an 

important basis for mechanistic insight but have limited applicability to real systems. We 

must move forward to study basement membrane binding kinetics in the presence of 

cells. We could begin with cell-produced matrix metalloproteinases (MMPs), and their 

antagonists, tissue inhibitors of matrix metalloproteinases (TIMPs). These are perhaps 

the soluble cellular factors that most influence growth factor and cytokine binding and 

release from basement membrane. Cells can then be added into the system in co- 

culture, and finally in direct contact with basement membrane to slowly elucidate how 

the endothelial cell - basement membrane unit functions as an ensemble. 

The experiments in this thesis examine endothelial cells and basement 

membrane in bulk rather than on the micro- or nanoscale. While we have assumed that 

basement membrane acts as a reservoir, we do not fully understand growth factor 

release from cell, storage in basement membrane, release from basement membrane, 

and growth factor binding to cell at the protein level. Detailed study of the microscale 

endothelial cell - basement membrane unit will require novel application of emerging 

techniques, including micropatterning, atomic force microscopy, and fluorescence 

resonance energy transfer (FRET). While these techniques present intrinsic challenges, 

they are critical to developing a complete quantitative model. 

6.2.2 Endothelial cell - basement membrane mechanics 

The endothelial cell - basement membrane unit is a structural and biochemical 

system. It is na'ive to consider either in isolation. For this thesis, experiments were 

performed in static cell culture for the sake of isolating and clearly studying biochemical 

relationships. Now these relationships must be tested in the face of concomitant 

mechanical influences. 

The cell response to a soluble stimulus may be regulated by the local mechanical 

environment (9). Basement membrane connects to the endothelial cell cytoskeleton 

through integrins, which are critical cell signaling features. In particular for endothelial 

cells, which are in direct contact with shear and normal stresses from blood flow, 

mechanical interaction between cell and basement membrane influences cell signaling. 

In fact, mechanical forces alone may alter basement membrane binding kinetics. 



With new techniques, we can not only strain endothelial cells and basement 

membrane on a large scale, but we can probe mechanical interactions protein by 

protein. We can learn if alterations in basement membrane proteins, through quantity or 

glycation or crosslinking, alter cell focal adhesion complex strength and thus alter 

cellular response to a growth factor stimulus. We can learn if stretching basement 

membrane, or the endothelial cell - basement membrane unit, increases FGF-2 binding 

by opening up new binding sites, or alternatively decreases binding by altering heparan 

sulfate proteoglycan conformation. And how does strain affect endothelial cell FGF-2 

release and permeability? Endothelial cells at altered flow sites are known to be more 

permeable. Are glucose and flow effects additive? 

6.2.3 Toward biomimetic materials and basement membrane therapies 

Biomaterials investigation is confounded by the sheer quantity of literature in the 

field. Yet while it is relatively simple to find an investigation of a particular cell type on a 

particular material, it is nearly impossible to find a discussion of governing properties of 

cell-material interactions. A new approach is clearly needed. If we seek instead to 

understand how natural materials interact with cells, perhaps we can design materials 

that meet these specifications rather than continue the trial and error process. 

The first step is developing a quantitative model of the basement membrane - 

endothelial cell unit, including both biochemical and mechanical interactions. We can 

then build these features into a material and test the novel system. Current technology 

already allows us to incorporate basement membrane topography, protein components, 

and mechanical properties into polymers that support delivery of factors for drug therapy 

or cellular adhesion for tissue engineered structures (1 0). 

However, even though we can carefully control design of these systems in vitro, 

a major challenge remains designing materials that can sense and react to biochemical 

signals in the body (1 1). For example, FGF-2 enhances endothelial cell survival in the 

presence of glucose but would be more effective if glucose were not present. FGF-2 

actually decreases endothelial cell survival if TNFa is present. Could we create an FGF- 

2 delivery system that would absorb or neutralize glucose and TNFa so FGF-2 could 

fully stimulate endothelial cell survival and proliferation? Since nearly all therapies are 



most effective in the presence or absence of specific secondary signals, polymeric 

systems should be designed in which release of a given therapeutic substance only 

occurs in the optimal biochemical environment. These advanced materials would deliver 

therapy when it would provide benefit rather than harm. 

Many current biomaterials must stand up to harsh mechanical conditions, which 

are often an impediment to biomaterial function. However, mechanical forces could be 

used to deliver a therapy when it is most needed, whether that therapy is drug release 

or simply an alteration in mechanical material properties. Can we design materials that 

respond and reorganize in response to mechanical loads, so that cells can also respond 

and reorganize? 

Alternatively, instead of trying to create materials that mimic basement 

membrane, we can create drugs that target basement membrane. If we want to 

neutralize growth factors in the retina or kidney, we need to consider not just soluble 

growth factors but those bound to basement membrane as well. Perhaps a drug therapy 

could decrease the FGF-2 dissociation rate from basement membrane, thereby 

decreasing the FGF-2 stimulus for cells. Or perhaps we could use increased endothelial 

cell permeability in high glucose or abnormal blood flow to target a therapy to basement 

membrane? It is possible that something as simple as giving a drug during a 

hyperglycemic episode could increase basement membrane deposition and therefore 

drug half life in the body. This would allow basement membrane to serve as a local drug 

delivery device, creating slow therapeutic release with time. 

We can better design smart materials and drug delivery only when we 

understand how nature has ordered the system in which we work. An understanding of 

basic biological mechanisms should be used to develop materials that will bind and 

release vasoactive factors in a manner similar to natural basement membrane, as well 

as target drugs and treatments to basement membrane as a natural drug delivery 

device. 

Far too often, materials used in medicine are selected because they are inert or 

minimally damaging in the body. In fact, most biomaterials used today were not 

designed for their specific purpose-rather, they were tested in vivo, determined to be 

safe, and then used repeatedly. With our greater understanding of biology, our 



improved experimental methods in both biology and materials science, and our 

increased ability to create new materials, the next generation of biomaterials will be 

designed for specific tasks. This thesis demonstrates how engineering techniques can 

be used to study natural basement membrane properties. As this work continues, I hope 

these discoveries will be translated into medical therapies to ameliorate morbidity and 

mortality in cardiovascular disease. 
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