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Abstract 

Tactical control is needed in environments characterized by uncertainty and con- 
tinuous, dynamic change. Given the likelihood of time constraints and high risks 
associated with poor tactical choices, current autonomous vehicles do not possess the 
decision making abilities to successfully perform in these environments. However, 
human experts frequently operate in these domains where they are forced to make 
quick, reactive decisions based on incomplete information. We propose, then, that the 
first step in augmenting autonomous vehicles (AVs) with improved tactical control 
capabilities is to learn, encode, and apply tactics exhibited by human experts. To 
test the method, five human subjects were given the task of performing an armed 
reconnaissance mission in a simulation environment over multiple cases with varying 
terrain and probability of enemy contact. By scoring the performance in each case, 
the best actions and decisions were filtered out and analyzed in depth to understand 
the strategies and tactics behind them. Human cognitive models and decision making 
theories were utilized to determine the cognitive processes underneath the decisions 
as displayed by the human subjects' think aloud reports and surveys. A baseline 
autonomous vehicle controller was designed independent of the human-in-the-loop 
experiments that could also perform the reconnaissance mission. After capturing the 
human tactics and encoding them into statechart form, a revised AV displayed a su- 
perior ability to engage enemy contacts uncovered during the reconnaissance when 
compared to the baseline AV. A final framework is presented that outlines how to 
learn and apply human-inspired tactics in future settings. 
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Chapter 1 

Tactical Decision Making: Humans 
and Automation 

The purpose of this thesis is to address the following two related questions: 

1. How can the tactical decision making capabilities of human experts be 
learned and transferred over to an autonomous vehicle? 

2. Can a human expert learn how to exploit vehicle-specific dynamics in 
tactical scenarios to achieve high levels of performance for goal-oriented 
missions? 

Autonomous vehicles (AVs) currently perform reconnaissance missions [50]. How can 
they be improved to perform armed reconnaissance missions? What are t-he major 
limitations in control systems that exclude AVs from participating in such tactical 
scenarios? 

, This research proposes that the missing piece is the ability to generate appropri- 
ate decisions when the environment is both uncertain and dynamic. Human experts 
operating in tactical environments must make decisions all the time based upon in- 
formation that is uncertain and/or missing. In fact, these human experts train so 
much for these environments because of the uncertainty, the decision making process 
becomes "intuitive." Selecting courses of action based on "intuition" is extremely 
hard to quantify. Furthermore, human experts operating in tactical environments 
must quickly generate decisions due to the dynamic change in the environment. This 
time-constrained, on-line computation problem is very difficult to implement. Fi- 
nally, human experts operating in t act ical environments must respond appropriately 
to novel situations. To write software code for unknown and unforeseen circumstances 
is an enormously tough challenge. All of these difficulties for AVs are an accepted 
element in the human expert's task. Therefore, this research proposes that the first 
step in creating better decision making AVs is to learn from the human expert. 



1.1 Motivation 

AVs in the battlefield do not yet have the control capabilities to replace pilots in 
tactical situations. The major advantage of integrating AVs into today's air forces 
is that the probability of losing human pilots decreases, especially in extremely risky 
and dangerous missions. Military commanders are less and less willing to send pilots 
into situations where the expectation of loss of life is high compared to the perceived 
benefit of destroying a specific target. This reluctance is because we place a high 
value on human life. Military commanders would be more willing to risk losing an 
AV in exchange for destroying a high value target. 

Because the theory of decision making is a central theme in this research, it is 
important to show at the outset the mathematical validity of the above reasoning. 
The military commander's choice to risk an AV rather than a human life can be shown 
to be mathematically valid, or rational, using techniques from classical or normative 
decision theory. According to classical decision theory, a choice is rational if it meets 
the following three criteria [15] : 

1. It is based on the decision maker's current assets. 
2. It is based on the possible consequences of the choice. 
3. When these consequences are uncertain, their likelihood is evaluated 

without violating the basic rules of probability theory. 

Mathematician John von Neumann and economist Oskar Morgenstern published The- 
ory of Games and Economic Behavior in 1953 in which they presented the principle 
of expected utility in accordance with normative decision theory [83]. This principle 
guided decision makers in how to make rational decisions based on the three criteria 
above. 

Mathematically, computing the expected utility of a decision is exa.ctly identical 
to computing the expected value of an event. The principle of expected utility states 
that with each possible outcome, xi, there is both an associated probability of its 
occurrence, P(xi), as well as a subjective personal utility (a gain or loss), u(xi). In 
terms of discrete probabilities, the expected utility of a choice is the sum of each 
possible gain or loss multiplied by its probability of occurrence, which is given by 
Equation 1.1. 

n 

Note that E[X] is the standard notation for expected value. Here U[X] emphasizes 
that this is expected utility. Expected utility theory attempts to mathematically 
explain why different individuals make different decisions based on their own personal 
values. 

Here, the military commander must compare the expected utility (personal value) 
of sending a human pilot into a risky and uncertain mission against sending an AV. 
Equation 1.2 describes the expected utility of sending the human pilot. 

U[sending in pilot] = crlP(loss) + a;  life) + azP(success) + a;~(failure) (1.2) 



where a1 , the loss associated with the pilot's death (al < 0) , and a;, the gain associ- 
ated with the pilot living (a; > O), are utilities according to the military commander's 
personal belief of the value of human life. Likewise, there is a gain and loss associated 
with the mission success or failure (a2 > 0 and a; < 0, respectively), which, for 
example, is the destruction (or not) of a high value target. 

Because both loss (death) and life as well as success and failure are mutually 
exclusive (assuming no outcome of a damaged state), P(1oss) + P(1ife) = 1 and 
P(success) + P(fai1ure) = 1. Equation 1.2 can then be rewritten as following: 

U[sending in pilot] = (al - a;)  loss) + a; + (a2 - a;)  success) + a; (1.3) 

Furthermore, there is an associated expected utility with sending in an AV, given by 
Equation 1.4. 

U [sending in AV] = (a3 - a;)  loss) + a; + (a2 - a;)  s success) + a; (1.4) 

where a3, the loss associated with losing the AV (a3 < O), and a;, the gain associ- 
ated with the AV living (a$ > O), are utilities according to the military commander's 
personal belief of the value of the AV. Likewise, there is a gain and loss associated 
with the mission success or failure (a4 > 0 and a& < 0) for the AV. If we assume that 
the human and AV have the same performance skills in relation to the same enemy, 
then they have equal probabilities of loss, life, success and failure. Furthermore, since 
the destruction of the target is independent of who destroyed it, the gain and loss 
associated with P(success) and P(fai1ure) are the same. Finally, if the military com- 
mander has an equal gain associated with bringing back all assets from the mission, 
then a; = a$, the gains associated with P(1ife). 

As discussed above, the military commander would rather risk losing an AV rather 
than a human, which is equivalent to U[sending in AV] > U[sending in pilot]. Sub- 
stituting in Equations (1.4) and (1.3), canceling all like terms, and solving for the 
loss associated with P(death) , we see that 2 < 1. Thus, all things being equal, the 
expected utility of sending in the AV is greater than that of sending in the pilot if and 
only if the military commander places a higher value on human life. Here, assigning 
a higher value to human life is a larger loss associated with P(death) of human life, 
a1 is more negative than a3. Assuming the military commander does place a higher 
personal value on human life, the decision is both rational and mathematically sound. 
It is desirable, then, for AVs to perform the more dangerous and risky missions. How- 
ever, the reality of today's battlefield is that humans and AVs do not have the same 
performance skills. Thus, there will be different probabilities of loss, life, success, 
and failure, and the military commander may or may not choose to send in the AV. 
This then, represents somewhat of an ultimate goal of this thesis. We desire to bring 
the performance skills of AVs in dangerous, risky scenarios up to par with human 
experts so that the military commander can make decisions according to the above 
framework. 

The dynamic, uncertain, and mult i-dimensional environment of tactical scenarios 
have all combined to limit AVs from performing these missions. On the other hand, 



humans are trained to become experts in these operating environments. The dispar- 
ity highlights the following strengths of humans: first, the ability to filter massive 
amounts of information and make quick decisions only on relevant cues [38]; second, 
the ability to estimate uncertain and missing information which affects the possible 
decision choices [36]; third, t'he ability to adapt to new circumstances and find creative 
solutions [18]. 

Therefore, the goal of this research is to systematically interrogate, represent, 
and encode military tactics, providing AVs with expert decision making capabilities. 
This level of expertise will complement manned platforms in two significant ways. 
First, it will provide more autonomy and more flexibility in the range of executable 
missions for AVs. Second, by bringing a human expert into the design loop of an 
AV's decision making ability, we hope to make AVs more predictable, trustworthy, 
and better understood by their manned count'erparts. As AVs are integrated into 
today's battlefield where manned and unmanned platforms operate together, both of 
t,hese out,corrles are necessary so that humans and AVs can interact synergistically to 
enhance the overall team performance. 

1.2 Subset of Control Hierarchy 

There is a spectrum of decision-making levels or control hierarchy inherent in each 
AV-based mission carried out by the military. Figure 1- 1 depict's this hierarchical 
structure extending from the high-level planning of a mission down to the lowest- 
level actuation of control devices to follow a desired trajectory. The middle layer of 
tactics, as defined for this research, exists somewhere between t,he operations research 
and optimal control problems. Before defining these tactics more ~pecifica~lly, a cou- 
ple of assumptions must be stated. It is assumed, first of all, tha,t t'he higher-level 
mission planning has already occurred, i.e. - the number of allocated resources (in- 
cluding AVs), the objectives of the mission, and the proposed routes and waypoints 
have already been decided. Second, it is assumed that the AV has a low-level trajec- 
t,ory generation algorithm and closed-loop cont,rol which executes dynamically feasible 
motion for the AV in response to its tactical decisions. Note that all of these control 
levels are t'ightly interwoven. A tactical decision made in response to a pop-up threat 
results in a replanning of the vehicle's desired rout'e which can only be implemented 
by an inner-loop controller thereby utilizing all levels of cont,rol. 

Tactical decision making must also be defined along with the scenarios and prob- 
lem constraints. For this research, a scenario is the dynamic environment a human 
expert must operate in to carry out an assigned mission with specific object'ives and 
goals. Examples include reconnoitering an air corridor in the desert to allow safe 
passage of troops to designated landing zones, launching off an aircraft carrier and 
searching for a downed pilot at sea, helping special operations forces laze a t,arget for 
a Hellfire missile launch, and battle damage assessment after engagements. In each 
of these scenarios, the human has a set of const'raints that limit the range of avail- 
able tactical options: vehicle dynamic capabilities, rules of engagement, out-of-range 
cornmunicat ion limit at ions, survivability instincts, weapons sensor field-of-view, fuel 
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Figure 1-1: Spectrum of control levels for autonomous vehicles. 



and ammunition remaining, etc. Therefore, the tactics the human employs in these 
scenarios are the decisions made, techniques employed, and actions taken to success- 
fully carry out the mission in the face of dynamically changing environments while 
satisfying constraints. 

By this definition, tactics can be treated in several ways. First, these tactics 
can be as simple as general rules-of-thumb. For example, if a threat of ground fire 
exists, say from rocket propelled grenades (RPGs) or small-arms fire, the helicopter 
pilot helping to scout out the urban environment must never hover, even if for just 
a few seconds. Second, these tactics can be strict protocol, such as flying specially 
designed profiles in and out of green zones so friendly forces can rapidly identify the 
vehicle as friendly irrespective of radio communication or identification-friend-or-foe 
codes. However, in their hardest form to quantify and represent are the human's 
reactive decisions to uncertain and dynamic environments. It is only through years of 
training and experience that humans form the intuition and skill to choose consistently 
appropriate actions and reactions in these environments. Thus, these tactics are the 
high risk, real time decisions humans make under time pressure. This third category 
of tactics is what we seek to understand and encode. 

1.3 Existing Work 

Current research efforts in human-inspired automation design have focused on the fol- 
lowing three areas: creating agent architectures and human behavior models, artificial 
learning techniques, and humanlmachine collaboration. 

1.3.1 Computer Generated Forces 

By far, the largest amount of effort in human-inspired automation design is creating 
software agents or computer generated forces (CGFs) through human behavior mod- 
els (HBMs). One of the most well-known HBMs is SOAR. This cognitive architecture 
uses the concepts from Newel1 and Simon's book Human Problem-Solving called uni- 
versal sub-goaling and chunking [47, 551. Universal sub-goaling is the continual break 
down of a goal into subgoals until a solution path is found by means-end analysis. 
Chunking is the recording of a solution path in memory. In the SOAR architecture, 
every problem-solving situation is composed of four elements: a goal, problem space, 
state, and operator. If the SOAR agent is given a problem that matches a previous 
chunk, it implements the already recorded solution. If not, the SOAR agent cre- 
ates a problem space and searches for a solution path to the goal by sequentially 
applying operators to current states. After a problem has been solved, the SOAR 
architecture records the goal, problem space, states, operators, and the solution path 
in memory. This is a primitive cognitive architecture that has the potential to create 
a large knowledge base of chunks. In fact, the primary application of SOAR has been 
TacAir-SOAR, which has been used to model human pilots for large distributed mili- 
tary simulation exercises, and in 1991 it already contained over 5,200 rules or chunks 
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Other more recent agent architectures have been implemented using the Belief, 
Desire, Intent (BDI) paradigm [7] and the Recognition-Primed Decision (RPD) model 
[38]. Both of these models will be discussed in detail in Chapter 3. BDI describes the 
human behavior to plan and coordinate as the result of the human's existing beliefs, 
desires, and intentions. The attractiveness of BDI is that it achieves a useful balance 
between planning and reaction-based behavior. The BDI paradigm has been applied 
in object-oriented models as the fundamental agent architecture for both distributed 
multi-agent systems [37] and single simplified agent design called "poor man's BDI" 
by the designers [3]. BDI has also been used to build Quake 2 agents using the 
programming language JACK [48]. As a final example, the SOAR architecture has 
been redefined in terms of BDI which has opened up new possibilities of interaction 
between combined SOAR and BDI architectures [27]. 

RPD describes the mechanisms of expert decision making in real world settings. 
It has been widely accepted because of its simplistic but accurate understanding of 
human decision making. A large effort in building CGFs with a RPD framework 
has been focused on evaluating RPD agent performance in the OneSAF Test Bed 
and air traffic controller environments [86]. Other work includes building agents to 
perform simulated driving tasks [71]. All of these agents have applied Hintzman's 
multiple-trace memory model [32] as the basis for storing goals, cues, expectancies, 
and actions that can be recalled by recognition routines. A final effort to mention 
is the application of RPD to a composite agent network, where separate agents are 
responsible for the four recognition by-products of goals, cues, expectancies, and 
act ions [70]. 

CGF applications like TacAir-SOAR and BDI and RPD agents have one main 
requirement which differ from this research. The agent must appear human. The 
cognitive architecture, then, must incorporate variability in terms of decisions made, 
actions taken, and goals pursued both within and across simulated entities [75, 85, 
911. The implications, then, are twofold. First, it is not always desirable to choose 
the optimal solution for a given situation. Humans tend to either make emotional, 
irrational decisions or rational but suboptimal decisions. Second, human experts are 
mainly employed for critiquing the behavior of the simulated entity, i.e. - is it realistic? 
Therefore, the initial creation of the knowledge base, like TacAir-SOAR, arises mainly 
from military field manuals and tactics, techniques, and procedures documents which 
describe the normative process that should occur in tactical scenarios. Human experts 
become consultants to validate the "obvious" response a simulated entity should 
choose [35, 841. However, this thesis focuses on forming a tactical knowledge base 
directly from the human expert. In this way, the human expert's role is not to be a 
consultant but a trainer. Furthermore, this research seeks to find the best decisions 
made and strategies used by human experts. In no way does it desire to create 
human-like AVs. Rather, the whole purpose is to extract only the human strengths 
of tactical decision making strategies and build them into AVs. 



1.3.2 Artificial Learning 

Another major area of research in human-inspired automation design is artificial 
learning. This machine learning method typically takes the form of a human expert 
performing a task in a simulator where data can quickly be collected and analyzed by 
the automated observer. In this area of synthetic learning, researchers have success- 
fully implemented both a hybrid neural networks structure [65] and a combination of 
genetic programming and context-based reasoning [22] to learn motor vehicle control 
skills. In game theory, Bayesian networks have allowed automated players to learn 
tactics in a football simulation and perform consistently better against stronger op- 
ponents [28]. Lent and Laird describe a hierarchical operator structure based upon 
SOAR to learn to fly a racetrack pattern [82]. While artificial learning is certainly a 
time-saving approach to learning expert knowledge, it is not sophisticated enough to 
be applied to tactical environments characterized by uncertainty and dynamic change. 
There are many aspects of human decision making in these tactical environments that 
are difficult to quantify and can only be subjectively interpreted by another human. 
Therefore, it is important to emphasize that the purpose of this research is not artifi- 
cial learning. This research recognizes the importance of a human interpreter because 
the goal is not how fast can tactics be learned and applied to an AV, but how plausible 
is the idea. 

1.3.3 HumanIMachine Collaboration 

A final area of research that requires note is humanlmachine collaboration. The main 
focus of this research is how to find the optimal balance of decision making authority 
as appropriated between humans and machines. Malasky et al. simulated a com- 
mand and control environment for planning and resource allocation and varied the 
levels of humanlmachine interaction [40]. Forest looked at human input in algorith- 
mic design by varying when the human guided the design process [24]. Fan et al. 
created a multi-agent system where humans interacted with RPD-based agents [21]. 
This allowed for adaptive decision making between humans and agents where the 
more-experienced agents, as determined by recognition capability, had more decision 
making authority. Humanlmachine collaboration, as discussed in these sources, is an 
extremely important step in the philosophy of team-centered automation design. The 
only way that automation will be tightly integrated into all aspects of the battlefield 
is if it exhibits reliability in its decision making and engenders trust by putting the 
team's goals above its own. However, humanlmachine collaboration is the next step 
beyond this research. Once the AV possesses greater tactical control and decision 
making abilities, the question will then be how to pair up the AV with a manned 
asset, for example as a pilot's wingman [46]. 

1.3.4 New Questions 

Existing research in human-inspired automation design addresses issues in this thesis 
- the need for a human cognitive architecture, the ability to learn from a human, 
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Figure 1-2: Unmanned laser designator statechart from Mark Hickie's thesis. 

a humanlmachine collaborative mindset to keep a team-centered automation design 
approach - but does not address the fundamental concern of how to discriminate 
and learn the best human tactics and apply them to an AV. As will be seen, part 
of answering this question is in answering another. The related issue is: can a hu- 
man apply his or her tactical expertise to a given platform and use the platform's 
capabilities as both a medium and springboard for tactical decision making? These 
questions have not been tackled in literature. Yet, an initial effort was made by Mark 
Hickie in his Master's thesis 1311. By interviewing Army helicopter pilots, consulting 
field manuals, and running simulations in the U.S. Army's force-on-force simulation 
tool, One Semi-Automated Forces (OneSAF) Test bed Baseline 2.0 (OTB 2.0), he 
identified, encoded, and validated military tactics for rotary wing AVs. He proposed 

- statechart diagrams as the representation of tactical knowledge. For example, Figure 
1-2 depicts his statechart representation of the decision-making process for an AV 
acting as an unmanned laser designator for a manned platform. However, Hickie was 
only able to show a small improvement in performance. One issue was the complexity 
and opacity of the OTB 2.0 software. The other issue was that his tactical knowledge 
base was too constrained. An expert's knowledge can be described as either explicit 



or implicit. While this is an overly-simplified categorization, it serves to differentiate 
between the explicit knowledge a human expert can consciously and verbally relate to 
an interviewer and the implicit knowledge that is termed intuition. Tactical knowl- 
edge is implicit [22]. Therefore, Hickie was unable to truly capture tactical decision 
making. However, his initial work serves as a starting point for this research. 

1.4 Two-Stage Tactical Control Paradigm 

This research hypothesizes that when seeking to enable AVs with better decision 
making capabilities, human experts possess a wealth of operational experience and 
training. Human experts already have the right decision making skills, and to map 
these skills to an AV is a major step towards this goal. However, humans and automa- 
tion have different strengths and weaknesses [88] in terms of both output performance 
and input sensor capabilities. Therefore, we do not seek to simply map over the hu- 
man expert's decision making to an AV. That is only the first step. If the process 
terminated at that point, the AV would be biased towards decision making strategies 
based on human stimulus response and human performance constraints. 

The second stage, therefore, seeks to optimize the learned tactical behavior t>hrough 
modern numeric algorithms that search the design space to optimize a given cost 
function. By correctly identifying the parameters of the cost function and perturb- 
ing selected variables, Monte Carlo simulation can give insight into optimizing the 
tactical decision-making process of AVs. The desired end-state, then, is to develop 
a systematic way to integrate tactical behavior into unmanned vehicles in two steps. 
This two-stage tactical control paradigm is displayed in Figure 1-3. First, we learn 
from subject matter experts (SME) and arrive at a suboptimal solution derived from 
a finite number of cases. Second, we optimize the human-derived solution for the 
specific application and/or desired behavior for the unmanned vehicle. 

As will be discussed later, the tactical knowledge learned from human experts will 
be encoded in statechart form [30]. In statechart form, discrete states and transitions 
drive the continuous vehicle motion. Thus, the optimization problem is a hybrid con- 
trol problem consisting of discrete and continuous variables. Hybrid control is still a 
relatively new area of research and presents many complex challenges [6]. Different 
nonlinear optimization methods are being compared to help address this problem. 
In particular , the evolutionary genetic algorithms (GAS) offer new techniques [33]. 
Many algorithms require linearity, convexity, continuity, or only discrete variables. 
However, GA has no such requirement. If the problem can be encoded into a GA 
chromosome, GA can search nonlinear, hybrid, high-dimensional functions and find 
decent solutions. Ultimately, the goal is to find optimal solutions while guaranteeing 
performance and algorithm completeness. GA does not guarantee even a good so- 
lution, but it does perform well in many cases of interest. Furthermore, GA can be 
fast. Therefore, GA performance depends on the problem and on how it is applied 
to the problem, but it appears promising [78]. 

Alan Schultz and John Grefenstette showed how genetic algorithms can improve 
tactical plans [61]. They tested how well genetic algorithms could improve a set of 



Figure 1-3: Systematic two-stage process of integrating tactical control logic into 
unmanned vehicles. 



conditioned-action rules for an airplane evading a missile. Not only did they show 
the ability to learn decision rules and tactical plans that drastically improved the 
airplane's success rate in evading a missile, they compared the learning ability when 
initialized with different sets of rules. Specifically, they placed humans in charge of 
maneuvering the airplane away from the missile, and used their demonstrated rules 
as one initial set. The second initial set consisted of a single rule which stated that 
for any sensor inputs (i.e. - the airplane and missile states),' take action X, where 
X is a random selection of one of the possible set of actions. Thus, this initial rule 
executed a random walk. When these two sets of initial rules were compared, Schultz 
and Grefenst et te found that the performance of the human-inspired rules quickly 
rose to 95% success rate after only 50 generations, whereas the random walk rule set 
only achieved a little over 80%. Even after 100 generations, the human-inspired rules 
combined with genetic algorithm learning produced a 98% success rate with a smaller 
variance in performance then the random walk rule set which achieved 94% success 
rate. Therefore, there is not only strong reason for using genetic algorithms to improve 
tactical performance, there is also experimental proof that initial human input can 
produce better end results. Ultimately, Schultz and Grefenstette's work emphasize the 
benefits of a follow-on effort to human-inspired tactics. This complementary research 
will complete the transformation from manned behavior to unmanned performance 

~781. 

1.5 Thesis Overview 

The layout of this thesis is as follows. First, in Chapter 2, we discuss the traditional 
approach in automation design by looking at the unique strengths and weaknesses of 
humans and automation. Then, we describe some of the human factors issues that 
have arisen due to this traditional design approach based on functional task allocation 
and how they lead to a human-centered approach to automation design. Finally, we 
describe team-centered automation design and the necessity of reliability in tactical 
environments. In Chapter 3 we begin by considering the cognitive processes under- 
lying human decision making. Then, we present the information-processing model of 
human c,ognition used in problem solving and decision making paradigms. Next, we 
analyze normative decision making theory and the human tendency to depart from 
the theory due to decision heuristics and biases. Then, we overview three cognitive 
frameworks that provide templates to improve AV decision making skills. Finally, 
we discuss the nature and limitations of learning human expertise. In Chapter 4, 
we discuss the experimental setup and methodology for eliciting and learning human 
strategies. We then present the equations, algorithms, and parameters that govern 
the simulated entities' behavior in the simulation. Next, we analyze in detail the base- 
line, untrained AV behavior. We conclude the chapter by discussing the limitations of 
the experimental method. In Chapter 5, we present the results of the human-in-the- 
loop experiments, the process of learning and encoding the human-inspired tactics 
into an improved AV, and the performance increase of the improved AV behavior 
over the baseline. In Chapter 6, we summarize our conclusions by proposing a frame- 



work for learning and applying human-inspired tactics. Finally, we offer future work 
possibilities in Chapter 7. 

In short, this research will show the ability to learn reactive engagement tactics 
from human experts and apply that knowledge t'o improve performance. A simulated 
baseline autonomous vehicle was developed that exhibited simple but logically co- 
herent and reasonable behavior. This baseline behavior was designed independent of 
any huma,n-in-the-loop testing. The baseline autonomous behavior was strictly reac- 
tive. Then, two rounds of experiments were designed to compare t'he performance 
of the human subjects a,nd baseline behavior. The first round was to acclimate the 
human subjects to the simulation environment and provide enough training for them 
so that they could exhibit expert behavior. In the second round, t,he human subject8s7 
performance was scored, and they clearly showed superior performance over the base- 
line. Through surveys, recorded verbal data, and observations of the human subjects's 
actions, successful strategies a,nd tactics to evade and enga,ge pop-up t'hreats were 
encoded in statechart form. This improved autonomous behavior was then compared 
to the ba,seline autonomous behavior through Monte Carlo simulation. This step was 
necessary t'o verify that t'he learned tactics were truly superior or if the small number 
of cases used to derive the tactics would limit the scope of their applicability. 

This research will also present in detail how to formulat'e search strat'egies by 
focusing in on the huma,ns' objectives, goals, and intentions. Reacting to enemy 
contacts and engaging them was only one part of the mission objectives given t,o 
the human subjects. They also had to divide their time between searching t'hrough 
different sections of terrain, with one part of the terrain being more important to 
completely search through than the other. Furthermore, the human subjects were 
given a probability of enemy contact in each of t'he terrain sections. Finally, by 
adding a time constraint to the scenario, the human subjects were forced to carefully 
consider how they could best accomplish the mission objectives of searching through 
as much terrain as possible, being especially cognizant to completely cover the more 
critical terrain, and reacting to enemy contact that could pursue and destroy the 
humans' vehicle. Therefore, we conclude with a framework of how t,o learn and 
apply human-inspired tactical knowledge that incorporates both reactive tactics and 
searching strategies. 





Chapter 2 

Humans and Automat ion: 
Expertise and Reliability' 

The familiar saying that unmanned aircraft are better suited for "dull, 
dirty, or dangerous" missions than manned aircraft presupposes that man 
is (or should be) the limiting factor in performing certain airborne roles. 
Although any flight can be dull or dangerous at times, man continues 
to fly such missions, whether because of tradition or as a substitute for 
technology inadequacies . . . The attributes that make the use of unmanned 
preferable to manned aircraft in the above three roles are, in the case of 
the dull, the better sustained alertness of machines over that of humans 
and, for the dirty and the dangerous, the lower political and human cost 
if the mission is lost, and greater probability that the missions will be 
successful. Lower downside risk and higher confidence in mission success 
are two strong motivators for continued expansion of unmanned aircraft 
systems. [50] 

The above quote, from the Pentagon's Unmanned Aerial Systems (UAS) Roadmap 
2005, makes it clear that a major reason for investing in autonomy is human limi- 
tations. Autonomous vehicles (AVs) have longer endurance for dull missions, such 
as around-the-clock surveillance. They are also cheaper and more acceptable to risk 
losing when performing dirty missions, such as flying into the cloud of a dirty bomb 
explosion to determine its chemical makeup, or dangerous missions, such as destroy- 
ing multiple enemy air defenses. Finally, AVs are more agile and more precise in 
control, and thus they can sustain more aggressive maneuvering that a human could 
not. Therefore, the author(s) of this quote argue that the AV is functionally better 
suited for these "dull, dirty, and dangerous" missions. 

The first section of this chapter explores the traditional approach to a~t~omation 
design by functional task allocation, which helps define natural boundaries of expertise 
between humans and automation. The second section of this chapter discusses how 
this traditional automat ion design approach has failed to adequately integrate humans 
and automation into a cooperative system. It then highlights t,he need for team- 
centered automation design and its unique applicability to tactical environments. 



2.1 Functional Task Allocation 

Since the 1950s, many automation designers have relied on a functional allocation of 
tasks to determine the relationship between man and machines. Designers begin with 
a set of requirements that are typically high-level performance goals, and they desire 
to build in automation to the system. By identifying where the human has failed 
before and confirming that automation is better suited for these particular tasks, a 
design decision is made to replace the human. This is functional task allocation [63]. 
If automation can better perform a task (where "better" equates to more precise, 
faster, and/or less costly), than the human should be replaced. 

2.1.1 Automation and Human Capabilities and Limitations 

Fitts List 

In 1951, Fitts et. al. were tasked in addressing the relationship between humans 
and automation in the future of air traffic control [l l] .  As a starting point, they 
asked the following two question: what can men do better than machines and what 
can machines do better than men? The answers to these two questions formed the 
famous Fitts List and the basis of functional task allocation. The comparison between 
humans and automation still hold true today. The basic strengths and weaknesses of 
humans have not changed in fifty years. Automation is certainly more mature now 
than in Fit ts' day, and vision-based control systems, pat t ern-recognition algorithms, 
improvements in sensor technology, and adaptive learning systems are all blurring the 
lines between human and machine strengths. Yet, Fitts List addresses fundamental 
dichotomies that will for the near future not change. 

Humans possess five functional char act erist ics that elevate them over the machine 
[l l] .  First, the amazing auditory and visual acuity sensory functions allow for ex- 
tremely low stimulus thresholds. For example, a human eye can detect the flare of a 
match that is lit fifteen miles away on a dark night. A trained human ear is so sensi- 
tive that it can almost detect random collisions of molecules of air. Note, though, that 
artificial sensors allow detection of energy wavelengths outside the human eye's and 
ear's bandwidth. Second, perceptual abilities allow a human to abstract a pattern 
into long-term memory. For example, a human can recognize an uncle that has not 
been seen for a few years and has changed from always being clean-cut to a grown 
beard. The abstraction of the uncle into long-term memory allows rapid retrieval 
and recognition even if the uncle has grown a beard, lost some weight, etc. Consider 
also the qualities of squareness, roundness, and triangularity which can be easily un- 
derstood and recognized even though square faces, round edges, and triangles exist 
in an abundance of forms. Pattern-recognition routines are still a long way off from 
achieving this level of perceptual ability. Third, the flexibility of humans enable them 
to tackle old problems in new ways or to simply improvise. As Fitts notes, "the 
machine will attempt as many different kinds of solutions as its designer planned 
for and no more." Fourth, after attaining a level of situational awareness, humans 
can selectively recall previous experiences from long-term memory storage and judge 



how best to proceed in the current situation. Fifth a,nd finally, inductive reasoning is 
unique to humans. Of all these strengths, only the sensory functions and judgment 
and selective recall abilities (long-term memory storage retrieval in combination with 
an inference engine) appear potent'ially executable by maturing technology. 

In contrast, what can machines do bett,er than humans? First, the processing 
speed and power of ma'chines greatly exceed human capabilities. The fastest reaction 
human time from stimulus appearance to input response is 0.1 seconds. An aver- 
age response time in the cockpit is 1.5 seconds for the pilot. Second, machines can 
perform routine t,asks quicker and more accurately than a human. No human enjoys 
"busy work." Third, the computational mpabilities of a computer far exceeds that of 
a human. Fourth, ma,chines maintain more efficient use of working memory. Some- 
times humans have difficulty erasing information from working memory ("I cannot 
get that song out of my head.") which takes up necessary st,orage space for other 
problems. Finally, through partitioning, a comput'er can perform several simultane- 
ous activities at the same time. Other than for extremely basic funct'ions such as 
breathing or walking, humans are serial processors. Try taking the inverse of a ma- 
trix while carrying on a conversation. Attention ha,s to be cont,inua~lly diverted to the 
problem, then to the conversation, but not both at the same time. Out of all of these 
strengths, a human expert may be able to gain greater computational skills and more 
efficient working memory usa,ge, but only through years of practice. Yet, even then, 
computational ability would not be close. 

The strengths of humans do not lie in manual labor, whether that is the construc- 
tion worker welding beams toget her, t he high school student taking a pre-calculus 
test, or the pilot making continuous adjustments to the control inputs to maintain 
steady, level flight. Automation can perform these sorts of tasks more accurately 
and more efficiently. The strengths of humans lie in cognitive judgment processes, 
concept abstraction, and creative, inductive reasoning skills. Before addressing how 
these strengths contribute to learning tactical knowledge, we discuss one other more 
recent comparison of human and machine expertise. 

0 t her Comparisons 

Table 2.1 displays another listing of the strengths and weaknesses of humans and 
machines [9]. The top left set of characteristics in the table describe the strengths 
of human expertise in problem-solving. Humans are creative and adaptive. Humans 
have the ability t,o try completely new ways to solve a problem, and they learn from 
their mistakes and successes to better position themselves for the future. Human per- 
ception of the environment is also vastly superior to a machine's because of sensory 
experience, allowing complex problems such as pattern recognit,ion to be an uncon- 
scious, inherent part of everyday human life. Also, by utilizing parallel strategies 
and lines of thought, humans can maintain a broad focus or a so-called "big picture" 
view that helps guide the overall problem-solving process while taking time to solve 
narrow-focused problems. Humans can hierarchically tackle a problem. Finally, hu- 
mans can extrapolate their experiences and knowledge to many other areas in life by 
using common sense. 



Sensory Experience 
Broad Focus 

HUMAN EXPERTISE 
The Good News 

Creative 
Adaptive 

Symbolic Input 
Narrow Focus 

MACHINE EXPERTISE 
The Bad News 

Uninspired 
Needs to be Told 

I Common-sense Knowledge I Technical Knowledge I 
The Bad News 

Perishable 
Difficult to Transfer 
Difficult to Document 

Table 2.1: Comparison between human and machine. 

The Good News 
Permanent 
Easy to Transfer 
Easy to Document 

Unpredictable 
Expensive 

The bottom right set of characteristics in Table 2.1, describe the strengths of 
machine expertise in several particular areas. First, machine memory is permanent. 
In contrast, if humans do not consciously revisit and rework areas of expertise that 
have not been used over long periods of time, they risk losing that expertise. Second, 
machine expertise can be easily transferred to other machines with common format- 
ting architectures, such as would be found in mass production, by downloading and 
uploading. However, it takes a long time for a human expert to teach an apprentice 
all of his or her expertise. Third, though debugging is extremely painful, in theory, 
machine expertise is easy to document because it's already recorded in software lines 
of code and written to hard drives. One of the main weaknesses of humans is the 
inability to be consciously aware of their own cognitive processes. Human expertise 
is difficult to document because many times experts declare that they simply acted 
out of intuition. Fourth, it is true that if a machine is given the exact same set of 
operating conditions, it will act in the exact same way as before. The problem is that 
because software has become so complex, there is a transparency issue where the user 
and even computer programmer can easily become confused as to its behavior. Hu- 
mans, on the other hand, are more subject to unpredictability, primarily because of 
their emotions. Finally, machines are economical and affordable, otherwise humans 
would not have continued to design and build them. It is very expensive, though, 
to replace a human expert, not only because humans have more life-sustaining needs 
then machines, but because human expertise, as described above, is very difficult to 
transfer. 

Consistent 
Affordable 

2.1.2 The Right Knowledge 

Examining the strengths and weaknesses of humans and automation is necessary in 
attempting to learn human tactical knowledge and implement that knowledge in AVs. 
We are not interested in designing AVs that make decisions exactly like humans. It 



is not a one-to-one mapping of human cognition to software design. Rather, we want 
to learn the best knowledge and the best decisions made and implement that subset 
of human knowledge into AVs. To do t'hat, we have to understand what should be 
carried over from the human, and where the AV is already superior. For example, 
the AV's reaction time to a quantifiable sensory input, such as radar, will always be 
superior to a human's reaction. However, the question of how to interpret that input 
in a context of dynamic environments and mission objectives is something an AV 
lacks. 

Consider an intelligence, reconnaissance, surveillance (ISR) mission. The task is 
to search through a section of terrain and report any enemy contacts. Given a terrain 
geometry, a section of the terrain to be searched, a time limit, vehicle equations of 
motion, and sensor specifications, a computer can use heuristic searching algorithms 
t,o find a solution path that maximizes the amount of terrain seen within ~onst~raints. 
On the other hand, when this section of terrain is only one piece of an entire path to be 
searched, when there is a very good but still uncert,ain chance of enemy contlacts along 
this terrain, and when there is a more important piece of terrain still to be reached 
with time running out, it takes the creat'ive reasoning, adaptability, and broad focus 
of a human expert to effectively accomplish the ISR mission goals. 

This example also highlights the need to learn strategies not act8ions, to understand 
why the human expert chose their actions, not just the actions themselves. We can 
observe the human expert utilize creative reasoning to find a new solut,ion path t'o 
a problem, and then simply note t'he actions taken and the environmental variables 
that were present and encode this information as a new rule. However, this would fall 
far short of understanding why the new solution path was chosen. If the strategy was 
known, it could be used as a t,emplate or higher-level goal that would help solve future 
variations of the problem. Learning strategies and not just actions are important for 
at least three reasons. One, it is impossible for the human expert t,o participate in a 
full factorial search of the multi-dimensional environment to create a complete rule 
set. Two, the continual change of the battlefield requires decision making skills that, 
go beyond preset actions. It also can make any such full fact'orial effort as irrelevant. 
Three, understanding strategies and not just actions is the only way t,o extrapolate 
lessons learned in a simple simulation environment to higher fidelit!y exercises, and 
ultimately real life. 

Therefore, it is not enough to observe a human subject matter expert solve a 
problem which is completely quantifiable. A computer can do that. Remember that 
tactics were defined as the decisions made, techniques employed, and actions taken to 
successfully carry out the mission in the face of dynamically changing environments 
while staying within constraint's. Thus, when we seek to learn human tactical knowl- 
edge, there must be uncertainty in the scenario, a hierarchy of objectives the human 
is attempting to accomplish, and an allowance of flexibility and creativity so that the 
human can learn effective ways to solve each new problem. In fact, t'he conclusion 
from the Fitts list section of the 1951 report is as follows: [ll] (italics for purposes of 
this research) 

In summary then, we can see that the human carries within him some 



remarkable powers that cannot yet be duplicated by machines, especially 
abilities needed to deal with changing situations and unforeseen problems. 

Tactical environments are changing and uncertain and yet human experts operate 
successfully within them. These, then, are the strengths of humans and where we 
seek to improve AV capability. 

2.2 Team Centered Automation 

In Chapter 1, we stated that by improving AV tactical control, we hope to make AVs 
more predict able, trustworthy, and better understood by their manned counterparts. 
The above section discussed what aspects of human tactical capabilities can help 
augment an AVs tactical control. The quest'ion still remains of whether this improved 
tactical control will either compete with current human experts or cooperate and 
support them. 

2.2.1 Unique Demands of Tactical Control Environments 

Because we are considering tactical control in high pressure, high risk, high tempo, 
dynamic environments, there are unique demands placed upon any AV that au- 
t onomously makes decisions in these battlefield situations. These demands are due to 
the unpredictability and the consequences of battlefield operation, which both point 
to a necessary element of trust between members of a team operating within tactical 
environments. This need for trust underscores AV design that is also team-centered. 

High Tempo and Uncertainty 

The tactical knowledge we seek to learn from human subject matter experts is reactive 
to changing environments. Battlefield operations are the quintessential environment 
of uncertainty and continuous change with high-stakes outcomes. There is never 
enough intelligence for any mission because too much is unknown and too much will 
change [46]. In addition to this unpredictability, there are other sources of noise and 
error. These are the AV's own noisiness in sensing the state of the environment, the 
possibility of internal system malfunctions, and the ever-insidious presence of software 
bugs. Therefore, all these error sources combined with the sheer uncertainty and 
change of the battlefield guarantees two things. First, there will always be situations 
in which the AV chooses the wrong decision [54]. Probability theory dictates there 
will always be some chance of failure or loss. What was a right decision initially may 
quickly become the wrong one during its execution. Second, there will always be 
situations in which the AV has no experience. Expert systems only display expertise 
for those conditions in which they have been programmed. AVs cannot be required to 
display expert decision making for a set of conditions not included in their rule base. 
Artificial learning and adaptive systems seek to address this problem, but as Canning 
says, "machines lack knowledge of the world context that they are in, something that 
people learn from birth" [9]. Without a world context that exists beyond a rule 



base, the AV must rely on a master switch return-t,o-base or hover-and-wait function 
that turns on in case of confusion. Therefore, t'he probability of a wrong decision or 
the failure to make any decision forces AV designers to consider the consequences of 
such outcomes. Ukong decisions can be tolerated to the degree of the negative cost 
incurred. 

High Pressure and High Risk 

The life and death nature of battlefield operations also places unique demands on 
reactive decision making AVs. Both the Law of Armed Conflict (LOAC) as well as 
the Geneva C~nvent~ions provide rules and guidelines that attempt t,o minimize the 
casualties to civilians during warfare [lo]. Unfortunately, recent conflicts reveal how 
enemies try to exploit friendly forces attempts to abide by LOAC by intentionally 
placing civilians in harm's way to gain tactical advantage. Consider, for example, 
mass uprisings against United Stat'es (U.S.) peace-keeping forces in Somalia where 
insurgents either hid between women or children to fire at U.S. ground forces or 
simply placed semi-automatic weapons int,o trhe hands of t,heir children to fire at U.S. 
ground forces [5]. Even if AVs possess the t'actical decision making capabilities to 
successfully provide ground support for friendly forces, the consequences of missing 
targets and hitting civilians or even friendly forces are a t'remendous hurdle. Note, 
however, that tlhere could be situations in which fully autonomous reactive decision 
making is appropriate. For example, a new feature being considered for the Lockheed 
Martin Joint Strike Fighter's flight control system is the auto-eject for the U.S. Na,vy 
variant [49]. Pilots do not have the reaction time to eject while being catapulted 
from the deck of a U.S. aircraft carrier if there is a major failure during takeoff. 
Therefore, auto-eject is appropriate to save t,he pi1ot"s life if it can be proven robust' 
and reliable. Unfortunately, no matter how many metrics of reliability the AV passes, 
no matter how grea,t the end-to-end testing program, accidents will occur [9]. If the 
consequences of incorrect decisions are great, then Parasuraman et. al. recommended 
the following: [54] 

Giving the pilot the opportunity to review the decision choice and forcing 
a conscious overt action, provides an "error-trapping" mechanism that 
can guard against mindless acquiescence in computer-generated s~lut~ions 
that are not contextually appropriate. 

For instance, if tactical decision making on the battlefield includes the use of weapons, 
some sort of "error-trapping" gate will have to be in place. Note that any level of 
"error-trapping" in AVs is appropriate, regardless of whether it's armed or not. The 
point of this section is to underscore that arming an AV provides a greater need for 
reliability. Therefore, though t,he AV could be the weapon delivery platform, the 
consequences of battlefield operations require a team effort centered on trust and 
reliability to ensure the minimization of civilian or friendly force losses. 



Lack of Trust 

The attitudes of current pilots highlight the need for trust in tactical situations. 
Morales and Cummings investigated how pilots responded to the use of AVs as "wing- 
men," where wingmen are the elements in an aircraft formation [46]. In their study, 
pilots could vary the level of control given to and task three AV wingmen through 
a cockpit interface. The pilots who participated included four A-10 pilots, two F-16 
pilots, two crewmembers in a multi-crew AC-130 cockpit, and two ground operators 
of the Predator AV. The scenarios included target acquisition, AV assignments, battle 
damage assessment, and secondary strikes. The research objective was to answer the 
following three questions: 

1. What levels of pilot control and AV/human interaction do pilots think 
are appropriate? 

2. What is the relative importance of different display characteristics? 
3. Should AVs play the role of a "wingman?" 

Analysis indicated that pilots generally agreed on the following points. AVs should 
be allowed to defend themselves with complete autonomy and should automatically 
collect images of targets and transfer that data to manned assets. On the other hand, 
AVs should not be allowed to designate a target and should not perform any kind 
of battle damage assessment. Interestingly, the AC- 130 crewmembers and Predator 
operators were more open to AVs performing combat offensive missions than the 
A-10 and F-16 pilots who actually train for those operations. The two F-16 pilots 
declared that AVs should never operate in the same airspace as manned tactical 
aircraft. For example, one of those pilots cited his own eye-witness account of a 
software malfunction causing a Predator to drift into the path of a group of fighters, 
which almost resulted in a mid-air collision. One A-10 pilot described his relationship 
with his human wingman as, "one of trust and loyalty." They trained together, 
worked together, and fought together, and therefore a AV could never replace a 
human wingman. 

Though the typical response from an AV designer is to brush off the pilots' remarks 
as arrogance, bias, and fear of being replaced, the force of the above comments empha- 
sizes how absolutely crucial is the need for trust. The F-16 pilot may have seen other 
close mid-air collisions between manned aircraft, but the pilot would still rather trust 
a human to make that mistake than an AV. Why? The A-10 pilot viewed the human 
as a team member and thus, trusted him more. Therefore, tactical decision making 
places unique demands on the decision maker because of the high risk and dynamic 
battlefield environment. The life-and-death consequences of wrong decisions create a 
need for all decision making assets to be on the same team. That team must exhibit 
a culture of trust and loyalty. What, then, is team-centered automation? To answer 
this question we first define automation more precisely, discuss human-centered au- 
tomation design, briefly mention the lessons learned when automation has failed to 
be human-centered, and finally review what characteristics define a team. 



2.2.2 Definition of Automation 

There are many different definitions of automation in the literature. Researchers Raja 
Parasuraman, Thomas S heridan, and Christopher Wickens define automa,t ion as "a 
device or system that accomplishes (partially or fully) a function that was previously, 
or conceivably could be, carried out (partially or fully) by a human operator" [53]. 
Dr. Charles Billings, Retired Chief Scientist of the National Aeronautics and Space 
Administration (NASA) Ames research center in Silicon Valley, defines automation as 
"a tool, or resource, that the human operator can use to perform some ta,sk t'hat would 
be difficult or impossible without machine aiding" [56]. The Autonomy Levels for 
Unmanned Systems (ALFUS) working group at the National Institute of Sta,ndards 
(NIST) defilles autonomy in two ways 1341. Autonomy is: 

(A) The condit,ion or quality of being self-governing. 

(B) An unmanned system's own ability of sensing, perceiving, analyzing, 
communicating, planning, decision-ma,king, and actring, to achieve itas 
goals as assigned by its human operat,or(s) through designed human- 
robot interaction (HRI) . Autonomy is characterized into levels by fact,ors 
including mission complexity, en~ironment~al difficulty, and level of HRI 
to accomplish t, he mission. 

The definition from Parasuraman et. al. emphasizes that automation is not "all or 
none" but can be conceived of as ranging across a continuum of levels. Dr. Billings 
emphasizes a human-centered definition in that the role of automation is to be a tool or 
resource that aides the human operator. The ALFUS working group's definition from 
NIST attempts to capture the roles of intelligence and capabilities of the AV while 
characterizing the human operat,or as assigning goals to the AV. The ALFUS working 
group also recognizes t4ha8t autonomy should be characterized by levels, including the 
level of interface between the human and the robot. Therefore, automation is a 
tool for the human operator, can be characterized by levels, and exists within a 
complementary syst,em that includes both t'he human and the a~t~omation. 

Both the U.S. Air Force and Army have proposed classification levels of aut'onomy 
191. The Air Force Research Laboratory has defined ten levels of autonomous control, 
as depicted in Table 2.2. At level 4 autonomy of onboard route replan, reactive 
decision making is needed. How else will the AV know when to replan its intended 
route and what the new route should be unless there is a reactive decision making 
process onboard? By the definit'ion in this thesis, onboard route replan represents 
a form of tactical control. However, note that AFRL does not explicitly specify 
tactical control unless existing within a group. This thesis does not address group 
tact'ical environment's, but rather describes experiments which extracted single vehicle 
tactics. Group tactica,l control is left for fut'ure work. However, the explicit grouping 
of ma,nned and unmanned assets in tactical control until level 10 autonomy is reached 
serves to emphasize the import'ance of team-centeredness in tactical environments. 

Table 2.3 displays the levels of autonomous behavior for unmanned ground ve- 
hicles (UGVs) as defined by the U.S. Army and its Future Combat Systems (FCS) 
initiat,ive. Here, reactive decision making occurs at level 7 aut'onomy wit'h auto ne- 



Table 2.2: Air Force Research Laboratory levels of autonomous control 

LEVEL 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

DEFINITION 
Remotely Guided 
Real Time Health/Dia-gnosis 
Adapt to Failures and Flight Conditions 
Onboard Route Replan 
Group Coordination 
Group Tactical Replan 
Group Tactical Goals 
Distributed Control 
Group Strategic Goals 
Fully Autonomous Swarms 

Table 2.3: Army Future Combat Systems levels of autonomous behavior 

LEVEL 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

DEFINITION 
Remote Control/Tele-operation 
Mission and Task Planning 
Improved Route Following on Paved Roads 
Unimproved Route Following Dirt Roads 
Off-Route Mobility No Roads 
Obstacle Detection and Alert Operator (> 0.2 meter obstacles) 
Obstacle Detection and Auto Negotiation (> 0.2 meter obstacles) 
Tactical Payload Mission Behaviors 
Cooperative Behaviors with Manned and Unmanned Systems 
Reactive Intelligent Tactical Behaviors 



High 10. The computer decides everything, acts autonomously, ignoring the human. 
9. informs the human only if it, the computer, decides to 
8. informs the human only if asked, or 
7. executes automatically, then necessarily informs the human, and 
6. allows the human a restricted time to veto before automatic execution, or 
5. executes that suggestion if the human approves, or 
4. suggests one alternative 
3. narrows the selection down to a few, or 
2. The computer offers a complete set of decision/action alternatives, or 

Low 1. The computer offers no assistance: human must take all decisions and actions. 

Table 2.4: Levels of Automatmion of Decision and Action Selection 

gotiation of obstacles. Again, it is important to note t,hat a cooperative t'eam of 
manned and unmanned systems needs to exist before reaching level 10 autonomy of 
reactive intelligent tactical behaviors. Therefore, both the Air Force and the Army 
characterize tactical control levels for AV only in co-existence with human assets. It 
is not enough to provide AVs with a greater level of expertise and then expect to 
replace the human. By definition, both in academia and in the military services, 
autonomous tactical decision making only takes place in a system of manned and 
unmanned systems. Learning the best t,actical knowledge is important, but it cannot 
occur outside of a team-centered context and be indiscriminately applied to an AV. 
This is why the human expert must be so directly involved in the design process. 

2.2.3 Human-Centered Automation Design 

The traditional context of a complementary human and autonomous decision ma,king 
syst,em casts the human in the role of supervisor/operator and the automation in 
the role of an aid. In this system, a design decision must be made about how much 
authority should be given to the automation t'o make its own decisions. Sheridan pro- 
posed ten levels to describe the various levels of interaction between the human and 
machine for decision and action selection [62], as depicted in Table 2.4. An example 
of this system context is the air traffic controller (ATC). It is the responsibility of 
the ATC to direct the flow of traffic in and out of airports to ensure efficiency and 
the safety of all involved. In doing so, the ATC has the authority to issue headings, 
velocities, and holding patterns to all aircraft. In major  airport,^, this is an extremely 
demanding task, and the potential benefits of workload reduction by automation are 
tremendous. The focus of automation decision aids has been the ability to predict 
and project the current tracks of aircraft some t,ime into the future so that the ATC 
can resolve possible collisions between aircraft. Suppose the computer calculates a 
collision course between two aircraft'. At level 3 automat ion, the automated decision 
aid recommends a few courses of action to resolve the projected situation. The ATC 
chooses one and relays the information to the pilot,s. At level 7 automation, the de- 
cision aid automatically uplinks new course and heading information to the aircrafts' 
onboard computers and then informs the ATC of the action. In both scenarios, the 



ATC is the ultimate supervisor and operator of the system. The difference is in how 
much authority has been given to the automation. 

As a parallel to the ATC, consider the battlefield commander waiting -to move 
in a company of troops by helicopter to landing zones. That battlefield commander 
wants to ensure that a specific proposed air corridor through which the troop-carrying 
helicopters will fly is free from enemy contact. The commander is the supervisor 
for the improved AV who will perform the reconnaissance. In this case, as the AV 
performs a reconnaissance mission, the interact ion between the AV and the battlefield 
commander could easily resemble that between the ATC and the decision aid. For 
example, the AV, trained by human expertise, encounters a pop-up threat, reacts, 
and now prepares to engage the target, zf the battlefield commander approves. From 
Table 2.4, this would be level 5 automation. The question, then, that the battlefield 
commander, the ATC, and most importantly the automation designer must answer 
is how much decision making autonomy is appropriate. 

Figure 2-1 displays one proposed method of designing human-centered automa- 
tion [54]. In this flow chart, it is assumed that the human brain can be viewed as an 
extremely sophisticated information processing system. Then the mapping of input 
cues to output actions as experienced by the human can be represented by the fol- 
lowing four stages: sensory processing, perception/working memory, decision making, 
and response select ion [87]. Admittedly, these four st ages are an oversimplification at 
this point, and they will be more fully dealt with in Chapter 3. Parasuraman et. al. 
proposed four classes of functions that are roughly equivalent to these four stages of 
human information processing [54]. These are information acquisition, information 
analysis, decision and action selection, and action implement at ion. For each function 
class there exists levels to describe how fully automated the system is within that par- 
ticular class, as in Table 2.4. Therefore, a specific unmanned system can be described 
using this method by its level of automation along all four dimensions. These four 
dimensions are pictured in the flow chart as the four parallel blocks of acquisition, 
analysis, decision, and act ion. 

In answer to the top question of Figure 2-1 of what should be automated, this 
research seeks to automate tactical control in AVs. Tactical control falls into the 
branch of decision automation. Next, from the ten levels in Table 2.4, the human 
user, such as the battlefield commander, would help decide an appropriate level of 
automation decision making capability. Say level 6 automation was initially chosen 
where the commander has a limited amount of time to veto any action automatically 
chosen by the AV. Then the primary evaluative criteria of whether level 6 automation 
is appropriate or not is the human performance consequences of that design choice. 
The secondary criteria is to evaluate the level of automation reliability required, the 
costs of action, etc. These criteria force an iterative refining of the automation. Para- 
suraman et al. emphasize that Figure 2-1 is a framework to help provide guidelines 
for automation design. They also recognize that this framework may be more useful 
in helping to define upper and lower bounds of automation rather than a specific 
level. 

The foundation of human-centered design captured by the flow chart is that an 
appropriate level of autonomy is chosen primarily on how it affects the human t'hat 



Figure 2-1: Flow chart showing application of the model of types and levels of au- 
t omat ion [54]. 



is still a part of the system. Thus, the designers must ask what are the consequences 
to the battlefield commander's ment a1 workload, situation awareness, complacency, 
skill degradation, etc., at the chosen level of automation for tactical decision making. 
Interestingly, these criteria are all based on trust. If the commander does not trust 
the AV, the commander will have a higher mental workload because the commander 
will devote a lot of cognitive effort to monitor the AV's actions. On the other hand, if 
the commander trusts the AV too much, the commander might lose situation aware- 
ness by not carefully monitoring the AV's actions. The commander may also become 
complacent and not react timely to the AV's decisions and actions if the commander 
over-trusts the AV. Note then, that the demands placed upon the reliability of the 
automat ion design because of the environment where tactical decision making takes 
place and the costs associated with wrong decisions, are the secondary evaluative 
criteria in human-centered design. Those demands pointed to the need for trust be- 
tween all decision making a,ssets, both manned and unmanned, in tactical situations. 
Therefore, beginning the design process centered around the human, trust becomes a 
primary criteria. Unfortunately, the question of trust is not just whether the human 
operator will use the AV, but also will the human operator use the AV correctly. 

2.2.4 Lessons Learned from Improper Automation 

A functional task allocation, as discussed in Section 2.1 asks the question what can 
humans do better than machines and machines better t'han humans? The benefit of 
asking this question is that it reveals the strengths and weaknesses of humans and 
automation so that the two can be combined into a better system. If we are seeking to 
improve autonomous decision making capability based on human performance, know- 
ing what human strengths apply to decision making is a fundamental step. However, 
the failure in functional task allocation is when the automation designer identifies 
weaknesses, improves the autonomy, replaces the human as much as possible, and 
never stops to consider the final consequences to the human. In fact, Dr. Fitts ad- 
mitted ten years after the publication of his original 1951 list of the superiority of 
man over machine and vice versa was misleading [23]. He declared that he had fallen 
into "a trap" with that list, and the real question was not of allocating functions 
based on superiority but based on a systems complementary approach [63]. 

From Table 2.1, it can be seen that the major advantage of automation is not to 
replace the human simply because it appears that the human is limited or expensive 
to maintain. Rather the automation should be complementary to the human [9]. 
However, complementary components of the same system require an interface, and 
this is where automation designers have stopped. In a typical mannedlunmanned 
system, both the human and machine aid are subsystems, and the display is the 
interface. Furthermore, it is well known in design that next to requirements, designing 
the proper interfaces between complementary subsystems is extremely critical [12]. 
Consider, for example, an interface failure when the O-rings in the space shuttle 
Challenger's solid rocket boosters failed due to extreme cold weather. Hot gas leaked 
past the O-rings, the failed interface, and ignited the entire stack [13]. Though this 
is an extreme example, it shows that interfaces cannot be taken for granted. Even 



machine aiding and the simple presentation of several options to the human requires 
considerable thought on how to display the options to the human user 1871. As a 
case in point, a whole academic field of human factors and ergonomics has arisen 
to research how to create a complementary system composed of both humans and 
automation because it is such a difficult problem [I]. 

In the human factors literature, there is a term for when designers automate, 
partially or fully, functions within a system without due consideration of the conse- 
quences to the human operator of that system. That term is "automation abuse," 
and it has been a direct cause of serious incidents and accidents [53]. 

During the 1970s and early 1980s . . . the concept of automatling as much as 
possible was considered appropriate. The expect,ed benefit was a reduction 
in pilot workload and increased safety . . . Although many of these benefits 
have been realized, serious quest,ions have arisen and incident,s/accidents 
have occurred which question the underlying assumptions that a maxi- 
mum available automation is ALWAYS appropriate or t,hat we underst'and 
how to design aut'omated systems so that they are fully compatible with 
the capabilities and limitations of the humans in the system. [56] 

This quote from the Air Transport Association of America (ATA) Flight Systems 
Integration Committee in 1989 underscores how automation abuse caused an entire 
system of pilots, engineers, designers, and safety controllers to step back and think 
through the issue of automation design. Automating everything as much as possible 
was found to be no longer appropriate, and the question was then what should even 
be automated. 

There are two ironies associated with automation abuse in which the designer 
wishes to replace the human operator with automation because of the human's ten- 
dency to make errors [I]. First, the designer has now simply replaced the human 
operator with himself or herself. Now the system is prone to the errors in design, 
which are still human in origin. Second, the designer who tries to eliminate the hu- 
man operator still leaves the operator to perform certain tasks which the designer 
cannot think how to automate. More and more research has proven that automation 
does not supplant human activity. Rather, it changes the nature of that activity, 
often in ways unforeseen and unintended by the designer, which has led to several 
problems in real world applications [I, 53, 54, 56, 88, 901. 

As briefly discussed with the human-centered flow chart, human operators can 
either over-trust or under-trust the automation. Over-trust or over-reliance on au- 
tomation has been termed "automation misuse." Numerous accidents have occurred 
due to misuse, such as the crash of Eastern Flight 401 in the Florida Everglades, 
when the crew failed to notice that the autopilot had been disengaged [53]. They 
were not monitoring the aircraft's altitude while diagnosing a possible problem with 
the landing gear. Not only does over-trust lead to reduced situation awareness, it 
also leads to skill degradation. Pilots who tend to always let the automation fly the 
airplane lose some measure of their skills as a pilot. Only in emergency situations or 
very complex tasks do most pilots tend to disengage the autopilot. Ironically, these 
are the times when the pilot's skills should be the sharpest, but they have degraded 



because of misuse. On the other hand, some pilots begin to distrust their own skills 
due to over-reliance on automation, and they rely on the autopilot for safety. This 
caused one pilot to crash short of the runway at Columbus, Ohio, in 1994 when he re- 
lied heavily on the autopilot to land during a nighttime snowstorm [53]. Over-reliance 
may also result in the human operator becoming complacent in monitoring the au- 
tomation. Complacency becomes life-t hreatening when combined with automation 
that fails silently. For example, if the failure of an autopilot results in large, unex- 
pected banks, the automation failure is obvious. On the other hand, if the autopilot 
fails silently and the airplane begins to roll ever so slightly due to a slightly unstable 
roll mode, the pilots may not recognize the failure due to complacency. This sit,ua- 
tion occurred in the 1985 China Airlines incident when the wings were almost vertical 
before corrective act ion was taken [53]. Over-trusting the automation, then, leads to 
reduced situation awareness, skill degradation, and complacency. 

Under-t rust or under-reliance is termed "automat ion disuse." Automat ion disuse 
is usually related to the false alarm problem. For example, early versions of the 
Ground Proximity Warning System produced so many false alarms that pilots stopped 
trusting its warnings. Operators may also use "creative disablement" to turn off the 
alarming system, such as the Conrail train accident in 1987 [53]. Investigators found 
that the loud buzzer in the train cab that alerts of high speeds had been taped 
over. Under- t rust also results in increased ment a1 workload. Because the pilot does 
not trust the automated solution, the pilot must spend some significant "cognitive 
overhead" to create his or her own solution, then compare the two, and finally choose 
one. Under-trusting the automation leads to disuse of the automation or increased 
ment a1 workload. 

Over-reliance and under-reliance represent issues of trust between the human and 
the automation. Automation abuse also results in other problems. First, automa- 
tion surprises result from the complexity of modern systems and algorithms. Because 
closed-loop control is so tightly optimized for fuel efficiency, there are many times 
when the pilots get very confused as to the purpose behind the airplane's behavior. 
It is an issue of transparency versus opacity. Second, "clumsy automation" is a term 
coined by Wiener that describes automation that reduces workload when the work- 
load demands are already low and increases them when attention and resources are 
needed elsewhere. An example is the flight management system (FMS) that performs 
waypoint following [56]. During the transit flight phase between destinations, the 
FMS reduces workload when it's already low. However, during descent when the 
co-pilot should be scanning for other aircraft, the co-pilot has to spend time repro- 
gramming the FMS to change the plane's descent path. A third problem is silent 
failure of automation, as discussed above. Graceful degradation of performance is a 
human strength over machine [I]. However, it is not something to be carried over 
to automation. Automation should fail obviously, especially when that failure has 
tremendous negative costs associated with it. 

As a final summary chart, Figure 2-2 displays the theoretical and experimentally 
verified human factors variables that picture why a human either uses automation 
or not [53]. The dotted lines represent theoretical relationships or relationships that 
depend on the system in question. The solid lines represent relationships supported 



opera tot Kcuracy , 
C 

0 
\ 

rr - 
0 )  \ 

0 system accuracy 
workload 

t I 
4 b 

1 ' I ' I  # 
task complexityl \ ' 0 

perceived workload 
1 

I \ 
machine accuracy 

confidence 

trust in automation 

tisk state learning 

Figure 2-2: Automation usage based on human factors [53]. 

by experimental data. The important note to take away from Figure 2-2 is that 
the factors involved in a human choosing to use automation are complex and not 
completely understood. Therefore, it is very difficult to predict how a human will 
choose to use automation or not. However, this is not to discourage a human-centered 
automation approach. In fact, note the importance of reliance and trust in automation 
as experimentally verified relationships. A human-centered automat ion approach is 
crucial, both to avoid the myriad of lessons learned as described above as well as to 
increase the acceptance of automation in the field. 

2.2.5 Characteristics of a Team 

In learning tactical knowledge from human experts, the human in the system is not 
a supervisor, operator, or commander, but rather a team player. This is a subtle 
distinction. In a reconnaissance mission, the performance and capability of the AV 
to effectively search, and if necessary to engage enemy contacts, directly affects the 
company of troops that are waiting to pass through the scouted terrain. In this 
scenario, we are not designing the AV with the battlefield commander/supervisor 
exclusively in mind. Rather, we are designing the AV with the company of troops 
in mind that desire safe passage to their destination. Those troops are hoping the 
AV was trained properly and knows how to prioritize its searching/evading/engaging 
efforts in order to strengthen the overall team position. This is not going to happen 



unless we can completely underst and the human previously performing this task with 
that team mindset. 

Human-centered automation for this research focuses on the human expert from 
whom we learn tactical knowledge for two reasons. First, the human expert is our 
primary source of designing the tactical playbook. The AV is not designed to make 
up for human errors or weakness. We are admitting the AV is lacking and that much 
can be learned from the human expert. Secondly, the human expert can trust the 
AV more because he or she has trained it. In the same way that the flight instructor 
teaches the student how to fly in formation, which is by necessity a cohesive, team- 
centered unit, the human expert trains the AV to make correct decisions so that the 
team will benefit. Furthermore, t h e  human expert is not training their replacement. 
Even when AVs with tactical decision making capabilities are fielded, human subject 
matter experts such as fighter and attack pilots will still be very much needed. Thus, 
the human expert has a vested interest in making sure the AV works toward team 
goals of which the human expert is still a part. 

Does this negate the flowchart in Figure 2-1 or lessons learned in the previous 
section, which were presented with the human assumed to be the operator of the sys- 
tem? We argue that it does not. Because of the consequences of wrong decisions in 
battlefield environments, there has to be a human supervisor of any decision making 
AV. Therefore, the traditional context of a system composed of a human operator 
and machine aider still holds. Furthermore, the lessons learned of reduced situation 
awareness, complacency, increased mental workload, automation surprises, clumsy 
automation, and silent failures are even more important in the battlefield context 
because of those same huge negative costs of wrong decisions. Therefore, the lessons 
learned still hold. However, we argue that there should be a second set of primary 
evaluative criteria in Figure 2-1 of Team Performance Consequences. How is team 
performance in a battlefield context measured? The chain of command issues a set of 
orders that filters down through the ranks until everyone understands their mission 
specific objectives. Also, those orders describe the desired end-state of the comman- 
ders so that soldiers can grasp how their mission specific objectives contribute to the 
high-level goal [81]. Therefore, one proposed way of evaluating Team Performance 
Consequences is to measure how well the AV meets the specific mission objectives 
that the battlefield commander desires. 

For reference, there are five characteristics of good team players [56]. First, team 
players are reliable. If the AV has been given a list of mission objectives, how re- 
liably are those objectives met? Moreover, knowing that uncertainty characterizes 
the tactical environment, how robust and flexible is the AV to meet those mission 
objectives in unexpected situations? Second, t eam players communicate effectively 
with each other. Does the AV's performance reveal automation surprises and silent 
failures? Is the complexity of the decision making algorithm so dense that the AV 
cannot effectively relay to other team players its intentions and actions? Third, team 
players coordinate activities with each other. Do the choices made by the AV impede 
the performance of other team players? Note that coordination can only occur in 
dynamically changing environments if effective communication is present. Fourth, 
team players monitor each other in order to "back each other up." Does the AV have 



the capability to monit'or the other tea,m players? Does the AV have the intelligence 
to shift it's priorities if they need the AV's help? Or does the AV simply perform its 
nominal mission until a help signal has been received? Fifth and finally, team players 
are guided by a coach. Does the AV respond appropriately to changes issued by t'he 
battlefield commander? Team players, then, are chara,cterized by reliability, flexibil- 
ity, effective communication, coordination, monitoring, re-tasking, and re-prioritizing 
all for the sake of improving the team's position to meet t,he team's goals. This list 
of team player characteristics is a daunting yet necessary summary of how AVs must, 
be designed in order t'o int egra,t,e properly into t'oday 's battlefield. 

2.3 Implications and Closing Thoughts 

This research proposes that by e~plicit~ly designing the automation based on human 
inspiration, automation will be more acceptable as a team player with the human 
users. The reasoning is as follows: the human expert has essentially txained the 
automation in the best interest of the team. Therefore, human-centered automation 
as described in this research naturally result,s in team-centered automation. After 
discussing automation abuse, misuse, and disuse, Parasuraman's and Riley's first 
conclusion is that, "better operat'or knowledge of how the automation works results 
in more appropriate use of automat,ion" [53]. There will always be a period of time 
for new AVs to prove themselves reliable to domain experts. One of this research's 
goals is to encourage human acceptance of AVs by making AVs more predictable, 
trustworthy, and better understood by their manned counterparts through a design 
effort centered on huma,n inspiration. Only t'hen will the other team members have a 
better knowledge of how the automation works and be more open to its usage in t,he 
field. 

Yet, there is at least one word of caution. Because the second step in the two- 
stage tactical control paradigm (see Section 1.4) is to optimize the AV's behavior 
for the specific mission, this will result in atypical reactive decisions a's perceived 
by the human. This will have t,o be addressed in training. This will also provide 
more emphasis on t'he team player charact'erist ic of AVs communicating effectively 
with manned assets. Again, the limitatZion is that we learn from human experts who 
naturally sense the state environment differently than AVs. Therefore, what is a right, 
action for the human, may not be right for the AV. 

In conclusion, one of t'he failures of automa,tion designers in t'he past was to identify 
the human weakness, build the right automation, a,nd replace the human. Our design 
method is to identify the human strengt'h and improve the AV's decision making 
capabilities. This research is an initial st,ep in how to use human-inspired tactics 
to ultimately achieve level 10 autonomy as described in Tables 2.2, 2.3, and 2.4. 
Furthermore, we believe that centering the automation design around the human 
expert naturally follows the human-centered a~t~omation design approa,ch in Figure 
2-1. This thesis addresses the decision automation branch in the flow chart and 
proposes the addition of another set of secondary criteria termed Team Performance 
Consequences. We only seek to improve AV tact'ical decision making in a way that 



strengthens the position of the entire team. It's a fine line, but the motivation will 
drive the reliability, trust, and acceptance of the system. 



Chapter 3 

Human Expert Performance and 
Cognitive Modeling Efforts 

Accurate and reliable observation and interpretation of a human expert's tactical 
knowledge requires a decision making framework. Though interpretation implies that 
this is, at least, a partially subjective procedure, it is a necessary one if autonomous 
vehicles (AVs) are to make tactical decisions in future battlefields, as described in 
Chapter 1. To review, Chapter 2 discussed the interaction between expertise and 
reliability in tactical environments composed of both humans and, AVs. There were 
two major conclusions in Chapter 2. First, analyzing the functional strengths and 
weaknesses of humans and automation helped determine how to design experimental 
scenarios to exploit human strengths in tactical decision making. Second, the lessons 
learned from indiscriminate application of automat ion in the past and the unique 
challenges of real world tactical environments underscored the necessity that the 
design approach be team-centered. The five characteristics of reliability, effective 
communication, coordination, monitoring, and being guided by a coach describe what 
it means to be part of a team, and the smartest tactical AV will not be trusted by 
humans and thus not integrated into the battlefield if it fails to behave as a team 
player. Now, in Chapter 3, we present the underlying mechanisms of human expertise. 
Understanding these mechanisms is crucial in making objective interpretations of 
human decision making. We propose that there are three levels in learning human 
tactics - actions, strategies, and cognitive mechanisms. These correspond to answering 
the three questions of what, why, and how. We observe the "what," and we desire to 
know the "why." Therefore, we must also understand the "how" of human decision 
making by understanding human cognition and decision making frameworks. 

Before beginning the discussion on cognitive theories, we wish to present one 
other prefatory note on the specifics of this chapter. Cognitive science is an extremely 
diverse field, and the following sections only touch upon a few concepts. Yet, the rise of 
human factors research in response to the greater reliance on automation has brought 
the fields of engineering and psychology closer. This chapter, then, aims to familiarize 
the reader with some of the main theories. However, we explicitly state that only a 
few of the concepts presented in this chapter were actually applied in the experimental 
method of learning human-inspired tactics. Namely, these are the following decision 



making frameworks: Recognition-Primed Decision model, Generic Error Modeling 
System, Belief-Desire-Intent model. We also touch upon human interpret ation of 
probability and some decision heuristics and biases in decision making that appeared 
in the experimental results. Every section in this chapter will finish by summarizing 
its specific contribution to understanding human decision making so that follow-on 
work in human-inspired tactics can be even more grounded in objective theory. 

3.1 Components of Cognitive Model 

To begin understanding the underlying mechanisms of decision making, it is important 
to first discuss the underlying cognitive structure, namely long-term and working 
memories. Human experts make t,actical decisions by drawing upon past experiences 
in long-term memory and combining these lessons learned with the present state in 
working memory to form a set of alternative choices for action. 

3.1.1 Long-Term Memory 

A human's long-term memory is crucial to living life efficiently. It is in the long-term 
memory where intuitive, every day actions, such as the motor skills necessary to brush 
teeth, are embedded. If there were no long-term memory, the ability to brush teeth 
would have to be relearned every day (or twice a day depending on hygiene). The 
organized structure, large capacity, and retrieval mechanisms of long-term memory 
all contribute to how humans make decisions. 

Storage Structure 

Experiments in accessing long-term memory have continued to confirm the very in- 
teresting fact that the storage of long-term memory is not random. In fact, long-term 
memory storage is highly structured [89]. In 1996, Lipshitz and Bar Ilan analyzed 
retrospective case reports of low-to-middle tiered managers and their success and 
failure in problem solving in the work place. Lipshitz and Pras in 2000 questioned 
these findings because, "it is not clear if their findings pertain to how problems are 
actually solved or to a cognitive schema that drives the reconstruction of problem- 
solving processes from long-term memory" [39]. Through a series of experiments in 
which subjects were asked to think aloud as they solved one well-defined and one 
ill-defined problem, Lipshitz and Pras verified the existence of a reconstruction that 
had occurred in long-term memory. They found that "elements in a story that are in 
a purposeful (in-order-to) relation, such as consecutive elements in an action plan, are 
remembered better than elements not related in this fashion." Long-term memory 
storage is structured because the human cognition can more efficiently recall particu- 
lar facts about past events when the information exists in an organized fashion. This 
structure is termed cognitive schema. 

In 1932, Bartlett first proposed that the knowledge embedded in long-term mem- 
ory were in the form of schema [2]. Definitions of schema emphasize that it is a 



structure or model of data or objects in a database. Bartlett found that humans 
tended to recall memories in more organized, meaningful, and systematic ways than 
the actual occurrences of them. Humans tended to not remember odd or uncommon 
details so that the memory's retrieval conformed more to the person's present expec- 
tations. For example, consider parents who are recalling the mischievous behavior 
of their young adult son or daughter when he or she was a child. How often does 
the young adult disagree with the parents' stories saying, "I never did that! I was 
never that bad!" ? Bartlett proposed that humans were unconsciously attempting to 
organize those memories in knowledge structures. In his famous phrase, he called this 
an "effort after meaning.'' Bartlett defined schema as the following: 

[Schema is] an active organization of past reactions, or of past experiences, 
which must always be supposed to be operating in any well-adapted or- 
ganic response. That is, whenever there is any order or regularity of 
behavior, a particular response is possible only because it is related to 
other similar responses which have been serially organized, yet which op- 
erate, not simply as individual members coming one after another, but as 
a unitary mass. [2] 

Note first that long-term memory composed of active knowledge structures rather 
than passive images reconstructs past experiences rather than reproduces them. Fur- 
thermore, though schema is "serially organized," retrieval of knowledge is not a se- 
rial search. As will be discussed in the next section, long-term memory retrieval 
is very rapid. If it was activated by a serial search, the time taken to retrieve a 
particular knowledge structure would be proportional to the total number of knowl- 
edge structures encoded as schemata. Rather, schema operates as a "unitary mass," 
which allows quick retrieval. Finally, note that knowledge storage is associational 
in long-term memory. Certain sensory inputs evoke similar responses already stored 
in long-term memory. Retrieval of knowledge highlights this notion of associativity. 
Therefore, schemata are unconscious, active mental structures composed of organized 
past experiences. 

Research in the last half of the twentieth century has contributed further concepts 
to this long-term memory storage structure called schema [57]. First, schemata are 
high-level knowledge structures. Consider a human subject presented with a picture 
of a typical living room for only a brief amount of time and then asked to describe all 
features of the room. If the view of the room contained a wall clock and if the human 
subject was pressed to describe the clock, the human subject would probably be prone 
to say the clock had hands. This is because a high-level schema exists that contains 
knowledge of a prototypical living room with a clock that has hands. Second, each 
schema accepts only specific information or data. A schema can be considered, then, 
an "expert" in whatever field of information it requires. . If these informational "slots" 
are not being filled by present inputs, they take on default values from previous 
experiences. Therefore, when sensory inputs to humans trigger memory recall but 
only provide partial information, the default values of the past enable humans to 
infer, either rightly or wrongly, about the present. Finally, there is no known limit to 



the number of schemata that can be stored in long-term memory. It is assumed that 
there is infinite capacity for the storage of knowledge structures [47]. 

James Reason describes how three errors can arise from inference involving schemata. 
First, humans fit data to the wrong schema. Second, in an effort to efficiently use 
memory recall for present actions, humans fit partial data to the right schema, but do 
not seek further information to fill in the gaps. Rather, they rely on "best guesses" 
from past experiences. Third, humans tend to rely more on active, presently-invoked 
schemata and salient, at tent ion-getting schemata. Reason summarizes the good and 
the bad of schemata in the following: 

The very rapid handling of information characteristic of human cognition 
is possible because the regularities of the world, as well as our routine 
dealings with them, have been represented internally as schemata. The 
price we pay for this largely automatic processing of information is that 
perceptions, memories, thoughts, and actions have a tendency to err in 
the direction of the familiar and expected. [57] 

The tendency for information processing to "err in the direction of the familiar and 
expected" gives rise to predictable biases which will be discussed later on in this 
chapter. 

Storage Retrieval 

Long-term memory retrieval typically occurs very rapidly and is associational both 
in terms of similarity and frequency. Experiments show that the time to read a 
knowledge structure in long-term memory is of the order of hundreds of milliseconds 
[47]. This time is derived from presenting a stimulus to a subject and requiring 
the subject to respond to with some sort of verbal description, such as naming the 
color presented. The subject must first recognize the stimulus, which is equivalent to 
reading a knowledge structure in long-term memory, and then respond appropriately. 
The entire recall and react time is typically half a second to one second, and by having 
a good idea of human reaction time, the reading of long-term memory can be backed 
out to the order of hundreds of milliseconds or less than half a second. 

Note that the terms recognize and recall are used interchangeably above to de- 
scribe reading knowledge structures from long-term memory. These terms are actually 
differentiated in literature [89]. To recall is to verbalize knowledge in the head, such 
as recalling a home address. To recognize is to verbalize knowledge in the world, 
such as recognizing the sound of an ambulance siren. When asked about a particu- 
lar event, a human may not be able to recall certain facts, but once presented with 
the information, a human quickly recognizes it. ("I can't remember her name, but I 
would know the face.") 

The association of present inputs to stored information in long-term memory is a 
combination of similarity-matching and frequency-gambling. The idea of similarity- 
matching is simply that' certain cues active the retrieval of specific information. How- 
ever, the set of present cues do not typically match a set of schemata completely or 



perfectly. Therefore, frequency-gambling and inference exist so that stored informa- 
tion from schemata that are only partially matched can be retrieved and combined 
to generate some appr~priat~e response. The concept of frequency-gambling is that 
not only does the schema store specific information, but t'he schema maintains a 
trace of its past activation. This is Hintzman's mult,iple-trace theory [32], where the 
long-term memory exhibits a sort of "frequency map." The more times a given input 
is encountered, the larger the "pile" of traces becomes for that particular schema. 
Furthermore, and more importantly, the more times a given input is encountmered, 
the higher the probability that in the face of partial similarity-matching, long-term 
memory retrieval will be biased towards this higher frequency content [57]. When 
a human is faced with a partially novel situation, then, and is unable t,o generate a 
novel solution, that human tends to revert back to a somewhat similar situation and 
proclaims, "I might as well try it. It's worked before." 

Inference is the sum total of similarity-matching and frequency-gambling. A set, 
of sensory inputs activates retxieval from a set of knowledge structures based on the 
similarit'y and frequency of past encounter of those same cues. The human must, 
then sort through, combine, and manipulate that information to generate a response. 
Inference occurs in the working memory, which has a limited capacity for storage 
and manipulation of information. Before moving on to discuss working memory, an 
example of a long-term memory experiment ties these three concepts of similarity- 
matching, frequency-gambling, and inference together. 

J. Reason asked 126 British psychology students the following quest ion: "Who 
said (or, more accurately had a sign on his desk saying), 'The buck stops here)?". 
The answer is President Harry S. Truman. Now the word "buck" in this context came 
from the slang phrase "pass the buck," which meant to hand over responsibility to 
another. How would British psychology students, assuming they could not associate 
the phrase directly with President Truman, infer the identity of the speaker'? Their 
line of thought could be as follows. Quotations typically involve famous people. The 
term "buck" suggests an American. The most famous Americans are presidents. 
There are a total of thirty-nine (at t'he time of the experiment) presidents. Based on 
the process of long-term memory retrieval, if similarity-matching of the quotation does 
not partially match any schema, the students would be forced to infer the identity 
of the speaker only through frequency-gambling. Therefore, Reason also asked the 
British students to recall as many presidents as possible in five minutes. 

Figure 3-1 displays two discrete probability distributions. Reason terms the rear 
distribution the "salience gradient'" dominated by the first eight presidents listed. In 
descending order, they are Reagan (the incumbent president at the time, and thus 
the most salient), Kennedy, Carter, Nixon, FDR, Lincoln, Washingt'on, and Ford. 
President Truman is number twelve on the graph. This distribution shows that al- 
most every British student knew Reagan was an American president, but only 13% 
could name Truman as a president'. The front distribut'ion is how likely each student 
attributed the quote, "the buck st'ops here7' t'o a particular president. As the distri- 
bution depicts, there was no agreement among the British students over who said this 
quot,e. There are two important notes. First, over 80% of attributions were made to 
the five most frequently remembered presidents. This is shown by the first five bars of 
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Figure 3-1: British psychology students' probability of recalling American presidents 
and probability of attributing the above quote to an American president [57]. 

the front distribution and confirms the presence of frequency-gambling in the face of 
failing similarity-matching. Because the average British student could not associate 
the quote with any president, he or she was most likely to attribute that quote to the 
most easily remembered, the most salient president. Second, President Nixon, the 
fourth on the list, dominated the attributions, as seen in the front distribution. Upon 
questioning the students after analyzing the data, Reason found that many matched 
the word "buck" to mean a dollar rather than responsibility. Out of the presidents 
most likely to remember, British students knew Nixon was involved in some scandal 
that presumably included money. Therefore, they inferred that t'he buck, meaning 
money, stopped here, in Nixon's pocket. Similarity-matching, then, dominates infer- 
ence when the cues can be directly associated with stored knowledge; they fill the 
informational slots of particular schemata. Frequency-gambling dominates when the 
cues are ambiguous and there is little contextual knowledge in the required area. 

3.1.2 Working Memory 

While long-term memory storage has presumably infinite capacity and long-term 
memory retrieval occurs very rapidly independent of its size, working memory is lim- 
ited both in the quantity of knowledge it can contain as well as in the temporal 
preservation of knowledge. Working memory is where all actions that require con- 
scious thought are processed. Consider a mother of two children who runs over sharp 



metal with her van and receives a flat tire. If the mother has had to fix a flat tire 
before, she can associate the present circumstance wit'h that past experience stored 
in long-term memory. However, the remembrance of what occurred during the last 
flat tire is not sufficient t)o fix this flat tire. It takes conscious thought to properly po- 
sition the jack underneath the van, unscrew the lug nuts, e t ~ .  This occurs in working 
memory. 

Capacity 

The capacity of working memory is limited to a small set of symbols. George Miller in 
his famous 1956 paper showed tha,t the total number of symbols t'hat could be stored 
in working memory, what is referred to as the memory span, is "the magical number 
seven plus or minus two" [44]. (Note that Miller refers t,o immediate menlory in his 
paper and Newel1 and Simon refer t'o short-term memory [47]. The term working 
memory encompasses both of these.) These experiments which test memory span are 
simple in that a string of digits is provided to the subject, and t,he question is how 
many can the subject remember. For example, an average human ca,n remember the 
last seven digits of a telephone number in working memory. As long a,s the area code 
is familia,r enough that it can be represent'ed in long-term memory, then this presents 
no problem for working memory. However, if the area code is new, it is unlikely that 
the human will remember all ten digits because all ten digits must be present in the 
working memo'ry capacit,~. 

Chunking 

A successful strat'egy for overcoming the limitations of working memory capacity is 
chunking. A chunk of information is a set of data that is held together in working 
memory by associations in long-berm memory [89]. Newel1 and Simon defined chunks 
as recognizable stimulus patterns 1471. One example of chunking is asking a subject 
to remember seven three-letter words. As long as these words are familiar and thus 
stored in long-term memory - cup, can, car, dog, eye, etc. - the entire word is 
represented as one chunk in working memory. Thus, Miller's number of seven does 
not have to refer to seven letters, but could be seven chunks. In t,his example of three- 
let,ter chunks, the human could st'ore up to twenty-one letters in working memory. 
Another example is to take a seven letter sentence whose words are combined with 
rule patterns or known associations in long-term memory - America's national antshem 
is the Star-Spangled Banner. This sentence then is one chunk of information. A final 
example of chunking is to take a st'ring of alphanumeric characters and parse them 
into chunks. For example, t'he string FB IJF KTV cannot be as easily remembered 
as FBI JFK TV. 

Duration 

Not only is there a limited quantity of information that can be stored in working 
memory, but there is a tempora,l decay of information that resides in working memory. 
In 1959, Brown, Peterson, and Peterson conducted a simple experiment to test t,he 



Table 3.1: The central executive 

FUNCTION 
Coordinate performance on multiple 
tasks 

Temporarily hold and manipulate 
informat ion stored in long-term 
memory 

Change retrieval strategies from 
long-term memory 

Attend selectively to stimuli 

duration of information in working memory [89]. In this Brown-Peterson (typically 
shortened, but representing both Peterson and Peterson) paradigm, human subjects 
are presented with three random letters and are told to remember them. In order to 

EXAMPLE 
Stockbroker must converse with a 
client while checking current prices 
of a volatile stock 

Physician may compare the set of 
symptoms presented by a patient 
with those of previous patients 

Scientist struggling to solve a prob- 
lem must consider a variety of ap- 
proaches 

Sailor must attend only to the radar 
display and ignore nearby conversa- 
t ions 

keep the subjects from verbally rehearsing the letters, they are then told to count out 
loud backwards from some start,ing value in increments of three's. At some point, an 
auditory cue tells the subjects to stop counting and to recall the random three letter 
sequence. These experiments found after twenty seconds of counting backwards, 
almost no one could remember the original letter information. In fact, literature 
suggests that without continual rehearsal, little information is retained after ten to 
fifteen seconds [89]. 

Working Memory as a System 

Working memory is a system of three components [57, 891. The first is the verbal 
component of the system, which contains both a phonological store and the articu- 
latory loop. The phonological store is a passive storage of information in linguistic 
form. The articulatory loop is where the verbal information is rehearsed. The second 
component is the visuospatial sketchpad where information is passively stored and 
actively rehearsed primarily in visual form. For both of these components, rehearsal 
loops account for the necessity of humans to continually repeat information so that 
it does not decay from working memory. The third component is the central exec- 
utive which controls the information processing in the working memory and assigns 
at tentional resources to subsystems. Table 3.1 displays the four main functions and 
examples of the central executive [89]. Note that the central executive for the stock- 
broker, physician, and sailor has to assign resources to both the articulatory loop 
and visuospatial sketchpad. This is not surprising because humans are auditory and 



visually stimulated creatures. What is surprising is how these two components can 
function in parallel under the central executive. 

In 1968, Brooks performed two experiments that investigated the relationship 
between spatial and verbal working memory [89]. In the first, he asked subjects to 
imagine a capital letter, such as F. Then he asked the subjects to mentally "walk" 
around the edge of the letter, and every time they approached a corner, he asked 
them a yes-no question about the orientation of the corner. For example, was the 
corner facing lower right? The subjects answered this question either by a vocal 
yes-no or by pointing to a column of Y7s and N's. In this experiment,, then, Brooks 
forced the subjects to work in spatial memory (walking around the letter), and then 
he required a response either in verbal memory (vocal yes-no) or in spatial memory 
(point.ing to the column of Y7s or N's). He found that subjects performed better 
with a verbal response, suggesting that subjects could divide resources up between 
spatial and verbal working memory without loss of performance. However, when the 
subjects were required to tax the spatial working memory by responding to another 
visual stimulus (the columns of Y's and N7s), there was an overload or an interference 
in the visuospatial sketchpad. 

For the second experiment, Brooks reversed the working memory component from 
spatial to verbal for the subjects' primary task. In this experiment, he gave the 
subjects a familiar sentence, such as "The quick brown fox jumped over the lazy 
dog." He then asked them to identify each word in the sentence as an adjective, 
noun, verb, etc. Again, they responded either verbally or by pointing to a table that 
displayed the words "adjective, noun, verb," etc. This time, because the primary 
task was in verbal working memory, the subjects performed better by pointing to the 
correct answer. Thus, they again divided their tasks between the articulatory loop 
and the visuospatial sketchpad. 

The conclusion then is that working memory is composed of two subsystems which 
contain and operate on different types of information using different resources. How- 
ever, the input of new stimuli which operate in the same working memory subsystem 
as the one already in use causes disruptions. Therefore, the stockbroker in Table 
3.1 does not converse with the client and check current stock prices through a play- 
back machine. Rather, he or she converses with the client through the articulatory 
loop and processes the current stock prices through ticker tape or displays thereby 
operating in the visuospatial sketchpad. The central executive controls this process. 
Finally, the limitations of the working memory, namely its memory span of 7 f 2 
symbols, its decay after tens of seconds with no rehearsal, and its susceptibility to 
disruption by additional stimuli, all add to the human's cognitive load in solving 
problems. Therefore, just as there are predict able biases resulting from long-term 
memory storage in the form of schemata, the constraints of working memory force 
humans to find heuristics in decision making so that they can reduce or minimize 
the "cognitive strain" involved in processing too much information in too noisy an 
environment. 

The implications for learning tactical knowledge from the previous sections are 
two-fold. First', we must assume that all human subjects will take shortcuts. The 
question of expertise, then, may entail whether the shortcuts are valid and appropriate 



based on past experience. Second, battlefield environments are extremely complex. 
If too many variables are given to the human expert to model complexity and force 
decisions, the human will naturally not attend to some variables, and the results may 
appear to have gaps. 

3.2 Human Problem-Solving 

The work of Newel1 and Simon in examining human problem-solving laid the founda- 
tion for the artificial intelligence (AI) community to begin constructing human-like 
agents. This research borders very closely to work in the A1 community without 
crossing over, and thus a general understanding of the beginnings of A1 research is 
important. In the following discussion we present only a few important points from 
Newel1 and Simon's theory of human-problem solving relevant to this research. These 
are the modeling of a general problem-solver, the definition of a means-end analysis 
by heuristic search methods, and the description of a goal-oriented system. 

3.2.1 Information-Processing Theory 

Newel1 and Simon proposed that the thinking, or more specifically, the problem solv- 
ing of humans could be characterized as information processing [47]. This is not 
to say that man should be modeled as a computer. Rather, it describes how "man 
processes task-oriented symbolic information" in problem solving. Newel1 and Simon 
challenged human subjects with problem solving tasks of crypt arit hmet ic, logic, and 
chess problems. During each task, the subjects "thought aloud" as they mentally 
searched through their own problem space to find the solution. From these verbal 
reports, Newel1 and Simon constructed problem behavior graphs, which pictorially 
represent the states of knowledge and operators the subjects stepped through on the 
path to a solution. These problem behavior graphs allowed Newel1 and Simon to 
construct their theory of information processing behavior of human problem solving. 
They found certain information processing system characteristics that were common 
to all problem solvers and tasks. Probably more than any other, their work has 
shaped the notion of human problem solving and how it carries over to the artificial 
intelligence community. 

3.2.2 General Problem-Solver 

Figure 3-2, reproduced from Newel1 and Simon's book, depicts the general process of 
a human solving a problem [47]. It begins with the task environment and the problem 
statement. At this point, the problem solver must translate the problem statement 
into an internal representation. This internal representation includes choosing a prob- 
lem space. The internal representation and problem space are crucial to the ability to 
solve the problem. They are the framework within which the problem solver works, 
and they have the ability to "render problem solutions obvious, obscure, or perhaps 
unattainable." Next, a problem solving method is chosen and applied. The method 
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Figure 3-2: General Problem Solver [47]. 



may be terminated during t'he process of application depending on its performance of 
achieving a solution. After termination, the problem solver may select and try a new 
method, look for a different internal representation to help reformulate the problem, 
or simply quit trying to solve the problem. 

Note that this description of the general problem-solver is one of serial processing. 
A method is selected and applied one at a time. This does not mean the perceptual 
and sensing processes have to be serial as well. Indeed, a major human advantage 
is the parallel processing of sensory inputs. As Newel1 and Simon say, "the problem 
solver may see many things at once; it only does one thing at a time about them." 
For example, suppose the task is to divide a number by an integer, say seven. If the 
number is exactly divisible by seven, the subject is asked to reply with a simple yes, 
else the subject should reply no. For the first problem, the human subject is given 
the number 35642. Is it exactly divisible by seven? A second problem consists of two 
numbers: 35642 and 69416. If information processing was parallel, it would take an 
equal amount of time to solve both problems. For a human, it does not. As such, 
the general problem-solver will have to take an iterative approach towards selecting 
an appropriate goal given the task environment and problem statement, selecting a 
method given the internal representation and problem space, evaluating the results, 
selecting another goal, etc. By working through the problem, new subgoals may 
surface. These subgoals may branch in different directions, some taking immediate 
precedence, some to be returned to later. Therefore, the general problem-solver must 
possess the ability to maintain a goal stack or hierarchy. 

3.2.3 Means-End Analysis 

The problem solving task is a means-end analysis accomplished by selecting and ap- 
plying a search method. The goal of the search has been articulated, and the problem 
is to search through the problem space to achieve the goal. As Newel1 and Simon 
write, "a method can be understood only in reference to its goal." Furthermore, the 
internal representation of the problem statement constrains the means of searching. 
This is why the internal representation and choice of problem space is so important. 
Also, note from Figure 3-2 that there is a method store. The method exists inde- 
pendently of the problem formulation. Therefore, there must be an interpretation 
capability to apply the method to the specifics of the problem space. Figure 3-3 
depicts the heuristic search method from Newel1 and Simon's book. Every search 
method has its specifics, but Figure 3-3 is, in its abstract form, the heuristic search 
method (italics are from Newel1 and Simon's book) [47]. The heuristic search method 
begins with the initial element of the search space. Then, a current element and op- 
erator are chosen. The operator is applied to element, and the outcome is tested for 
the solution. If it is not the solution, there must be evaluative criteria as to whether 
to accept or reject the new element. If accepted, it is inserted into the solution path. 
If it is rejected, the new element is not inserted into the solution path. The next 
step is to decide to continue to applying new operators to the current element, to 
advance by replacing the current element with the new element (typically if the new 
element was accepted), or to completely abandon the current path and try again. As 
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Figure 3-3: Steps of a heurist,ic search method [47]. 



long as the previously accepted elements along the path have been stored, the option 
to go back can start from any of these stored elements. When a solution is found, 
the path is reconstructed, and the problem is solved. Note that the specifics of a 
particular heuristic method will be found in how it selects elements, what operators 
are available, how it selects the operator, and the criteria for accepting or rejecting 
the new element. 

3.2.4 Common Characteristics 

After constructing and analyzing the problem behavior graphs from the cryptarith- 
metic, logic, and chess tasks, Newel1 and Simon collected a list of common character- 
istics for the information processing system of human problem solvers. The first is the 
size, access characteristics, and read and write times for both long-term and working 
memories (see Section 3.1). The second is that information processing occurs serially. 
Perception of the task environment is no doubt parallel, but choosing and selecting 
methods is serial. The third invariant characteristic is production-like and goal-like 
organization. (Newel1 and Simon compared humans to production systems, but felt 
that the argument was not conclusive.) The goal-driven behavior, demonstrated by 
human problem solvers, is so crucial to modern attempts at agent modeling that we 
present the following list of six criteria. These criteria are taken directly from Newel1 
and Simon, and they specify a goal-directed information processing system (IPS) with 
six characteristics: 

1. Interruptibilitg. If the IPS is removed or distracted from a situation, it 
later returns to directed activity at the same point. 

2. Subgoaling. The IPS itself interrupts its activity toward a goal to engage 
in an activity that is a means to that goal, and then returns (often after 
considerable time lapse) to the activity directed toward the original goal, 
making use of the means produced by the subgoal. 

3. Depth-first subgoalzng. When the subgoaling behavior indicated above 
occurs to a depth of several goals, the evidence is particularly conclusive 
[that the agent's behavior can be considered goal-oriented] . 

4. Equifinality. If one method for attaining a goal is attempted and fails, 
another method toward the same goal, often involving quite different 
overt behavior, is then attempted. 

5. Avoidance of repetition. More generally, the system operates with mem- 
ory of its history of attempts on goals, so as to avoid repetition of be- 
havior. 

6. Consummation. If the goal situation is attained, effort is terminated with 
respect to the goal. 

The importance of the criteria is that it serves as a benchmark for distinguishing 
goal-oriented behavior from other forms of behavior, such as reactive behavior. The 
major theme in this criterion is that the long-term behavior of the system should be 
cohesive and not random, always traveling along a path or branch to the desired end 
goal. 



3.2.5 Problem Solving to Decision Making 

Every decision can be posed in the form of a problem. Newel1 and Simon focused 
exclusively on problem solving. For the human subject given a logic task, there must 
be a sequence of decisions made in searching the problem space. These decisions 
are exactly what specify a heuristic search method, namely what element to choose 
next, what operator to select, and how to know if the result should be kept or not. 
These are the decisions the human problem solver must make. Yet, there are two 
major differences between Newel1 and Simon's tasks and the task a pilot in a tactical 
situation would face. One, Newel1 and Simon's problem solvers could pace themselves 
and they had all the information in front of them. They were under no time pressure. 
Two, there was no uncertainty in the information. By taking their time, they could 
process the information deliberately but slowly. As Newel1 and Simon write, "since 
the problem solving activity is self-paced, the problem solver can adjust his rate 
and style of processing information so that he does not appear either to have a 
rapidly decaying short-term memory or to rehearse'' [47]. Here, short-term memory 
is synonymous with working memory. The self-determined pace of problem solving 
helped these humans to adjust processing rates and styles to ease the cognitive strain 
of working within cognitive limitations. However, they are still subject to the same 
cognitive limit ations as battlefield decision makers. The difference is, again, both the 
time pressure of a decision and the uncertainty in the information. Time pressure and 
uncertainty, when combined with extremely limited working memory capacity, force 
decision makers to turn to decision heuristics that reveal a number of biases humans 
are prone to possess. These decision heuristics are decidedly different from Figure 
3-3 in that they do not systematically search the problem space for a correct path. 
Rat her, these decision heuristics match the starting conditions, the desired solution, 
and any relevant, predicted subgoals that will branch off along the solution path to 
earlier experiences. If a match is made, the previous solution path is simply chosen 
and applied. Of course, during application the results will be monitored, and the 
method can always be changed. This sort of decision heuristic will provide solutions 
very quickly. Yet, the solution path will never be optimal, it might be satisfying, and 
at worst, it could be completely wrong. This is not to suggest that the information- 
processing theory that Newel1 and Simon proposed should be abandoned. Indeed, 
engineering psychologists have abstracted it to a higher level so that experimentally 
determined human decision heuristics and biases can be modeled. 

3.3 Human Decision Making 

Figure 3-4 depicts an information processing model of decision making [87]. More 
specifically, this model is based on signal detection theory. Signal detect ion theory 
states that there are two discrete states in the environment, the signal and noise, and 
it is difficult to discriminate between them. Beginning at the left, cues in the environ- 
ment become sensory inputs to the system. These cues are numerous, changing, and 
uncertain. Thus, there must be a filtering process that selects cues and then passes 
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Figure 3-4: Key processes and components involved in an information processing 
model of decision making [87]. 

them to a perception process that estimates the importance of each cue to help build 
a situation awareness of the environment. At this point, the human information pro- 
cessor must integrate the cues from the perception process and the past experiences 
from the long-term memory. (Long-term working memory is a newer concept of an- 
other mechanism inside the working memory that uses long-term memory for skilled 
performance. It will not be discussed here, but see [19] for more information.) Then, 
the human information processor must operate on the combined information in the 
working memory to form a diagnoses or hypothesis of the situation. Once reaching 
a diagnosis, the system must then choose an action. This choice can be based on 
options that are either recalled from long-term memory and the associated risks, on 
novel options that have not been encountered before, or the combination of the two. 
Upon execution of the response or selected action, the environment will necessarily 
be changed and the process repeats itself. Furthermore, note that the environment 
is constantly changing during this whole process. Thus, as the system is forming a 
working hypothesis of the situation and choosing appropriate actions and reactions, 
new cues could enter that might either confirm or contradict it. Both the long-term 
memory and the working hypothesis act as feedback loops to the cue filter to help 
selectively focus on specific cues. Also, in choosing the correct response, the diagnosis 
must not only result in a list of options, but the corresponding risks associated with 
each one. Finally, meta-cognition is the system's awareness of its own limitations in 
seeking to find and choose correct decisions. 

The following discussion of decision making will fall into two broad categories. 
The first category is the normative, rational theory of decision making. The second 
category is the human decision heuristics and biases in decision making. After noting 
the significant divergence of normative and human decision making, we summarize 
the implications for the information-processing model of human cognition, namely 
how to judge the appropriateness of the decision. If the outcome of the decision 
scored well, but the basis of the decision was a human bias, how well should it be 



received? 

3.3.1 Normative Decision Making 

Estimating Uncertain Cues 

Normative decision making begins with the processing of informat'ion t'o create an 
accurate situational awareness and to form a proper diagnosis. The first step is t'o 
estimate the cue worth [87]. Each cue can be characterized in three main ways: di- 
agnosticity, reliability, and salience. Cue diagnosticity is the probability t'hat given a 
hypothesis, the cue should be present. Thus, if the hypothesis is t,hat it is raining, 
there is 100% probability t'hat raindrops should be present. If the hypothesis is that 
there is 50% chance of rain showers, the presence of dark clouds will be somewhat 
diagnostic, but not completely so. If t'he decision maker is considering several al- 
ternative hypot,heses, the diagnosticity of the cue will vary across each hypothesis. 
Cue reliability is the probability of whether the cue can be believed or not. The 
reliability of raindrops would be 100% unless someone wa,s spraying wa,ter out of a 
window. An eyewitness account may point to a suspect as guilty (cue diagnosticit'y), 
but the reliability of the eyewitness must still be determined. More importantly, cue 
reliability is independent of cue diagnosticity. Therefore, because the intersection of 
two probabilistic independent events is the product of their individual probabilities, 
cue reliabilit,~ and diagnosticitmy are t,hen m~lt~iplied t,ogether to form the information 
value of the cue. The final characteri~t~ic of cues is their salience, or ability to draw 
attention to themselves. This salience is important in two ways. First,, the salience 
of a cue draws attention to itself so that it can be analyzed in terms of its diagnos- 
ticity and reliability. For instance, the cold wetness of a ra'indrop on t,he skin is very 
attention-getting. Second, those cues which are not salient may be filtered out from 
the perception process. This is why debugging software code is so time-consuming. 
There is no salient feature of the bug; it must be sought aft,er. As will be discussed 
later, certain decision heuristics and biases are a direct result of cue salience. Finally, 
note that the long-term memory plays an important role in estimating the cue worth. 
Frequently encountered salient cues are easy to remember, and the working memory 
is not needed to help the filtering or estimating process. For example, raindrops, 
ambulance sirens, and the smell of freshly baked cookies do not require intense pro- 
cessing time to acquire accurate situa,t,ion awareness. It is when long-term memory 
interacts with ambiguous and uncertain cues in the working memory that difficult, 
decisions arise. 

The information value of the cue allows the decision maker to integrate all existing 
cues into a few alternative hypotheses that these cues reflect. The integra't'ion could 
simply involve summing the information values over all cues for each hypothesis. 
Taking it one step further, the information value could be combined with prior beliefs 
to form c~nditiona~l probabilities about the existence of cues and hypotheses and 
thus follow a Bayesian approach. The decision maker can choose to continue to 
seek more information from the environment to confirm one hypothesis over another. 
Otherwise, the decision maker merely selects a hypothesis and now must choose a 



correct response. Rational choice must adhere to the following three criteria [15]: 

1. It is based on the decision maker's current assets. 
2. It is based on the possible consequences of the choice. 
3. When these consequences are uncertain, their likelihood is evaluated 

without violating the basic rules of probability theory. 

Notice once again the importance of probability theory. From estimating cue worth, 
to integrating information values, and now to evaluating the consequences of choices, 
probability theory is necessary to deal with the inherent uncertainty. The theory of 
subjective expected utilities addresses how to choose rationally. 

Subjective Expected Utility Theory 

Mathematician John von Neumann and economist Oskar Morgenstern published The- 
ory of Games and Economic Behavior in 1953 where they presented the principle of 
expected utility [83]. The theory is based on a list of axioms. Von Neumann and 
Morgenstern mathematically proved that if a decision is made in accordance with the 
axioms, the decision maker will be able to define utilities or personal values. The 
decision maker can then choose between the probabilistic consequences of the list of 
alternative choices based on whichever choice maximizes the expected utility. The 
implications of this theory are amazing. By taking the time to analyze choices made 
in the past, present personal values, and probabilities in hypothetical contexts all in 
the context of satisfying the axioms, an expected utility analysis can reveal the exact 
nature of the decision maker's personal values or utilities. Now the decision maker is 
armed with a list of his or her own personal values to judge future choices that involve 
probabilistic consequences. Herbert Simon, who co-authored Human Problem Solving 
as discussed above, described this theory as, "a beautiful object deserving a promi- 
nent place in Plato's heaven of ideas" [67]. The theory is beautiful, but seemingly 
unrealistic. 

Many objections quickly arise to this theory of subjective expected utility [15, 571. 
The first objection is that it is "dehumanizes" life's important decisions by degrading 
it to numbers and rules. The second objection is that the theory seemingly purports 
that mathematics will reveal a human's personal values better than how the human 
knows his or her personal values. The third objection is that values change, and thus 
certain decisions that maximized expected utility in the past will no longer do so in 
the present. The fourth objection is that it is extremely difficult to assign subjective 
values and probabilities to the consequences of choices. The fifth objection is that 
probability theory invokes the notion of a closed set of events, and how can every 
possible outcome be accounted for? 

In Chapter 1, we presented an example of calculating the utility of a military 
commander choosing to assign a dangerous mission to either a human or an AV. In 
order to initially carry out the calculations, we assumed that the human and the AV 
had an equal probability of life, loss, success, and failure in the mission. Now, this is 
not true as stated in the summary of that section, and subjective probabilities and 
their associated weights have to be determined. This seems too tedious and general 



to be helpful. However, if we could take the time t,o complete a subjective expected 
utility analysis of human experts, there might be a chance to learn useful insights 
into the experts' value systems. It is int,riguing, but it appears to rigid to be applied 
to the dyna,mic environment of the ba'ttlefield. Robyn Dawes, a stxong proponent of 
subjective expect'ed utility theory, agrees that it is difficult to determine whether a 
choice has satisfied all of the axioms or not 1151. She concludes, therefore, that we 
should not be bound by the axioms, but should consider them as helpful in generating 
an alt'ernative list of decisions. 

3.3.2 Bounded Rationality and Satisficing 

Normative theories describe how decisions should be made in rational and mathemat,- 
ical manner. The three criteria given by Dawes and the subjective expected ut,ility 
theory are the benchmarks of this approach (see also [8] for a Bayesian inference ap- 
proach to naturalistic decision making). However, human decision making frequently 
contradicts such normative propositions. Human decision he~rist~ics and biases reveal 
the bounded rat'ionality and satisficing nature of human decision making. Simon first 
proposed tlhe expression bounded rationality and stated: 

The capacity of the human mind for formulating and solving complex 
problems is very small compared with the size of the problems whose 
solution is required for objectively rational behavior in the real world - or 
even for a reasonable approximatt ion of such objective ra,tionality. [66] 

Simply stated, bounded rationality is a combination of the human cognitive limita- 
tions and the enormous problem space in the real world. When this problem space 
also includes uncertainty and the decision maker is under time pressure, humans are 
forced to use shortcut methods that seek a ~a~tisficing solution rather than an optimal 
one. Decision heuristics are not altogether ba,d. In fact, humans employ t'hem for two 
main reasons. First, they do a pretty good job; else they would not be used. Most 
of the time, they find a satisfactory answer. Second, under extreme time pressure, 
humans do not have the option of evaluating a set of alternative choices. However, a, 
decidedly wrong reason for using heuristics, but common to humans, is the desire to 
minimize cognit,ive strain. In a word, we simply do not want to expend the mental 
effort to sort through information and find the best solution. In the following sections, 
we first present the human inability to follow t,he principles probability theory. Then 
we discuss well-known decision heuristics and biases and provide examples. Each 
section concludes wit,h implications for decision making. 

The following discussion of human subjective probabilit,~ and human decision 
heuristics and biases relies entirely on three sources: Wickens and Hollands' textbook 
Engineering Psychology and Human Performance [87], Robyn Dawes' book Rational 
Choice in an Uncertain World [15], a,nd James Reason's book Human Error [57]. 
Also, note that the names Tversky and Kahneman will be mentioned frequently 
throughout this discussion. Through many, many  experiment,^, they pioneered the 
research of drawing out human heuristics and biases. See [36] for a recent compilation 
of decision theorists research edit,ed by Tversky, Kahneman, and Slovic. 
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3.3.3 Human Subjective Probability 

Mean, Variance, Conservatism 

In analyzing a set of data or observations, humans exhibit some biases in predicting 
basic statistical parameters. First, the good news is that humans can estimate the 
mean value of observations pretty well. Consider simply estimating the midpoint of 
this page. Second, in a binary set of observations (faulty vs. normal parts, true vs. 
false, etc.), humans can estimate the total ratio of occurrence (percentage of normal 
parts in set, the ratio of true to false answers) fairly well, given that the ratio falls 
between extreme values. However, the bad news is that near the extreme values, the 
proportions are distorted. At the lower extreme of 0, humans tend to overestimate the 
frequency of occurrence. Near the upper extreme of 1.0, humans underestimate the 
frequency of occurrence. This phenomenon is depicted in Figure 3-5 where the human 
distortion of actual probability causes the function to both curve away from the origin 
and to fall short of reaching 1.0. Thus, humans are conservative, a sort of "never say 
never" behavior. The downwards offset of the curve is a result of a framing effect. 
This framing effect will be discussed more thoroughly. Third, humans do a relatively 
poor job of estimating the variance of a set of observations due to two biases, as shown 
by Figure 3-6. First, people tend to underestimate the variance if the mean of the 
observations is higher. Thus, for Figure 3-6(a), humans would estimate the variance 
in the length of the line segments on the left as higher than on the right. In fact, the 
variance is equal. The second bias of estimating variance is the influence of extreme 
values in the set of observations. For Figure 3-6(b), people would estimate the variance 
in the position of line segments on the left as higher than the right. This variance 
is also equal. Fourth, when predicting the future behavior of a nonlinear trend, the 
prediction tends to be a linear extrapolation. Therefore, if data indicate exponential 
growth, humans will underestimate the future growth using a linear prediction. Part 
of this bias appears to be, again, human conservatism. However, another underlying 
reason for this bias is the human long-term picture of events, where there tends to 
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Figure 3-6: Human biases in estimating variance [87]. 

exist some sort of "self-correcting mechanism" or increasing viscosity that slows down 
such growth. For example, say the very nonlinear and rapid growth of a spreading 
forest fire in the first few hours of burn was plotted as the number of acres destroyed 
against time. The prediction of the future growth of the fire by fitting a curve to this 
data would attempt to follow the nonlinearity and growth of the data. Yet, a human 
would predict a much more linear and conservative fit, believing that the fire will be 
eventually extinguished due to natural means, such as rain or lack of fuel, or artificial 
means by human fire-fighting agents. 

Cause and Effect 

Another common failure in human judgment of probability is a natural tendency 
to try to influence the outcome of probabilistic circumstances [15]. Ellen Langer at 
Harvard University performed a series of experiments to determine examples of this 
behavior. In one experiment, Langer observed that gamblers rolled the dice harder 
if trying to roll higher numbers than lower. In another, subjects participated in a 
lottery based upon NFL trading cards. In this lottery, every subject had a different 
NFL trading card, all cards were thrown in a bag, and the subject whose card was 
drawn won. For the first variation of this experiment, subjects randomly selected a 
card. For the second variation, subjects could select a player. In both variations, 
subjects were approached by a disguised experimenter who offered to buy their card. 
Now whether or not the subject had come into possession of the card randomly 
or not, the probabilistic outcome of the lottery would not change. However, the 
experiment found that in the second variation, when subjects chose their own NFL 
trading card, they demanded on average more than four times as much money for 
it. Thus, they behaved as if their choice of card affected the lottery outcome. In 
another experiment, Langer and Roth asked Yale undergraduate students to predict 
the outcome of a series of coin tosses [15]. Langer and Roth rigged the setup so that 
they could provide false feedback to the students. At the end of thirty tosses, every 
student had only "predicted" fifteen successfully, the expected chance out come. The 
twist was that Langer and Roth grouped the number of successes for each student 
either at the beginning of the trial or end of it. Those students who were "successful" 



near the beginning of the sequence described themselves as "better than average" at 
predicting the outcome. Those students who were only successful near the end of 
the sequence felt they predicted worse than average. Furthermore, Langer and Roth 
report that, "over 25% of the subjects reported that performance would be hampered 
by distraction. In the same vein, 40% of all the subjects felt that performance would 
improve with practice." Therefore, in three common probabilistic situations - rolling 
dice, lottery, and coin tossing - humans behaved as if there was some sort of influence 
they could affect over the outcome. 

A final example of misinterpreting probability is the human tendency to try and 
find meaning in random sequences. One simple example is the notion of a "hot hand'' 
in basketball. If a three-point shooter makes two shots in a row, the player all of a 
sudden has a "hot hand," and the team will continue to feed him the ball even if 
there are better plays available. This is not to discount the amount of training and 
skill in developing shooting capabilities and degrade it simply to luck. This is to say 
that if a shooter just made two shots in a row and the opposing team proceeded to 
call a timeout, that shooter's prediction of his ability to continue to make two more 
shots in a row is no longer based on skill, but that he's "hot." This is irrational, and 
researchers have proven the concept to be false [15]. Another example, is the notion 
that accidents occur in bunches, or more specifically in "threes." If three aircraft 
accidents occurred in a period of time, say as small as two weeks, could there not be 
some connection? People at least seem to think so. As a test, Dawes and Vaught 
gat hered from the Federal Aviation Administrat ion (FAA) the dates of all aircraft 
accidents between 1950 and 1970. For every pair of crashes, they plotted the time 
elapsed between the two. Then, they modeled aircraft crashes by a Bernoulli process, 
where every trial has a binary outcome of zero or one corresponding to the arrival 
of some event. In this case, the trial interval is one day, and the event arrival is an 
airplane crash. (They do not consider the possibility of multiple crashes occurring 
per day.) For a Bernoulli process, the interarrival times are geometric variables with 
constant probability, p. Equation 3.1 is the probability mass function for a geometric 
variable with constant probability, p, and kth trial. 

In words, px(k) is the probability of the occurrence of x at the kth trial, where p is 
the probability of the occurrence of x at each trial. Therefore, Equation 3.1 states 
that the longer the time has elapsed after the occurrence of a single arrival, the 
more likely the next arrival will occur. Dawes and Vaught found that the interarrival 
times predicted by this stochastic process fit the data almost perfectly. Figure 3-7(a) 
depicts the number of crashes predicted by a Bernoulli process over the period 7300 
days, which is equivalent to the twenty-year period they analyzed. Figure 3-7(b) is 
a histogram that depicts the frequency of occurrence of interarrival times, the time 
elapsed between the crashes in Figure 3-7(a). Dawes and Vaught did not publish what 
constant probability p fit the data, therefore, for this figure, the Bernoulli process 
assumes that the probability of an aircraft crash every day is one percent (a little 
less than four crashes per year, which is hopefully too high). Notice from Figure 



(a) Number of crashes over twenty years. (b) Histogram of the interarrival times 

Figure 3-7: Hypothetical aircraft crashes modeled by a Bernoulli process with con- 
stant probability p = 0.01. 

3-7(a) that random events do occur very close to each other, especially around days 
700, 1500, and 7000. In fact, the conclusion from Figure 3-7(b) is that the highest 
frequency of occurrence of interarrival times, with a total of six, was the period from 
one to five days. Indeed, in continuous form, the probability mass function of the 
geometric random variable is the exponential probability density function of the form 
px(x) = Xe-Xx which equals X when x = 0 and curves down to zero. Then is it true 
that accidents occur in threes? The conclusion from Figure 3-7(b) is that they at 
least occur frequently in pairs. Upon analyzing Figure 3-7(a) further, the solid band 
around 6800 days is actually four arrivals that occur over a time span of 43 days. Four 
crashes in a month and a half would be enough for humans to try and find meaning 
in this random sequence. 

Statistical Models 

One of the first steps necessary in forming a decision is to determine the information 
value of a cue (see Section 3.3.1). This information value consists of multiplication 
of the independent probabilities of cue diagnosticity and cue reliability. However, 
humans exhibit two fundamental errors in determining cue worth. First, humans 
tend to treat all cues as if they were of equal value. This is much easier than trying 
to differentially weight them. Second, humans present a salience bias, whereby they 
tend to select and give more attention to those cues which are more attention-getting. 
The combination of these biases with the mistakes in properly applying probability 
has led researchers to call for the end of statistical prediction by human decision 
makers [15, 16, 74, 871. 

These researchers have conducted numerous experiments where expert decision 
makers predict an outcome of some case subject based upon a list of attributes and 
subject's scores in each of the categories. For example, Robert Libby had forty- 
three bank loan officers predict which thirty of sixty firms would go bankrupt within 



three years of a financial report [15]. The loan officers requested information about 
each firm, primarily important financial ratios, such as the ratio of liquid assets to 
total assets, upon which they could make their prediction. Their predictions were 
75% correct, but a linear regression was 82% correct. Furthermore, using just one 
attribute - the ratio of assets to liabilities - the linear model was 80% accurate. 
These researchers have concluded that "experts correctly select the variables that are 
important in making predictions, but . . . a linear model that combines theses variables 
in an optimal way is superior to the global judgment of these very same  expert,^." 
Therefore, domain experts in statistical prediction should classify the appropriate 
predictor variables, show how to measure and encode them, and ident,ify the correct 
direction of the variable's weighting (i.e. - higher ratio of liquid assets to total assets 
equates to smaller chance of bankruptcy ) . At this point, st at istical analysis through 
computation should make the appropriate prediction. 

3.3.4 Heuristics and Biases 

There are many decision heuristics and biases that humans employ because of the 
bounded rationality problem. These will be important in analyzing the data resulting 
from the knowledge-elicitation experiments so that we will have a complete picture 
of why the human subjects made particular decisions. These are presented in no 
particular order, but there definitely exists connections and common themes between 
many of them. 

Representativeness Heuristic 

The representativeness heuristic describes the tendency to first match existing cues 
with similar patterns represented in long-term memory and then to derive causality 
for the current situation based on the causality in the past. So far as a method, this is 
not a bad heuristic. How else do decision makers learn from past mistakes? However, 
the problem with the heuristic enters when cues are somewhat vague and uncertain 
and decision makers do not adequately take into account the base rate of occurrence. 
For example, consider the physician who must decide whether or not the presence of 
specific symptoms imply the existence of a disease. Say the patient has three out of 
five symptoms that represent and imply causality of disease X, and the patient also 
has four out of five symptoms that represent and imply causality of disease Y. The 
physician will most likely diagnosis the patient as having disease Y because of the 
represent at iveness heuristic irrespective of the probability of the actual occurrence of 
disease Y, which is its base rate. In Bayes Theorem, given by Equation 3.2, the event 
A represents the disease and the event B represents the collection of symptoms. 

The question the physician is trying to answer is what is the probability of A given 
the existence of B ,  that is P(AI B). In the example scenario, the physician knows 
P(BIA), which is the probability of the collection of symptoms given the existence of 



the disease. He has already det,ermined that t,he symptoms point to the disease. The 
physician also knows P ( B ) ,  the probabilit'y of the existence of the ~ollect~ion of symp- 
toms. He has already determined the symptoms are present'. What the physician fails 
is to t'ake into account P(A) ,  the base rate of the disease. In fact, tlhis failure to ac- 
count properly for base rates and prior probabilities over and above the conservatism 
humans already exhibit in estimating probabilities (see Section 3.3.3) led Tversky 
and Kahneman to pronounce "in his evaluation of evidence, man is apparently not a 
conservat'ive Bayesian: he is not a Bayesian at all." The repre~entat~iveness heuristic 
hinders the decision maker when causality is determined by representativeness of the 
cues wit'hout considering the probability of the cause itself. 

Availability Heuristic 

Tversky and Kahneman defined t'he availability heuristic as the "ease with which 
instances or occurrences can be brought to mind" 1871. The availability heuristic is a 
bias that decision makers use to estimat,e the probability of an event. Dawes uses the 
example of the homeless [15]. How many people are homeless due to long-term ment'al 
illness? Research shows that about one-third could be characterized as mentally ill 
due to either "current mental distress or a hist,ory of psychiatric hospitalization." 
Most homeless people are just simply poor. The biased national opinion of correlating 
homelessness wit'h mental illness can be explained by the availability heuristic. Dawes 
states: 

Search your memory for the homeless people you saw most recently. What 
were they like? The unobtrusive homeless person is easily forgotten. We 
tend to remember the person who sings on the bus, who accosts strangers 
with stories of lost fortunes, who is drunk, or who is obviously high on 
some drug. Moreover, we may prepare ourselves to behave in certain ways 
if such a person approaches us . . . [which] enhances the recall of the event 
leading to it. 

Alternatively, consider the two F-16 pilots (see Section 2.2.1) who stated that un- 
manned aircraft should never operate in the same airspace as manned. Why? An 
eyewitness account of a Predator drifting into the path of a group of fighters almost 
caused a mid-air collision. How many times has an unmanned aircraft operat'ed in 
the same airspace as manned and not caused any problems? Those event,s are not 
remembered because they are not salient. Who has actually kept a st'atistic of safe, 
regulated operation of manned and unmanned aircraft in the airspace? Who has ac- 
tually compared the number of times manned aircraft operat'ing in the same airspace 
as other manned aircraft almost caused a mid-air collision? The pilots' conclusions, 
based both on a biased recall of events and a biased experience (how much have 
they actually interacted with unmanned vehicles), are irrational. People who use the 
availability heuristic overestimate probabilities. The salience of the event, the "elabo- 
ration in memory" of the experience, the recency of the memory, and the simplicity of 
it (Wickens notes tha,t a single failure is much easier to remember t,han a compounded 
double failure [87]), all lead to the availability heuristic. 



Anchoring 

The anchoring heuristic describes the tendency of humans to propose an initial so- 
lution to a problem, especially an ambiguous problem, and then simply adjust their 
answer from there. It is as if they have attached a "mental anchor" to it. For exam- 
ple, Tversky and Kahneman asked a group of students what percentage of African 
countries were members of the United Nations [15]. The correct answer is 35%. Be- 
fore the students gave their answer, Tversky and Kahneman presented a wheel with 
numbers between one and one hundred. They would spin the wheel and then ask the 
students to simply judge whether the answer was higher or lower than the number 
on the wheel. Then the students would give their numerical answer. In actuality, the 
wheel was rigged to stop on either ten or sixty-five. When the wheel stopped on ten, 
students made an average estimate of 25%. When the wheel stopped on sixty-five, 
students made an average estimate of 45%. Therefore, the numbers ten and sixty-five 
became anchors for the students' answers "even though the subjects were led to be- 
lieve that these numbers were generated in a totally arbitrary manner." In another 
example, students were asked to mentally estimate the value of 8!. To describe the 
concept of a factorial, students were either presented with 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 
or the reverse order of 8 x 7 x 6 x 5 x 4 x 3 x 2 x 1. The median answer given 
by students presented with the ascending sequence was 512. The median answer for 
those students presented with the descending sequence from 8 was 2,250. The correct 
answer is 40,320. The first number then in the multiplicative sequence served as an 
anchor. Note that once again this  highlight,^ the necessity to carefully design how 
an order of information is presented to the human. Finally, another variation of the 
anchor-and-adjust principle is when new information is given to the decision maker 
after an initially formed hypothesis. A study of Army intelligence analysts found 
that they gave considerably more weight to new pieces of information that supported 
their original hypothesis than those that did not [87]. Rather than forming a new 
hypothesis, humans tend to only adjust their answer based on the originally conceived 
answer. 

Confirmation Bias 

The confirmation bias describes decision makers who actively seek only that infor- 
mation that confirms their initial hypothesis. If in this active seeking, contradictory 
information is revealed and cannot be interpreted in the context of the initial hypoth- 
esis, it is discounted or completely discarded. F'urthermore, completely undiagnostic 
or ambiguous cues will be interpreted in light of the conceived hypothesis and be 
found to support it. In the USS Vzncennes incident of July 1988, the Ticonderoga 
class cruiser shot down an Iranian Airbus airliner. The context of the situation re- 
vealed tension in the Persian Gulf. Iranian forces had successfully exploded a mine 
into the USS Samuel B. Roberts earlier that April. Radar operators aboard the Vzn- 
cennes initially believed the radar contact was an Iranian fighter because it appeared 
to follow a fighter aircraft's profile out of Iran as depicted by intelligence reports. 
However, when the identification-friend-or-foe equipment returned a non-hostile con- 



tact, the crew discounted it. The exact nature of t'he incident is still controversial, but 
it demonstrates t,he danger of the confirmation bias. The group of Army intelligence 
analysts described in the anchoring heuristic also exhibited t,he confirmation bias. 
Not only did they give undue weight to contradictory information that was given 
to them (passively received) and thus demonstrate a "ment a1 anchor ," they were 
explicitly given the choice of what informat ion they st ill desired. Consistently, the 
analysts chose to actively seek for information that confirmed the hypothesis rat her 
than seeking for disconfirming evidence. However, this is not to say that ma,intaining 
a "working hypothesis" is the wrong strategy in decision making. Rather, the deci- 
sion maker needs to consciously look for or at least rationally consider disconfirming 
evidence and ascribe to it the appropriate amount of weight that it is due. 

Overconfidence Bias 

The overconfidence bias describes decision makers who are overconfident in the accu- 
racy of their predict'ions or solutions. As an example, Fischhoff and MacGregor asked 
human subjects to predict the outcomes of certain events, such as sports games and 
elections[87]. They then asked the subjects to rate their confidence in the predictions. 
The outcomes consistently revealed that confidence exceeded accuracy, sometimes as 
high as 20-30%. Consider the student who has spent a long time studying and really 
feels that he or she has a good grasp of the knowledge only to take the test and receive 
an average grade. Furthermore, J. Reason notes that when overconfidence a,nd the 
confirmation bias are combined, 

Humans will be loat'he to change a completed plan set for action especially 
under the following conditions: [57] 

1. when tlhe plan is very elaborate, involving the detailed intermeshing of 
several different action sequences 

2. when the plan was the product of considerable labor and emotional in- 
vestment and when its completion was associated with a marked reduc- 
tion in tension or anxiety 

3. when the plan was the product of several people, especially when they 
comprise small, elite groups 

4. when the plan has hidden objectives, that is, when it is conceived either 
consciously or unconsciously, to satisfy a number of different needs or 
motives 

The implications of overconfidence are to disregard additional information by either 
ceasing to gat her informat ion or discounting its worth. 

Elimination by Aspects 

Elimination by aspects is a sequential search met,hod for deciding between alternative 
choices. Elimination by aspects purposefully seeks to find a satisficing answer rather 
than an optimal one. The focus is on the aspects of the alternatives not necessarily 



the alternatives themselves. The process is to choose the most desirable aspect, 
eliminate all other choices that do not exhibit it, choose the next most desirable 
aspect, eliminate all other choices that do not exhibit it, etc. At the end there should 
be either a single answer or only a small number that could then be evaluated more 
thoroughly. The accuracy of the method hinges on the order of elimination. If the 
aspects are ranked according to their desirability, the answer is typically satisfactory. 
If the aspects are probabilistically chosen according to a model of their importance 
(i.e. - the decision maker is more likely to consider a particular aspect first but not 
necessarily by explicit rank order), the results can be less than satisfying. If the 
aspects simply considered as they "come to mind," the approach has no validity. 

Sunk Costs 

A rational decision, according to the criteria from Dawes, is based on the decision 
maker's current assets, the consequences of the choice, and the evaluation of uncer- 
tainty in accordance with the laws of probability. A sunk cost is a past investment 
that has failed according to some standard of failure. To make a current decision 
based upon sunk cost is therefore irrational. Sunk costs deal with the past whereas 
rationality deals only with current assets and future consequences. Although honoring 
sunk costs is irrational, it occurs all the time: 

"I am already here. I might as well go run that errand. I completely 
forgot about it. Oh well, it would be a waste of time and gasoline to 
have to come back." 
"We cannot cancel it now. We already paid the deposit. That would be 
a waste of money." 
"To terminate a project in which $1.1 billion has been invested represents 
an unconscionable mishandling of taxpayers' dollars." 

The last quote is from a senator in November 1981 [15]. He was responding to critics of 
a particular government program who had stated that the total value of the program, 
if carried on to completion, would be less than the amount of money yet to be spent 
completing it. The senator essentially responded by declaring that that to stop the 
program now would result in a deficit of $1.1 billion with nothing to show for all 
the expense. However, the senator is justifying the expense of more money for the 
program to create something worth less than the money to be spent,. This behavior is 
irrational. Note that if damage to reputation may occur due to canceling the program 
and it poses serious future problems, then it would be rational to honor the sunk cost. 
(Would any senator openly assert that the damage to his reputation outweighs the 
cost that taxpayers must shoulder to finish a doomed program?) Therefore, decisions 
should only be based on the future consequences of choices. 

Framing 

The framing effect found in decision making reveals a tendency of humans to make 
decisions based on their relative level of asset worth rather than on the total level of 



asset worth. Consider the following scenario. There is a potential outbreak of bird flu 
in the Hawaiian Islands that is expected to kill 600 people in a local village. Scientists 
have proposed two alternative programs to combat the virus. They have estimated 
the consequences of the two programs as follows: 

If program A is adopted, 200 people will be saved. 
If program B is adopted, there is a 113 probability that 600 people will 
be saved and a 213 probability that no one will be saved. 

Tversky and Kahneman posed this question to university students [15] and 72% chose 
program A. A second group of students was then given the same scenario, but with 
the two programs worded slightly different. 

If program C is adopted, 400 people will die. 
If program D is adopted, there is a 113 probability that no one will die 
and a 213 probability that 600 will die. 

78% of this second group of students chose program D. However, program A and 
program C are identical because the concept of 200 people living is equivalent to 400 
dying. Likewise, program B and program D are identical. The difference between the 
presentations of the programs resulted in an incredible 50% difference of acceptance 
(72% chose program A whereas only 22% chose the identical program C). 

This behavior is irrational, and it has been termed the framing effect. The concept 
is simple. When a problem or choice between two options is presented in terms of 
gain (lives saved, money won, etc.), people tend to be risk-averse. They do not want 
to take chances if the know they are gaining something. On the other hand, if the 
problem is presented in terms of losses (deaths, debt, etc.), people tend to be risk- 
seeking. The irrationality is that the decision is not made upon the total outcome, 
but upon a relative outcome due to a presented frame of reference. 

Tversky and Kahneman propose that the law of diminishing returns describes 
the human tendency to quantify the positive and negative consequences of decisions 
according to their own value function. These concepts are enumerated as follows: [15] 

1. An individual views monetary consequences in terms of changes from a reference 
level, which is usually the individual's status quo. The value of the outcomes for 
both positive and negative consequences of the choice then has the diminishing- 
returns characteristic. 

2. The resulting value function is steeper for losses than for gains. 

Figure 3-8 depicts this value function and diminishing returns characteristic. The 
independent variable is money or the objective worth of the item, and the dependent 
variable is the subjective value as perceived by the decision maker. The diminishing 
returns characteristic is evidenced by the continually decreasing, positive slope away 
from zero (a negative second derivative) in both directions. Furthermore, note that 
the slope for 0- is steeper than the slope for 0+, or in other words, the absolute 
magnitude of the slope near zero at 0- is greater than the absolute magnitude of the 
positive slope near zero at O + .  Therefore, the interpretation of the value function 
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Figure 3-8: Displaying two aspects of prospect theory [15]. 

is that small positive increments in money away from zero (or from the frame of 
reference) maintain their total worth in terms of subjective value. However, the larger 
the positive increment of value away from zero, the less the perceived worth. The 
interpretation of small negative increments is the same, except that negative losses 
are perceived to carry greater negative worth due to the steeper slope. The earlier 
presentation of human failures in understanding probability presented a graph, Figure 
3-5 that displayed subjective probability versus stated probability. In this figure, the 
curve was noticeably offset downwards, which means that the human's perception of 
probability is generally less than the truth. This offset depicts the framing effect. 
When a choice is presented in terms of gains, the probability of the riskier positive 
outcome will be underestimated due to the offset. Therefore, the gain associated 
with that outcome will be underestimated, and the decision maker will choose the 
sure option. When a choice is presented in terms of losses, the probability of the risky 
negative outcome will also be seen as less. The decision maker will then underestimate 
the expected loss, and therefore choose to be risk-seeking. 

Figure 3-8 illustrates another framing effect where the upper right quadrant r e p  
resents a choice given in terms of gains, and the lower left quadrant represents a 
choice given in terms of losses. For the positive choice, the scenario begins with the 
decision maker given $100. This point is not shown on the graph because it is the 



new reference level for the following decision. The decision maker must then choose 
between the option of receiving another $100 or taking a 50-50 chance of receiving 
another $200 or nothing. The sure gain of $100 is point (1). Note that the expected 
outcome of the 50-50 chance option should be $100. However, graphically it is the 
average of $200 and 0 as found on the value function, given by point (2). Therefore, 
because of the diminishing returns characteristic, the average of the utilities (per~ona~l 
value) lies below the curve, and in terms of value, the decision maker opts for the 
risk-averse choice of a sure $100. On the other hand, the same options are framed 
in terms of losses in the lower left quadrant, and it can be seen that the diminishing 
returns characteristic results in an average of utilities that lies above the curve, given 
by point (3). Therefore, the decision maker chooses the risk-seeking option of the 
50-50 chance. 

The choices to not wear a seatbelt, buy insurance, and play the lottery are three 
everyday examples of the application of Figure 3-8. For seat'belts, if the decision 
maker believes that the choice to not wear a seatbelt returns a small gain in comfort, 
that small gain is highly valued according to the value function. On the other hand, 
because of the diminishing returns characteristic, the large objective negative cost of 
an accident without wearing a seatbelt is not perceived as all that bad. For buying 
insurance and playing the lottery, the expectation is to lose money. Brenner notes 
that the reason for paying out insurance premiums and the cost of lottery tickets can 
be framed in terms of relative wealth distribution. 

They [people] perform both acts for the same reasons: in both cases indi- 
viduals expect to lose relatively small amounts, either the price of the lot- 
tery ticket or the insurance premium. But these small amounts are worth 
losing since these are the only ways by which people can either change or 
avoid changing their relative position in the di~t~ribution of wealth. Thus 
people gamble in order to try to become richer and change their relative 
position in the distribution of wealth, and they insure themselves in or- 
der to prevent becoming poorer, thus avoiding a change in their relative 
position. [15] 

The relative frame of reference for the decision maker choosing to buy insurance is 
the net worth of positive assets. In terms of gain, the decision maker is risk-averse 
and would rather pay the sure loss than risk becoming poorer. For buying lottery 
tickets, the decision maker's relative frame of reference is negative, because he or she 
observes so many others as more wealthy. Therefore, in terms of this loss, the decision 
maker is risk-seeking and gambles to possibly become richer. 

Finally, note that the earlier discussion of sunk costs can be understood in terms 
of framing. The decision maker clearly views the status quo as negative. Thus, 
the decision maker would rather keep spending the money in hopes that something 
good will come out of the already wasted effort' rather than accept the loss and move 
on. The choice is between a sure loss of terminating the program and a gamble, 
and the gamble is perceived as having greater value. However, this commitment to 
honoring the past is precisely why companies bring in new heads of leadership. For 
the new leader whose reference level is not negative, the choice of terminating the 



program or continuing to make a bad investment is easy. Considering only the future 
consequences of decisions, the new leader terminates the program for two reasons. 
First, the past history of the program holds zero value for the leader. Second, the 
future of the program is grim. The choice is between zero and a loss. 

Overuse of Resources 

In dynamic, uncertain environments, high level decision makers always want more 
information than can be had. There is never enough intelligence. Yet, is more neces- 
sarily better? To answer this question, Omodei et. al. used a high fidelity, interactive 
simulation that allows teams of humans to combat forest fires [51]. They focused par- 
ticularly on the human subject chosen to be the firefighter commander and varied the 
amount of feedback information on the status of extinguishing the forest fires given 
to the firefighter commander. They found that when more resources were available to 
the commander, the commander felt obliged to take the time and effort to consider 
it, even when they were already cognitively overloaded. This applied to all kinds of 
resources, from informat ion gat hering, opportunities for act ion, and communication 
input. The perceived need to try and grapple with more information, opportunities, 
and communication in an already high pressure, high tempo, and uncertain envi- 
ronment significantly degraded performance. However, Omodei et. al. concluded 
that this bias to overutilize resources occurs outside conscious awareness and could 
most probably be the result of the activation of one or more schema in long-term 
memory (see Section 3.1.1). They proposed the following to explain the commanders' 
behavior: 

1. A preference for errors of commission rather than omission. In most 
emergency situations, time is short, so there could very well be a general 
task bias for action over delay. 

2. An illusory sense of greater control via activity. . . decision makers, to 
avoid subjective uncertainty, act in such a manner as to achieve an il- 
lusory sense of cognitive control over the environment. That is, activity 
regardless of its adequacy provides a sense that one is having some de- 
sirable effect in the problematic situation. 

3. An illusory sense of greater self-competence via activity.. . t o  guard 
against a sense of personal incompetence. 

4. An overestimation of personal ability.. . with respect to both speed of in- 
formation processing and amount of information that can be concurrently 
managed in working memory. 

Thus, due to a possible need for control and competence as well as an overconfidence 
bias (see Section 3.3.4), commanders would rat her implement action, watch it unfold, 
and correct any mistakes rather than miss something. This suggests a failure in meta- 
cognitive activity, which is the awareness of one's own limitations. Humans do not 
have the ability to "optimally regulate" their cognitive activities because they are not 
consciously aware of their cognitive limit, at ions. 



Search Order 

Nisbett and Wilson performed a series of experiments where they presented a rack of 
clothing to the subject [15]. All the clot,hes were in a single row facing the subject, 
and the subject was asked to state his or her preference for t'he article of clothing 
t,hey desired. Nisbett and Wilson found that most subjects scanned the clothing 
from left to right, and then amazingly proceeded to choose the article of clothing 
on the far right. One explanation for this choice of the far right article is that in 
scanning from left to right, each new article of clothing might exhibit some desirable 
feature t4he previous one did not. Upon reaching the far right, there is no other article 
further to the right t'o be compared to, and thus it is chosen. This is not to say that 
subjects did not go back and look at other pieces of clothing, but t,hat it is possible 
that the initial scan from left to right unconsciously produced a desire to choose 
t'he last article initially scanned. This experiment shows one main t'heme that the 
order in which items are present'ed is decidedly imp~rt~ant .  Humans are not para,llel 
processors in comparing alternatives. The alternatives must be searched through 
serially. Furthermore, when combined with the limitations of working memory, not 
all the alternatives previously searched through can be held in working memory. 
Therefore, the order is of even greater importance. Moreover, the subjects in Nisbett 
and Wilson's experiments were presented with every possible decision choice. This 
is rarely encountered in everyday life. Thus, in making decisions, humans do not 
have all the alternatives, ca,nnot hold all the alternatives in memory, and must search 
sequentially through all the possible alt'ernat ives. 

Independence of Irrelevant Alternatives 

When deciding bet,ween two options, A and B, the introduction of a third option C 
should not affect the decision between A and B. For example, if A has been chosen as 
more desirable than B and then another option C is considered along with them, A 
should still be more desirable than B. Option C has no relevance between preferring A 
over B. If option C is the most desirable in the set of A, B, and C, then ultimately C 
should be chosen. The question, then, is can t,he introduction of C be shown to reverse 
the preference between A and B even when C is not ultimately chosen? Such a reversal 
is contradictory and thus irrational. Yet, an experiment by Harrison and Pepitone 
displayed the contradictory contextual effects in decision making [15]. They asked 
students to train a rat through electric shocks. These shocks had different strengths. 
During one portion of the experiment, only two shock strengths were available. They 
were labeled "mild" and "slightly painful." In t'he second portion of the experiment, 
t'hree shock strengths were available. They were "mild", "slightly painful", and either 
"moderately" or "extremely painful." The students were explicitly told not t'o use 
the moderately or extremely painful setting. Therefore, only mild and slightly painful 
shocks could be administered in both portions of the experiment. The results showed 
that t,he slightly painful shock was chosen 24% of the time when there was no third 
alternative, 30% of the time in the presence of irrelevant m~derat~ely painful level, and 
36% of the time in the presence of the irrelevant extremely painful level. Therefore, 



the contextual environment, though irrelevant to the decision, coerced the decision 
makers into making contradictory decisions. 

3.3.5 Summary of Human Subjective Probability and Deci- 
sion Heuristics and Biases 

Humans exhibit an inability to properly apply the principles of probability theory. 
They would rather believe they could affect the outcome or derive some causality 
from a random sequence. Other failures in probabilistic reasoning have brought se- 
rious questioning as to whether the human expert should be relied upon to make 
intuitive predictions about the future. An analytical, quantitative, and deliberate 
analysis of a set of choice alternatives is slow and mentally taxing. Humans uti- 
lize heuristics to find quick, satisficing answers. For example, elimination by aspects 
quickly narrows down a set of large alternative choices to a few. However, because 
of certain biases, these solutions are not always appropriate. In the same example, if 
elimination by aspectfs proceeds according to the availability bias (the order of aspects 
is chosen as they come to mind), there is no validity to the solution. Deliberate anal- 
ysis requires high cognitive effort. It is much easier and quicker to match important 
cues to representative and available information stored in long-term memory. The 
anchoring, overconfidence, and confirmation biases reveal a failure of meta-cognition 
(see Section 3.3), where the human expert is not fully aware of his or her own decision 
making limitations. How can the expert be trained to seek new hypotheses in ambigu- 
ous situations, to actively search for contradictory informat ion, and to quest ion the 
accuracy of his or her own situational awareness? Humans tend to get too attached to 
past mistakes and choose between risky options based on a present frame of reference 
rather than the final outcome. Due to the serial processing nature of human cognition 
and cue salience bias, the order of present at ion and the at tention-grabbing qualities 
of information is vital. Furthermore, human decision makers feel compelled to use 
and integrate all available information, and thus the amount of informat ion provided 
to the decision maker also affects performance. Without proper filtering capabilities, 
irrelevant contextual influences bias the choice between relevant alternatives. In all, 
these misconceptions, heuristics, and biases appear to paint a bleak picture of human 
decision making. However, shortcut methods to quick decision making arise not from 
laziness but from necessity. In this research which attempts to capture tactical knowl- 
edge, such as reactive decisions, there is not time to find the best course of action. 
Thus, it is expected that some of these decision heuristics and biases will be found in 
these tactical knowledge elicit at ion experiments. 

3.3.6 Naturalistic Decision Making 
To summarize the chapter so far, we have presented the cognitive structures of long- 
term and working memories, an information-processing model of human problem- 
solving and decision-making, the concepts of normative decision making theory, and 
the human tendency to depart from these normative concepts by relying on heuristics 
and biases to make choices. One major conclusion thus far, is that in the real world of 



uncertainty and time pressure, analytical and quantitative decision making methods 
appear infeasible. Furthermore, as the previous section described, humans are already 
prone to make decisions based on heuristics. The field of naturalistic decision making 
attempts to provide a stronger framework of real-world decision making rather than 
simply grouping departures from how decisions should be made under an umbrella of 
heuristics and biases. 

Domain 

Naturalistic decision making theory arose out of the seemingly impossible task of 
decision theorists seeking to reconcile normative decision making proposit ions with 
experimentally determined heuristics and biases all under the umbrella of a cognitive 
information-processing model. As always, when theories become so complex and so 
vast that individual parts now threaten its coherence, theorists return to the under- 
lying foundations and seek simple answers. Klein did exactly this in 1998 when he 
observed the real time decision making of firefighter commanders. His goal was sim- 
ple. How do firefighter commanders make decisions in the real world of high pressure, 
high tempo, and high risk? His work invigorated the decision making community to 
leave the laboratory and seek to understand decision making in real world situations. 
In doing so, the naturalistic decision making community has produced the following 
list of real-world characteristics that they seek to integrate into decision frameworks 
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1. Ill-structured problems 
2. Uncertain dynamic environments 
3. Shifting, ill-defined, or competing goals 
4. Actionlfeedback loops 
5. Time stress 
6. High stakes 
7. Multiple players 
8. Organizational goals and norms 

One glance at this list confirms its accurate description of tactical decision making 
in battlefield environments. Indeed the military, especially the United States Ma- 
rine Corps and the Swedish Army, has been seeking out naturalistic decision making 
theorists to train and re-teach decision making skills to its leaders because of its effec- 
tiveness in real world environments [25, 79, 591. The military's traditional problem- 
solving models that rationally break out decision making into processes of problem 
definition, alternative generation, refinement, and selection are too time-consuming. 
Schmitt and Klein stated that, "these models are inconsistent with the actual strate- 
gies of skilled planners, and they slow down the decision cycle. As a result, the formal 
models are usually ignored in practice, in order to generate faster tempo'' [79]. 

Recognition-Primed Decision Model 

Figure 3-9 depicts Klein's proposed recognition-primed decision (RPD) model. RPD 
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Figure 3-9: Recognition-primed decision model [38]. 



accounts for the two major aspects in decision making, situational awareness and 
choice of action. In experiencing the environment in a cha,nging context, the deci- 
sion maker begins with the following question: is the situa,t,ion typical (prot'otype) 
or familiar (analogue)? If the answer is yes to either category, the decision maker 
categorizes recognition into four areas. The decision maker recognizes what goals are 
appropriate, which cues are important, what expectations to keep in mind, and what 
actions should be taken. By doing so, the decision maker sets priorit'ies, filters t'he 
environmental information so there is not an overload, prepares for the next step and 
any surprises, and possesses a course of action. Situational awareness, then, is the 
combination of all four recognition by-products. This is markedly different from t,he 
decision maker beginning with a set of goals and expectations and t'hen trying to 
interpret the situational context , which would quickly lead to misinterpret at ion and 
exacerbate heuristics and biases such as anchoring, confirmation bias, and overconfi- 
dence bias. 

The upper left feedback loop in Figure 3-9 represents a situat,ion in which the 
decision maker needs more information. In this circumstance, the decision maker 
may not recognize the situation as typical or familiar and therefore must spend time 
gathering more data in order to further diagnose t,he situation. At this point, the 
decision maker may attempt to match important features of the situation to alter- 
native interpretations to find the best fit. This appears to be closely related to the 
elimination by aspects heuristic (see Section 3.3.4). Also, the decision maker may 
atltempt to build a story that accounts for any missing features. However, this feed- 
back loop does not just stem from an initial uncertainty in recognizing t'he situation. 
The decision maker may have misinterpreted the context and does not realize it until 
some expectancies have been violated. This anomaly also forces the decision maker 
to seek further clarification, more data, and a bett'er diagnosis as described above. 

The lower right feedback loop in Figure 3-9 represents a situation in which the 
decision maker has recognized the situation, chosen a course of action, but is not ex- 
actly sure of how that course of action will play out. For example, t'he decision maker 
may be trying to implement a t'ried-and-true course of action t,o an environment that 
possesses some novel characteristics. To understand if there may be any anticipated 
difficulties, the decision maker mentally simulates how the course of action will inter- 
act with the environment. In doing so, the decision maker could either modify the 
selected course of action or reject it and choose another. Furthermore, the mental 
simulation may highlight so many difficulties that the decision maker realizes more 
diagnosis is necessary. 

There exists a simple rule-based analogy to RPD. For tlhe simple scenario of rec- 
ognizing the situation; forming a set of goals, cues, expectancies, and actions; and 
implementing a course of action, the model exhibits an "if . . . then" response. For 
the upper left feedback loop where more information is needed, the model displays 
an "if (???) . . . then" response. The decision maker no longer completely recognizes 
the situation and thus questions the initially formed antecedent. For the lower right 
feedback loop to evaluate a course of action through mental simulation, the model 
depicts an "if . . . then (???)" response. The decision maker is unsure of whether 
the associated consequent is contextually appropriate and thus mentally simulates its 



results. 

Naturalistic vs . Normative 

The following is a list of key features of the RPD model as presented by Klein (italics 
added for this thesis). The RPD model claims that with experienced decision makers: 

1. The focus is on the way they assess the situation and judge it familiar, 
not on  comparing options. 

2. Courses of action can be quickly evaluated by imagining how they will be 
carried out, not by formal analysis and comparison. 

3. Decision makers usually look for the first workable option they can find, 
not the best option. 

4. Since the first option they consider is usually workable, they do not have 
to generate a large set of option to be sure they get a good one. 

5. They generate and evaluate options one at a time and do not bother 
comparing the advantages and disadvantages of alternatives. 

6. By imagining the option being carried out, they can spot weaknesses and 
find ways to avoid these, thereby making the option stronger. Conven- 
tional models just select the best, without seeing how it can be improved. 

7. The emphasis is on being poised to act rather than being paralyzed until 
all the evaluations have been completed. 

Notice the major departures here from normative decision making. Expert decision 
makers do not generate, evaluate, and compare alternatives. Rather, they find a 
workable option, imagine its implementation, and either look for improvements or 
new workable option. In the following quote, Klein compares RPD to normative, 
rational decision making theory. A "rational choice strategy" that seeks to overcome 
all of the human decision heuristics and biases and is mathematically sound requires 
the following: 

[Dlefine the evaluation dimension, weight each one, rate each option on 
each dimension, multiply the weightings, tot a1 up the scores, and deter- 
mine the best option - that is, unless you do not have all the data you 
need, or are not sure how to do the ratings, or disagree with the weights, 
or run out of time before you have finished . . . The problem is that the 
assumptions of the rational choice strategy are usually too restrictive. 
Rarely is there the time or the information needed to make this type of 
strategy work. 

Normative decision theorists, however, would proclaim that rational choice results in 
reliable, quantitative decision making. This is true, and Klein agrees. Furthermore, 
rational choice strategies, like subjective expected utility, may be helpful for begin- 
ners who are not experienced in a domain and have no long-term memories to draw 
upon. Yet, it simply hinders experts who must make real time decisions. Norma- 



tive decision making calls RPD yet another heuristic. Naturalistic decision theorists 
dismiss normative decision making as neither natura,l nor practical. 

RPD's Consistency and Applicability 

RPD accounts for severall major themes in this chapter. First, RPD accounts for the 
human tendency to match previous experiences from long-term memory with present 
scenarios. Second, it describes how the decision maker chooses within the constraints 
of working memory. The decision maker does not compare a list of alternatives. The 
decision maker does not even generate a list of alternatives, but devotes all of the 
power of working memory on one course of action at a time to mentally simulate its 
implementation. Third, RPD shows how tlhe decision maker seeks a satisficing answer 
because time constraints do not allow further analysis. Therefore, not only does RPD 
account for the cognitive processes, limitations, and natural tendencies of pattern- 
matching and satisficing of a human decision maker, it a,lso provides a framework 
drawn specifically from high pressure, high risk, high tempo operations. If tactical 
knowledge is to be learned from experts by observation in simulated environments, 
RPD should be the decision making model to answer the underlying questions of how 
t'he human expert is making the decision which will reveal t'he answer to the more 
important strategic question of why. 

As a conclusion, the process of learning tactical knowledge can follow these steps, 
which correspond to the three levels proposed in the beginning of this chapter. First, 
we observe the actions and score the performance. Second, we use the think aloud re- 
ports and surveys t'o determine the human subjects' stxategies. Third, to understand 
the process of the decisions, we search for the expectat,ions, cues, goals, and actions 
involved in the human subjects' recognition of the tact,ical situations. We are most 
interested in the tactical strategies, because they provide the expertise t'o generalize 
tactical knowledge beyond the current simulated scenario. Both t'he actions and the 
decision making processes point to the strategies. 

3.4 Other Cognitive Frameworks 

Before finishing this chapter, we present two other cognitive frameworks and discuss 
the nature of both expertise itself and the ability to learn expertise. The two subse- 
quent cognitive frameworks are first, the Belief, Desire, Intent behavioral framework, 
which has been given considerable attention in the A1 community to model human 
agents (see Section 1.3.1). The second is the Generic Error Modeling System, which 
analyzes decision making from a human error standpoint. This is critical to learning 
tactical knowledge because we need to learn and understand both the good and bad 
tactical decisions, both successes and failures. They bot*h provide equal importance 
to encoding the best t'actical strategies in AVs. 



3.4.1 Intent ions, Plans, and Practical Reasons 

Michael Bratman's book Intentions, Plans, and Practical Reasons proposed the Be- 
lief, Desire, Intent (BDI) model as a common sense, behavioral framework [7]. His 
in-depth treatment of intentional action, at first glance, appears to be more applicable 
t'o lawyers and fit for courtroom discussions not engineering theses. However, the A1 
community has embraced the BDI model as a framework for building human agents 
[3, 27, 481. In fact, it has been so well accepted and applied over the past two decades 
that papers are now published asking if it has outlived its time and where to move 
on from here [27]. Furthermore, it appears that most designers of agent architectures 
can apply BDI to their architecture frameworks by simply casting the verbiage in the 
right form, although it was not conceived explicitly within the BDI framework. One 
example is a discussion of the SOAR architecture [27]. Yet, BDI is attractive for any 
form of modeling human behavior for three reasons. First, BDI specifies the use of 
planning to achieve some intended goal, which is equivalent to a means-end analysis 
put forth in Newel1 and Simon's general problem-solver. Second, these generated 
plans are both partial and hierarchical, and thus they branch off into subgoals as the 
agent moves towards its intended goal, again like the general problem-solver. Third, 
the agent's intention works as a filter to constrain the set of actions and subgoals it 
will pursue as it fills in the partial plans. These three attributes have allowed BDI- 
modeled agents to exhibit a coherent yet rich set of behaviors. As Pomerol notes, 
the beauty of BDI is that it presents a framework that seeks an equilibrium between 
reactiveness and planning [55]. Therefore, the following sections present the BDI 
framework drawn exclusively from Bratman's book. 

Intent ion 

Intention is central to understanding humans and characterizing both people's actions 
and minds. As a general concept, intention frequently refers to the future. Humans 
intend to do something later. If Drew, a graduate student in Cambridge, MA, intends 
to eat lunch at the local thin-crust pizzeria Emma's, and is presently doing so, one 
would say he is no longer intending to eat but rather am now eating. This does 
not detract from the idea of present directed intentions, but rather emphasizes that 
intention typically refers to a future oriented commitment. Yet, what is the definition 
of intent ion? To refer to intentions as future-orient'ed commitments seems too vague 
to be applicable. Bratman argues that the nature of intention can only be determined 
in the context of planning. Before presenting that argument, there are three main 
objections to discussion of intentions as future oriented commitments. These are 
as follows. First, does intention, now, control actions, tomorrow, as if intention 
possessed some "ghostly hand over time?" Second, if another graduate student Kara 
intends, today, to take a flight to Boston, tomorrow, that intention should persist 
throughout tomorrow and help guide actions towards the desired end of flying to 
Boston. But is this intention irrevocable? Is there no other choice to take the flight 
even if unanticipated events arise between now and then that could possibly change 
the desire to go to Boston? That sort of total abandonment to prior intentions is 



irrational. Third, if intentions, then, can be changed and are not permanent, L L ~ h y  
should I bother deciding today what to do tomorrow?" Therefore, future directed 
intentions have been argued to be conceptually object ionable in t'he following t,hree 
ways. They are "metaphysically objectionable" since they involve act ion at a distance. 
They are "rationally objectionable" since they are irrevocable. They are ultimately 
objectionable as just a waste of time. To counter these arguments, Bratman sit'uates 
the concept of intentions in a planning framework. 

Need for Planning 

Humans are planning agents, and the need to plan for the future is rooted in two 
needs. First, because humans are rational, to some extent', t'hey reflect and deliberate 
on what t,o do. If deliberation only occurred at the time of action, the ability of such 
deliberation to affect the a,ction would be constrained. This is because deliberation 
requires time and resources and so would hinder the timeliness of the present action. 
Therefore, humans need to deliberate a,nd rationally reflect on future act'ions due to 
resource limitations. Second, humans require both intrapersonal and interpersonal 
coordination. Intrapersonal coordination is prioritizing one's own time and schedule 
to squeeze in all the demands of t,he day, including work, meetings, errands, etc. 
Interpersonal coordination is arriving and part~icipating at a committee meet,ing wit,h 
several other people. Furthermore, plans are never total and complete. The inability 
to predict the ~ncert~ainty and dynamic change of the future requires partial plans. 
Therefore, the incompleteness of plans requires humans t'o engage in some sort of 
reasoning that fills in partial plans with appropriate means, steps, and actions. 

Plans n Intentions 

What is the relationship between plans and intentions? "Plans . . . are int'entions writ 
large," and, "intentions are the building blocks of larger plans" [7]. Plans are partial 
and hierarchical. Because of the need for intrapersonal and interpersonal coordina- 
tion, limitations of present deliberation, and ever-changing environment, partial and 
hierarchical plans are made. In order to be successful, plans must also be consistent 
and coherent. There are two consistency requirements. The plan, as a whole, should 
be internally consistent. If execution of one section of the plan hinders the execution 
of another section of t,he plan, it is not internally consistent and has no hopes of sue- 
cessful completion. The plan should also be consistent with the external world, given 
that the beliefs about the world are true. An internally consistent plan means very 
little if it cannot be successfully executed and completed within the world's context. 
Finally, along with c~nsist~ency, plans must be means-end coherent'. The overarch- 
ing intention guides the elaboration of plans with sub-plans of appropriat'e means, 
preliminary steps, and relatively specific courses of act ion. 

The partiality and hierarchical structure of plans necessitate the ability to fill in 
high-level plans as needed. The requirement of means-end coherence forces the hu- 
man to deliberat,e about which additional sub-plan or further intention among many 
should be chosen. Also, the requirement of consistency constrains which options 



should be considered. Therefore, this framework of prior intentions and plans that 
must be consistent and means-end coherent helps define rational reasoning through 
two features. First, the establishment of "standards of relevance . . . provide a clear, 
concrete purpose for deliberation, rather than merely a general injunction to do the 
best." Second, the use of a "filter of admissibility . . . narrows the scope of the delib- 
eration to a limited set of options." Therefore, Bratman argues that the only way a 
human can rationally choose low-level actions that contribute to high-level plans in 
a myriad - literally an infinite amount - of options is through a human's prior plans 
and intentions, which are consistent and means-end coherent, because they determine 
which options are relevant and admissible. This has been termed Bratman's Claim 
[27], and A1 researchers have been particularly attracted to it precisely because it 
reduces the space in which agents have to choose actions. Intentions, in the A1 com- 
munity, then are a mechanism for constraining the set of options about which the 
agent must reason. 

Filtering 

Because this "filter of admissibility" is so import ant in implement ation of rational 
agents, the following quote from Bratman elaborates on the concept. 

This leads to the following understanding of the relation between the 
demand for strong consistency and the admissibility of new options. Con- 
sider a new option, 0. Hold fixed the agent's prior intentions, but add to 
the agent's web of intentions and beliefs a new intention to 0. Also add 
changes in belief that would be ju~t~ified given that new intention, but 
without any other revision in the agent's prior intentions. The option 0 
is admissible if these changes in the web of intentions and beliefs would 
introduce no new inconsistency in that web. What matters for admissi- 
bility of a new option are one's intentions prior to a decision concerning 
that option and the beliefs one would reasonably have after a decision in 
favor of that option. [7] 

The graduate student, Kara, intends to fly to Boston tomorrow and has decided on 
when to leave, what route of transportation to take, has packed her luggage, and 
has arranged to be picked up from the arrival airport. Now Kara presently considers 
another intention to go to Loew's Theatre tonight and watch a movie, do the beliefs 
along with that intention create inconsistency in my prior plans and intentions to 
fly to Boston tomorrow? If Kara believes that to watch the late-night movie might 
exacerbate her sleep-deprivation and potentially make her so tired as to miss her 
alarm in the morning, this would introduce inconsistency and be rejected. If, on the 
other hand, there is nothing in movie-watching that will hinder the intention to fly to 
Boston tomorrow, it is admissible. Therefore, the power in this framework is that it 
constrains actions through an admissibility filter, but not so strongly that the agent's 
actions are mundane, simplistic, and limited. The framework allows very rich and 
complex agent behavior while maintaining consistency and coherence. 



Conclusions from BDI 

To summarize and conclude the discussion on BDI, consider the following quote by 
Bratman: 

Practical reasoping, then, has two levels: prior intentions and plans pose 
problems and provide a filter on options that are potential solutions to 
those problems; desire-belief reasons enter as considerations to be weighed 
in deliberating between relevant and admissible options. This two-level 
structure is an essential part of the way in which intentions and plans play 
their coordination-facilitating role, and so part of the way in which inten- 
tions enable us to avoid being merely time-slice agents - agents who are 
constantly starting from scratch in their deliberations. So this two-level 
structure of practical reasoning has a pragmatic rationale, one grounded 
in its long-run contribution to our getting what we (rationally) want - 
given our limits and our complex needs for coordination. We need not 
leave a broadly instrumental conception of practical reason in order to 
allow intentions to have direct relevance to the rationality of action. [7] 

Practical reasoning and rationality are related to intentions. However, note that never 
in this discussion has Bratman stated how to choose an initial intention. It is as if the 
problem has already begun, and the question is how to proceed rationally from here. 
Rational action is defined relative to an initial intention. Furthermore, Bratman does 
not propose how to weigh desires and beliefs when deliberating between admissible 
options, but that they simply must be weighed in accordance with consistency and 
coherence. Therefore, BDI is a framework that describes how humans with limited 
resources and needs for coordination must plan for the future through building blocks 
called intentions so that actions can be means-end coherent and consistent. 

Return, now, to the beginning of this section on BDI and the statement of Pomerol 
that the beauty of BDI is in its balance between reactiveness and planning [55]. Does 
tactical knowledge reside in both reactiveness and planning or just one or the other? 
We argue for both and have already identified reactiveness as tactical knowledge 
we wish to learn (see Section 1.2). Planning is also a necessary element of tactical 
knowledge because the battlefield environment is characterized by dynamic change 
and uncertainty, which are the precise reasons Bratman identifies as to why humans 
must plan (see Section 3.4.1). The humans' intentions guide the balance between 
reactiveness and planning, and thus discovering the human experts' intentions is 
crucial to learning and applying tactics. 

3.4.2 Generic Error Modeling System 

The last cognitive model to be discussed in this chapter is the Generic Error Modeling 
System (GEMS) by J. Reason 1571. The importance of this model is three-fold. 
First, its design is based on a cognitive approach to understanding human error. 
This is quite unique and helpful in seeking to understand both the right and wrong 
actions as displayed by human experts. Second, it classifies human performance 



into three cognitive levels. These levels are consistent with the human's default 
desire to match present information with past experiences so that quick decisions can 
be made with minimal effort. Third, it comes directly from Rasmussen's skill-rule- 
knowledge framework which "has effectively become a market standard within the 
systems reliability community" [57]. Figure 3-10 depicts the flowchart of GEMS. 

As seen by Figure 3-10, there are three levels as described from Rasmussen's 
framework. At the skill-based level, the decision maker is acting in a routine man- 
ner in familiar environments and only occasionally makes checks on progress. These 
are actions performed out of complete intuition. Conscious thought is not required 
at this level other than during the attentional checks. For example, the pilot of an 
aircraft does not have to consciously think during takeoff about how to pull back 
the stick at rotation speed, when to raise the flaps and gear, or how to maintain 
a constant airspeed, rate of climb, and direction heading. These are all skill-based 
actions performed so many times, that they are deeply embedded in long-term mem- 
ory. As long as system monitoring indicates normal operation, all these .actions are 
automatic. However, once an instrument, for example, indicates the gear did not 
completely raise, the decision maker moves into the rule-based level. Now the pilot 
must gather as much local state information as possible to diagnose the error. If the 
problem and local state information indicate a pattern previously encountered, the 
decision maker applies the stored rule that matches the pattern. Note that this does 
not only apply to trouble-shooting an error. All decision making can be cast in the 
form of solving a problem. Thus, this also applies to the chess player seeking after 
the right move. There are certain rules that a chess player may abide by, such as the 
familiar "maintain control of the center of the board" rule or knowing when to castle 
or move the queen out. Yet, if the context is completely novel, the decision maker 
moves out of the rule-based level to the knowledge-based level. Even after moving 
into the knowledge-based level, the decision maker may continue to seek a higher 
level analogy between some features of the current situation and past experiences to 
apply some stored rule. If this fails, the decision maker must expend a high level of 
cognitive effort to create a mental model of the problem space, analyze the relevant 
cues, diagnose the situation, and formulate and apply corrective act ions. 

GEMS depends entirely on the theme, discussed throughout this entire chapter, 
that when confronted with a problematic situation which requires a choice, humans 
first look for "prepackaged" solutions. As Rouse said, "humans, if given a choice, 
would prefer to act as context-specific pat tern recognizers rat her than at tempting to 
calculate or optimize" [60]. Thus, GEMS asserts that the default level of problem 
solving by human preference is the rule-based level. That is why two feedback loops 
from the knowledge-based level lead back to the rule-based level. In fact, humans 
display a "rigidity" in trying to apply rule-based solutions even when the situation 
does not warrant it. For example, the famous jars test by Luchins and Luchins 1950, 
which involved over 9,000 adults and children, proved the "blinding effects of habit" 
[58]. In the experiment, the human subjects were given a series of problems based on 
three water jars of different sizes, as displayed in Figure 3-11. Those jars were to be 
used as measuring jugs. The problem began by specifying how much water could be 
held in each jar, and the goal was to end up with a specific amount of water in one 



Figure 3-10: Rasmussen's performance level framework and the Generic Error- 
Modeling System [57]. 
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Figure 3-1 1 : Luchins' water jars problem [58]. 

jar. For example, if jar A can hold 18 liters, jar B can hold 43 liters, and jar C can 
hold 10 liters, how do you end up with 5 liters? The solution is to first, fill jar B and 
empty into jar A. This leaves 25 liters in jar B. Then, fill jar C by jar B, empty jar 
C, and repeat. This leaves 5 liters in jar B. Luchins and Luchins presented several 
problems that were solved by this rule B - A - 2C. In the last problem, however, the 
solution was much simpler. In this problem, if jar A can hold 28 liters, jar B can hold 
76 liters, and jar C can hold 3 liters, how do you end up with 25 liters? The answer is 
to fill jar C with jar A, and jar A now contains 25 liters. However, subjects who had 
correctly induced the previous rule of B - A - 2C had difficulty finding this much 
simpler rule of A - C because they kept trying to incorrectly apply the more complex 
one to this simpler problem. In fact, it took these subjects significantly longer to solve 
the A - C problem than another control group of subjects who were simply given 
the A - C problem. The test proved that humans stubbornly activate familiar rules 
which are overly cumbersome and complex. In the words of the experimenters, past 
experience ceases to be a tool, "when, in a word, instead of the individual mastering 
the habit, the habit masters the individual" [57]. 

GEMS is a useful framework in evaluating tactical knowledge because it deals with 
human error, and we are interested in learning both why successful actions worked 
well and why failed actions did not. Thus, after differentiating between good and bad 
actions through scoring metrics, we cast the context of the bad actions in the form 
of problem solving and apply the GEMS framework. At what level did the human 
expert attempt to solve the problem? What were the stored rules that were applied? 
Did failures occur in forming the wrong mental model of the problem space? The 
answers to these questions will all help determine the tactical strategies. 

3.5 Expertise in Cognitive Processing 

To conclude this chapter, we present how expertise is found not only in superior 
actions but also in superior cognitive processing. Together, the actions and pro- 
cesses point to expert strategies. Yet, expertise in cognitive processes can still suffer 
from heuristics and biases. Thus, we finish the section with six problems associated 
with learning from expertise, how they emphasize observation of human performance 



rather than simple verbalization of expertise, and their ability to affect the results of 
conducting human-in-the-loop experiments to determine human tactical knowledge. 

3.5.1 Experts versus Novices 

Experts possess a larger knowledge base in their area of expertise than a novice, by 
definition. Furthermore, experts can solve more difficult problems in their area of 
expertise than a novice, presumably because they possess a larger knowledge base. 
Long-term memory is assumed t'o have an infinite capacity for storage, and retrieval 
processes are very rapid, parallel, and independent of memory size. Experts, then, 
have more extensive knowledge structures in long-term memory that have a'lso been 
more frequently accessed. Yet, any expert must cope with t3he same working memory 
limitations of all humans. Though an expert may be able to operate mostly in the 
rule-based level of performance when solving problems in the domain of expertise, if an 
expert must resort to a knowledge-based level of problem solving, the cognitive effort 
and limitations are no different than the novice who must begin at the knowledge- 
based level. Why does it seem, then, that experts, even when confronted with novel 
situations, solve problems quicker and more accurately than novices? There are two 
answers. First, the acquisition of expertise is linked directly wit,h the ability to asso- 
ciate and package larger and larger amounts of information into recognizable pat'terns. 
Second, expertise is also directly related to cognit'ive mediation of performance, in 
that the expert exhibits greater cognitlive control in solving new problems. 

The most well known and often cited example of high level pattern matching is the 
analysis by Adriaan de Groot and later by Simon and Chase of expert chess players 
[15, 18, 47, 57, 871. These researchers found that the expertise of chess grandmasters 
did not reside in analyzing every possible move out to five turns and weighing out the 
benefits of each approach. In fact, eye monitoring equipment found two surprising 
fa,cts. Most of t'he t'ime t'he grandmaster ultimately chose the move he or she first con- 
sidered. Second, the grandmaster only looked, on average, two or three moves ahead. 
Therefore, it appeared as if the grandmaster simply knew the right move from the 
beginning and took a little bit of time to double-check t,hat no other option appea,red 
better. To validate the hypothesis that patt,ern recognition was the mechanism behind 
this intuition, expert chess players were presented with a hypothetical chess board 
taken from real games for a period of time and then asked them to recreate all the 
pieces on the board., Amazingly, after only five seconds of observation, chess grand- 
masters could accurately reconstruct the board up to 90%. Novices had no chance of 
such accurate and rapid observation and recreation. Even more intriguing was that 
if the pieces were placed randomly about the board, rather than as depicted from 
real games, the grandmasters' ability to recreat'e the board dropped quickly to the 
level of novices. This was not photographic memory but high level abstraction and 
association. Simon and Chase summarized by stating, "the most important processes 
underlying chess mastery are . . . immediate visual-perceptive processes rather than 
the subsequent logical-deductive thinking processes" [68]. Thus, expertise resides in 
the ability to integrate larger and larger amounts of information and data into recog- 
nizable chunks stored in long-term memory for rapid retrieval. When solving a new 



problem, experts must expend the same amount of cognitive effort in analysis and 
diagnosis as novices. However, in working out the problem, experts quickly identify 
previous patterns and can start employing long-term memory retrieval to speed up 
the search for the solution. 

Expertise is not static. There might exist some standard whereby a novice can 
finally perform as well as an expert, but expertise does not plateau. If it did plateau, 
this would imply that everything that can be learned has been learned and expertise 
could then solely reside in automatic retrieval of correct actions. However, it is not, 
and the expert is still required to learn and to maintain problem solving abilities 
through slow and deliberate analysis and inference. In his analysis of chess players, 
De Groot also found that even chess grandmasters discovered better moves through 
mental simulation. Thus, "the performance of experts is mediated by increasingly 
complex control processes" [18]. Experts are better positioned by these increasingly 
complex control processes to react to changing environments and anticipate future 
consequences. It is all part of a continual process of learning, applying, and evaluating. 

3.5.2 Problems with Learning from Experience 

It seems intuitively obvious that the best way to learn the rules and skills involved in 
a new domain is to learn from a domain expert. Yet, there are precautions t'hat must 
be taken into consideration due to the nature of human cognition (see discussion on 
heuristics and biases in Section 3.3.4). The following are six problems with learning 
from experience as given by Dawes [15]. First, decision makers will overestimate the 
probability of certain salient memories or salient features of past experiences due 
to the availability heuristic. Second, the set of experiences for the expert decision 
maker is always a subset in that domain. The F-16 pilots who would not fly near 
unmanned vehicles do not rat ionally relate their condemnation of dually-occupied 
manned, unmanned airspace to the set of all events of manned and unmanned aircraft 
operating in the same airspace. They just quote the one eyewitness account of a mid- 
air collision. Dawes calls this the "biased generation of experience." Third, the 
dynamics of changing environmental conditions call into question the relevancy of 
past experiences where the conditions were different. This is the "superannuation 
problem," and it is a main concern in engineering. How well do the results apply or 
generalize to the dynamics of the real world outside of the simulation environment? It 
is a question of robustness of the solution method. Fourth, the structure of the long- 
term memory, composed of schemata, tends to reconstruct experiences biased towards 
current attitudes and beliefs. It is what Bartlett described as "effort after meaning" 
[2]. George Valliant writes, "It is all too common for caterpillars to become butterflies 
and then to maintain that in their youth they had been little butterflies. Maturation 
makes liars of us all" [15]. Present attitudes and expectations bias the reconstruction 
of past experiences. Fifth, expert decision makers sometimes fail to appreciate ts he 
randomness in their experiences. They would rather infer some causality due to their 
choices rather than accept chance in the details. Sixth, due to the hindsight bias, 
expert decision makers who can review the details of a previous event believe that 
they can accurately predict its occurrence again. However, they are now too quick to 



associate current details with that past event', and, closely related to the availability 
heuristic, they overestimat'e the probability of occurrence. 

All of these six warnings in learning from experience underscore t,he need for 
observing the expert's performance within his or her domain. Simply interviewing 
the expert and asking them to verbalize their expertise through quest ions pertaining 
to specific past events, questions t'hat seek broad interpret at ion, or mentally stepping 
through a simulated task allow these cognitive biases to taint t,he results. At least 
in a real time, simulated environment, the subject matt'er expert must demonstrate 
expertise by performance rather than simply by memory recall. There is still the 
question of the subject mat,ter expert misapplying past experiences t,o present actions 
in the simulator due to the a,bove problems. That is why the performance should 
be scored to help filter out good from bad actions and combined with t'he cognitive 
processes to find the best tactica,l strategies. 

3.6 Conclusions from Cognition 

The hope of this chapter is t,hat, though long, it would provide a brief, yet thorough 
overview of the engineering psychology efforts to understand cognitive processes in 
decision making. The notion of learning tactical knowledge is an ill-defined problem, 
yet human experts find solutions. A qualitat'ive analysis of experimental results re- 
quires interpretation, and this chapter has sought to illumine some of the objective 
theoretical decision making frameworks. The consistent application of this chapter 
to the research are t,he three levels in understanding tactical knowledge of actions, 
strategies, and processes. It is tempting to conduct experiments and move straight 
from act ions to strategies. Not considering the cognitive processes, however, has 
several consequences. First, the experimental setup could unknowingly bias the hu- 
man subject towards certain information or actions, such as with the framing effect. 
Second, too much int'erpretation may be used a,nd t'oo much read into the humans' 
performance to move from actions to st'rategies, when a simple decision heuristic or 
bias provides sufficient explanation. Third, the human subject may verbalize t,he 
same strat'egy in two cases, yet perform terrible in one and very well in t,he other. 
This could occur if the human subject, for example, selectively attended to a different 
cue in the second scenario. Therefore, utilizing cognitive frameworks and being aware 
of decision heuristics and biases bring objectivity both to the experimenta'l setup as 
well as the data analysis in learning tactical knowledge. 





Chapter 4 

Procedures and Methodology 

The emphasis in Chapter 2 was to answer the question of what are the right kinds of 
expertise to learn from experts and how they should be carefully applied in aut'oma- 
tion design to achieve required levels of reliability. The focus of Chapter 3 was to 
answer the question of whet,her it is possible to learn human expert knowledge, how 
to model it,, and t,he limitat'ions and mechanisms involved in human decision making. 
In Chapter 4, we present the procedures and methodology for this research's effort at 
learning and applying human tactics. 

In this chapter, we begin with discussion of the experimental framework. Next, 
we describe the human-in-the-loop experiment a1 setup, including the chosen scenar- 
ios, simulation environment, experiment a1 visual display, human-simulat ion int,erface, 
software, and a brief overview of the human subjects employed in the experimenta- 
tion. Then, we present human fact,ors considerations that must be kept in mind for 
all human-in-the-loop experiments by discussing training effects, think aloud reports, 
use of surveys, and the limited number of cases allowed in t,he experiments. Next, 
we describe the timeline and the presentation of the experimentat'ion t,o the human 
subjects. After that, we outsline in detail the governing equations and behavior of 
t'he vehicle and enemy simulated entities and the interactions between t,hem. We 
then present the baseline autonomous vehicle (AV) statechart derived without hu- 
man subject inspiration. Finally, we conclude by discussing the limitations in the 
experiment a1 procedures and methodology. 

4.1 Experimental Framework 

In order to test the concept of learning tactical knowledge from human subject matter 
experts and applying that knowledge to AVs, the proposed experimental framework 
is as follows. First, we identify scenarios wherein the AV's ability to complement 
manned missions is considered beneficial. Next, we develop a human-in-the-loop sim- 
ulation environment to model these scenarios whereby we can design and change a set 
of independent variables to force various decision points. Then, we take several human 
subjects through a set of  experiment,^ and surveys to collect tactical, decision-making 
data. After collecting the data, we filter the good from bad decisions by performance 



metrics. In parallel with these human experiments, we design an autonomous vehicle 
whose behavior is controlled through a statechart diagram. Initially, this AV's behav- 
ior is strictly baseline, that is without any human inspiration other than the common 
sense of the human designer. The baseline AV flies through the exact same scenarios 
as the human subjects and scored with the same performance metrics. Then, we 
compare both the performance between human subjects as well as between the base- 
line AV and human subject performance. Next, we find candidate, human-inspired 
tactics and encode them into the baseline statechart diagrams. In order to ensure 
the candidate tactic performs well above and beyond the small number of training 
data it was taken from, we employ Monte Carlo simulation and test the baseline and 
improved AV against a large number of scenarios with randomly varying parameters. 
Finally, we compare the baseline and improved AV performance and add those tactics 
to the statechart playbook that exhibit performance improvements. 

4.2 Human-In-The-Loop Experimental Setup 

The human-in-the-loop experiments took place in February 2006. Between the two 
rounds of experiments, five human subjects were given fifteen total scenarios and two 
surveys to complete over the course of two hours. The details of the experimental 
setup are given in the following sections. 

4.2.1 The Scenarios 

In choosing a scenario, we focused on identifying those tactical situations where the 
inclusion of an AV appeared beneficial. After discussing the research's focus with a 
U.S. Army officer and UH-60 Blackhawk helicopter pilot (who was later included as 
a human subject) we derived the following list of candidate scenarios [69]: 

1. air corridor reconnaissance 
2. target lazing 
3. suppression of enemy air defense 
4. battle damage assessment 
5. finding and assessing landing zones 
6. communications relay 
7. forward-looking urban terrain scout 

First, air corridor reconnaissance is needed when a company of troops are being 
moved to another location by utility helicopters. The specific route to the drop-off 
point, the air corridor, must be searched and cleared of enemy contacts to ensure 
the safe passage of the troops. Second, in target lazing, the AV can take the place 
of the special operations ground forces who must manually laze a target so that 
another platform may lock on and fire a precisely guided missile to the target. Third, 
suppression of enemy air defense, for example seeking out and destroying surface-to-air 
missile (SAM) sites, is crucial to many modern engagements but extremely dangerous. 
Fourth, after a conflict, someone must perform battle damage assessment to get an 



accurate picture of the casualties for future intelligence. Fifth, just as the air corridor 
has to be searched and cleared for the passage of troops, helicopter landing zones must 
also be searched and cleared. The helicopter is most vulnerable during landing. Sixth, 
for long convoys and supply lines, ground vehicles in the rear of the line are not able 
to communicate to the vehicles in front with line-of-sight radio equipment. Instead 
of consuming bandwidth for satellite c~mmunicat~ions, an AV that maintains flight 
above the middle of t,he supply line can act as a communications relay platform. This 
would be especially helpful if sections of the c,onvoy or supply line run into obstacles 
that must be circumvented. Seventh and fina'lly, modern control system design for 
small aut,onomous helicopters have taken advantage of the large thrust,-to-weight ratio 
and agility of these platforms 1261. A small, agile helicopter that can maneuver within 
tight spaces would be invaluable to troops conducting urban warfare. 

Of all these missions, the air corridor reconnaissance mission was chosen for two 
main reasons. First, the mission allows for t'he inclusion of all three desired ele- 
ments of designing scenarios to test and learn human tactics, as discussed in Chapter 
2. These elements are uncertainty, a hierarchy of objectives, and flexibility in mis- 
sion completion so that the human expert can experiment with and discover novel 
problem-solving techniques. They amre accomplished by forcing t'he human to find 
a balance between planning and reaction, between the nominal mission of searching 
over terrain for enemy contacts and reacting to the presence of an enemy. Second, the 
reconna,issa,nce mission has been and cont'inues to be the primary role of AVs. Table 
4.1 displays the historical reconnaissance roles AV's have fulfilled since their inclusion 
to battlefield operations 1501. Note t'hat the Pentagon has changed its terminology 
to Unmanned Aerial Systems (UAS), as seen in this table. AVs have been tasked 
with rec~nna~issance roles for all echelons of the military and all branches. In the Un- 
manned Systems Roadmap 2005 from t'he Office of the Secret'ary of Defense (OSD), 
the military's combatant commanders ranked the importance of eighteen missions 
across the following four classes of AVs: small, tactical, theater, and combat AVs. 
For every class of AV, the reconnaissance mission was ranked as the most important 
mission. In fact, the reconnaissance mission for the combat AV ranked higher than 
the strike mission itself 1501. Furthermore, the Unmanned Undersea Vehicle (UUV) 
2004 Master Plan of the Office of the Secretary of the Navy identified the intelligence, 
reconnaissance, and surveillance (ISR) mission as the highest priority for UUVs 1771. 
Thus, the air corridor reconnaissance scenario was chosen not just because AVs only 
perform reconnaissance, but because smarter, armed reconnaissance missions, such 
as ISR tasks, are the next vital step in the continuing evolution of desired missions 
for AVs. 

4.2.2 The simulation environment 

An initial effort in designing and building the simulation environment focused on 
developing a six degree-of-freedom (6-DOF) helicopter model in Simulink [42]. The 
6-DOF model implemented the oblate, rotating earth equations for any rigid aircraft 
[72]. The helicopter forces and moments were modeled by thrust vectoring of the main 
propeller, where the joystick inputs controlled the blade flapping angles, Plat and Pl,, 



Table 4.1: Historically Validated Unmanned Aerial System (UAS) Roles [50] 

Brigade/Division Asset for Reconnaissance, Surveillance, and Target Acquisition 

and the magnitude of the main propeller thrust. This model was slightly unstable 
and some work was begun to add low-pass, notch, and high-pass filtering to make it 
controllable. The next version of the 6-DOF model scaled back the inputs from blade 
flapping angles to kinematic inputs only. Now the joystick controlled pitch rate q and 
roll rate p directly, and the magnitude of the thrust only acted in the -z direction in 
body-axis coordinates. This model was controllable, and saturation blocks provided 
realistic dynamic constraints. 

Proponent 
Heritage 

The original hope was that this helicopter model could interact with prepackaged 
enemy models, terrain databases, and visualization software through a distributed 
simulation network. This effort was progressing forward, but the time required to re- 
search, test, and acquire the best licenses for these databases and software tools took 
too long and appeared to leave minimal time for actual experimentation. A tradeoff 
was necessary between fidelity and timeliness [64]. Therefore, this three-dimensional 
distributed simulation environment was put on hold. Instead, the simulation environ- 
ment changed from three-dimensional to two-dimensional and became self-contained 
in Simulink rather than distributed over a network. Enemies had to be designed and 
added to the simulation model, and predetermined interact ions between enemies and 
the vehicle had to be encoded. Furthermore, the display for the human-in-the-loop 
had to be designed to exist within Simulink. Simulink does have a virtual-reality 
toolbox, but the learning curve to implement it would have negated any time-savings 
that this two-dimensional effort sought after. Thus, the best solution was to include 
a block in Simulink that sent the necessary variables into the MATLAB workspace 

Army, Marine Corps 
Falconer (1950-60s) - Aquila (1970-80s) - Pioneer (1980-2000s) - Dragon Drone (1990s) 
- Outrider (1990s) - Shadow 200 (2000s) 

Shipborne Asset for Reconnaissance and Weapons Support 

Proponent 
Heritage 

Navy 
DASH (1960s) - Project Blackfly (1970s) - Pioneer (1980-2000s) - Fire Scout (2000s) 

Small Unit Asset for Over-theHill Reconnaissance 

Proponent 
Heritage 

Marine Corps 
Bikini (1960s) - Pointer (1980-90s) - Dragon Eye (2000s) 

Survivable Asset for Strategic Penetrating Reconnaissance 

Proponent 
Heritage 

Army / Air Force / Navy 
Osprey (1960s) - D-21 (1960s) - Classified Program (1980s) - Dark Star (1990s) - J-UCAS 
(2000s) 

High Altitude Endurance Asset for Standoff Reconnaissance 

Proponent 
Heritage 

Air Force 
Compass Arrow (1960s) - Compass Dwell (1970s) - Compass Cope (1970s) - Condor 
(1980s) - Global Hawk (1990-2000s) 



to be plotted by a MATLAB script at each time step. 
The simulation ground terrain environment comes from the loading of a Level 1 

Digital Terrain Elevation Data (DTED) file. The entire file covers a lo of latitude 
by lo of longitude portion of Kosovo. The southwest corner of the terrain is the 
intersect ion of latitude 42"N and longitude 021°E. Mountainous regions of this terrain 
were pulled out and trimmed down into several different smaller terrain patches that 
could be used for scenarios. This database was originally procured to be used in the 
three-dimensional simulation experiments. However, when the decision was made to 
conduct experiments in a two-dimensional world, we did not wish to abandon this 
terrain database. Thus, to operate in two dimensions, all platforms are restricted to 
operating within one altitude plane of the three-dimensional terrain. The environment 
is displayed from a "Global Hawk's-eye-view," where the camera is above the terrain 
matrix and looking straight down onto it. 

4.2.3 Display, Interface, Software 

Figure 4-1 depicts the visual display of the simulation environment as seen by the 
human subject. There are several features in this display to be discussed. First, there 
are two windows, or subplots to the display. The right window depicts the entire map, 
the vehicle, the air corridor, waypoint s, and the location of any enemies encountered 
during the scenario. The left window is a zoomed-in picture, centered on the vehicle. 
In this window, the vehicle's two radars are displayed (see Section 4.3.2). The first 
is the primary sensor for searching over terrain and detecting any enemy contacts, 
which is circular. The second is the weapons radar for firing upon enemy contacts, 
which is a cone extending to either side of the vehicle's heading marker. Also, in 
this left window, enemy contacts are displayed with their primary, circular radars. 
Note that an enemy contact is only displayed with its primary circular radar. The 
enemy's weapons cone and heading marker are never displayed but must be learned 
and inferred by the human subject. Finally, underneath the right map window is a 
simple counter that displays the number of weapons rounds remaining that can be 
used by the human subject. 

There are several visual cues to help the human subjects differentiate between 
enemy contacts, between progressing stages of engagement, and the health of the AV 
and the enemies. Figure 4-2 displays these visual cues. Section 4.3.2 discusses the 
logic to progress from full health and no detection, through the steps of engagement, 
to firing upon and hitting an enemy. 

Figure 4-3 displays the experimental setup with the visual display, joystick for 
vehicle control inputs, and microphone for recording verbal data. The human sub- 
jects interacted with the Simulink model through a Microsoft Sidewinder joystick. 
Moving the joystick side-to-side changed the vehicle's heading angle 19, and moving 
the joystick forward-and-back in combination with the joystick's lever changed the 
vehicle's velocity V along its heading. Also, the TELEX PC microphone was used 
for voice recordings of the human subjects [76]. Finally, the software Camtasia Stu- 
dio 3 recorded an integrated audio/video file for each experiment [73]. This software 
captured the human subjects' spoken "think aloud" reports through the microphone 



Figure 4- 1 : Two-window visual display of simulation. 
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Figure 4-3: Human-in-the-loop experimental setup. 



located near the joystick. It also recorded the simulation display, as shown in Figure 
4-3 in the center screen. Most of the variables during each experiment were recorded 
by MATLAB and stored in data files, including the joystick inputs. 

4.2.4 The Human Subjects 

The original aim of the experiments was to first develop a simple simulation envi- 
ronment and test out the concept of learning tactics from humans. Then, the pro- 
cess would be tested on human experts in a higher fidelity simulation environment. 
However, due to the high demand of both military pilots and dedicated simulation 
facilities for training and testing, we could not finish the second step in t,he desired 
experimentation process. Therefore, the human subjects in the knowledge elicit at ion 
experiments were five graduate students at the Massachusetts Institute of Technology 
(MIT). Four out of the five are military officers, one U.S. Army, two U.S. Air Force, 
and one U.S. Navy. The fifth is a civilian whose father is a retired Colonel in the 
U.S. Air Force. All except the U.S. Army officer had come to MIT straight from their 
undergraduate education. The U.S. Army officer is a UH-60 Blackhawk helicopter 
pilot who came to MIT after spending a tour of duty in Iraq during the initial phases 
of Operation Iraqi Freedom. 

4.2.5 Human factors considerat ions 

Training Effect 

In conducting human-in-t he-loop experiments, there are human factors considerations 
and some specific guidelines to ensure sound methodology in data collection. First, 
the ordering of the scenarios presented to the human subjects should be randomized 
to avoid the training effect. The training effect occurs when the subject is exposed to 
more than one variation of the same scenario. Although some variables have changed, 
the human subject now has a larger knowledge base to accomplish the new missions 
because of the previous simulation runs. There is no perfect avoidance of the training 
effect. The purpose of randomization of scenarios between subjects (subject 1 is 
presented the cases ABC, subject 2 is given BCA, and subject 3 is given CAB) is 
to average out any training effects which occur from person to person [64]. Section 
4.4.7 discusses the balance between the training effect and desiring human subjects 
to learn expertise. 

Think Aloud 

The purpose of having a human subject "think aloud" while participating in an 
experiment is to understand the thought processes occurring in working memory. 
These thought processes are not stored in long-term memory, and thus, after the the 
experiment has finished, the human subject cannot remember or access this crucial 
data that occurred in the past. The human subject is asked to access his short- 
term memory and simply verbalize those thoughts. Think aloud is a continuous 
verbalization of what the human subject is thinking at that particular moment [4, 291. 



It has been utilized in many human experiments, such as Newel1 and Simon's work, 
where the verbal reports provided the foundation for their general problem-solver 
theory [47]. Ericsson and Simon were the first to provide a rigorous theory of using 
think aloud reports in data collection in their book titled Protocol Analysis: Verbal 
Reports as Data [20]. This book lays the complete theoretical foundation for using 
think aloud techniques as concrete and justified data collection. It also provides 
techniques for organizing and classifying the think aloud reports. However, they 
freely admit that it is an extremely t ime-intensive process. Unfortunately, this book 
was not discovered until the time of this writing. For future work in learning human 
tactical knowledge, this book should be a primary reference. Appendix C gives the 
verbal reports for all human subjects and cases in the second round of experiments. 

Surveys 

Another met hod for collecting data in human-in-t he-loop experiments is through writ- 
ten surveys. These surveys can contain such high-level questions as, "Describe any 
strategies you used during each scenario," to questions asking participants to rank 
the priority given to some list of items. Essentially, these written surveys after the 
simulation runs give some time to the human subjects to thoughtfully evaluate their 
actions. Surveys and think aloud reports help reveal the human subjects' intent ions 
that otherwise would not be clearly understood by observation of the human sub- 
jects' actions and scores alone. Appendix B presents the surveys obtained after the 
experiments. 

Finite Number of Cases 

A major limit at ion of human-in-t he-loop experiment at ion is the attention span of 
the human subjects. After a couple hours of experimentation, it will be difficult for 
most subjects to continue to perform at their best due to weariness. Also, another 
problem is subject boredom. Therefore, the experiment designer must be careful to 
avoid building in too much dimensionality in the independent variables. If a full 
factorial search of the design space is required, there will be tradeoffs between the 
number of independent variables, time line of experimentation, and required time for 
each experiment. There had to exist some limit to the experiment design because the 
interactions and dimensionality of tactical scenarios are by no means small or simple. 
Thus, each scenario was constrained to last a total of four or five minutes, which was 
short enough to both avoid subject boredom as well as make it difficult to complete 
the entire mission. Each round of experiments contained seven or eight scenarios. 
Furthermore, interactions between the human subjects and enemies were discretized 
into four levels of engagement - detection, weapon has line-of-sight, weapon has radar 
lock, and firing. Finally, independent variables such as the importance of pieces of 
terrain and the probability of enemy contact were discretized into two and three levels, 
respectively. 



4.2.6 Time Line 

On February 1, 2006, the five human subjects went through the first round of experi- 
ments. During this first round, each session consisted of two practice scenarios and five 
scored scenarios. Human-in-the-loop experiments typically begin with a practice ses- 
sion to make sure the human subject is familiarized with the simulation environment. 
From the human subjects' perspectives, they only had the two practice scenarios in 
the first round to become to become acquainted with the simulation environment, 
when in actuality the entire first round was treated as practice (see Section 4.4.1). 
After all seven scenarios had finished, each human subject filled out a four-question 
survey. Each scenario lasted five minutes, and the total time for each human subject 
was about one hour. On February 16, 2006, the five human subjects went through 
the second round of experiments. In this second round, each session consisted of one 
practice scenario and seven scored scenarios. After all eight scenarios had finished, 
each human subject answered a multi-part two-question survey. In this round, each 
scenario lasted four minutes, and the total time for each human subject was about 
fifty minutes. 

4.2.7 Presentation of Experiments to Human Subjects 

At the beginning of the first round of experiments, each subject signed a "consent 
to participate in non-biomedical research" form [52]. They were then given a two- 
page description of the experiment, scenario context, their specific mission objectives, 
joystick and simulation set up, scoring logic, thinking aloud procedures, and visual 
cues and symbology. Before each scenario began and the four or five minute time 
limit began counting down, the human subjects were given time to look at the map 
display and read an intelligence report that defined the probability of running into 
enemy contacts. At this point, the human subjects were asked if there were any 
questions. Then, the Camtasia Studio 3 software was activated to begin recording 
both audio and video. Once that began, the Simulink model and the timer were 
started. For the first round of experiments, the human subjects had five minutes 
to complete each scenario, and for the second round, they only had four minutes. 
Once the time finished, tahe human subjects took their hands off the joystick, the 
Simulink model was stopped, and the Camtasia recording ended. At the end of each 
round, every human subject filled out a survey. Appendix A contains the two-page 
experiment description and the intelligence reports. 

The role of the human subjects was that of an Army helicopter pilot. Their task 
was to search through both the air corridor and any patches of terrain designated 
as "critical" to ensure the terrain was safe for the passage of troops. Both the air 
corridor and critical area were visually designated on the map display (see Figure 
4-1). A "critical area" was defined as an area believed to be either an ambush site 
by the enemy or a possible landing zone for the follow-on troop-carrying helicopters. 
Therefore, the human subjects were told that it was very important to search carefully 
through the critical area. They only had four or five minutes to search through as 
much of the terrain as possible, and they only had five shots to use against enemy 



Table 4.2: Independent variables. 

Enemy Types 
Terrain 
Ratio of Vehicle Sensor Radius to Air 
Corridor Widt'h 
Stated Probability of Enemy Contact 

contactls. The human subjects were told to assume all contacts were hostile, and it 
was up to their discretion whether to engage or avoid the enemy. 

Tank, SAM, UAV 
Samples 1 - 6 
5: 16, 5:22 

Slim, Possible, Very Good 

Table 4.2 depict,s the independent variables used in the experimentation. In the 
first round of experiments, there were a maximum of two enemies present in each 
scenario. In order to increase the difficulty in t,he second round, there were a maximum 
of three. Terrains 1-3 were used in t,he first round, and Terrains 4-6 were used in the 
second round. The ratio of vehicle sensor radius to the half-width of the air corridor 
indicates how much the vehicle had to maneuver to cover the entire air corridor. The 
area of the vehicle's sensor coverage is that of a circle, 27rR2, and with R = 5 equal 
to 507r (units2). Note that the units are generic and are defined relative to visual 
perception of t'he vehicle on the display (see Section 4.4.3). If the half-width of the 
air corridor is 8 units, then a square with sides equal to the width of the corridor would 
have an area equal to 256 units2. Thus, the vehicle's sensor only covers -- 61.4% 
of the area of a square of air corridor with sides equal to its width. For a 5:22 rat8io, 
the vehicle only covers 32.5% of a square of air corridor with sides equal to its width. 
Finally, if the scenario included both an air corridor and critical area (which was 
t,rue in almost all cases), each of these regions had a separate stated probability of 
enemy contact, where slim < possible < very good, not,ionally speaking. These ranges 
of probability were chosen because they are more intuitively acceptable to a human 
vice an exact percentage, such as trying to understand the difference bet,ween a 37% 
versus 42% of enemy contacts [17]. The t'hree probability categories can be viewed a,s 
covering equal thirds of 100%. 

4.3 Autonomous Comparison 

The development of a baseline AV behavior had two purposes. First,, the baseline be- 
havior was designed without any inspiration from the human-in-the-loop experiments. 
The baseline behavior was simple but logical. Therefore, the baseline behavior should 
exhibit reasonable performance, but one of its purposes was to highlight where the 
human subjects were stronger. Second, after deriving human tactics by filtering good 
from bad decisions, the experiment would come full cycle, and the baseline behavior 
augmented with the new tactics. Thus, human tactics could be applied to the base- 
line behavior to validate the research's goal of improving AV performance through 
human expertise. 



Vehicle Governing Behavior and Equations 

The vehicle's governing behavior, apart from interactions with enemy contacts, is 
defined by two main categories of search and obstacle avoidance. After presenting 
these categories, we show the vehicle's dynamics of 2D motion. 

Search 

Stored in the vehicle's na~igat~ion log are a terrain database and list of waypoints. 
These waypoints mark the centerline of the air corridor. These waypoints also tend 
to mark heading changes in the corridor's path. The vehicle's search behavior is to 
fly diagonally across the air corridor, zig-zagging from waypoint to waypoint. Once 
the next waypoint falls within the vehicle's sensor radius, the vehicle alters its course 
to fly directly to the waypoint. Once the vehicle reaches the waypoint, the waypoint 
index increases by one, and the vehicle begins searching along the corridor to the 
next waypoint. If the vehicle misses the waypoint, which means the vehicle passed by 
without the waypoint ever falling within its sensor radius, the vehicle takes a direct 
path toward the waypoint's stored location until it acquires it. At this point, the 
waypoint index increases by one, and the search process continues. Thus, the search 
process can be divided into a series of steps between waypointi and waypo~nt~,~. 

Once the vehicle begins a new search segment from waypointi t80 w a y p ~ i n t ~ + ~ ,  two 
things occur. First, the vehicle calculates the number of diagonal segments required 
to reach the next waypoint, as a function of its search angle off the air corridor's 
centerline and the total distance to cover to the next waypoint. This number of 
diagonal segments, called segrnentRatio, is given by the following equation: - - 1 1  waypoznti - waypo~nt~+~  11 

segrnentRatio = tan (6) 
ha1 f Width 

I I 
where waypoznti and w a y p ~ z n t ~ + ~  are the current and next waypoint (x, y) ordered 
pairs, respectively, along the AV's path; halfwidth is half of the width of the air 
corridor; and 6 is the search angle measured from the centerline. Equation 4.1 assumes 
the vehicle is beginning from the current waypoint. If this is not the case, the vehicle's 
distance along the corridor centerline away from the current waypoint can either be 
added or subtracted as necessary. As will be discussed later, segmentRatio serves as 
a logical comparison to know if the AV has missed its next waypoint or not. Second, 
to begin searching the vehicle turns by default to its left, as facing the next waypoint 
along the centerline, by the angle 6. 

While the AV is diagonally searching along the corridor, it calculates the per- 
pendicular distance from its position to the air corridor centerline. Once this per- 
pendicular distance almost equals the half-width of the corridor minus two-thirds of 
the vehicle's sensor radius, the AV has essentially reached the corridor boundary and 
makes a 90" turn to cross back through the air corridor. The reason that two-thirds 
of the vehicle's sensor radius is subtracted out of the half-width is due to efficiency. If 
the vehicle continued its diagonal search all the way to the edge of the air corridor, its 



sensor radius would fall on terrain outside the air corridor, which, as to be discussed, 
would contribute nothing to its performance score. Thus, this is just a simple tradeoff 
that was qualitatively determined. 

In order to search through a critical area, a function calculates the number and 
location of waypoints needed inside the critical area to guarantee an adequate amount 
of coverage. This function is dependent on t,he dimensions of the critical area and the 
sensor radius of the vehicle. The first critical area waypoint, by default', is located 
in the upper left corner of the critical area box. From there, t,he vehicle diagonally 
searches clockwise around the perimeter of the box, and then t,he vehicle proceeds 
vertically up and down through any inside columns of waypoints. 

Obstacle Avoidance 

At every time step, the AV projects it,s current patJh forward a few steps into t'he 
future and compares the final point of this path to the t'errain database. If the final 
point of this path matches an obstacle cell (i.e., if the vehicle will hit an obstacle 
when continuing on the same path), the vehicle enters into a while loop and itera- 
tively modifies its current heading by f 10". At every iteration, the AV projects the 
temporary heading forward and tests seven points along the path against the terrain 
database. Whichever direction of f 10" finds a new path where all seven points are 
clear of obstacles, the AV replaces its current', desired heading by this new, temporary 
one. A default parameter called terrainAvoidanceCounterVeh defines how long the 
AV must hold this modified heading. If the AV was searching along t'he corridor at the 
time of terrain detection, the AV transitions to flying directly to the next waypoint,, 
once it has cleared the terrain obstacle. If the AV was engaging an enemy at the time 
of obstacle detection, the obstacle avoidance takes precedence. While it is avoiding 
the obstacle, the AV is also stepping through it>s engagement logic, but any desired 
maneuvering out puts specified by the engagement logic are not passed through until 
the AV has cleared the obst,acle. Therefore, the obstacle avoidance logic overrides all 
other outputs determined by the vehicle's search and engagement logic. 

Early tests of this logic found that the vehicle sometimes chose paths t,hat barely 
cleared the obstacle. If the vehicle maintained a path close to the obstacle and the 
counter designated by terrainAvoidanceCounterVeh finished before it had cleared 
the terrain obstacle, the vehicle would try to find a new heading. However, that 
new heading would still be hindered by the obstacle, and the vehicle would iterate 
for another temporary obstacle avoidance heading. During that process of trying to 
change its heading and iterating again due to the obstacle, the vehicle would t'ake 
a one time step movement towards the desired heading into the obstacle. If this 
occurred more than three times, the vehicle tended to run into the obstacle. Thus, a 
30" buffer angle was added to the temporary obstacle avoidance heading to keep the 
vehicle safely away from the obstacle. 



Vehicle Equations 

The vehicle two-dimensional dynamics are defined only from its velocity V and head- 
ing angle 0. 

where x and y are the first derivatives of the x and y positions of the vehicle with 
respect to time. For the human-in-the-loop experiments, V and 0 are inputted by 
the humans' movements of the joystick (see Section 4.2.3). For the AV, V and 0 are 
outputted by the statechart, which is essentially the controller in the plant's feedback 
loop and will be discussed in detail in Section 4.3.4. The vehicle's speed in rectangular 
coordinates, x and y, are calculated and then numerically integrated to update the 
vehicle's x and y position. To approximate heading rate so that it takes time for the 
vehicle to turn, e is approximated by a finite difference equation, given by: 

where Oi is the current heading. By setting a default heading rate, Equation (4.3) 
can be solved for Now, when the statechart outputs a new commanded heading, 
the vehicle turns by the amount eat every time step until it reaches the commanded 
heading. 

4.3.2 Enemy Interactions 

The two-dimensional dynamics of the enemy platforms are also defined by Equations 
(4.2) and (4.3), and the enemy platforms also follow the same obstacle avoidance logic 
as the vehicle. The difference is the modes that govern how the enemy platforms move 
within the simulation as compared to the vehicle's zig-zagging, waypoint-following, 
search mode. After presenting these enemy behaviors, we then discuss the process 
and logic of interactions between the AV and the enemy platforms. 

Enemy Behaviors 

The three enemies called Tank, SAM, and UAV correspond to general enemy types 
of ground moving, ground static, and airborne, respectively. Note, of course, that 
operating in a two-dimensional environment negates the technical terming of air and 
ground vehicles. There are three distinct modes that define the enemy's movement 
and/or tracking behavior during the simulation. Note that these modes only apply 
to the Tank and UAV. The SAM is completely static and does not need to track the 
vehicle with its radar because its weapons cone extends around a full 360" azimuth. 
The first mode exists from the start of the simulation until vehicle detection. In 
this mode, the moving enemies can either be static or following a predefined "patrol 
route." The second mode exists during detection and engagement. In this mode, 



the moving enemies are reactively following the vehicle. Note that the enemy does 
not project the vehicle's motion into the future to try and find intercept paths. At 
every time step, the enemy determines the range and heading to the vehicle and 
simply tries to follow the vehicle. The third mode is post-engagement. If the vehicle 
successfully out-maneuvers the enemy and breaks away from an engagement, the 
moving enemies randomly choose one of five locations on the map and move to that 
location. The enemy then enters into a "holding pattern" where it simply waits until 
another detection occurs. These five locations roughly corresponding to the four 
corners and middle of the map. 

RADAR 

The AV has two simple radars. They both have the same range, which is a fixed radius 
termed vehicle.range, but different field-of-views, and they serve different purposes. 
The first is the vehicle's primary radar which covers the entire 2a azimuth around 
the vehicle. This sensor is the primary search-and-detect sensor. At every time step 
during the mission, the vehicle is said to have "seen" that terrain which lies inside the 
primary sensor's radius range. Thus, at every time step, the vehicle covers a circular 
footprint of the terrain. Also, the vehicle has no knowledge of enemy presence until 
the enemy's position falls within this radar circle. The second radar is the vehicle's 
weapons radar which only extends 45" from the nose to both sides of the aircraft. In 
a three-dimensional world, the appropriate concept is of a radar cone extending from 
the aircraft. Once the enemy's position is inside this weapons cone, the weapon begins 
acquiring the target and is said to have "line-of-sight" (LOS) to the target. The test 
to determine if the enemy is within the vehicle's weapons cone is two-fold. First, 

> 
the vector defined from the enemy's position to the vehicle's position, enemy2vehicle - 
is projected onto the vehicle's current heading vector, headzngveh. Using the dot 
product, the included angle, c v ~ ~  is found by: 

c v ~ ~  = COS I (  

- 
-1 I 1 enemy2vehicl 1 1  1 1  headingveh 1 1  

If  IN < vehicle.coneANG, where vehicle.coneANG is the 45" half-angle of the cone, 
then the enemy lies within the vehicle's field-of-view. The second test is to ensure 
that the magnitude of the distance between the vehicle and the enemy is less than 
the sensor radius range, that is 1 1  vehicle.positio~ - enemy.positio~ 1 1  5 vehicl e.range. 
If the vehicle maneuvers to keep the enemy inside this weapons cone for a fixed 
time parameter called time2lock, the weapon is said to have "radar lock" on the 
enemy. At this point, the vehicle can now fire upon the enemy. The probability of 
hitting the enemy is a function of the distance between the vehicle and enemy at 
time of firing. Thus, if the vehicle achieves radar lock on the enemy and chooses 
to fire, it inputs ~(vehicle .~osi t io~ - enemy.positioi 1 1  to a look-up table, linearly 
interpolates, and outputs a probability of hitting the enemy. This probability is 
compared to a uniformly generated random number. If the random number is less 
than the probability, the vehicle is said to have hit the enemy. There is one final 



time count once radar lock is achieved and the probability of hitting the enemy is 
true. The motivation of this counter is to account for the time required between 
shots. A SAM site shooting missiles takes longer to fire due to the wait required to 
start the missile's engine than a tank that is firing shells. Once this counter runs 
out, the enemy loses one health point, and the shot is displayed on the screen. This 
sequence from detection to LOS to radar lock to firing upon the enemy is summarized 
by Algorithm 1. 

Given: vehicle.range, vehicle.coneANG, time2lock, tableVeh - 
Input : enemy2veh = 11 vehicl e.positioA - enemy.positiohll, a l ~  

________) 

if llenemy2veh(l 5 vehicle.range then 
Detection; 

if cy~r 5 vehicle.coneANG then 
Line-of-Sight ; 

tempcounter = 0; 
while tempcounter < time2lock do 

tempcounter++; 
end 
Radar Lock; 

_______$ 

if f lag2FIRE = 1 and tableVeh(l)enerny2vehIl) > uni f orrnRandNum 
then 

Enemy to be Fired Upon; 

tempCounter2 = 0; 
while tempCounter2 < time2shoot do 

tempCounter2++; 
end 
Enemy Hit; 

end 
end 

end 
Algorithm 1: Radar logic from detection of enemy to firing upon the enemy. 

4.3.3 Parameters of Simulated Entities 
Table 4.3 displays the parameters of each simulation platform. Two important con- 
siderations must be noted with this table. First, the vehicle's units of position are 
generic. This was noted before and the reason why will be detailed in Section 4.4.3. 
Second, the maximum velocity, heading rate, and time to shoot parameters are given 
as variables and not scalars because they changed after the first round of experimen- 
tation. The reason for this change is tied directly to the first note of generic units 
and discussed as well in Section 4.4.3. As can be seen in this table, the vehicle and 
UAV are almost identical in their defining parameters, except for the heading rate. 



Table 4.3: Defining parameters of simulation platforms. 

sensor radius (units) 

weapons cone angle (deg) 

max velocity (unitslsec) 

heading rate (radlsec) 

It takes the UAV twice as long to turn to a heading as the vehicle. The tank has a 
small sensor radius, maximum velocity, heading rate, and probability of hit than the 
vehicle. The tank, however, does have a lower required time to shoot counter and can 
thus fire quicker than the vehicle. The SAM has a larger sensor radius, weapons cone 
angle, and greater probability of hit. Yet, the SAM is static and takes the longest to 
shoot. 

4.3.4 Statecharts 
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Hickie used statecharts in an initial attempt to capture tactical knowledge [31] from 
interviewing human experts. However, Hickie had to translate the st atecharts into 
software code to test them against enemies in the U.S. Army's force-on-force simu- 
lation tool, One Semi- Automated Forces (OneSAF) Testbed Baseline 2.0 (OTB 2.0). 
This was a time-consuming process. MATLAB offers a stateflow toolbox that al- 
lows the programmer to design statecharts through a graphical user interface (GUI) 
[43]. This toolbox was used to design the baseline AV behavior as well as to capture 
human-inspired tactics. 
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Flight environments are highly transitory, reactive, dynamic, and very difficult to 
model. Hare1 proposed statechart diagrams as a way to characterize large, complex 
reactive systems [30]. The innovation behind statechart diagrams is the ability to 
include depth, orthogonality, and broadcast communication. Traditional state dia- 
grams or flow charts are insufficient for representing large, complex systems because 
of the "unmanageable, exponentially growing multitude of states, all of which have to 
be arranged in a 'flat' unstratified fashion" [30]. For example, the well known human 
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Figure 4-4: The AV's top level nominal and reactive superstates. 

behavior model (HBM) in military simulation exercises, TacAir-SOAR, is a rules- 
based system where tasks are hierarchically decomposed from high-level actions, such 
as moving to a target, to low-level actions of changing heading to fire a missile. The 
designers acknowledge that the novelty behind TacAir-SOAR "is primarily a matter 
of scale and integration." In 1991, there already existed over 5,200 rules encoded 
in TacAir-SOAR [35]. As the design space for AVs continues to expand in response 
to fidelity and domain size requirements, statecharts offer the advantage of moving 
beyond conventional two-dimensional representations. They possess the ability to 
add multi-dimensional depth by lumping states together into superstates, to execute 
parallel transitions between separate events in orthogonal states, and to broadcast a 
transition across multiple states. 

Baseline Statechart 

The baseline st atechart begins at the very top level with two exclusive superstates, 
Search and Enemy-Contact, as shown in Figure 4-4. The AV is either operating in the 
Search superstate or the Enemy-Contact superstate, but not both. The statechart 
defaults to the Search superstate, as depicted by the arrow in the topleft corner of 
Figure 4-4. This default arrow can be visually recognized by the dot at the tail. This 
default arrow designates the first state or junction the vehicle enters when activating 
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Figure 4-5: Search superstate - the search behavior of the AV. 

that level of the statechart. The Search superstate is the nominal behavior for the 
AV. The AV7s mission is to search through the corridor and react to enemy presence 
if required. The Enemy-Contact superstate is the reactive component of the AV7s 
behavior that responds appropriately to popup threats. Thus, the AV is either 
following along the nominal search path or reacting to popup threats. 

Search superstate There are four states in the Search superstate: Move, TER- 
RAIN, Move2Wypt, and TEMP, as shown in Figure 45. As described earlier (see 
Section 4.3. I), the vehicle moves diagonally through the air corridor from waypoint to 
waypoint. Once the next waypoint lies within the vehicle's sensor radius, it triggers a 
transition out of the Move state to the Move2Wypt state. If it misses the waypoint, 
it transitions to the Move2Wypt state, and thus, it turns around to head back to- 
wards the missed waypoint. This way the vehicle is forced to always begin the next 
search segment at a known location or reference point. Once the vehicle reaches the 
waypoint, it transitions back to the Move state and begins searching until the next 

- waypoint is reached. If at any time a terrain obstacle is present, the vehicle transi- 
tions to and remains in the TERRAIN state until it is cleared. From the TERRAIN 
state, it always transitions to Move2Wypt. The TEMP state is necessary to allow 
one time step to pass as the vehicle increments the waypoint index to begin searching 
again. 
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Figure 4-6: Move state - diagonal searching between waypoints. 

Search.Move The Search superstate defaults to the Move state. Inside the Move 
state are three substates: firstBoundary, INSIDE, and OUTSIDE, as displayed by 
Figure 46 .  Upon entering the Move state, two important variables, in regards to 
determining if the vehicle has missed the next waypoint, are initialized. The first 
variable, numsegments is set to zero, and the total number of half-width corridor 
segments, segment Ratio is calculated (see Section 4.3.1). Every time the vehicle 
crosses the air corridor centerline, numsegments increases by one. However, because 
the vehicle always begins the next search portion at a waypoint which lies in the 
air corridor centerline, the first diagonal segment only covers half of the width of 
the air corridor whereas all other diagonal segments cover the entire width. Thus, 
the vehicle always defaults to turning to its left. Upon reaching the &st boundary, 
the vehicle turns 90" back across the corridor, and numsegments increases by one. 
Upon reaching the next boundary, the vehicle has now crossed the entire length of 
the corridor. When the vehicle turns for the next diagonal segment, numsegments 
increases by two. If numsegments > floor(segmentRatio), then the vehicle has 
missed the waypoint. The temporary states exist because it takes time for the vehicle 
to turn upon reaching the air corridor boundaries. The test for the boundary function 
is d 2 (ha1 f Width - $vehicle.range), where d is the perpendicular distance from the 
vehicle to the air corridor centerline (see Section 4.3.1). Because it takes time for the 
vehicle to turn, the above condition for the boundary function does not evaluate to be 



Figure 47: Enemy-Contact superstate - detection of enemy contact. 

false at the next time step. Therefore, a second function called cleared Turn activates 
the transition to the next side of the corridor once the above condition evaluates to 
be false. 

Enemy-Contact superstate The transition from the Search to the Enemy-Contact 
superstate ends inside the Enemy-Contact superstate on a connective junction, as de- 
picted by Figure 4-7. This connective junction is the red circle at the left of the figure. 
The vehicle moves from the connective junction along one of its branching paths de- 
pending upon which of the branch's transition logic is true. It's a graphical form of 
IF-THEN logic. Proceeding from this connective junction are three paths that transi- 
tion to one of three new states - TANK, SAM, and UAV. Therefore, the transition out 
of the Search superstate assumes away any identification phase and proceeds directly 
to the enemy platform in contact. 

The transition from the Search to the Enemy-Contact superstate is given by the 
function, contact. Its logic is given by Algorithm 2. Once the contact function 
evaluates to true, the Search superstate is exited and the transition ends on the 
connective junction. The transition out of the connective junction can follow one of 
three paths as described above, depending on the integer value of contactFlag. During 
the transition from the connective junction to enemy state (Tank, SAM, UAV), a truth 
table called ttable is consulted wherein the heading from the vehicle to the enemy is 
calculated. This truth table is located at the statechart's top level, Figure 4-4. Also, 



vehicle.rangeorradarLock.tank2veh = 1)andtank.health # 0 then 
contactFlag = 1; 

else if ( 1 1  vehicle.positioA - ~ ~ ~ . ~ o s i t i o ~ l  1 5 
vehicle.rangeorradarLock.SAM2veh = 1)andSAM.health # 0 t h e n  

contactFlag = 2; 
> 

else if (Ilvehicle.position - ~ ~ ~ . ~ o s i t i o ~  1 1  5 
vehic1e.rangeorradarLock. UAV2veh = 1)andUAV. health # 0 then 

contactFlag = 3; 

else contact,Flag = 0; 
end 

end 
e n d  

Algor i thm 2: Logic for transition from SEARCH to ENEMY.CONTACT. 

upon entering the enemy state, the vehicle's position upon initial contact is recorded. 
In each of the three states in the Enemy-Contact superstate, the new substates 

and transitions that define the engage and avoid criteria are the same, except for one. 
If the vehicle has contacted a SAM, and as long as the SAM parameters have not 
been changed, it will always default along a transition path to an AVOID st,ate. It 
will never attempt to engage. 

Enemy-Contac t .ENEMY In each of the enemy states (TANK, SAM, UAV), 
there are three substates called ENGAGE-TA, AVOID, and ENGAGE-TD, as shown 
in Figure 4-8. For the engagement states, TA and TD stand for "tactical advan- 
t age" and " tactical disadvantage," respectively. In this st atchart, tactical advantage 
or disadvantage is a single-parameter function, based on the platform's sensor radius 
range. Note that there are other parameters which define a platform's behavior and 
do contribute to its tactical advantage or disadvantage (see Table 4.3). For example, 
the larger heading rate of the vehicle over the UAV is a tactical advantage. However, 
the sensor radius range parameter defines tactical advantage or disadvantage in this 
statechart because the vehicle will never be able to shoot the enemy if the enemy 
is not first within its sensor radius range. Thus, if the vehicle has a smaller sensor 
radius range than the enemy, the enemy has the advantage of using its superior sensor 
radius range as a stand-off capability to freely fire upon the vehicle. Algorithm 3, 
then, defines which of the three substates - ENGAGE-TA, AVOID, ENGAGE-TD - 
the vehicle enters upon contacting an enemy. 

A transition exists from each of the engagement states to the AVOID state if the 
vehicle, while engaging, runs out of ammo. In that case, the condition numAmmo = 0 
evaluates to true, and the vehicle moves to AVOID. Conversely, there are transitions 
out of the AVOID state to a connective junction, which then ends at one of the 
engagement states. The first transition is defined as follows: if at any time, when 
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Figure 4-8: Enemy-Contact . ENEMY - three engagement modes. 

if vehicle. range > enemy. range then 
if engageEnemy.jlag = 1 and numAmrno f 0 then 

move to ENGAGE-TA; 
else move to AVOID; 

end 
else 

if engageEnemy.flag = 0 or numAmmo f 0 then 
move to AVOID; 
else move to ENGAGE-TD; 

end . '  

end 
Algorithm 3: Logic for engaging or avoiding enemy contact. 



Figure 4-9: Enemy-Contact.ENEMY.AVOID - maneuvering to avoid enemy. 

the vehicle is executing the contents of the AVOID state, the enemy gets radar lock 
on the vehicle, the vehicle transitions out of AVOID to ENGAGE-TA/TD as long as 
numAmmo f 0 is true. The second transition is a super-transition, a transition out 
of both the substate and the parent state. In this case, the default substate in the 
AVOID parent state is moveAway, where the vehicle seeks to move out of the enemy's 
sensor radius range, as displayed by Figure 4-9. Remember, that the position of the 
vehicle upon initial contact with the enemy was recorded. A function called pursue 
evaluates the condition 1 lve hicl e.positio; - vehicl e.position 1nztia1 ~ n e m ~ ~ o n t a c i  1 1  > 
4 * vehicle.range. This pursue function is used as a transition for a few different 
states, but here it serves as a transition out of the moveAway substate, out of the 
AVOID parent state, and to a connective junction that splits to either one of the 
ENGAGE-TA/TD states. The reasoning is as follows: if the vehicle is trying to 
avoid the enemy, but while executing the contents of the substate moveAway, the 
vehicle is never able to move completely out of the enemy's sensor radius range, it 
can only be because the enemy is pursuing the vehicle. Therefore, if the vehicle has 
flown a distance greater than four times its sensor radius range and has not already 
transitioned out of the moveAway substate, the vehicle is being purused and turns 
to engage, as long as there is ammunition. Of course, this assumes that the enemy's 
sensor radius range is significantly less than four times the vehicle's range. 



As a summary up to this point, we have discussed the logical conditions and 
parameters which take the vehicle from its default Search superstate into the En- 
emy-Contact superstate and ending in one of the TANK, SAM, UAV states, the EN- 
EMY states. Next, we discussed the logical conditions that define the path from en- 
tering one of the ENEMY states to one of its three substates, ENGAGE-TA, AVOID, 
or ENGAGE-TD. Finally, we have discussed the inter-state transitions between the 
engage and avoid states. Therefore, we are left with describing the contents of each 
of the engage and avoid states, any other transitions out of these states, and finally 
the transitions out of the ENEMY states and ultimately out of the Enemy-Contact 
superstate. 

Enemy-Contact .ENEMY .AVOID As already mentioned, the default subst ate 
in the AVOID state is called moveAway, as displayed by Figure 4-9. Upon enter- 
ing this substate, the vehicle turns 180" from its heading to the enemy to exit most 
quickly out of the enemy's sensor radius range. There are two transitions out of the 
moveAway substate. The first one, mentioned above, used the pursue function to 
transition from avoiding to engaging. The second transition, evaluates the condi- 
tion 1 lvehicle.position - enemy.positio&ll > enemyxange. It is assumed, then, that 
the AV has been given an estimate of the parameter enemyxange. If the condition 
evaluates to true, then the vehicle has moved outside of the enemy's sensor radius 
range and transitions to a connective junction and calls the function headzngDE T. In 
this function, the vehicle evaluates the cross product of the its orientation vector with 
w a y p o ~ n t ~ + ~ .  By the right-hand rule, the sign of the third element in the cross product 
determines whether the waypoint lies to the left or right of the vehicle's orientation 
vector. After evaluating the function headzngDE T, the vehicle then transitions from 
the connective junction to either the ClockWise or CounterClockWise subst ate. In 
the ClockWise substate, the vehicle determines, at each time step, its heading to the 
enemy and then adds 90" to calculate its own heading. On the other hand, in the 
Counter ClockWise subst ate, the vehicle subtracts 90" from the calculated heading 
to the enemy. In this way, the vehicle, which has moved out of the enemy's sensor 
radius range, moves in increments around the enemy's sensor radius range towards its 
next desired waypoint. The transitions out of the ClockWise and CounterClockWise 
substates, determined by the functions clearEnemy-C W and clearEnemy-CC W, end 
on a common connective junction and transition out of the Avoid state. These func- 
tions evaluate as true when the third element of the cross product of the vehicle's 
orientation vector with the next waypoint flips sign. Thus, the waypoint which was 
originally on the vehicle's right, for example, and which stayed on the vehicle's right 
as the vehicle made small heading changes to move counter clockwise around the 
enemy's sensor radius range, is now on the vehicle's left. The track from the vehicle 
to the waypoint is no longer obscured by the enemy's presence, and the vehicle can 
transition from avoiding to moving to the waypoint and continue its searching. 

Enemy-Contact .ENEMY .ENGAGE-TA The strategy in engaging with a tac- 
tical advantage is using the larger sensor radius range as stand-off capability. The 
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Figure 4- 10: Enemy-Contact .ENEMY .ENGAGE-TA - maneuvering to engage the 
enemy with a tactical advantage. 

vehicle moves just outside of the enemy's sensor radius range, denoted here as MER 
which stands for "maximum effective range," waits for weapons lock, and fires upon 
the enemy. 

In the ENGAGE-TA state, as displayed by Figure 4-10, there are five substates: 
moveAway, move2MERenemy, beingFollowed, FIRE, and cannotCatchEnemy. In en- 
tering ENGAGE-TA, the default path is to a connective junction with the following 
logic: if (~vehicle.positio; - enemy.positio& 1 1  < enemy.range, then transition to 
moveAway state; else transition to move2MERenemy state. There are two transi- 
tions out of the moveAway state. First, if 1)vehicle.positi~ - enemy.positzohll > 
enemy.range, then transition to move2MERenemy state. Second, if pursue (same 
function as in AVOID) evaluates to true, it means the enemy is pursuing the vehicle, 
and the vehicle transitions to the beingFollowed state. In the beingFollowed state, 
the vehicle stops, and turns to face the enemy, waits for radar lock, and transitions 
to the FIRE state. In the move2MERenemy state, the vehicle maintains its stand- 
off distance while waiting for weapons lock to transition to the FIRE state. Upon 
entering the FIRE state, the FIRE flag triggers true, and the vehicle fires upon the 
enemy. The FIRE state has two transitions. The first is a self-transition. It waits 
for a predetermined number of time steps, then it self transitions back to the FIRE 
state, firing on the enemy again. The second transition uses the function pursue. 
While the vehicle is in the move2MERenemy or FIRE state and pursue evaluates 



Figure 41 1: Enemy-Contact .ENEMY .ENGAGE-TD - maneuvering to engage the 
enemy with a tactical disadvantage. 

- 

to true, it means the enemy ran away before the vehicle could fire either initially 
or again. Thus, the vehicle transitions out of the move2MERenemy or FIRE state 
into the cannotCatchEnemy state, where the vehicle stops and transitions outside the 
ENGAGE-TA st ate to a connective junction. 

Enemy-Contact.ENEMY.ENGAGE-TD In engaging with a tactical disadvan- 
tage, the vehicle's one hope is to move as fast as possible to its own maximum effective 
range, get the enemy in weapons lock, and fire upon the enemy quicker than the en- 
emy can fire upon the vehicle. During this whole time, the vehicle will be inside the 
enemy's sensor radius range, and therefore, it becomes a question of who can get 
weapons lock the quickest and ultimately fire the quickest on the other. 

In the ENGAGE-TD state, as depicted by Figure 411 there are four substates: 
wait4Lock, move2MERveh, FIRE, and cannotCatchEnemy. As in Engage.TA, the 
default path is to a connective junction with a slightly different logical condition: if 
I 1 vehzcle.posztzoh - enerny.positioA 11 < vehzcl e.range, then transition to wait4Lock 
st ate; else transit ion to move2MERveh st ate. Here, the vehicle, at the disadvantage, 
is already close enough to the enemy to put the enemy in the vehicle's weapons cone. 
Thus, the vehicle transitions to the wait4Lock state, stops, and turns to the enemy, 
hoping to get radar lock quicker to transition to the FIRE state. Else, if upon contact, 



the enemy is not close enough to lie within the vehicle's sensor radius range, the vehicle 
transitions to the move2MERveh state, and flies as quick as possible to put the enemy 
within its weapons cone, wait for radar lock, and transition to t,he FIRE state. As 
in the ENGAGE-TA state, the FIRE state has the same two tra,nsitions, the self- 
transition and the transition to cannotCatchEnemy. Also, as in the ENGAGE-TA 
state, a transition occurs from move2MERveh to cannotCatchEnemy when pursue 
evaluates true. 

Transition back to Nominal Mission There are three transitions out of the 
ENEMY state. The first transition is a super-transition from a connective junction 
within the ENEMY state. This connective junction combines a single transition from 
each of the engage and avoid substates. From the AVOID state, once the functions 
clearEnerny-CW or clearEnemy-CCW evaluat,e to be true, the vehicle has successfully 
circumnavigated the enemy's sensor radius range and has clear line of sight to the next 
waypoint in its navigation catalog. Thus, it exits the AVOID state t'o the connective 
junction. From the ENGAGE-TA and ENGAGE-TD states, if the vehicle entered 
the cannotCatchEnemy substate, it stops, and at the next time step exits out of 
ENGAGE-TA or ENGAGE-TD to this connective junction. The second transition 
out of the ENEMY state is if the vehicle has successfully destroyed the enemy. The 
third transition out of the ENEMY state is if the enemy completely withdrew, which 
is defined as the condition ilvehic~e.~ositiob - enemy.positioA 1 1  > 4 * enemyxange. 

In conclusion, each ENEMY state has the same three transitions to a connective 
junction. These three connective junctions combine into a single connective j unc- 
tion, which transitions from the Enemy-Contact to Search superstate. Specifically, it 
transitions inside Search to the Move2Wypt state. 

4.4 Limitations of Experiments 

Now that the experimental framework, methodology, and the dynamics of the simula- 
tion have been discussed, we present the following limitations for these experiments. 
Because the whole purpose behind the human-in-the-loop experiments and compar- 
ison to baseline AV behavior is to test an untried concept of learning and applying 
human tactics, it is import ant to honestly assess the experiment limitations. 

4.4.1 Experts? 

First, the human subjects chosen for the experiments are by no means experts in 
armed reconnaissance missions. Therefore, the following question must be asked: 
how do you learn expertise from a human subject that is not an expert? This is a 
fundamental concern. We propose to ask the following re-phrasing of the question: 
can a human learn the right tactics in order to win the game? The picture is that 
of the ten year-old boy who learns all the right moves and shortcuts to beat the 
video game. Can humans learn expertise? Absolutely [18], and human learning is 
far superior to machine learning. Yet, the question is how much training is necessary 



to learn that expertise? In answer to this question, we performed two rounds of 
experiments. The first round of experiments began with two practice scenarios. The 
second round began with one practice scenario. However, we treated the ent,irety 
of the first round of experiments as pure t,raining. The results were merely used as 
comparison in determining tactics from the second round. Therefore, a first limit ation 
of the experiments was the use of human subjects who could not be considered as 
true experts. However, this limitatlion was offset as much as possible by allowing an 
extended session of training. Furt'hermore, there is the question of how much fidelit,y 
is then necessary to ensure the expert is accommodated enough to t'he environment to 
display expert decision making? This question will not be discussed here, but it poses 
t,hought for future work. Note the answer to the question of fidelity versus expertise 
highlights the fundamental concept of what expertise are we trying to learn. 

4.4.2 Real-time Interaction 

A major issue in developing the simulation was trying to interact with Simulink in real 
time. The Simulink software is designed to simulate a model as quickly as possible 
as a function of the computer's performance ca~abilit~ies. After talking to many 
Simulink users at Draper Laboratory, it was clear that no one had used Simulink 
in a real time process. An initial search found a rea,l-time blockset offered publicly 
by Leonardo Daga, which succeeds in slowing down Simulink to mimic real time by 
changing priorities in the operating system's processes [14]. During the simulation 
development phase, t, his blockset was used. However, another major complicating 
issue surfaced. In order to allow human-in-the-loop interaction with the simulation, 
all the necessary Simulink variables have to be transferred to a MATLAB file, which 
then plots all of them. The plotting scheme only works by assigning handles to 
all of the plotting objects. Then, at every time step, each handle is deleted and 
then reassigned and t,hus re-plotted at the new locations. Unf~rtuna~tely, this process 
of moving many variables from Simulink to a MATLAB script and then plotting 
of all them tremendously slows down the simulation. As the simulation continued 
to develop and more and more variables were being transferred due to increasing 
complexity and robustness in engagement scenarios, the simulation began to slow 
down more and more until it began running slower than real time. Now the original 
problem of slowing down the simulation to run at real time speed was irrelevant, and 
Daga's blockset no longer helped. 

4.4.3 Arbitrary Scaling 

The result of not being able to regulate the speed of the simulation made realistic 
scaling for this simulation impossible. The speed of the vehicle over the terrain 
and the heading rate of the vehicle were arbit'rarily chosen numbers. They were 
determined solely by how smoothly the vehicle appeared to maneuver in response t,o 
human inputs of the joyst'ick. This? then, affected how much time was allotted to 
each scenario and how much terrain could be covered and vice versa. For example, 
we found that the time constraint of five minutes for the first round of experiments 



was too long in relation to the vehicle's speed and the amount of terrain that could be 
covered. In effect, the time constraint did not constrain the problem, and the human 
subjects could easily search through all of the area with time remaining. Therefore, 
the amount of terrain to cover was increased and the total amount of time for the 
mission decreased to four minutes for the second set of experiments. However, now 
the vehicle's speed and heading rate had to be redefined by trial and error until both 
its maneuvering appeared smooth and it gave the human subjects a decent chance at 
making it through the entire search area. Furthermore, the speed and heading rate 
of all three enemies in these scenarios had to be made relative to the vehicle's speed 
and heading rate. For example, the tank must move slower than the AV, but the 
question was how much slower? If the vehicle's speed was arbitrary, then the tank's 
speed had to be strictly relative. 

4.4.4 Wall-Clock Time versus Simulink Time 

Another difficulty related to the processing speed of the simulation concerned how to 
compare human runs against baseline vehicle runs. Because the speed and heading 
rate of the vehicle were determined by the perception of their smoothness as seen in 
real time, it seemed logical that the time constraint of each scenario for the human 
subjects should exist in real time. Therefore, a stopwatch marked the time. The 
human subjects were only given four or five minutes for each scenario as marked in 
real time or what can be called "wall-clock time." However, it was found that for a 
fixed amount of wall-clock time, the number of time steps Simulink processed varied 
significantly. Now remember, the processing rate of Simulink for these scenarios, as 
perceived by the observer in real time, was slower than wall-clock time. Therefore, for 
every one second of Simulink time passed, wall-clock time had passed through multiple 
seconds. Yet, the issue was not that Simulink was running at a fundamentally slower 
rate than wall-clock time, but that Simulink was running at a fundament ally slower 
rate that also varied as perceived in wall-clock time. Sometimes the simulation would 
run quicker as perceived by t,he human, and sometimes it would run slower. Thus, 
a fixed amount of wall-clock time, say four minutes, corresponded to twenty-five 
seconds of Simulink time in some runs, thirty seconds in some runs, and even up . 

to forty seconds in others. It was assumed that the explanation behind this varying 
Simulink rate was the difference in processing from scenario to scenario which was 
occurring behind the scenes in the host computer's operating system. However, now 
the issue was how to constrain the time allotted for the autonomous baseline vehicle 
runs which existed solely in the simulation. The best answer was for each scenario, 
to average over all the human subjects the total number of time steps in Simulink at 
scenario termination. The autonomous baseline vehicle runs were then constrained 
by the total number of time steps allowed in the simulation. Therefore, where the 
time constraint for the human runs was marked off in real time, the time constraint 
for the autonomous baseline vehicle runs was marked off in Simulink time. After the 
fact, it was determined that the best solution was to place the time constraint in the 
simulation because it was the processing rate of Simulink that could not be regulated. 
The procedure would be to run through a number of trial simulations. Each scenario 



would be stopped after a fixed amount of wall-clock time and the total number of time 
steps in Simulink recorded. After several runs for each scenario, t'he recorded time 
steps would be averaged. This value would then be entered into the simulation as a 
time constraint which would exist in Simulink for both the human and autonomous 
vehicle runs. 

4.4.5 Varying Processing Rates 

One final word on the above discussion is a limitation of the  experiment,^ due to the 
above problem with Simulink processing rates versus human interaction in real time. 
For every scenario, the human subjects had a fixed amount of time to accomplish the 
mission objectives. This fixed amount of time was five minutes for the first round 
of experiments and four minutes for the second round of experiments. As previously 
discussed, the number of time steps in Simulink at the termination of each run va,r- 
ied significantly, In post-experiment data analysis, we realized t'hat this variation 
in Simulink time gave an unfair advantage to some human subjects and an unfair 
disadvantage to others. The reason is that the vehicle dynamics are calculated within 
the Simulink world. Thus, irrelevant of wall-clock time, if the vehicle is programmed 
to fly at a fixed speed at every t'ime step, a larger number of time steps in Simulink 
correlat'es t.o a fart'her distance flown by the vehicle. If five minutes of wall-clock 
time for human subject A resulted in thirty-five time steps in Simulink time and 
five minutes for human subject B resulted in thirty time steps in Simulink, human 
subject A had five extra time steps in Simulink to search through the terrain than 
human subject B. Therefore, human subject A has the unfair potential for a greater 
score. In data analysis, this limitation of the experiments could not be removed by 
simply finding the scenario with the shortest number of time steps and chopping off 
all the ot'her runs at that t,ime. The reamson is tha,t the human subject would not have 
behaved the same way if time had been more limit'ed. Thus, t,his limitation could 
only be kept in mind while comparing human subject against human subject and 
interpreting st'rengt hs and weaknesses. 

4.4.6 Human and Automat ion Differences 

In comparing t'he human subject runs against the autonomous runs, both the base- 
line and improved AV runs, there are a few major discrepancies t,hat need to be 
highlighted. First, the human subject responds to visual stimuli. For example, the 
only way that the human subject knows he has achieved radar lock on the enemy is 
when the enemy icon turns completely red. This, however, takes time to visually pro- 
cess and generate a conscious response, a well-known delay in human processing [23]. 
On the other hand, because the AV only deals with data, radar lock on the enemy 
is known and responded to instantaneously. This gives the AV a realistic advant'age 
over the human. Second, there are no noise sources in the simulation; all calculations 
are based on truth data. This combined wit'h another well-known fact t'hat humans 
int'roduce noise into the system because they cannot fine t'une the control inputs as 
well a,s a computer gives the AV another advanta'ge over the human. Third, the 



human subject has no time2shoot counter after acquiring radar lock on the enemy. 
Once the human subject consciously processes the visual stimulus of achieving radar 
lock on the enemy, he c,an depress the trigger button and fire on the enemy. On the 
ot,her hand, the AV must wait for the time2shoot counter to run out before it can 
fire on t,he enemy after achieving radar lock. This gives the huma'n subject a slight 
advantage over the AV. Fourth, in t'he MATLAB plotting script, there is a logical 
expression that states if the vehicle has already det,ected t'he enemy (it is assumed 
that the engagement,, if one occurred, was broken off a,nd the vehicles separated) and 
the distance between the enemy and t,he vehicle closes to within twice the distance of 
the vehicle's sensor radius range, the enemy is plotted on the display. The rationale 
behind this expression was t'hat if t'he computer on board t,he hurnan subject's vehicle 
has already detected the enemy, it will retain some knowledge or nmke some predic- 
tion about the enemy's path. The rationa,le holds if the enemy is static, continues to 
move in t'he same path as its mot'ion at separation, or the time bet'ween separation 
and re-acquiring is small. Regardless, this logical expression gives the human subject' 
an advantage of visually reacquiring and responding to an enemy presence before the 
AV can. Fifth, the AV's behavior is purely reactive. There is no planning component 
t,o its behavior, whereas the human subject can visually scan the terrain map and 
plan out the best path to t,ake. The AV must follow the waypoint list given to it. 

4.4.7 Learning, Training Effect, and Assumption Violation 

The training effect was described earlier (see sectlion 4.2.5) a,s the unalterable learning 
side effect that presenting a number of cases to a human subject. It is important to 
consider, however, the relationship bet,ween t'he training effect and the limitation 
mentioned above about using human subjects who must spend time learning the 
simulation environment and tasks. Is there a difference between the training effect and 
allowing human subjects enough practice to become "experts" in the simulation? In 
the first round of experiments, there was no difference. UTe wanted the human subjects 
to come away from the first round as from a training session. Therefore, there was no 
randomization of the cases as present,ed from subject to subject during t,he first round. 
They sa'w the cases in the same order so that they all had an equal learning curve. In 
the second round of experimentq though, the cases were randomized between subjects 
to cancel out any learning effects. However, the limitation is that there was st'ill 
plenty of learning occurring during t'his second round. This was most clear in enemy 
engagements. The necessity to discretize engagements into levels of interact ion (see 
4.2.5) violated the assumptions of the huma'n subjects of how engagements should 
occur, even after the first round of experiments. In essence, the human subjects 
displayed an overwhelming tendency to t,ry and "strafe" the enemy. In this maneuver, 
they flew high speed at the enemy and pulled the trigger as t,hey flew over the enemy. 
However, this strafing method never allowed enough time for the enemy to be put in 
radar lock, and thus, they were never able to hit the enemy by strafing. Thus, during 
the second round, there was still a lot of learning occurring as to how to beat the 
enemies. 



Chapter 5 

Results of Human-in-t he-Loop 
Experiments 

To analyze the results of the human-in-the-loop experiments, we begin by scoring 
the performance over all cases. With five human subjects, a first round of seven 
cases, and a second round of eight cases, there were a total of seventy-five cases, 
including practice scenarios, to be scored in these experiments. Then, we compare 
the human performance against t,he baseline AV to ensure that there are definite 
areas where the humans outperform the baseline AV. Once we identify these areas 
of human superiority, we begin looking for human strategies by first comparing all 
human subjects' performance against each other. We are seeking the best tactics from 
the humans, and thus, we use the performance metrics to filter out those cases which 
resulted in the strongest performance. To identify strategies, we analyze the action 
sequences, think aloud reports, and surveys together, for they all make significant 
contributions to learning strategies. We then analyze the cognitive processes behind 
the decisions made to help further clarify the learned strategies. Finally, we create 
st atechart represent at ions of the tactics, augment the AV with the improved behavior, 
and test both the baseline and improved AV behavior against a large sample of cases 
with randomized parameters. 

5.1 Performance Metrics 

The total score for each case is composed of two main parts, a search and engage 
score. Both the search and engage scores are composed of several elements, and most 
of these elements are unitless ratios so that they may be linearly combined into a 
total score without mixing up units. 

5.1.1 Search Score 

The search score is obtained by the summation of the following elements: area- 
Metric. AirCorr, areaMetric. CA, timeMetric. CA2AirCorr, timeMetric. exposure2tota1, 
and VelPenalty. First, the areaMetric.AirCorr score is a reward for the percentage 



of area covered out of the entire air corridor. Second, the areaMetric.CA score is a 
penalty for the percentage of area not covered out of the entire critical area. Because 
the critical area is, by definition, a more important piece of terrain - a fact emphasized 
in the presentation of the scenarios to the human subjects (see Section 4.2.7) - it is 
assumed the human subjects will cover the entire region. If they do not, they receive 
a penalty equal to the percentage not seen. Third, the time Metric.CA2AirCorr 
score is a measure of how much time was spent searching inside the critical area 
against how much time was spent searching inside the air corridor. The numerator 
of this ratio is the time inside tmhe air corridor subtracted from the time inside the 
critical area. The denominator is the sum of the time inside the air corridor and the 
time inside the critical area. The human subjects were told that tmhey should spend 
a greater amount of time in the critical region than the air corridor. Fourth, the 
timeMetric.exposure2total score is a penaltly for the percentage of t,ime the human 
subjects were exposed to t'he enemy out of the total scenario time. To "be exposed'' is 
to be within the enemy's weapons cone radar. Finally, t,he Vel Penalty score is a small 
penalty aggregated during the scenario if the human subject moved at full speed. The 
purpose of this score was to simulate a limited fuel supply. The joystick was setup so 
that there was a nominal search speed by pushing the lever forward (see Figure 4-3). 
If the human subject needed to go faster, he could push the joystick forward. If the 
human subject needed to slow down, he could pull the joystick backward. However, 
the human subject was told in the introductory two-page description of the scenarios 
(see Appendix A) that the longer the human subject moved at full speed (both lever 
and joystick forward), the more penalty he would incur. The penalty is equal to a 
constant. a multiplied by the position measurement of how far forward the joystick is 
pressed. 

5.1.2 Engage Score 

The engage score is determined by the summation of the following elements: exposzlre- 
Metric. enemy, weaponsLockMetric. enemy, firingEficiency, health VEH, healthEnemy, 
and VelPenalty. First, the exposureMetric.enemy is a measure of how much time 
the human subject had the enemy within his weapons cone against how much time 
the enemy had the human subject within its weapons cone. Second, the weaponslock- 
Metric-enemy is a measure of how much time the human subject had the enemy in 
radar lock against how much time the enemy had the human subject in radar lock. 
Both the exposure Metric.enemy and weapons Lock Metric.enemy can be either a 
reward or a penalty. Third, f iringE f f iciency is a reward for the ratio of the total 
number of hits over the total number of shots taken over all enemies. Fourth, if the 
health of the vehicle is less than two, where a health of one is damaged and a health 
of zero is destroyed, healthVEH is a penalty of -1 if damaged and -2 if destroyed. 
All simulated entities begin with a health of two. If the simulated entity takes a hit 
from any other entity, it loses one health point. This represents a damaged state. A 
second hit effectively kills the entity. Fifth, healthEnemy is a reward of +1 for a 
damaged enemy and +2 for a destroyed enemy, and it is summed over all enemies 
damaged or destroyed. Sixth, VelPenalty also applies to the engage score, because 



Table 5.1 : Performance Metrics. 

SEARCH 

there was no way in the simulation to define a clear line and extract those times when 
the human subject used full speed in searching only or in reacting to an enemy only. 
Furthermore, because Vel Penalty is supposed to simulate limited fuel, it is counted 
in both the search and engage score. 

Score Element 
areaMetric. AirCorr = areaCovered.AirCorr 

total Area. AirCorr 

areaMetric.CA = a ~ , " ~ , " ~ , " . ~ ~ A  - 1 
t i m e ~ e t r i c . ~ ~ 2 ~ i r ~ o r r  = time.CA-the.AirCorr 

time.CA+time. AirCorr 

timeMetric.exposure2total = timeExposed2Enemx 
totalTime 

Vel  Penalty = ( a )  (joystickPos) 

5.1.3 Summary and Bounds 

Score Range 

[O, I] 

[-I, 01 

[-I, 11 

[-I, 01 

[-a, 01 

Table 5.1 summarizes the scoring elements and each score range. It is hard to predict, 
based on these metrics, the upper bound for scoring. For the search score, if the 
human subject covered the entire critical area and air corridor, split his time evenly 
between the two, was never exposed to the enemy, and never used full throttle, the 
human subject would receive a search score of 1.0. On the other hand, if the human 
subject covered the entire critical area, half of the air corridor, spent twice as much 
in the critical area than the air corridor, was never exposed to the enemy, and never 

ENGAGE 

Score Element 

exposureMetric.enemy = . . . 

. . .& enemyExposedTirne-vehicleExposedTime2Enem~ enemy ExposedTime+vehicle ExposedTime2Enemy ) 
i=l 

weaponsLockMetric.enemy = . . . 
3 

TimeVehicleHasLockOnEnemy-TimeEnemyHasLo~kOnVehicle 
' ' ( T i m e V e h i c l e H a s L o c k O n E n e m y + T i m e E n e m y H o s L ~ c l e  ) 

2= 1 
3 

firingEf ficiency = C (  numHitsEnemy 
numShotsEnemy 

i=l 
1 

healthVEH = vehicle.health - 2 
3 

healthEnemy = (2  - enemy.health) 
i= 1 

Vel  Penalty = ( a )  (joystickPos) 

Score Range 

[-3,3] 

[-31 31 

[O, 31 

[-2,0] 

[o 7 61 

[-a, 01 



used full throttle, the human subject would receive a search score of 0.833. However, 
the relationship between percentage terrain covered and the time it takes to do so 
depends on the vehicle's speed, the total amount of area to search, and the total 
amount of time allotted. Thus, it does not seem realistic to obtain a search score 
greater than 1.0. 

Likewise, the upper bound on the engage score is hard to predict. If the human 
subject could engage and destroy all three enemies without ever being exposed to the 
enemy (inside the enemy's weapons cone) and did so with perfect firing efficiency and 
without using full velocity, the human subject could receive a score of 15.0. However, 
this is not possible, because two out of the three enemies have a weapons radar range 
equal to or greater than that of the vehicle. To engage these enemies requires exposing 
the vehicle to their weapons radar. Furthermore, one of the enemies is faster than the 
vehicle, and to engage it requires moving at full speed. If the human subject could 
perfectly engage one enemy, say the easiest to kill, then the human subject could 
obtain a score of 5.0 from that one engagement. Because tshere is not much time 
in the scenarios to engage all three enemies, it appears that very good engagement 
scores would be close to 5.0 with some variation. 

5.2 Human and Baseline AV Scores 

Figure 5-1 depicts the total scores for each case in round 1. Figure 5-2 depicts the 
total scores for each case in round 2. Note that for human scores, each figure 
depicts the average, variance, absolute maximum, and absolute minimum of human 
scores. The average human score over all humans is shown by the height of the 
corresponding "Search Human" and "Engage Human" bar. The variance across all 
humans is given by the extended vertical line, where the height of the line from the 
bar to its horizontal cap represents one standard deviation. The absolute maximum 
and absolute minimum scores are displayed by the blue and red horizontal lines, 
respectively. Also, note that the baseline AV performance constitutes the untrained 
set of tactics. They were derived without any human subject inspiration, other than 
the engineering sense of the designer (see Section 4.3.4). Before discussing the results, 
it is important to highlight the differences between the two rounds. In round 1, the 
human subjects were first exposed to the simulation environment, and they were 
given two practice rounds before the five cases. In round 1, each case lasted five 
minutes, there were only a maximum of two enemies in each case, and the number of 
air corridor matrix elements (i.e. - how many elements of the entire terrain database 
did the air corridor cover) ranged from 3700 to 5000 out of the total 14,400 to 19,600 
elements in the entire terrain matrix. In round 2, each case lasted only four minutes, 
there were a maximum of three enemies in each case, and the number of air corridor 
matrix elements ranged from 6000 to 8500 out of a total 32,400 elements in the entire 
terrain matrix. The larger terrain to cover was slightly offset by an increase in the 
vehicle's velocity gain for round 2 to keep the simulation appearance smooth (see 
Section 4.4.2). However, the human subjects consistently ran out of time before they 
could cover all of the air corridor and critical area in round 2, whereas in round 1, there 



Figure 5-1: Human and baseline AV performance for the first round of experiments. 



Figure 5-2: Human and baseline AV performance for the second round of experiments. 



was plenty of time to backtrack and overlap. The time limit, then, actually became 
a constraint in round 2, which was the desired goal. A time limit is desirable in these 
experiments because it forces the human subject to seek creative solutions because 
there is not enough time for the straight-forward ones. Therefore, the problem was 
overall significantly harder in round 2 than in round 1. 

To begin analyzing these two figures, start with the total scores for each case. The 
first question to ask is if there is something to be learned from the human subjects. 
The answer is undoubtedly yes. For the total scores, the best human performance 
beat the baseline AV in every case. Remember that we are interested in discovering 
the best decisions and strategies to apply to the AV, not just the average. In round 
1, the total baseline score beat the human average in cases 1, 4, and 5. However, 
note that except for case 5, the maximum human total score significantly beat the 
AV baseline. In round 2, the total baseline score was higher than the human average 
in case 2 only. In fact, the human average total score was significantly higher than 
the baseline's total score in cases 3-7. Though the problem was harder in round 2, it 
therefore appears as if the human subjects performed better. The second question, 
then, is in what ways did the human subjects outperform the baseline AV. 

To answer the question of this increase in human performance, consider first the 
search scores. In round 1, for positive search scores, the baseline beat the human 
average and nearly equalled the best human performance in searching. In round 2, 
for three out of seven cases, the baseline search score was greater than or equal to the 
best human search score. It is important to note, however, that in case 6, there were 
no enemies, and therefore, the humans exhibited better pure search performance on 
average than the AV. All told, though, it does not appear that search scores account 
for the higher human total scores in round 2. 

Next, consider the engage scores. In round 1, the baseline engage score beat the 
average human engage score in cases 1,4, and 5. Only in case 5, however, was the 
baseline engage score higher than the best human engage score. In case 2, the baseline 
AV did not run across any enemies, and in case 3 the baseline AV was killed rather 
lopsidedly. In round 2, the baseline engage score only beat the human average engage 
score in case 2, and even then, the maximum human engage score was significantly 
higher than the baseline AV engage score. More importantly, the baseline AV did not 
engage any enemies in cases 3,4, and 7, and on average, the human engaged enemies 
in these cases very successfully. Therefore, the significantly higher average human 
total score noted in cases 3-7 above, are mainly due to baseline AV non-engagements 
and successful human engagements. However, note in case 5 ,  the AV had a very low 
engage score, and in case 6, there were no enemies. When the baseline AV did engage 
enemies in round 2, the best human score either equalled or significantly surpassed 
the baseline AV engage score. This was not true for round 1, where the baseline AV 
beat the average human engage score three times and the best human engage score 
once as opposed to only beating the average human engage score twice in round 2 
and never beating the best. 

A high-level interpret ation of the results, then, reveals that the human subjects 
engaged enemies more successfully than the baseline AV in round 2 versus round 1. 
This is encouraging because it means that the human subjects learned good reactive 



tactics to pop-up enemy threats. One criticism before moving on, though, is the large 
variance in human engage scores. The large size of the one standard deviation away 
from the mean is not in and of itself the issue. Note that this variance comes from the 
set of five observations, which is the set of five human subjects performing each case. 
Large differences in scores between subjects is not altogether bad. It means different 
subjects have differing levels of success in engaging enemies. This is to be expected, 
and especially when the number of observations is so low. It is not the large standard 
deviation, then, which is necessarily the problem. Rather, the criticism is that the 
large standard deviation in round 1 did not diminish at all in round 2. The human 
subjects did not learn consistently better tactics, as a whole, between engagements 
in round 1 and round 2. Again, this does not mean that individual human subjects 
obtained consistently bett,er scores through improved tactics in round 2. In fact, one 
interpretation of the large variance in round 2 could be that all human subjects learned 
better tactics to the same degree, and thus the scores showed stronger improvement 
but the variance did not change. The continued presence of large variances in engage 
scores in round 2 is disappointing because it shows that the human subjects, as 
a group, did not converge on better tactics. We would have liked to see that as 
the human subjects' experiences increased with each case, the variance decreased. 
Therefore, we must be selective in what cases and which subjects we choose to learn 
tactics from. This discussion highlights the learning limit at ion, mentioned in section 
4.4.7. 

5.3 Finding Human Expert Performance 

To help determine exactly how the humans performed better, Figures 5.3.1, 5.3.2, 
and 5.3.3 break down the human performance across elements of the engage scores, 
subjects, and enemies. Note that in the legend of each figure, all five subjects are 
identified by "S 1, S2, S3, S4, and S5," a color bar, and the number of observations in 
this statistical set given in the parentheses. Also, note that the VelPenalty  scoring 
element is not present in these figures for three main reasons. First, in post-processing 
there was no clear line in how to distinguish between the use of maximum velocities 
for searching purposes and for engagement purposes. Second, because much larger 
engage scores are obtainable than search scores, V e l  Penult y does not noticeably 
affect the human subjects' engage scores like it does in the search scores. Third, the 
purpose of VelPenalty  was to simulate limited fuel, but it can be argued that when 
the human expert must respond to a pop-up threat in a life-or-death engagement 
situation, limited fuel is not too important. Standard operating procedures protocol 
mandates the use of fuel reserves in all flights [80]. In a life-or-death engagement then, 
a small VelPenal ty  is not important. Finally, the process is to use the performance 
scores to identify those cases and scenarios where the best tactical decision making 
occurred. To that end, the verbal reports, surveys, and video recordings of the human 
subjects' actions will all be combined to form an interpretation of the best tactical 
decision making. Note, that just one of these interpretative elements cannot, by itself, 
reveal the human strategies. They must be integrated together to learn tactics. 



5.3.1 Fighting the Tank 

The enemy tank is slower, less maneuverable, has a smaller sensor radius, and has less 
probability of hitting another vehicle than the human subjects' vehicle (see Table 4.3). 
The only advantage the tank has is that it has the smallest time2shoot constraint. 
After the tank acquires weapons lock, it can fire the quickest on the vehicle, even 
faster than the AV can fire at the tank. However, as noted in Section 4.4.6, the 
humans did not have a time2shoot constraint other than the inherent human delay in 
processing cue information. Figure 5.3.1 depicts the human performance in engaging 
the tank. It is easy to notice that S4, the fourth human subject in the experiments, 
greatly outperformed everybody else. First, none of the subjects were ever damaged 
or destroyed by a tank, and thus no penalty was added due to healthVEH. Next, S4 
killed the tank every time he engaged one. Thus, there is no variation in the full two 
points reward of healthTank, depicted by the lack of a one standard deviation vertical 
line extending from the orange bar. For exposure, S4 was rarely ever exposed to the 
tank, which indicates he was able to use his larger sensor radius to his advantage. 
Even if S4 was slightly exposed by the tank, he always corrected the situation so 
that he was never put into weapons lock by the tank. S4 also had the greatest 
firing efficiency, and for all four tanks engaged, he only missed once achieving a total 
efficiency of 1 x 0.889. Finally, S4 had a nearly perfect score of 5 points against 
every tank encountered. Note, that S4 had the greatest score and the least variance 
in every element composing the total engage score. Therefore, the focus in learning 
the best reactive tactics in engaging the tank is completely on S4's decisions. We 
then turn to the verbal reports, surveys, and video recordings of S4's encounters with 
tanks. 

Verbal Reports (transcribed from simulation recordings) 

'llank Engagements, S4 Verbal Reports 
Case 7 

Looks like that's a stationary object there . . . [kills tank] 
That was easy, ok 

Case 5 
Ok, that's not good 
Alright, looks like I . . . [kills tank] 

Case 3 
Stay centered 
Ok, nice 
I want to stay out of the range the whole time . . . [kills tank] 

Case 4 
Yeah, well, let's try and go for him this time . . . [kills tank] . . . ok 

As can be seen, S4 did not verbalize too much during engagements with the tank. In 
fact, S4 verbalized the least out of all five subjects during all experimentation. There 
are two main points to draw from his comments. First, in case 7, he called the tank 
a stationary object. In that case, the tank did sit and wait during the scenario until 



Figure 5-3: Human performance against enemy tanks. 



contact was made, rather than following a patrol route until contact (see Section 
4.3.2). At the point of contact, the tank began to move, but did so slowly. S4's 
comment highlights his ability to use superior speed and maneuvering to kill the tank 
. . . "That was easy." Second, in case 3, he reveals his strategy of consciously staying 
outside the enemy tank's weapons range. S4 employs his superior sensor radius to 
standoff from the enemy tank and destroy it. 

Surveys 

At the end of the second round of experiments, the human subjects responded to the 
following question regarding all three enemy types: 

To the best of your knowledge, are you prone to engage or avoid the 
following three threats? What factors are involved in either engaging or 
avoiding? If you had to plan your strategy ahead of time, what actions 
would you take if you unexpectedly ran into each of these three threats in 
a typical scenario? (see Appendix A) 

For enemy tanks, S4 wrote, "These are easy [to kill] in that they are slow and have 
small targeting areas. I would typically engage them because they didn't involve 
much of a threat or repositioning." Most interesting in this answer is S4's concept of 
"repositioning." Presumably, the concept of not having to reposition is equivalent to 
not giving chase to the enemy tank. Thus, if S4 encountered a tank, he could quickly 
kill the tank without diverging far from his originally intended search path. 

Act ions 

In analyzing all four engagements with the tank, there was no real difference in how 
S4 proceeded from detection of the tank to destroying the tank. The process was 
almost identical in every case. First, upon detection, S4 either stopped and came 
to a hover right away next to the tank, or S4 moved a little past the tank on the 
original course and then stopped and came to a hover. Most importantly, every time 
S4 quickly came to a hover, he remained outside the tank's weapons range at a safe 
standoff distance. Next, S4 continued to hover and turn until the tank was within 
his weapons cone. Then, S4 tracked the enemy tank by simple heading changes as 
necessary until achieving weapons lock. Finally, S4 shot two rounds and quickly killed 
the tank. 

S tatechart Representation 

Figure 5-4 depicts the human-inspired engagement tactics against the enemy tank. 
The first major difference in this statechart logic and the baseline AV Engage.TA 
logic (see Section 4.3.4 and Figure 4-10) is the Fly.By state. If the vehicle detects 
the vehicle and is inside the tank's weapons range, the vehicle transitions to flying 
past the enemy tank. In the baseline statechart, the vehicle would have transitioned 
to a moveAway state. In the moveAway state, the vehicle would always change its 



Figure 5-4: Human-inspired statechart to engage enemy tank. 

heading to move away from the tank. In the Fly.By state, the vehicle intentionally 
moves toward the tank in the beginning to take advantage of the vehicle's superior 
speed so that it can set up a standoff distance to fire upon the tank behind it. The 
logic in flying past the enemy tank is given by the truelfalse flag of the vehicle's line- 
of-sight to the tank, LOS f lag.veh2tank. Simply put, if LOS f lag.veh2tank = 0 then 
fly away from the tank, else if LOS f lag.veh2tank = 1, then fly towards the tank. 
At the beginning of detection, the tank lies within the vehicle's weapons cone, and 
LOS f lag.veh2tank = 1. The vehicle knows it has then flown past the enemy tank if 
LOS f lag.veh2tank = 0. Once the vehicle has flown past the tank and is outside the 
tank's weapons range but the tank is inside the vehicle's weapons range, the vehicle 
transitions to the Wait.and.Turn state. In this state, the vehicle comes to a hover 
and turns and constantly tracks the tank with its weapons cone. Once the vehicle 
achieves weapons lock, it fires. 

The speed logic of the Wait.and.Turn state is the second major difference in the 
human-inspired st atechart. In the baseline statechart, the vehicle transitioned to a 
move2MERtank state. The speed logic of this state, given by the vel function, is 
depicted in Algorithm 4: Note that the units do not match on either side of the 
"velocity = " equations. Velocity is being set equal to units of position. This again 
is a limitation in the simulation of arbitrary scaling, as discussed in Section 4.4.3. In 
order to keep excessively large velocities being passed to the vehicle dynamics when 
1 1  vehicl e.position - tank-position 1 1  is large, velocity is first passed through a saturator 



if 1 lvehicle.position - tank.position 1 1  > vehicle.range then 
velocity = Ilvehicl e.position - tank.position 1 1  ; 
else if ( I  lvehicle.position - tank.position 1 1  5 vehicle.range) and 
(Ilvehicle.position - tank.positionll > tank.range) then 

velocity = (i) llvehicle.position - tanlc.positionl( ; 
else if (Ilvehicle.position - tank.position 1 1  5 vehicle.range) then 

velocity = -1; 
end 

end 
end 

Algorithm 4: Speed logic for baseline AV behavior. 

block whose upper limit is given by the defined maximum velocity, given in Table 4.3. 
Thus, in the baseline statechart, the vehicle is always moving, even when it achieves 
the proper standoff distance. What was learned from S4, however, is to simply stop. 
The tank is not fast enough to move sufficiently far away to break line-of-sight in the 
time it takes the vehicle to get weapons lock. Thus, once the vehicle achieves the 
proper standoff distance, the human-inspired tactic is to stop, hover, and turn to fire 
upon the tank. 

5.3.2 Fighting the UAV 

The parameters of the enemy UAV are almost all identical to the human subjects' 
vehicle. It has the same maximum velocity, equal sensor radius, and equal probability 
distribution of hitting another vehicle. There are two main differences. First, the 
enemy UAV operates at maximum speed at all times outside of engagements, and 
thus the humans must maintain full speed to simply keep up with it. Once the UAV 
would change modes from pursuing the vehicle to moving to a holding pattern, it 
would move away very quickly. The human vehicle could not catch it, but could 
only merely maintain a relative distance while pursuing it. Second, the enemy UAV 
was less maneuverable with a slightly slower heading rate, which is its main tactical 
disadvantage. Figure 5.3.2 depicts the human performance in engaging the UAV. 
Unlike the tank, it is much harder here to distinguish the best human performance. 
Note that the bars will not be displayed if the score for the specific performance 
metric equals zero. Only S5 had a positive average total engage score, and S4 had the 
least negative total engage score. Furthermore, only S4 and S5 took damage from a 
UAV. S2 and S4 damaged a UAV, while S5 destroyed a UAV. Thus, S1 and S3 never 
committed to engaging a UAV. Interestingly, only S4 had a positive average exposure 
score, while S2 was slightly negative. All subjects were put in weapons lock by the 
UAV longer than they had weapons lock on the UAV. On average, S2, S4, and S5 
only hit a UAV once for every three shots taken. In summary, out of the twenty-two 
encounters with enemy UAVs, only two resulted in damaging a UAV and only one in 
destroying a UAV. There are only three cases, then, of out twenty-two that can be 
examined with the goal of learning successful engagement tactics. Also, S2 had the 
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Figure 5-5: Human performance against enemy UAVs. 



most encounters with enemy UAVs, never sustained damage, damaged a UAV once, 
and stayed fairly neutral in exposure, i.e. - not being exposed by a UAV longer than 
he could expose it. Thus, it appears that S2 knows how to successfully avoid an UAV, 
and the next step is to understand these scores in light of the verbal reports. 

Verbal Reports 

UAV Engagements 
Case 2, S4 Verbal Reports 

Yeah, well, I'm not going to get to the rest of this, which is fine 
I definitely want to hit the CA 
Get ready for some bogeys . . . 
Whoa, get out of there, whoa buddy, whoa buddy, he's gunning for me 
Yeah, he's definitely targeting me . . . [they damage each other] 
Whoa, what just happened 
Well I got hit first of all 
Ok, well, not successful 
Well, that's ok 

Case 2, S5 Verbal Reports 
Approaching the terrain features, so I'm more cognizant of my maneuver desires 
I know that I can go to the left in the event of contact in the area 
but not to the right 
Corner here, whoo, ok, have enemy contact 
Looks like the same enemy UAV 
Approaching now back up into here . . . [kills UAV] 
Plucked him, plucked him dead 

Case 1, S2 Verbal Reports 
Now that UAV 
I don't know how cautious I need to be around him 
It's going very slow . . . [damages UAV] 
Is he running away now? ah coward 

First, in case 2, S4 had decided that it was time to move from the air corridor to the 
critical area. The intelligence report had stated that there was a very good chance of 
enemy contact within the critical area. Therefore, he wanted to "get ready for some 
bogeys." However, he was not completely prepared for what would happen next. 
When he made contact with the UAV, the UAV began to chase him: "Whoa, get 
out of there." S4 had never been continually targeted and fired upon by an enemy 
UAV. S4 was a little confused on the exact nature of the sequence of events, but he 
broke away with both he and the UAV being damaged. S4 summarized by stating 
the engagement was "not successful" but "ok." Second, also in case 2, S5 verbalized 
his maneuvering restrict ions while flying within the critical area due to the presence 
of a terrain obstacle to his right. He runs into the UAV, and after only a little time, 
kills the UAV pretty easily, "plucked him, plucked him dead." Third, S2 confessed 
that he did not "know how cautious" he should be around the UAV. S2's knowledge 
of successfully engaging UAV's was very limited, and in fact, this was the only time 
S2 was able to damage an enemy UAV. Also, during S2's engagement with the UAV 
the simulation slowed down significantly, which was a limit at ion discussed before (see 



Section 4.4.5). This may have actually been an advantage for him because he was 
able to process the consequences of his inputs more deliberately than before. 

Surveys 

In response to the survey question about UAV engagements, S4 stated that the UAVs, 
"were fast and often tried to track you. Initially I engaged them, but this proved to 
be a waste of time, generally speaking." S4 had tried to engage UAVs, but the UAVs 
were so quick that S4 was never close enough for long enough to fire upon them. The 
one time S4 did damage a UAV, was when the enemy UAV tracked him, and S4 finally 
turned around and shot back at the UAV. S4 does not conclusively state how or if he 
would engage a UAV in the future, but he mostly likely would avoid them because 
it took too long to be beneficial to the overall mission of air corridor reconnaissance. 
To engage "proved to be a waste of time, generally speaking." S5 answered that he 
would, "engage if given opportunity, but not a high probability engagement (i.e. - 
I will have to chase him) and not my [primary] mission." S5 does not qualify what 
an "opportunity" for engagement looked like, but he does state that the probability 
of successfully engaging the enemy is not high. It is interesting that S5 qualifies a 
high probability engagement by stating "I will have to chase him." This most likely 
reflects the fact that every time S5 chased a UAV, he was not able to successfully 
damage it. A successful engagement is only somewhat probable, not because the 
enemy UAV is so lethal and S5 expects to be fired upon, but because the enemy UAV 
is so fast that S5 does not expect to catch it. Furthermore, S5 agrees with S4 in that 
spending time to chase the enemy UAV detracts from the "primary mission." Lastly, 
S2 wrote that he was, "prone to ignore [them]. [They were] too fast for me to shoot. 
[Therefore, you should] ignore, but don't get shot." S2 advises to ignore the enemy 
UAVs. However, it must be an active mode of ignorance to keep from being shot. S2 
had more contacts with enemy UAVs than anyone else with a total of seven, and S2 
learned how to quickly maneuver to avoid and ignore them more than learning how 
to damage or destroy them. 

Act ions 

In S4's engagement with the enemy UAV in case 2, S4 performed the following se- 
quence of actions. Upon detection, S4 first turned away from the UAV a full 180". As 
S4 tried to move away, the enemy UAV gave chase and tracked S4. S4 then quickly 
maneuvered again, but he turned towards a terrain obstacle with the enemy UAV still 
giving chase. S4 was now stuck between the terrain obstacle and the enemy UAV. 
Thus, he stopped and turned to face the UAV. By the time S4 had turned completely 
around to put the UAV in his weapons cone, the UAV had maintained line-of-sight 
and achieved weapons lock on S4. They then proceeded to shoot and damage each 
other. As soon as S4 shot the UAV once, he moved past the UAV. While quickly 
flying past the UAV so that he would not get shot again, S4 tried to shoot the UAV. 
Yet, he had already passed by the UAV and missed. 

S5 was the only subject to kill an enemy UAV. The sequence of events in S5's 



engagement with the enemy UAV in case 2 is as follows. At initial contact, S5 
continued to move past the enemy UAV not deviating from his southward course. 
S5 took time along this path to observe the enemy UAV's actions. After breaking 
contact, the enemy UAV turned away from S5 and moved northwest. However, this 
northwest track took the enemy UAV into a terrain obstacle. Because the enemy 
UAV had the same obstacle avoidance logic as the baseline AV (see Section 4.3. I ) ,  it 
iterated its heading until it found a new path away from the obstacle. Unbeknownst 
to S5, this obstacle avoidance path moved the enemy UAV back towards S5. Thus, 
when S5 turned north back towards the UAV, the enemy UAV had now begun moving 
towards him. Flying directly towards each other, S5 stopped his vehicle and came to 
a hover inside the enemy UAV's sensor range. S5 was able to maintain line-of-sight, 
achieve weapons lock, and fire upon the enemy UAV quicker than the enemy UAV 
could fire upon him. Thus, S5 killed the enemy UAV pretty easily, but for two main 
reasons. First, the enemy UAV was in obstacle avoidance mode, and its obstacle 
avoidance path allowed S5 to directly intercept the UAV and kill it. However, even 
if S5 intercepted the enemy UAV, why would the UAV slow down at contact so that 
S5 could easily maintain line-of-sight and fire upon it? Why did the enemy UAV not 
keep on moving at its quick speed away from S5 but on the obstacle avoidance path? 

When searching for an answer to this question, we found that the solution re- 
vealed a flaw in the original simulation design. The original concept for the enemy 
UAV's speed logic called for the enemy UAV to move at its maximum speed unless 
approaching the human vehicle or a holding pattern. If the enemy UAV was chas- 
ing a human subject, caught up to the human, but maintained its maximum speed, 
it would fly right past the human vehicle. Thus, the speed logic was for the en- 
emy UAV to move at maximum speed until the human subject was within its sensor 
range. At that point, the enemy UAV slowed down to move at a rate proportional 
to (Ivehicle.position - UAV.position 11. If the human vehicle did not move, the UAV 
would move at maximum rate until the human vehicle was within its sensor range, 
slow down at a rate proportional to the closing distance between the enemy UAV and 
human vehicle, and finally come to a hover directly over the human vehicle. The flaw 
in this design is that it did not account for those times when the enemy UAV was 
trying to move away from the human subject after breaking off an engagement. If the 
human subject had the enemy UAV in weapons lock or the enemy UAV had line-of- 
sight on the human subject, the enemy UAV would track and chase after the human. 
However, once both of those became false, the enemy UAV changed modes from pur- 
suit to moving to a randomly designated holding pattern. Now say, for instance, that 
the human subject had flown into the enemy UAV's circle to fire upon it, and they 
both had line-of-sight on the other. Next, say that the human subject maneuvered to 
fly around the UAV and come around behind it, and that this maneuver caused both 
the human subject and enemy UAV to temporarily lose line-of-sight on the other. 
According to the enemy UAV's logic, it would now transition from pursuing the hu- 
man vehicle to moving to a holding pattern. This should occur at maximum speed. 
The flaw is that it does not because the human subject and enemy UAV are so close 
together that 1 lvehicle.position - UAV.position 1 1  is still less than the enemy UAV's 
sensor range. Therefore, until the human vehicle is outside the enemy UAV's circle, 



the UAV will still move at a rate proportional to ~lvehicle.position - UAV.positionll 
even though it is no longer pursuing the human, but rather fleeing the human. This 
then, is the answer as to why the enemy UAV slowed down enough upon contact 
with S5 so that S5 could kill it, even though the UAV was following an obstacle 
avoidance path. S5 intercepted the UAV and stopped right inside the UAV's circle. 
Thus, the UAV now moves along its obstacle avoidance path at a rate proportional 
to ~(vehicle.position - UAV.positionll, which is slow enough for S5 to kill it. 

The speed logic for the enemy UAV also allowed S2 to damage the UAV in case 1. 
In this scenario, the UAV was chasing S2. S2 began to turn and held the turn long 
enough to come in behind the UAV. He had the UAV in his weapons cone, but fired 
before achieving weapons lock. By the time he would have achieved weapons lock, 
S2 had flown past the enemy UAV. As soon as S2 realized he had missed and had 
flown past the enemy, he initiated another turn until he could come back around and 
fire again. The same sequence of turning, firing, missing, and overflying occurred. 
Because of the human vehicle's superior maneuvering rate, S2 turned quickly enough 
to come in behind the UAV, put the UAV within his weapons cone, fired, and missed 
because S2 did not wait long enough for weapons lock. Furthermore, because S2 
did not slow down, he flew past the UAV before achieving weapons lock and began 
another turn. This happened a total of three times. Finally, on the fourth attempt, 
he actually stopped the vehicle, turned, achieved weapons lock, and damaged the 
UAV. However, at this point, S2 did something different. Rather than turning right 
away back around the UAV, he flew straight for a while. By the time he turned back 
around, the UAV had fled. "Is he running away now? Ah, coward!" Why did the 
enemy UAV flee now after having been damaged? There was no logic that told the 
UAV to stay in the fight until damaged. Instead, the difference was the distance 
between S2 and the enemy UAV. The four times S2 missed the UAV, he initiated 
a rapid turn while inside the enemy UAV's sensor radius. Furthermore, during the 
turn, S2 stayed inside the enemy UAV's sensor radius. Because S2 was inside the 
UAV's sensor radius, llvehicl e.position - UAV.position 1 1  < UAKrange evaluated 
to true, and the UAV did not move at maximum speed but at a rate proportional 
Ilvehicle.position - UAV.positionll. Once S2 flew past the UAV and outside the 
UAV's sensor radius, 1 1  vehicl e.position - UAV.position 1 1  < UAV.range evaluated to 
false, and the UAV fled at maximum speed. 

These three scenarios form the building blocks for an improved tactic of engaging 
enemy UAVs. First, S4's engagement highlights what not to do. If the human subject, 
while being chased by an enemy UAV, stops, comes to a hover, and turns to shoot, 
the human's vehicle will be damaged. That maneuver gives the UAV enough time 
to fire upon the human vehicle. Now the human subject might be able to rapidly 
fire two shots to kill the enemy UAV in exchange for being damaged. However, given 
the tirne2shoot counter built into the AV behavior (see Algorithm I),  the best case 
for the AV would be exchanging hits and then moving on, exactly like S4's actions. 
Second, S5's engagement brought out the speed logic flaw in the enemy UAV's design. 
While that is important, the other important decision was S5 deliberately coming to 
a stop within the enemy UAV's circle. This action of coming to a hover once the 
enemy is in the vehicle's weapons cone and not before (like S4) would have greatly 



Figure 5-6: Human-inspired statechart to engage enemy UAV. 

helped S2's engagement. In this third scenario, S2 spent four fruitless attempts at 
firing upon the enemy UAV because he never came to a hover. Yet, S2's actions 
highlight how to combine the superior maneuvering rate of the vehicle with turning 
inside the enemy UAV's sensor radius to place the human vehicle in a position to 
fire upon the enemy UAV. S5 made the right decision to stop and shoot, but S5 was 
able to simply intercept the UAV, which was moving along an obstacle avoidance 
path. Therefore, by the evaluation of these three cases, we can integrate them into a 
complete, human-inspired tactic, that draws out the strength or avoids the weakness 
of each. 

There is one final point to discuss. Does the design flaw in the UAV's speed logic 
negate the inclusion of a tactic that takes advantage of it? We argue that it does not 
merely because the UAV's speed logic was in no way perceived by the human subject 
as a flaw. The human subject had no idea that the designers of the UAV's speed 
logic built in logic that created undesired behavior. In fact, this ability to unearth 
flaws in the enemy's performance characteristics is exactly the type of problem-solving 
behavior we desire for the humans to exhibit. 

Statechart Representation 

The statechart logic for engaging an enemy UAV is displayed by Figure 5-6. In this 
Engage.TD state, the vehicle defaults to a connective junction. If in the initial stages 
of detection, the UAV achieved weapons lock on the vehicle, the vehicle transitions to 



the Fly.By state. This Fly.By state is identical to that used in the tactic for engaging 
tanks, as shown in Figure 5-4. If radarLock.UAV2veh = 1 evaluates to false, then 
the vehicle moves to the wait4Lock state. If while waiting for weapons lock, the 
UAV achieves weapons lock on the vehicle, the vehicle transitions to the Fly.By state. 
Once the vehicle has flown past the UAV, but while inside the UAV's sensor radius, 
the vehicle comes to a hover and turns towards the UAV. Once the vehicle achieves 
line-of-sight on the UAV, the vehicle then transitions to the wait4Lock state. If the 
vehicle achieves weapons lock on the UAV before the UAV does on the vehicle, it then 
fires upon the UAV and transitions back to the Fly.By state to begin the sequence 
over. Note that the purpose of always returning to the Fly.By state is to expose the 
slow speed of the UAV as well as to use the superior maneuvering rate of t'he vehicle 
to gain the best tactical position to fire. Because the UAV is more of a threat than 
the tank, the vehicle cannot just wait in one location to fire twice upon the enemy 
UAV and then move on. This was the failure of S4, and the strength of S2 to keep 
on moving, which he did even after damaging the UAV. However, it was only on 
the fourth try that S2 finally did stop and wait for lock to fire on the UAV. That 
stop-to-shoot sequence was shown by S5 and applied here. 

5.3.3 Fighting the SAM 

The enemy SAM has a larger sensor radius, a full 360" weapons cone, and has the 
greatest probability of hitting another vehicle. However, the SAM is static, it does 
not move from its initial location. If the human subject runs into a SAM and can suc- 
cessfully evade it without being hit twice by the SAM, then the human subject knows 
the SAM's location from then on and can adjust his strategy accordingly. Figure 5.3.3 
displays the human performance in engaging the SAMs. Out of all three enemies, 
the enemy SAM was the toughest enemy to kill. All human subjects sustained some 
damage at least once due to a SAM. In fact, out of the fifteen encounters with SAMs, 
only two cases, one by S3 and one by S4, resulted in damaging a SAM. Because the 
SAM has a larger sensor radius and full 360" weapons cone, it makes sense that all 
exposure and weaponsLock scores are negative. The human subject must enter into 
the SAM's sensor radius and thus weapons cone if he desires to engage it. Note that 
when S3 damaged the SAM, he only scored one hit out of three shots. Also, when 
S4 damaged the SAM, he only hit the SAM once for two shots taken. The question 
then, is as follows: does the success of S3 and S4 in damaging the SAM demonstrate 
positive tactical decisions in how to engage a SAM? 

Verbal Reports 

After S3 ran into and successfully avoided an enemy SAM, he began thinking aloud 
about how best to kill it, as given below. In the first line of his comments, "those 
places" refers to the location of enemy SAM sites. S3 believes the only possible way 
to kill a SAM would be to move at it at maximum speed, come to a hover right 
when the SAM is within the human vehicle's sensor radius, and shoot as quick as 
possible. As he states, this whole plan is contingent upon knowing the exact location 
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Figure 5-7: Human performance against enemy SAMs. 



of the SAM. Because the SAM is static, the exact location can be known once the 
human vehicle has successfully contacted and evaded the SAM. Note that S3 does 
not have too much confidence in the plan or in his ability to successfully carry it 
out. Second, S4 comments reveal a mistake he made in engaging an enemy SAM. S4 
ran out of shots, and he was unsure how it happened. Thus, S4's mistake leaves a 
question of whether or not his engagement tactic would have completely worked. S4 
only damaged the SAM, but then ran out of shots and was killed. 

SAM Engagements 
Case 2, S3 Verbal Reports 

It's always good to have identified where those places are at 
I feel like the only real way to attack it would be to move in hot and fast on it 
Stop right when it's in range [and] fire off two shots in rapid succession 
So knowing where it's at is pretty key 
So I'll keep that in mind and if I have time in the end 
and I've explored everything I need to 
it might be helpful for our guys to have a SAM site taken care of 
But because it's not something I'm very good at doing 
I may have somebody else do it 
. . . 
I'm gonna try my strategy, I think, for the SAM site, if he's still there 
I feel like it might be a good plan 
Get lined up on him 
Got finger on trigger and go 
(unintelligible comment) 

Case 5, 54 V 1 erbal Heports 
Let's see what we got here 
Come on shoot, is it really not shooting, shoot 
Oh, zero shots remaining? What happened? 
What's going on here? I didn't shoot . . . 

Surveys 

In answer to the survey question on engaging enemy SAMs, S3 stated that he was, 
"not very likely to engage. It's too dangerous. [The SAM] has a greater range 
than I do . . . I  would have to maneuver quickly and precisely to defeat it, [and] 
I think it better to move on so I can accomplish the mission of clearing out the 
corridor. My strategy is to note the location and get out of its range as quickly as 
possible." S3 damaged the SAM, but the SAM killed S3. It appears that this failure 
in implementing the plan led S3 to believe it too dangerous to try again. He states 
that to kill the SAM would require the ability "to maneuver quickly and precisely," 
a trait, it seems, he does not believe he possesses. Therefore, S3 concludes that 
it is better to focus all the time on searching through the air corridor rather than 
risk getting damaged or destroyed by the SAM. S4 answered the survey question by 
writing that SAMs, "had huge targeting areas, and I tried to avoid them until the 
very end when I had finished everything else. I wasn't aware that you were penalized 
for dying and may have approached that differently now that I know that." S4 stated 
that he would only try to engage a SAM site if all other parts of the mission had 
been completed. Because the scenarios were designed to constrain the amount of 
time the human subjects had to perform the missions, S4 typically did not engage a 



SAM. In the one engagement where S4 ran out of shots, his survey comments imply 
that he had accepted the risk of attempting to engage a SAM. However, now that 
he had discovered that to be killed by an enemy in the scenario did not merely end 
the chance for scoring more points but also carried a penalty, S4 leaves it open as to 
whether he would ever engage a SAM again. Thus, S4 does not have much confidence 
in his tactic. 

Actions 

In case 2, S3 initially detected, evaded, and formulated a plan to engage the SAM, 
and then he came back to execute it. In executing his plan, S3 first moved back to 
the SAM's location known from the previous encounter and came to a hover right 
outside of the SAM's sensor radius. Next, S3 turned until he felt that his weapons 
cone aligned with the SAM site. Then, S3 applied full throttle to move at maximum 
speed in a straight line to the SAM. However, two things went wrong. First, S3 
stopped too short, and did not have the SAM site in his sensor radius. Second, S3 
was not lined up right, and had to turn more. By the time S3 changed his heading 
and moved in closer to put the SAM within his sensor radius, he had spent too 
much time in the SAM's weapons cone. S3 could only get off one shot before the 
SAM killed him. Therefore, it is hard to say whether or not the strategy could be 
successful due to flawed execution. For S4's engagement with the SAM in case 5, 
S4 did not enumerate his sequence of actions, but upon observation, S4 performed 
the exact sequence of steps that S3 attempted. S4 stopped outside the SAM's sensor 
radius and aligned his weapons cone with the SAM's location. S4 only had two shots 
going into the engagement. Then, S4 moved at full speed and stopped with the SAM 
just in his weapons cone. However, S4's mistake was to shoot at the SAM right away 
before achieving weapons lock. Thus, S4 missed on his first shot. His second shot 
hit the SAM, and he went to fire a third, but ran out of ammunition. It took too 
long for S4 to understand his situation of having no more shots left, and the SAM 
killed him as he tried to make his way out of the SAM's sensor radius. Again, flawed 
execution prevents a complete affirmation of the strategy's usefulness. Yet, S4 did a 
much better job of putting the SAM just within his weapons cone as quick as possible 
then S3. After analyzing the data, it appears that S4 had enough time to achieve 
weapons lock and fire off two quick shots on the SAM before getting killed. It does 
seem likely that in this strategy the human vehicle will be damaged by the SAM. 
Furthermore, there is the limitation again of the time2shoot counter for both the 
AV and the SAM. In Table 4.3, time2shoot = 4 x (plotCounter) for the SAM and 
time2shoot = 3 x (plotCounter) for the AV. Thus, the AV can shoot quicker than the 
SAM after achieving weapons lock (see Section 4.3.2), but can the AV shoot twice 
before the SAM can given the distance the AV must travel inside the SAM's sensor 
radius before the AV can achieve line-of-sight? 



Figure 5-8: Toplevel of human-inspired statechart to engage enemy SAM. 

Statechart Representation 

Figures 5-8, 5-9, and 5-10 depict the overall statechart diagram for the human-inspired 
tactic of engaging an enemy SAM site. Figure 5-8 shows the two main states in this 
tactic of AVOID and ENGAGE-TD. Upon first contacting the SAM, the vehicle 
defaults to the AVOID state, shown in Figure 5-9. In this state, the vehicle turns and 
moves as quick as possible out of the SAM's sensor radius in the moveAway substate. 
To do this, the vehicle determines the heading from itself to the SAM, adds ?r to this 
heading, and turns to intercept that path out of the SAM's sensor radius. After the 
vehicle has distanced itself from the SAM by an amount equal to the SAM's sensor 
radius plus the vehicle sensor radius, it transitions to the turn2SAM substate. In this 
substate, the vehicle comes to a hover and turns until it directly faces the SAM. After 
achieving this heading, the vehicle has successfully evaded the SAM and transitions 
out of the AVOID state to the ENGAGE-TD state, shown in Figure 5-10. In this 
state, the vehicle simply moves at maximum speed at the SAM until the enemy SAM 
lies within the vehicle's maximum effective range. At this point, the vehicle waits for 
weapons lock and then fires upon the SAM. 

Results of Human-Inspired Tactics 

The final step in the process of learning human-inspired tactics is to apply them over 
a large number of cases to test the solution's robustness. In this context, a robust 



Figure 5-9: AVOID state of human-inspired statechart to engage enemy SAM. 
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Figure 5-10: ENGAGE-TD state of human-inspired statechart to engage enemy SAM. 



solution is where the actions taken by the AV remain true to the human tactic. It 
is difficult to judge the success of a tactic only by its performance score over a large 
sample. This is because the training set of human cases is so small. A highly successful 
tactic utilized by the human subjects over three cases may perform more poorly over 
a much larger sample. Therefore, there are two goals of Monte Carlo simulation, given 
here in the form of two questions. First, did the AV's actions consistently replicate 
the human strategies? Second, did the human-inspired tactic result in consistently 
high performance scores? Note, that if the tactic scores high but fails to mimic human 
strategy, the whole goal of the research to learn and apply human-inspired tactics has 
not been achieved. Also, by evaluating the performance of the improved AV behavior 
against the baseline AV behavior, we can evaluate the increase in performance given 
by the human-inspired tactic. 

For the purposes of Monte Carlo simulation, a single terrain database and associ- 
ated air corridor, critical area, and waypoint list was chosen from an earlier case in the 
human-in-the-loop experiments. In choosing a parameter to randomize, there were 
two main options. One, the parameters in Table 4.3 could be randomized. However, 
this would essentially be testing the tactic against different enemy platforms before 
testing it against the enemies it was designed for. Two, the initial locations and 
modes of the enemy (see Section 4.3.2) could be randomized. This would randomize 
how the vehicle and enemy platform initially met for each engagement and is suffi- 
cient to test the success of the tactic. Thus, the dominant randomized variable over 
each run was the enemy's initial location. To ensure that there was a good chance 
the vehicle would make contact with the enemy, the enemy's randomized initial po- 
sition was constrained to being in the air corridor. Also, for testing tactics against 
the tank and the UAV, the dynamic vehicles, not only was the initial position of the 
tank or UAV varied, but the initial dynamic mode of the tank or UAV was varied. 
In the cases presented to the human subjects, the tank or UAV could take on the 
following three initial modes: follow predetermined patrol route, wait-for-cont act, or 
pursue (see Section 4.3.2). Rather than trying to generate a pseudo-random patrol 
route that at least somewhat guaranteed the intersection of the enemy's and vehicle's 
paths, we focused on the wait-for-contact and pursue modes. Therefore, for testing 
tactics against the tank and UAV, a total of two hundred cases were run. The initial 
positions of the tank and UAV were randomized for each case. The initial mode of 
the tank and UAV during the first one hundred cases was the wait-for-contact mode, 
and for the second one hundred cases, the tank and UAV initially pursued the vehicle. 
Note that the first one hundred initial positions of the enemy randomly chosen for 
the wait-for-contact mode were not reused as the initial positions for the one hundred 
cases of the pursue mode. However, both the improved and baseline AV were tested 
on each set of runs. Finally, only those runs which resulted in an engagement were 
included in the statistical analysis. 

In the following figures, the improved tactics performance is compared against 
both the baseline's performance as well as the human subjects' performance. The 
only human data shown are the specific cases drawn out in the preceding sections. 
This is admittedly a very small number of cases to have much statistical significance. 
Yet, this small number is the training set for the improved tactic, and thus the 



mean, one standard deviation, minimum, and maximum is depicted for the human 
data. The legend identifies the subjects and number of cases per subject used in 
the training set. Remember that the maximum score for any engagement is a total 
of five (see Section 5.1.3). For the vehicle and enemy health scores, healthVEH = 

h e a l t h . ~ e h i ~ l e , , , , ~ ~ ~ ~ ~  - 2 is a penalty for any damage done to the human vehicle, 
and healthEnemy = 2 - health.enemy,,m,ining is a reward for any damage done to 
the enemy, where the enemy includes the tank, SAM, and UAV. For the remaining 
engage scoring metrics, exposure, weapons Lock, and f ir ingE f f all carry a maximum 
reward of one point. 

5.4.1 Against the Tank 

Figure 5-1 1 displays the results of applying the human-inspired tactic of engaging the 
enemy tank, given by the statechart in Figure 5-4, over 132 randomized cases where 
engagement actually occurred. Starting from the left side of the figure and moving 
right, the first metric healthVEH shows the weakness in the baseline AV behavior. 
Only the baseline AV is, on average, damaged by the tank. Neither the hurnarls nor 
the improved AV were ever damaged by the tank. For healthTank, the improved AV 
behavior killed the tank nearly every time, which is a definite improvement over the 
baseline. For exposure, weaponsLock, and f iringE f f ,  the improved AV, on average, 
scored very close to the maximum of one point on each of these metrics. Furthermore, 
the improved AV's exposure and weaponsLock scores essentially equaled 84's stellar 
performance and significantly beat the baseline AV's scores in these metrics. Thus, 
the strength of the human-inspired tactic is utilizing the vehicle's larger sensor radius 
to keep the tank exposed and in weapons lock without allowing the tank the ability to 
do so in return. Finally, the tremendous improvement in the overall engagement score 
equals S4's performance and is much higher than the baseline AV. Thus, it appears 
that the learned tactic for the improved AV behavior of engaging an enemy tank 
reproduces the performance of the tactical human decision making used to derive it. 

5.4.2 Against the UAV 

Figure 5-12 depicts the results of applying the human-inspired tactic of engaging the 
enemy UAV, given by the statechart in Figure 5-6, over 136 randomized cases where 
engagement actually occurred. At first glance, it is seen that the improved AV behav- 
ior outperforms the human training set for every metric. This performance increase 
underscores one of the limitations in the experiments, namely that the human sub- 
jects were still learning how best to engage enemies (see Section 4.4.7). Furthermore, 
the performance increase also brings into question the validity of drawing out the 
strengths across different human subject performances to create a single, unified, and 
better performing tactic. The reason this is questionable is because we are both the 
simulation and experiment designers as well as the interpreters of the human strate- 
gies, actions, and data. Therefore, we could be prone to interpreting the results and 
encoding a tactic that we know will perform better because we know the limitations 
of the simulation design. This is probably more dangerous when no single human 



Figure 5- 1 1 : Monte Carlo simulation to test human-inspired tactics against enemy 
tank. 



Figure 5- 12: Monte Carlo simulation to test human-inspired tactics against enemy 
UAV. 



scenario is used to create the tactic, but multiple human scenarios are interpreted to 
create the best tactic. Along with this note of warning are two comments. First, note 
that the humans did perform better than the baseline AV. Thus, there is valuable 
tactical decision making to be learned by the human subjects' performance. Second, 
the purpose of employing several different human subjects in the experiments was 
to observe the strengths and weaknesses of each subject, so that we could combine 
the best of the tactical decision making skills into AV tactics. Interpretation is desir- 
able but necessarily subjective. To conclude, note that the strength of applying this 
human-inspired tactic is found mainly in the exposure and weaponsLock metrics. 
By designing a tactic which kept the AV continually transitioning back to the Fly.By 
state (Figure 5-6), the AV was able to successfully exploit the speed logic and inferior 
maneuvering rate of the UAV to position itself in a superior firing location. 

5.4.3 Against the SAM 

Figure 5-13 depicts the results of applying the human-inspired tactic of engaging the 
enemy SAM, given by the statechart in Figure 5-8, over 132 randomized cases where 
engagement actually occurred. First of all, note that the tactic does not guarantee 
the vehicle will retain full health after engaging the SAM. In fact, on average, the 
vehicle will sustain damage, though it will never be destroyed. For exposure and 
weaponsLock, the improved AV's mean scores are slightly less negative than the 
human average scores, but it is interesting that the improved AV's mean scores do 
not beat the best human performance scores in these met,rics. Of course, the AV will 
always score negative in the exposure and weaponsLock categories because the SAM'S 
sensor radius is significantly larger than the vehicle's sensor radius. Also, remember 
that the baseline AV does not engage the SAM, but it always avoids the SAM. Thus, 
the baseline AV does not sustain any damage, does not damage the SAM, and takes 
no shots. Overall, the human data would have produced a total score very close to 
zero if they only sustained a single hit by the SAM and were not both destroyed. 

Note that the previous discussion on the improved AV behavior outperforming 
the human training data applies here. However, much less interpret at ion is involved 
in this tactic for engaging SAMs. In fact, no interpretation is involved. The issue is 
that the human subjects executed this tactic in a flawed manner. S3 was misaligned 
and stopped short of putting the SAM within his weapons cone. S4 fired too early, 
missed, and only had one shot left to damage the SAM, even though it appears he had 
plenty of time to fire two shots after achieving weapons lock. Thus, we believe that 
the conclusion from Figure 5-13 is that the human subjects did formulate the right 
strategy to defeat the SAM. However, as mentioned in the limitations Section 4.4.6, 
there is no noise in the simulation, and S3's and S4's engagements with the SAM 
emphasize how humans in the loop tend to create noise in the system. One of the 
major advantages of autonomy over humans is maintaining precise control inputs over 
long durations. Because the improved AV is maneuvering the vehicle based on exact 
numbers and sensors with no noise, it can more accurately control the vehicle than the 
human subject who relies on visual feedback from the display to judge the accuracy 
of his joystick control inputs. Thus, the human-inspired tactic is extremely successful 
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Figure 5- 13: Monte Carlo simulation to test human-inspired tactics against enemy 
SAM. 



against the SAM, but it requires precise maneuvering, an inherent advantage of the 
improved AV. 

5.5 Addressing Limitations by Human Cognitive 
Understanding 

An important question to ask from the previous section is as follows: where does all 
the informat ion about human cognitive processes and modeling fit into the derivation 
of these human-inspired tactics? The mechanisms that regulate human cognitive 
processes are import ant because they help to explain a decision-making obstacle found 
in these experiments. This obstacle in the human subjects' decision making prevented 
them from quickly learning how to effectively kill the enemy platforms. It can only 
be explained through human cognitive models, as discussed in Chapter 3, and it 
has important implications for the procedures of learning human-inspired expertise 
and the results already presented. As a lead-in to this discussion, we first analyze 
the application of one of the major elements of Chapter 2 in designing knowledge 
elicit at ion experiments. 

5.5.1 Harnessing Human Strengths 

From Chapter 2, it was noted that human-in-the-loop experimental scenarios should 
be built with a hierarchy of objectives given to the human subjects, uncertainty in 
the variables, and flexibility in the solution method so that the strengths of human 
problem-solving could be displayed. How do these three elements apply to engaging 
a specific enemy platform? First of all, in forming the human-inspired engagement 
tactics, we narrow down the hierarchy of objectives down to one, namely killing 
the enemy contact. The improved AV statechart logic only applies to those actions 
necessary to reach a specific sub-goal of killing an enemy. It does not show how the 
AV must decide when it should engage or avoid depending on the fulfillment of various 
elements of its hierarchy of objectives. Second, even though the human subject can 
visually see both his vehicle's sensor radius and weapons cone as well as the enemy's 
sensor radius, there is still uncertainty in the engagements. This uncertainty mainly 
resides in the tactical characteristics of the enemies. The human subject may see the 
sensor radius of the enemy contact, but the subject does not know the enemy's speed, 
maneuvering rate, weapons cone field-of-view , and time requirements to acquire line- 
of-sight, weapons lock, and to shoot on the subject's vehicle. These variables can 
only be learned and estimated through experience. 

For the third element, there is unfortunately not too much flexibility in engage- 
ment actions. The engagement scenarios were discretized in order to more easily 
conceptualize the design of the simulated entities as well as to help in data analysis 
by mapping the levels of engagement to specific performance metrics (see sections 
4.3.2 and 5.1.2). By discretization, we mean that there were four levels which com- 
pletely define an engagement: detection, line-of-sight, weapons lock, and firing. These 



levels must occur in order the given. The subject cannot acquire weapons lock with- 
out first achieving line-of-sight. The tradeoff of discretizing the engagement process 
was to limit a priori the sequence of actions that must be taken by the human subject 
to kill an enemy. For example, the only way a human subject can shoot and actually 
hit an enemy is if the enemy is in weapons lock. The enemy cannot be in weapons 
lock unless it is first within the vehicle's weapons cone for a specified amount of time. 
Therefore, the human subject cannot utilize any sort of running fire or "strafing" tac- 
tic to kill the enemy. Now, there is the question of how realistic or unrealistic is the 
constraint of having to track an enemy contact with radar for a specified amount of 
time until the weapon can achieve a lock on the enemy. Yet, regardless of the answer, 
that constraint appears to have violated the assumptions that all of the human sub- 
jects brought into the experiments. The following are excerpts from human subjects' 
verbal reports that describe the frustration of trying to apply improper engagement 
techniques during the experiments. 

S1 Verbal Reports 
Whoa7 bad guy, ok 
I am going to try and go after him, but it looks like he's mobile 
So I'm going to try and loop around, get him better lined up 
This guy's persistent, alright, I've had enough of you 
Turn, turn, turn 
I'm just trying to get him lined up so I can get a shot off 
Oh, not doing a very good job 
So I'm gonna get a little distance in between myself and him 
Dang't, I can't seem to do it 
-- 
But now I'll turn around and come to . . . slow . . . no, aah, dang 
Not a very good helicopter pilot here 
Slow down, slow, slow, slow, slow . . . (laughs) 
-- 
Ok, tank, slowing down, turning, and then 
Oh shoot, turn, turn, turn, turn, turn 
Running out of time, running out of time, turn 
There we go . . . (sigh) 

S2 Verbal Reports 
Ooh, I guess we can go after that bad guy 
Oh, he's got me in his sights 
No, it shot late . . . aah . . . it's not shooting well 
(Sigh), there's kind of a time delay on the gun right now 

S3 Verbal Reports 
k, UAV, he's tailing me, ooh 

Circle out and around 
Come back at him in this direction . . . whoa 
Ok, behind him, maneuvering 
This is really tricky 
Aah, two shots gone 

S5 Verbal Heports 
Come back around to the top, see if I can get an engagement here 
And do some running fire on this guy, I'm reporting him to higher 
I'm going to sweep by as fast as I can on him 
I don't think that's working right real well so far as targeting 



It took multiple failed attempts of moving at full speed at the enemy and trying to 
quickly fire as the vehicle overtook the enemy for the human subjects to understand 
the necessity of waiting until weapons lock was achieved. Even after a successful 
engagement where the human subject stopped, waited, and fired, he still tried the 
doomed strafing tactic on the next enemy encountered. It could be argued that t,his 
is not really that much of a limitation because it did force the humans to find new 
solutions to killing the enemies, which was exactly the point. However, a quick glance 
over Figures 5-4, 5-6, and 5-10 shows the similarities between the necessary steps to 
take in engaging the enemies, namely the necessity to stop, wait, and shoot. The 
human subjects did have to figure out how best to arrive at the position where they 
could stop, wait, and shoot, and that did vary between enemy platforms. If there were 
truly uncertain elements and flexibility in solution methods, it would seem reasonable 
that some sort of probabilistic decisions would be made in these engagements where 
the human subjects would help determine the probabilistic thresholds. Yet, this is 
not present due to the discretization of the engagement sequences. 

5.5.2 New Mental Model 

As the human subjects continued to learn how best to engage enemies in these sce- 
narios, they were forced to restructure their thinkingbased on previous experiences. 
Recall from Chapter 3 that many of the decision heuristics and biases humans exhibit 
in decision making arise because humans, in the terms of J. Reason, are "furious pat- 
tern matchers" 1571. The structure of long-term memory and the limited capacity and 
temporal decay of the working memory converge to create a default decision making 
process based on matching current situations to previous experiences. In these ex- 
periments, all of the human subjects carried some sort of video-gaming experience in 
long-term memory storage that was drawn upon to help make decisions in the current 
simulation. However, it became obvious that their experience with two-dimensional, 
interactive games included the action sequence of lining up the enemy with the cur- 
rent weapon, moving at the enemy until it is within target range, and firing upon the 
enemy as soon as possible. If the enemy was within target range, the enemy should be 
hit. These video-gaming experiences never included the constraint of maneuvering to 
place the enemy within target range and then having to wait a predetermined amount 
of time to fire. The need to restructure their thinking can be described by both the 
RPD [38] and GEMS [57] frameworks (see Sections 3.3.6 and 3.4.2). 

Recognition-Primed Decision Model 

In the RPD framework, the emphasis is on how the human expert must use a recog- 
nitional decision making process to quickly and efficiently choose appropriate actions 
because of time pressure. This model is pictured in Figure 3-9. There are four by- 
products of recognition: expectancies, cues, goals, and actions. When the human 
subjects first encountered enemies, these four categories describe their assumption 
for using strafing against the enemies. First, they matched the visual cues of the ve- 
hicle's sensor radius, weapons cone, speed, and maneuvering capabilities against the 



enemy's same characteristics. Second, they recalled the previous goals of first placing 
the enemy inside the vehicle's target range. At that point, the goal is then to fire 
upon the enemy as quickly as possible and to keep moving so that the enemy does not 
have time to fire back. After understanding the goals, the human subjects then chose 
a set of actions to maneuver the vehicle towards the enemy and fire. Finally, they 
expected to see the enemy hit. However, this last expectancy was violated time and 
time again. Rather than trying to change the set of expectancies, cues, goals, and 
actions to an appropriate set for the given situation, they relied on feature matching 
and story building to try to infer the presence of the violated expectancy. Two ex- 
amples of this inference can be seen in the verbal reports given above. S2 blamed the 
weapon and said it had a time delay on it. S1 blamed himself and stated he was not 
a very good helicopter pilot. In both cases, it was easier to explain why their actions, 
which had worked in the past, did not work now than to admit that the situation was 
no longer recognizable. 

Generic Error Modeling System 

The GEMS framework categorizes human problem-solving into three levels: skill- 
based, rule-based, and knowledge-based. When a problem arises, humans prefer 
to solve it in the rule-based level by applying stored IF-THEN rules from previous 
experiences. This particular model is shown in Figure 3-10. For these experiments, 
the human subjects' stored IF-THEN rule was a strafing tactic. Beginning at the 
Problem block at the top of the rule-based level, the human subjects considered the 
local state information of tactical capabilities of their vehicle versus the enemy and 
then had to answer the question of whether the pattern was familiar or not. If they 
first answered "yes," they then applied the strafing rule, but quickly found out that 
it did not solve the problem. Thus, they returned to the problem block, reconsidered 
the local state information, and asked the question again of whether the pattern was 
familiar or not. If they answered "no," they transitioned to the knowledge-based level 
and searched for a higher level analogy of the current situation. By finding an analogy 
of the current situation to previous video-gaming experiences, they quickly left the 
knowledge-based level and tried applying the strafing tactic again. Therefore, we can 
see the loop of unsuccessfully engaging the enemy the human subjects followed. Until 
they admitted that a higher level analogy did not hold, formed a mental model of the 
problem space, and abstracted relations between structure and function, they would 
not learn how to appropriately engage the enemy. 

5.5.3 Implications 

These two decision making frameworks from Chapter 3 describe the reasons behind 
the difficulties that human subjects experienced in trying to learn how to engage 
enemy contacts. By under st anding the cognitive processes underlying the decisions 
made, we can now list some important implications. First, because human subjects 
became frustrated over the course of multiple failed attempts of strafing the enemy, 
they lost motivation to keep trying to learn the right ways to engage. This hinders 



the researchers who are looking for the best tactics. Now that the human subjects 
have failed so many times, they do not want to keep searching for the best tactics. 
Second, without sufficient time and training to become experts in the simulation, 
only a small number of solutions will be found. Such a small training set is one 
criticism of this research, especially for the engagement tactic against UAVs. In that 
tactic, only three cases could be analyzed, and the decisions made had to be filtered 
and collected in an interpretation process that was possibly biased by the knowledge 
of the experimental designer. Not only then was there a small number of partial 
s~lut~ions to train from, but recall the high variance in engage scores in Figures 5-1 
and 5-2. A large set of complete and consistent solutions in how to engage enemies 
would be ideal and would reflect complete domain expertise. However, in terms of 
the RPD framework, the human subjects employed in these experiments did not 
have enough time to abandon their recognition process and reformulate their set of 
expectancies, cues, goals, and actions to context-appropriate ones. In terms of the 
GEMS framework, they did not have the time form correct mental models, abstract 
relations, and learn appropriate actions which could then be stored as new IF-THEN 
rules. If there is one thing to learn from Chapter 3, it is that to overcome the human 
bias of pattern-matching takes time and motivation. 

5 -5.4 Engagement Tactics Conclusions 

The solution method of engaging enemies was rigid and violated the previous experi- 
ences of the human subjects. Coupled with the lack of time given to experimentation, 
the human strength of exploring the problem space to find creative, new solutions 
was not completely harnessed. This accounts for the large variance in engage scores, 
the small number of cases to analyze, learn, and train from, and the interpretation 
process required to integrate different decisions into a unified tactic. The success of 
the engagement tactic against enemy UAVs is therefore presented with this criticism. 
However, for the engagement tactics against enemy tanks and SAMs, the statechart 
logic was derived explicitly from complet'e sets of human solutions. The success of the 
engagement tactic against enemy SAMs emphasizes the limit ation of the simulation 
which only deals with truth data. The success of the engagement tactic against en- 
emy tanks is truly the strongest proponent of the advantage of learning and applying 
human expertise. 

5.6 Search Problem and Planning 

Human subjects had to be prepared to react against enemy contacts while searching 
through the air corridor and critical area. Over the two rounds of experiments, the 
subjects learned and applied the right actions to evade and/or engage enemies. This 
is tactical decision making. The previous sections described the process of evaluating, 
learning, and applying the best human-inspired, engagement tactics which resulted 
in a significant increase in AV performance. The previous sections also evaluated 
the possible criticisms of the methodology and results in terms of human cognitive 



processes. However, these engagement tactics are by no means the only ones that 
can be learned by the experiments. A much more difficult problem exists of how 
to search through the given terrain and intelligently make tradeoffs between limited 
time, enemy contacts, and critical terrain. 

Plans 

At the beginning of the scenarios in the second round of experiments, the human 
subject was asked to determine and verbalize a plan to accomplish the mission ob- 
jectives of searching for enemy contacts. The variables present that influenced the 
plan formulation were as follows. First, the human subject could visually inspect the 
location of the air corridor and critical area with respect to the terrain. Second, the 
human subject was given an intelligence report that categorized the probability of 
enemy contacts in both the air corridor and critical area. Third, the time constraint 
of four or five minutes forced the human to divide his time between the air corri- 
dor and critical area. The human subject then combined these variables with past 
experiences to construct a plan for the scenario. The following are some examples 
of formulated plans from the second round of experiments along with the associated 
map view given to the human subject. Note that the caption of each figure displays 
the intelligence report for the particular case. 

Plan for Case 5, Sl - Figure 5-14 
"Very good chance of enemy contact in both areas. I just want to go as efficiently 
as possible to the critical area, and try to minimize getting killed in the process. 
Most efficient in terms of coverage, would be to go around the large hill to the west 
and north around it. But that confines where you can go, plus up north they got a 
couple good places to hide. So instead of doing that, I'm going to go the southern 
route and go south and east around it. I'll probably even duck outside the corridor 
and go and just center the gap between those two hills to really give myself the best 
chance of survival. Then, I'll probably do a north/south weave in critical area. And 
then . . . hmm . . . shoot, my hesitation there is that I want to do a north/south weave 
in the critical area from west to east but that kind of puts me where I could catch 
that last little bit of the corridor. But then I would have to all the way backtrack 
and go to the unobserved section. So what I might do is go south and east into 
the critical area and then do a east/west search pattern and forget about the little 
stretch of corridor off to the right there. And then just hit the south around the 
gap where the bad guys could be hiding. And then just go back through the critical 
area go around north and then west around the rectangular hill. I don't anticipate 
to live that long." 

There were two distinct characteristics seen here that were a part of all of Sl 's plans. 
First, S1 went into the most detail in terms of search. Not only did he plan out 
the order of how he would search the air corridor versus the critical area, he also 
specified in extreme detail the directions of searching in terms of north, south, east, 



Figure 5-14: Very good chance of enemy contact in both the air corridor and the 
critical area. 
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Figure 5-15: Possible chance of enemy contact in the air corridor and a very good 
chance in the critical area. 

and west. Second, S1 was extremely wary of terrain features that might either offer 
a potential hiding spot for enemy contacts or constrain his maneuverability. Specific 
to the above plan, S1 reasoned that he would focus first on the critical area and then 
on the air corridor because they both had equal chances of enemy contacts. In fact, 
to move "as efficiently as possible to the critical area" while minimizing the chances 
of "getting killed," S1 decided to move outside of the air corridor on his way to the 
critical area. This would hurt him in terms of accruing points for the percentage of 
air corridor seen, but he reasoned it was worth it if he stayed alive long enough to 
reach the critical area. Note that S1 did not have much confidence in his abilities, 
and he finished his plan by stating, "I don't anticipate to live that long." Out of all 
the human subjects, S1 struggled the most in learning how best to engage enemies 
(see Section 4.4.7). 



Plan for Case 1, S2 - Figure 5-15 

"Since the critical area is next to terrain and since there's a very good chance of 
running into bad guys in the critical area, I need to be careful in approaching it and 
also reverse the order [from previous runs where there was higher chance of enemy 
contacts in the air corridor than in the critical area]. So go through as much of the 
air corridor first before getting to the critical area, so I at least cover that. Just be 
cautious and look for a way to escape if there's one of the really dangerous bad guys 
in there." 

In this case, the flow of terrain was as follows: it began with the air corridor, the air 
corridor led to the critical area, and the air corridor also extended past the critical 
area. Thus, searching along the air corridor in the beginning would naturally lead 
to the critical area, and then the air corridor continued on past the critical area. 
Although the critical area was a more important piece of terrain, S2 decided that 
the greater chance of enemy contacts in the critical area was too much of a risk to 
cover first. S2 would rather take the sure points of searching through the air corridor 
where there was only a possible chance of enemy contacts. Also, S2 noted the terrain 
obstacle adjacent to the critical area, which forced him to be even more cautious and 
aware of an escape route in case of enemy contact. However, out of all the subjects, 
S2 used full throttle during the majority of every scenario. Thus, S2 did not equate 
being "careful" or "cautious" with reducing speed. It was more of a mental reminder 
to expect enemy contacts. 

Plan for Case 6, S3 - Figure 5-16 

"I'm still satisfied with the way things are going, in terms of going straight through 
[the air corridor - the most direct route from beginning to end], spending time in the 
critical area, and taking the long road home. There's a slim chance I'll see enemy 
contacts anywhere, so I'll go on my merry way exploring, not even going to have 
any kind of adjustment. The last time I wanted to fly faster through the narrow 
area in case there was a SAM site. I probably won't worry about that this time.'' 

S3 developed a unique strategy that governed his behavior over all cases. S3 reasoned 
that the first priority of every scenario was to search through and clear the shortest 
path from the beginning of the air corridor to the end of it. Thus, he always chose to 
search through the air corridor first and then to turn towards the critical area. Finally, 
after searching through the critical area, he would attempt to cover any other missed 
portions of the air corridor that did not lie along the shortest path. Furthermore, the 
air corridor was always wider than the vehicle's sensor radius. To cover the entire 
air corridor required some sort of weaving or looping through i t .  Yet, in an effort 
to clear the shortest path the quickest, S3 chose to not weave but stay one one side 
of the air corridor. The shortest path through the air corridor then did not mean 
the entire width of the air corridor had been searched, only that portion which fell 
under his sensor radius. In S3's above plan, the slim chance of enemy contacts in 
both the air corridor and critical area allowed him to relax and simply plan to "go 



Figure 516: Slim chance of enemy contact in both the air corridor and the critical 
area. 



Figure 5-17: Possible chance of enemy contact in the air corridor and a very good 
chance in the critical area. 

on my merry way exploring" without any expected need to make adjustments. Note 
that S3 decided to be more efficient with his speed (full speed accrued penalty points) 
due to the lack of expected enemy contacts but not his searching plan. His shortest 
path mentality was not very efficient, which he knew, but he stuck with it. 

Plan for Case 2, S4 - Figure 5-17 

"Very good chance inside the critical area, and the critical area happens to be at end 
of corridor anyways. So I was thinking to try and get the majority of the corridor, 
and then, when there's a minute left or so, head for the critical area and see what 
happens . . . maybe a little over a minute. In the event that I die, I would have at 
least gotten much of the corridor covered." 

S4's focus was always on survival. Wherever there was the least chance of enemy 
contacts, he would move there first. If both the air corridor and critical area had 
equal chances of enemy contacts, he would follow the natural progression from air 



Figure 5-18: Possible chance of enemy contact in the air corridor and a slim chance 
in the critical area. 

corridor to critical area, without really focusing on either. In this plan for case 2, 
S4 chose to leave the critical area for last for two reasons. One, it had a very good 
chance of enemies and two, it lay near the end of the air corridor. Also, S4 did not 
give the critical area an appropriate amount of weighting. For a four minute scenario, 
he decided that "maybe a little over a minute" was enough time to spend searching 
the air corridor. He decided this even though he knew that one scoring element was 
the amount of time spent searching through the critical area versus the air corridor. 
If more time was spent in the air corridor, S4 would lose points. However, this at 
least gave him more control over his survival, and if he died in the critical area, he 
would have at least seen "much of the corridor." 



Plan for Case 4, S5 - Figure 5-18 

"I have the circular route around the corridor where there's a possible enemy contact. 
I'll initially want to move towards the critical area. Because I don't have a lot of time 
and there's a lot of area to cover, I'll choose to go up the corridor this time versus 
directly to the critical area. Being cognizant of inside the critical area, there's, in 
the northeast side, a large mass of terrain which minimizes my maneuverability. So 
as I scan that area, I'm going to want to scan that area from the south moving north 
this time, primarily to ensure that I have a turn point where I'm not boxed in by 
the enemy or I get surprised." 

Out of all of the human subjects, S5 gave the most emphasis to deliberately searching 
the critical area. He liked to use the expression of "gingerly searching" through a 
critical area which had a very good chance of enemy contacts. In the above plan for 
case 4, there was a possible chance of enemy contacts in the air corridor and only 
a slim chance in the critical area. Thus, he chose to follow the longer path in the 
air corridor versus moving "directly to the critical area." S5 was also very conscious 
of maneuvering limit at ions given by terrain obstacles. However, where other human 
subjects simply finished their thoughts by stating they needed to be more careful 
due to terrain obstacles, S5 spoke of creating exit lanes and buffer zones through his 
searching patterns "to ensure that I have a turn point where I'm not boxed in by the 
enemy or I get surprised." 

5.6.2 Partial Plans and Intentions 

All of these plans are partial. The human subject cannot specify a plan so detailed 
and complete that it becomes irreversible. The subject does not know, for example, 
when or if he might have enemy contact. However, the chance of enemy contact 
may affect the sequence of searching first through the air corridor or through the 
critical area. The plan must be partial, and as the scenario progresses, the subject 
fills in the details of the plan as necessary. The only way to fill in a partial plan 
with coherence and consistency is to have a strong, governing goal that prioritizes 
the decisions made. One of the human strengths was to maintain a broad focus in 
problem-solving, and this is exactly the purpose of Bratman's BDI framework [7] 
(see Section 3.4.1). In the BDI framework, the intentions of the subject provide for 
coherent and consistent execution of partial plans. The human subject can keep a 
broad focus in problem-solving because of the presence of intentions. If S3 intended 
to find the shortest path from the beginning of the air corridor to the end and if an 
enemy SAM lay in the way, S3's intention governs his decision of whether to avoid or 
engage the SAM. Intentions are different than desires [7]. If S3 only desired to secure 
the shortest path, the presence of the enemy SAM could easily lead him to abandon 
that path because he has a greater desire to survive. Yet, if S3 intends to secure the 
shortest path, he must decide how to deal with this enemy obstacle. That intention 
governs the behavior, and these sorts of tradeoffs occurred all the time during the 
human-in-t he-loop experiments. The BDI framework, then, is appropriate to capture 



the plans given above. The plans can be formulated through the combination of the 
subjects' desires, beliefs, and intent ions, with the intent ions serving as the foundation 
to keep the partial plan from falling apart due t'o unforeseen circumstances. 

5.6.3 Intent ion Examples 

All five subjects possessed a desire to survive as long as possible. This desire, com- 
bined wit'h their beliefs, formed an intent,ion of how tto search through the scenario. 
For example, when the critical area had a very good chance of enemy contacts, S2 
and S4 intended to not search t,he critical area until the very end, despite its greater 
importance, because they believed being killed ea,rly on in the scenario was worse. S1 
intended to alter his search patterns due to every concave pa,rt of terrain because he 
believed it was a possible hiding place for enemy contach. S3 intended to find the 
shortest path from beginning to end of the corridor because he believed that initial 
set of actions would fulfill the fundament'al requirement to achieve mission success. 
S5 intended to search very deliberat'ely and slowly in the critical area because he 
believed it was more valuable than the air corridor. Also, S5 intended to search very 
carefully along terrain obstacles because he believed t'hat would create a "buffer zone" 
so that he would not be pinned against the terrain obstacle by the enemy. Finally, 
S5 intended to always keep "exit lanes" behind him because he believed it would be 
much better, upon enemy detection, to t'urn t,owards already-cleared terrain versus 
new, unidentified terrain where more enemies could be located. 

5.6.4 Intent F'unction 

We propose that the intentions of the human subjects can be separated into three 
main elementss that characterize their searching behavior. These three element's are 
the search sequence, amount of coverage, and t'ime devoted to searching through 
the air corridor and critical area. The human subject must decide the sequence 
of searching the air corridor to searching the critical area, how much coverage is 
appropriate in each, and how much time should be spent in each of the terrain areas. 
(Note that the air corridor and critical area could be broken down into smaller search 
segments depending on, for example, the presence of terrain obstacles. Yet, the 
smaller the segments t,he more detailed the plan, because each search segment should 
still contain the three elements of sequence, coverage, and time. Plans with too much 
detail are impractical.) These dependent variables represent the subject's intentions. 
Note that the verbalized plans of the human subjects only explicitly describe one 
of these three dependent variables, namely the sequence of search. However, by 
observing the humans' actions throughout the scenario in terms of coverage and time 
spent searching, the intentions of the human subjects can be derived in combination 
with the intended sequence of searching. The verbal reports and surveys will also be 
very useful in deriving intent'. 

The search characteristics of intended sequence, coverage, and time are a function 
of the human subjects' desires, beliefs, terrain layout, probability of enemy contact, 
and time constraint. Hopefully, t'he human subject has both the appropriate desires 



of achieving mission success, which includes survival, and the appropriate beliefs 
or understanding of the environmental state and the vehicle's tactical performance 
characteristics relative to any enemy contacts. The intention could then be captured 

as the following function, where 

I Intentzon = f (terrain layout, P(enemy contact), total time) (5.1) 

Three important considerations must be noted in connection with Equation (5.1). 
First, the human subject does not intend to cover 67.5% of the air corridor in one 
minutes and 43.2 seconds. Rather, the human subject may intend to cover "most" of 
the air corridor using "about half" the allotted time. (Note that for the critical area, 
overlapping search would be desired.) The goal of human experimentation should not 
be the identification of a complex, mult ivariable, nonlinear intent ion function, because 
that is not how humans behave. Instead, the intention function should be made up 
of discrete levels and thresholds. For example, at some combination of independent 
variables, the coverage scalar in the intention vector switches from covering "some" 
of the air corridor to "most" of the air corridor. A fuzzy logic controller, then, 
appears to be a natural candidate for this intention function. Second, an execution 
function should exist in series with the intention function. After the fuzzy, intended 
variables of sequence, coverage, and time are calculated based on the terrain layout, 
P(enemy contact), and total time, they are then combined with the size of the air 
corridor, critical area, and vehicle sensor radius and finally passed to an execution 
function. This execution function selects the appropriate maneuver patterns and 
calculates the required maneuvering speed. The output of this execution function 
could be a matrix of waypoints and speeds, and then this matrix is handed over to a 
trajectory-following controller. These maneuver patterns should also be part of the 
set of tactics learned by the humans. For example, if the human subject intended to 
cover most of the critical area and if the air corridor width was only slightly larger 
than the vehicle's sensor radius, the vehicle could move straight down the center of 
the air corridor. As the width of the air corridor increases relative to the vehicle's 
sensor radius, there must be some threshold which changes the maneuver pattern 
from moving along the corridor centerline to weaving back and forth at some angle 
relative to the centerline. This threshold can be learned by human experiment at ion. 
Another central role for the execution function would be to determine at what point 
during the simulation are the fulfillment of the original intentions no longer possible. 
For example, if the human subject intends to cover all of the critical area in half the 
time, but spends most of that allotted time engaging enemies present in the critical 
area, he must now decide if it is possible to finish covering all of the critical area in 
the little time amount of intended time remaining and how to proceed. The third and 
final consideration is that if the execution function determines the original out put of 
the intention function cannot be feasibly implemented, there should exist one more 
block in this system. This block could be a saturator, where the vehicle still attempts 
to follow the original intentions but knows that it is not possible. This block could 



also be part of a feedback loop which recasts t'he inputs to the intention function to 
the current st ate of t,he simulation so that the intent ion function can recalculate t'he 
appropriate sequence, coverage, and time for the rest of the simulation. Figure 6-2, 
given in the next chapter, displays block diagram representation of the intention 
and execution functions. 

5.6.5 Rational Intent 

The BDI framework captures how intentions, combined with beliefs and desires, gov- 
ern the steps taken to fill in the missing gaps of partial plans. BDI also addresses how 
intentions provide t,he consistency and coherence necessary for action coordinat'ion. 
However, BDI does not address whether the intention initially formed was rational 
from a normative viewpoint. In t,hese experiments, one way to evaluate the subjects' 
intentions is through the resulting search scores and overall performance. Yet, a per- 
formance score helps point to rational action, but does not necessarily describe it. We 
propose t,hat in evaluating intentions, it is important to keep the decision heuristics 
and biases in mind. Severa,l of these heuristics and biases were seen in the experiments 
and are presented as follows. 

Framing Effect 

In the framing effect from Section 3.3.4, the human subject decides to be risk-taking 
or risk-averse depending on the  subject"^ frame of reference. In these experiments, the 
subjects were given a positive frame because the goal was to accrue or gain as many 
points as possible. The more area seen, the more time spent in the critically weight,ed 
terrain, and the more enemies destroyed all increased the total posit,ive return for the 
human subject. Thus, the subjects were overwhelmingly risk-averse. Consider, for 
example, S2's plan for case 1, given in Section 5.6.1. There was a very good chance 
of enemy cont,acts in t,he critical area and a possible chance in the air corridor. S2 
stated the he would "go t'hrough as much of the air corridor first before gett,ing to 
the critical area, so I at least cover that,." Now consider S2's plan for case 3, in which 
the chance of enemy contacts in the critical area and air corridor were reversed from 
case 1. His plan was stated as follows: 

I think I'm gonna go clockwise around the circle, so that I hit the critical 
area first. Because if there's a very good chance of encountering bad guys 
in the air corridor, then I'd like to encounter them later in tahe flying time 
so I don't die in the beginning and no t  accrue any  points. 

Nowhere in his reasoning of what search sequence was appr~priat~e, critical area before 
or a,fter air corridor, did S2 reason, at least verbally, about the importance of weighted 
terrain. It did not matter to S2 whether the critical area was a more importa'nt piece 
of terrain to search. If it involved great'er risk, he would search it last. 



Anchor and Adjust 

In the anchoring heuristic from Sect ion 3.3.4, the human subject formulates an initial 
solution to an ambiguous or ill-defined problem. The human subject does not abandon 
the initial solution even when new information is present, but instead the subject 
merely adjusts his or her answer from there. There were two distinct examples of the 
anchoring heuristic in these experiments from S1 and S3. As mentioned earlier, S1 
treated every concave piece of terrain as a possible enemy hiding spot. For example, 
during case 2, as he approached a concave piece of terrain, Sl stated, "Notice I went 
a little bit up because I was closing in on that mouth. I'm trying to make so I can 
. . . Yeah, see I turned there to see if I could engage if anybody comes out." Similarly, 
in case 1, S1 said, "I'll just have a narrow weave. This is pretty tight anyways [with] 
not too many places for bad guys to hide . . . I'll turn here, be pointed if any bad guys 
come out." The amazing fact is that S1 never encountered an enemy proceeding from 
one of these concave "hiding spots." Yet', he stuck with this mental image, and still 
adjusted his searching patterns to accommoda~te these hiding spots even when there 
was a slim chance of enemy contact for the entire scenario. 

S2 displayed another anchoring bias by developing his shortest path solution to 
every scenario. He valued searching through and clearing a continuous path through 
the air corridor before turning to search the critical area. This was an inefficient use of 
time, and on average, S2 missed 12% of the critical area, which was the worst among 
the five human subjects. Though the critical area was more important terrain and 
S2 knew he was rushed through searching the critical area at the end of the scenario, 
he never abandoned his shortest path solution. 

Failure to Account for Probability 

S1 formed a mental anchor of always changing his search pattern based on ominous 
pieces of terrain. This anchor kept S1 from making more rat'ional decisions based 
on probability (see Sections 3.3.4 and 3.3.3). In terms of Bayes Theorem, given by 
Equation (3.2), A represents the enemy contact, and B represents the terrain hiding 
spot. Thus, P(A(B) is the probability of contacting an enemy given the presence 
of a terrain hiding spot. Over all the cases, no enemy ever blind-sided by S1 by 
attacking him from a hiding spot. Thus, P(BIA), the a przori knowledge, should 
have continually decreased after every case. By Equation (3.2), P(AI B) should have 
decreased accordingly. Furthermore, S 1 maintained his anchor even when there was 
a slim chance of enemy contacts in the entire scenario. Thus, S1 failed to account for 
P(A), the base rate of occurrence of enemy contact, which would have also decreased 
P(A1B). The anchoring heuristic combined with a failure to account for probability 
resulted in poor search performance for S1. On average, he saw only 60% of the air 
corridor, which was the worst score, and he missed 11% of the critical area, which 
was the second worst score. S1 sacrificed efficient search for a mental anchor of being 
prepared for enemy ambushes. 



5.6.6 Search Problem Conclusions 

It is a difficult problem to find t'he right searching t,echniques based on hard-to- 
quantify terrain characteristics, likelihood of enemy contacts, and time constraints. 
Because human subjects can only form partial plans of how to proceed during the 
scenario, t,hey form conduct-controlling intentions that help keep consistency and 
coherence to t'heir actions. If t'he huma,n subject encounters a pop-up threat and 
must deviate from the search plan to engage, the intentions govern how t,he human 
subject now chooses to proceed after the reactive tactical situat'ion has been resolved. 

All of the examples of intentions that the human subjects' possessed, described in 
Section 5.6.3, can be correlated wit'h their resultling search scores from Figure 5-2 to 
find the best intentions. Next, the rationality of t'hose intent,ions ca,n be determined 
through applying cognitive decision making t,heory. Note the extreme importance 
of planning verbalization and think aloud reports. These intentions would then be 
broken down into the categories of sequence, coverage, and time, and the int'ention 
furlct ion formed. However, the experiment at ion for this research does not contain 
enough cases and data to identify both t<he proper threshold values for t'he intention 
function, which can be thought of as the inference process in determining the fuzzy 
logic rules, as well as a set of maneuver patt'erns for the execution function which 
implements the intentions. Further experiment ation t,hrough simulation runs and 
surveys would need to be particularly focused on determining these threshold values 
and executable maneuvers. All in all, given the resources to continue the experimen- 
tation, proper search tactics could be learned and applied to the AV through the 
format ion of an intent and execution function. 





Chapter 6 

Conclusions and Tactical 
Framework 

As stated in Chapter 1, the purpose of this thesis is to address the following two 
related quest ions: 

1. How can the tactical decision making capabilities of human experts be 
learned and transferred over to an autonomous vehicle? 

2. Can a human expert learn how to exploit vehicle-specific dynamics in 
tactical scenarios to achieve high levels of performance for goal-oriented 
missions? 

In answer to both questions, we refer to Figure 5-11 and its results as the main 
acheivements of this thesis. S4 was able to learn and consistently apply the right 
reactive tactics to engage the enemy tank. The answer to question two, then, is 
"yes," a human expert can learn how to exploit vehicle-specific dynamics and achieve 
high scores. In order to learn and transfer this tactical knowledge over the AV, we 
used S4's think aloud reports and answers to survey questions to identify his strate- 
gies in engaging the enemy tank. Note from Figure 5-11 the strong and consistent 
performance of S4 over the baseline AV. This disparity emphasizes the need to learn 
from human experts. Furthermore, note that the incorporation of the human-inspired 
tactics brought the performance of the improved AV to a level equal with S4. The 
improved AV did not perform poorly and did not greatly surpass the human perfor- 
mance. Therefore, we present two conclusions from the reactive engagement tactics 
against the enemy tank as the main accomplishments of the research. One, the ac- 
tions taken by the improved AV were consistent with the human strategies. Two, the 
translation from the visually stimulated human domain to the autonomous sensory 
input domain did not distort the successful performance of the learned tactic. 

At the conclusion of this research, we propose the following framework, given by 
Figure 6- 1, to further answer these two questions. 
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6.1 Human-in-t he-Loop Experimental Design 

Starting at the top left of the figure are the two most important experimental design 
and setup steps. First, the design of the scenarios must include uncertainty, a hierar- 
chy of objectives, and flexibility in solution methods. These design elements allow for 
and encourage the human subject to exhibit those decision making strengths unique 
to humans that automation does not possess, as discussed in Chapter 2 [9, 111. Yet, by 
forcing all engagements to proceed along the same discrete levels in this research, as 
seen in Chapter 5, the solutions for reactive engagement tactics were not that flexible. 
Each enemy required slightly different maneuvering on part of the vehicle to place the 
enemy within the vehicle's weapons cone, but the final few steps of stop, wait, and 
fire were identical for all three. Second, the design of the performance metrics is also 
very critical because it is the first step in differentiating good actions and decisions 
from bad ones. It takes time to learn human strategies, and thus, separating out the 
right cases early on significantly reduces the time involved. Thus, a human expert 
should be consulted to derive the right performance metrics. This step did not occur 
in this research, and as discussed, the engage score metrics correlated exactly with 
the discretized engage levels to ease the interpretation process of metrics and actions 
to strategies. 

To summarize, the two most important design steps are, first, designing scenarios 
to encourage human ingenuity. To do so requires dispensing with simulations that are 
completely quantitative. The second most important experimental design element is 
defining performance metrics that effectively filter the good from bad decisions. This 
should happen by consulting human experts who can help focus the performance met- 
r i c ~  to bring out the exact nature of expertise the designers wish to learn. Note that 
there are many other factors that influence human-in-t he-loop experiment a1 design. 
Some of these are the training effect, the need for careful wording and presentation 
of the experiments to the human subjects due to decision heuristics and biases, and 
the host of obstacles encountered with designing real-time simulation processes, as 
discussed in Chapter 4. Yet, Figure 6-1 highlights the emphasis that should be given 
to scenario and performance metrics design. 

6.2 Identifying Expert Performance 

After conducting a number of human-in-the-loop experiments, the first step in learn- 
ing tactical expertise is filtering good from bad decisions. Remember that there are 
three levels in understanding human tactics - actions, strategies, and processes - and 
the goal is to learn human tactical strategies. The filter is the first step in dividing out 
and understanding both the actions and the processes in order to ultimately learn the 
strategies. Thus, this filter includes analysis of the actions by performance metrics 
and analysis of the processes by decision heuristics and biases. The importance of 
performance metrics is discussed above. Statistical analysis of the resulting scores 
helps narrow in on human subject strategies that were consistently and successfully 
applied. Statistical analysis also helps identify the outliers of successful performance 



whose presence might indicate sheer luck or a very good tactic which did not have the 
chance to applied over a large number of cases. These outliers should be kept in mind 
as candidate tactics, and Monte Carlo simulation will help in differentiating between 
luck or lack of application as the most likely explanation of the outlier's performance. 
An example from this research is the SAM engagement tactic from Chapter 5. 

Also important to the filter process is looking for decision heuristics and biases in 
the think aloud reports and surveys [15, 36, 871. Decision heuristics and biases can 
be fairly rapidly identified, such as the anchoring heuristic displayed by the human 
subjects, S 1 and S3. Furthermore, identifying decision heuristics and biases helps 
reduce the time required to learn human strategies significantly. For example, say 
the interpreter of the results is trying to derive a complex, three-dimensional intent 
function where all three independent variables are altered, in turn, to see how the 
human subject's responds. Moreover, say the human subject is displaying a salience 
bias, whereby only one of the three variables actually affects the human response 
because it is always the most attention-getting. The interpreter could become quickly 
frustrated in trying to derive this function because no matter how two out of the three 
independent variables are modified, the human subject's response barely changes. 
Yet, if the interpreter first looked for and found the salience bias, the function could 
be derived very quickly without frustration. The important point from this example is 
that decision heuristics and biases are simple shortcuts to complex, multi-dimensional 
strategies. In linear algebra terms, the interpreter of results was looking for a function 
that spanned all three dimensions, but due to the salience bias, the rank of A in Ax = b 
is only one. 

6.3 Training 

Not shown in Figure 6-1 is the training of human subjects. Initially, there must be 
some time for the human subject to become familiarized with the simulation environ- 
ment. These training sessions should be performed exactly like those cases that will 
be scored, but they are not included in the results. Upon looking back on the results of 
this research, we propose, with caution, another step in the training process, namely 
feedback. The human subject should be taken through a few training scenarios, and 
then those scenarios should be scored and given to the human subject to review. This 
evaluation opportunity will quicken the learning process of the human subject. For 
this research, such a traininglreviewing process would have helped human subjects to 
correlate their own strategies with the resulting performance and adjust as necessary. 
However, there is a marjor note of caution in order. To break down the human sub- 
ject's scores across the performance metrics and present it to the subject will narrow 
all subsequent behavior by the subject towards maximizing those scores. If there 
is full faith in the performance metrics - if the domain of desired tactical expertise 
covers only that which maximizes the performance scores - this traininglreviewing is 
extremely useful. In fact, the human subject should be given, time permitting, his or 
her score after every case to continually learn and adjust strategies to attain maxi- 
mum performance. However, if the performance metxics only contribute to learning 



tactical expertise, allowing the human subject to review his or her own score in any 
sort of detail will limit the range of future creative solutions. This negates the design 
of flexibility into the scenarios. In fact, it seems reasonable that one of the goals 
in the first few rounds of human experiments should be to have to iteratively refine 

- the performance metrics because the human subjects have discovered and displayed 
ingenuous solution met hods. 

6.4 Analysis through Cognitive Frameworks 

Once a subset of cases that appear promising to learn from have been separated out 
of the experiment results, the corresponding actions, think aloud reports, and surveys 
are then analyzed by three cognitive frameworks. 

6.4.1 Generic Error Modeling System 

The first is the Generic Error Modeling System (GEMS), which was designed explicitly 
for the purpose of capturing the human tendency to pattern-match stored experiences 
to current situations in decision making [57]. The GEMS framework, given by Figure 
3- 10, helps determine what performance level of problem solving the human subject 
is in, skill-based or knowledge-based. In the skill-based level, the human subject 
applies previous experiences to current problems by applying stored IF-THEN rules. 
In the knowledge-based level, the human subject has to create a new mental model of 
the problem space, try new actions, observe consequences, and learn new successful 
IF-THEN rules. However, recall from Figure 3-10 that even when the human subject 
moves down to the knowledge-based level, the first action of the subject is still to 
search for a higher-level analogy that will allow him or her to jump back up to the 
skill-based level. GEMS, then, can act somewhat as a gauge of expertise. If expert 
decision making can be distinguished, in part, by the correct application of stored 
rules, GEMS provides a framework for evaluating both the level of expertise and the 
identification of the rules. This phenomenon was seen most clearly in S4's strategies in 
engaging the enemy tank. On the other hand, if the subject always solves problems 
in the knowledge-based level, this would represent a lack of expertise. Therefore, 
we highlight two important questions to ask in evaluating the actions, think aloud 
reports, and surveys with the GEMS framework: 

1. Did the subject always operate in the knowledge-based level? 

2. Did the subject learn any rules that were consistently applied in similar situa- 
t ions? 

6.4.2 Recognition-Primed Decision Model 

The second cognitive framework to analyze the results is the Recognition-Primed De- 
cision (RPD) model, displayed in Figure 3-9 [38]. RPD was derived from decisions 



made in real-world, time pressure, high risk situations. Therefore, RPD is very appli- 
cable to tactical decision making. The main focus in RPD is the categorization of the 
human subject's recognition of a situation into expectancies, cues, goals, and actions. 
This view can be seen as an expansion of the IF-THEN rules from GEMS. The simple 
input/output relation of GEMS would be: if these cues are present, then these actions 
are taken. RPD states that the antecedent contains both the present cues and the 
expectancies. Maintaining a set of expectancies of how the situation should unfold is 
crucial to the decision maker. The main way a decision maker comes to question his 
or her situation awareness is through an expectancy violation. This is the upper left 
feedback loop in Figure 3-9, and, in terms of stbored rules, the decision maker questions 
the antecedent - if (???) - and seeks more information. Thus, expectancy violations 
in RPD appear to be the triggers for the human subject's descent from the skill-based 
to knowledge-based level in GEMS. Furthermore, RPD declares that the consequent 
contains both actions and goals. These goals are extremely critical to learning the 
human's strategies because strategies are t'ypically cast as goal-oriented. As S4 was 
engaging the tank, he thought aloud that he should stay outside the enemy's sen- 
sor radius. This was S4's strategy cast in terms of the goal of maintaining standoff 
distance from the enemy tank. When the decision maker uses mental simulation to 
evaluate the consequences of courses of action, the criteria to accept or reject the 
actions come from the decision maker's goals. Thus, learning why the human subject 
accepted or rejected a course of action reveals the subject's goals. We propose three 
important questions to summarize the important features of RPD: 

1. Were,there any expectancy violations? 

2. What courses of action did the subject consider? 

3. After mentally simulating a course of action, why did subject acceptlreject it? 

6.4.3 Belief, Desire, Intent Paradigm 

The Belief, Desire, Intent (BDI) paradigm (see Section 3.4.1) is the third cognitive 
framework to help evaluate the experimental results [7]. BDI describes the human 
behavior to formulate plans for the future because of the need for coordination in 
the presence of uncertainty. These plans are partial, and thus, it is the intentions 
of the subject which guide future decisions and the steps necessary to successfully 
execute the partial plans. As a comparison, the intentions of the subject in the BDI 
paradigm correlate with the goals of the subject in t,he RPD framework. Just as the 
goals represented the acceptlreject criteria of actions, the intentions also act as a 
filter, admitting those steps which are coherent and consistent with the intent ions. 
Furthermore, just like goals, intentions are directly related to strategies. Yet, if 
the subject does not have the right beliefs about the environment (the correct mental 
model of the problem space) or does not have appropriate desires to fulfill the mission 
objectives, the intentions do not mean much. Finally, if the necessary plan for each 
scenario contains fundamental elements, such as sequence, coverage, and time of 



search for this research's experiments, t'hese elements can be used t,o categorize t'he 
intentions. We emphasize three questions to apply the BDI framework. 

1. Were the  subject,'^ beliefs accurate? 

2. Were the  subject"^ desires appropriate? 

3. After pursuing and achieving sub-goals, how did subject return to higher-level 
goals? 

6.5 Combining into Strategies 

After analyzing the actions, think aloud reports, and surveys with the three cognitive 
frameworks, the next step is to then combine the sttored rules; recognition by- product,^ 
of expectancies, cues, goals, and act ions; and the categorized intent ions into t actmi- 
cal ~tra~tegies. Although the language of each fra,mework is different', the numerous 
similarit,ies and complementary element's bet,ween them have been highlighted in the 
a,bove sect'ions. Therefore, integmting the three frameworks int'o st,rategies is not 
difficult unless too much interpretation of the results is required. From this research, 
it was found that a lot of interpretation was necessary to combine the three cases of 
engaging an enemy UAV into a tactic. This was for a few reasons. First, in terms of 
actions, none of the subjects displayed a complete strategy from detection, maneu- 
vering, engaging, and destroying. Second, in terms of processes, all of the subjects 
unsuccessfully applied stored rules of running fire that violated the simulation's de- 
sign. Third, in terms of strategies, all of the subjects answered the engagement survey 
question by stating they would tend to ignore the UAV. Though careful interpretation 
was necessary to ultimately produce a unified, successful tactic, this success is taken 
with a note of caution due tlo t'he biased nature of the interpreter of t'he results also 
being the designer of the simulation. Thus, a feedback loop in Figure 6-1 exists from 
the "Strategies" block to the "Human-in-t he-loop Experiments'' block if too much 
interpretation was involved in forming the strategies. The notion of too much int'er- 
pretation, as discovered in this research, can imply any or all of the following three 
items: 

1. Large variance in scores 

2. Inconsistent application 

3. Cognitive process analysis indicates lack of expertise 

The limitation in this research is that there was not time to carry out t,his feedback 
loop of further experiment at ion. 

6.6 Translation 

Once the human-inspired strategies and tactics have been learned, the next step is to 
translate them into the autonomous vehicle's (AVs) problem space, knowledge states, 



and operators. This particular wording of "problem space, knowledge st at es, and 
operators" is purposely taken directly from Newel1 and Simon's work [47]. Newel1 
and Simon identified invariant char act erist ics across all human problem-solvers and 
cast them in terms of information processing, goal-oriented computers. If human 
strategies are goal-oriented, then the seven characteristics of goal-oriented behavior 
given by Newel1 and Simon (see Section 3.2.4) should be a guide in encoding these 
strategies. Note that the reason for this translation of human strategies into AV- 
domain language is due to t'he serial processing nature of computers, the differences 
in sensing the environment between humans and AVs, and the unique strengths of 
AVs, such as long endurance, more aggressive maneuvering, and shorter time-delays 
in response to inputs. Although there are no good answers for how this translation 
process should occur, the need for translation emphasizes the importance of capturing 
strategies and not just actions. By learning goal-oriented ~trat~egies, the human- 
inspired tactics act as a template to guide the AVs actions. 

6.7 Encoding Tactics 

As described by this research, there are two ways to encode human-inspired tactics 
translated for the AV. The first is through statecharts. The design of statechart 
logic helps capture the represent ation of complex, reactive environments through 
states and transitions. Learning human-inspired, reactive tactics fits naturally into 
this statechart logic. This research provides one example of learning, encoding, and 
applying human reactive decision making to successfully engage three different enemy 
platforms. Statecharts, though, are static. Their structuredoes not change with time. 
In contrast, human subjects construct partial plans in determining how to accomplish 
the reconnaissance mission because it is impossible and irrational to define a rigid 
structure of actions and goals that is also static. The uncertainty of the future 
necessitates a plan that is partial. This plan will be dynamically filled in as the 
scenario progresses, and it is the intentions of the human subject which guides this 
process. Therefore, it appears that statecharts should not be applied to implement 
the partial plans and intentions which guide the searching behavior of the vehicle. 
Rather, as discussed in Chapter 5, forming intention and execution functions are the 
second way to encode human-inspired tactics translated for the AV. 

To further clarify, consider the concept that intentions are different from actions. 
It is not correct to observe the human subject's actions and declare that every decision 
made was also an intent ion. Reca.11 that intent ions are primarily fut ure-directed. 
When the human subject is intending to search through all of the critical area and 
he suddenly contacts an enemy SAM, the subject must reactively decide how to 
evade and/or engage the SAM. It is not as if the subject abruptly forms a new set 
of intentions in the exact moment of detection to evade the SAM. Rather, in the 
language of Newel1 and Simon, the subject must depart the current branch in the 
heuristic search path over the problem space and pursue the sub-goal of avoiding 
the enemy threat. After this sub-goal has been achieved, the subject must observe 
the consequences of the sub-goal's actions and determine how best to return to the 



previous main branch of searching through all of the critical area. This main branch is 
the consequence of the subject's intention. The pursuit of the sub-goal is the reactive 
actions taken. Thus, intentions differ from actions. As noted above, statecharts can 
capture these sub-goals, but they should not capture the main heuristic solution path 
governed by intentions. 

6.7.1 Integrating Reactive and Planning Elements into Tac- 
tical Control 

Figure 6-2 depicts the proposed block diagram of integrating both statecharts, inten- 
tion, and execution functions into a tactical control level for the AV. Beginning on the 
left of the figure in the blue blocks are the input variables. As discussed in Section 
5.6.4, the terrain layout, probability of enemy contact, and total time to accomplish 
the mission are inputs to the intention function, shown here as a fuzzy logic controller. 
The fuzzy logic rules come from the learned strategies. Outputs from this fuzzy logic 
controller are the intended sequence, coverage, and time of search for the scenario. 
These intended variables are combined with the terrain database and vehicle sensor 
radius and passed to an execution function. This execution function is a library of 
maneuver patterns learned from the humans that outputs a matrix of waypoints and 
velocities. As long as the radar sensor does not indicate any enemy contacts, these 
waypoints and velocities are passed to the low-level, trajectory-following controller 
of the plant. If the radar indicates an enemy contact, the AV activates its reactive, 
statechart logic to either engage or avoid the enemy. While the statechart is ac- 
tive, it outputs waypoints and velocities, which are passed to the trajectory-following 
controller. The feedback loop from the plant to the execution function allows the 
execution function to monitor if the initially desired intentions are no longer feasible. 
If they are not, one option for the execution function is to keep trying unsuccessfully 
to implement them, and its outputs are saturated. Another option is to add another 
feedback loop from the execution function to the intention function to recalculate 
intentions for the remainder of the scenario. 

6.7.2 Missing Informat ion? 

Before submitting these encoded strategies and tactics to Monte Carlo simulation, 
it is important to ask the question of whether enough data exists in deriving the 
st atecharts, intention, and execution functions. Are the thresholds for the intention 
and execution functions properly defined from the human experiments? Did impor- 
tant transitions have to be added between states because the humans did not exhibit 
such behavior? In order to maintain a human-centered, human-inspired approach to 
learning tactical knowledge, missing gaps in the data should try and be filled by more 
experimentation, as shown by the second feedback loop in Figure 6-1. 



Figure 6-2: Simulink diagram of reactive and planning tactical control for the AV. 



6.8 Testing over Large Sample 

Monte Carlo simulation should help test for both the success of the tactics over large 
number of cases as well as verify the correct translation of the human-inspired strategy 
into the AV domain. In terms of robustness, statistical analysis of the results will 
verify the applicability of the tactic, which was derived from a small sample of human 
experiments, over a much larger sample with randomized parameters. If the tactic 
was unsuccessful over the large sample, further human-in-the-loop experimentation 
is needed to find a better one. In terms of translation, if the AV begins to no longer 
behave like the human subjects in executing these encoded tactics, the translation 
process should be questioned. For example, if the tactic was too successful over 
the large sample, such as the engagement tactic against the UAV and SAM, the 
translation process indicates a bias to "curve-fit" the data. 

6.9 Testing for Reliability 

After testing out new tactics for the AV with Monte Carlo simulation, a final step 
should occur that did not in this research. The human expert should be brought 
back in to help grade the AV's performance. The main question is not necessarily 
did it achieve the mission objectives. Rather, the main question is whether the 
human expert agrees with and understands the decisions made by the AV. As the 
automation design flowchart depicts in Figure 2-1, the primary evaluative criteria 
of the automation is the effect on human performance. As stated in Section 2.2.5, 
we propose a second set of primary evaluative criteria depicted here in Figure 6-1 
of team performance consequences. As the human expert observes the AV behavior, 
does the expert believe the AV is making decisions like a team player characterized 
first and foremost by reliability? Note that this step should occur before conducting 
a second phase, not shown here, of optimizing the tactics (see Section 1.4). This 
caution is due to the human expert's evaluation of whether the AV has truly been 
augmented with human-like strategies, not just the actions; For this first stage of 
incorporating human tactics, it is the learned strategies that guided the translation 
process of human tactics into the AV domain which are under review. It is important 
to first confirm that the AV is actually pursuing the right goals rather than how the 
AV is pursuing them. Thus, this final consultation with the human expert is crucial 
to designing this automation to be a reliable team player. 





Chapter 7 

Future Work 

After concluding the research in this thesis, we present two items for future work. The 
first is an elaboration on the intention and execution function, which was discussed 
in detail but not implemented. The second is an extension of this research into the 
very tough problem of identification of an unknown contact. 

7.1 Representing Intent 

While this research proposed the format ion of an intent ion and execution function 
as a method for capturing human-inspired tactics for the search problem, it did not 
actually create and test them. To do so would be the first, natural extension of this 
research. This is an interesting problem for two reasons. One, if the human is pressed 
to truly specify, for example, his or her intended time spent searching in both the 
air corridor and critical area, the human will very likely reply by classifying the time 
with fuzzy boundaries. The human intends to spend "most of the time," a "good 
portion," or "about one minute . . . maybe a little more'' of the time searching. This 
kind of fuzzy thinking is extremely common in human cognition, and thus, fuzzy 
logic controllers offer a natural way of encoding this thought process [I 71. Two, the 
tension in creating the intention and execution functions is due to the presence of a 
hybrid control issue. The discrete boundaries in the fuzzy variables, such as spending 
"most of the time" or only "some of the time" searching, have to result in continuous 
outputs for vehicle control. 

7.1.1 Fuzzy Logic 

A fuzzy logic controller is made of up three parts: membership functions, rules that 
act in parallel, and an aggregation scheme to reach a final answer [41]. To illustrate 
the concept of a membership function, consider the probability of enemy contact as 
the input to the intention function. In this research, this probability was already given 
to the human subjects with fuzzy boundaries because it conforms more naturally to 
human thinking and to "noisy" intelligence information. The probability of enemy 
contact was classified as "very good, possible, or slim." The membership function 
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Figure 7- 1 : Overlapping membership functions. 

describes how much an exact, quantitative probability of enemy contact between zero 
and one belongs to one of the three categories of very good, possible, or slim. These 
categories are called fuzzy sets. For instance, say the probability of enemy contact 
was calculated to be 65%. Is 65% a very good chance of enemy contact or only a 
possible chance? Does 65% have to wholly belong to either the category of very good 
or possible, or can it partially belong to both very good and possible? The idea 
of a membership function is to allow an input, such as 65% probability of enemy 
contact, to have a degree of membership in fuzzy sets rather than a binary yes/no 
membership. This degree of membership is scaled between zero to one. Note that 
the degree of membership across the membership functions does not have to sum to 
unity at every point. In Figure 7-1, a 65% probability of enemy contact would be 
"fuzzified" by having a membership degree of 0.5 in the "possible" fuzzy set and a 
membership degree of 0.2 in the "very good" fuzzy set. Note that Of course, there are 
an infinite number of membership functions, and the designer would have to choose 
one. This could take the shape of Figure 7-2, where the fuzzified output would have 
always a unity membership degree in one of the three fuzzy sets. The point here is 
that the designer is free to choose the membership function for each of the inputs to 
the intention function. The goal of the human experiments is not to determine the 
exact shape of these functions, but to derive the fuzzy inference rules. 

The fuzzy inference rules are logical statements with antecedents and consequents. 
For example, if the probability of enemy contact is very good and it is in the critical 
area, then coverage of the critical area is equal to "all of the critical area." For 
this inference rule, "very good" and "in the critical area" are the fuzzified inputs 
and "all of the critical area" is the fuzzified output. All of these are fuzzy sets 
represented by membership functions. Also, just like the degree of membership was 
not a binary yes or no, the Boolean operator "and" in the example inference rule 



Figure 7-2: Membership functions that always result in 1.0 degree of membership. 

is abstracted in fuzzy logic away from simple binary application. Though there are 
fuzzy operator property axioms that allow the operators of "and, or, not" to be 
extended differently depending on the designer's wishes, they typically are defined 
in fuzzy logic, respectively, as "minimum, maximum, complement." To clarify, say 
the probability of enemy contact was given as 65%. This resulted in a 0.2 degree 
of membership in the "very good" fuzzy set from its membership function. For the 
variable of "in the critical area," this is, by definition, either a full membership of 1.0 
or not. Therefore, we have two fuzzy variables in the antecedent of the fuzzy rule. 
The probability of enemy contact fuzzy variable is ''very good" to the degree of 0.2. 
The "in the critical area" fuzzy variable is "in the critical area" to the degree of 1 .O. 
By combining these two variables under the fuzzy "and" operator, the minimum of 
their membership degrees is taken. The rule's antecedent - if the probability of enemy 
contact is very good and it is in the critical area - is true to the degree of the minimum 
of 0.2 and 1.0, which is 0.2. This 0.2 is then used to clip the fuzzified output's ("all 
of the critical area") membership function at a height of 0.2. Note, however, that the 
membership function of the output variable in the rule's consequent is not constrained 
in its shape. In fact, the membership function could be a simple spike at some value 
along the abscissa, and no matter what the resulting rule strength was calculated to 
be, the output variable would always take on the same value. 

If the fuzzy logic controller contained multiple rules, then all of these rules would 
act in parallel. Thus, if a probability of enemy contact of 65% had a membership 
degree of 0.5 in the "possible" fuzzy set and a membership degree of 0.2 in the "very 
good" fuzzy set, then any rules that contained in the antecedent the possible or 
very good chance of enemy contact, as one of the fuzzified input variable, would be 
activated. As discussed above, the strength of the rule would be calculated by the 
fuzzy operators, and the output membership function of the rule would be clipped 



off at the height corresponding to the rule's strength. The final step, then, in fuzzy 
logic control is to aggregate the fuzzified output variable's membership functions into 
a single "crisp" value. Though there are many options for this process, they typically 
take the form of centroiding, where the centroids for the clipped output membership 
functions are found and combined. 

7.1.2 Strategies and Fuzzy Rules 

Although this is a very brief description of fuzzy logic control, the concluding remark 
is that the purpose of learning human-inspired tactics would be to find the fuzzy rules 
that resulted in successful human performance. For example, a successful search tactic 
exhibited by S1 was his focus on slowly and deliberately searching the critical area 
when the probability of enemy contact was very good. This strategy could be cast 
in the form a fuzzy rule that states if the probability of enemy contact is very good 
and it is in the critical area, then spend most of the time searching in the critical 
area to cover all of it. All the designer must do after identifying these rules from 
the human experiments is to define the membership functions and the exact nature 
of the fuzzy operators and aggregation process. Note that Simulink now offers a 
fuzzy logic toolbox, which has built-in fuzzy inference engines 1411. These inference 
engines observe the inputs/outputs of a system and build fuzzy rules that mimic 
the system's behavior. It has not been investigated whether the design elements of 
uncertainty, hierarchy of objectives, and flexibility in solutions for the human-in-the- 
loop experiments would hinder the accuracy of these inference engines. Remember the 
goal was to design scenarios with many elements that are not quantitative, and this 
qualitative aspect of the scenarios may be too subjective for the inference engines 
to handle accurately. Of course, this is one of the weaknesses in current artificial 
learning algorithms and the reason why this research occurred. Therefore, the first 
extension of this research would be to take the searching strategies learned from the 
human subjects and map them into fuzzy logic rules to create an intention function. 

7.2 Identification 

For the interact ion sequences between simulated entities, it was assumed that there 
was no identification phase. The human subjects were told that every vehicle encoun- 
tered should be assumed to be hostile. Identification is an extremely hard problem, 
and in tactical situations, to identify another contact incorrectly can result in grave 
consequences, such as friendly fire incidents. Could the process of learning tactical 
knowledge from human experts help in finding better solutions for the problem of au- 
tonomous identification of contacts? To begin answering this question, a step-by-step 
process could be envisioned as follows. Say the scenario was an unmanned undersea 
vehicle (UUV) patrolling the entrance to a major port. An enemy diesel submarine 
is attempting to covertly pass by the UUV so that it may perform stealthy reconnais- 
sance of the port's activities. First, the simulation environment is built to reflect the 
desired level and scope of expertise to be learned. Next, a human expert, such as a 



former a,ttack submarine skipper, is employed t,o play the role of the enemy subma- 
rine that is trying to deceive and sneak by the UUV. The evaluation of t,he skipper's 
actions, strategies, and processes follows along t'he path proposed by the framework 
in Figure 6- 1. At this point, the human-in- t he-loop  experiment)^ and evaluations end 
with a set of expert intentions and strategies for how to deceive and snea,k past a 
UUV into a major port. To accomplish all t,hat would be a tremendous step in the 
right direction, and the research presented in t'his thesis fits naturally into the process 
outlined above. However, this would only be one-half of the solution to the ident'ifi- 
cation problem. The other half is to reverse the application of these human-inspired 
tactics. 

No longer is the UUV trying to implement these human-inspired tactics with its 
own control logic. Rather, the UUV is attempting to observe these huma,n-inspired 
tactics in ot'her plat'forms to assess their int,ent in moving towards the major port the 
UUV is patrolling. This is now a pattern-matching, predictive problem. The UUV 
is trying to predict the platform's intent by pattern-matching t,he platform's act'ions 
to t*he UUV7s knowledge base. Though at face value it seems tremendously complex, 
there is good reason to believe t'hat the process of learning and applying human- 
inspired tactics is helpful towards finding a solution. In Chapter 3, it was noted 
that the human inadequacy to fully ~nderst~and and abide by probabilit'y theory has 
led researchers to call for the end of human experts t'aking on the role of prediction 
under uncertainty [15]. Rather, the role of human experts should be t'o identify t'he 
important predictor variables, show how t>o measure and encode t'hem, and identify 
the correct direction of the variable's weighting (i.e. - higher diesel engine noise 
equates to greater chance of detection). At this point, st atistical analysis through 
computation should make the appropriate predi~t~ion. 

Through understanding the submarine skipper's strategies of how to sneak past, 
the UUV, the designers can identify and program the UUV to look for the right 
predictor variables, measure the uncertainty, and calculate a st a,t'istical prediction of 
the other vehicle's intent. Now the human expert can be employed in several ways t'o 
verify the reliability of this pat,tern-matching, predictive process, much like the final 
step in Figure 6-1. One, t'he human expert can observe and consult on whet,her the 
UUV was able to focus in on the right actions of the other vehicle and interpret those 
actions correctly. Two, the human expert can continue to play the role of the enemy 
diesel submarine and actually try to sneak past the improved UUV. Three, the human 
expert ca,n play the role of the UUV and try to identify another cont'act. This last use 
of the human expert might be best made into another process of human-in-the-loop 
experiments to learn and apply tactics. 





Appendix A 

Introductory Documents and 
Presentation of Scenarios to 
Human Subjects 

Tactical Knowledge Elicitation Experiment: Instruc- 
t ions 

This is a human-in-the-loop simulated exercise. Your role is to be a helicopt,er pilot 
for the U.S. Army. You will be presented with two practice scenarios in order to 
feel comfortable in the simulation environment. You will then be given five differ- 
ent scenarios. Each scenario will receive a score based on how well you performed. 
These scenarios are described in t,he following pages. For each scena,rio, there will be 
a concise summary of any prior int'elligence before the scenario begins. During each 
scenario, you will be asked to "talk aloud," to verbalize your thoughts. (explanatmion 
given below) After all five scenarios have been completed, you will be asked t'o com- 
plete a survey. Please feel free to ask any questions at any time. The paragraphs 
below describe all background information and common mission object,ives across all 
scenarios. 

The Background: 
The U.S. Army has t,hree companies of troops standing by in the Green Zone. They 
are ready to deploy nortlheast to help suppress rioting in several towns which have 
arisen due to insurgent activit'ies. Several Army Blackhawk troop-carrying and Apache 
escort helicopters will deliver the soldiers to their destinations. 

The Mission: 
Your task is to scout out a predetermined air corridor and critically important regions. 
We need to make sure the condition of the air corridor is safe for the passage of our 
troops. Furthermore, we need to ident'ify any enemy  contact,^ in critically important 
regions. The mission will be complete when you have searched over as much of tlhe 
corridor and critical areas as possible, have either declared the air corridor as safe for 



passage or not, and returned to base (the original starting point). 

The Objectives: 

We only have a small window of time to send you in ahead of the troops to 
scout out the area. You have a five minute time limit. 

During that time, it is important to cover as much of the air corridor as possible, 
while being careful to avoid all unnecessary contact with enemy vehicles. 

If it is necessary to engage arny hostile contacts, you have a total of five shots. 

Also, most scenarios will have a critical area for reconnaissance. If a region is 
defined beforehand as critical, we believe it could either be used by the enemy 
as an ideal ambush site for our troops, or we hope to use the terrain for landing 
zones. It is very important to identify any unsafe conditions which might exist 
in critical areas. 

Assume all contacts are hostile. It is at your discretion whether to engage or 
avoid and report all contacts. . . whichever helps achieve the mission objectives. 

The Intelligence: 
Based on satellite imagery and anonymous tips, we will try to quantify whether to 
expect any enemy contacts or not during the mission. 

General Informat ion: 

1. Joystick and Simulation Setup - please notify me when you have read to this 
point. 

2. Scoring - the final score to be calculated after each scenario is composed of the 
following parts: 

(a) How much area was covered both in the air corridor and the critical area. 

(b) The ratio time spent in the critical area to time spent in the air corridor. 
The more time spent scouting the critical area than in the air corridor, the 
better the score. 

(c) The total exposure time to the enemy. This includes both the time spent 
in the enemy's circle, and the time spent in the enemy's weapons cone. 

(d) The total time the enemy was exposed to you. The same two parts apply 
as above. 

(e) The number of hits scored divided by the total number of shots taken. 

(f)  A very small penalty is incurred for the total amount of time vehicle is at 
maximum velocity. (to simulate limited fuel) 



3. Talk (Think) Aloud: 
To talk aloud is to simply verbalize your thoughts as they occur. It is very 
difficult for humans, once they have finished a task, to remember back and ver- 
balize the thoughts they had in the past. Humans cannot consciously articulate 
or recall all the reasons why they chose a particular course of action or not. 
Therefore, the purpose of talking aloud is to help me, the interpreter, when 
I am reviewing your actions. Not only can I replay the game, but by having 
recorded your statements, I can gain further insight into the motivation behind 
your actions. Here are some instructions: 

(a) There is a difference between thinking aloud (talk aloud) and explanation. 
To think aloud is a short-term time stamp on your thoughts. It is to 
simply speak constantly as if alone in the room. This is what we want you 
to do; to verbalize your thoughts. Do not worry about coherency. On the 
other hand, to try to provide an explanation is to try to access long-term 
thinking. That sort of thinking prevents you from focusing at the task at 
hand. So don't explain, just talk. 

(b) I will give a simple verbal reminder to keep talking aloud if you fall silent. 
After twenty seconds of silence, I will say, " keep talking." Otherwise, I will 
keep silent during each scenario. 

4. Symbology 

Your VeNele 

N#n#l D4hchd Lodced Destroyed 

0 0 - --• I 

SAM. 



Round 1 Intelligent Reports: 

[NOTE: slim < possible < very good] 

Practice 1: There is a possible chance of enemy contacts both inside the air corridor 
as well as in the critical area. 

Practice 2: There is a possible chance of enemy contacts. 

Case 1: There is a very good chance of enemy contacts inside the air corridor as well 
as a slim chance of enemy contacts inside the critical area. 

Case 2: There is a slim chance of enemy contacts inside the air corridor as well as a 
possible chance of enemy contacts inside the critical area,. 

Case 3: There is a slim chance of enemy contacts inside the air corridor as well as a 
very good chance of enemy cont,acts inside the critical area. 

Case 4: There is a slim chance of enemy contacts inside the aircorridor as well as 
a possible chance of enemy contacts inside both of the critical areas. Both of the 
critical areas are equally as important. 

Case 5: There is a very good chance of enemy contacts inside the air corridor as well 
as a very good chance of enemy contacts inside the critical area. 



Round 2 Intelligent Reports: 

[NOTE: slim < possible < very good] 

Practice 1: There is a possible chance of enemy contacts both inside the air corridor 
as well as in the critical area. 

Case 1: There is a possible chance of enemy contacts inside the air corridor as well 
as a very good chance of enemy contacts inside the critical area. 

Case 2: There is a possible chance of enemy contacts inside the air corridor as well 
as a very good chance of enemy contacts inside tshe critical area. 

Case 3: There is a very good chance of enemy contacts inside the air corridor as well 
as a possible chance of enemy contacts inside the critical area. 

Case 4: There is a possible chance of enemy contacts inside the air corridor as well 
as a slim chance of enemy contacts inside the critical area. 

Case 5: There is a very good chance of enemy contacts both inside the air corridor 
as well as in the critical area. 

Case 6: There is a slim chance of enemy contacts both inside the air corridor as well 
as in the critical area. 

Case 7: There is a possible chance of enemy contacts inside the air corridor as well 
as a slim chance of enemy contacts inside the critical area. 





Appendix B 

Surveys 

Survey (01 FEB 06) 
Note: S3 did not have time to finish the last case and fill out a survey for this first 
round of experiments. 

Describe any strategies you used during each scenario. In other words, what 
were the motivating factors that drove your act ions? 
S1: Thoroughly investigate the critical areas such that every part of it was com- 
pletely covered. Accomplished with tight weave that one pass started where 
previous left off. In the non-critical area, do a weave that covered most of the 
area, but not necessarily the whole thing. If corridor was narrow enough, I 
centered myself and then just went straight. If I had less of a chance of getting 
killed in the corridor, I would do that first, banking on the fact I would still be 
alive in the critical area. When I got the critical area, I would then thoroughly 
investigate it. 
S2: Quickly scout air corridor to cover all area, then methodically go back and 
forth in critical zone to rack up points for staying in zone. Went after bad guys 
a little too much because I got shot twice. 
S4: I tried to search/cover the areas in a sequential manner, starting from an 
edge and working to the other. If there was a higher chance of enemies in one 
area, I tried to stay out of that area until I saw the other areas. If I stumbled 
upon a target, I would go for it if it was mobile and within reach. Otherwise, 
I'd come back for it. 
S5: My main priority was to accomplish gJ my mission tasks. I sorted the 
missions to ensure I could get as much done as possible; I did low risk tasks 
first and quicker and tried to go slower and finish with the "riskier" tasks. 

2. Describe as best as you can any tradeoffs you had to make between scouting a 
critical area while anticipating enemy contacts. 
S1: If I had just gone into the corridor, I would try to run and investigate 
more of the critical area and then go back to engage. The tradeoff was, thus, 
area covered versus eliminating enemies for the guys to come behind. I figured 
having as much investigated as possible was better becuase if the guys knew 



what was waiting for them, it would be better then if I killed the first enemy I 
saw but died in the process. 
S2: Considered risk a very small factor. Just went about scouting and if I ran 
into bad guys, I dealt with them. 
S4: I started scouting the area as if there were no enemies. Once I came upon 
one, I'd often pursue it for a little, which wasted some time I could have spent 
scouting . 
S5:I traded off speed with a more deliberate process. My goal was to give myself 
an area of safe maneuver, and ensure I kept that safe area available to me in 
the event of contact. 

3. Rank the following constraints in the order of importance or influence they had 
in your actions. In other words, the most important constraint was also the 
most limiting. ( I  = "most important", 5 = "least important") 

(a) Maneuverability of vehicle (turn rate, velocity) 

(b) Ammo limitations of five shots 

(c) Four minute time limit 

(d) The field-of-view of the weapons sensor 

(e) Having to return to base 

(Sequence of numbers correspond to sequence of constraints as listed above. For 
example, S1 ranked the "Maneuverability of vehicle" constraint as 3 and the 
"field-of-view" constraint as 2.) 
S1: 3-4-5-2-1 
S2: 3-2-4-1-5 
S4: 2-4-3- 1-5 
S5: 4-1-3-2-5 

4. In each scenario, the width of the air corridor was great,er than your vehicle's 
sensing capability. What kind of maneuvering patterns did you find were effec- 
tive to be able to search over the entire area? 
S1: The weaving pattern I described above. If I was done with the critical 
area, I could "tighten" the weave such that my motion was a more side-to-side 
motion relative to the corridor. This lessened the missed areas. 
S2: Long stripes - first do the outside loop of a corridor, then the inside. 
S4: I just picked a side initially, so that if I had time, I could easily cover the 
whole thing later by covering the other side. 
S5: Zig-zag on hasty recon areas and a more deliberate box maneuver on delib- 
erate areas. 



Survey (16 FEB 06) 

1. Based on your experience in this simulation, draw out how you would plan to 
search through this entire region (both air corridor and critical area) given the 
following intelligence report: 

(a) probability of enemy contact in the air corridor is slim and in the critical 
area is slim 

Figure 1 



(b) probability of enemy contact in the air corridor is slim and in the critical 
area is very good 



2. To the best of your knowledge, are you prone to engage or avoid the following 
three threats? What factors are involved in either engaging or avoiding? If you 
had to plan your strategy ahead of time, what actions would you take if you 
unexpectedly ran into each of these three threats in a typical scenario? 

(a) Ground 
S1: Engage - They had a smaller sphere of influence (SOI) and so that 
gave me the advantage engaging them. If they were not mobile, I would 
come to a hover such that I could engage them, but they couldn't engage 
me. If they were mobile, I would try to maintain separation such that I 
could engage them, but they couldn't engage me. 
S2: Prone to engage. Poor at shooting me. Relatively slow. Pursue if time 
allows for finishing area coverage. 
S3: Very likely - easy target for me to hit, with small probability that it' 
would be able to hit me. Without a weighting factor for which is more 
important - exploring the corridor and critical area or tasking out enemy 
contacts - I would probably engage the enemy at the cost of exploring as 
much area as possible. It seems to me that part of the mission was to 
ensure the passage was safe. 
S4: These are easy in that they are slow and have small targeting areas. I 
would typically engage them because they didn't involve much of a threat 
or repositioning. 
S5: Engage. I have range on him and can expect that he is a threat and I 
can kill him more often then he will get me. 

(b) Air 0 
S1: RUN!! (Actually, not really . . . defensive turned into dogfighting.) 
They had speed and maneuverability that pushed my feeble pilot skills to 
the test. I tried to be defensive to start and then tried to dogfight them 
from there. 
S2: Prone to ignore. Too fast for me to shoot. Ignore, but don't get shot. 
S3: Not very likely to engage: it was a difficult target to hit while it didn't 
seem to typically be that hostile. If I were to engage I'd have to be in a 
good position behind it and gaining on it. Because a UAV's position is less 
predictable than a ground target's, I don't see it as a predictable threat to 
the ground forces that will move through the corridor. 
S4: These were fast and often tried to track you. Initially I engaged them, 
but this proved to be a waste of time, generally speaking. 
S5: Engage if given opportunity, but not a high probability engagement 
(i.e. - I will have to chase him) and not my mission. 

(c) SAM a 
S1: This one I really did tried to avoid contact,. They had the big SOI, 
so that put me at a pretty big disadvantage. Originally, I tried to engage 



with speed but strafing led to death. So in the future, I ran. 
S2: Run away. Shoots me easily. Avoid completely. 
S3: Not very likely to engage. It's too dangerous. Having a greater range 
than I do - and where I would have to maneuver quickly and precisely to 
defeat it. I think it better to move on so I can accomplish the mission of 
clearing out the corridor. My strategy is to note the location and get out 
of its range as quickly as possible. 
S4: These had huge targeting areas, and I tried to avoid them until t.he 
very end when I had finished everything else. I wasn't aware that you were 
penalized for dying and may have approached that differently now that I 
know that. 
S5: Avoid - Don't want to get killed and not be able to accomplish my 
mission. His range is greater than mine, thus engagement is not in my 
favor. 



Appendix C 

Think Aloud Reports 

C.l  Round 2 

Note that for each subject, the cases are presented in order as seen by the subject. 
This order was randomized between subjects to diminish unwanted training effects 
(see Section 4.2.5). In the following reports, "CA" and "Air Corr" are short-hand for 
"critical area" and "air corridor," respectively. 

Case 3 

Plan 

given my lack  of s k i l l  a t  f l y i n g  
go t o  CA ASAP 
don' t  want t o  be i n  A i r  Corr b/c I don' t  want t o  g e t  k i l l e d  
go d i r e c t l y  t o  CA and s t a y  outs ide  A i r  Corr 
t i g h t  weaving p a t t e r n  i n  CA 
a l l  assuming I survive  t h a t  long, which is a p r e t t y  bad assumption 
CA f i r s t  

Thinking Aloud 

outs ide  A i r  c o r r  t o  begin with t o  increase  p robab i l i t y  of surviving 
go t o  t o p  and start weave up t he r e  
t r y i n g  t o  cover a l l  ground i n  CA, nothing s p e c i a l ,  j u s t  going back 
and f o r t h  
not  doing as t i g h t  of a  weave here (Air Corr) 
going p r e t t y  f a s t ,  b e t t e r  slow it down here  
t h e r e ' s  a guy, I kinda want t o  ge t  away from him, I ' l l  t u r n  around 
and see  i f  he ' s  s t i l l  t h e r e ,  engage him 
two minutes, a l r i g h t ,  t h a t ' s  good 
speed up while doing it (going through l a s t  upper p a r t  of A i r  Corr) 



I do want t o  make it back i n t o  t h e  CA 
Whoa, not  f l y i n g  too  p a r t i c u l a r l y  well  
looks l i k e  a  p r e t t y  good place  f o r  bad guys t o  hide 
spend remaining time i n  CA 
no rhyme o r  reason what I ' m  doing here ,  j u s t  t r y i n g  t o  s t a y  i n  CA 
I d i d  go along t h e  cor r idor  t h e r e ,  so  I guess,  t h e r e ' s  t h e  l og i c  

Debrief 

S1 was asked, "Why d id  you say ,  ' t h i s  is a  good a r ea  f o r  t h e  bad 
guys t o  hang out  a t ? '  ?" 
S1 answered, "two a r ea s  I thought would be very good 
o  There you're tu rn ing  t h e  corner 
o  They have in le ts /nooks  f o r  them t o  hide  
o  You can only approach them 
o  There 's  a good cone f o r  them t o  view you 
o  But p r e t t y  tough a t t a c k  region f o r  you 
o  Other a r e a  was t h a t  s t r i p  i n  southeas t  corner 
o  Going through narrow co r r i do r  s ec t i on  
o  To t h e  west t h e r e  you can b a i l  out ou t s ide  t h e  cor r idor  
o  But t h e r e  you're p r e t t y  confined 
o  And sure  enough t h a t ' s  where t h e  bad guy was 
o  Maybe I should have inves t iga ted  t h a t  more and t r i e d  t o  f i n d  
him and engage him 
o  But I d i d  want t o  go back towards t he  CA 
o  So t h a t ' s  why I l e f t "  

Case 2 

Plan 

S1 was asked, "You were t a l k i n g  about t e r r a i n  e a r l i e r ,  narrow 
channel, enemies h iding i n  t h e r e ,  would t h a t  necessa r i ly  a f f e c t  
how you would search through any p a r t s  of t h e  map where you might 
be confined,  would your search p a t t e r n  change, what might be 
d i f f e r e n t ? ' '  

S 1  answered, "On t h e  previous run,  I was more mentally a l e r t  . . .  I 
kinda expected t h e  enemy t o  be t h e r e .  I guess I was paying more 
a t t e n t i o n  and expected t o  t u r n  a t  any po in t  o r  speed up t o  ge t  away. 
But f o r  t h e  a c t u a l  search p a t t e r n ,  I tended t o  s t i c k  t o  t h e  same 
weaving p a t t e r n ,  but  then t h e r e  might be a  scenar io  where I would 
t h i n k  t o  do t h a t  l a s t .  And once I was t h e r e ,  t o  do it p r e t t y  
thoroughly.  So t h e  answer i s ,  it kinda made me on higher a l e r t  
expected t o  change, and then  a l s o ,  I might put t h a t  off  t o  t h e  l a s t  
t o  ensure su rv iva l  and see  t h e  o ther  t h ings  f i r s t ,  but  once I was 



t h e r e  r e a l l y  t r y  and thoroughly i n v e s t i g a t e  it." 

"on t o p  of no r the rn  h i l l ,  k inda  has  same p r o t e c t i o n  a r e a  
Seems l i k e  t h a t  would be a good p lace  f o r  enemy t o  h ide  and pop out  
So what I might do is  t a k e  it wide around t h a t  corner  so  it won't 
ca t ch  me off  guard 
Increased  chance of s u r v i v a l  
S ince  t h e r e ' s  l e s s  of a chance of h i t t i n g  an enemy i n  t h e  c o r r i d o r ,  
I ' l l  i n v e s t i g a t e  t h a t  f i r s t  and then  go i n t o  t h e  CA" 

S1 was asked,  "any i d e a  of how you want t o  i n v e s t i g a t e  t h o s e  g i g a n t i c  
lobes  i n  t h e r e ? ' '  
S1 answered, " the  bottom one: t h e  southwest co rne r ,  s i n c e  you ' re  
s t a r t i n g  of f  a t  t h e  very  co rne r ,  you can weave back and f o r t h  
nor th / sou th ,  hopeful ly  a s  you t i g h t e n  up you can j u s t  go n o r t h  a long 
t h e  narrow p a r t  of t h e  c o r r i d o r  . . .  
I was debat ing  eas t /wes t  v s .  nor th /south  a t  t h e  t o p  one 
I t  might be b e t t e r  t o  go eas t /wes t  but  then  
I f  you d i v i d e  t h a t  s e c t i o n  i n t o  two p a r t s  you do eas t /wes t  f o r  t h e  
f i r s t  loop 
Do t h e  southwest p o r t i o n  of it 
So you can loop around and go i n t o  t h e  c r i t i c a l  a r e a  
I f  you do nor th /south  you put  yourse l f  r i g h t  a t  t h e  i n l e t  and i f  you ' re  
going n o r t h  a t  t h a t  s e c t i o n ,  you pu t  your back t o  t h e  enemy 
So i f  t hey  pop up, t h e y ' r e  on your s i x  and you ' re  p r e t t y  hosed a t  t h a t  
p o i n t  
I f  you ' re  eas t /wes t  you a t  l e a s t  have them i n  your s i g h t s  
You have a  l e a s t  a  chance of engaging them be fo re  t h e y  engage you" 

Thinking Aloud 

j u s t  go nor th /south  i n  t h i s  gene ra l  a r e a  
I ' m  always t r y i n g  t o  g e t  with my r a d a r  so  t h a t  i t ' s  j u s t  t o  t h e  edge 
of t h e  c o r r i d o r  
Tha t ' s  what I ' m  t r y i n g  t o  do 
Since  t h i s  i s  j u s t  t h e  c o r r i d o r  and not  t h e  c r i t i c a l  a r e a ,  t h e r e  a r e  
d e f i n i t e l y  
Whoa, shoo t ,  bad guy, t h a t ' s  not  good 
Well h e ' s  g o t  a way wider in f luence  than  I do 
I ' m  j u s t  going t o  s k i p  by him and may come back t o  him at  t h e  end 
Because I want t o  su rv ive  t o  t h e  CA 
Now I ' l l  go up t o  t h e  t o p  p a r t  
And then  do eas t /wes t  sea rch  p a t t e r n  
( I  c a l l  out  t ime) 
I ' m  gonna speed up i n  h e r e ,  kinda c r u i s e  through t h i s  s e c t i o n  



I do want t o  l eave  t ime t o  t r y  t o  engage t h a t  guy 
Notice I went a l i t t l e  b i t  up because I was c l o s i n g  i n  on t h a t  mouth 
I ' m  t r y i n g  t o  make it s o  I can 
Yeah s e e  I tu rned  t h e r e  t o  s e e  i f  I could engage i f  anybody comes out  
Turn towards it s o  t h a t  my 
Now I ' l l  go t o  t h e  CA 
Probably d i e ,  t h a t ' s  ok 
Whoa, ok, almost smacked t h e  h i l l  t h e r e  
I ' m  no t  doing a  very  good job weaving he re  
Call t h i s  t h e  drunk s a i l o r  approach, no o f fense ,  jon 
You don ' t  r e a l l y  d r i n k  
Oh, g o t t a  run ,  g o t t a  run ,  g o t t a  run ,  g o t t a  r u n ,  go,  go, no,  no 
Run, no run ,  shoot  oh, I ' m  g.onna d i e  
Ok, now I can go on t h e  o f f e n s i v e  he re  
( laughs)  t h a t  was i n t e r e s t i n g  
I don ' t  know why, I t end  t o  p u l l  back 
I d o n ' t  mean t o  slow down, i t ' s  l i k e  me t r y i n g  t o  p u l l  up 
I d o n ' t  why, t h a t ' s  p r e t t y  s t u p i d  
So I ' m  going  t o  s t a y  looking f o r  t h a t  guy 
Cause t h e  SAM is i n  a known l o c a t i o n  s o  I can r e l a y  t h a t  back t o  t h e  
guys and t h e y ' l l  know where t h a t  i s  
The UAV is d e f i n i t e l y  mobile ,  d e f i n i t e l y  almost g o t  t h e  b e s t  of me 
I ' l l  s t a y  i n  t h e  CA j u s t  t o  sea rch  

Case 1 

So i n  t h i s  one, t h e r e  wasn' t  a c l e a r ,  c lean-cut ,  I could go a long 
t h e  c o r r i d o r  and do t h i s  
I d e f i n i t e l y  want t o  spend a l o t  of t ime i n  t h e  c o r r i d o r  
There ' s  t h e  t e r r a i n  a r e a ,  l i k e  you s a i d ,  t h a t  r e a l l y  conf ines  it up 
i n  t h e  n o r t h e r n  p o r t i o n  of t h e  CA 
Whereas i n  t h e  sou the rn ,  you can b a i l  out  i n  a l l  d i r e c t i o n s  
But you ' re  r e a l l y  confined t h e r e  i n  t h e  nor the rn  h a l f  of it 
Follow c o r r i d o r ,  head west around t e r r a i n  
That a r e a  could be s q u i r r e l y  because of t h e  narrow space 
Not t o o  worried about t h a t  . 
Go n o r t h  and t h a t  w i l l  you put  you i n t o  t h e  nor the rn  p o r t i o n  of 
t h e  CA 
With your s i g h t s  s e t  on p o s s i b l e  enemies coming i n  
Very good chance of enemy c o n t a c t  i n  CA 
One t h i n g  I need t o  do a  b e t t e r  job a t  i s  t o  have my f i r i n g  cone 
po in ted  i n  t h e  r i g h t  d i r e c t i o n  
A t  t h e  dangerous s p o t s  



T h a t ' s  why I ' m  t r y i n g  t o  go i n t o  t h e  nor the rn  s e c t i o n  i n  a good, 
s t r o n g  engagement p o s i t i o n  
Go i n t o  nor the rn  p o r t i o n  
Go west t o  e a s t  
There ' s  t h a t  i n l e t  r i g h t  t h e r e  where a bad guy could be h i d i n g  
So I can t u r n  south  and be f a c i n g  t h a t  d i r e c t i o n  s o  t h a t  i f  some 
guy comes out  
Swing back and check t h e  o t h e r  h i l l  a rea looks  l i k e  a  t u r t l e  head 
I n  t h e  t u r t l e  neck a r e a ,  a  guy might h id ing  
But t h a t  w i l l  pu t  me f a c i n g  t h e  r i g h t  d i r e c t i o n  
Then I can swing by and maybe g e t  t h a t  l a s t  l i t t l e  b i t  of t h e  
c o r r i d o r  and go back i n t o  t h e  CA 
Then t h a t  p u t s  me i n t o  t h e  a r e a  where I can go e a s t  and t h e n  
fo l low i n t o  t h e  c o r r i d o r  f o r  t h e  r e s t  of it 
I f  I run  out  of t ime,  I don ' t  r e a l l y  s e e  t h a t  a s  important  [last 
s e c t i o n  of a i r  co r r ido r ]  
Because you ' re  not  r e a l l y  confined i n  t h a t  a r e a ,  and i t ' s  not  t h e  
c r i t i c a l  a r e a  
So t h e  most dangerous p o r t i o n  would be t h e  nor the rn  c r i t i c a l  a r e a  
above t h e  t u r t l e ' s  head 

Thinking Aloud 

Lef t  my speed way up 
There we go, k inda  g o t  it b e t t e r  under c o n t r o l  
I ' l l  j u s t  have a  narrow weave, t h i s  is p r e t t y  t i g h t  anyways, not  
t o o  many p l a c e s  f o r  bad guys t o  h ide  
( I  remind him about s t i c k  speed c o n t r o l )  
So t h i s  is k inda ,  g e t t i n g  i n t o  
I went a l i t t l e  wide t h e r e  j u s t  i n  case  
Now, I ' l l  slow down a  l i t t l e  b i t  
Get poin ted  i n  c o r r e c t  
Whoa, whoa, Br ian ,  aaah,  aaah,  t h e r e  we go 
I ' l l  t u r n  h e r e ,  be poin ted  i f  any bad guys come ou t  
Not doing a very  good job he re  [ r e f e r r i n g  t o  weaving] 
Now I ' l l  be poin ted  south  i n  case  bad guys a r e  t h e r e  
No, good 
So I missed a l o t  of t h e  middlewhoa 
A l r i g h t ,  t h e r e ' s  a  SAM i n  sou theas t  [he meant southwestl  corner  
Now I ' m  gonna loop wide and go i n  with speed 
Aaah, shoo t ,  whoa, I ' m  g e t t i n g  lit up, g o t t a  g e t  out  
Ok, s o  I ' m  damaged now, r i g h t  
Ok, wel l  I do r e a l l y  want t o  t a k e  t h a t  guy ou t  
I need t o  loop around, g e t  t h e  guy l i n e d  up 
( I  t e l l  him, "you go t  t o  g ive  it a m i s s i s s i p p i  o r  so" )  



And I ' m  dead,  dang ' t  
So I went,  yeah okay, l e s s o n  l ea rned  on . . .  

Case 5 

Plan 

Very good chance of enemy c o n t a c t  i n  both  a r e a s .  
I j u s t  want t o  go a s  e f f i c i e n t l y  a s  p o s s i b l e  t o  t h e  CA, and t r y  
t o  minimize g e t t i n g  k i l l e d  i n  t h e  p rocess .  
Most e f f i c i e n t  i n  terms of coverage, would be go t o  go around t h e  
l a r g e  h i l l  t o  t h e  west and n o r t h  around i t .  
But t h a t  conf ines  where you can go,  p l u s  up n o r t h  they  g o t  a 
couple good p l a c e s  t o  h i d e .  
So i n s t e a d  of doing t h a t ,  I ' m  going t o  go t h e  southern  r o u t e  and 
go sou th  and e a s t  around it 
I ' l l  probably even duck o u t s i d e  t h e  c o r r i d o r  and go and j u s t  c e n t e r  
t h e  gap between t h o s e  two h i l l s  t o  r e a l l y  g ive  myself t h e  b e s t  
chance of s u r v i v a l .  
Then, I ' l l  probably do a nor th / sou th  weave i n  CA. 
And t h e n ,  hmm, shoo t ,  my h e s i t a t i o n  t h e r e  is  t h a t  I want t o  do a 
nor th / sou th  weave i n  t h e  CA from west t o  e a s t  but  t h a t  k inda  p u t s  me 
where I could c a t c h  t h a t  las t  l i t t l e  b i t  of t h e  c o r r i d o r  but  then  I 
would have t o  a l l  t h e  way backt rack  and go t o  t h e  unobserved s e c t i o n  
So what I might do is go sou th  and e a s t  i n t o  t h e  CA and then  do a  
eas t /wes t  s e a r c h  p a t t e r n  and f o r g e t  about t h e  l i t t l e  s t r e t c h  of 
c o r r i d o r  of f  t o  t h e  r i g h t  t h e r e  
And t h e n  j u s t  h i t  t h e  sou th  around t h e  gap where t h e  bad guys could 
be h i d i n g  
And t h e n  j u s t  go back through t h e  CA go around n o r t h  and then  west 
around t h e  r e c t a n g u l a r  h i l l  
I don ' t  a n t i c i p a t e  t o  l i v e  t h a t  long . . .  

S1 was reminded, "Now remember you don ' t  have t o  a t t a c k  every enemy.' '  
He r e p l i e d ,  "That ' s  t r u e ,  bu t  so  i f  you don ' t  a t t a c k  t h e  enemy, 
t h e y ' r e  t h e r e  f o r  your guys r i g h t ? ' '  
I n  r e p l y ,  S1 was t o l d ,  "You c a l l  i n  t h e  ca lva ry .  You're only a one 
man miss ion  going through,  s o ' '  
He s a i d ,  "So you ' r e  p r e t t y  much no t  road-c lear ing ,  bu t  more" 
S1 was t o l d ,  " I t ' s  a t  your d i s c r e t i o n ,  e s s e n t i a l l y . ' '  
S1 s t a t e d ,  "Sure, we l l  I ' m  gonna run  f o r  t h e  f i r s t  p o r t i o n  of it a t  
l e a s t ,  d e f i n i t e l y  u n t i l  I g e t  t h e  CA done." 

Thinking Aloud 

I ' m  going  t o  go through t h e  c o r r i d o r  h e r e ,  but  then  I ' m  going t o  duck 



out and try and put myself in the best chance of survival here. 
Ok, now I'm going to try to go in the CA facing the proper direction 
Whoa, bad guy. 
But he's outside, so I'm gonna 
But it looked like a tank, and he had a smaller sphere j 

Whoa, bad guy, ok. 
I am going to try and go after him, but it looks like he's mobile 
So I'm going to try and loop around, get him better lined up 
This guy's persistent, alright, I've had enough of you 
Turn, turn, turn 
I'm just trying to get him lined up so I can get a shot off 
Oh, not doing a very good job 
So I'm gonna get a little distance in between myself and him 
Dang't, I can't seem to do it 
(sigh of frustration) 
[SI was told, "You're a helicopter, so you could come to a hover. 
It's true I could."] 
Good call, come get it, bad guy. 
Yes, you are done, go home 
(laughs) That trash-talking helps, anyway 
Now, just resuming the corridor search 
(I call out time - two minutes) 
I'm going to go over to this next, and do the remaining part of the 
corridor 
I missed the far eastern corner of the CA 
So I'm going to come back in here and do it now 
And then, whoa, bad guy 
UAV, not good 
Ok, let's see if I can go find him again 
Hmmm . . .  decision of whether I go chase him 
Not that I can see him right now 
I'm going to go for the remaining area 
Oh, oh, that's guy's on me, geez 
Where'd he go 
Ok, yeah, I'm not going to leave the CA if that guy's going to stay 
in 
Come out, where are you? 
Don't, oh dang, oh, did I not hit it? That was an act of God. 
I threw the throttle down because I saw it at the last second 
But the Lord was looking out for me in a big way there, I'm 
surprised I'm not rock food 
Where'd that UAV go? 
Well, since I'm up here, I might as well 
Trying to face the correct direction, to see 



Case 7 

Plan 

P o s s i b l e  chance i n  A i r  Corr ,  Sl im chance i n  CA 
P o s s i b l e  and s l i m ,  is  much b e t t e r  t h a n  very  good t h a t  I ' v e  been 
f a c i n g  
I s t i l l  want t o  do t h e  CA more, bu t  I ' m  no t  s o  concerned about 
dying 
Like I s a i d ,  t h e  more e f f i c i e n t  way t o  i n v e s t i g a t e  t h i s  t e r r a i n  
was northwest  around t u r t l e  
But now t h a t  I look a t  i t ,  you could do t h a t  
There ' s  a  g r e a t e r  chance of dying i n  t h e  c o r r i d o r  than  i n  t h e  
C A 
So now what I ' l l  do is t o  go n o r t h  and around t u r t l e  t o  e a s t ,  
t h a t  p u t s  me i n  t h e  CA f a s t e r  
I ' l l  go i n  a t  southwest corner  of CA, do eas t /wes t  weave up t o  
t o p  p o r t i o n  
Go northwest  around t u r t l e  
F l y  back through sou the rn  p a r t  of CA aga in  
That p u t s  me back i n  t h e  c o r r i d o r  
But t h a t ' s  a p r e t t y  b i g  a r e a ,  so  what I ' l l  do is a  d iagonal  
weave 
I ' l l  i n v e s t i g a t e  h a l f  of i t y e a h ,  t h a t ' s  a  b e t t e r  p l an ,  so  
change t h a t  
I ' l l  go around t h e  t u r t l e ,  n o r t h  and west 
F ly  a long  southern  p a r t  of c o r r i d o r ,  but  not  do any weave 
And t h e n  loop around and t h a t  w i l l  pu t  me back i n  t h e  CA 

Thinking Aloud 

t h i s  s e c t i o n  is  p r e t t y  narrow s o  I ' m  no t  going t o  do much 
weaving, t r y  and c e n t e r  myself 
I f  t h i s  was t h e  CA I would, bu t  i t ' s  no t  
Now I ' m  going  t o  go around t h e  t u r t l e  t o  t h e  e a s t  
A s  I ' v e  gone a long,  I ' m  t r y i n g  t o  g e t  b e t t e r  a t  be ing  a b l e  t o  
shoot  i n  t h e  d i r e c t i o n  t h a t  I am going r a t h e r  t h a n  p u t t i n g  myself 
i n  a  bad p o s i t i o n  
So t h e r e ,  I want t o  s lew more than  I was e a r l i e r  
Like I was say ing ,  I can do t h i s  last  l i t t l e  pa tch  and t h a t  w i l l  
pu t  me up towards t h e  n o r t h  p o r t i o n  of t h e  map and I can go 
around t h e  t u r t l e  t o  t h e  n o r t h  
Which I ' m  doing now 
And t h e n  I can go d iagona l ly  i n  around h i s  neck r i g h t  he re  j u s t  
i n  case  t h e r e ' s  a bad guy h i d i n g  t h e r e  
I missed a p o r t i o n  s o  I ' m  j u s t  going t o  loop back 



Not h i t  t h e  t u r t l e  
And then  do t h e  western ha l f  
And okay, t h i s  is what I was t a l k i n g  about ,  where I ' l l  go through 
t h e  southern  s e c t i o n  
And then  ( I  c a l l  two minutes) 
Now I ' l l  do roughly a d i v i s i o n  i n  ha l f  of t h e  c o r r i d o r  
F ly  i t ,  no weaving 
And then ,  whoa bad guy 
I sped up t h e r e  t o  g e t  away from him, j u s t  because he k inda  
s u r p r i s e d  me 
But now I ' l l  t u r n  around and come t o  . . .  slow . . .  no, aah ,  dang, 
n o t  a  
very  good h e l i c o p t e r  p i l o t  he re  
Slow down, s low, slow, slow, slow, ( laughs)  
Ok, yeah, t h e r e  we go, much b e t t e r  
Ok, now, I ' m  going t o  go a f t e r  him a  b i t  
P u t t i n g  t h e  l e v e r  a l i t t l e  b i t  forward j u s t  t o  go a f t e r  him 
He's running f o r  t h e  h i l l s  
Don't h i t ,  d$*! . . . ( g  roans)"  

Case 4 

Plan 

p r e t t y  much same l o g i c  on t h i s  guy 
I ' l l  t a k e  e x t r a  cau t ion  not  t o  run i n t o  t h e  h i l l  
F ly  along c o r r i d o r  
Go e a s t  around t u r t l e  and do same weave p a t t e r n ,  I guess  
Go n o r t h  around t u r t l e  and sou th  t o  cover t h e  western t u r t l e  
edge 
And sou th ,  and do t h e  same t h i n g  
But it was p r e t t y  dumb, I followed t h e  guy o u t s i d e  t h e  c o r r i d o r  
He was out  of danger,  and I s t i l l  had s t u f f  t h a t  I could cover 
So I ' l l  t r y  no t  t o  be s o  dumb, and e s p e c i a l l y  not  t o  run  i n t o  
t h e  h i l l ,  t h a t  sucked 
There might be some cutof f  where I don ' t  fo l low bad guys 
That was t h e  l e s son  l ea rned  on last  one 
The whole reason f o r  doing t h a t  is t h a t  s l i m  chance of dying 
i n  CA and p o s s i b l e  
So I ' m  not  t o o  sca red ,  but  i f  it was very  good I would t r y  t o  
t a k e  t h e  most d i r e c t  r o u t e  t o  CA 
But s i n c e  i t ' s  p o s s i b l e  I can s t a y  along t h e  c o r r i d o r  and go 
e a s t  around t h e  t u r t l e  

Thinking Aloud 



I need to get used to the helicopter being able to hover thing 
That was a good tip on throwing the throttle all the way down, 
I don't know why I didn't think of it 
Whoa, bad guy, ok 
Turning to get away from him, there we go, ok 
I was in pretty defensive there, because he was on my six, I 
didn't really have a shot 
I turned away from the CA to get away from him 
So now he's in here, so now I deviated 
I didn't go north and then south, I didn't care 
I was more worried about not dying and finding the guy and 
being defensive 
Probably benefits me 
So I know the guy's probably still in the CA, but I know I'm 
going to be coming back to it 
I'll turn there just so if anybody's hiding there, I'll have 
a shot 
(I call out two minutes) 
Now I'll go back in the CA 
I might stay around here and see if the guy is anywhere I can 
find 
I wouldn't have done this originally 
Alright, I'm gonna go, follow the corridor down 
(I call out one minute left) 
I'm gonna cut it a little short, I did most of the corridor, 
so I'm going to turn back so I can still have time to get back 
Whoa, bad guy, ok 
Whoa, and he's cookinJ on me 
So really I'm just trying to stay out of his sphere 
Ok, now I'm trying to loop back around so I can go after him 
Well, nope, ok, I'll learn from the last encounter not to 
follow him 
Ok, tank, slowing down, turning, and then 
Oh shoot, turn, turn, turn, turn, turn 
Running out time, running out of time, turn 
There we go, (sigh) 
( I  tell him to really squeeze the trigger button) 
Yeah, well I'm not doing too good of a job in here anyways 

Case 6 

Plan 

slim chance in both 
It seems natural thing to go along corridor just to start with 



and go n o r t h  
From t h e  sou th ,  through t h e  e a s t  t o  t h e  n o r t h ,  counter-clockwise 
around t h e  h i l l  
While I ' m  doing t h a t  I want t o  i n v e s t i g a t e  t h e  CA 
I ' l l  t r y  and s t o p  t h e  i n v e s t i g a t i o n  t o  t h e  n o r t h  s o  t h a t  I can 
go d i r e c t l y  e a s t  and continue t h e  counter-clockwise r o t a t i o n  t o  
h i t  t h e  c o r r i d o r  
Well, my h e s i t a t i o n  r i g h t  t h e r e  
I t  seems l i k e  t h e r e ' s  t h a t  confined geography where you ' re  coming 
i n t o  t h e  c o r r i d o r  from t h e  south  
There ' s  an inc reased  chance of dying 
If it was p o s s i b l e  o r  very  good o r  above s l i m  e s s e n t i a l l y ,  I 
might go n o r t h  around t h e  h i l l  clockwise i n s t e a d  
Anything o t h e r  than  s l i m  I would do t h a t  
But I ' m  not  t o o  worried about it 
The problem wi th  going t h e  o t h e r  way 
If you went clockwise,  you would have t o  shoot  up t o  t h e  f a r  
n o r t h e a s t  corner  and t h e r e ' s  no c o r r i d o r  o r  CA r e a l l y  t h e r e  
and then  you would have t o  loop back around 
I t ' s  not  t h a t  much of a deviance 
But i f  you went counter-clockwise you could go through t h e  CA 
and then  come back and shoot  up and t h a t  would be t h e  l a s t  
s e c t i o n  you covered 
Seems a b i t  more e f f i c i e n t  t o  do it t h a t  way 
And I ' m  not  t o o  worried about dying 
Like I s a i d ,  any o t h e r  scena r io  I would probably go clockwise 

Thinking Aloud 

t r y i n g  t o  c e n t e r  myself ,  so  t h a t  i f  t h e r e  is anybody 
I ' m  a t  l e a s t  not  r i g h t  up a g a i n s t  t h e  h i l l ,  maximize 
maneuverabi l i ty  
I want t o  come i n t o  t h i s  a r e a  f a c i n g  t h e  i n l e t  t h e r e ,  j u s t  i n  
case  
Yeah, nobody t h e r e ,  which i s  good 
I want t o  end up over  t h e r e  so  I ' l l  c u t  t h e  sea rch  a l i t t l e  
s h o r t  
A l i t t l e  s h o r t  of t h e  northernmost border ,  because I want t o  
h i t  t h a t  l a s t  
I come i n t o  t h i s  a r e a  f a c i n g  t h e  proper  d i r e c t i o n ,  I ' l l  t u r n  
A l i t t l e  eas t /wes t  weave he re  
I probably could have planned t h i s  a l i t t l e  b i t  b e t t e r  
( I  c a l l  out  2 min 30 sec )  
I ' l l  do a l i t t l e  b i t  of a nor th /south  weave t o  cover t h i s  
s e c t i o n  t h a t  I haven ' t  



Now I'll go back around the corridor here 
I'm kinda investigating the southern portion of it 
Because that seems more dangerous 
Like right here, looks like a sea lion's nose projection 
You could bail out to the north 
I'm gonna try and cook through this section because this a 
very safe area in terms of geometry 
Now I'm back in this area, so I'm going pretty much as fast 
as I can because I already did investigate this 
I'll just continue up to do the section that I didn't quite 
get yet 
Ok, I'll just turn around get the last little portion of it 
And that will put me back in the CA 
I'll go back to what I thought was the most dangerous 
The southwest corner here 
To see if there's anybody there 
Slowing down so I don't smack it though 
Whoa, and I'm going to, whoa, nice 

Case 3 

Plan 

I think I'm gonna go clockwise around the circle, so that I hit 
the CA first 
Because if there's a very good chance of encountering bad guys in 
the air corridor 
Then I'd like to encounter them later in the flying time so I 
don't die in the beginning and not 
Accrue any points 

Thinking Aloud 

I'm gonna fly the air corridor 
Whoa, this one's really fast 
Go clockwise first 
And scan the entire CA first 
So that I get the points for doing that 
And then go around and look at the rest of the area where I might 
encounter the bad guys 
Mosy around in the CA for a little bit 
Then go around 
Is that running into terrain just the dot in the middle or any of 
your whole circle there? 



It's the white part but not the dotted circle around it? 
So 1'11 be careful over here, (chuckles) . 

Alright, so I think I've covered all of the CA1s area 
So I'll go out and fly the corridor 
(call out time) 
This way and maybe run into some bad guys out here 
I think I'll go up and make sure I look at this little tail area 
I don't see any so I'll go back 
Still don't see any so 1'11 go in this between area where you said 
they might have been last time 
And that one is a square and I don't remember what a square is 
Oh, ground vehicle, he's probably pretty bad at shooting me 
Slow down 
I think I'm wasting a lot of time chasing the guy around, but 
How do you know when he's already red does it just have to be in 
the square when he's like that can I shoot him? 
Or does he light up again? 
There we go, got him 
And I think I'll spend the rest of it in here 
Because I kinda wasted a lot of time out here 
But I didn't do this outer edge up here when I scanned this thing 
Or maybe it was the inner edge, I don't remember 
So I don't think I'll do very well on the score for amount of area 
covered 
Because I didn't do it very systematically this time 
Because I got distracted by the bad guy 
And I'll zip back around 

Case 4 

Plan 

Initially, I'll fly the air corridor directly to the CA and 
search that first 
Just so I don't expose myself before I'm able to search that 
to enemies 
And I think what I learned from last time if you see a SAM or 
whatever the long-range shooter is, you should just run away 
because they're pretty good at killing you 

Thinking Aloud 

Wow, that s fast 
Going quickly to the CA 
Coming into it now 
Mosy around in here until I've seen all of it 



And i f  I see a  bad guy I ' l l  probably chase it around 
Like I d id  l a s t  time but l i k e  I sa id  the  SAM's seem t o  be the  ones 
t h a t  a r e  dangerous 
Whoa, ge t t i ng  close 
I don't know i f  I ' m  making very good l i n e s  on t h i s  one 
Getting r e a l l y  close t o  the  edges 
And now I 've p re t ty  much seen everything here 
I ' l l  go down and do t h i s  r i g h t  end of the  A i r  Corr f i r s t  and I ' l l  
ju s t  kinda go out and back and do t h a t  loopy par t  second 
Whoa, t h e r e ' s  a  bad guy, I think I ' l l  go ge t  him 
I ' m  making c i r c l e s ,  l e t ' s  t r y  it the  other way, haha 
Aaah, bad shot 
Yes, got him 
So I ' l l  continue going around the  a i r  corr idor  
Jus t  t o  make sure  I 've  seen a1 the  a rea  and maybe look f o r  t h a t  
other  bad guy 
But I don't  see him so I ' m  going t o  go back t h i s  way and go 
around t h e  r e s t  of the  A i r  Corr before time runs out 
Probably do the  inside pa r t  f i r s t  
Then do t h e  outside 'part  
And no other  bad guys here 
Going back around 
And probably ju s t  hang out i n  the  CA and ju s t  make sure i t ' s  c lear  
I don't know where t h a t  other  bad th ing  went 
I don't think he 's  i n  here though 
I guess I ' l l  go back out here and see the  r e s t  of t h i s  pa r t  t h a t  
I d idn ' t  see  t h e  f i r s t  time 
And take it a l l  the  way back t o  the  beginning 
Oh, t h e r e ' s  a  bad guy I wonder i f  I could ge t  him 
Oh man 

Case 6 

Plan 

Fly d i r e c t l y  t o  CA 
Scan it slowly a s  usual 
Then go quickly through AirCorr 
Since t h e r e ' s  a  s l i m  chance of enemy contact I don't expect 
we ' l l  see  anything but I think i t ' s  s t i l l  smart t o  do the  CA 
f i r s t  so I don't d i e  before seeing anythingand run away from SAM's 

Thinking Aloud 

Going f a s t ,  whoa, hard t o  control ,  I ' m  gonna slow down because 
I can ' t  r e a l l y  do it t h a t  f a s t  



Wow, that's kind of hard to control 
I think maybe I should slow down or something 
Kind of missed 
(I remark about lever versus pulling back on stick) 
Well, I think I'm getting most of this area 
It's kind of hard to control on this one 
I'm going to go out here 
And since it's going pretty fast and jumpy, I don't think I'll 
push it forward much to go faster 
I'll just let it cruise 
We'll see if there's anything out here 
It doesn't seem like there is 
There's not 
I'm going to take the loop back down this way 
See if there's anything in the other direction 
(I call out 1:45 left) 
That's not much time, guess I'll go a little faster 
No bad guys out there 
Maybe there are some over this way 
And go fast this way see if we encounter anything 
I don't think we do 
So I'm just going to go hang out in the CA 
So here I am patrolling around for nothing 
(I ask, "So if this was your first time searching through it [CAI, 
what would be the most effective way to cover all of it in the 
forty seconds you have left?") 
What do you mean? 
(I reply, "In terms of weaving back and forth") 
I think doing straight lines across the area works and longer 
paths because it's hard to do the turns 
Doing it this way is not as effective as the longer direction 
of the triangle because it's easier to get lined up and just . . .  

Case 5 

Plan 

Since there's a very good chance of enemy contact I might just 
avoid the air corridor going to the CA, and scan it first, and 
go really fast and not stop to see who I run into 
It doesn't really change the rest of plan 
Go straight to the CA and then secondarily go through all of 
the Air Corr 

Thinking Aloud 



Going fast 
I'll kinda stay on the outside and maybe avoid bad guys 
So I'm doing the longer direction because you have to do less 
turning 
Because it turns around pretty quick like that 
Ooh, I guess we can go after that bad guy 
Oh, he's got me in his sights 
No, it shot late 
Aah 
It's not shooting well 
(Sigh), there's kind of a time delay on the gun right now 
I'm out of shots so I think I'll just kind of ignore him 
So now that I've covered pretty much all of the area over there 
We'll just go around 
Go back this way and go back here 
See this part of the air corridor and swing around 
And go back up through here, whoa, big triangle down there, 
which is dangerous 
I'll stay away from that 
I think I'll come.. 
Whoa, that guy's got me in his sights 
He's a fast one 
For the last minute, I think I'll avoid all these bad guys 
I think zig-zagging tends to help 
Then I'll go back into the CA, which seems a little safer 
Except for the SAM down on the bottom 
Kinda stinks I only have five shots 
They're on to me 

Case 1 

Plan 

Since CA is next to terrain and since there's very good chance of 
running into bad guys in the CA, I need to be careful in approaching 
it and also reverse the order . . .  so go through as much of the air 
corridor first before getting to the CA, so I at least cover that, 
just be cautious and look for a way to escape if there's one of the 
really dangerous bad guys in there 

Thinking Aloud 

Wow, it's flying better on this one 
Going along and gonna search around the air corridor first 
Whoa, that's one of the diamonds, that's another UAV 
Don't know how dangerous they are, I think I'll leave him alone 



f o r  a minute 
Come back t o  him l a t e r  
I ' m  going t o  go around 
Since t h e r e ' s  a very good chance of running i n t o  bad guys i n  here  
I th ink  I ' m  gonna work my way down 
Opposite of what I ' v e  been doing 
Now t h a t  UAV 
I don' t  know how caut ious  I need t o  be around him 
I t ' s  going very slow 
Is he running away nowah, coward 
Ok, so  I only have two sho t s  and I haven't  seen a l l  of t h e  CA ye t  
I want t o  f i n i s h  looking at t h i s  p a r t  down here  
Go around it one more time 
Whoa, run away, run away, run away 
So I ' m  not  going t o  go back over t h e r e  
And a c t u a l l y  I ' m  going t o  run away from these  guys t oo ,  because 
I 'm damaged 
Oh man, he ' s  f a s t  
Probably going t o  have t o  zig-zag around here  
I th ink  I ' ve  l o s t  him 
Hmm..(I c a l l  out 45 sec)  
So I never got  over t o  t h a t  o ther  s i d e  but s ince  I might d i e  i f  
I go over t h e r e  because I ' v e  a l ready been damaged, I may not  
even attempt it 
1'11 j u s t  hang out here  
Another 45 sec ,  it'll be up soon anyway 
(Whistles) 

Case 7 

Plan 

So t h i s  is t h e  same layout a s  t h e  last one I j u s t  d i d  
But t h e  last one had a very good chance i n  CA and t h i s  one says  
s l i m  
So I ' m  gonna do t h e  CA f i r s t  ins tead  of second, un l ike  l a s t  time 
Try t o  make paths  through it on t h e  long a x i s  

Thinking Aloud 

Running p r e t t y  quickly on t h i s  one 
And, oh, j u s t  f lew through a bad guy 
1'11 ignore him f o r  a l i t t l e  b i t  
Because t h a t  seems t o  be un-productive, maybe 1'11 goof around 
l a t e r  
I ' m  no t  very good a t  shooting 



And since I did that one scenario before where I almost kept on 
running into the terrain 
This way tends to be easier too, I can go over the edge and it's 
not dangerous 
Looking at everything 
Going back up and now that we've seen all this 
Now I'm going to check out the air corridor and maybe find that 
bad guy 
Since it said possible chance of finding or encountering enemies 
here 
Get him on the way back 
This one's really wide so I think 1'11 have to do some little strips 
because it's a little hard to judge where you have or haven't been 
Whoa, he's off the screen, not gonna try it 
So now that I'm up here I guess 1'11 do this outer part of the 
corridor really quick and come back down 
And do the outside now and try and get this guy 
Whoa, he got me, no he didn't 
Aah 
Seems like you have to kinda come out from a ways off or else they 
just turn away from you 
Got him, no, I don't think I'm holding him in sights long enough 
Ooh, two shots remaining, gotta get it 
Don't know why that's not working 
Oh well 
And he's off the board, coming back 

Case 2 

Plan 

That's a really wide flight corridor so there's a lot of area to 

cover there 
And there's also no really direct route to the CA 
So I guess fly as much of the flight corridor on the way to the 
CA and then 
The CA has a very good chance of enemies, so I think what I might 
do is a lot of the corridor first 
And then hit the CA 
The CA, you're kinda boxed in 
If you get in over there and there's a SAM, there's no where to 
go and he's pretty much got you 
So I guess I'll do the flight corridor first 

Thinking Aloud 



Doing this section, go make kind of a border run around the whole 
thing and then concentrate on these two fat areas 
Whoo, that guy's pretty good at shooting me 
So I'm going to try and avoid him 
Because I'm not very good at shooting 
Gotta remember I kind of got away from the board over there 
Ooh, not flying so well 
Go back this way 
Go down 
Now this time I'll stay one swath away from the edge 
And finish up doing this area down here 
Alright and now that that's sort of done, hopefully 
I'll take the middle road here going back up 
And come up here 
Get that section I kinda missed 
Kinda do some of the middle of this guy 
Probably need to get into the CA because there's not a whole 
lot of time left 
Just be cautious in here, fly slowly as I look around 
Oh, there's a bad guy, he's got me in his sights 
I think I confused him 
And I'll go back and get this edge here 
Probably run into him again here somewhere 
Hmm...heJs gone, look for him 
So I think I covered the majority of the CA 
So I'm going to come back out and try and get this big fat area 
here 
Which I didn't do very well the first time 
And there was another UAV out here somewhere, but I don't know 
where he went 
Hmmso I think I covered that decently, I guess I could go back 
in here and look for that bad guy, maybe shoot him in the last 
second here 
Is he around here? 

Case 7 

Plan 

Looking at the corridor, I'm starting at the lower left 
I've got an exit point at the upper right 
1'11 circle around the island at the upper left 
Hit the CA 
Go up to the upper right, come back 



I guess it's like formulating a trajectory of where I want to go 
So I can cover as much of that area as I can 
I'll probably spend more time in the box 
Because there's less of a chance of me getting shot down there 
and it's a critical area for the mission 
I also feel like sometimes I have an attitude 
The first set of go arounds I had an attitude 
Where I was making sure I stayed as much in the air corridor as 
possible 
This time I'll be a little bit more liberal, in terms of missing 
the edge of the Air Corr 
While still being to hit a complete path through the air corridor 
Making sure there's not things there 
That it'll be safe for the troops 

Thinking Aloud 

So it's easier to remember, I think I'm going to follow one part 
of the corridor 
I want to cover as much area of the corridor as I can 
I'll stay up on the left hand side 
So I'm coming up on the island 
I'll make my left to go up and search more 
Ok, so we're just going to stick to the plan 
No reason to deviate 
Coming up on the CA 
So I'll take time to zig-zag to make sure I cover as much area as 
I can 
Yeah, taking my time 
Most of the CA has been scoped out 
I've spent more time in here than probably anywhere else 
This pass I'm gonna exit and make sure the rest of the corridor is 
clear 
At least the path of the corridor 
There doesn't seem to be any reason why the left, the right, or the 
middle of the corridor would be any better to explore so I'm just 
doing something to remember where I was 
OK, that was another UAV 
I saw the direction he took off in 
He didn't shoot me and I didn't shoot him 
I'll look for him as I come back around this way 
He's usually faster than I am if he's running away I won't catch him 
There he is 
Now I've got him 
Circling behind him 



And h e ' s  off  t h e  map 
Got a  s l i g h t  glimpse of him above 
I ' v e  mapped t h e  e n t i r e  r o u t e  
So a t  t h i s  p o i n t  i f  t h e r e ' s  an oppor tuni ty  t o  g e t  an enemy, maybe 
I ' l l  t a k e  it 
He's t o o  f a s t  f o r  me, I ' l l  move on 
A t a n k ,  uh-oh, g o t t a  g e t  o u t s i d e  of h i s  a r e a  
C i r c l e  around, come back i n  on t h e  backside 
I have a  l a r g e r  a r e a  than  him so  I ' l l  have a p r e t t y  good sho t  

Case 4 

Plan 

The l a s t  t ime I took t h e  long way around t o  g e t  t h e r e  [CAI i n i t i a l l y ,  
maybe it w i l l  be b e t t e r  t o  have a  s h o r t e r  pa th  t o  g e t  through t h e  
a i r  c o r r  
So i n s t e a d  of going around t h e  i s l a n d  
I ' l l  go d i r e c t l y  s t r a i g h t  up, go ahead and c l e a r  t h e  e n t i r e  a i r  
c o r r i d o r  a l l  t h e  way t o  t h e  t o p  
Then on my way back spend t ime i n  t h e  CA 
And then  i f  I have t ime,  I ' d  l i k e  t o  s t o p  i n  t h e  CA going back around 
Come back down 

Thinking Aloud 

I know I ' m  going t o  make a  r i g h t  hand t u r n  up he re  
So I ' l l  s t a y  t o  t h e  r i g h t  s i d e  of t h e  c o r r i d o r  
Be on guard 
Ear ly  i n  t h e  game, I go t  t ime t o  go a f t e r  him 
But I missed him and I have t h r e e  s h o t s  remaining 
He's a t ank  on t h e  run ,  I ' m  gonna save my ammo 
Yup, jumped t h e  gun a l i t t l e  b i t  on t h a t  
Need t o  spend more t ime i n  t a r g e t  p r a c t i c e  
There ' s  t h e  UAV 
Got ta  g e t  o u t s i d e  h i s  cone and then  come back 
He's t o o  f a s t  f o r  me 
I ' m  not  going t o  bother  wi th  t h a t  t o o  much 
Look f o r  t h e  t ank  
Slow down a l i t t l e  b i t  
This  is where I saw him come up 
Covering t h e  CA and now f o r  t h e  upper pass  
There is a t ank  
Coming i n  f o r  a s h o t ,  oops, g e t  i n  range 
A l r i g h t ,  now I ' m  out  of ammo 
Any chance I g e t  t o  run ,  I w i l l  run 



Whoa, looks l i k e  I h i t  someone's 
Someone's t a r g e t  t a rge t ing  me f o r  a  second 
And here comes somebody I ' d  r a the r  not face  
On t h e  move 
I covered t h i s  area ,  so I was maneuvering t o  avoid whatever it 
was t h a t  I ran  i n t o  l a s t  time 
And t h e r e ' s  a  s l i m  chance t h e r e ' s  anyone i n  here,  so I ' l l  j u s t  
spend t h e  r e s t  of my time i n  here 

Case 1 

Plan 

I ' m  gonna s t i c k  t o  t he  same plan I had l a s t  time, s taying t o  t he  
r i g h t  
That w i l l  put me, in  t he  CA f o r  a  shor t  amount of time before I 
cover a t  l e a s t  a  path through t h e  corr idor  
And then when I come back, I ' l l  scope out t he  CA 
Try not t o  waste any shots  u n t i l  I ge t  there  and have explored 
t h a t  a r ea  
And then move on 

Thinking Aloud 

I th ink  i t ' s  ge t t i ng  f a s t e r  every time 
Oh, I ' m  i n  someone's . . .  ah, got h i t  
I know t h e r e ' s  a  SAM s i t e  t he re  
Whoa, t h e r e ' s  another one 
Yeah, I 'm t o a s t  

Case 3 

Plan 

There's a  very good chance of enemy contacts  within t he  corr idor  
and possible  chance i n  t h e  CA 
So I ' m  going t o  scoop around t o  t h e  l e f t  of t h e  corr idor  
Spend some time i n  t he  CA f i r s t  where t he re ' s  l e s s  chance of 
running i n t o  enemies 
Once I 've  scoped t h a t  out and cleared it, then I ' l l  move on 
So i f  I do d i e ,  then a t  l e a s t  I ' ve  h i t  t he  CA 
Since I died l a s t  time . . .  s t i nk in '  SAM s i t e s  

Thinking Aloud 



S t i c k i n g  t o  t h e  p lan  so  f a r  
I can g e t  t h r e e  passes ,  so  I ' l l  do t h a t  
This  one v e r t i c a l  pass  
Second v e r t i c a l  pass  
(not  s u r e  what he says  i n  he re )  
OK, scoped out  t h e  CA, moving on t o  t h e  r e s t  of t h e  c o r r i d o r  
Moving up t o  t h e  l e f t ,  so  I do have a  pa th  through t h e  c o r r i d o r  
t h a t  w i l l  work 
Now I ' m  going t o  go b a s i c a l l y  s t r a i g h t  back t o  where I s t a r t e d  
I f  I have more time maybe I ' l l  j u s t  cover some more a r e a  
(not  s u r e  what he says  he re )  
There ' s  one 
Whoa, I ' m  gonna need t o  slow down 
Al r igh t  
Ok, one sho t  t o  go, means I c a n ' t  k i l l  him, maybe I can wound him 
There was one more tank over  he re  
I ' m  not  t o o  a f r a i d  of t anks  
Maybe t h e r e  was one 
I thought  t h e r e  might have been another  
Now I f e e l  l i k e  I ' v e  covered most of t h e  a i r  c o r r i d o r  
Sweeping it one more t ime t o  cover a s  much a r e a  a s  I can 
And then  I ' l l  be out  of t ime 
Did a l o t  of t h e  a i r  c o r r i d o r  . . .  

Case 5 

Plan 

There ' s  a very  good chance of enemies everywhere, so  I ' m  p r e t t y  much 
going t o  s t i c k  t o  t h e  p lan  t h a t  I ' v e  done before  where I ' l l  carve  
out  t h e  s h o r t e s t  pa th  through t h e  a i r  c o r r i d o r ,  brushing  through t h e  
CA, then  come back and spend some t ime i n  t h e  CA, and t a k e  t h e  
longer  pa th  home, t h a t ' s  my p lan  

S3 is  asked, "Do you t h i n k  a very good chance of enemies would 
n e c e s s a r i l y  a f f e c t  how you would p a r t i c u l a r l y  sea rch  through t h e  
co r r ido r?  Are more j u s t  more a t t e n t i v e  when you go through? Would 
you change speeds o r  how weave o r  anything?" 

S3 r e p l i e s ,  "Not u n t i l  I t h i n k  I e i t h e r  s e e  them o r  I know t h e y  s e e  
me. A t  t h a t  p o i n t ,  I ' l l  e i t h e r  t r y  t o  avoid o r  engage on 
whether . . .  i f  i t ' s  a SAM s i t e ,  I ' m  out  of t h e r e  . . .  i f  i t ' s  a  t a n k ,  
t h e y ' r e  p r e t t y  easy t a r g e t s ,  s o  I ' d  probably c i r c l e  back and g e t  
it. . . i f  i t ' s  a UAV, i f  I have a good sho t  a t  it and I 'm c l o s e  enough 
t h a t  I can c a t c h  it before  it f l i e s  away, I ' d  probably t a k e  t h a t  



opportunity, but if I'm not in a good position as I go by the UAV, 
I'll just keep on moving straight through" 

Thinking Aloud 

I think also the whole following the path kind of goes out the 
window at that point too 
My sole focus would be on whoever it is and either engaging or 
moving away 
Ok, so I've got a tank 
One shot, he had me in his sights for a second 
Out of there 
Ok, I'll make sure to avoid that corner next time through 
I'll bump into the CA here 
Steering clear of the SAM site 
Alright, UAV, he was behind me, (??) I saw him 
Keeping an eye out otherwise I'll be out of business (??) 
UAV, circle around back 
Didn't see him 
Ok, come back to my path 
Check out this top part 
It's kind of a narrow area, if there's a SAM site I don't have 
anywhere to run, I'll scoot through 
Ok, I've scoped out everything 
Ok 
Whoa, got someone behind me 
I'll circle around 
See if I can't get behind him 
He disappeared 
Ok, remember the SAM site's up there 
I was going to ask how much time I had1 might have gone for it 

Case 6 

Plan 

I'm still satisfied with the way things are going, in terms of 
going straight through spending time in the CA and taking the 
long road home 
There's a slim chance I'll see enemy contacts anywhere 
So I'll go on my merry way exploring 
Not even gonna have any kind of adjustment 
The last time I wanted to fly faster through the narrow area 
in case there was a SAM site 
I probably won't worry about that this time 



Thinking Aloud 

It  was d e f i n i t e l y  an a r e a  .of l e s s  maneuverabil i ty  las t  t ime ,  I 
f e l t  more vu lne rab le  going through,  but  not  t h i s  t ime 
S t i c k i n g  t o  t h e  p lan  so  f a r  
Yeah, 25 deg of bank 
And t h e  i n t e l l i g e n c e  makes t h e  d i f f e r e n c e  t o o ,  when I s t a r t e d  f l y i n g  
t h i s  miss ion ,  I had my hand a t  t h e  bottom of t h e  j o y s t i c k  and t h e n  
I r e a l i z e d ,  wel l  you should always be ready 
Whereas last  t ime I s t a r t e d  of f  with an a t t i t u d e  of be ing  more ready 
So I ' v e  seen  a good p o r t i o n  of CA 
I have a pa th  from start  t o  f i n i s h  
I ' m  going t o  go t h e  long road around 
J u s t  kind of on a u t o p i l o t  i n  terms of execut ing  t h e  p l a n ,  not  t h i n k i n g  
about a whole l o t  
There would be though, I t h i n k  i f  I was i n  a  r e a l  miss ion ,  thoughts  
o r  a s p e c t s  of where would an enemy be ,  would he be t h e r e  h i d i n g  
behind t h a t  t e r r a i n  
Should I go out  and f u r t h e r  around? 
To avoid him f i r s t  before  I have a  good view of it 
1 minute l e f t ?  
30 seconds 
And now I ' l l  j u s t  carve out  t h e  o t h e r  ha l f  of t h e  a r e a  I missed 
i n s i d e  t h i s  
And I should be running out  of t ime p r e t t y  soon 

Case 2 

Plan 

I n  terms of f e e l i n g  cons t r a ined ,  I know I probably wouldn't  have any 
enemies coming from t h e  l e f t ,  which would be of f  t h e  sc reen ,  so  i f  I 
s t a r t  on t h a t  s i d e ,  i f  I s e e  an enemy I can t u r n ,  because h e ' l l  
l i k e l y  be t o  t h e  r i g h t  of me o r  ahead of me . . .  So t h a t  would be 
reason f o r  s t a r t i n g  a t  t h e  upper r i g h t  and scoo t ing  down t h e  r i g h t  
hand s i d e  f i r s t  I ' l l  probably e x i t  t h e  CA, s i n c e  t h e  p r o b a b i l i t y  
dec reases  ou t  t h e r e ,  t u r n  around with my s i g h t s  forward r i g h t  next  
t o  t h e  a r e a  I ' v e  a l r eady  c l e a r e d ,  so  I continue t o  have a b e t t e r  
i d e a  of where I t h i n k  t h e  enemies w i l l  be coming from 

S3 is  asked,  "Now t h e s e  b i g  lobes  of a i r  c o r r  s e c t i o n s ,  any i d e a  of 
how b e s t  it would be t o  cover t h a t  a rea?"  

S3 r e p l i e s ,  "I was th ink ing  my p lan  might be t o t a l l y  d i f f e r e n t  t h i s  
t ime,  i n  terms of covering t h e  s h o r t e s t  pa th  and making t h e  t r i p  
back, t h e  CA doesn ' t  co inc ide  with a  t r i p  back, maybe I would 



a c t u a l l y  spend some time wandering, and plan t o  leave myself a  
minute o r  so  t o  spend i n  t h e  CA near  t h e  end, because t h a t  w i l l  be 
a t  t h e  end of my f l i g h t  path  through t h e r e ,  t h a t  way I don ' t  have t o  
go back over t e r r i t o r y ,  bes ides  t h a t  t h e r e ' s  a  very good chance of 
enemies i n  CA, so  I want t o  put  t h a t  l a s t ,  I want t o  be ab le  t o  
cover t h e  path  through t h e  co r r i do r ,  make sure  t h e  t roops  can ge t  
c l e a r ,  g e t  through t h e r e ,  but  s ince  I ' m  a UAV (??) r e a l l y  accomplish 
a t  l e a s t  one ob jec t ive  of t h e  mission before running i n t o  enemies" 

Thinking Aloud 

To cover t h e  most a r ea  i n  here  I need t o  zig-zag pa t t e rn  
I ' m  moving p r e t t y  quick r i g h t  now 
It  may he lp  me cover more a r e a  
Also makes it a l i t t l e  harder  t o  con t ro l  
I f  I ' m  moving a t  t h i s  pace I may not  have a problem 
Whoa, SAM, I ' l l  ge t  out of t h e r e  
Ok 
I t ' s  always good t o  have i d e n t i f i e d  where those  places  a r e  a t  
I f e e l  l i k e  t h e  only r e a l  way t o  a t t a c k  it would be t o  move i n  hot  
and f a s t  on it 
Stop r i g h t  when i t ' s  i n  range,  f i r e  off  two sho t s  i n  rap id  
success ion 
So knowing where i t ' s  a t  is p r e t t y  key 
So I ' l l  keep t h a t  i n  mind and I have time i n  t h e  end and I ' ve  
explored everything I need t o  it might be he lp fu l  f o r  our guys t o  
have a SAM s i t e  taken ca re  o f ,  but  because i t ' s  not  something I ' m  
very good a t  doing, I may have somebody e l s e  do it 
So I ' l l  make one more quick pass  through here  
Come t o  t h e  end, execute my plan i n  t h e  CA 
Ah, t r i g g e r  happy t h e r e  
L i t t l e  herky, jerky so ,  I ' m  a  l i t t l e  a l l  over t h e  place  because 
i t ' s  moving so  f a s t  
And t h e r e  he is  
Ok, UAV, h e ' s  t a i l i n g  me, ooh 
C i r c l e  out  and around 
Come back a t  him i n  t h i s  d i r e c t i o n  
Whoa 
Ok, behind him, maneuvering 
This is r e a l l y  t r i c k y  
Aah, two sho t s  gone 
Ok, h e ' s  l e f t  on h i s  way, a t  l e a s t  a s  f a r  as I can t e l l ,  maybe 
h e ' s  coming back, but  I am moving on 
I ' m  gonna t r y  my s t r a t e g y  I th ink  f o r  t h e  SAM s i t e  
I f  h e ' s  s t i l l  t h e r e  



I feel like it might be a good plan 
Get lined up on him 
Got finger on trigger and go 
(?? Something about not tight enough) 

Case 7 

Plan 

Slim chance of enemy aircraft within CA 
So in order to diminish the likelihood of being struck by an enemy 
and completing the entire task as planned 
Go to CA first and take the right branch of the corridor 
Cover the entire CA 
After which we'll continue with the corridor which goes to the far 
right of the viewing area 
And if we have time, go back to visit the loop in the corridor 

Thinking Aloud 

Sticking to the right of the corridor here, trying to make things 
a little easier for me to remember 
Coming up to the split 
Head to the right like I said 
Here's the CA 
Sort of sweep through it 
Trying not to miss anything which is kinda hard 
Not sure that this is helping, but alright 
It's better if I slow down before I hit the sides 
And I definitely missed a spot there, but it's ok, cause heading 
back, and that's probably it right there 
Continue on and hit corridor down here 
It's pretty big, so I might just hang around here the rest of 
the time 
Oops, there's an enemy 
Looks like its moving, so I'm going to just ignore it for now 
Let's see, how are we going to do this 
And, going for final sweep 
Looks like that's a stationary object there 
That was easy, ok 
Finish up by hitting this little corner that I missed 
Alright, well, that's about all I have 



Case 1 

Plan 

Same map as we used from last time except now there's a possible 
chance of enemies in the CA 
From experience of the last scenario . . .  we were short on time and 
couldn't finish the loop area and go through the entire corridor, 
but just visiting the corridor on the right side of the screen 
This time I think we can fit it in by trying to go first for the 
loop 
And then going toward the CA 
If you have time after the CA, going for the corridor on the 
right side of the screen 
See if that works 

Thinking Aloud 

Alright, I'm not controlling very well this time 
It might just be me 
So I'm gonna go ahead and go the left this time 
What I'm gonna do is go to the right hand side 
Do another sweep of the loop so that I can get the whole thing 
And come back underneath here 
Whoa, alright, so that looks like an enemy 
And it looks like a stationary one which means I don't have to 
worry about hitting it right now 
I would to actually get the CA done 
Since I'm going way fast 
Oh no . . .  did I just crash? Sweet . . .  oh . . .  did I just . . .  no way 

Case 2 

Plan 

Very good chance inside CA and CA happens to be at end of corridor 
anyways 
So I was thinking to try and get the majority of the corridor and 
then when there's a minute left or so head for the CA and see what 
happens . . .  maybe a little over a minute 
In the event that I die, I would have at least gotten much of the 
.corridor covered 

Thinking Aloud 

Let's see if.1 don't crash into something this time 
This weird region up here, I'll try and cover it and then head 



back around 
(I remind him about how t o  slow down) 
Oh, pu l l i ng  back slows down, ok 
Okie-dokie 
( I  c a l l  out  time) 
Al r igh t ,  one minute, looks p r e t t y  good 
Before I t ake  t h i s  sec t ion ,  I ' d  l i k e  t o  do a quick(groans) 
Al r igh t ,  t h a t  works 
Quick sweep of t h i s  a r ea  i n  t h e  cor r idor  
And do a l e f t  t u r n  here 
Get t h e  cen te r  t h a t  I missed 
(loud sigh)and now t h i s  a r ea  
1'11 s t a r t  a t  t h e  t o p  a c t u a l l y  
Ok, and r i g h t  t u r n  
And t h a t ' s  way too f a r  down 
( I  c a l l  out 1:45 l e f t )  
Ok, l e t ' s  j u s t  do one more sweep a f t e r  t h i s  one 
(sigh) . . .  love those  t u r n  rad ius  
Yeah, wel l ,  I ' m  not  going t o  g e t  t o  t h e  r e s t  of t h i s ,  which is 
f i n e  
I d e f i n i t e l y  want t o  h i t  t h e  CA 
Get ready f o r  some bogeys 
Ok, now I don' t  want t o  h i t  t h e  s i de ,  I ' m  guessing 
That ' s  much b e t t e r ,  except f o r  t h a t  
Whoa, g e t  out  of t h e r e ,  whoa buddy, whoa buddy, he ' s  gunning 
f o r  me 
Yeah, he ' s  d e f i n i t e l y  t a r g e t i n g  me 
Whoa, what j u s t  happened 
Well I got  h i t  f i r s t  of a l l  
Ok, we l l ,  no t  success fu l  
Well, t h a t  ' s ok 

Plan 

Similar  overview o r  layout a s  I ' ve  seen before ,  except now t h e r e  
is a poss ib le  chance of enemies both i n s ide  and ou t s ide  
Knowing t h a t ,  it would make sense t o  f i r s t  do t h e  loop l i k e  l a s t  
time and then go f o r  t h e  CA and then see  what's l e f t  
Because of t h a t  wall t he r e ,  and t h e  f a c t  t h a t  I r an  i n t o  t h e  wall  
last time 
I ' d  l i k e  t o  i n  my search p a t t e r n  ins tead  go alongside t h e  wall 
p a r a l l e l  t o  t h e  wall 
So t h a t  I have l e s s  chance of running i n t o  it i n  my sea rch  of 



the CA 
And do that one row parallel to the wall and continue on with 
the search 

Thinking Aloud 

Off we go 
While I'll never get around to it, I'm just going to stick one 
side, one portion of this corridor, just because 
Whoa, whoa, whoa (laughs) 
Wow, so that wall is actually sticking out in several spots, 
which is not friendly 
And the plan, hey, oh goodness 
Of course, I could be sneaky and crash as quickly as possible 
so I don't have to stay here and fly Jon's dumb sim (laughs) 
Ok, that's not good 
Alright, looks like I (??) 
Oh gosh, maybe you just shouldn't have made it as jumpy as it is 
Either that or I'm not a helicopter pilot 
Whatever this has to do with helicopters 
Alright, so here's the plan 
(I call out a little over two minutes) 
Plenty of time, plenty of time 
Stay as close to the wall as possible 
There is a bit of variability going on with the throttle 
It looks like I'm going faster if it's all the way up 
Right? Or am I just imagining that? 
No . . .  I guess not 
(I call out 1:20) 
Oh, what the heck, alright I'll be back for 
Does that mean I didn't get hit? 
Cause I was red for a little bit? 
Let's see what we got here 
Come on shoot, is it really not shooting., shoot . . .  oh, zero shots 
remaining, what happened? 
What's going on here, I didn't shoot . . .  

Case 3 

Plan 

Very strong possibility of seeing enemies outside of the CA and 
I'd like to get the CA done and survive through as much of the 
scenario as possible 
So I'll go directly to the CA using the left fork 
Because it's a little odd-shaped there, what I'll do is use an 



up and down pattern for that rectangular region and then take 
that small sub-rectangular region afterwards and then continue 
on with the rest of the corridor if I get the chance to 

Thinking Aloud 

Alright, stick to the left-hand side here 
Up and down pattern I was talking about 
Seeing as much of the corridor (??) as possible 
And one more sweep 
Actually, I'll go back to what I did and what I'll now do 
Come down here since it's such a small area 
And do that and whoa 
One more sweep 
And I think that got it all 
Alright, on now 
What I'll do is travel the loop until I've hit where I've been 
and then come around 
Stay centered 
Ok, nice . . .  I want to stay out of the range the whole time 
I'm gonna do this section here . . .  whoa 
Thirty seconds, I might as well go to where I know I definitely 
haven't been 
Stick to that side 
(Making noises) 

Case 4 

Plan 

Possible chance of enemies inside corridor and slim inside CA 
I'm willing to take the chance of being in the possible air 
corridor and see enemies just for the sake of efficiency 
What worked well was doing the top of the loop and then coming 
down into the CA and finishing that 
And then doing the right hand side of the corridor 
Because of the big obstacle on the right side and the one on the 
left side of the CA, I think what I'd do is the up and down pattern 
in the search to decrease my chances of hitting the wall 

Thinking Aloud 

Stick to the top here 
I think I'm getting better at this, oops discretion 
Now I'll start this ...g oodness, this thing's crazy, it's got a mind 
of its own 



Ok, so t h i s  is  the  kind of search pa t te rn  I want t o  do 
Of course, t h e  f a c t  t h a t ' s  it a t  t he  top  screen is probably s imilar  
t o  being an obstacle . . .  but t h a t ' s  ok 
I ' l l  j u s t  be carefu l  
( I  t e l l  him he could go off t he  screen, he jus t  has t o  f ind  h i s  
way back) 
Oh.. .got it. 
You could kinda use those corr idors  i n  there  a s  reference points ,  
I suppose 
Actually, I think I might want t o  do one more run 
Ok, well I f e e l  l i k e  I 've  got ten most of t h a t  
. ( I  c a l l  out two minutes) 
Two minute warning 
Ok, so I ' l l  go here and get  ready i n  case the re ' s  any enemies 
Whoa . . .  ok t h a t ' s  one shotfour shots  remaining, i n  case we see him 
again 
Yeah, wel l ,  l e t ' s  t r y  and go f o r  him t h i s  time..ok 
Ok, well I ' l l  do the  center ,  t h a t ' s  what I missed because of the  
disturbance 
I 've  already covered t h i s ,  so I ' m  going t o  t r y  and speed through 
it so I can cover the  other  sect ion 
Looks l i k e  t h i s  is a l l  I need i n  here 

Plan 

Alright ,  so t h e r e ' s  a  s l i m  chance of enemies i n  a l l  areas  i n  
which case I should go about it without changing my s t ra tegy  
because of t he  enemies 
What I ' l l  do is go up the  top  fork ,  around the  top of the  object ,  
cover t he  corr idor  
A t  which point I w i l l  do t h e  CA, f i n i s h  t h a t  
Andcontinue t o  the  bottom portion of the  corr idor  
And whatever I can ge t  on t h e  top  pa r t  t h a t  I missed 

Thinking Aloud 

Alright well I ' l l  s t i c k  t o  the  l e f t  s ide  here 
Whoa . . . y  eah, not doing very good am I 
Ah, i t ' s  eas i e r  when you have it up here 
Ok, so I got t h a t  top  p a r t ,  now I want t o  h i t  the  CA 
Wow, t h a t ' s  b izar re  
Dude, t h i s  th ing ' s  going wicked f a s t  
Alr ight ,  well ,  t h a t  whole wall th ing  is kind of here 
So maybe I ' l l  modify my search and do t h i s  



These are remarkably closer to each other, th an... 
So I think after this one I'll be pretty much done 
Alright, that's about good 
Can I (I call out two minutes) remember . . .  
Slow down here for a second, get my bearings 
You know, the corridor gets a little narrower here, (??) 
Do the center here 
(??) 
I still have to do the top portion 
(I call out one minute left) 
(Big sigh) 
Pretty much got that whole thing here and so I'll figure what 
I do is just kill myself 
No scratch that . . .  see if I missed anything here . . .  it's fairly 
invariable 
What really would have been nice if there had been a trail left 
behind to see what you've already seen 
(I reply by telling him that'd be cheating) 
No it wouldn't 

Case 1 

Plan 

Looking at the terrain here 
I have a circular corridor around some terrain 
Then there's the CA 
I know I have a possible enemy contact in the corridor 
So I can expedite somewhat through the corridor with a very good 
chance of there being an enemy in the CA 
My initial plan will be to focus rapidly on as much corridor as 
possible to accomplish that mission 
Move slowly through the CA providing myself exit lanes and be on 
the lookout for the enemy 
And then focus the remainder of my time in that CA 
And then only after I'm comfortable with the CA I'll continue 
with the last third of the corridor on the upper right hand side 

Thinking Aloud 

As per my pre-mission plan, I'm going through the corridor 
Enemy contact is possible so I'm being somewhat guarded 
Lost my wingman, so I'm being careful since I don't have a wingman 
Approaching the juncture here, critical terrain 



I ' l l  go t o  the  l e f t  r e a l  quick, analyze t h a t  portion of t he  t e r r a i n  
Actually I ' m  going t o  come i n t o  the  r i g h t  and do an i n i t i a l  glance 
i n t o  t h e  CA here 
That t u r n  d idn ' t  seem r e a l i s t i c  
Ok, oops I got engaged 
Ok, so I know t h e r e ' s  somebody po ten t i a l ly  i n  the  bottom l e f t  
corner of t he  CA 
I ' l l  come back i n  from the  top knowing t h a t  there  is a  poten t ia l  
f o r  a  t h r e a t  i n  the  bottom corner 
Which doesn' t  necessar i ly  mean the  only place,  but 
Now I ' m  approaching the  CA, I ' m  gonna move slow, gonna do the  top 
search here,  move slow through here 
Give myself an e x i t ,  r i g h t  now I . . . ooh ,  crap,  t h a t ' s  some tough 
t e r r a i n  r i g h t  there  
And back down, you put me r i g h t  up against  the  t e r r a i n  . . .  t h a t ' s  not 
f a i r  
Ok, now I ' m  searching t h e  top portion, so I ' m  working my way south 
Since I think the re ' s  enemies i n  the  south, by searching from 
bottom . . .  e r ,  from top t o  bottom 
I know t h a t  i f  I ge t  i n  contact with the  enemy, I can move up t o  
t h e  top  and get  somewhat s a fe  
I don't  l i k e  the  t e r r a i n  here a t  t he  edge of t he  perimeter, so 
I ' m  going t o  search t h a t  
Ooh, crap, I almost h i t  it r i g h t  there  
And move back up, give myself a  l i t t l e  b i t  of buffer area next 
t o  t h a t  t e r r a i n  
Continuing t o  search the  CA, t ry ing  t o  go slow 
Get a  good, de ta i led  search 
Moving i n  almost l i k e  a  movement t o  contact type fashion because 
I know the re ' s  some enemy at l e a s t  somewhere down there  
Where exact ly  he i s ,  I don't qu i t e  know, but I know t h a t  I ' m  
ge t t i ng  close t o  him 
Since I did ge t  contact somewhere i n  t h i s  v i c i n i t y ,  I ' m  going t o  
come t o  a  hover and milk my way over t h i s  d i rec t ion ,  give myself 
a  higher chance of 
Ok, I got engaged, I know where t h e  enemy's a t  now 
Come back around 
I know where he ' s  a t ,  I know t h a t  he ' s  a  SAM . . .  oops, sh*$ . . .  ok 
t h e r e ' s  two SAMs i n  the re ,  one i n  each corner 
Cut here through the  middle of them 
Come back around t o  the  top,  see i f  I can ge t  an engagement here 
And do some running f i r e  on t h i s  guy, I ' m  report ing him t o  higher 
I ' m  going t o  sweep by a s  f a s t  a s  I can on him 
I don't think t h a t ' s  working r i g h t  r e a l  well so f a r  a s  ta rge t ing  
Aah, t h i s  sucks 



Case 3 

Plan 

Ok, because I know there's a very good chance in the corridor, I'm 
going to move more gingerly in the corridor and since it's possible 
in the CA, I'll move more quickly through the CA trying to examine 
all of the CA, but I'll be more careful than ginger. I'm actually 
going to move to the CA first, staying outside the corridors and 
then move my way through the corridors. That way I can accomplish 
the CA first and then do the higher risk mission second 

Thinking Aloud 

I'm in the CA now, moving at a somewhat quick pace but not blazing 
through there 
I want to make sure I cover the whole area and provide good 
intelligence to what's inside the CA 
Make sure I cover every square inch of it with my sensors 
I also know that this portion I'm in the corridor also, the 
reports for inside the corridor so I'm being cognizant of a 
potential enemy contact and moving at an average rate of speed 
And continuing to work through the CA 
I'll do one more upsweep through the CA, then 1'11 move to the 
right hand side of the corridor and work my way around the terrain 
feature 
Knowing that enemy contact is very likely, very good 
And I'm done, I'm comfortable with my analysis of the CA 
Since I failed to do any of the corridor, I'll work my way 
counter-clockwise around the center feature 
(I call out a little under two minutes) 
Halfway through, so I gotta speed up a bit, wasted too much time in 
the CA 
So it doesn't look like I'll be able to accomplish all of my mission 
objectives 
I'll move through the center of the corridor where my friendly 
units are more likely to travel 
Keeping in mind a tactical exit strategy in the event of contact so 
as not to hit the terrain 
You're channelizing me a lot in these corridors 
Focus on this junction here, get a good sweep of the terrain 
Approaching my s.p. [starting point], still no enemy contact 
1'11 call that portion of the corridor clear, as much as possible 
I'll do a more deliberate search of the corridor leading up to the 
CA because this seems like a highly probable route of travel for us 
to move to the CA 



I'm making an assumption that the paths are designed for other 
aviation assets to come up later 
I'm trying to scan both sides of the corridor 
Trying to get as much overlap so any enemy that might be in a position 
to affect the area along the corridor but might be outside the corridor 
And there doesn't look like there's any enemy contact anywhere 

Case 4 

Plan 

I have the circular route around the corridor where there's a 
possible enemy contact 
I'll initially want to move towards the CA 
Because I don't have a lot of time and there's a lot of area to 
cover 
I'll choose to go up the corridor this time vs. directly to the 
C A 
Being cognizant of inside the CA there's in the northeast side 
a large mass of terrain which minimizes my maneuverability so 
as I scan that area, I'm going to want to scan that area from 
the south moving north this time 
Primarily to ensure that I have a turn point where I'm not 
boxed in by the enemy or I get surprised 

Thinking Aloud 

Whoa, ok, and I'm moving through the corridor 
It's a lot touchier this time for some reason 
I know there's possible enemy contact in the corridor but I don't 
have a lot of time so I have to move somewhat expeditiously and 
efficiently through the corridor 
Approaching the corridor I'm going to choose to go right up 
through the CA this time 
Then around the terrain feature 
I'll check the southern portion of the CA now 
There's a slim chance of enemy contact so I can be slightly 
less cautious 
Now as I approach this terrain feature, I'm going to move slowly 
up along it 
In the event I have contact, I can move south because I have 
limited maneuverability to the right side 
With a successful pass through here I'm creating a larger buffer 
zone of maneuverability for myself 
Knowing also that the enemy is highly likely to be up on that 
high terrain with air defense weapons to try and use them against me 



Moving back through CA moving expeditiously because I know that 
intel reports are never wrong 
Hence there's a slim chance of enemy contact in the area 
And it appears on face value that the enemy information was correct 
that there is no enemy activity inside the CA 
So I'll focus now on this portion of the course, of the corridor 
that we're trying to cover 
Going faster than I would normally want to given the chance of 
enemy contact 
But I have a large amount of terrain that I have to cover to meet 
the mission goals 
I'm going to focus on this junction here because it's a critical 
point in the path 
Where a lot of aircraft might be operating 
Passing back through the CA and into the corridor 
The corridor has widened up a bit so I'll do a little more back 
and forth 
Since obviously my sensor doesn't range the corridor width 
Trying to get some overlap 
Trying to get as much coverage of the sector as I can 
But also in a time efficient manner 
Whoa, ok, I have enemy contact 
He's moving, I'm gonna finish up the path, the corridor up in here 
Report the presence of an enemy tank at this time, moving back 
towards the tank 
This is where I got contact with the tank, it looked like he was 
moving towards the northwest 
There's the tank, I don't know if that's the same tank or a 
different tank so I'll just gingerly move in his direction 
That's a fast f*#$in tank 
Chasing him for a stupid reason 
I'm suckered in, I really want the kill so I can get my air medals 
Lost myself, I'm in the clouds, still following him 
Still chasing him, even though he's outside the corridor, outside 
the CA, so it makes no sense 

Case 7 

Plan 

Again this time I'm going to move through the corridor in a 
somewhat time-efficient manner 
Because there's a possible enemy contact 
I'll examine the CA a little more quickly because there's a 
slim chance of enemy contact 



So I ' l l  focus  a  l o t  of t h e  requ i red  time i n  t h e  CA but  a  
major i ty  of time where t h e  t h r e a t  is 
Done 

Thinking Aloud 

Searching through t h e  c o r r i d o r  now 
Move back t o  t h e  CA 
Examine t h i s  por t ion  of t h e  c o r r i d o r  so  I don ' t  g e t  su rp r i sed  
by t h e  bad boys 
Now I ' m  i n s i d e  t h e  CA 
Being cognizant I don ' t  have much maneuver room because of t h i s  
t e r r a i n  f e a t u r e  
J u s t  cont inuing t o  search t h e  CA 
Focused more on t h e  CA because i t ' s  c r i t i c a l  by i t s  d e f i n i t i o n  
and s p e l l i n g  
And moving back up nor th  
And one more sweep south  
And s i n c e  I ' m  down here ,  I ' l l  j u s t  go t h i s  d i r e c t i o n  
No r e a l  explanat ion of why, j u s t  because 
Cor r idor ' s  wide t h e r e ' s  a  l o t  of a r e a  i n  t h e r e  
Looking f o r  h id ing  enemy t h a t  might need t o  be repor ted  on o r  a  
t h r e a t  t o  a  follow-on mission 
Ok, I have enemy contact  t h e r e  
Des t ruc t ion  of enemy tank ,  I ' l l  r e p o r t ,  a t  t h i s  po in t  i t ' s  t o o  
e a r l y  and I don ' t  want t o  r i s k  g e t t i n g  k i l l e d  and not  
accomplishing my primary mission,  so  I ' l l  f i n i s h  up t h i s  s e c t o r  
I won't f a l l  i n  t h e  t r a p  t h i s  time of chasing him down 
Ooh, c rap ,  t h a t ' s  a  SAM s i t e  t h e r e  . . .  t h a t ' s  of c r u c i a l  i n t e l l i g e n c e ,  
h e ' s  chasing me 
Which I d i d n ' t  know happened 
Now I ' m  running, I ' m  sca red ,  got  some t e a r s  
Well, I ' m  i n j u r e d ,  not  going t o  choose g e t  i n  a  f i g h t  with 
t h e s e  . . .  ooh, sh#& 
I ' l l  move back up, r e p o r t  t h e  enemy contact  
There ' s  another a i r  defense weapon, I ' l l  r e p o r t  t h a t  l o c a t i o n  
He's moving i n t o  t h e  CA so  I ' l l  fo l low him i n t o  t h e  CA and r e p o r t  
t o  my higher  headquar ters  t h a t  h e ' s  f a s t  a s  crap  
There he is t h e r e  
I ' l l  chase him, g e t  a s  much r e p o r t i n g  on him a s  I can 
But choosing not  t o  g e t  engaged and r i s k  l o s i n g  my own l i f e  
And not  accomplishing t h e  range of missions 

Case 5 

Plan 



There 's  a very good chance of enemy contact  throughout t h e  cor r idor  
and CA so  I have t o  use e f f i c i e n t  maneuvers both i n  t h e  cor r idor  
and CA 
I ' l l  move through t h e  cor r idor  d i r e c t l y  t o  t h e  CA focusing a l o t  
of my a t t e n t i o n  t o  t h e  CA and then move counter-clockwise around 
t h e  t e r r a i n  f e a tu r e  
And back through t h e  CA t o  f i n i s h  up t he  remainder of t h e  cor r idor  

Thinking Aloud 

I ' m  moving through t he  cor r idor ,  I ' m  being somewhat . . .  I ' m  t r y i n g  
not  t o  be reck less  with my maneuver because I know t h e r e ' s  a  good 
chance of enemy con tac t ,  and I ' m  scared 
I have no wingman, I ' m  out t he r e  by myself 
Searching t h e  cor r idor  a rea  a s  much a s  I can 
Moving up towards t h e  CA where r epo r t s  of enemy contact  a r e  high 
Search t h e  cor r idor  somewhat more e f f i c i e n t l y  
Being de l i be r a t e  based off t he  l ikel ihood of enemy contact  
Approaching t he  CA 
I ' m  more aware of my surroundings 
Enemy tank . . .  he engaged me . . .  I ' m  choosing t o  bypass and r epo r t  based 
on t h a t  I ' m  not  f a r  along i n  my mission and i t s  not  bene f i c i a l  
f o r  t h e  mission f o r  me t o  s i t  t he r e  and ge t  i n  a gun f i g h t  with 
t h e  guy 
Since my mission is  reconnaissance 
Moving through t h e  CAY t r y i n g  t o  ge t  t h i s  t e r r a i n  f e a t u r e  so i t ' s  
not  such an obstacle  aga ins t  me 
There 's  t h e  enemy tank,  I ' l l  see  i f  I can ge t  a  quick shot  off  
on him 
Well, h e ' s  dead and I have no more b u l l e t s  
I t  took me f i v e  sho t s  t o  k i l l  him, so now my choices about g e t t i n g  
i n t o  a gun f i g h t  l a t e r  on a r e  p r e t t y  l imi ted  
So now I ' m  i n  su rv iva l  mode s ince  I ' m  winchester 
I ' m  gonna focus on t h e  CA a s  much a s  I can 
Knowing t h e r e ' s  some enemy contact  
He probably ca l l ed  h i s  buddies and they know t h a t  I ' m  here  
Being very de l i be r a t e  of my maneuver through t h e  box 
Trying t o  s t a y  adjacent  t o  a reas  t h a t  I ' ve  a l ready scanned so t h a t  
I have an e x i t  a rea  t o  move t o  i n  t he  event of f u r t h e r  enemy contact  
There 's  t he  dead enemy tank,  t h e r e ' s  some bodies laying around 
Keeping t he  northern s ec to r  of t h e  CA a s  my examined a r e a  so  t h a t  
i n  t h e  event of contact  I ' l l  t u r n  up i n t o  t h a t  a r ea  
Passing by t h e  tank again . . .  what's up dudes 
Now t h a t  looks l i k e  i t ' s  it f o r  t h e  CA, I ' l l  f i n i s h  up a l i t t l e  
more of t he  cor r idor  with my remaining time 



Oops, there is a SAM site, I have no more weapons so I'll report 
on his position 
Where there's one there may be more, so I'll try and do a somewhat 
ginger scan in this area 
Right where the corridors are entering and exiting the CA 
I'll scan over here staying outside of his weapons range 
Again looking at the corridor and where it intersects with the CA 

Case 2 

Plan 

There's a very good chance for enemy contact in the CA and since 
it's at the end of the corridor I'll do a hasty search in the 
corridor and since there's a very good chance in the CA when I 
approach that area last, I will search it much more deliberately 
being cognizant of the large western terrain in the CA and how that 
can limit my maneuverability . . .  I take it you did that on purpose? 

Thinking Aloud 

I'll search this large corridor area, which was obviously developed 
by a freakin' flight school student 
Somebody's who has never developed a corridor before in their life, 
that is pretty obvious 
The corridor is 27 km wide, but hey, whatever suits your boat 
This isn't a corridor, it's an area, a freakin' flight area, but 

hey 
Now it's starting to turn into a corridor here 
Being more deliberate here, because it's a little smaller and 
reasonable 
Have search boundaries on, pretty rough terrain here, doesn't lend 
itself to hanging out with the enemy and getting shot at here 
Now I'm back up in Wyoming here, the Wyoming corridor 
Twice the size of Wyoming, searching the area as best as I can 
Turning fuel into noise at this point, no real enemy contact nor 
do I have a high belief that there's enemies in the area, but you 
never know 
Getting ready to set up my approach into the CA 
I'll stay away from terrain this time initially 
Slow down a little bit and scan the eastern portion first 
Whoa, sh#&, I turned totally the wrong way 
Mistake of mine, I turned into the enemy, rather than away from 
him 
There's enemy contact already in the CA, so 1'11 go a little bit 
slower inside that area 



I ' m  mad a t  myself now f o r  bad r e a c t i o n  
Move back up through t h e  CA here  
Working myself towards t h e  t e r r a i n  f e a t u r e  
So i n  t h e  event ,  when I move towards t h e  t e r r a i n  f e a t u r e ,  i f  I 
have enemy con tac t ,  I can move t o  t h e  e a s t  given t h e  s i t u a t i o n  
I have repor ted  t h e  enemy contact  t o  my higher-ups a t  headquarters  
He was a  UAV o r  f l y i n g  something . . .  
Approaching t h e  t e r r a i n  f e a t u r e s ,  so  I ' m  more cognizant of my 
maneuver d e s i r e s  
I know t h a t  I can go t o  t h e  l e f t  i n  t h e  event of contact  i n  t h e  
a r e a ,  but  not  t o  t h e  r i g h t  
Corner he re ,  whoo, ok, have enemy contact  
Looks l i k e  t h e  same enemy, UAV 
Approaching now back up i n t o  here 
Plucked him, plucked him dead 
I ' l l  continue t h e  reconnaissance up t h e  t e r r a i n  f e a t u r e ,  again  
knowing t h a t  it f o r c e s  me t o  t h e  r i g h t  hand s i d e  

Case 6 

Plan 

On t h i s  scenar io  he re ,  I have a  c i r c u l a r  co r r idor  around t e r r a i n  
f e a t u r e  and a  CA towards t h e  end of t h e  rou te  c o r r i d o r s  and 
where they i n t e r s e c t  
There 's  a  s l i m  chance of enemy contact  
So I ' l l  be more has ty  i n  my movements and focus more of my 
time i n  t h e  CA where t h e  enemy doesn ' t  appear t o  be a  f a c t o r  
i n  t h i s  e n t i r e  mission 

Thinking Aloud 

Since t h e  l o c a t i o n  of t h e  CA i s  towards t h e  end of t h e  c o r r i d o r ,  
I ' l l  move up towards t h e  CA a t  a  f a s t  r a t e  on one s i d e  of t h e  
c o r r i d o r ,  t u r n  around and work myself back along t h e  o t h e r  c o r r i d o r  
and approach t h e  CA from t h e  nor th  t o  t h e  south  Do a  quick southern  
s e c t o r  scan, do an i n i t i a l  look-through i n t o  t h e  CA, g e t  some p o i n t s  
Thinking about t h e  CA Again, moving a s  f a s t  a s  I can through t h e  
cor r idor  a t  t h i s  point  knowing I a l ready covered t h e  o t h e r  ha l f  o r  
most of t h e  o the r  hal f  Since I ' m  not  going t o  come back through t h i s  
c o r r i d o r ,  I ' l l  do some cen te r  weaves Randomly search t h e  c o r r i d o r  
but  a l s o  conserve some time I can spend i n s i d e  t h e  CA Sor t  of doing 
a has ty  reconnaissance here  of t h e  cor r idor  No enemy d e t e c t i o n  t h u s  
f a r  So I have t h r e e  minutes of f u e l  remaining, while I ' m  s t i l l  
f l y i n g  around, I don ' t  know . . .  brave And approaching t h e  CA where 



I'll do a very deliberate search Go from one corner to the next and 
then move back based off of its shape I know I've already covered 
the southern portion Still reconning the CA, trying to cover every 
square inch of it as I can And I'll still just searching the CA, 
weaving back and forth along it I'm running out of time, so I'll 
finish up the little bit of corridor which is remaining right here 
I'm confident there is no enemy activity inside the CA Or anywhere 
on this whole map, at least that I've found, at least And back 
through the CA By nature I'll focus more on the CA and where the 
corridors intersect, because that's where my friendly forces will 
be, coming up to intersect up in the CA Now I'll go back in these 
woods, search these mountains, looking for A1 Qaeda caveso 
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