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Abstract

Tactical control is needed in environments characterized by uncertainty and con-
tinuous, dynamic change. Given the likelihood of time constraints and high risks
associated with poor tactical choices, current autonomous vehicles do not possess the
decision making abilities to successfully perform in these environments. However,
human experts frequently operate in these domains where they are forced to make
quick, reactive decisions based on incomplete information. We propose, then, that the
first step in augmenting autonomous vehicles (AVs) with improved tactical control
capabilities is to learn, encode, and apply tactics exhibited by human experts. To
test the method, five human subjects were given the task of performing an armed
reconnaissance mission in a simulation environment over multiple cases with varying
terrain and probability of enemy contact. By scoring the performance in each case,
the best actions and decisions were filtered out and analyzed in depth to understand
the strategies and tactics behind them. Human cognitive models and decision making
theories were utilized to determine the cognitive processes underneath the decisions
as displayed by the human subjects’ think aloud reports and surveys. A baseline
autonomous vehicle controller was designed independent of the human-in-the-loop
experiments that could also perform the reconnaissance mission. After capturing the
human tactics and encoding them into statechart form, a revised AV displayed a su-
perior ability to engage enemy contacts uncovered during the reconnaissance when
compared to the baseline AV. A final framework is presented that outlines how to
learn and apply human-inspired tactics in future settings.
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Chapter 1

Tactical Decision Making: Humans
and Automation

The purpose of this thesis is to address the following two related questions:

1. How can the tactical decision making capabilities of human experts be
learned and transferred over to an autonomous vehicle?

2. Can a human expert learn how to exploit vehicle-specific dynamics in
tactical scenarios to achieve high levels of performance for goal-oriented
missions?

Autonomous vehicles (AVs) currently perform reconnaissance missions [50]. How can
they be improved to perform armed reconnaissance missions? What are the major
limitations in control systems that exclude AVs from participating in such tactical
scenarios? : :

. This research proposes that the missing piece is the ability to generate appropri-
ate decisions when the environment is both uncertain and dynamic. Human experts
operating in tactical environments must make decisions all the time based upon in-
formation that is uncertain and/or missing. In fact, these human experts train so
much for these environments because of the uncertainty, the decision making process
becomes “intuitive.” Selecting courses of action based on “intuition” is extremely
hard to quantify. Furthermore, human experts operating in tactical environments
must quickly generate decisions due to the dynamic change in the environment. This
time-constrained, on-line computation problem is very difficult to implement. Fi-
nally, human experts operating in tactical environments must respond appropriately
to novel situations. To write software code for unknown and unforeseen circumstances
is an enormously tough challenge. All of these difficulties for AVs are an accepted
element in the human expert’s task. Therefore, this research proposes that the first
step in creating better decision making AVs is to learn from the human expert.
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1.1 Motivation

AVs in the battlefield do not yet have the control capabilities to replace pilots in
tactical situations. The major advantage of integrating AVs into today’s air forces
is that the probability of losing human pilots decreases, especially in extremely risky
and dangerous missions. Military commanders are less and less willing to send pilots
into situations where the expectation of loss of life is high compared to the perceived
benefit of destroying a specific target. This reluctance is because we place a high
value on human life. Military commanders would be more willing to risk losing an
AV in exchange for destroying a high value target.

Because the theory of decision making is a central theme in this research, it is
important to show at the outset the mathematical validity of the above reasoning.
The military commander’s choice to risk an AV rather than a human life can be shown
to be mathematically valid, or rational, using techniques from classical or normative
decision theory. According to classical decision theory, a choice is rational if it meets
the following three criteria [15]:

1. It is based on the decision maker’s current assets.

2. It is based on the possible consequences of the choice.

3. When these consequences are uncertain, their likelihood is evaluated
without violating the basic rules of probability theory.

Mathematician John von Neumann and economist Oskar Morgenstern published The-
ory of Games and Economic Behavior in 1953 in which they presented the principle
of expected utility in accordance with normative decision theory [83]. This principle
guided decision makers in how to make rational decisions based on the three criteria
above.

Mathematically, computing the expected utility of a decision is exactly identical
to computing the expected value of an event. The principle of expected utility states
that with each possible outcome, x;, there is both an associated probability of its
occurrence, P(xz;), as well as a subjective personal utility (a gain or loss), u(z;). In
terms of discrete probabilities, the expected utility of a choice is the sum of each
possible gain or loss multiplied by its probability of occurrence, which is given by
Equation 1.1.

n
UIX] = u(:) Px(x:) (1.1)
i=1
Note that E[X] is the standard notation for expected value. Here U[X] emphasizes
that this is expected utility. Expected utility theory attempts to mathematically
explain why different individuals make different decisions based on their own personal
values.
Here, the military commander must compare the expected utility (personal value)
of sending a human pilot into a risky and uncertain mission against sending an AV.
Equation 1.2 describes the expected utility of sending the human pilot.

Ulsending in pilot] = a; P(loss) + o P(life) + ap P(success) + o, P(failure)  (1.2)
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where a;, the loss associated with the pilot’s death (o; < 0), and «;, the gain associ-
ated with the pilot living (o > 0), are utilities according to the military commander’s
personal belief of the value of human life. Likewise, there is a gain and loss associated
with the mission success or failure (o > 0 and oy < 0, respectively), which, for
example, is the destruction (or not) of a high value target.

Because both loss (death) and life as well as success and failure are mutually
exclusive (assuming no outcome of a damaged state), P(loss) + P(life) = 1 and
P(success) + P(failure) = 1. Equation 1.2 can then be rewritten as following:

Ulsending in pilot] = (a; — a;)P(loss) + a; + (as — ay) P(success) + oy, (1.3)

Furthermore, there is an associated expected utility with sending in an AV, given by
Equation 1.4.

Ulsending in AV] = (a3 — a3) P(loss) + ag + (s — o) P(success) + o, (1.4)

where a3, the loss associated with losing the AV (a3 < 0), and a;, the gain associ-
ated with the AV living (a; > 0), are utilities according to the military commander’s
personal belief of the value of the AV. Likewise, there is a gain and loss associated
with the mission success or failure (a4 > 0 and a; < 0) for the AV. If we assume that
the human and AV have the same performance skills in relation to the same enemy,
then they have equal probabilities of loss, life, success and failure. Furthermore, since
the destruction of the target is independent of who destroyed it, the gain and loss
associated with P(success) and P(failure) are the same. Finally, if the military com-
mander has an equal gain associated with bringing back all assets from the mission,
then o) = a3, the gains associated with P(life).

As discussed above, the military commander would rather risk losing an AV rather
than a human, which is equivalent to U[sending in AV] > Ulsending in pilot]. Sub-
stituting in Equations (1.4) and (1.3), canceling all like terms, and solving for the
loss associated with P(death), we see that 22 < 1. Thus, all things being equal, the
expected utility of sending in the AV is greater than that of sending in the pilot if and
only if the military commander places a higher value on human life. Here, assigning
a higher value to human life is a larger loss associated with P(death) of human life,
o is more negative than a3. Assuming the military commander does place a higher
personal value on human life, the decision is both rational and mathematically sound.
It is desirable, then, for AVs to perform the more dangerous and risky missions. How-
ever, the reality of today’s battlefield is that humans and AVs do not have the same
performance skills. Thus, there will be different probabilities of loss, life, success,
and failure, and the military commander may or may not choose to send in the AV.
This then, represents somewhat of an ultimate goal of this thesis. We desire to bring
the performance skills of AVs in dangerous, risky scenarios up to par with human
experts so that the military commander can make decisions according to the above
framework.

The dynamic, uncertain, and multi-dimensional environment of tactical scenarios
have all combined to limit AVs from performing these missions. On the other hand,
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humans are trained to become experts in these operating environments. The dispar-
ity highlights the following strengths of humans: first, the ability to filter massive
amounts of information and make quick decisions only on relevant cues [38]; second,
the ability to estimate uncertain and missing information which affects the possible
decision choices [36]; third, the ability to adapt to new circumstances and find creative
solutions [18].

Therefore, the goal of this research is to systematically interrogate, represent,
and encode military tactics, providing AVs with expert decision making capabilities.
This level of expertise will complement manned platforms in two significant ways.
First, it will provide more autonomy and more flexibility in the range of executable
missions for AVs. Second, by bringing a human expert into the design loop of an
AV’s decision making ability, we hope to make AVs more predictable, trustworthy,
and better understood by their manned counterparts. As AVs are integrated into
today’s battlefield where manned and unmanned platforms operate together, both of
these outcomes are necessary so that humans and AVs can interact synergistically to
enhance the overall team performance.

1.2 Subset of Control Hierarchy

There is a spectrum of decision-making levels or control hierarchy inherent in each
AV-based mission carried out by the military. Figure 1-1 depicts this hierarchical
structure extending from the high-level planning of a mission down to the lowest-
level actuation of control devices to follow a desired trajectory. The middle layer of
tactics, as defined for this research, exists somewhere between the operations research
and optimal control problems. Before defining these tactics more specifically, a cou-
ple of assumptions must be stated. It is assumed, first of all, that the higher-level
mission planning has already occurred, i.e. - the number of allocated resources (in-
cluding AVs), the objectives of the mission, and the proposed routes and waypoints
have already been decided. Second, it is assumed that the AV has a low-level trajec-
tory generation algorithm and closed-loop control which executes dynamically feasible
motion for the AV in response to its tactical decisions. Note that all of these control
levels are tightly interwoven. A tactical decision made in response to a pop-up threat
results in a replanning of the vehicle’s desired route which can only be implemented
by an inner-loop controller thereby utilizing all levels of control.

Tactical decision making must also be defined along with the scenarios and prob-
lem constraints. For this research, a scenario is the dynamic environment a human
expert must operate in to carry out an assigned mission with specific objectives and
goals. Examples include reconnoitering an air corridor in the desert to allow safe
passage of troops to designated landing zones, launching off an aircraft carrier and
searching for a downed pilot at sea, helping special operations forces laze a target for
a Hellfire missile launch, and battle damage assessment after engagements. In each
of these scenarios, the human has a set of constraints that limit the range of avail-
able tactical options: vehicle dynamic capabilities, rules of engagement, out-of-range
communication limitations, survivability instincts, weapons sensor field-of-view, fuel
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and ammunition remaining, etc. Therefore, the tactics the human employs in these
scenarios are the decisions made, techniques employed, and actions taken to success-
fully carry out the mission in the face of dynamically changing environments while
satisfying constraints.

By this definition, tactics can be treated in several ways. First, these tactics
can be as simple as general rules-of-thumb. For example, if a threat of ground fire
exists, say from rocket propelled grenades (RPGs) or small-arms fire, the helicopter
pilot helping to scout out the urban environment must never hover, even if for just
a few seconds. Second, these tactics can be strict protocol, such as flying specially
designed profiles in and out of green zones so friendly forces can rapidly identify the
vehicle as friendly irrespective of radio communication or identification-friend-or-foe
codes. However, in their hardest form to quantify and represent are the human’s
reactive decisions to uncertain and dynamic environments. It is only through years of
training and experience that humans form the intuition and skill to choose consistently
appropriate actions and reactions in these environments. Thus, these tactics are the
high risk, real time decisions humans make under time pressure. This third category
of tactics is what we seek to understand and encode.

1.3 Existing Work

Current research efforts in human-inspired automation design have focused on the fol-
lowing three areas: creating agent architectures and human behavior models, artificial
learning techniques, and human/machine collaboration.

1.3.1 Computer Generated Forces

By far, the largest amount of effort in human-inspired automation design is creating
software agents or computer generated forces (CGFs) through human behavior mod-
els (HBMs). One of the most well-known HBMs is SOAR. This cognitive architecture
uses the concepts from Newell and Simon’s book Human Problem-Solving called uni-
versal sub-goaling and chunking [47, 55]. Universal sub-goaling is the continual break
down of a goal into subgoals until a solution path is found by means-end analysis.
Chunking is the recording of a solution path in memory. In the SOAR architecture,
every problem-solving situation is composed of four elements: a goal, problem space,
state, and operator. If the SOAR agent is given a problem that matches a previous
chunk, it implements the already recorded solution. If not, the SOAR agent cre-
ates a problem space and searches for a solution path to the goal by sequentially
applying operators to current states. After a problem has been solved, the SOAR
architecture records the goal, problem space, states, operators, and the solution path
in memory. This is a primitive cognitive architecture that has the potential to create
a large knowledge base of chunks. In fact, the primary application of SOAR has been
TacAir-SOAR, which has been used to model human pilots for large distributed mili-
tary simulation exercises, and in 1991 it already contained over 5,200 rules or chunks
[35].

20



Other more recent agent architectures have been implemented using the Belief,
Desire, Intent (BDI) paradigm [7] and the Recognition-Primed Decision (RPD) model
[38]. Both of these models will be discussed in detail in Chapter 3. BDI describes the
human behavior to plan and coordinate as the result of the human’s existing beliefs,
desires, and intentions. The attractiveness of BDI is that it achieves a useful balance
between planning and reaction-based behavior. The BDI paradigm has been applied
in object-oriented models as the fundamental agent architecture for both distributed
multi-agent systems [37] and single simplified agent design called “poor man’s BDI”
by the designers [3]. BDI has also been used to build Quake 2 agents using the
programming language JACK [48]. As a final example, the SOAR architecture has
been redefined in terms of BDI which has opened up new possibilities of interaction
between combined SOAR and BDI architectures [27].

RPD describes the mechanisms of expert decision making in real world settings.
It has been widely accepted because of its simplistic but accurate understanding of
human decision making. A large effort in building CGFs with a RPD framework
has been focused on evaluating RPD agent performance in the OneSAF Test Bed
and air traffic controller environments [86]. Other work includes building agents to
perform simulated driving tasks [71]. All of these agents have applied Hintzman’s
multiple-trace memory model [32] as the basis for storing goals, cues, expectancies,
and actions that can be recalled by recognition routines. A final effort to mention
is the application of RPD to a composite agent network, where separate agents are
responsible for the four recognition by-products of goals, cues, expectancies, and
actions [70].

CGF applications like TacAir-SOAR and BDI and RPD agents have one main
requirement which differ from this research. The agent must appear human. The
cognitive architecture, then, must incorporate variability in terms of decisions made,
actions taken, and goals pursued both within and across simulated entities {75, 85,
91]. The implications, then, are twofold. First, it is not always desirable to choose
the optimal solution for a given situation. Humans tend to either make emotional,
irrational decisions or rational but suboptimal decisions. Second, human experts are
mainly employed for critiquing the behavior of the simulated entity, i.e. - is it realistic?
Therefore, the initial creation of the knowledge base, like TacAir-SOAR, arises mainly
from military field manuals and tactics, techniques, and procedures documents which
describe the normative process that should occur in tactical scenarios. Human experts
become consultants to validate the “obvious” response a simulated entity should
choose [35, 84]. However, this thesis focuses on forming a tactical knowledge base
directly from the human expert. In this way, the human expert’s role is not to be a
consultant but a trainer. Furthermore, this research seeks to find the best decisions
made and strategies used by human experts. In no way does it desire to create
human-like AVs. Rather, the whole purpose is to extract only the human strengths
of tactical decision making strategies and build them into AVs.
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1.3.2 Artificial Learning

Another major area of research in human-inspired automation design is artificial
learning. This machine learning method typically takes the form of a human expert
performing a task in a simulator where data can quickly be collected and analyzed by
the automated observer. In this area of synthetic learning, researchers have success-
fully implemented both a hybrid neural networks structure [65] and a combination of
genetic programming and context-based reasoning [22] to learn motor vehicle control
skills. In game theory, Bayesian networks have allowed automated players to learn
tactics in a football simulation and perform consistently better against stronger op-
ponents [28]. Lent and Laird describe a hierarchical operator structure based upon
SOAR to learn to fly a racetrack pattern [82]. While artificial learning is certainly a
time-saving approach to learning expert knowledge, it is not sophisticated enough to
be applied to tactical environments characterized by uncertainty and dynamic change.
There are many aspects of human decision making in these tactical environments that
are difficult to quantify and can only be subjectively interpreted by another human.
Therefore, it is important to emphasize that the purpose of this research is not artifi-
cial learning. This research recognizes the importance of a human interpreter because
the goal is not how fast can tactics be learned and applied to an AV, but how plausible
is the idea.

1.3.3 Human/Machine Collaboration

A final area of research that requires note is human/machine collaboration. The main
focus of this research is how to find the optimal balance of decision making authority
as appropriated between humans and machines. Malasky et al. simulated a com-
mand and control environment for planning and resource allocation and varied the
levels of human/machine interaction [40]. Forest looked at human input in algorith-
mic design by varying when the human guided the design process [24]. Fan et al.
created a multi-agent system where humans interacted with RPD-based agents [21].
This allowed for adaptive decision making between humans and agents where the
more-experienced agents, as determined by recognition capability, had more decision
making authority. Human/machine collaboration, as discussed in these sources, is an
extremely important step in the philosophy of team-centered automation design. The
only way that automation will be tightly integrated into all aspects of the battlefield
is if it exhibits reliability in its decision making and engenders trust by putting the
team’s goals above its own. However, human/machine collaboration is the next step
beyond this research. Once the AV possesses greater tactical control and decision
making abilities, the question will then be how to pair up the AV with a manned
asset, for example as a pilot’s wingman [46].

1.3.4 New Questions

Existing research in human-inspired automation design addresses issues in this thesis
- the need for a human cognitive architecture, the ability to learn from a human,
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Figure 1-2: Unmanned laser designator statechart from Mark Hickie’s thesis.

a human/machine collaborative mindset to keep a team-centered automation design
approach - but does not address the fundamental concern of how to discriminate
and learn the best human tactics and apply them to an AV. As will be seen, part
of answering this question is in answering another. The related issue is: can a hu-
man apply his or her tactical expertise to a given platform and use the platform’s
capabilities as both a medium and springboard for tactical decision making? These
questions have not been tackled in literature. Yet, an initial effort was made by Mark
Hickie in his Master’s thesis [31]. By interviewing Army helicopter pilots, consulting
field manuals, and running simulations in the U.S. Army’s force-on-force simulation
tool, One Semi-Automated Forces (OneSAF) Testbed Baseline 2.0 (OTB 2.0), he
identified, encoded, and validated military tactics for rotary wing AVs. He proposed
statechart diagrams as the representation of tactical knowledge. For example, Figure
1-2 depicts his statechart representation of the decision-making process for an AV
acting as an unmanned laser designator for a manned platform. However, Hickie was
only able to show a small improvement in performance. One issue was the complexity
and opacity of the OTB 2.0 software. The other issue was that his tactical knowledge
base was too constrained. An expert’s knowledge can be described as either explicit
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or implicit. While this is an overly-simplified categorization, it serves to differentiate
between the explicit knowledge a human expert can consciously and verbally relate to
an interviewer and the implicit knowledge that is termed intuition. Tactical knowl-
edge is implicit [22]. Therefore, Hickie was unable to truly capture tactical decision
making. However, his initial work serves as a starting point for this research.

1.4 Two-Stage Tactical Control Paradigm

This research hypothesizes that when seeking to enable AVs with better decision
making capabilities, human experts possess a wealth of operational experience and
training. Human experts already have the right decision making skills, and to map
these skills to an AV is a major step towards this goal. However, humans and automa-
tion have different strengths and weaknesses [88] in terms of both output performance
and input sensor capabilities. Therefore, we do not seek to simply map over the hu-
man expert’s decision making to an AV. That is only the first step. If the process
terminated at that point, the AV would be biased towards decision making strategies
based on human stimulus response and human performance constraints.

The second stage, therefore, seeks to optimize the learned tactical behavior through
modern numeric algorithms that search the design space to optimize a given cost
function. By correctly identifying the parameters of the cost function and perturb-
ing selected variables, Monte Carlo simulation can give insight into optimizing the
tactical decision-making process of AVs. The desired end-state, then, is to develop
a systematic way to integrate tactical behavior into unmanned vehicles in two steps.
This two-stage tactical control paradigm is displayed in Figure 1-3. First, we learn
from subject matter experts (SME) and arrive at a suboptimal solution derived from
a finite number of cases. Second, we optimize the human-derived solution for the
specific application and/or desired behavior for the unmanned vehicle.

As will be discussed later, the tactical knowledge learned from human experts will
be encoded in statechart form [30]. In statechart form, discrete states and transitions
drive the continuous vehicle motion. Thus, the optimization problem is a hybrid con-
trol problem consisting of discrete and continuous variables. Hybrid control is still a
relatively new area of research and presents many complex challenges [6]. Different
nonlinear optimization methods are being compared to help address this problem.
In particular, the evolutionary genetic algorithms (GAs) offer new techniques [33].
Many algorithms require linearity, convexity, continuity, or only discrete variables.
However, GA has no such requirement. If the problem can be encoded into a GA
chromosome, GA can search nonlinear, hybrid, high-dimensional functions and find
decent solutions. Ultimately, the goal is to find optimal solutions while guaranteeing
performance and algorithm completeness. GA does not guarantee even a good so-
lution, but it does perform well in many cases of interest. Furthermore, GA can be
fast. Therefore, GA performance depends on the problem and on how it is applied
to the problem, but it appears promising [78].

Alan Schultz and John Grefenstette showed how genetic algorithms can improve
tactical plans [61]. They tested how well genetic algorithms could improve a set of
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conditioned-action rules for an airplane evading a missile. Not only did they show
the ability to learn decision rules and tactical plans that drastically improved the
airplane’s success rate in evading a missile, they compared the learning ability when
initialized with different sets of rules. Specifically, they placed humans in charge of
maneuvering the airplane away from the missile, and used their demonstrated rules
as one initial set. The second initial set consisted of a single rule which stated that
for any sensor inputs (i.e. - the airplane and missile states), take action X, where
X is a random selection of one of the possible set of actions. Thus, this initial rule
executed a random walk. When these two sets of initial rules were compared, Schultz
and Grefenstette found that the performance of the human-inspired rules quickly
rose to 95% success rate after only 50 generations, whereas the random walk rule set
only achieved a little over 80%. Even after 100 generations, the human-inspired rules
combined with genetic algorithm learning produced a 98% success rate with a smaller
variance in performance then the random walk rule set which achieved 94% success
rate. Therefore, there is not only strong reason for using genetic algorithms to improve
tactical performance, there is also experimental proof that initial human input can
produce better end results. Ultimately, Schultz and Grefenstette’s work emphasize the
benefits of a follow-on effort to human-inspired tactics. This complementary research

will complete the transformation from manned behavior to unmanned performance
[78].

1.5 Thesis Overview

The layout of this thesis is as follows. First, in Chapter 2, we discuss the traditional
approach in automation design by looking at the unique strengths and weaknesses of
humans and automation. Then, we describe some of the human factors issues that
have arisen due to this traditional design approach based on functional task allocation
and how they lead to a human-centered approach to automation design. Finally, we
describe team-centered automation design and the necessity of reliability in tactical
environments. In Chapter 3 we begin by considering the cognitive processes under-
lying human decision making. Then, we present the information-processing model of
human cognition used in problem solving and decision making paradigms. Next, we
analyze normative decision making theory and the human tendency to depart from
the theory due to decision heuristics and biases. Then, we overview three cognitive
frameworks that provide templates to improve AV decision making skills. Finally,
we discuss the nature and limitations of learning human expertise. In Chapter 4,
we discuss the experimental setup and methodology for eliciting and learning human
strategies. We then present the equations, algorithms, and parameters that govern
the simulated entities’ behavior in the simulation. Next, we analyze in detail the base-
line, untrained AV behavior. We conclude the chapter by discussing the limitations of
the experimental method. In Chapter 5, we present the results of the human-in-the-
loop experiments, the process of learning and encoding the human-inspired tactics
into an improved AV, and the performance increase of the improved AV behavior
over the baseline. In Chapter 6, we summarize our conclusions by proposing a frame-
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work for learning and applying human-inspired tactics. Finally, we offer future work
possibilities in Chapter 7.

In short, this research will show the ability to learn reactive engagement tactics
from human experts and apply that knowledge to improve performance. A simulated
baseline autonomous vehicle was developed that exhibited simple but logically co-
herent and reasonable behavior. This baseline behavior was designed independent of
any human-in-the-loop testing. The baseline autonomous behavior was strictly reac-
tive. Then, two rounds of experiments were designed to compare the performance
of the human subjects and baseline behavior. The first round was to acclimate the
human subjects to the simulation environment and provide enough training for them
so that they could exhibit expert behavior. In the second round, the human subjects’
performance was scored, and they clearly showed superior performance over the base-
line. Through surveys, recorded verbal data, and observations of the human subject’s
actions, successful strategies and tactics to evade and engage pop-up threats were
encoded in statechart form. This improved autonomous behavior was then compared
to the baseline autonomous behavior through Monte Carlo simulation. This step was
necessary to verify that the learned tactics were truly superior or if the small number
of cases used to derive the tactics would limit the scope of their applicability.

This research will also present in detail how to formulate search strategies by
focusing in on the humans’ objectives, goals, and intentions. Reacting to enemy
contacts and engaging them was only one part of the mission objectives given to
the human subjects. They also had to divide their time between searching through
different sections of terrain, with one part of the terrain being more important to
completely search through than the other. Furthermore, the human subjects were
given a probability of enemy contact in each of the terrain sections. Finally, by
adding a time constraint to the scenario, the human subjects were forced to carefully
consider how they could best accomplish the mission objectives of searching through
as much terrain as possible, being especially cognizant to completely cover the more
critical terrain, and reacting to enemy contact that could pursue and destroy the
humans’ vehicle. Therefore, we conclude with a framework of how to learn and
apply human-inspired tactical knowledge that incorporates both reactive tactics and
searching strategies.
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Chapter 2

Humans and Automation:
Expertise and Reliability

The familiar saying that unmanned aircraft are better suited for “dull,
dirty, or dangerous” missions than manned aircraft presupposes that man
is (or should be) the limiting factor in performing certain airborne roles.
Although any flight can be dull or dangerous at times, man continues
to fly such missions, whether because of tradition or as a substitute for
technology inadequacies . . . The attributes that make the use of unmanned
preferable to manned aircraft in the above three roles are, in the case of
the dull, the better sustained alertness of machines over that of humans
and, for the dirty and the dangerous, the lower political and human cost
if the mission is lost, and greater probability that the missions will be
successful. Lower downside risk and higher confidence in mission success
are two strong motivators for continued expansion of unmanned aircraft
systems. [50]

The above quote, from the Pentagon’s Unmanned Aerial Systems (UAS) Roadmap
2005, makes it clear that a major reason for investing in autonomy is human limi-
tations. Autonomous vehicles (AVs) have longer endurance for dull missions, such
as around-the-clock surveillance. They are also cheaper and more acceptable to risk
losing when performing dirty missions, such as flying into the cloud of a dirty bomb
explosion to determine its chemical makeup, or dangerous missions, such as destroy-
ing multiple enemy air defenses. Finally, AVs are more agile and more precise in
control, and thus they can sustain more aggressive maneuvering that a human could
not. Therefore, the author(s) of this quote argue that the AV is functionally better
suited for these “dull, dirty, and dangerous” missions.

The first section of this chapter explores the traditional approach to automation
design by functional task allocation, which helps define natural boundaries of expertise
between humans and automation. The second section of this chapter discusses how
this traditional automation design approach has failed to adequately integrate humans
and automation into a cooperative system. It then highlights the need for team-
centered automation design and its unique applicability to tactical environments.
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2.1 Functional Task Allocation

Since the 1950s, many automation designers have relied on a functional allocation of
tasks to determine the relationship between man and machines. Designers begin with
a set of requirements that are typically high-level performance goals, and they desire
to build in automation to the system. By identifying where the human has failed
before and confirming that automation is better suited for these particular tasks, a
design decision is made to replace the human. This is functional task allocation [63].
If automation can better perform a task (where “better” equates to more precise,
faster, and/or less costly), than the human should be replaced.

2.1.1 Automation and Human Capabilities and Limitations

Fitts List

In 1951, Fitts et. al. were tasked in addressing the relationship between humans
and automation in the future of air traffic control [11]. As a starting point, they
asked the following two question: what can men do better than machines and what
can machines do better than men? The answers to these two questions formed the
famous Fitts List and the basis of functional task allocation. The comparison between
humans and automation still hold true today. The basic strengths and weaknesses of
humans have not changed in fifty years. Automation is certainly more mature now
than in Fitts’ day, and vision-based control systems, pattern-recognition algorithms,
improvements in sensor technology, and adaptive learning systems are all blurring the
lines between human and machine strengths. Yet, Fitts List addresses fundamental
dichotomies that will for the near future not change.

Humans possess five functional characteristics that elevate them over the machine
[11]. First, the amazing auditory and visual acuity sensory functions allow for ex-
tremely low stimulus thresholds. For example, a human eye can detect the flare of a
match that is lit fifteen miles away on a dark night. A trained human ear is so sensi-
tive that it can almost detect random collisions of molecules of air. Note, though, that
artificial sensors allow detection of energy wavelengths outside the human eye’s and
ear’s bandwidth. Second, perceptual abilities allow a human to abstract a pattern
into long-term memory. For example, a human can recognize an uncle that has not
been seen for a few years and has changed from always being clean-cut to a grown
beard. The abstraction of the uncle into long-term memory allows rapid retrieval
and recognition even if the uncle has grown a beard, lost some weight, etc. Consider
also the qualities of squareness, roundness, and triangularity which can be easily un-
derstood and recognized even though square faces, round edges, and triangles exist
in an abundance of forms. Pattern-recognition routines are still a long way off from
achieving this level of perceptual ability. Third, the flexibility of humans enable them
to tackle old problems in new ways or to simply improvise. As Fitts notes, “the
machine will attempt as many different kinds of solutions as its designer planned
for and no more.” Fourth, after attaining a level of situational awareness, humans
can selectively recall previous experiences from long-term memory storage and judge

30



how best to proceed in the current situation. Fifth and finally, inductive reasoning is
unique to humans. Of all these strengths, only the sensory functions and judgment
and selective recall abilities (long-term memory storage retrieval in combination with
an inference engine) appear potentially executable by maturing technology.

In contrast, what can machines do better than humans? First, the processing
speed and power of machines greatly exceed human capabilities. The fastest reaction
human time from stimulus appearance to input response is 0.1 seconds. An aver-
age response time in the cockpit is 1.5 seconds for the pilot. Second, machines can
perform routine tasks quicker and more accurately than a human. No human enjoys
“busy work.” Third, the computational capabilities of a computer far exceeds that of
a human. Fourth, machines maintain more efficient use of working memory. Some-
times humans have difficulty erasing information from working memory (“I cannot
get that song out of my head.”) which takes up necessary storage space for other
problems. Finally, through partitioning, a computer can perform several simultane-
ous activities at the same time. Other than for extremely basic functions such as
breathing or walking, humans are serial processors. Try taking the inverse of a ma-
trix while carrying on a conversation. Attention has to be continually diverted to the
problem, then to the conversation, but not both at the same time. Out of all of these
strengths, a human expert may be able to gain greater computational skills and more
efficient working memory usage, but only through years of practice. Yet, even then,
computational ability would not be close.

The strengths of humans do not lie in manual labor, whether that is the construc-
tion worker welding beams together, the high school student taking a pre-calculus
test, or the pilot making continuous adjustments to the control inputs to maintain
steady, level flight. Automation can perform these sorts of tasks more accurately
and more efficiently. The strengths of humans lie in cognitive judgment processes,
concept abstraction, and creative, inductive reasoning skills. Before addressing how
these strengths contribute to learning tactical knowledge, we discuss one other more
recent comparison of human and machine expertise.

Other Comparisons

Table 2.1 displays another listing of the strengths and weaknesses of humans and
machines [9]. The top left set of characteristics in the table describe the strengths
of human expertise in problem-solving. Humans are creative and adaptive. Humans
have the ability to try completely new ways to solve a problem, and they learn from
their mistakes and successes to better position themselves for the future. Human per-
ception of the environment is also vastly superior to a machine’s because of sensory
experience, allowing complex problems such as pattern recognition to be an uncon-
scious, inherent part of everyday human life. Also, by utilizing parallel strategies
and lines of thought, humans can maintain a broad focus or a so-called “big picture”
view that helps guide the overall problem-solving process while taking time to solve
narrow-focused problems. Humans can hierarchically tackle a problem. Finally, hu-
mans can extrapolate their experiences and knowledge to many other areas in life by
using common sense.
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| HUMAN EXPERTISE | MACHINE EXPERTISE |

The Good News

The Bad News

Creative

Adaptive

Sensory Experience

Broad Focus
Common-sense Knowledge

Uninspired

Needs to be Told
Symbolic Input
Narrow Focus
Technical Knowledge

The Bad News

The Good News

Perishable

Difficult to Transfer
Difficult to Document
Unpredictable
Expensive

Permanent

Easy to Transfer
Easy to Document
Consistent
Affordable

Table 2.1: Comparison between human and machine.

The bottom right set of characteristics in Table 2.1, describe the strengths of
machine expertise in several particular areas. First, machine memory is permanent.
In contrast, if humans do not consciously revisit and rework areas of expertise that
have not been used over long periods of time, they risk losing that expertise. Second,
machine expertise can be easily transferred to other machines with common format-
ting architectures, such as would be found in mass production, by downloading and
uploading. However, it takes a long time for a human expert to teach an apprentice
all of his or her expertise. Third, though debugging is extremely painful, in theory,
machine expertise is easy to document because it’s already recorded in software lines
of code and written to hard drives. One of the main weaknesses of humans is the
inability to be consciously aware of their own cognitive processes. Human expertise
is difficult to document because many times experts declare that they simply acted
out of intuition. Fourth, it is true that if a machine is given the exact same set of
operating conditions, it will act in the exact same way as before. The problem is that
because software has become so complex, there is a transparency issue where the user
and even computer programmer can easily become confused as to its behavior. Hu-
mans, on the other hand, are more subject to unpredictability, primarily because of
their emotions. Finally, machines are economical and affordable, otherwise humans
would not have continued to design and build them. It is very expensive, though,
to replace a human expert, not only because humans have more life-sustaining needs
then machines, but because human expertise, as described above, is very difficult to
transfer.

2.1.2 The Right Knowledge

Examining the strengths and weaknesses of humans and automation is necessary in
attempting to learn human tactical knowledge and implement that knowledge in AVs.
We are not interested in designing AVs that make decisions exactly like humans. It
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is not a one-to-one mapping of human cognition to software design. Rather, we want
to learn the best knowledge and the best decisions made and implement that subset
of human knowledge into AVs. To do that, we have to understand what should be
carried over from the human, and where the AV is already superior. For example,
the AV’s reaction time to a quantifiable sensory input, such as radar, will always be
superior to a human'’s reaction. However, the question of how to interpret that input
in a context of dynamic environments and mission objectives is something an AV
lacks.

Consider an intelligence, reconnaissance, surveillance (ISR) mission. The task is
to search through a section of terrain and report any enemy contacts. Given a terrain
geometry, a section of the terrain to be searched, a time limit, vehicle equations of
motion, and sensor specifications, a computer can use heuristic searching algorithms
to find a solution path that maximizes the amount of terrain seen within constraints.
On the other hand, when this section of terrain is only one piece of an entire path to be
searched, when there is a very good but still uncertain chance of enemy contacts along
this terrain, and when there is a more important piece of terrain still to be reached
with time running out, it takes the creative reasoning, adaptability, and broad focus
of a human expert to effectively accomplish the ISR mission goals.

This example also highlights the need to learn strategies not actions, to understand
why the human expert chose their actions, not just the actions themselves. We can
observe the human expert utilize creative reasoning to find a new solution path to
a problem, and then simply note the actions taken and the environmental variables
that were present and encode this information as a new rule. However, this would fall
far short of understanding why the new solution path was chosen. If the strategy was
known, it could be used as a template or higher-level goal that would help solve future
variations of the problem. Learning strategies and not just actions are important for
at least three reasons. One, it is impossible for the human expert to participate in a
full factorial search of the multi-dimensional environment to create a complete rule
set. Two, the continual change of the battlefield requires decision making skills that
go beyond preset actions. It also can make any such full factorial effort as irrelevant.
Three, understanding strategies and not just actions is the only way to extrapolate
lessons learned in a simple simulation environment to higher fidelity exercises, and
ultimately real life.

Therefore, it is not enough to observe a human subject matter expert solve a
problem which is completely quantifiable. A computer can do that. Remember that
tactics were defined as the decisions made, techniques employed, and actions taken to
successfully carry out the mission in the face of dynamically changing environments
while staying within constraints. Thus, when we seek to learn human tactical knowl-
edge, there must be uncertainty in the scenario, a hierarchy of objectives the human
is attempting to accomplish, and an allowance of flexibility and creativity so that the
human can learn effective ways to solve each new problem. In fact, the conclusion
from the Fitts list section of the 1951 report is as follows: [11] (italics for purposes of
this research)

In summary then, we can see that the human carries within him some
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remarkable powers that cannot yet be duplicated by machines, especially
abilities needed to deal with changing situations and unforeseen problems.

Tactical environments are changing and uncertain and yet human experts operate
successfully within them. These, then, are the strengths of humans and where we
seek to improve AV capability.

2.2 Team Centered Automation

In Chapter 1, we stated that by improving AV tactical control, we hope to make AVs
more predictable, trustworthy, and better understood by their manned counterparts.
The above section discussed what aspects of human tactical capabilities can help
augment an AVs tactical control. The question still remains of whether this improved
tactical control will either compete with current human experts or cooperate and
support them.

2.2.1 Unique Demands of Tactical Control Environments

Because we are considering tactical control in high pressure, high risk, high tempo,
dynamic environments, there are unique demands placed upon any AV that au-
tonomously makes decisions in these battlefield situations. These demands are due to
the unpredictability and the consequences of battlefield operation, which both point
to a necessary element of trust between members of a team operating within tactical
environments. This need for trust underscores AV design that is also team-centered.

High Tempo and Uncertainty

The tactical knowledge we seek to learn from human subject matter experts is reactive
to changing environments. Battlefield operations are the quintessential environment
of uncertainty and continuous change with high-stakes outcomes. There is never
enough intelligence for any mission because too much is unknown and too much will
change [46]. In addition to this unpredictability, there are other sources of noise and
error. These are the AV’s own noisiness in sensing the state of the environment, the
possibility of internal system malfunctions, and the ever-insidious presence of software
bugs. Therefore, all these error sources combined with the sheer uncertainty and
change of the battlefield guarantees two things. First, there will always be situations
in which the AV chooses the wrong decision [54]. Probability theory dictates there
will always be some chance of failure or loss. What was a right decision initially may
quickly become the wrong one during its execution. Second, there will always be
situations in which the AV has no experience. Expert systems only display expertise
for those conditions in which they have been programmed. AVs cannot be required to
display expert decision making for a set of conditions not included in their rule base.
Artificial learning and adaptive systems seek to address this problem, but as Canning
says, “machines lack knowledge of the world contezt that they are in, something that
people learn from birth” [9]. Without a world context that exists beyond a rule
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base, the AV must rely on a master switch return-to-base or hover-and-wait function
that turns on in case of confusion. Therefore, the probability of a wrong decision or
the failure to make any decision forces AV designers to consider the consequences of
such outcomes. Wrong decisions can be tolerated to the degree of the negative cost
incurred.

High Pressure and High Risk

The life and death nature of battlefield operations also places unique demands on
reactive decision making AVs. Both the Law of Armed Conflict (LOAC) as well as
the Geneva Conventions provide rules and guidelines that attempt to minimize the
casualties to civilians during warfare [10]. Unfortunately, recent conflicts reveal how
enemies try to exploit friendly forces attempts to abide by LOAC by intentionally
placing civilians in harm’s way to gain tactical advantage. Consider, for example,
mass uprisings against United States (U.S.) peace-keeping forces in Somalia where
insurgents either hid between women or children to fire at U.S. ground forces or
simply placed semi-automatic weapons into the hands of their children to fire at U.S.
ground forces [5]. Even if AVs possess the tactical decision making capabilities to
successfully provide ground support for friendly forces, the consequences of missing
targets and hitting civilians or even friendly forces are a tremendous hurdle. Note,
however, that there could be situations in which fully autonomous reactive decision
making is appropriate. For example, a new feature being considered for the Lockheed
Martin Joint Strike Fighter’s flight control system is the auto-eject for the U.S. Navy
variant [49]. Pilots do not have the reaction time to eject while being catapulted
from the deck of a U.S. aircraft carrier if there is a major failure during takeoff.
Therefore, auto-eject is appropriate to save the pilot’s life if it can be proven robust
and reliable. Unfortunately, no matter how many metrics of reliability the AV passes,
no matter how great the end-to-end testing program, accidents will occur [9]. If the
consequences of incorrect decisions are great, then Parasuraman et. al. recommended
the following: [54]

Giving the pilot the opportunity to review the decision choice and forcing
a conscious overt action, provides an “error-trapping” mechanism that
can guard against mindless acquiescence in computer-generated solutions
that are not contextually appropriate.

For instance, if tactical decision making on the battlefield includes the use of weapons,
some sort of “error-trapping” gate will have to be in place. Note that any level of
“error-trapping” in AVs is appropriate, regardless of whether it’s armed or not. The
point of this section is to underscore that arming an AV provides a greater need for
reliability. Therefore, though the AV could be the weapon delivery platform, the
consequences of battlefield operations require a team effort centered on trust and
reliability to ensure the minimization of civilian or friendly force losses.
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Lack of Trust

The attitudes of current pilots highlight the need for trust in tactical situations.
Morales and Cummings investigated how pilots responded to the use of AVs as “wing-
men,” where wingmen are the elements in an aircraft formation [46]. In their study,
pilots could vary the level of control given to and task three AV wingmen through
a cockpit interface. The pilots who participated included four A-10 pilots, two F-16
pilots, two crewmembers in a multi-crew AC-130 cockpit, and two ground operators
of the Predator AV. The scenarios included target acquisition, AV assignments, battle
damage assessment, and secondary strikes. The research objective was to answer the
following three questions:

1. What levels of pilot control and AV/human interaction do pilots think
are appropriate?

2. What is the relative importance of different display characteristics?

3. Should AVs play the role of a “wingman?”

Analysis indicated that pilots generally agreed on the following points. AVs should
be allowed to defend themselves with complete autonomy and should automatically
collect images of targets and transfer that data to manned assets. On the other hand,
AVs should not be allowed to designate a target and should not perform any kind
of battle damage assessment. Interestingly, the AC-130 crewmembers and Predator
operators were more open to AVs performing combat offensive missions than the
A-10 and F-16 pilots who actually train for those operations. The two F-16 pilots
declared that AVs should never operate in the same airspace as manned tactical
aircraft. For example, one of those pilots cited his own eye-witness account of a
software malfunction causing a Predator to drift into the path of a group of fighters,
which almost resulted in a mid-air collision. One A-10 pilot described his relationship
with his human wingman as, “one of trust and loyalty.” They trained together,
worked together, and fought together, and therefore a AV could never replace a
human wingman.

Though the typical response from an AV designer is to brush off the pilots’ remarks
as arrogance, bias, and fear of being replaced, the force of the above comments empha-
sizes how absolutely crucial is the need for trust. The F-16 pilot may have seen other
close mid-air collisions between manned aircraft, but the pilot would still rather trust
a human to make that mistake than an AV. Why? The A-10 pilot viewed the human
as a team member and thus, trusted him more. Therefore, tactical decision making
places unique demands on the decision maker because of the high risk and dynamic
battlefield environment. The life-and-death consequences of wrong decisions create a
need for all decision making assets to be on the same team. That team must exhibit
a culture of trust and loyalty. What, then, is team-centered automation? To answer
this question we first define automation more precisely, discuss human-centered au-
tomation design, briefly mention the lessons learned when automation has failed to
be human-centered, and finally review what characteristics define a team.
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2.2.2 Definition of Automation

There are many different definitions of automation in the literature. Researchers Raja
Parasuraman, Thomas Sheridan, and Christopher Wickens define automation as “a
device or system that accomplishes (partially or fully) a function that was previously,
or conceivably could be, carried out (partially or fully) by a human operator” [53].
Dr. Charles Billings, Retired Chief Scientist of the National Aeronautics and Space
Administration (NASA) Ames research center in Silicon Valley, defines automation as
“a tool, or resource, that the human operator can use to perform some task that would
be difficult or impossible without machine aiding” [56]. The Autonomy Levels for
Unmanned Systems (ALFUS) working group at the National Institute of Standards
(NIST) defines autonomy in two ways [34]. Autonomy is:

(A) The condition or quality of being self-governing.

(B) An unmanned system’s own ability of sensing, perceiving, analyzing,
communicating, planning, decision-making, and acting, to achieve its
goals as assigned by its human operator(s) through designed human-
robot interaction (HRI). Autonomy is characterized into levels by factors
including mission complexity, environmental difficulty, and level of HRI
to accomplish the mission.

The definition from Parasuraman et. al. emphasizes that automation is not “all or
none” but can be conceived of as ranging across a continuum of levels. Dr. Billings
emphasizes a human-centered definition in that the role of automation is to be a tool or
resource that aides the human operator. The ALFUS working group’s definition from
NIST attempts to capture the roles of intelligence and capabilities of the AV while
characterizing the human operator as assigning goals to the AV. The ALFUS working
group also recognizes that autonomy should be characterized by levels, including the
level of interface between the human and the robot. Therefore, automation is a
tool for the human operator, can be characterized by levels, and exists within a
complementary system that includes both the human and the automation.

Both the U.S. Air Force and Army have proposed classification levels of autonomy
[9]. The Air Force Research Laboratory has defined ten levels of autonomous control,
as depicted in Table 2.2. At level 4 autonomy of onboard route replan, reactive
decision making is needed. How else will the AV know when to replan its intended
route and what the new route should be unless there is a reactive decision making
process onboard? By the definition in this thesis, onboard route replan represents
a form of tactical control. However, note that AFRL does not explicitly specify
tactical control unless existing within a group. This thesis does not address group
tactical environments, but rather describes experiments which extracted single vehicle
tactics. Group tactical control is left for future work. However, the explicit grouping
of manned and unmanned assets in tactical control until level 10 autonomy is reached
serves to emphasize the importance of team-centeredness in tactical environments.

Table 2.3 displays the levels of autonomous behavior for unmanned ground ve-
hicles (UGVs) as defined by the U.S. Army and its Future Combat Systems (FCS)
initiative. Here, reactive decision making occurs at level 7 autonomy with auto ne-
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LEVEL DEFINITION
Remotely Guided

Real Time Health/Diagnosis
Adapt to Failures and Flight Conditions
Onboard Route Replan
Group Coordination

Group Tactical Replan
Group Tactical Goals
Distributed Control

Group Strategic Goals

0 Fully Autonomous Swarms

= O 0 IO Ut W

Table 2.2: Air Force Research Laboratory levels of autonomous control

LEVEL DEFINITION

Remote Control/Tele-operation

Mission and Task Planning

Improved Route Following on Paved Roads

Unimproved Route Following Dirt Roads

Off-Route Mobility No Roads

Obstacle Detection and Alert Operator (> 0.2 meter obstacles)
Obstacle Detection and Auto Negotiation (> 0.2 meter obstacles)
Tactical Payload Mission Behaviors

Cooperative Behaviors with Manned and Unmanned Systems

0 Reactive Intelligent Tactical Behaviors

= © 00 1O Ut N -

Table 2.3: Army Future Combat Systems levels of autonomous behavior
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High 10. The computer decides everything, acts autonomously, ignoring the human.
informs the human only if it, the computer, decides to

informs the human only if asked, or

executes automatically, then necessarily informs the human, and

allows the human a restricted time to veto before automatic execution, or
executes that suggestion if the human approves, or

suggests one alternative

narrows the selection down to a few, or

The computer offers a complete set of decision/action alternatives, or

The computer offers no assistance: human must take all decisions and actions.

=N W Cto N 00O

Low

Table 2.4: Levels of Automation of Decision and Action Selection

gotiation of obstacles. Again, it is important to note that a cooperative team of
manned and unmanned systems needs to exist before reaching level 10 autonomy of
reactive intelligent tactical behaviors. Therefore, both the Air Force and the Army
characterize tactical control levels for AV only in co-existence with human assets. It
is not enough to provide AVs with a greater level of expertise and then expect to
replace the human. By definition, both in academia and in the military services,
autonomous tactical decision making only takes place in a system of manned and
unmanned systems. Learning the best tactical knowledge is important, but it cannot
occur outside of a team-centered context and be indiscriminately applied to an AV.
This is why the human expert must be so directly involved in the design process.

2.2.3 Human-Centered Automation Design

The traditional context of a complementary human and autonomous decision making
system casts the human in the role of supervisor/operator and the automation in
the role of an aid. In this system, a design decision must be made about how much
authority should be given to the automation to make its own decisions. Sheridan pro-
posed ten levels to describe the various levels of interaction between the human and
machine for decision and action selection [62], as depicted in Table 2.4. An example
of this system context is the air traffic controller (ATC). It is the responsibility of
the ATC to direct the flow of traffic in and out of airports to ensure efficiency and
the safety of all involved. In doing so, the ATC has the authority to issue headings,
velocities, and holding patterns to all aircraft. In major airports, this is an extremely
demanding task, and the potential benefits of workload reduction by automation are
tremendous. The focus of automation decision aids has been the ability to predict
and project the current tracks of aircraft some time into the future so that the ATC
can resolve possible collisions between aircraft. Suppose the computer calculates a
collision course between two aircraft. At level 3 automation, the automated decision
ald recommends a few courses of action to resolve the projected situation. The ATC
chooses one and relays the information to the pilots. At level 7 automation, the de-
cision aid automatically uplinks new course and heading information to the aircrafts’
onboard computers and then informs the ATC of the action. In both scenarios, the
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ATC is the ultimate supervisor and operator of the system. The difference is in how
much authority has been given to the automation.

As a parallel to the ATC, consider the battlefield commander waiting to move
in a company of troops by helicopter to landing zones. That battlefield commander
wants to ensure that a specific proposed air corridor through which the troop-carrying
helicopters will fly is free from enemy contact. The commander is the supervisor
for the improved AV who will perform the reconnaissance. In this case, as the AV
performs a reconnaissance mission, the interaction between the AV and the battlefield
commander could easily resemble that between the ATC and the decision aid. For
example, the AV, trained by human expertise, encounters a pop-up threat, reacts,
and now prepares to engage the target, if the battlefield commander approves. From
Table 2.4, this would be level 5 automation. The question, then, that the battlefield
commander, the ATC, and most importantly the automation designer must answer
is how much decision making autonomy is appropriate.

Figure 2-1 displays one proposed method of designing human-centered automa-
tion [54]. In this flow chart, it is assumed that the human brain can be viewed as an
extremely sophisticated information processing system. Then the mapping of input
cues to output actions as experienced by the human can be represented by the fol-
lowing four stages: sensory processing, perception/working memory, decision making,
and response selection [87]. Admittedly, these four stages are an oversimplification at
this point, and they will be more fully dealt with in Chapter 3. Parasuraman et. al.
proposed four classes of functions that are roughly equivalent to these four stages of
human information processing [54]. These are information acquisition, information
analysis, decision and action selection, and action implementation. For each function
class there exists levels to describe how fully automated the system is within that par-
ticular class, as in Table 2.4. Therefore, a specific unmanned system can be described
using this method by its level of automation along all four dimensions. These four
dimensions are pictured in the flow chart as the four parallel blocks of acquisition,
analysis, decision, and action.

In answer to the top question of Figure 2-1 of what should be automated, this
research seeks to automate tactical control in AVs. Tactical control falls into the
branch of decision automation. Next, from the ten levels in Table 2.4, the human
user, such as the battlefield commander, would help decide an appropriate level of
automation decision making capability. Say level 6 automation was initially chosen
where the commander has a limited amount of time to veto any action automatically
chosen by the AV. Then the primary evaluative criteria of whether level 6 automation
is appropriate or not is the human performance consequences of that design choice. -
The secondary criteria is to evaluate the level of automation reliability required, the
costs of action, etc. These criteria force an iterative refining of the automation. Para-
suraman et al. emphasize that Figure 2-1 is a framework to help provide guidelines
for automation design. They also recognize that this framework may be more useful
in helping to define upper and lower bounds of automation rather than a specific
level.

The foundation of human-centered design captured by the flow chart is that an
appropriate level of autonomy is chosen primarily on how it affects the human that
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Figure 2-1: Flow chart showing application of the model of types and levels of au-
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is still a part of the system. Thus, the designers must ask what are the consequences
to the battlefield commander’s mental workload, situation awareness, complacency,
skill degradation, etc., at the chosen level of automation for tactical decision making,.
Interestingly, these criteria are all based on trust. If the commander does not trust
the AV, the commander will have a higher mental workload because the commander
will devote a lot of cognitive effort to monitor the AV’s actions. On the other hand, if
the commander trusts the AV too much, the commander might lose situation aware-
ness by not carefully monitoring the AV’s actions. The commander may also become
complacent and not react timely to the AV’s decisions and actions if the commander
over-trusts the AV. Note then, that the demands placed upon the reliability of the
automation design because of the environment where tactical decision making takes
place and the costs associated with wrong decisions, are the secondary evaluative
criteria in human-centered design. Those demands pointed to the need for trust be-
tween all decision making assets, both manned and unmanned, in tactical situations.
Therefore, beginning the design process centered around the human, trust becomes a
primary criteria. Unfortunately, the question of trust is not just whether the human
operator will use the AV, but also will the human operator use the AV correctly.

2.2.4 Lessons Learned from Improper Automation

A functional task allocation, as discussed in Section 2.1 asks the question what can
humans do better than machines and machines better than humans? The benefit of
asking this question is that it reveals the strengths and weaknesses of humans and
automation so that the two can be combined into a better system. If we are seeking to
improve autonomous decision making capability based on human performance, know-
ing what human strengths apply to decision making is a fundamental step. However,
the failure in functional task allocation is when the automation designer identifies
weaknesses, improves the autonomy, replaces the human as much as possible, and
never stops to consider the final consequences to the human. In fact, Dr. Fitts ad-
mitted ten years after the publication of his original 1951 list of the superiority of
man over machine and vice versa was misleading [23]. He declared that he had fallen
into “a trap” with that list, and the real question was not of allocating functions
based on superiority but based on a systems complementary approach [63].

From Table 2.1, it can be seen that the major advantage of automation is not to
replace the human simply because it appears that the human is limited or expensive
to maintain. Rather the automation should be complementary to the human [9].
However, complementary components of the same system require an interface, and
this is where automation designers have stopped. In a typical manned/unmanned
system, both the human and machine aid are subsystems, and the display is the
interface. Furthermore, it is well known in design that next to requirements, designing
the proper interfaces between complementary subsystems is extremely critical [12].
Consider, for example, an interface failure when the O-rings in the space shuttle
Challenger’s solid rocket boosters failed due to extreme cold weather. Hot gas leaked
past the O-rings, the failed interface, and ignited the entire stack [13]. Though this
is an extreme example, it shows that interfaces cannot be taken for granted. Even
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machine aiding and the simple presentation of several options to the human requires
considerable thought on how to display the options to the human user [87]. As a
case in point, a whole academic field of human factors and ergonomics has arisen
to research how to create a complementary system composed of both humans and
automation because it is such a difficult problem [1].

In the human factors literature, there is a term for when designers automate,
partially or fully, functions within a system without due consideration of the conse-
quences to the human operator of that system. That term is “automation abuse,”
and it has been a direct cause of serious incidents and accidents [53].

During the 1970s and early 1980s . .. the concept of automating as much as
possible was considered appropriate. The expected benefit was a reduction
in pilot workload and increased safety ... Although many of these benefits
have been realized, serious questions have arisen and incidents/accidents
have occurred which question the underlying assumptions that a maxi-
mum available automation is ALWAYS appropriate or that we understand
how to design automated systems so that they are fully compatible with
the capabilities and limitations of the humans in the system. [56]

This quote from the Air Transport Association of America (ATA) Flight Systems
Integration Committee in 1989 underscores how automation abuse caused an entire
system of pilots, engineers, designers, and safety controllers to step back and think
through the issue of automation design. Automating everything as much as possible
was found to be no longer appropriate, and the question was then what should even
be automated.

There are two ironies associated with automation abuse in which the designer
wishes to replace the human operator with automation because of the human’s ten-
dency to make errors [1]. First, the designer has now simply replaced the human
operator with himself or herself. Now the system is prone to the errors in design,
which are still human in origin. Second, the designer who tries to eliminate the hu-
man operator still leaves the operator to perform certain tasks which the designer
cannot think how to automate. More and more research has proven that automation
does not supplant human activity. Rather, it changes the nature of that activity,
often in ways unforeseen and unintended by the designer, which has led to several
problems in real world applications [1, 53, 54, 56, 88, 90].

As briefly discussed with the human-centered flow chart, human operators can
either over-trust or under-trust the automation. Over-trust or over-reliance on au-
tomation has been termed “automation misuse.” Numerous accidents have occurred
due to misuse, such as the crash of Eastern Flight 401 in the Florida Everglades,
when the crew failed to notice that the autopilot had been disengaged [53]. They
were not monitoring the aircraft’s altitude while diagnosing a possible problem with
the landing gear. Not only does over-trust lead to reduced situation awareness, it
also leads to skill degradation. Pilots who tend to always let the automation fly the
airplane lose some measure of their skills as a pilot. Only in emergency situations or
very complex tasks do most pilots tend to disengage the autopilot. Ironically, these
are the times when the pilot’s skills should be the sharpest, but they have degraded
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because of misuse. On the other hand, some pilots begin to distrust their own skills
due to over-reliance on automation, and they rely on the autopilot for safety. This
caused one pilot to crash short of the runway at Columbus, Ohio, in 1994 when he re-
lied heavily on the autopilot to land during a nighttime snowstorm [53]. Over-reliance
may also result in the human operator becoming complacent in monitoring the au-
tomation. Complacency becomes life-threatening when combined with automation
that fails silently. For example, if the failure of an autopilot results in large, unex-
pected banks, the automation failure is obvious. On the other hand, if the autopilot
fails silently and the airplane begins to roll ever so slightly due to a slightly unstable
roll mode, the pilots may not recognize the failure due to complacency. This situa-
tion occurred in the 1985 China Airlines incident when the wings were almost vertical
before corrective action was taken [53]. Over-trusting the automation, then, leads to
reduced situation awareness, skill degradation, and complacency.

Under-trust or under-reliance is termed “automation disuse.” Automation disuse
is usually related to the false alarm problem. For example, early versions of the
Ground Proximity Warning System produced so many false alarms that pilots stopped
trusting its warnings. Operators may also use “creative disablement” to turn off the
alarming system, such as the Conrail train accident in 1987 [53]. Investigators found
that the loud buzzer in the train cab that alerts of high speeds had been taped
over. Under-trust also results in increased mental workload. Because the pilot does
not trust the automated solution, the pilot must spend some significant “cognitive
overhead” to create his or her own solution, then compare the two, and finally choose
one. Under-trusting the automation leads to disuse of the automation or increased
mental workload.

Over-reliance and under-reliance represent issues of trust between the human and
the automation. Automation abuse also results in other problems. First, automa-
tion surprises result from the complexity of modern systems and algorithms. Because
closed-loop control is so tightly optimized for fuel efficiency, there are many times
when the pilots get very confused as to the purpose behind the airplane’s behavior.
It is an issue of transparency versus opacity. Second, “clumsy automation” is a term
coined by Wiener that describes automation that reduces workload when the work-
load demands are already low and increases them when attention and resources are
needed elsewhere. An example is the flight management system (FMS) that performs
waypoint following [56]. During the transit flight phase between destinations, the
FMS reduces workload when it’s already low. However, during descent when the
co-pilot should be scanning for other aircraft, the co-pilot has to spend time repro-
gramming the FMS to change the plane’s descent path. A third problem is silent
failure of automation, as discussed above. Graceful degradation of performance is a
human strength over machine [1]. However, it is not something to be carried over
to automation. Automation should fail obviously, especially when that failure has
tremendous negative costs associated with it.

As a final summary chart, Figure 2-2 displays the theoretical and experimentally
verified human factors variables that picture why a human either uses automation
or not [53]. The dotted lines represent theoretical relationships or relationships that
depend on the system in question. The solid lines represent relationships supported
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Figure 2-2: Automation usage based on human factors [53].

by experimental data. The important note to take away from Figure 2-2 is that
the factors involved in a human choosing to use automation are complex and not
completely understood. Therefore, it is very difficult to predict how a human will
choose to use automation or not. However, this is not to discourage a human-centered
automation approach. In fact, note the importance of reliance and trust in automation
as experimentally verified relationships. A human-centered automation approach is
crucial, both to avoid the myriad of lessons learned as described above as well as to
increase the acceptance of automation in the field.

2.2.5 Characteristics of a Team

In learning tactical knowledge from human experts, the human in the system is not
a supervisor, operator, or commander, but rather a team player. This is a subtle
distinction. In a reconnaissance mission, the performance and capability of the AV
to effectively search, and if necessary to engage enemy contacts, directly affects the
company of troops that are waiting to pass through the scouted terrain. In this
scenario, we are not designing the AV with the battlefield commander/supervisor
exclusively in mind. Rather, we are designing the AV with the company of troops
in mind that desire safe passage to their destination. Those troops are hoping the
AV was trained properly and knows how to prioritize its searching/evading/engaging
efforts in order to strengthen the overall team position. This is not going to happen
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unless we can completely understand the human previously performing this task with
that team mindset.

Human-centered automation for this research focuses on the human expert from
whom we learn tactical knowledge for two reasons. First, the human expert is our
primary source of designing the tactical playbook. The AV is not designed to make
up for human errors or weakness. We are admitting the AV is lacking and that much
can be learned from the human expert. Secondly, the human expert can trust the
AV more because he or she has trained it. In the same way that the flight instructor
teaches the student how to fly in formation, which is by necessity a cohesive, team-
centered unit, the human expert trains the AV to make correct decisions so that the
team will benefit. Furthermore, the human expert is not training their replacement.
Even when AVs with tactical decision making capabilities are fielded, human subject
matter experts such as fighter and attack pilots will still be very much needed. Thus,
the human expert has a vested interest in making sure the AV works toward team
goals of which the human expert is still a part.

Does this negate the flowchart in Figure 2-1 or lessons learned in the previous
section, which were presented with the human assumed to be the operator of the sys-
tem? We argue that it does not. Because of the consequences of wrong decisions in
battlefield environments, there has to be a human supervisor of any decision making
AV. Therefore, the traditional context of a system composed of a human operator
and machine aider still holds. Furthermore, the lessons learned of reduced situation
awareness, complacency, increased mental workload, automation surprises, clumsy
automation, and silent failures are even more important in the battlefield context
because of those same huge negative costs of wrong decisions. Therefore, the lessons
learned still hold. However, we argue that there should be a second set of primary
evaluative criteria in Figure 2-1 of Team Performance Consequences. How is team
performance in a battlefield context measured? The chain of command issues a set of
orders that filters down through the ranks until everyone understands their mission
specific objectives. Also, those orders describe the desired end-state of the comman-
ders so that soldiers can grasp how their mission specific objectives contribute to the
high-level goal [81]. Therefore, one proposed way of evaluating Team Performance
Consequences is to measure how well the AV meets the specific mission objectives
that the battlefield commander desires.

For reference, there are five characteristics of good team players [56]. First, team
players are reliable. If the AV has been given a list of mission objectives, how re-
liably are those objectives met? Moreover, knowing that uncertainty characterizes
the tactical environment, how robust and flexible is the AV to meet those mission
objectives in unexpected situations? Second, team players communicate effectively
with each other. Does the AV’s performance reveal automation surprises and silent
failures? Is the complexity of the decision making algorithm so dense that the AV
cannot effectively relay to other team players its intentions and actions? Third, team
players coordinate activities with each other. Do the choices made by the AV impede
the performance of other team players? Note that coordination can only occur in
dynamically changing environments if effective communication is present. Fourth,
team players monitor each other in order to “back each other up.” Does the AV have
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the capability to monitor the other team players? Does the AV have the intelligence
to shift its priorities if they need the AV’s help? Or does the AV simply perform its
nominal mission until a help signal has been received? Fifth and finally, team players
are guided by a coach. Does the AV respond appropriately to changes issued by the
battlefield commander? Team players, then, are characterized by reliability, flexibil-
ity, effective communication, coordination, monitoring, re-tasking, and re-prioritizing
all for the sake of improving the team’s position to meet the team’s goals. This list
of team player characteristics is a daunting yet necessary summary of how AVs must
be designed in order to integrate properly into today’s battlefield.

2.3 Implications and Closing Thoughts

This research proposes that by explicitly designing the automation based on human
inspiration, automation will be more acceptable as a team player with the human
users. The reasoning is as follows: the human expert has essentially trained the
automation in the best interest of the team. Therefore, human-centered automation
as described in this research naturally results in team-centered automation. After
discussing automation abuse, misuse, and disuse, Parasuraman’s and Riley’s first
conclusion is that, “better operator knowledge of how the automation works results
in more appropriate use of automation” [53]. There will always be a period of time
for new AVs to prove themselves reliable to domain experts. One of this research’s
goals is to encourage human acceptance of AVs by making AVs more predictable,
trustworthy, and better understood by their manned counterparts through a design
effort centered on human inspiration. Only then will the other team members have a
better knowledge of how the automation works and be more open to its usage in the
field.

Yet, there is at least one word of caution. Because the second step in the two-
stage tactical control paradigm (see Section 1.4) is to optimize the AV’s behavior
for the specific mission, this will result in atypical reactive decisions as perceived
by the human. This will have to be addressed in training. This will also provide
more emphasis on the team player characteristic of AVs communicating effectively
with manned assets. Again, the limitation is that we learn from human experts who
naturally sense the state environment differently than AVs. Therefore, what is a right
action for the human, may not be right for the AV.

In conclusion, one of the failures of automation designers in the past was to identify
the human weakness, build the right automation, and replace the human. Our design
method is to identify the human strength and improve the AV’s decision making
capabilities. This research is an initial step in how to use human-inspired tactics
to ultimately achieve level 10 autonomy as described in Tables 2.2, 2.3, and 2.4.
Furthermore, we believe that centering the automation design around the human
expert naturally follows the human-centered automation design approach in Figure
2-1. This thesis addresses the decision automation branch in the flow chart and
proposes the addition of another set of secondary criteria termed Team Performance
Consequences. We only seek to improve AV tactical decision making in a way that
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strengthens the position of the entire team. It’s a fine line, but the motivation will
drive the reliability, trust, and acceptance of the system.

48



Chapter 3

Human Expert Performance and
Cognitive Modeling Efforts

Accurate and reliable observation and interpretation of a human expert’s tactical
knowledge requires a decision making framework. Though interpretation implies that
this is, at least, a partially subjective procedure, it is a necessary one if autonomous
vehicles (AVs) are to make tactical decisions in future battlefields, as described in
Chapter 1. To review, Chapter 2 discussed the interaction between expertise and
reliability in tactical environments composed of both humans and AVs. There were
two major conclusions in Chapter 2. First, analyzing the functional strengths and
weaknesses of humans and automation helped determine how to design experimental
scenarios to exploit human strengths in tactical decision making. Second, the lessons
learned from indiscriminate application of automation in the past and the unique
challenges of real world tactical environments underscored the necessity that the
design approach be team-centered. The five characteristics of reliability, effective
communication, coordination, monitoring, and being guided by a coach describe what
it means to be part of a team, and the smartest tactical AV will not be trusted by
humans and thus not integrated into the battlefield if it fails to behave as a team
player. Now, in Chapter 3, we present the underlying mechanisms of human expertise.
Understanding these mechanisms is crucial in making objective interpretations of
human decision making. We propose that there are three levels in learning human
tactics - actions, strategies, and cognitive mechanisms. These correspond to answering
the three questions of what, why, and how. We observe the “what,” and we desire to
know the “why.” Therefore, we must also understand the “how” of human decision
making by understanding human cognition and decision making frameworks.

Before beginning the discussion on cognitive theories, we wish to present one
other prefatory note on the specifics of this chapter. Cognitive science is an extremely
diverse field, and the following sections only touch upon a few concepts. Yet, the rise of
human factors research in response to the greater reliance on automation has brought
the fields of engineering and psychology closer. This chapter, then, aims to familiarize
the reader with some of the main theories. However, we explicitly state that only a
few of the concepts presented in this chapter were actually applied in the experimental
method of learning human-inspired tactics. Namely, these are the following decision

49



making frameworks: Recognition-Primed Decision model, Generic Error Modeling
System, Belief-Desire-Intent model. We also touch upon human interpretation of
probability and some decision heuristics and biases in decision making that appeared
in the experimental results. Every section in this chapter will finish by summarizing
its specific contribution to understanding human decision making so that follow-on
work in human-inspired tactics can be even more grounded in objective theory.

3.1 Components of Cognitive Model

To begin understanding the underlying mechanisms of decision making, it is important
to first discuss the underlying cognitive structure, namely long-term and working
memories. Human experts make tactical decisions by drawing upon past experiences
in long-term memory and combining these lessons learned with the present state in
working memory to form a set of alternative choices for action.

3.1.1 Long-Term Memory

A human’s long-term memory is crucial to living life efficiently. It is in the long-term
memory where intuitive, every day actions, such as the motor skills necessary to brush
teeth, are embedded. If there were no long-term memory, the ability to brush teeth
would have to be relearned every day (or twice a day depending on hygiene). The
organized structure, large capacity, and retrieval mechanisms of long-term memory
all contribute to how humans make decisions.

Storage Structure

Experiments in accessing long-term memory have continued to confirm the very in-
teresting fact that the storage of long-term memory is not random. In fact, long-term
memory storage is highly structured [89]. In 1996, Lipshitz and Bar Ilan analyzed
retrospective case reports of low-to-middle tiered managers and their success and
failure in problem solving in the work place. Lipshitz and Pras in 2000 questioned
these findings because, “it is not clear if their findings pertain to how problems are
actually solved or to a cognitive schema that drives the reconstruction of problem-
solving processes from long-term memory” [39]. Through a series of experiments in
which subjects were asked to think aloud as they solved one well-defined and one
ill-defined problem, Lipshitz and Pras verified the existence of a reconstruction that
had occurred in long-term memory. They found that “elements in a story that are in
a purposeful (in-order-to) relation, such as consecutive elements in an action plan, are
remembered better than elements not related in this fashion.” Long-term memory
storage is structured because the human cognition can more efficiently recall particu-
lar facts about past events when the information exists in an organized fashion. This
structure is termed cognitive schema.

In 1932, Bartlett first proposed that the knowledge embedded in long-term mem-
ory were in the form of schema [2]. Definitions of schema emphasize that it is a
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structure or model of data or objects in a database. Bartlett found that humans
tended to recall memories in more organized, meaningful, and systematic ways than
the actual occurrences of them. Humans tended to not remember odd or uncommon
details so that the memory’s retrieval conformed more to the person’s present expec-
tations. For example, consider parents who are recalling the mischievous behavior
of their young adult son or daughter when he or she was a child. How often does
the young adult disagree with the parents’ stories saying, “I never did that! I was
never that bad!”? Bartlett proposed that humans were unconsciously attempting to
organize those memories in knowledge structures. In his famous phrase, he called this
an “effort after meaning.” Bartlett defined schema as the following;:

[Schema is] an active organization of past reactions, or of past experiences,
which must always be supposed to be operating in any well-adapted or-
ganic response. That is, whenever there is any order or regularity of
behavior, a particular response is possible only because it is related to
other similar responses which have been serially organized, yet which op-
erate, not simply as individual members coming one after another, but as
a unitary mass. [2]

Note first that long-term memory composed of active knowledge structures rather
than passive images reconstructs past experiences rather than reproduces them. Fur-
thermore, though schema is “serially organized,” retrieval of knowledge is not a se-
rial search. As will be discussed in the next section, long-term memory retrieval
is very rapid. If it was activated by a serial search, the time taken to retrieve a
particular knowledge structure would be proportional to the total number of knowl-
edge structures encoded as schemata. Rather, schema operates as a “unitary mass,”
which allows quick retrieval. Finally, note that knowledge storage is associational
in long-term memory. Certain sensory inputs evoke similar responses already stored
in long-term memory. Retrieval of knowledge highlights this notion of associativity.
Therefore, schemata are unconscious, active mental structures composed of organized
past experiences.

Research in the last half of the twentieth century has contributed further concepts
to this long-term memory storage structure called schema [57]. First, schemata are
high-level knowledge structures. Consider a human subject presented with a picture
of a typical living room for only a brief amount of time and then asked to describe all
features of the room. If the view of the room contained a wall clock and if the human
subject was pressed to describe the clock, the human subject would probably be prone
to say the clock had hands. This is because a high-level schema exists that contains
knowledge of a prototypical living room with a clock that has hands. Second, each
schema accepts only specific information or data. A schema can be considered, then,
an “expert” in whatever field of information it requires. - If these informational “slots”
are not being filled by present inputs, they take on default values from previous
experiences. Therefore, when sensory inputs to humans trigger memory recall but
only provide partial information, the default values of the past enable humans to
infer, either rightly or wrongly, about the present. Finally, there is no known limit to
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the number of schemata that can be stored in long-term memory. It is assumed that
there is infinite capacity for the storage of knowledge structures [47].

James Reason describes how three errors can arise from inference involving schemata.
First, humans fit data to the wrong schema. Second, in an effort to efficiently use
memory recall for present actions, humans fit partial data to the right schema, but do
not seek further information to fill in the gaps. Rather, they rely on “best guesses”
from past experiences. Third, humans tend to rely more on active, presently-invoked
schemata and salient, attention-getting schemata. Reason summarizes the good and
the bad of schemata in the following:

The very rapid handling of information characteristic of human cognition
is possible because the regularities of the world, as well as our routine
dealings with them, have been represented internally as schemata. The
price we pay for this largely automatic processing of information is that
perceptions, memories, thoughts, and actions have a tendency to err in
the direction of the familiar and expected. [57]

The tendency for information processing to “err in the direction of the familiar and
expected” gives rise to predictable biases which will be discussed later on in this
chapter.

Storage Retrieval

Long-term memory retrieval typically occurs very rapidly and is associational both
in terms of similarity and frequency. Experiments show that the time to read a
knowledge structure in long-term memory is of the order of hundreds of milliseconds
[47]. This time is derived from presenting a stimulus to a subject and requiring
the subject to respond to with some sort of verbal description, such as naming the
color presented. The subject must first recognize the stimulus, which is equivalent to
reading a knowledge structure in long-term memory, and then respond appropriately.
The entire recall and react time is typically half a second to one second, and by having
a good idea of human reaction time, the reading of long-term memory can be backed
out to the order of hundreds of milliseconds or less than half a second.

Note that the terms recognize and recall are used interchangeably above to de-
scribe reading knowledge structures from long-term memory. These terms are actually
differentiated in literature [89]. To recall is to verbalize knowledge in the head, such
as recalling a home address. To recognize is to verbalize knowledge in the world,
such as recognizing the sound of an ambulance siren. When asked about a particu-
lar event, a human may not be able to recall certain facts, but once presented with
the information, a human quickly recognizes it. (“I can’t remember her name, but I
would know the face.”)

The association of present inputs to stored information in long-term memory is a
combination of similarity-matching and frequency-gambling. The idea of similarity-
matching is simply that certain cues active the retrieval of specific information. How-
ever, the set of present cues do not typically match a set of schemata completely or
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perfectly. Therefore, frequency-gambling and inference exist so that stored informa-
tion from schemata that are only partially matched can be retrieved and combined
to generate some appropriate response. The concept of frequency-gambling is that
not only does the schema store specific information, but the schema maintains a
trace of its past activation. This is Hintzman’s multiple-trace theory [32], where the
long-term memory exhibits a sort of “frequency map.” The more times a given input
is encountered, the larger the “pile” of traces becomes for that particular schema.
Furthermore, and more importantly, the more times a given input is encountered,
the higher the probability that in the face of partial similarity-matching, long-term
memory retrieval will be biased towards this higher frequency content [57]. When
a human is faced with a partially novel situation, then, and is unable to generate a
novel solution, that human tends to revert back to a somewhat similar situation and
proclaims, “I might as well try it. It’s worked before.”

Inference is the sum total of similarity-matching and frequency-gambling. A set
of sensory inputs activates retrieval from a set of knowledge structures based on the
similarity and frequency of past encounter of those same cues. The human must
then sort through, combine, and manipulate that information to generate a response.
Inference occurs in the working memory, which has a limited capacity for storage
and manipulation of information. Before moving on to discuss working memory, an
example of a long-term memory experiment ties these three concepts of similarity-
matching, frequency-gambling, and inference together.

J. Reason asked 126 British psychology students the following question: “Who
said (or, more accurately had a sign on his desk saying), ‘The buck stops here’?”.
The answer is President Harry S. Truman. Now the word “buck” in this context came
from the slang phrase “pass the buck,” which meant to hand over responsibility to
another. How would British psychology students, assuming they could not associate
the phrase directly with President Truman, infer the identity of the speaker? Their
line of thought could be as follows. Quotations typically involve famous people. The
term “buck” suggests an American. The most famous Americans are presidents.
There are a total of thirty-nine (at the time of the experiment) presidents. Based on
the process of long-term memory retrieval, if similarity-matching of the quotation does
not partially match any schema, the students would be forced to infer the identity
of the speaker only through frequency-gambling. Therefore, Reason also asked the
British students to recall as many presidents as possible in five minutes.

Figure 3-1 displays two discrete probability distributions. Reason terms the rear
distribution the “salience gradient” dominated by the first eight presidents listed. In
descending order, they are Reagan (the incumbent president at the time, and thus
the most salient), Kennedy, Carter, Nixon, FDR, Lincoln, Washington, and Ford.
President Truman is number twelve on the graph. This distribution shows that al-
most every British student knew Reagan was an American president, but only 13%
could name Truman as a president. The front distribution is how likely each student
attributed the quote, “the buck stops here” to a particular president. As the distri-
bution depicts, there was no agreement among the British students over who said this
quote. There are two important notes. First, over 80% of attributions were made to
the five most frequently remembered presidents. This is shown by the first five bars of
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Figure 3-1: British psychology students’ probability of recalling American presidents
and probability of attributing the above quote to an American president [57).

the front distribution and confirms the presence of frequency-gambling in the face of
failing similarity-matching. Because the average British student could not associate
the quote with any president, he or she was most likely to attribute that quote to the
most easily remembered, the most salient president. Second, President Nixon, the
fourth on the list, dominated the attributions, as seen in the front distribution. Upon
questioning the students after analyzing the data, Reason found that many matched
the word “buck” to mean a dollar rather than responsibility. Out of the presidents
most likely to remember, British students knew Nixon was involved in some scandal
that presumably included money. Therefore, they inferred that the buck, meaning
money, stopped here, in Nixon’s pocket. Similarity-matching, then, dominates infer-
ence when the cues can be directly associated with stored knowledge; they fill the
informational slots of particular schemata. Frequency-gambling dominates when the
cues are ambiguous and there is little contextual knowledge in the required area.

3.1.2 Working Memory

While long-term memory storage has presumably infinite capacity and long-term
memory retrieval occurs very rapidly independent of its size, working memory is lim-
ited both in the quantity of knowledge it can contain as well as in the temporal
preservation of knowledge. Working memory is where all actions that require con-
scious thought are processed. Consider a mother of two children who runs over sharp
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metal with her van and receives a flat tire. If the mother has had to fix a flat tire
before, she can associate the present circumstance with that past experience stored
in long-term memory. However, the remembrance of what occurred during the last
flat tire is not sufficient to fix this flat tire. It takes conscious thought to properly po-
sition the jack underneath the van, unscrew the lug nuts, etc. This occurs in working
Memory.

Capacity

The capacity of working memory is limited to a small set of symbols. George Miller in
his famous 1956 paper showed that the total number of symbols that could be stored
in working memory, what is referred to as the memory span, is “the magical number
seven plus or minus two” [44]. (Note that Miller refers to immediate memory in his
paper and Newell and Simon refer to short-term memory [47]. The term working
memory encompasses both of these.) These experiments which test memory span are
simple in that a string of digits is provided to the subject, and the question is how
many can the subject remember. For example, an average human can remember the
last seven digits of a telephone number in working memory. As long as the area code
is familiar enough that it can be represented in long-term memory, then this presents
no prob