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Abstract 

This thesis considers possible solutions to sample impoverishment, a well-known fail- 
ure mode of the Rao-Blackwellized particle filter (RBPF) in simultaneous localization 
and mapping (SLAM) situations that arises when precise feature measurements yield 
a limited perceptual distribution relative to a motion-based proposal distribut'ion. 
One set of solutions propagates particles according to a more advanced proposal dis- 
tribution that includes measurement information. Other methods recover lost sample 
diversity by resampling particles according to a continuous distribution formed by 
regularization kernels. 

Several advanced proposals and kernel shaping regularization methods are con- 
sidered based on the RBPF and tested in a Monte Carlo simulation involving an 
agent traveling in an environment and observing uncertain landmarks. RMS error 
of range-bearing feature measurements was reduced to evaluate performance during 
proposal-perceptual distribution mismatch. A severe loss in accuracy due to sample 
impoverishment is seen in the standard RBPF at a measurement range RMS error of 
0.001 m in a 10 m x 10 m environment. Results reveal a robust and accurate solution 
to sample impoverishment in an RBPF with an added fixed-variance regularization 
algorithm. This algorithm produced an average 0.05 m improvement in agent pose 
CEP over standard FastSLAM 1.0 and a 0.1 m improvement over an RBPF that 
includes feature observations in formulation of a proposal distribution. 

This algorithm is then evaluated in an actual SLAM environment with data from 
a Swiss Ranger LIDAR measurement device and compared alongside an extended 
Kalman filter (EKF) based SLAM alg~rit~hm. Pose error is immediately recovered 
in cases of a 1.4 m error in initial agent uncertainty using the improved FastSLAM 
algorithm, and it continues to maintain an average 0.75 m improvement over an EKF 
in pose CEP through the scenario. 
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Chapter 1 

Introduction 

A complicated but increasingly relevant scenario in robotic navigation and explo- 

ration involves an agent traveling without the aid of an absolute positioning system 

or an accurate map of the environment. To produce a globally consistent map, an 

agent must gather information about its surroundings through relative observations 

of local features. By combining these measurements with a correct notion its position 

and heading at the time of each observation, it can create a proper spatial model of 

the environment [46]. In a related manner, an agent can use relative observations of 

features in the environment to infer position and heading, but only when measure- 

ments are correctly associated with entities stored in an accurate a priori map. When 

neither the agent path nor the environment map are provided and must instead be 

estimated jointly, a unique correlation develops and errors in each state are linked 

1.1 Joint Estimation 

In a conventional mapping situation with an accurate position estimate at all times, a 

robot will measure the location of different features as it travels through the environ- 

ment, storing the positions of these landmarks in an estimated map of an area. Since 

the true path is known, measurements between one state and another are statistically 

independent. Making more measurements of a state, such as a landmark position, 



will only provide a better estimate of t,he state and will not affect the knowledge of 

any other state. When the true path of the agent is unknown and must be estimated 

along with each landmark, all states in the estimation problem become statistically 

dependent. Any error in the robot pose estimate at the time relative measurement is 

processed will have a systematic effect on the accuracy of the landmark estimate [46]. 

If pose error is not mitigated with the measurement of a well-localized landmark or 

an absolute position reference, this systematic error in the map will build over time as 

control errors accumulate, making it difficult or impossible for the agent to produce 

a consistent map. An illustration of this dilemma is shown in figure 1-1. An agent 

starts from a well-localized position and measures a feature in the environment. At 

this point, all other features are unknown. With an accurate estimate of the agent 

pose at the time of the first relative observation, there is little doubt in the location 

of the landmark. Over time, robot control errors lead to an increased uncertainty 

in agent pose. Statistical dependence inherent to the joint estimation problem leads 

to increased uncertainty of future landmark positions, denoted by larger red ellipses. 

Both the problem and approach involving joint estimation of agent pose and local 

map are referred to as Simultaneous Localization and Mapping (SLAM) [ll, 321 or 

Concurrent Mapping and Localization (CML) [46, 451. SLAM estimation algorithms 

take advantage of this st at istical correlation between pose and landmark uncertainty. 

When the agent observes and correctly identifies a previously mapped feature, shown 

in figure 1-2, the agent position error is corrected. Because of the statistical cor- 

relation between agent pose and landmark position, the uncertainties of all other 

estimated landmarks are also reduced. 

1.2 SLAM Applications 

In many navigation situations, a full SLAM solution, both agent pose information 

and local landmark positions, may not be necessary. Obvious circumstances include 

many aerospace or open-field environments with unobstructed access to signals from 

Global Positioning System (GPS) satellites, views of stars contained in a star tracker 
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Figure 1-1: A typical SLAM scenario with accurate initial agent position estimate 
in (a). Over time agent uncertainty increases, leading to further uncertainty in feature 
positions as they are observed (b). 

database, or any other absolute referencing system [ll]. With the increasing avail- 

ability of high-resolution satellite imagery, detailed maps of observable features can 

be provided as an additional absolute reference. However, the benefits of SLAM 

algorithms extend beyond the strict pose-and-map estimation explained previously. 

Consider a robot, vehicle, or even a human traveling through an urban environment, 

equipped with inertial measurements from accelerometers and gyroscopes (INS), and 



Agent Observes 
Previously 

Mapped Feature 

-- -2- 
/--- ---, 

Correct Ir 
Association 

Figure 1-2: The agent makes one full loop and returns to a previously mapped fea- 
ture (a). If a correct assocation is made between a measurement and a previously 
observed landmark, overall uncertainty in the agent pose and map are reduced (b). 

a suite of other measurement devices designed to augment inertial measurements: 

Doppler radar, wheel encoders, GPS, or an image-based pseudo-inertial measurement 

system. Of all the measurements in this system, only GPS provides an absolute p e  

sition reference, and in an urban canyon this signal could be intermittent, reflected 



by buildings (multipath), or completely blocked. During GPS outages from blocked 

signals, a vehicle interested in self-localization must continue to navigate using only 

relative measurements of rotation, velocity and acceleration from the other devices 

[I 11. Errors in these measurements will quickly propagate over time since parameters 

must be integrated to determine the agent pose estimate. Unless an additional con- 

straint is added to certain parameters of the navigation filter, error will grow without 

bound until another absolute position fix is obtained. In this scenario, a SLAM-based 

approach may help preserve the integrity of the navigation system during long periods 

without GPS measurements. Mapping local features with accurate GPS-determined 

path information will create a database of landmarks that can be used to maintain 

an acceptable pose estimate when GPS signals are blocked by natural or manmade 

obstructions [ l l ] .  Indoor environments, on the other hand, completely prevent GPS 

signal positioning, and in some cases an accurate floor plan or map of the building 

may not be available. Navigation in unfamiliar buildings with the contemporary mea- 

surement suite described above would be next to impossible unless a map of features 

is estimated along with the agent pose [l, 321. 

Robotic platforms are now sent to the frontiers of exploration as advancements in 

structural technologies and design permit robust operation in austere environments. 

These areas, where prior maps are too difficult, costly, or dangerous to procure, 

present some of the most promising areas for the implement'ation of SLAM-based al- 

gorithms [32]. Particular target environments for SLAM approaches include undersea 

autonomous vehicles, robotic exploration of mines [30], and autonomous navigation 

on extraterrestrial planets. In general, independent localization and mapping is a 

necessary prerequisite to completely autonomous operation of mobile robotics in any 

situation. Currently, many advanced estimation algorithms exploit the flexibility 

provided by an implementation of a SLAM approach [47]. 



1.3 Bayesian Estimation 

The most widespread and successful branch of SLAM estimation algorithms employ 

probabilistic techniques, meaning that they estimate a posterior probability distri- 

bution over all possible maps and all possible poses [39, 461. Each agent control or 

environmental observation can be thought of as a probabilistic constraint [32]. This 

implies that the set of all possible agent poses at any time is reduced as more informa- 

tion is obtained about either the robot's motion or its surroundings. In the limit of an 

infinite amount of such information, the set of all possible SLAM posteriors converges 

to one agent pose and one map. Bayes' theorem is a recursive formula that incorpo- 

rates sensor and control information to adjust the posterior probability distribution, 

accounting for any measurements that are available at a given time [14, 32, 391. In 

this respect, Bayesian estimation in its purest form is a flexible estimation architec- 

ture that can update an estimate with any information that can be mathematically 

related to the posterior. Additionally, the recursive nature of Bayesian estimators is 

ideal for online applications. Since the agent pose and map estimates evolve from 

the posterior at the previous time step, all other past estimates can be forgotten. 

Finally, Bayes' filter can be used to estimate a state of any size, restricted only by 

the computational limit at ions of the navigation computer. Unfortunately, the est i- 

mation integral forming the basis of the Bayes' filter cannot be computed in closed 

form [14, 321. Many Bayesian algorithms solve this by restricting the form of the 

posterior, motion model or measurement model. Others employ alternative sampling 

techniques to approximate the Bayesian posterior without making these limitations. 

Two popular SLAM algorithms that typify each approach are the extended Kalman 

filter (EKF) and the particle filter. 

1.4 EKF SLAM 

The Kalman filter is an optimal Bayesian estimator that operates under the strict 

assumptions of a Gaussian posterior probability distribution and linear motion and 



measurement models [32, 391. Linearization of nonlinear motion and measurement 

models results in the extended Kalman filter, an analytical approximation of Bayes' 

filter. The recursive solution provided by the extended Kalman filter is sufficient if the 

posterior probability distribution for SLAM states can be adequately characterized 

by the uni-modal Gaussian parameters of mean and covariance [39, 471. Uncertainty 

in an EKF SLAM algorithm is stored in a covariance matrix, with not only individual 

state uncertainty but also correlations of uncertainties between states. Unfortunately, 

in many scenarios a simple Gaussian distribution does not adequately encapsulate 

the full posterior probability distribution. Indoor navigation environments provide 

constraints in the form of physical obstructions or walls. Pure Gaussian uncertainty 

implies a small chance that the agent could be inside the wall, or outside the building 

in mid-air. In addition, Gaussian uncertainty carries only one mean, or most likely 

estimate, for a particular state. In many cases, such as the global localization problem, 

there is an equally likely chance that the robot could be at many points in the 

environment, and each of t,hese points must be given equal consideration until more 

information is gathered [45]. 

1.5 Particle Filter SLAM 

The particle filter is an approach to the nonlinear estimation problem that represents 

posterior probability with a large number of discrete, evenly weighted samples [14, 

32, 391. In the SLAM case, each sample is a hypothesis of the posterior (an agent 

pose and a corresponding set of landmarks) that is propagated according to a motion 

model and then weighted based on how well the hypothesis agrees with a target 

distribution [32]. The target distribution, in most formulations, is directly related 

to feature observations [39]. Successful particle filtering algorithms typically draw a 

new set of particles after weights have been assigned. In particle filters, uncertainty 

of the state is stored in dispersion of these uniformly weighted samples; a broader 

spread implies a more uncertain estimate. Consequently, multi-modal distributions 

from state constraints or nonlinear propagation can be approximated easily. An 



example of particle filter propagation is shown in figure 1-3. In this example, a large 

number of particles are drawn from the prior agent pose according to a probabilistic 

motion model representing uncertainty in agent movement. A feature observation 

isolates the pose hypotheses that agree, and these particles are given larger weights. 

After resampling, most of these particles will be duplicated, whereas particles outside 

the blue ellipse will likely be eliminated. Surviving particles are then propagated 

according to agent control information at the next time step, and the process repeats. 

The Rao-Blackwellized particle filter (RBPF) is a specific type of particle filter 

that, in the context of SLAM, updates pose information with a particle filter and land- 

mark information with a number of low-dimensional EKFs. The distinct advantage of 

the RBPF over standard particle filters is that it scales well to mapping problems of 

high-dimensionality [32]. It does this by marginalizing the posterior and eliminating . 

cross-correlations between landmarks [4]. Since each sample in the particle filter is an 

estimate of the true position, landmarks measurements become conditionally inde- 

pendent. Advantages of the RBPF SLAM concoction include the ability to represent 

an arbitrarily complex posterior distribution of the agent pose, as well as many in- 

dependent estimates of an environment map. As mentioned previously, this property 

may be particularly useful in cases of indoor localization and mapping. Additionally, 

the RBPF, as with other particle filters, converges to the optimal Bayesian posterior 

in the limit of infinite particles [39]. As computational power increases, estimators 

based on particle filtering will only improve their characterization of the posterior. 

Unlike the basic EKF approach, the computational complexity of the RBPF scales lin- 

early with the dimension of the state, allowing favorable application to online SLAM 

scenarios [31]. Most importantly, the application of RBPF based SLAM algorithms 

has demonstrated solutions to two previously unsolvable problems in robot localiza- 

tion: global localization, and the kidnapped robot problem [47]. Both problems take 

advantage of the multiple hypothesis nature of the RBPF to determine true position 

under initial global uncertainty. 



Figure 1-3: Samples drawn from a probabilistic motion model (a) with a blue ellipse 
representing the measurement. In this case, the proposal and target distributions 
match well and particle diversity is preserved in (b). 

1.6 Particle Filter Limitations 

Despite the advantages that the RBPF brings to SLAM, it also brings certain com- 

plications that are currently difficult to overcome. A particular failure mode for the 

particle filter occurs when the proposal distribution (in most cases characterized by 

the motion model) and the target distribution (from a feature observation) are mis- 

matched, usually from an accurate sensor measurement. This scenario is becoming 

increasingly relevant as current trends in inertial systems produce smaller, chip-based 

accelerometers and gyros [Ill. Though small and dependable, these systems are often 

plagued with errors, including bias, scale factor, and random walk processes. At the 

same time, measurement devices have only become more accurate and precise, espe- 

cially ranging systems based on Lidar- Light Detection and Ranging. Moreover, it is 

generally more feasible to implement accurate sensor technologies than to fully pre- 

dict the motion characteristics of a complex robotic platform especially as it travels 

through an uncertain environment [l 11 . 

A particle filter will incorporate accurate sensor information into the SLAM pos- 

terior estimate by reproducing the particles that correspond to the measurement and 

eliminating others. In effect, a particle filter continually builds and trims a set of 

individual estimates of the true agent trajectory [32]. With an infinite number of 

particles, this trimming of conflicting possibilities for agent position would favorably 



resolve the estimated state. In this case, an extremely accurate feature observation 

device would be ideal, since, hypothetically, there are still an infinite number of parti- 

cles preserved in the process. Since practical implementations are restricted to a finite 

number of particles, this trimming reduces the number of discrete possibilities as par- 

ticles are relocated to these few unique points. Coupling a noisy motion model with 

an accurate measurement device will only reduce the number of unique points that 

align with the target distribution. If the diversity lost in this process is not recovered, 

particles could eventually coalesce to one single trajectory. Since uncertainty is stored 

in the dispersion of the particle cloud, the filter is assuming perfect knowledge of the 

true state, which is obviously untrue. This failure mode of particle filters, also known 

as sample impoverishment or particle depletion, can lead to particle drift, incorrect 

associations between measurements and landmarks, false landmark creation, and a 

general loss of pose and map accuracy [16, 21, 32, 39, 41, 431. 

In figure 1-4, particles are drawn according to a probabilistic motion model as in 

figure 1-3. With a precise measurement, the size of the ellipse representing the target 

distribution is reduced. Only a few discrete points now match the highly selective 

target criterion. During resampling, most points will stack to these few locations. In 

a way, the particle filter has prevented degeneracy by relocating and sharpening the 

area of interest. While it is true that the resulting particle cloud will encircle the most 

likely pose of the agent, a particle filter estimates a state with discrete samples, not 

a continuous distribution. A finite number of samples means that there will always 

be unsampled "gaps" in filter coverage. In a strict probabilistic sense, a finite sample 

set also implies that the agent will not coincide exactly with one of these discrete 

samples [32]. In order to ensure that the filter continues to converge to an accurate 

representation of the agent state, an adequate level of sample diversity, or unique 

filter samples after resampling, must be maintained. If not, the filter is prone to 

the many side effects of sample impoverishment listed previously that will cause the 

estimate to diverge from the true posterior. 



Figure 1-4: Mismatch between proposal and target distributions, a consequence of 
accurate measurements. Only a few unique particles are resampled (b). 

1.7 Thesis overview 

It is the aim of this document to explore alternative methods for recovering lost 

sample diversity in Rao-Blackwellized particle filters and to analyze the effects of 

increased diversity on the overall posterior accuracy of the algorithm. A literature 

review provides two possible solutions. 

The first approach seeks to prevent sample diversity by adopting a more advanced 

proposal distribution than that provided by only the agent motion model. It is the 

hope that by incorporating measurement information in proposal calculation, more 

particles will propagate to favorable regions for resampling based on the target dis- 

tribution. There are several documented attempts at using measurement information 

to influence particle propagation, with only limited information relating to their per- 

formance in a strict SLAM scenario [30, 36, 37, 391. 

The second attempt focuses on regaining lost diversity during resampling by draw- 

ing samples from a more continuous distribution. Instead of stacking on discrete 

points that receive high weights, particle locations are adjusted or "regularized" ac- 

cording to an additional draw from a regularization kernel. As a result, regions of the 

target distribution are more evenly populated with unique pose estimates that fill in 

the unsampled "gaps" before propagation. 

This document presents the results of a research effort to characterize the role of 

sample diversity in overall RBPF accuracy in SLAM scenarios. In addition, alter- 



native proposal distributions are combined with regularization methods to explore 

the performance of each combination and to find a robust and accurate solution for 

particle depletion. 



Chapter 2 

Simultaneous Localization and 

Mapping 

The Simultaneous Localization and Mapping problem considers a robot moving through 

an unknown environment. In the most basic example, a robot executes controls and 

makes observations about the relative positions of local features, both of which are 

corrupted by noise. Were an accurate, detailed map of the environment available, the 

problem reduces to determining the true path by observing the relative positions of 

features [46]. Conversely, if the true position of the robot is known through GPS or 

some other means, a map of the observed environment could be deduced using these 

relative measurements [45]. The process of recovering both the robot path and the 

environment map from limited or no initial information becomes much more difficult. 

Pose uncertainty introduces systematic errors that contribute to the uncertainty of 

landmark positions mapped with robot observations [32]. Successful attempts at this 

problem have taken advantage of this correlation between pose and landmark uncer- 

tainty by estimating both states simultaneously [12, 391. Accurate knowledge about 

the position of a landmark will reduce both pose uncertainty and t'he uncertainty of 

other landmarks [32]. 



2.1 SLAM Fundamentals 

The goal of SLAM is to recover an estimate of the most recent robot pose, st and the 

locations of local landmarks, 0, given the set of control and measurement information, 

ut = {uo, ul, . . . ut), and zt = {zo, 21,. . . zt) respectively. This SLAM posterior state 

is represented probabilistically as: 

To develop a recursive, optimal estimator for this problem, the posterior dis- 

tribution is modeled as a partially observable Markov chain [39, 131. Under this 

assumption, the present state is dependent only on the previous state; all other past 

and future states are conditionally independent [46]. Expanding this posterior using 

Bayes' Theorem yields: 

where 11 is a proportionality constant. Through a simple derivation, a recursive for- 

mula is developed that infers the SLAM posterior at any time t given knowledge of 

the state at time t - 1. This elegant and widely used recursion is known as the Bayes' 

Filter [40] : 

Under the Bayes' filter, the a przorz distribution at time t-1 evolves according to 

a motion model, also known as a transitional density [32, 39, 451: 

The observation model that relates incoming measurements to the evolved state 

is given by: 

p(zt lst, 0) (2.5) 



Though difficult or impossible to compute in closed-form, equation 2.3 can be 

approximated by restricting the form of the SLAM posterior to a Gaussian probability 

density function (pdf). When the motion and observation models can be regarded 

as linear functions of the current state with with only uncorrelated, zero-mean white 

noise, this recursion for the optimal Bayesian posterior becomes the Kalman filter 

[3, 18, 25, 421. Linearization of non-linear motion and measurement models forms the 

basis of the extended Kalman filter, an analytic approximation of the optimal filter 

for non-linear situations [39]. 

2.1.1 Extended Kalman Filter SLAM 

The EKF represents the SLAM posterior distribution as a high-dimensional multi- 

variate Gaussian parameterized by a mean pt and covariance Ct for each state. The 

mean posterior is the state vector in equation 2.8 and contains agent pose information 

(2-d or 3-d position and heading) and the mean position estimate for each mapped 

landmark. State covariances and pairwise correlations between states are stored in 

the filter covariance matrix, equation 2.9. 

s t  = {st, Qlt ,  . . , Q N ~ )  

The first step in evaluating the SLAM posterior within an EKF at any time t is 

to propagate the mean agent state at the previous time step according to the non- 

linear motion model ut), and propagate the covariance using the linearized 

motion model F, and noise covariance of the motion model Pt. The Jacobian of the 



non-linear measurement model g(xt, nt), where xt is the agent orientation and nt is 

a data association between the measurement measurement and a landmark, is then 

evaluated at the state estimate p; . The remaining equations 2.14 - 2.17 involve the 

calculation of a Kalman gain Kt and the application of this gain to the updated mean 

in equation 2.16 and the updated covariance in equation 2.17. 

A thorough derivation of the EKF SLAM algorithm is found in [5, 421. The EKF 

algorithm is explored more generally in [3, 18, 25, 261. 

2.1.2 Limits of EKF SLAM 

One disadvantage of the basic EKF when applied to online SLAM situations is the 

quadratic complexity of the update equations. In a planar scenario with a three-state 

representation of agent pose, the SLAM state vector is of dimension 2N + 3, where 

N is the number of landmarks stored in the filter map. Equation 2.17, the covariance 

update, requires an inner product calculation that will grow on the order of (2 N + 3)2 

as more features are mapped. Hence, many online applications with detailed maps 

of millions of features either avoid the basic EKF algorithm or employ alternative 

schemes to reduce this complexity growth. A number of solutions break a global 

feature map into smaller submaps [lo, 221. Updates to features in the global map 



are delayed while the agent remains within the vicinity of a submap. Since features 

at opposite ends of a large environment will have little or no correlation, covariance 

matrices for high-dimensional maps are often sparse. Measurement updates to this co- 

variance matrix can be processed more efficiently by taking advantage of this sparsity 

and ignoring correlations between distant features [2]. 

Another drawback of the basic EKF SLAM algorithm is single-hypotheses data 

association. Data association is a decision-making process in which an incoming 

measurement is either matched with an existing landmark in the filter map or deemed 

a new feature. This decision is often non-trivial in SLAM situations, where pose and 

landmark uncertainty and measurement noise can all contribute to data association 

ambiguity [5]. In the basic EKF architecture, the filter must pick one association for 

a measurement, typically with a maximum likelihood heuristic, and the effects of an 

incorrect decision can never be undone. Alternative data association methods for EKF 

SLAM have been evaluated, with the more robust techniques reducing the chance of 

association errors [5]. Still, the inevitability of incorrect associations, especially in a 

SLAM environment where associations are unknown, poses a threat to EKF stability 

and accuracy [31, 321. Multiple hypothesis tracking (MHT) presents a more flexible 

method that has the effect of delayed decision making [38]. In ambiguous association 

situations, where multiple valid interpret ations exist, new hypotheses are created and 

maintained alongside the original estimate. Typically, these extra hypotheses must 

be trimmed after future observations to keep the number of unique hypotheses from 

growing without bound. 

MHT methods are also essential in order for EKF-based algorithms to solve the 

global localization and kidnapped robot problems. In the former, a robot must use 

an accurate map of the environment to localize with global initial uncertainty. This 

problem has significant application to indoor autonomous navigation. The latter 

problem is the case when a well-localized robot is teleported unknowingly to a different 

region of the map. Both scenarios require the filter to simultaneously consider many 

different posterior hypotheses, giving each equal weight until many observations favor 

a single posterior over all others. 



2.2 The Particle Filter 

Successful attempts at solving for the SLAM posterior without restraining its form to 

a Gaussian distribution employ a more recent estimation tool known as the particle 

filter. Belonging to a class of Sequential Monte-Carlo (SMC) methods originating 

in the 1950s) the particle filter has recently enjoyed attention as advancements in 

applied statistics and computer processing speeds have prompted its application to 

a broad range of estimation problems [8, 24, 391. Improvements to the basic SMC 

techniques by Gordon et. al., Kitagawa, and Liu and Chen in the mid-to-late 1990s 

have produced recursive Bayesian est'imators with established theoretical convergence 

that a're no longer bound to the Gaussian assumption of the Kalman filter and its 

derivatives [20, 27, 281. 

2.2.1 Particle Filters for Agent Pose Tracking 

The particle filter addresses the difficulty of computing a non-Gaussian posterior dis- 

tribution from (2.3) in closed form by approximating this density with a large number 

of discrete, random samples 113, 391. Briefly ignoring the entire SLAM posterior and 

focusing solely on tracking the posterior distribution of the robot pose, we begin with 

the Bayes' filter recursion: 

An optimal formulation would sample particles directly from p(st lut, zt ) to approx- 

imate the pose posterior. However, having removed the Gaussian assumption, this 

target distribution may be difficult or practically impossible to draw from directly 

[39]. Instead, particles are drawn from a simpler proposal distribution q(st) accord- 

ing to an SMC technique known as importance sampling [20, 391. Weights are then 

assigned to the particles such that: 



where w is a set of importance weights given by the ratio of the target (posterior) 

distribution to the proposal distribution: 

and then normalized according to: 

where M is the total number of particles used to represent the distribution. Using the 

agent motion model p(st Ist+ ut) as the proposal distribution, the assigned weighting 

factor conveniently becomes: 

c(si) = ~ ( ~ t l s t )  (2.22) 

which in most applications is the agent observation or perceptual likelihood [32, 

45, 391. For a detailed derivation see [32]. Applying this principle to the recur- 

sive Bayesian framework results in sequential importance sampling, where particle 

weights are updated at each time step. The algorithm begins as each particle from an 

initial distribution p(so) is propagated according to the agent motion model, produc- 

ing a proposal distribution. Weights are then assigned to each particle based on the 

agent observation likelihood at that discrete point in the state space, and the process 

repeats. 

2.2.2 Resampling * 

Over time, only a relatively small portion of particles in the state space will continue 

to receive significant weights. In a localization scenario, these particles would most 

likely represent the true pose of the agent. To reallocate computational resources 

and obtain a more detailed distribution, resampling is necessary. By drawing a new 

particle set (with replacement) from the previous set, with probabilities proportional 

to assigned weights, particles will converge to regions of the state space with high 

likelihoods. Initially proposed by Gordon et al., this resampling technique, known 
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Figure 2-1: The basic Particle Filter uses discrete points and SMC methods to ap- 
proximate an evolving posterior distribution 

as sample importance resampling (SIR) or Bootstrap filtering, produced the first 

effective particle filter [20, 291. This recursion, depicted graphically in figure 2-1, will 

approach the optimal Bayesian posterior in the limit of infinite particles 18, 391. 

2.3 Particle Filter SLAM 

Despite their ability to track arbitrarily complex, multi-modal distributions, parti- 

cle filters carry a pronounced computational encumbrance: the number of particles 

needed to track a belief scales exponentially with the dimension of the state. A SLAM 

posterior that includes hundreds of landmarks (each a dimension of the posterior) 

could require millions of particles to be tracked effectively [6, 91. A recent innovation 

introduced by M. Montemerlo solves this burden by conditioning the SLAM posterior 

on the entire robot path instead of the current pose 1311. The basic premise is this: 

if the entire path of the robot were known, not just the current pose, a single land- 

mark observation would not affect the location or uncertainty of any other landmark. 

Consequently, landmark measurements are conditionally independent. All landmark 

correlations are ignored and the SLAM posterior can be represented as the product 



Robot Pose Landmark 1 Landmark 2 Landmark N 

Particle 1: 

Particle 2: 

Particle M: 

Figure 2-2: The factored SLAM posterior: each particle carries an agent pose estimate 
and a map of features [32]. 

of the path posterior and N independent landmark estimators: 

path posterior L - . J  

landmark estimators 

Montemerlo also illustrates that all update equations for the filter will depend only 

on the most recent pose under the Markov property of the SLAM posterior. This 

factorization, illustrated in figure 2-2, forms a particle filter based on the sampling ar- 

chitecture of Rao-Blackwellization, where a small subset of variables are sampled (the 

agent pose information) and other marginals are calculated in closed form (landmark 

estimation parameters) [4]. The application of t'his principle to the position-tracking 

particle filter was introduced by Murphy and Russell [34]. Building on the structure 

of (2.23), Montemerlo develops an algorithm named Fast SLAM 1.0 that represents 

the posterior with N + 1 filters, one for each term in (2.23). Each particle of the 

algorithm represents a different hypothesis of the SLAM posterior: 

The bracketed notation represents the index of the particle. The agent pose informa- 

tion for each hypothesis slml is updated with the SIR method explained previously. 



The rest of the SLAM posterior is maintained with independent Gaussian estimators 

representing the mean and covariance c$] of each observed landmark. Given a 

two or three dimensional Cartlesian space, these landmarks will be low-dimensional 

and fixed in size. Each particle carries its own set of landmark estimators. Taken in 

total, the particles form an array of M hypotheses that represent a discrete approxi- 

mation to the optimal Bayesian SLAM posterior [32]. 

2.3.1 Importance Weight Calculation 

As with a standard particle filter, particles in FastSLAM are drawn from the motion 

model to create a proposal distribution 132, 39, 41, 451. The Gaussian landmark 

estimators are then updated for each particle using the agent observation model, the 

current measurement rt, and standard EKF update equations. Assuming a planar 

SLAM scenario with an agent measuring range and bearing to nearby features, the 

observation function becomes: 

r(st Qnt ) J ( ~ n t , x  - s t ,x12  + - st,912 
t o t  = [ ] = [ tan-1 ( ent ,y-s t ,y  1 (2.25) 

#(st i Qnt ) ent ,5 -St,z - st,+ 

with the current agent pose and measured landmark represented by st = (st,,, st,+) 

and (On,,, , On, ,,) , respectively. The updated Gaussian parameters for the measured 

landmark are obtained by: 



2.3.2 Data Association 

An important hurdle for any SLAM algorithm is data association. Since a problem 

requirement includes mapping new features, the algorithm must decide first if the 

measurement corresponds to a new landmark. If not, it must decide on a per-particle 

basis which of the N known landmarks stored within the particle is most likely to have 

produced this observation. After this decision is made, EKF equations update the 

mean and covariance for the identified landmark. Assuming first that knowledge of 

data associations are known, the observation likelihood can be computed in close form. 

It is derived from the innovation, or difference between the actual measurement and 

the predicted measurement, given the current agent pose and the landmark estimation 

parameters [31]. Since the landmark estimator is an EKF, the sequence of innovations 

will be Gaussian and the observation likelihood is: 

By computing this likelihood for each landmark within the particle, we can obtain the 

maximum likelihood estimator for this measurement by simply selecting the landmark 

with the highest likelihood: 

fit = arg maxp(zt lnt, st) 
nt 

(2.33) 

The estimator parameters for this landmark are then updated within the particle. 

The observation likelihood for the maximum likelihood estimator, given by (2.32), 

also becomes the particle importance weight for resampling, Z U / ~ ] .  If the likelihood 

for each landmark falls below a threshold, a new landmark is created and initialized 

as follows: 



The importance weight for this particle is a pre-defined likelihood threshold, po. This 

process is repeated until each particle has been assigned a weight. Weights are then 

normalized and new particles are drawn as in SIR. 

2.3.3 Preventing Filter Degeneracy 

It is important to note that resampling is not always necessary. It simply reduces 

filter degeneracy by trimming excess particles that have little relevance to the current 

measurement and reproducing particles in the area of interest for agent pose infor- 

ma,tion. Some particle filtering approaches include a measure of degeneracy, Meff 

defined as: 
1 

M e f f ,  the effective size of the particle set, is in some ways a measure of dispersion of 

the importance weights. If particles were drawn according to the true posterior, all 

samples would receive the same weight. As variance of the weights increases, M e f f  

will decrease. Theoretically, resampling particles only when Met falls below a defined 

threshold will decrease the chances of pruning possibly accurate trajectories from the 

filter [2 11. 

2.4 FastSLAM vs. EKF SLAM 

There are several well documented strengths of the FastSLAM architecture over stan- 

dard EKF SLAM approaches. Most importantly, the Monte Carlo, particle-based ar- 

chitecture of FastSLAM allows the filter to track multiple hypotheses simultaneously 

at each measurement step. This helps solve data association ambiguity inherent in 

the SLAM problem that particularly plagues standard EKF approaches [7, 471. A 

robot must decide whether a current measurement is coming from a new or previously 

mapped landmark, which can be difficult if features are relatively close together. If 

landmark measurements are incorrectly attributed, the EKF can diverge rapidly. In- 

stead, FastSLAM assigns data associations on a per particle basis. An implicit result 



is delayed decision making about the most likely measurement association. Parti- 

cles with maps that closely agree with incoming data will survive resampling, while 

particles that disagree due to incorrect previous data associations are eventually elim- 

inated. In the limit of infinite particles, all data association ambiguities are resolved 

and FastSLAM provides a full Bayesian solution to the SLAM problem [32]. Fast- 

SLAM is also a universal density approximator, meaning it can represent arbitrarily 

complex distributions of the agent pose. This can be particularly useful in model- 

ing non-linear motion models and the uncertainty of an agent mapping a constrained 

environment [39]. Finally, the computational complexity of the basic FastSLAM algo- 

rithm is O(M N),  compared to O(N2) with a standard EKF approach. Montemerlo 

also introduces a version of FastSLAM with a computational complexity of O(1og N) 

[321. 

2.5 Fast SLAM Challenges 

Despite its advantages, FastSLAM does suffer drawbacks common to particle filters. 

There will always be unsampled gaps in the agent state space when using a finite 

number of particles. While resampling reduces filter degeneracy by concentrating 

particles in an area of interest in the state space, it cannot guarantee convergence. 

This is especially true if the proposal and target distributions (and the uncertainty in 

these distributions) are not well matched, as shown in figure 2-3. If the agent's sensor 

is very accurate relative to the motion model, the target distribution will be sharply 

peaked relative to a flat proposal distribution. In the worst case scenario, no particles 

receive non-negligible importance weights, preventing filter convergence to the true 

state. Another possibility is sample impoverishment (used synonymously with particle 

depletion), wherein a small percentage of particles from the proposal distribution 

are assigned non-negligible weights, causing significant duplication of a few unique 

hypotheses and large "stacks" of particles. Stochastic proposal propagation with the 

next agent control input may not adequately scatter the particles to recover lost 

diversity. Over time, this could result in particles drifting away from the true state. 
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Figure 2-3: A noisy motion model creates a broad proposal distribution, a precise sen- 
sor measurement results in a narrow target distribution. Convergence of the particles 
to the true posterior is prevented since the narrow posterior occurs in an unsampled 
gap in the state space. 

It also gives rise to a host of other issues that contribute to a loss of filter accuracy 

and st ability. 

2.5.1 Effects of Sample Impoverishment 

In addition to particle drift, an obvious issue for all pose-tracking filters, sample im- 

poverishment using FastSLAM is extremely dangerous because of the nature of un- 

certainty storage in Rao-Blackwellization. In EKF SLAM algorithms, new landmarks 

are initialized to include both the error characteristics of the measurement device and 

the uncertainty of the agent pose at the time of observation. In other words, an es- 

timate of landmark position is only as good as the precision of the measurement and 

the knowledge of the agent state. Because the SLAM posterior measures landmark 

positions conditioned on an estimate of the robot path, each particle in the filter is 

considered an error-free hypothesis of the true pose. Agent pose uncertainty is stored 

in the dispersion of the particle cloud. As a result, each new feature in the landmark 



array is initialized with uncertainty from measurement noise alone. Subsequent up- 

dates to the landmark estimation parameters in FastSLAM are also processed with 

EKF equations that include only the error model of the observation device. 

This "false certainty" in landmark location greatly complicates the data associa- 

tion process. With an extremely accurate sensor, each particle in the filter has little 

error allowance when deciding on an association between the incoming measurement 

and one of its stored landmarks. Unless the measurement agrees exactly with a stored 

landmark, the particle receives a low weight. Without a diverse set of samples, only 

few of the particles will survive resampling and the overall uncertainty of each land- 

mark will approach zero. Even if additional diversity is added as particles propagate, 

the precision of feature estimates will ensure that only few particles survive the next 

round of weighting and resampling. Over time, the pose estimate and all mapped 

landmarks will be overcome by the noisy motion model and diverge substantially 

from the true posterior [16]. As loops are closed and the agent returns to a previ- 

ously mapped region of the environment, the skewed map and pose drift will lead the 

agent to believe that the previously observed feature is actually a new feature, hence 

the creation of false landmarks that further complicate data association in the future 

(figure 2-4). 

2.5.2 Overcoming Sample Impoverishment 

One way to overcome sample impoverishment, proposed by D. Fox et al. [17], is to use 

a sensor model that overestimates measurement noise. While this does tend to give 

more particles non-negligible weights and reduce particle depletion, it throws away 

valuable information from precise sensor measurements. Selective resampling based 

on a filter degeneracy estimate (Meff) could delay the effects of sample impoverish- 

ment, as all trajectories are propagated and weighed until the degeneracy falls below 

a certain threshold. Some sources argue that in cases of extremely low measurement 

noise, the filter will degenerate quickly since only few (if any) of the particles will 

receive significant weights [13]. Degeneracy will only be further amplified if resam- 

pling is delayed, as the product of weights at each time step magnifies the dispersion 
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Figure 2-4: An incorrect data association with the current measurement and a previ- 
ously mapped feature causes a new "false" landmark. Agent and landmark position 
uncertainty is not reduced as was the case in 1-2. 

between particle weights [39, 131. Principled approaches from Fox, Pitt and Shepard 

suggest changing the form of the proposal distribution altogether [17, 36, 37, 39, 451. 

Other approaches focus instead on the resampling process, and propose a solution 

to the impoverishment involving regularization- a readjustment of the particles after 

the resampling step with the intent of introducing lost diversity into the posterior 

[6, 19, 391. Both strategies have been evaluated in particle filters for tracking and lo- 

calization applications with some success [23, 35, 36, 451. The remainder of this thesis 

will involve a detailed investigation of solutions to sample impoverishment within the 

specific context of Rao-Blackwellized particle filters SLAM applications. 



Chapter 3 

Recovering Sample Diversity 

Particle filters have gained recent attention in robotics research and have provided an 

alternative to the EKF with proven deftness in tackling more complicated navigation 

and mapping scenarios. The particle filter is not invincible, and several failure modes 

have already been well documented [16, 45, 32, 39, 471. The increasing popularity of 

particle filters for non-linear position tracking applications has prompted the devel- 

opment of improvement strategies designed to answer some of the pitfalls associated 

with basic SMC filtering. This chapter begins by highlighting several of these early 

improvement strategies. With only recent research in the use of particle filters for 

SLAM environments, few methods exist for recovering sample diversity in situations 

prone to particle depletion, but this chapter outlines the most significant solutions to 

date. Additionally, new techniques are proposed that build upon the basic strategy 

of regularization, a common fix for particle filters in position tracking scenarios. No 

documented results on the application of regularization methods to RBPF SLAM 

algorithms were found. 

3.1 Sample Impoverishment Revisited 

In standard resampling, sample impoverishment arises when a small subset of parti- 

cles receive high weights relative to the majority. These few particles are reproduced 

many times, and after resampling, t'he majority of the particles will occupy only a few 



singular points within the state space. As one can imagine, these few singular points 

in the state space do not produce an accurate characterization of the true agent 

uncertainty. A better representation of agent uncertainty after an accurate sensor 

reading is a tight distribution of unique particles. Diversity is still maintained in the 

particle set because each occupies a different point in the state space. In the case 

of mobile robotics, this state space is easily visualized as a two or three dimensional 

Cartesian space. Maintaining appropriate sample diversity involves balancing a deli- 

cate relationship between the proposal and target distribution [17, 391. The proposal 

. must place an adequate number of particles in a favorable region of the state space 

in such a way that an acute target distribution can assign non-negligible weights to 

a large proportion of these particles. Maintaining this balance becomes more diffi- 

cult as sensor accuracy increases and the target distribution becomes sharply peaked 

with respect to the proposal distribution. Solutions to sample impoverishment are 

based on implementing diversity recovery methods before or after resampling. The 

former approach seeks an improved proposal distribution that includes measurement 

information [30, 451. As a result, particles would theoretically propagate to more 

favorable regions for resampling. The later group of solutions inject diversity into the 

posterior distribution after resampling to smooth the resulting density before the next 

propagation step [19]. Approaches vary in the rigor of their derivations and whether 

or not they demonstrate theoretical convergence. The more mathematically sound 

solutions improve sample diversity while maintaining an approximation to the opti- 

mal Bayesian posterior. Other more simple methods have also been introduced that 

fix sample impoverishment but do not necessarily guarantee convergence [39]. The 

next section will introduce several approaches found in literature and other intuitive 

methods developed over the course of this research project. 



3.2 Alternative Proposal Distributions for Posi- 

t ion Tracking 

As mentioned in section 2.2.1, an optimal formulation would draw particles directly 

from the posterior distribution p(stjut, zt). Because this is difficult or impossible to 

implement for a complex distribution, the most recent observation is used to weight a 

proposal particle set according to the perceptual likelihood for a feature observation, 

thereby creating an approximation to the target distribution with a finite number of 

particles. Literature suggests that the relative mismatch between the proposal and 

target distribution affects the convergence of a particle filter to the true posterior 

[17]. Convergence is also prevented if the perceptual likelihood is extremely narrow, 

as would be the case with an accurate sensor measurement. Particles drawn from a 

proposal distribution that includes feature measurements would have a better chance 

of matching this narrow target density. More particles would therefore receive a non- 

negligible weight and survive resampling, increasing particle diversity and reducing 

the effects of sample impoverishment. 

3.2.1 Auxiliary Particle Filter 

The Auxiliary particle filter (APF) was introduced by Pitt and Shephard as one way 

to incorporate recent sensor measurements in the proposal distribution. A variant 

of standard SIR, the APF includes an additional sampling step at time t - 1, using 

observation data at time t ,  before particles are propagated according to the motion 

model, p(st Ist-, , ut). This "presampling" step selects particles that have a high like- 

lihood of propagating to a favorable region of the state space, and only allows these 

particles to advance [37]. The algorithm begins at a time t - 1 by propagating the 

previous posterior distribution to an auxiliary distribution using the motion model 

for the current time step. Next, importance weights are calculated and resampling 

proceeds as in SIR, but this time only the indices of particles are of interest. The 

selected particles are traced back to their location at the previous time step, before 



motion model propagation. These parent particles are then propagated according to 

the motion model. Weights are calculated and particles are resampled producing the 

APF posterior distribution. The advantage of this scheme is that it only propagates 

particles that are more likely to end up in the regions of high-likelihood according to 

the recent sensor measurement. 

3.2.2 Local-Linearized Particle Filter 

Another way to incorporate recent sensor measurements in particle filters for tracking 

applications is to update the proposal density, before weighting and resampling, with 

sensor information via a bank of extended Kalman filters. This SMC variant is known 

as a Local-Linearized particle filter. A posterior density from the t - 1 time step is first 

propagated according to the agent motion model. Mean and covariance parameters 

for this proposal distribution are updated on a per-particle basis with an EKF [39]. A 

sample is drawn from this updated proposal and an importance weight is calculated 

as before. This propagate-update-draw step is repeated for each particle. Montemerlo 

introduces a Rao-Blackwellized version of a Local-Linearized particle filter for SLAM 

purposes known as Fast SLAM 2.0 [30]. 

3.2.3 Mixture Monte Carlo Localization 

Extending the application of particle filters beyond position tracking to the more 

encompassing problem of mobile robot localization shows similar drawbacks from 

sample impoverishment. D. Fox et al. describe the effects of highly accurate sensor 

measurements coupled with a relatively noisy motion model and propose a solution 

that involves drawing from a more sophisticated proposal distribution [17]. A subset 

of the proposal distribution will be drawn from the motion model and another subset, 

approximately 10% of the particles, is drawn from the perceptual model p(ztlst). 

Importance factors are more difficult to calculate for particles drawn according to 

the latter distribution; the prior posterior belief must be transformed into a kd- 

tree in order to obtain an evolution of the perceptual density [33]. The importance 



weight is proportional to this density tree and a constant factor, which is ignored 

since weights are normalized before resampling. Their results do show a significant 

improvement over standard particle filter performance in cases of low measurement 

noise, simply because a percentage of samples from the proposal distribution are 

drawn from this accurate perceptual density. While this technique works well for 

mobile robot localization and position tracking, it does not address specific challenges 

posed by SLAM [32]. In some cases, a partial map of local features may be available, 

but not in the strict SLAM problem. Without a priori map information it may not 

be possible draw particles from the perceptual likelihood. This particular algorithm 

could potentially be used to refine position uncertainty when preliminary landmark 

locations have been established by SLAM and after loop closures [43]. 

3.3 Alternative Proposal Distributions for SLAM 

Montemerlo, in his development and evaluation of FastSLAM, also describes the effect 

of sample impoverishment on a Rao-Blackwellized particle filter; it also suffers a loss 

of diversity with greater measurement precision and a noisy agent motion model. He 

therefore develops an alternative proposal distribution that takes advantage of incom- 

ing measurements [32]. After a thorough and elegant derivation, Montemerlo arrives 

at a version of FastSLAM that updates the proposal distribution with measurement 

information via a a series of extended Kalman filters, one for each measurement within 

the observation set for a time step. This approach is similar to the Local-Linearized 

particle filter for position tracking applications explained previously. Montemerlo 

has also derived an expression for importance weights that considers not only the 

uncertainty in landmark positions and measurements, but also the uncertainty of 

the proposal distribution after measurement updates. More importantly, the algo- 

rithm incorporates previously unmapped landmarks, making it a complete approach 

to both subsets of the SLAM problem. Theoretical convergence is proven for the 

Linear-Gaussian SLAM scenario with one particle. This is a profound result because 

prior to FastSLAM 2.0, SLAM algorithm convergence was only proven for a full co- 



variance matrix representation of the posterior with correlations between landmark 

estimates [47]. In experimental results, FastSLAM 2.0 provides a more accurate and 

diverse SLAM posterior and requires fewer particles to effectively track an agent pose 

than the original FastSLAM algorithm. The algorithm begins as particles are drawn 

from a previous time step posterior distribution according to a motion model, again 

characterized as a nonlinear function with zero-mean, uncorrelated process noise. 

This propagation yields an initial proposal density: 

where h(st+ ut) is a nonlinear function with noise covariance Pt. From that initial 

proposal draw, an expected observation is produced (per-particle) for each landmark 

according to the agent motion model: 

As before, the measurement noise covariance matrix is given by Rt. After predicted 

measurements are calculated, an updated proposal distribution is calculated for each 

landmark using Kalman filter update equations: 

A particle for the proposal is then drawn from the resulting distribution that includes 

the most recent measurement: 



After a particle has been drawn from each of N different distributions, likelihood 

weights are calculated in the same fashion of FastSLAM 1.0. The drawn particle 

with the largest weight then becomes part of the proposal that will be resampled to 

approximate the posterior. This weight will not, however, be used as the importance 

weight for resampling. Since the proposal particles are drawn from a different distri- 

bution than the agent motion model, the importance weights for resampling must be 

calculated in a slightly different way: 

As before, the perceptual likelihood used to calculate resampling importance weights 

is a multi-variate Gaussian probability density function, only this time the normalizing 

measurement uncertainty Lt includes the contribution from the agent process noise. 

New landmarks are initiated, in the same way as FastSLAM 1.0, when all landmark 

likelihoods fall below a pre-defined threshold. Also in the case of a new landmark, 

poses from the proposal are drawn from the original distribution St excluding feature 

measurement information. When multiple measurements are considered at each time 

step, the algorithm becomes slightly more complicated. The proposal is updated 

iteratively, once for each measurement. A particle is drawn after each iteration ac- 

cording to (3.8) in order to update landmark estimator parameters. Particles for the 

proposal, however, are only sampled after all measurements have been processed. An 

illustration of this algorithm and its solution to the proposal-target mismatch from 

accurate sensor measurements is shown in figure 3-1. Though FastSLAM 2.0 grows 

at the similar favorable rate of O ( N .  M), it includes update equations for the proposal 

distribution and is therefore much more computationally expensive than FastSLAM 

1 .o. 
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Figure 3-1: In FastSLAM 2.0, the proposal distribution incorporates recent measure- 
ments. Particles for importance weight calculations have a greater chance of receiving 
non-negligible weights in the case of an accurate sensor and a noisy motion model. 

Regularization 

Another class of improvement strategies for the sample impoverishment problem fo- 

cuses specifically on recovering diversity after the resampling step. A severely impov- 

erished posterior will most likely consist of a few discrete points with many particles 

"stacked" at these points. Regularization methods attempt to create a more diverse 

posterior density approximation by relocating the particles in stacks to a more con- 

tinuous distribution [I, 19, 351. An easy way to regularize would be to simply draw 

a new set of particles about the wide-sense mean and covariance of the distribution. 

However, this approach would not preserve the possibly non-linear and multi-modal 

characteristics of the distribution and would thus negate the advantages of using a 

particle filter in the first place. Consequently, designing a regularization scheme that 

introduces an appropriate amount of diversity, while preserving the complex nature of 

a distribution, can be difficult. Most particle filter regularization schemes in literature 



approach this difficulty by representing a continuous distribution for particle adjust- 

ment by a series of Epanechnikov or Gaussian kernels, centered at point,s in the state 

space occupied by resampled particles [I ,  391. The para,meters of these individual 

kernels can be manipulated so that the kernel set approximates an arbitrarily com- 

plex posterior. Particle st ate adjustments are drawn from individual kernels and then 

added to resampled particles. The next few section describe possible kernel shaping 

methods with slight variations tha,t can alter the effect of particle regularization. 

3.4.1 Regularized Particle Filter 

The original Regularized Particle Filter (RPF) was designed by S. Godsill and T .  

Clapp. It is essentially a standard SIR filter with a regularization step included after 

resampling. During regularization, particles are adjusted according the continuous 

approximat ion: 

where K ( - )  is a rescaled kernel density and h is the kernel bandwidth, a scalar specific 

to the kernel that also depends on the number of particles in the filter. The kernel that 

minimizes the mean integrated square error between the true posterior density and 

the regularized version in (3.11) is the Epanechnikov kernel. Practically, this kernel is 

difficult to implement, and the Gaussian kernel is normally used as a computationally 

efficient substitute. The optimal bandwidth is then given by: 

where n, is the dimension of the agent state vector, st. Before resampling, the em- 

pirical covariance, At,  is calculated from the proposal distribution. The empirical 

covariance can be thought of as a weighted proposal covariance that accounts for 

the uncertainty stored in particle dispersion. After resampling, particles are adjusted 

according to: 



where 

D~D; = At and ci -- N(6; 0 , l )  (3.14) 

Computationally, the RPF differs from the standard SIR filter only in M additional 

draws from a Gaussian kernel and the formulation of the empirical covariance matrix 

before resampling. These steps have a minimal effect on overall processing time 

[19]. Despite a rigorous derivation, regularizing particles according to the RPF does 

not necessarily guarantee asymptotic convergence to the optimal Bayesian posterior. 

This is a common theoretical drawback of almost every regularization scheme. The 

RPF has improved performance in tracking applications, but no literature results 

were found that describe its application to the SLAM problem. Another advantage 

of the RPF is that by setting the kernel adjustment proportional to the empirical 

covariance, the RPF avoids "particle shock" that can occur when a relatively broad 

distribution converges quickly to a more precise distribution. Instead, a limit is placed 

on the convergence speed of a particle cloud, maintaining diversity along with greater 

precision. 

3.4.2 Markov Chain Monte Carlo Criterion 

The Markov Chain Monte Carlo step is a regularization criterion designed to ensure 

that any regularization of resampled particles asymptotically approach the Bayesian 

posterior in the limit of infinite particles [39]. The idea behind the scheme is that 

a particle si can be regularized, or moved to a new state sr, only if u 5 a, where 

u -- U[O, 11 and a is the acceptance probability derived from the Metropolis-Hastings 

algorithm: 

Put simply, the particle can be adjusted according to a regularization scheme only 

if its intended move will place it in a LLmore likely" region of the state space, as 

determined by the pre-move and post-move proposal and perceptual densities. While 

in literature the MCMC move step is used in context with the mathematically derived 

regularization scheme of the RPF, it is important to note that this criterion can be 



applied to any regularization algorithm to ensure that asymptotic convergence to the 

Bayesian posterior is maintained. 

3.5 Other Regularization Approaches 

Although the literature search conducted for this thesis did not produce experimental 

results on the use of regularization for SLAM purposes, a closer look at the Regular- 

ized particle filter shows that the idea can easily be extended to SLAM in a Cartesian 

environment. The RPF algorithm uses a kernel (Epanechnikov or Gaussian) to lo- 

cally spread particles about the discrete stacks often produced after resampling. The 

variance, or bandwidth as it is referred to in literature, is a product of the root of the 

empirical covariance matrix of the particles before resampling. The intuitive methods 

introduced below include a Gaussian kernel, similar to the computationally inexpen- 

sive version of the RPF, but the variances are calculated in differently in order to 

shape the kernel for a possibly better sample diversity. 

3.5.1 Fixed-Gaussian Regularization 

A simple version of regularization would involve creating a series of fixed-variance 

Gaussian kernels after resampling, as shown in figure 3-2. Each particle would then 

be adjusted within the Cartesian space according to an individual draw from these 

kernels: 

s r  = S: + Atei where 6' N(E;  0, 1) (3.16) 

Though this method introduces diversity to the posterior by sampling from a con- 

tinuous distribution, the probability density will become uni-modal as the spreading 

parameter At increases. Consequently, a balance must be maintained by spreading 

the particles with enough variance to introduce a proper amount of diversity, while 

at the same time keeping this variance small enough to preserve the possible multi- 

modal characteristics of the distribution. The proper At will need to be determined 

empirically, and will likely differ in every situation. It will also be the lower limit of 
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Figure 3-2: Particles are, regularized after resampling according to a set of kernels 
generated at the resampled points. 

the wide-sense variance of the posterior distribution. Factors affecting the optimal 

spreading parameter will include the initial uncertainty of the agent position and the 

accuracy of the sensor. If the mean-square error of the sensor is less than the variance 

of this regularization kernel, precious sensor information is lost. 

3.5.2 Adaptive Regularization 

One advantage of the RPF over a simple, fixed-variance Gaussian particle adjustment 

is that the variance of the kernel changes according to characteristics of the weighted 

proposal distribution. In this respect, properties of the regularization kernels can 

change over time, but there is only one kernel "shape" per time step. A further level of 

adaptation can also be formed by basing the standard deviation of the regularization 

kernel on the proportion of particles that are resampled to a particular state. 

SF = si  + A;$ where ei - N ( E ;  0 , l )  (3.17) 
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Figure 3-3: Particles are regularized by kernels with adaptive variances. The spread- 
ing radius is proportional to the height of a particle "stack." 

where 6,; is the number of duplicated particles at a particular point in the state 

space. This method is pictured in figure 3-3. Theoretically, it would generate a 

larger spreading radius about particle locations that received high likelihoods and 

were thus largely reproduced in resampling. It will produce the largest variance, and 

thus have the greatest potential of recovering diversity, in cases with a sharply peaked 

perceptual density relative to the proposal distribution. As stated earlier, this is the 

case most vulnerable to sample impoverishment. 

3.5.3 Other Adaptive Regularization Techniques 

A third intuitive regularization attempt combines some of the properties of the math- 

ematically derived RPF with the above method of adapting the kernel based on the 

resampled particle stack height. Introducing the A: parameter into the standard RPF 



equation yields the following regularization scheme: 

In theory, this move will reshape the optimal kernel bandwidth introduced in RPF 

regularization based on particle stack height, increasing density in cases prone to 

sample impoverishment. 

3.5.4 Process Noise 

A thorough look at regularization and an understanding of SMC proposal propagation 

leads to the awareness that the propagation of the particles according to a stochastic 

agent motion model is itself a form of regularization similar to a Gaussian kernel used 

above. Given this, it should lead to the question of whether or not regularization 

is needed in the first place. Perhaps an over-estimation of the agent process noise 

would suffice. It is true that basic regularization using a fixed-variance Gaussian 

kernel is equivalent to propagation in some cases [47]. Additionally, a more advanced 

model that accurately characterizes the stochastic properties of the agent motion 

will produce proposal distributions with a higher likelihood of matching the target 

distribution. Over-estimation of the agent process, while it would introduce more 

diversity, would be a less desirable solution to the problem for the same reason as an 

over-estimation of sensor noise. Valuable information regarding the true propagation 

characteristics of the agent would be thrown away. Additionally, this approach would 

further mismatch the relative noise of the motion model and the perceptual model, 

leading to a severe decrease in diversity after resampling. Regularization techniques 

with adaptive-variance kernels ensure that a proper amount of diversity is introduced 

at specific regions of the posterior density. Without regularization, all particles would 

be propagated in the same fashion and valuable information about irregularity of the 

distribution could be lost. 



Chapter 4 

Simulated Results for Sample 

Diversity Recovery Met hods 

The previous chapter presented several approaches designed to improve particle filter 

SLAM performance in scenarios prone to particle depletion. One set of methods 

focused on the proposal distribution, before resampling, by drawing a more optimal 

set of particles for importance weight calculation. Other techniques adjusted particle 

locations after resampling with a set of regularization kernels that approximated 

a continuous distribution. This section presents experimental results showing the 

relative strengths and weaknesses of many of the ideas introduced in the previous 

section. The goal of this analysis was to use a simulated SLAM environment to 

1. demonstrate particle filter SLAM performance at different measurement noise 

levels and show the effect of sample impoverishment on filter accuracy and 

st ability. 

2. thoroughly evaluate particle filter enhancements designed t'o recover sample 

diversity in depleted scenarios and improve the overall accuracy of the SLAM 

filter. 

Three Rao-Blackwellized particle filters were developed, based on the FastSLAM al- 

gorithm presented by Montemerlo [32]. In addition, four regularization methods 

were coded. Each strategy was tested independently to characterize its performance 



in different SLAM environments. Marriages between the filters and regularization 

methods were also tested to determine if their combined effect provides even greater 

filter accuracy. 

4.1 Assumptions and Simulation Setup 

The basic SLAM scenario modeled for this simulation consisted of a robot agent 

traveling around a small, elliptical track. At each time step the agent advanced 

according to a motion model that included a control input and noise from the motion 

error model. The robot then received simulated measurements from each landmark 

within its field of view. Only six landmarks existed in tthis 10 m x 10 m environment, 

and each landmark was uniformly spaced around the commanded path of the robot. 

Figure 4-1 shows the simulation environment, the agent initial position, and the 

commanded path, as well as all landmarks that the robot encountered as it traveled. 

The robot was initialized with an a przorz estimate of its pose and the location of three 

anchor features. The first task of the agent was to localize using relative measurements 

to these anchor features. As the simulation progressed, it would encounter three new 

features that it must map. With two full loops around the track, the robot would 

encounter previously mapped landmarks. 

Table 4.1: Initial RMS uncertainty of agent pose (x, y , +) and anchor feature location 
(x, y ) for simulations. 

O s ~ , ~  
1.5 m 

4.1.1 Development of the SLAM Environment 

This particular environment configuration was chosen in order to test several essential 

abilities of a successful SLAM estimation routine. Setting a higher uncertainty in 

the initial agent pose and providing anchor features required the filter to localize 

and improve its initial pose estimate. As it encountered new features, it needed 

O s ~ , ~  
1.5 m 

Os0 ,$ 
0.0349 rad 

O e ~ , ~  

0.3 m 
O e ~ , ~  - 
0.3 m 
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Figure 4-1: SLAM environment used for simulations with robot path and initial 
position shown. 

to first recognize these landmarks as previously unmapped, and then augment its 

map accordingly. Finally, the agent was required to close an observation loop by 

measuring previously mapped landmarks. This is often the most difficult task of any 

SLAM algorithm, especially in cases of motion noise and accurate measurements. As 

discussed in section 2.5.1, algorithms in this situation tend to produce badly skewed 

maps with many additional phantom landmarks. 

Robot Motion 

Though its commanded angular and tangential velocities would realize two rotations 

about the track, kinematic errors in the agent motion model altered the true path 

significantly. A stochastic, four parameter motion model was used to represent slip 

scale factor and skid errors encountered in most wheel-based robots. The parameter 

values are listed in table 4.2, with the tangential and angular velocities at each time 



Robot Motion Errors: 

Angular vel bias (degls): 2  

Angular vel sf: 0.1 % 

Speed bias (mls): 0.05 

Speed sf: 0.05 % 

Commanded Path and Actual Path (with Motion Noise) 
10 - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Figure 4-2: True agent path from one realization of the stochastic motion model. 
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Table 4.2: Agent motion model parameters, including commanded translational vt 
and rotational wt velocities and skip and skid errors used for simulations. 

1 

Zft 

0.3068 m/s 

One realization of this stochastic motion model was used as the true agent position 

for every simulation, shown in figure 4-2, in order to compare filter performance for 

equivalent scenarios. 
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4.1.3 Simulated Measurements 

Characteristics of the agent measurement model are listed in table 4.3. It was assumed 

that each feature observation yielded a range-bearing measurement pair. Because the 

agent received simulated measurements from every landmark within its field of view, 

each SLAM algorithm needed the capability to process multiple measurements in a 

single time step. While easily incorporated in the standard FastSLAM 1.0, this par- 

ticular enhancement is only briefly addressed by Montemerlo in his development of 

FastSLAM 2.0. Incorporating sensor measurements in proposal calculation is not a 

trivial task when measurements from new landmarks must be considered. While most 

measurement model characteristics were remain fixed throughout this analysis, the 

range uncertainty, considered the independent variable for most trials, was manipu- 

lated in order to evaluate filter performance. Lowering this RMS value from 1.0 m 

to 0.001 m would reveal how each algorithm responds as the measurement noise is 

reduced and a proposal-perceptual distribution mismatch is encountered. 

Table 4.3: Measurement model specifications and uncertainties 

Field of 
View 

3.142 rad 

4.1.4 Performance Metrics 

The primary metric for filter accuracy was the circular error probable (CEP) of the 

agent x-y pose location. Though agent heading error and landmark position error 

were not directly measured by this metric, the correlated nature of the SLAM problem 

infers that errors in these unmeasured parameters would contribute to the pose CEP. 

Maximum 
Range 
7.0 m 

4.2 SLAM Posterior Estimation 

Figure 4-3 illustrates a single run through a SLAM scenario. With a large initial 

uncertainty represented by a large spread of particles, the first task of the filter 

RMS Bearing 
Uncertainty 
0.0175 rad 

RMS Range 
Uncertainty 
0.001-1.0 m 



was to decrease pose uncertainty using measurements from anchor features. Each 

particle was propagated according to the stochastic motion model and measurements 

were used to weight each particle according to the maximum likelihood heuristic as 

outlined in section 2.3.1. Particles were then resampled according to weights, reducing 

the overall uncertainty of the filter. The posterior distribution at the end of the 60 

second simulation is also shown 4-3(b). Notice that new landmarks have appropriately 

been added to map and the filter has tracked the pose of the robot with reasonable 

accuracy despite noisy kinematics. 

4.2.1 Sample Impoverishment and Particle Drift 

The difficulty of capturing an evolving posterior distribution using a SMC method 

with a finite number of particles became apparent when measurement noise was re- 

duced without a corresponding drop in kinematic noise. This mismatch created an 

environment prone to cases of particle depletion. Notice in figure 44(a) that within 

a few seconds of initialization, the maximum likelihood heuristic with a highly accu- 

rate sensor has assigned non-negligible weights to only a small portion of particles. 

Consequently, samples were "stacked" at these points during resampling. Instead of 

a smooth posterior representing the actual uncertainty of the agent, the distribution 

was reduced to only a few discrete hypotheses. At this point the wide sense mean 

of this depleted posterior still provided an accurate estimate of the true position. 

Over time, however, sever particle drift was evident (figure 4-4(b)). The filter then 

had little chance of recovering to a reasonable accuracy. At the end of 60 seconds, 

filter pose error was less than one meter, primarily due to the fact that the robot 

control commands in a noise-free realization traced two loops. A look at estimated 

landmark locations shows the correlation between pose error and landmark error, 

as accurate measurements coupled with pose inaccuracy produced many false land- 

marks. Though Montemerlo discusses the use of negative information to eliminate 

phantom landmarks [32], the implementation of this feature proved more difficult in 

practice and was therefore not included in the algorithms for this analysis. 
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Figure 4-3: A typical SLAM scenario showing initial uncertainty (a) and the estimated 
posterior after 60 seconds (b). 
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Figure 44: An impoverished posterior (a) leading to particle drift as the simulation 
progresses (b). The end of the simulation is shown in figure 45. 
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Figure 45: At the end of the scenario, particle drift has lead to severe inaccuracies 
in both the pose and feature estimates. Many spurious landmarks were created. 

SLAM Algorithms 

FastSLAM 1.0 

The first of the three filters used in this analysis was FastSLAM 1.0. Since it is 

basically the basic Rao-Blackwellized particle filter, it formed the backbone of the 

other two filter methods. It this set of tests, it also served as a benchmark against 

which the performance all other filters and regularization algorithms were measured. 

It is designed to operate with unknown data association and is therefore ideally suited 

to the SLAM problem. As with the more advanced filters used in this analysis, 200 

particles were used to estimate the SLAM posterior. The importance threshold for 

new landmarks, in this filter and the others, was loT6. Because it uses only motion 

model information to propagat; the proposal distribution and not information from 

recent sensor measurements, it can in some cases be the most sensitive to a motion- 

sensor accuracy mismatch. 



4.3.2 FastSLAM 2.0 

FastSLAM 2.0, Montemerlo's more advanced particle filter that includes recent mea- 

surement information in the proposal distribution, was coded as a second filter for 

this analysis. Propagation of the proposal distribution at each step began with a draw 

from the motion model using a pre-defined initial covariance. This mean and covari- 

ance were then updated using EKF equations and the current measurement. Data 

association in this case was more difficult because the algorithm needed to associate 

a measurement with a known or new landmark before proposal update. The advan- 

tages of t 'hs filter are described in literature to outweigh this computational burden, 

as Montemerlo proves one-particle convergence in a Linear-Gaussian SLAM estima- 

tion scenario. Based on literature results, FastSLAM 2.0 was expected to perform 

best without additional regularization after resampling. 

4.3.3 Auxiliary Particle Filter 

Using FastSLAM 1.0 as a basis, a Rao-Blackwellized Auxiliary particle filter was de- 

veloped as another example of measurement influence on the proposal distribution. 

It is similar in every respect to FastSLAM 1 .O, except an additional resampling step 

was added consistent with the Auxiliary Particle Filter algorithm [39]. Currently 

used only in position tracking scenarios, it was coded to evaluate whether or not the 

additional resampling step improves sample diversity and accuracy in a SLAM envi- 

ronment. It incorporated multiple measurements per time step in the same fashion 

as FastSLAM 1.0, and used the combination of these measurements in shaping the 

propagation of the proposal. 

4.3.4 Regularization Algorithms 

Table 4.4 lists the regularization methods coded for analysis and briefly describes the 

properties of the kernels used for particle adjustment in each one. It also mentions the 

Markov Chain Monte Carlo criterion, which can supplement any of the four spreading 

algorithms. 



Table 4.4: Summary of regularization methods tested in simulations 

Regularzation Method 
(Algorithm Pseudoname) 

SpreadX 

SpreadX2 

SpreadX3 

RPF 

MCMC 

4.4 Filter Accuracy and Diversity Analysis 

Description 

Fixed Gaussian regularization. Particles at each 
resampled point are adjusted using a fixed- 
variance Gaussian kernel. Ref. section 3.5.1 
Gaussian regularization with the standard devi- 
ation of the kernel dependent on the number of 
particles sampled at that point and a fixed pa- 
rameter. Ref. section 3.5.2 
Gaussian regularization with the standard devi- 
ation of the kernel dependent on the number of 
particles sampled at that point and the empiri- 
cal covariance matrix of the particle distribution 
before resampling. Ref. section 3.5.3 
(Regularized Particle Filter) Gaussian regulariza- 
tion dependent on a fixed, derived parameter and 
the empirical covariance matrix of the particle dis- 
tribution prior to resampling. Ref. section 3.4.1 
Markov Chain Monte Carlo criterion. Can sup- 
plement any above regularization method. En- 
sures that regularized particles asymptotically ap- 
proach the optimal Bayesian posterior distribu- 
tion. Ref. section 3.4.2 

Each filter was tested with a singular run through the SLAM scenario; the CEP of 

the filter position estimate was extracted at each second. Additionally the number of 

unique particle states after resampling was recorded to provide a measure of diversity 

at that time step. The purpose of this test was to show performance of the filters 

in a controlled scenario and to observe the relationship between the diversity of the 

particle filter posterior and the CEP. 

Figure 46(a) shows FastSLAM 1.0 baseline performance at 0.1 m range measure- 

ment RMS error, with an average CEP of 0.3034 m and an average number of unique 

particles of around 40 after each resampling step. Figure 4-6(b) shows the same filter 

and scenario, only this time with a mismatch in the relative accuracy of agent motion 

and feature observations. There is a pronounced difference in both the accuracy of 

67 



the filter and the number of unique particles. An average of 10.5 distinct states in the 

posterior implies a significant depletion in state space coverage. The average CEP for 

this test was 0.4284, but more important conclusions can be drawn by evaluating the 

CEP time history for the run. At points the CEP drops to around 0.1 m, however the 

long-period variations between 0.07 m and 0.85 m show that the filter is not tracking 

the true position at all, but instead propagating the posterior according to the motion 

model. Feature observations did little to affect the position estimate as it sometimes 

wandered close to the true position but then drifted away. If the accuracy of the 

agent heading estimate were captured, it would likely reflect a difference in the true 

and estimated agent heading that reflect poor state estimate despite close proximity. 

Though some diversity would be recovered as particles propagated according to a 

stochastic representation of uncertainty in the motion model, it is reasonable to as- 

sume that this propagation may not have sufficiently recovered the loss in state space 

coverage caused by resampling, which caused the particle drift, a loss in accuracy, 

and CEP inst ability. 

4.4.1 FastSLAM 1.0 with Regularization 

Figure 4-7 shows the result of a simple regularization method added to the FastSLAM 

1.0 algorithm. The average number of particles remained at 200 for the duration of the 

scenario since SpreadX readjusted every particle according to a set of kernels. There 

was a considerable drop in position error at the 0.1 m RMS measurement noise level, 

though it is unclear whether the increase in particle diversity was the sole cause of 

the increased estimation accuracy. There was only a slight reduction in average CEP 

gained at the 0.001 m RMS measurement noise level when a regularization method is 

added. More importantly, short period adjustments in the CEP reveal a sensitivity to 

measurement information not evident in the CEP results for FastSLAM 1.0 without 

regularization. 
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Figure 4-6: FastSLAM 1.0: CEP and diversity for single run at range measurement 
RMS error of 0.1 m (a) and 0.001 m (b). 



Estimated Position Accuracy and Number of Unique Particles 
1 l o o  

LI, .- _ - Algorithm: 

[ FastSLAM 1 .O + SpreadX 

8 Robot Speed: 0.62832 (ds )  

Measurement Errors: 

- 4 Range rms (rn): 0.1 

8 Bearing m s  (deg): 1 - - Robot Motion Errors: 

$ Angular vel bias (deg/s): 2 
.. . . . . . - . . -  . . . . .  :. . . . . . . - .  ;. . . . . - .  ;. . . . . . .  .:.. Angular vel sf: 0.1 % 

c Speed bias (ds): 0.05 
2 6 Speed sf: 0.05% a ~ v g  c.. o.17M m 

Z ~ v g  number of 
unique particles 
after resampling: 200 

I I I - 5 O; 10 20 30 40 50 60 
w" Simulation Time (sec) c ,  

Estimated Position Accuracy and Number of Unique Particles 
1 00 

m - 
X Algorithm: 

FastSLAM 1.0 + SpreadX I Robot S p d :  0.62832 ( d s )  

8 Measurement Errors: 
5 Range m (m): 0.001 

4 Bearing rms (deg): 1 
0 - Robot Motion Errors: 
8 Angular vel bias (degls): 2 

Angular vei s t  0.1% - 5 Speed bias (ds): 0.05 

Speed s t  0.05% 

.i Avg CEP: 0.3740 m 
5 
P ~ v g  number of 

unique particles 
afMr resampling: 200 

I I 

0 10 20 30 40 50 60 
' . 10 

Simulation T i m  (sec) 

Figure 47: Fast SLAM 1.0 with Regularization: CEP and diversity for single run with 
range measurement RMS error of 0.1 m (a) and 0.001 m (b). Regularization provided 
a slight improvement in CEP at both measurement noise levels. 
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4.4.2 Fast SLAM 2.0 Accuracy and Diversity Analysis 

Switching algorithms to FastSLAM 2.0 demonstrated the effects of a more advanced 

proposal distribution on particle diversity and filter accuracy, with results shown in 

figure 4-8. At the 0.1 m RMS range measurement noise level, FastSLAM 2.0 with- 

out regularization yielded a noticeable improvement in accuracy from FastSLAM 1.0, 

and an additional increase in average number of particles after resampling. This was 

expected, as literature testifies to an improved posterior estimate over the standard 

RaeBlackwellized particle filter. However, testing the algorithm again at the 0.001 

m RMS measurement level resulted in a disturbing loss of accuracy near the end of 

the run. Since pronounced position tracking losses happened suddenly, a reasonahle 

explanation could involve poor propagation effects at this measurement noise level. 

In original FastSLAM, position tracking errors happened gradually, as a result of 

drift. Conversely, errors in Fast SLAM 2.0 happen suddenly, likely not from a gradual 

propagation away from the true mean but an erroneous propagation altogether. Since 

measurement information was included in proposal calculation, the algorithm could 

have made large data association errors that led to rapid deviation from the prior 

estimate. Figure 4-9 shows the FastSLAM 2.0 posterior after the 60 second scenario, 

including mapped landmarks, at two levels of range measurement noise. FastSLAM 

2.0 experienced a breakdown in overall posterior accuracy at the end of the scenario, 

figure 49(b),  as some particles made correct data associations and remained close 

to the true agent position and other particles incorrectly associated measurements 

to false landmarks. As is evidenced in this more detailed view of the filter poste- 

rior estimate, FastSLAM 2.0 may have had a reasonable chance of recovering to an 

accurate posterior estimate at a later point in time, but only if more correct data 

associations were made and erroneous hypotheses eliminated. Because of the delayed 

decision making inherent in the FastSLAM structure, a 60 second SLAM scenario may 

not encapsulate a longer term robustness that could emerge with more loops around 

the environment. Nevertheless, it is important to characterize the true performance 

of this filter since some engineering applications may call for proven stability over 
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possible long term accuracy. 

4.5 Monte Carlo SLAM Performance Analysis 

In order to better characterize the average behavior of the filters and regularization 

methods coded for the analysis, 100 Monte Carlo runs were performed for each filter 

and regularization method. Each of the three filters were tested first without regu- 

larization, then in a marriage with each of the four regularization methods, giving a 

total of 15 possible combinations. In addition, each of these combinations was tested 

at 15 different range measurement RMS values, from 0.001 to 1.0 m, focusing on the 

following performance trends: 

1. The overall effect of regularization and the average performance of each regu- 

larization method. 

2. A comparison of the accuracy provided by the three filter types 

3. The trend in agent position accuracy for each filter-regularization combination 

as measurement noise is reduced to the point where particle depletion occurs. 

4.5.1 Filter Performance Results 

The first set of Monte Carlo runs compared the performance of the three filters coded 

for this exercise, absent of any regularization algorithms. Results are given in figure 4 

10. As range measurement RMS error is reduced, average CEP for each approach 

drops as expected but then increases dramatically at the lowest RMS error levels. 

Even FastSLAM 2.0, though it maintained accuracy to a lower RMS level than the 

other filters, met a point at which the the motion-sensor mismatch causes the ad- 

verse propagation and inst ability mentioned earlier. One surprising result is that the 

Auxiliary particle filter performed much worse in this scenario than the original Fast- 

SLAM algorithm. It seems that this method was far more susceptible to the effects 

of particle drift despite the inclusion of an additional resampling step. One possible 
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Figure 4-9: SLAM posterior estimation with FastSLAM 2.0. At very low measurement 
noise levels, substantial errors in the estimated posterior are noted (b). 
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explanation is that the resampling step before particle propagation, though it may in 

some cases increase the chances of particles propagating to a more favorable region 

for importance weight calculation, reduced particle diversity to an even greater degree 

than in a standard particle filter. Evaluating an isolated case, shown in figure 411, 

reveals that the additional resampling step did in fact produce an accurate position 

estimate for the first half of the simulation. Eventually, however, this filter drifted 

substantially from the true position. It could be that, as in FastSLAM 2.0, using mea- 

surement information in particle propagation results in a proposal distribution that is 
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more susceptible to the adverse effects of data association errors. Unlike FastSLAM 

2.0, however, particles in an APF are not directly drawn the proposal that includes 

these association errors, letting the multiple hypothesis property eventually eliminate 

bad particles. Instead, the Auxiliary particle filter uses measurement information to 

trim the size of the proposal; thus the effects of data association errors as they shape 

the filter proposal at each time step can never be undone. 

4.6 Regularization Performance Results 

SpreadX Parameter Selection 

Since the SpreadX regularization algorithm utilized an empirically chosen parameter 

for kernel generation, a set of Monte Carlo runs was performed to determine the opti- 

mal parameter for this SLAM scenario. Table 4.5 shows average CEP for parameter 



Table 4.5: SpreadX regularization parameter determination, using average CEP (m) 
of 100 Monte Carlo runs. Results show X = 0.20 m to be the optimal value for this 
simulation. 

Regularization 
Parameter, X (m) 

0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 

values between 0.05 m to 0.5 m, with the best performance at each noise level from 

X = 0.2 m. This regularization parameter value was subsequently chosen for each 

implementation of SpreadX for this analysis. Figure 4-12 shows the result of a Monte 

Range RMS Error, (m) 

Carlo performance analysis using FastSLAM 1.0 and each regularization method from 

0.001 
0.5008 
0.4288 
0.4314 
0.4024 
0.4141 
0.4296 
0.4686 
0.4624 
0.4445 
0.4410 

table 4.4. Despite the variety of approaches employed by the different regularization 

algorithms, the only method with an improvement in performance at the lowest mea- 

surement noise level was the SpreadX algorithm, using a fixed-Gaussian kernel. All 

1.0 
0.3786 
0.3710 
0.3467 
0.3408 
0.3517 
0.3413 
0.3447 
0.3576 
0.3502 
0.3625 

0.01 
0.3110 
0.3023 
0.3182 
0.2990 
0.3040 
0.3054 
0.3281 
0.3341 
0.3104 
0.3567 

other methods produced mean CEP values comparable to or greater than the basic 

FastSLAM filter at each isolated measurement noise level. This is initially surpris- 

0.1 
0.2884 
0.3022 
0.2948 
0.2927 
0.3016 
0.3009 
0.3062 
0.3210 
0.3104 
0.3143 

ing, considering that SpreadX is the most basic of all tested regularization methods 

and does not involve a complicated, derived parameter for kernel generation. The 

backbone of the SpreadX algorithm, and possibly the reason that it fared well in this 

analysis, is an empirically chosen constant regularization kernel. By testing many 

possible values and arriving at an optimal spreading parameter for this scenario, 

SpreadX introduced a proper amount of diversity for this environment configuration, 

measurement model and agent motion characteristics. Also, SpreadX injects a guar- 

anteed amount of diversity into the posterior distribution, while in other algorithms 

the amount of diversity is variable and may not be sufficient in some cases. For in- 

stance, SpreadX2 adjusts resampled states with kernels that depend on the "stack 
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height" of particle sets. In the situation where measurements are not associated with 

any previously mapped landmarks, all particles receive equal weights, and the effect 

of the regularization algorithm is minimized. Incidentally, in cases where no existing 

landmarks are observed and new features are being mapped, more diversity should 

be recovered through regularization in order to keep the uncertainty of these new 

landmark positions high. This would give the estimation routine a greater chance 

at closing loops and recognizing previously mapped features. It is highly likely that 

the filter position estimate could drift away from the true position before mapping 

new features. With an accurate sensor, these new features are initialized with undue 

position certainty unless a reasonable amount of diversity is kept. SpreadX main- 

tains a larger amount of diversity in this situation than the other methods since the 

particle cloud is not allowed to converge below a certain RMS distance. Nonetheless, 

regularization itself does not appear to increase filter accuracy in any case but the 

most severe mismatch between motion and sensor noise levels. Average CEP val- 

ues for FastSLAM 1.0 without regularization are, for the most part, better without 

regularization at every other measurement noise level. 

4.7 Markov Chain Monte Carlo (MCMC) Analy- 

sis 

Since the Markov Chain Monte Carlo acceptance criterion can supplement any regu- 

larization algorithm, it was appropriate to test this algorithm with each of the four 

spreading methods. Because of its solid theoretical foundations, it was expected that 

the inclusion of this criterion in any state adjustment would only improve the average 

CEP of the filter position estimate. Table 4.7 summarizes the results of a Monte 

Carlo analysis with average CEP at four different measurement RMS error levels. 

Performance was improved for SpreadX2, SpreadX3, and the RPF method, but only 

at the lowest and highest measurement RMS levels. No improvement in SpreadX 

performance was offered by the MCMC step. Again, this result is surprising given 



Table 4.6: MCMC criterion performance analysis for FastSLAM 1.0 and various reg- 
ularization met hods. Average CEP values (m) . 

Regularization 
Algorithm 

SpreadX 
SpreadX + MCMC 
SpreadX2 
SpreadX2 + MCMC 
SpreadX3 
SpreadX3 + MCMC 
RPF 
RPF + MCMC 

the fact that the Markov Chain Monte Carlo algorithm theoretically provides for the 

convergence of a regularization method to the optimal Bayesian posterior. As in the 

case with the more advanced regularization methods, it could be hypothesized that 

the MCMC criterion restricts the recovery of diversity in the filter position estimate 

after resampling, as particles are only moved provided they meet a strict selection 

criterion that involves a current feature measurement. 

MCMC restricts particle adjustment based on the current measurement, thus 

one possibility is that incorrect data association between measurements and features 

could keep the regularization method from recovering particle diversity lost in resam- 

pling. As in the case where incorrect data association adversely affected proposal 

propagation in Fast SLAM 2.0 and the Auxiliary particle filter, using measurement 

information to restrict regularization could potentially weaken the filter in cases of 

particle drift where estimated feature locations are in fact erroneous. 

Range RMS Error, (m) 

4.8 Performance Summary for Filter/Regularization 

Marriages 

0.001 
0.4024 
0.4586 
0.4852 
0.4395 
0.5682 
0.4756 
0.4778 
0.4265 

Table 4.7 shows comprehensive results of Monte Carlo analysis of each algorithm 

developed for this exercise, including marriages between filters and regularization 

algorithms. Fast SLAM 2.0 without regularization produced optimal filter CEP per- 

0.01 
0.3040 
0.4011 
0.3197 
0.4197 
0.3651 
0.4526 
0.3191 
0.3254 

0.1 
0.3016 
0.2968 
0.3015 
0.3022 
0.3144 
0.3170 
0.3070 
0.3082 

1.0 
0.3467 
0.3744 
0.3576 
0.3285 
0.3633 
0.3396 
0.4214 
0.3671 



Measurement Range RMS Error = 0.001 m 

Measurement Range RMS Error = 0.01 m 

Filter Type 
FastSLAM 1.0 
FastSLAM 2.0 
Auxiliary PF 

Measurement Range RMS Error = 0.1 m 

Table 4.7: Average CEP values (m) for filter-regularization marriages. Bold values 
indicate significant results. 

SpreadX 
0.4024 
0.5852 
0.7474 

No Regularization 
0.4596 
0.5123 
0.6199 

Filter Type 
FastSLAM 1.0 
FastSLAM 2.0 
Auxiliary PF 

Filter Type 
FastSLAM 1.0 
FastSLAM 2.0 
Auxiliary PF 

Measurement Range RMS Error = 1.0 m 

formance at all measurement noise levels except the extreme cases of 0.001 m and 1.0 

m RMS range error. In these situations, other algorithms produced better results. 

As explained previously, Fast SLAM 1.0 with the simple spreading routine, SpreadX, 

provided a much lower CEP than any other algorithm. At 1.0 m RMS range error, 

FastSLAM 2.0 with SpreadX3 provided the best average CEP, but the 95% confidence 

intervals for this result do not support significance for this conclusion, thus the result 

is not bolded in the table. 

SpreadX 
0.3040 
0.2570 
0.5467 

No Regularization 
0.3050 
0.2419 
0.5315 

Filter Type 
FastSLAM 1.0 
FastSLAM 2.0 
Auxiliary PF 

SpreadX2 
0.4852 
0.5196 
0.5812 

No Regularization 
0.2939 
0.2452 
0.4214 

SpreadX3 
0.5682 
0.5832 
0.5930 

RPF 
0.3191 
0.2653 
0.5183 

SpreadX2 
0.3197 
0.2621 
0.4714 

SpreadX2 
0.3015 
0.2506 
0.3970 

SpreadX 
0.3016 
0.2882 
0.4321 

No Regularization 
0.3463 
0.3161 
0.5116 

RPF 
0.4778 
0.8589 
0.6150 

SpreadX3 
0.3651 
0.2533 
0.5289 

SpreadX 
0.3467 
0.3864 
0.6642 

SpreadX2 
0.3576 
0.3146 
0.4886 

SpreadX3 
0.3144 
0.2598 
0.4087 

RPF 
0.3070 
0.2958 
0.3993 

SpreadX3 
0.3633 
0.3153 
0.5208 

RPF 
0.4214 
0.6807 
0.4888 



4.9 Summary 

It would be interesting to perform this analysis of SLAM algorithms with a more 

diverse set of performance metrics than simply the CEP of the position estimate at 

each time. A lot could be inferred by evaluating the error in landmark positions at 

certain key moments, such as when the filter maps a previously undetected feature. Of 

course, altering the SLAM environment by changing the positions and relative spacing 

of landmarks, giving the agent more or fewer anchor features, or simply changing the 

commanded robot path could have a profound impact on the performance of each 

filter and regularization scheme. 

In some ways it is relatively difficult to improve upon the accuracy of a SLAM 

filter once landmarks have been mapped with errors. As landmarks are mapped, the 

filter will default to these locat'ions when performing data association. If the filter is 

already experiencing particle drift, landmarks will be placed in badly skewed positions 

and loop closure will become difficult. 

By recovering sample diversity through particle readjustment, regularization can 

add additional uncertainty in the estimate of agent pose location, especially when 

particle adjustments are based on a fixed kernel. The results of the Monte Carlo runs 

suggest that this could be one way to keep the filter from locking on an erroneous 

heading and creating a skewed map. The effects of the motion-measurement accu- 

racy mismatch scenarios reveal an int'eresting performance paradox for particle filters 

when applied to the SLAM problem. Observations from unseen or newly mapped 

features are processed with the same amount of sensor accuracy as well-established 

and accurately marked features. However, if the estimation algorithm places full 

faith in precise measurements from new features, it will eventually experience a loss 

in diversity. While in some cases, such as the global localization problem where a 

well established and complete map is known a priori, a loss in diversity could signal 

convergence to an accurate position estimate. If the filter is tasked with localiza- 

tion and mapping, this loss in diversity is detrimental and will eventually lead to the 

phenomena experienced in this analysis. 



Recovering sample diversity through regularization, though it may not be the 

most optimal or principled prescription, could help ma'intain a necessary uncertainty 

in the locations of new landmarks until successive measurements or observations of 

well established features are obtained. One possible improvement on the standard 

FastSLAM 1.0 algorithm not studied in this analysis would be to initialize new land- 

mark locations with a larger degree of uncertainty than just the measurement noise 

covariance matrix. Keeping new landmarks more uncertain and then gradually fixing 

their position as further observations are processed could be one way to keep the 

estimated posterior resistant to the effects of particle drift. 
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Chapter 5 

Experimental Results for SLAM 

Algorithms 

In order to gain a better understanding of the performance of the FastSLAM algo- 

rithm with improved regularization, several runs with measurement information from 

a real-world SLAM scenario were performed. In this analysis, only one FastSLAM 

filter type and regularization combination was used in a side-by-side comparison with 

an EKF SLAM algorithm. The environment for this comparison consisted of five 

box-shaped objects surrounding a 5.1-meter straight-line path. A cart carrying mea- 

surement equipment was pulled along this path, pausing every 0.3068 meters for a 

sensor measurement. At the end of the path, the cart was rotated 90 degrees, with 

measurements taken every 30 degrees. This particular path and set of measurement 

points provided for simple calculation of true positions as a reference for filter compar- 

ison. In total, this set of measurement and motion data would simulate an l&second 

scenario with the agent advancing for 15 seconds then performing a 90 degree right 

turn over the final 3 seconds. Several assumptions were made to give the scenario 

a more realistic quality. First, a motion model was developed that would match 

characteristics of a robot advancing along this straight-line path with relatively noisy 

odometry information. This motion model would be used in the propagation step for 

both the EKF and particle filter algorithms, producing a similar situation to position 

tracking in the presence of actual motion noise. Motion model parameters used for 



both algorithms are listed below for both the translation and rotation phases. Error 

parameters and are given in table 5.1. 

Agent Motion Model 

Translation Phase: (t = 1 - 15'1 

Rotation Phase: (t  = 16 - 18) 

W; " N(w; 0, Psk id )  

I 

w; - N ( w ;  wt, Psk id )  

Table 5.1 : Motion model parameters for Fast SLAM-EKF comparison. Only two 
motion error parameters are used: skid errors in tangential and rotational velocity. 

5.0.1 Swiss Ranger Feature Observations 

Range and bearing measurements were collected by processing data from the CSEM 

Swiss Ranger 3000, a LIDAR imaging system that provided a high-resolution, three- 

dimensional representation of the environment. Raw outputs from the Swiss Ranger 

included the accurate ranges for every pixel within the field of view. By process- 

ing these ranges using a median filter and searching for large gradients in the range 

pattern, individual features were identified and translated into a range, bearing and 

elevation relative to the agent. Since in this scenario pose and landmark locations were 

tracked in only two dimensions, measurements were projected onto a planar environ- 

ment. Features in this case were the edges of objects, since these locations produced 

the range differences identified by the gradient-based feature extraction technique. 

For more information on the Swiss Ranger imaging system see [44]. Specifics of the 

measurement noise model for the Swiss Ranger and feature extraction are listed in 

table 5.2. The effective uncertainties for range and bearing listed are for the entire 

feature extraction process. They do not represent the noise characteristics of the 

Swiss Ranger alone. 



Table 5.2: Effective measurement model specifications and uncertainties for the fea- 
ture observation system, including Swiss Ranger, and feature extraction. *Values are 
approximate. 

2D Effective 
Field of View 1441 

- .  - - 

5.0.2 Algorithm Specifics 

Non-ambiguity 
Range 1441 

Effective Bearing 
Uncertainty, RMS 

47.5 deg 

The EKF SLAM algorithm used in this analysis was developed according to the basic 

framework described in section 2.1.1, with a 2N + 3 posterior state vector. It utilized 

the maximum likelihood data association heuristic with a fixed likelihood threshold 

for new landmark initialization. To prevent false landmark initialization from spurious 

measurements, a feature had to be observed twice before incorporation into the EKF 

map. The only modification to the FastSLAM algorithm outlined in the previous 

chapter was the addition of the SpreadX regularization method (for a description see 

table 4.4). This particular filter and regularization combination was chosen because 

it demonstrated both accuracy and robustness with simulated data, outperforming 

all other combinations in situations prone to particle depletion. An initial particle 

distribution was drawn according to the Gaussian parameters representing the same 

a priori mean and covariance as in the EKF. 

Effective Range 
Uncertainty, RMS 

5.0.3 Initial Estimates and Anchor Features 

7.5 m 

The agent starts from the same point for every test, with filter a priori estimates 

changed for comparison of filter qualities. Anchor features are occasionally included 

in a priori posterior estimates, the locations of which were determined after processing 

1.0 deg* 

the measurements in order to place them in favorable locations for recognition by the 

filter as it processes measurements. Each anchor feature given was assumed an initial 

uncertainty RMS of 0.3 m in both x and y directions. 

0.05 m* 



5.0.4 Performance Metrics 

The primary metric for this evaluation was position CEP with respect to the true 

agent position, but observation of the entire posterior is also plotted and will be helpful 

in understanding the strengths and drawbacks of each filter and why a certain filter 

performed as it did for each situation. Several important observations were deduced 

visually as the SLAM posterior estimate from each filter type was superimposed on 

the true environment. In particular, this bird's-eye view of both filter estimate and 

truth helps identify situations where data association errors were made and how these 

errors effect the processing of subsequent feature observations. 

5.1 Experimental Results 

5.1.1 Scenario One: Position Tracking and Feature Mapping 

Figure 5-1 shows the environment used for all tests, as well as the initial posterior 

estimate and uncertainty for the first experiment. The initial pose estimate reflected 

only a slight inaccuracy in the a prior2 notion of agent position, with the true position 

still well within the uncertainty ellipse (lo).  No anchor features are provided for this 

first assessment, which tested pose tracking and feature mapping abilities given a well- 

localized initial estimate. Figures 5-2(a) and 5-2(b) illustrate the end result posterior 

estimate after processing all mot ion and measurement informat ion for the scenario. 

Notice that the path of the dead-reckoning estimate from propagation of odometry 

information has deviated significantly from the true path, while both filter estimates 

have maintained a reasonably accurate position estimate by mapping observed fea- 

tures and then adjusting a motion-based estimate by subsequent measurements of this 

map. In addition, CEP time history is shown for both filters and the dead-reckoning 

estimate from one realization of the stochastic motion (figure 5-3). Visual inspection 

of the estimated posterior in figure 5-2(b) shows a slightly skewed map, a probable 

cause of the slightly inferior CEP performance of FastSLAM in figure 5-3. Exami- 

nation of the landmark covariances for both methods shows notably larger ellipses 



EKF SLAM with Swiss Ranger Measurements, t = 0 

Algorithm: 
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Meters 

EKF SLAM 

Robot Speed: 0.3048 (mls) 

Dead Reckoning Errors: 
Ang. vel. rms (degls): 6.9282 

Speed rms (m): 0.17321 

Measurement Errors: 
Range rms (m): 0.05 
Bearing rms (deg): 1 

Initial Position Estimate 

Initial Estimate Error(m): 0.27m 

Estimate x-y a (m) 0.2 

Estimated Path 
True Path and Environment 
Dead Reckoning 
Landmark 1 -a Ellipse 
Position 1 -o Ellipse 

Figure 5-1: Environment truth and initial pose estimate for SLAM scenario. No 
anchor features, accurate initial estimate. 

for EKF landmarks than with FastSLAM. The fundamentals of the SLAM problem, 

as mentioned in section 2.1, state that landmark and pose uncertainties are firmly 

linked. That is, uncertainty in the pose location at the time the landmark must be 

included in landmark estimate covariance. Red ellipses indicate historical covariance 

ellipses at each position. With accurate measurements from the Swiss Ranger, the 

sizes of feature uncertainty ellipses in figure 5-2(a) are approximately the same size 

as the agent pose uncertainty at the time they were mapped. Little or no additional 

uncertainty is added by measurement noise. The tendency of FastSLAM to produce 

a false certainty in landmark positions, as mentioned in section 2.5.1 is noticed in this 

scenario (figure 5-2(b)). Landmark uncertainty was reduced to virtually zero at the 

end of the test. 



EKF SLAM with Swiss Ranger Measurements, t = 18 sec 

Algorithm: 
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Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec 
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Figure 5-2: Final posterior estimate for EKF (a) and FastSLAM (b) after 18-second 
scenario. No anchor features, accurate initial estimate. 



Position CEP: EKF vs. Particle Filter 

Dead Reckoning 

FS1 + SpreadX . . * . .  . . .>... ' .  ... 

"0 2 4 6 8 10 12 14 16 18 
Time (sec) 

Figure 5-3: Agent position CEP time history for dead reckoning estimate and both 
filter estimates. No anchor features, accurate initial estimate. 

Scenario Two: Localization 

The ability of each filter to localize given an accurate an accurate a przorz map was 

assessed by providing each filter with a full set of anchor features. The initial pose 

estimate, however, was offset significant distance from the true location. Uncertainty 

in this estimate was set at 1 m (lo) to include the true initial position within the 

covariance bounds. Figure 5-4 shows both the initial environment and the posterior 

estimate after the first measurement. While individual particles are not illustrated 

in the figures, it is clear that particles in the initial dispersion located near the true 

estimate made correct data associations with stored landmarks and were weighted 

highly. The path estimate reflects a dramatic shift in the mean after this first re- 

sampling step as particles are repopulated to these few discrete points. FastSLAM 

responded quickly to correct data associations and recovered from poor initial esti- 

mate. 

Figure 5-5 shows the estimated posteriors for the test, and the EKF was in this 



case unable to recover from this poor initial estimate. While uncertainty decreased 

over the length of the scenario, it does not appear that the EKF would have converged, 

even with a longer scenario. The EKF made a critical data association error early 

in the experiment. Red arrows describe this association, as feature clusters clearly 

correspond to other true landmarks. The EKF also created additional features with 

measurements that differed from any stored landmarks. Other anchor features were 

never associated with measurements, as their covariance ellipses reflect the initial 

uncertainty of 0.3 m. CEP time history for this scenario is shown in figure 5-9. The 

fundamental drawback of the EKF in this scenario was its inability to track multiple 

hypotheses of its location. Instead, it created a map that corresponded with the 

poor initial position estimate and a data association error early in the test. These 

experimental results are consistent with other sources that testify to the strengths 

of particle filters in tackling problems of global localization based on an accurate a 

priori map [17, 451. 

5.1.3 Scenario Three: Localization and Mapping 

The third and final test was designed to stress the ability of each filter to both localize 

based on anchor feature observations and then proceed to map the remaining features 

in the environment. Only three anchor features were given, and once again a poor 

initial position estimate was provided (see figure 5-7). Results in this scenario are 

similar to the previous experiment. Once again the EKF algorithm built a map 

consistent with a poor initial position. It was able to maintain a proper heading 

estimate despite motion noise, but the map estimate is significantly shifted from 

the true feature positions (figure 5-8(a). Again, the rigid relationship between pose 

and landmark uncertainty is evident. All mapped landmarks reflect an uncertainty 

similar to the one measurement that was associated with a known anchor feature, 

albeit incorrectly. After that point, there is no apparent additional convergence, of 

either the pose or subsequent mapped landmarks. 
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Figure 54:  Initial posterior estimate with poor initial estimate and three anchor 
features (a). Position estimate recovery for FastSLAM after f is t  measurements (b). 



EKF SLAM with Swiss Ranger Measurements, t = 18 sec 
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Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

-2 1 I 

-3 -2 -1 0 1 2. 3 
Meters 

Algorithm: 
FastSLAM 1.0 + SpreadX 

Robot Speed: 0.3048 (mls) 

Dead Reckoning Errors: 
Ang. vel. rms (degls): 6.9282 

Speed rms (m): 0.17321 

Measurement Errors: 
Range rms (m): 0.05 
Bearing rms (deg): 1 

Estimated Path 
True Path and Environment 

Landmark 1 -o Ellipse 
Position 1 -o Ellipse 
Anchor Features 

Figure 5-5: Final posterior estimate for EKF (a) and FastSLAM (b) after 18-second 
scenario. Red arrows show data association errors of feature clusters. 



Position CEP: EKF vs. Particle Filter 
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Figure 5-6: Agent position CEP time history for dead reckoning and filter estimates, 
poor initial pose estimate and accurate initial map estimate. EKF convergence is 
limited by initial pose inaccuracy. 

Summary 

The results of these experiments demonstrate that while the particle filter and EKF 

can provide similar robustness and accuracy in SLAM cases with little initial uncer- 

tainty, the particle filter approach clearly outperforms a single-hypothesis EKF in 

cases where the agent is initially poorly localized. While a comprehensive evaluation 

that would support the conclusive acceptance of a particular particle filter SLAM 

algorithm over EKF based algorithms would require results from a broad range of 

scenarios and Monte Carlo tests, the single data set and few variations in this test 

revealed several basic conclusions. First, there are cases where particle filter SLAM 

algorithms and EKF based algorithms yield comparable results, both in robustness 

and general accuracy. The EKF algorithm has the advantage of analytically approx- 

imating the optimal Bayesian posterior under the restrictive assumptions mentioned 

in chapter 2, whereas the particle filter is a sampling approach that only approximates 



the optimal posterior when properly configured. Convergence of a sa,mpling approach 

will depend on the number of samples used, a proper weighting heuristic, and an 

adequate model of motion and sensor characteristics, among other factors [8]. Addi- 

tionally, the principles behind the basic EKF SLAM algorithm and its performance 

have been well documented. It is currently held as the "gold standard" approach to 

state estimation, with acceptable performance in certain SLAM situations [18, 321. 

As evident from the results in this section, there are also some cases where the per- 

formance of the EKF SLAM algorithm breaks down and the FastSLAM algorithm 

maintains an accurate estimate of the robot pose and landmark locations. Finally, 

the improved robustness and accuracy of FastSLAM over the basic EKF algorithm in 

certain scenarios lies in its ability to track multiple hypotheses of the pose locations, 

landmark locations, and data associations between landmarks and measurements. A 

more involved performance analysis for each filter with Swiss Ranger data would have 

helped firm many of these conclusions. Future tests should involve the agent making 

a complete loop around the environment in order to test SLAM filter performance 

during loop closures. 
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Figure 5-7: Environment truth and initial pose estimate for SLAM scenario, inaccu- 
rate initial estimate and partial . . . .  map knowledge. 



EKF SLAM with Swiss Ranger Measurements, t = 18 sec 
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Particle Filter SLAM with Swiss Ranger Measurements, t = 18 sec 
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Figure 5-8: Final posterior estimate for EKF (a) and FastSLAM (b) after 18-second 
scenario. Red arrows show skewed map of EKF from data association errors. 
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Figure 5-9: Agent position CEP time history for dead reckoning and filter estimates, 
poor initial pose estimate and three initial anchor features. Once again, EKF conver- 
gence is limited by initial pose inaccuracy. 
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Chapter 6 

Conclusions and Future Work 

6.1 Research Conclusions 

Results from the Monte Carlo analysis of FastSLAM derivatives combined with vari- 

ous regularization techniques revealed a substantial improvement in sample diversity 

and accuracy with FastSLAM 2.0 in most situations. At the lowest measurement RMS 

values, where the proposal-perceptual mismatch is most severe, FastSLAM 2.0 was 

prone to disturbing losses in CEP pose accuracy. It was in this situation that Fast- 

SLAM 1.0 with the addition of a fixed-variance regularization algorithm, SpreadX, 

maintrained a better estimate of agent pose. The addition of SpreadX provided a 

0.05 m average CEP improvement over the standard FastSLAM algorithm, and a 0.1 

m CEP improvement over FastSLAhl 2.0. These conclusions support the adoption 

of Fast SLAM 1.0 with an empirically derived, fixed-variance regularization algorithm 

over the more complicated FastSLAM 2.0 in SLAM situations where robustness of the 

filter in the presence of extremely low measurement noise is a primary performance 

requirement. 

Comparing FastSLAM 1.0 + SpreadX with an extended Kalman filtser in the 

same actual SLAM scenario with Swiss Ranger feature observations highlighted the 

ability of particle filter-based algorithms to recover from situations of high initial 

uncertaint'y. Starting from initial pose errors of 1.4 m, both filters processed feature 

observations with partial or complete a przori maps of the environment. The RBPF- 



based algorithm recovered t80 within 0.4 rn pose CEP by tthe end of tshe scenario, 

whereas the EKF maintained a pose error of at least 1.0 in. These result8s demonstrate 

the flexibility of an RBPF algorithm and its ability to recover accuracy despite initial 

error by efficiently tracking multiple agent pose hypot'heses. This feature makes it 

an ideal algorithm for estimation in SLAM ~ituat~ions with of large or global initial 

uncertainty and a partial or complete initial map. 

The experiments with Swiss Ranger  measurement,^ demonstrate the a,bilit,ies that 

RBPF SLAM algorithms offer in an unknown environment where conventional lo- 

calization methods such as GPS are unava-ilarble. The statistical correlation between 

landmark locatlion and pose estimates is clearly evident. When exploited, this corre- 

lation can provide a better solution t,han simply dead reckoning via odometry infor- 

ma-tion. The drawbacks of the pose-landmark stat'istical relationship are also seen. 

In the particle filter, cases prone to sample impoverishment and spurious landmarks 

can produce maps that are locally accurate, but badly skewed and shifted from the 

true map. Cases with both simulated and real data illustrated this effect in varying 

degrees. In the EKF algorithm, tested in similar scenarios to the FastSLAM algo- 

rithm, this correlation between posterior states allowed the single hypothesis carried 

in the EKF meail to accept data association errors, preventing it from converging to 

the true agent location. The result was a shifted map, offset by the initial estimate 

error. It reflects t'hat a single-hypothesis EKF algorithm in SLAM environments is 

limited in accuracy by its initial pose estimate. 

6.2 Future Work 

An encompassing goal of this research effort was to thoroughly evaluate the per- 

formance of RBPFs in SLAM environments, and experiment with solutions to a 

commonly accepted failure mode. Given their advantages over the EKF in several 

difficult localization problems and their alternative and des~ript~ive representation of 

the posterior distribution, particle filters have the potential to become a powerful 

estimation technique. As evidenced by tests with Swiss Ranger data, they provide 



similar performance to an EKF-based algorithm for pose tracking in a SLAM environ- 

ment. Moreover, other tests revealed the strengths of FastSLAbI in SLAM scenarios 

with poor initial estimates and high initial pose uncertainty and a partial environment 

map. The experimental results for alternative proposals and reg~larizat~ion techniques 

contained in this thesis do not provide a noteworthy case for FastSLAM 2.0, SpreadX, 

or any other algorithm as a definitive solution to sample impoverishment in particle 

filters. However, in light of the results from this limited survey of improvement strate- 

gies, it does seem reasonable to conclude that t.he recent experimental efforts aimed 

at solving the particle depletion problem are worthy causes that will hopefully, with 

more research, provide a highly advanced posterior est'imation technique based on 

sequential Monte Carlo methods. Solving the sample impoverishment failure mode 

could greatly expand the number of solvable estimation scenarios and potentially yield 

a single robust filter with the architecture to enable autonomous vehicle operation in 

almost any unknown environment. 

One of the surprising results from the simulation phase of this project was the 

fact that Fast'SLAM 2.0 was not, in s0m.e extreme cases, the ultimate answer to 

sample impoverishment. While the inclusion of feature observation information in 

proposal development does provide a marked increase in posterior accuracy at most 

measurement RMS levels, the most mismatched proposal-perceptual scenario revealed 

disturbing propagation effects that practically eliminated any posterior tracking abil- 

ity. It appears as though FastSLAM 1.0, while not as advanced and not as accurate 

in all situations, provided the most robust proposal distribution. The particle diver- 

sity recovered by the addition of a simple regularization algorithm, such as SpreadX, 

can give this simple filter an increased sensitivit.~ to feature observations and greater 

posterior accuracy with the most precise measurement device. Unfortunately, the 

SpreadX regularization approach used a fixed, empirically derived parameter and was 

therefore not as flexible to implement as other methods. A seemingly worthwhile en- 

deavor could be to continue a regularization method research effort and develop other 

analytical solutions to matlch the accuracy of the empirical method. Perhaps an op- 

timization formula using characteristics of the SLAM scenario could lead to a more 



flexible regularization technique. Another consideration would be to include within 

the regularization kernel a parameter based on the residual between the estimated 

and observed feature measurements. In other words, spreading would be dependentl 

upon how well measurements from the pose and landmark estimates match the ac- 

tual observations, wit,h less adjustment for particles that correctly predict the feature 

observation. 

In order for Fast,SLAM to estimate effectively when measurement and motion noise 

are severely mismatched, there should be some way to incorporate more uncertainty 

in landmarks. One way, proposed by hlontemerlo, is tmhe incorporation of negative 

evidence to eliminate false landmarks; this was not used, but should be studied further 

in situations with low measurement noise. Also, landmarks should be initialized 

with more uncertainty than just what is represented in measurement noise. As was 

seen in several occasions, both in a simulated environment and with Swiss Ranger 

measurements, the Rao-Blackwellized particle filter, in a mapping environment, is 

prone to a false certainty in landmark position. This intensified data association 

errors through the creation of false landmarks. One way to incorporate t'his would be 

to include parameters that measure particle dispersion in the calculation of landmark 

covariance at. initialization. Another way would be to include an ad hoc criteria 

for landmark initialization, namely that a particular landmark should be observed 

a defined number of times before it is incorporated into the filter. This feature 

was included in the EKF SLAM algorithm used with Swiss Ranger measurements in 

chapter 5. 
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