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Abstract 

The main goal of this thesis is to analyze the motion patterns in far-field vehicle 
tracking data collected by multiple, stationary non-overlapping cameras. The specific 
focus is to fully recover the camera's network topology, which means the graph struc- 
ture relating cameras and typical transitions time between cameras, then based on 
the recovered topology, to learn the traffic patterns(i.e. source/sink, transition prob- 
ability, etc.), and finally be able to detect unusual events. I will present a weighted 
statistical method to learn the environment's topology. First, an appearance model 
is constructed by the combination of normalized color and overall model size to mea- 
sure the appearance similarity of moving objects across non-overlapping views. Then 
based on the similarity in appearance, weighted votes are used to learn the temporally 
correlating information. By exploiting the st atistical spatio-temporal information 
weighted by the similarity in an object's appearance, this method can automatically 
learn the possible links between the disjoint views and recover the topology of the 
network. After the network topology has been recovered, we then gather statistics 
about motion patterns in this distributed camera setting. And finally, we explore the 
problem of how to detect unusual tracks using the information we have inferred. 
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Chapter 1 

Introduction 

Because of the development of technology, multi-camera visual surveillance applica- 

tions are rapidly increasing in interest. Those applications include tracking moving 

objects throughout a set of views, classifying those moving objects into different cat- 

egories (i.e. cars, people, animals), learning the network topology, getting statistics 

about the moving objects, and finally detecting and interpreting uncommon activities 

of the moving objects. In this thesis, we are focusing on the last three applications, 

assuming the first two tasks have been solved. 

1.1 Wide-area Surveillance Problem 

Consider the problem of wide-area surveillance, such as traffic monitoring and activity 

classification around critical assets (e.g. an embassy, a troop base, critical infrastruc- 

ture facilities like oil depots, port facilities, airfield tarmacs). We want to monitor 

the flow of movement in such a setting from a large number of cameras, typically 

without overlapping fields of view (FOV). To coordinate observations in these dis- 

tributed cameras, first we need to know the connectivity of movement between fields 

of view (i.e. when an object leaves one camera, it is likely to appear in a small number 

of other cameras with some probability). In some instances, one can carefully site 

and calibrate the cameras so that the observations are easily coordinated. In many 

cases, however, cameras must be rapidly deployed and may not last for long periods 



of time. Hence we seek a passive way of determining the topology of the camera net- 

work. That is, we want to determine the graph structure relating cameras, and the 

typical transitions between cameras, based on noisy observations of moving objects 

in the cameras. 

If we can in fact determine the "blind" links (i.e. links that connect the disjoint 

views which cannot be observed directly) between camera sites, we can gather statis- 

tics about patterns of usage in this distributed camera setting. We can then record 

site usage statistics, and detect unusual movements. To determine the network topol- 

ogy and to answer these questions, we must first solve the tracking problem, i.e. we 

must maintain a moving object's identity from frame to frame, through the same 

camera view, through overlapping camera views, and through non-overlapping carn- 

era views, as shown in Figure 1-1. The bounding box shows the moving object. In 

the field of view (FOV), vehicles tend to appear and disappear at certain locations. 

These locations may correspond to garage entrances, or the edge of a camera view, 

and been called sources and sinks, respectively [20]. Based on the visible tracking 

trajectories, one can easily learn the links between each source and sink[l]. 

Tracking through the same views and overlapping views has been widely studied[2] 

[3] [4] [5] .  However, little attention has been paid to the non-overlapping tracking 

correspondence. Good understanding of the activity requires knowledge of the trajec- 

tories of moving objects. For the field out of view, however, the tracking correspon- 

dences are unavailable, even the tracking trajectories are unavailable, which makes 

this problem harder. 

0 bservat ions 

In this thesis, first we focus on how to learn the non-overlapping network topology, 

which means to detect the possible "blind" links between disjoint views, and deter- 

mine the transition time (i.e., the time between disappearing at one location and 

reappearing at the other location). Our learning is based on the following observa- 

t ions: 



Figure 1-1: Tracking examples. The bounding box shows the moving object. The 
first row shows tracking through the same view, the middle row shows tracking 
through overlapping camera views, and the bottom row shows tracking through non- 
overlapping camera views. 



1. Physical characteristics of moving objects do not change. For example, a red 

sedan in one view is still a red sedan in another disjoint view, it cannot become 

a white SUV. 

2. Vehicles running on the same route roughly share the same speed and other 

trajectory characteristics. Based on the real road traffic, most vehicles on road 

are just following traffic. They will slow down and stop with a red light and will 

speed up when the green light turns on. This will make the assumption that the 

transition time from one location to another location is Gaussian distributed 

reasonable. 

3. The trajectories of moving objects are highly correlated across non-overlapping 

views (i.e. vehicles are not randomly moving between different views). To be 

more illustrative, suppose a vehicle wants to go from location A to location C 

through location B. It will go directly from A to B and then to C, instead of 

doing loops between A and B (i.e. from A to B, then to A, then to B) and 

finally goes to C. 

Given these three observations, we propose to use a weighted cross-correlation 

technique to learn the non-overlapping network topology. First, an appearance model 

is constructed by the combination of the normalized color and overall size model to 

measure the moving object's appearance similarity across the non-overlapping views. 

Then based on the similarity in appearance, the votes are weighted to exploit the 

temporally correlating information. From the learned correlation function the possible 

links between disjoint views can be detected and the associated transition time can 

be estimated. Given the possible (i.e. candidate) links, we can finally recover the 

network topology by the estimated mutual information. This method combines the 

appearance information and statistics information of the observed trajectories, which 

can overcome the disadvantages of the approaches which only use one of them. This 

method avoids the camera calibration, and avoids solving the tracking correspondence 

between disjoint views. 



Related Work 

One possible approach to learn the connectivity or spatial adjacency of the camera 

network is to use calibrated camera networks [14] [17]. Jain et al. [14] used calibrated 

cameras and an environmental model to obtain the 3D location of a person. Collins 

et al. [17] developed a system consisting of multiple calibrated cameras and a site 

model, and then used region correlation and location on the 3D site model for tracking. 

This kind of method usually requires detecting the same landmarks with known 3D 

coordinates from different cameras and using a complex site model. 

Another possible approach is to solve the tracking correspondence problem di- 

rectly. Ali et al.[9] uses MAP estimation over trajectories and camera pose parame- 

ters to calibrate and track with a network of non-overlapping cameras. Huang and 

Russell [7] present a Bayesian foundation for computing the probability of identity, 

which is expressed in terms of appearance probabilities. Their appearance model is 

treated as the product of several independent models, such as: lane, size, color and 

arrival time. They have used a simple Gaussian model to measure the transition 

probability between two disjoint views. 

Javed et al. [8] adopted Huang and Russell's method[7] and used Parzen windows 

to estimate the inter-camera space-time (i.e., transition time between two views) 

probabilities and then solved the correspondence problem by maximizing the posterior 

probability of the space-time and appearance. 

Kang et al. [15] used a combination of appearance model and motion model to 

track the moving objects continuously using both stationary and moving cameras, 

then learned the homography between the stationary, the moving cameras and the 

affine transform derived from the stabilization. 

The above methods require that we establish the correspondence for individual 

tracks between non-overlapping views. The correspondence assignment problem can 

be found in time 0(n3) by formulating the problem as a weighed bipartite matching 

problem, which is difficult and time consuming. However, appearance information 

between different views is still quite useful and should not be discarded. 



Other approaches to estimate the spatio-temporal information uses st atis tical 

model[10] [ll] [16] [l3]. Petty et al.[ll] proposed to estimate transition time from 

aggregate traffic parameters in a freeway scenario. Westerman et al. [16] used cu- 

mulative arrivals at successive detector sites to estimate vehicle arrivals. Ellis [13] 

proposed two stage algorithm to learn the topology. First detecting entry and exit 

zones in each view, then temporally correlating the disappearance and reappearance 

of tracked objects between those views to detect possible links. For those statistical 

methods, the performance is only based on information of appearing and leaving time 

of the detected moving objects at each soure/sink. It will not perform well under fair 

heavy traffic condition. 

1.4 Thesis Organization 

This thesis is organized as follows. In Chapter 2, we introduce the joint probability 

model (i.e. appearance model) for measuring the similarity in appearance between 

detected moving objects. In Chapter 3, the cross-correlation method is constructed 

to learn the spatio-temporal information, then, the proposed method, "weighted" 

cross-correlation method, to learn the possible link associated with transition time is 

discussed. Chapter 4 gives the experimental results and associated problems. Section 

5 presents mutual information and how to fully recover the network topology based 

on the estimated mutual information followed by the results presented in Chapter 6. 

Given the recovered network topology, Chapter 7 discusses how to learn the transition 

probability and the source/sink information, finally be able to detect the unusual 

tracks. 



Chapter 2 

The Appearance Model 

To coordinate observations in the distributed cameras, we need to know the connec- 

tivity of movement between fields of view (i.e. when an object leaves one camera, it 

is likely to appear in a small number of other cameras with some probability), which 

means we need to know the network topology. In the following three parts, we will 

focus on how to recover the camera network topology. 

The far field vehicle tracking system we have been using is provided by Chris 

Stauffer[3]. The input to the tracking system is the video sequence, and the output 

of the tracking system is a set of tracking sequences, where each track is a sequence 

of observations of the same object (supposely) in the field of view. These tracks are 

provided as input to our topology learning system. Some sample observations are 

shown in Figure 2-1. 

In different views, the same object can appear dramatically different, not only 

the size, but the color as well. In order to relate the appearance of an object from 

Figure 2- 1 : Examples of observations 



view to view, the appearance model (i.e. color model, and size model) should be 

learned first. Learning the appearance model is carried out by assuming that there 

exists some known correspondences between disjoint views. One way to achieve the 

correspondence, is by driving the same car around the environment. An other possible 

way is to manually detect interesting vehicles (i.e. yellow cab, Fedex truck, blue bus) 

across the disjoint views. Since we only need to model color and overall size, unlike 

the traditional appearance-based correspondence method, which requires a significant 

amount of the known correspondence, only some small number of the best matches 

are needed in the training phase. 

2.1 Normalized Color Model 

Various methods have been proposed to model the color change of moving objects 

from one camera to another. For far-field vehicle surveillance, since a vehicle is the 

only moving object and usually contains one color, a single color model per vehicle 

would be sufficient. However, under different views, the same color may appear 

dramatically different due to the lighting geometry and illurninant color (figure 2-2). 

Based on this consideration, we adopt a normalized color model. First, we use the 

comprehensive color normalization(CCN) algorithm proposed by Finlayson et al. [I81 

to reprocess the input color images. 

2.1.1 Comprehensive Color Normalization Algorithm 

The light reflected from a surface depends on the spectral properties of the surface 

reflectance and of the illumination incident on the surface. In the case of Lambertian 

surfaces, the light is simply the product of the spectral power distribution of the light 

source with the percent spectral reflectance of the surface. Assuming a single point 

source light, illumination, surface reflection and sensor function, combining together 

forms a sensor response: 



where A is wavelength, p is a 3-vector of sensor responses ( rgb  pixel value), F is the 

3-vector of response functions (red, green and blue sensitive), E is the illumination 

striking surface reflectance Sx at location x. Integration is over the visible spectrum w.  

Bar denotes vector quantities. The light reflected at x, is proportional to E(A)Sx(A) 

and is projected onto Z on the sensor array. The precise power of the reflected light is 

governed by the dot-product term Ex .n' . Here, fix is the unit vector corresponding to 

the surface normal at x and Ex is in the direction of the light source. The length of i? 

models the power of the incident light at x. Note that this implies that the function 

E(A) is actually constant across the scene. Substituting f^ for L sX(A) E(A)F(A) 

allows us to simplify the above formula into: 

It is now understood that ox'^ is that part of a scene that does not vary with 

lighting geometry (but does change with illuminant color). Equation 2.2, which deals 

only with point-source lights is easily generalized to more complex lighting geometries. 

Suppose the light incident at x is a combination of m point source lights with lighting 

direction vectors equal to Ex'* (2 = 1,2, , m). In this case, the camera response is 

equal to: 

Of course, all the lighting vectors can be combined into a single effective direction 

vector: 

This equation conveys the intuitive idea that the camera response to m light 

equals to sum of the responses to each individual light. Since we now understand the 

dependency between camera response and lighting geometry, it is a scalar relationship 

dependent on E n x ,  it is straightforward to normalize it: 



A 

when px,E = (r,  g, b) then the normalization returns: (A, ,̂ Ã , ;qÃ‘ . 
Hence, we can define function R(): 

where I is an N x 3 image matrix with N image pixels, whose columns contain the 

intensity of 3 RGB color channels. 

Let us now consider the effect of illuminant color. If we hold lighting geometry, 

the vectors ex, fixed and assume the camera sensors are delta functions: F(A) = 

8(A - \i), i = (1,2,3). Under E(A) the camera response is equal to: 

and under a different El (A) : 

Jw 

Combining the above two equations together we can get: 

This equation informs us that, as the color of light changes, the 

in each color channel scale by a factor (one factor per channel). It is 

to remove the image dependence on illuminate color by function C(): 

values recorded 

straightforward 

where I is an N x 3 image matrix with N image pixels, whose columns contain the 

intensity of 3 RGB color channels. The N/3 here is to ensure that the total sum of 

all pixels after the column normalization is N which is the same as that after the row 



normalization. The comprehensive normalization procedure is defined as a loop: 

1. In=I  

2. do = C(R(Ii)) until = Ii 

Note that after the iteration, we get a lighting geometry and illurninant color 

independent image. An example is shown in figure 2-2 and 2-3. Because HSV color 

model is more similar in the way humans tend to perceive color, the example is 

shown in the HSV color model. Figure 2-2 is the color histograms of one car's two 

observations before color normalization. We can see that the two histograms for Hue 

and Saturation are pretty different. After the normalization, however, the histograms 

for Hue and Saturation match well (Figure 2-3). 

"L 0 0.5 

Hue 

IJ Â¡ 
Saturation 

f"lKl 0.5 0 Val# 0.5 1 

Hue Saturation Value 

Figure 2-2: Color histograms of one car's two observations before color normalization 

Color Model 

After the color normalization procedure, we can use a color histogram (in color 

space HS) to fit a multivariate Gaussian distribution modeling the color change Pdm 

throughout any two different scenes: 



Hue Saturation Value 

Hue Saturation Value 

Figure 2-3: Color histograms of the same car's two observations after color normalization 

where el, el are the camera 1 and 2. Ocl, Oc2 are the detected observation under 

camera 1 and camera 2 respectively. h, s are H and S information included in the 

observation. ph,, and Sh,. are the mean and variance respectively. And 0'1 = 0 ' 2  

means those two observations are actually generated by the same object. For each 

pair of different views, there is a multivariate Gaussian distribution associated with 

it. To learn the parameters of the Gaussian, for each pair of the camera views, we 

have used the quadratic distances of the normalized color histogram (i-e. H and S 

histograms) to compute the mean and variance. 

2.2 Size Model 

For far-field surveillance, even after successful detection, there are often very few 

image pixels per object, which makes it difficult to model the shape change throughout 

cameras. However, we know for sure that a sedan in one scene cannot be a truck in 

another scene, which means overall size information still plays an important role in 

correspondence. Here we use width and length of the bounding box to measure the 

overall size. This estimate of size is somewhat simplistic. However, given that objects 



are fairly small in far field settings, it is unlikely that we will be able to recover the 

shape detail, so all we rely on is over size measures. Ideally, we should fit a best 

ellipse to the shape, to account for orientation relative to the camera, but in general 

given the small image size of objects, we find width and length to suffice. 

We also adopt a multivariate Gaussian distribution to model the size change PÃ£ze 

where wcl ,lC1 are the detected vehicle's width and length under camera 1. pw,i and EWi 

are the mean and variance respectively. The imaging transformation of a perspective 

camera leads to distortion of a number of geometric scene properties. As a result, 

objects appear to grow larger as they approach the camera center and become smaller 

when they are far away from the camera[19]. So in the sense of simple normalization, 

the average size over the whole trajectory has been adopted, when we do the size 

model. The parameters of this Gaussian distribution can be estimated using the 

same procedure as described in Chapter 2.1.2. 

Joint Probability Model 

Given two observations oi and 4, where oi is the observation a from camera z and 

4 is the observation b  from camera j ,  the similarity in appearance between those 

two observations can be calculated as the probability that these two observations 

are actually generated by the same object, which is called "appearance probability", 

denoted by P(o,,,, oi,, la = 6) .  It is important to note that the appearance probability 

is not the probability a = b. 

Assuming that color and size information of each observation is independent, the 

similarity in appearance between two observations can be described as the product 

of the color and size similarity: 



Now we know how to model the appearance change of objects from view to view, 

and how to measure the similarity in appearance for two observations. This result will 

be used to help exploring the st atistical spatio-temporal information (see Chapter 3). 



Chapter 3 

Weighted Cross Correlation Model 

If we can determine the "blind" links (i.e. links that connect the disjoint views) 

between camera sites, we can then gather statistics about patterns of usage in this 

distributed camera setting. This would then allow us to detect unusual movements, 

to classify types of activities, to record site usage statistics. In this chapter, we 

will discuss how to incorporate the appearance similarity information into the cross 

correlation function, then use it to estimate the possible blind links between disjoint 

views. 

3.1 Cross Correlation Function 

In statistics, the term cross correlation is sometimes used to refer to the covariance 

cov(X, Y) between two random vectors X and Y, in order to distinguish that concept 

from the ('covariance7' of a random vector X,  which is understood to be the matrix 

of covariances between the scalar components of X. 

In signal processing, the cross correlation (or sometimes "cross-covariance") is a 

standard method of estimating the degree to which two series are correlated, com- 

monly used to find features in an unknown signal by comparing it to a known one[l2]. 

Consider two discrete series x(2) and y(2) where 2 = 0,1,2.. . N - 1. The cross corre- 

lation R at delay d is defined as: 



If the above is computed for all delays d=0,1,2, ... N-1 then it results in a cross 

correlation series of twice the length as the original series. 

There is the issue of what to do when the index into the series is less than 0 or 

greater than or equal to the number of points (i - d < 0 or i - d >. N). The most 

common approaches are to either ignore these points or assuming the series x and y 

are zero for i < 0 and i N. In many signal processing applications the series is 

assumed to be circular in which case the out of range indexes are "wrapped" back 

within range, ie: x(-1) = x(N - 1), x(N + 5) = x(5) etc. 

The range of delays d and thus the length of the cross correlation series can be 

less than N, for example the aim may be to test correlation at short delays only. The 

denominator in the expression above serves to normalize the correlation coefficients 

such that -1 < r(d) < 1, the bounds indicating maximum correlation and 0 indicating 

no correlation. A high negative correlation indicates a high correlation but of the 

inverse of one of the series. 

Cross Correlation Model 

As mentioned in the chapter of Introduction, there are two observations: Transition 

time from one location to another location is Gaussian distributed. And the trajec- 

tories of moving objects are highly correlated across non-overlapping views. Under 

these two observations, we can see that the sequences of appearing vehicles under 

the connected cameras (i.e. there exist routes directly connecting those cameras) are 

highly correlated. Since cross correlation function can capture the degree of correla- 

tion between two signals, we present a simple cross-correlation model to estimate the 

existence of possible blind links and the associated transition time between different 

cameras. 

For each traffic source/sink (i.e. locations where objects tend to appear in a scene 

and locations where objects tend to disappear from a scene), traffic can be represented 



Figure 3-1: Example of the case which cross correlation doesn't work 

as a discrete flow signal V,  (t), which is defined as the list of observations (see Figure 

2-1) appearing in a time interval around time t at source/sink 2. 

The cross-correlation function between signals V,(t) and V, (t) can indicate the 

possibility of a link, and be used to estimate the transition time if there exists such 

a link: 

If there is a possible link between source/sink 2 and j, there should exist a clear 

peak in Rjyj(T) at time T = t ,  where t denotes the transition time from location z 

to location j .  In this sense, a possible "blind" link from location 2 to location j has 

been learned. 

However, there are some limitations to this method. For example, it would not 

perform well under heavy traffic conditions. To illustrate this problem, we present an 

extreme situation (See Figure 3-1). Suppose at source/sink A, an yellow school bus 

leaves every 5 minutes since 8am, at source/sink B, a blue police car appears every 

5 minutes since 8:01am, and there is no possible link between A and B. However, if 

we use the cross correlation method directly, a possible link will be learned and the 

learned transition time would be 60 seconds. 

Intuitively, at different source/sinks, only those observations which look similar 

in appearance can be counted to derive the spatio-temporal relation. In order to fix 



this problem, we propose a weighted cross correlation technique 

3.3 Weighted Cross Correlation Model 

The weighted cross correlation technique is defined as : 

Specifically, for a pair of disappearing vehicles at source/sink i at time t and 

appearing vehicles at source/sink j at time t+T, calculate the similarity in appearance 

between those two observations and update R,,, (T). Then peak values can be detected 

using the threshold estimated as: 

threshold = mean(Ru(T)) + w * std(Ri,,(T)) 

where w is a user-defined constant. 

In this work, we assume there is only one popular transition time if there is a link 

between i and j. People in real life tend to choose the shortest path between the start 

location and the destination, which makes the single transition time reasonable with 

the assumption of constant velocity. Although we assume there is only one popular 

transition time between two disjoint views, this weighted cross correlation model can 

be applied to the cases with multiple transition times which will result in multiple 

peaks in R(T). For our implementation, transition time is assigned with the time 

associated with the highest detected peak. Figure 5 gives an example when weighted 

cross correlation can detect a valid link, while general cross correlation fails. After 

applying the general and weighted cross correlation function on the data from two 

cameras located at an intersection, the results are shown in Figure 3-2 (a) and (b), 

respectively. (b) has a clear peak which suggests a possible link with transition time 

11 seconds between those cameras, which (a) does not. 

In this part, we learned how to use the weighted cross correlation model to estimate 

the possible blind links and the associated transition time between disjoint views. we 



Figure 3-2: After applying the general and weighted cross correlation function on the data 
from two cameras located at an intersection, the results are shown in Figure 5 (a) and (b), 
respectively. (b) has a clear peak which suggests a possible link with transition time 11 
seconds between those cameras, which (a) doesn't. 

will present the experimental results in the next section using both real tracking data 

and synthetic tracking data. 





Chapter 4 

Experiments and Problems 

In order to evaluate the proposed the weighted cross correlation method, we have 

tested it both on real data and synthetic data. 

Real Data 

Figure 41: (a),(b),(c) are the three non-overlapping cameras we have used. The cameras' 
relative location is shown in (d) using the shaded quadrangle. 



Figure 4-2: Detected sources/sinks. Black arrows indicate direct links between source/sink 
3 and source/sink 4, source/sink 6 and source/sink 7 

For the real data experiment, we used three non-overlapping cameras distributed 

around several buildings. The layout of the environment and the cameras' location 

are shown in Figure 4-1. For each camera, we have 1 hour of vehicle tracking data 

obtained from a tracker based on[3] every day for six days. There are total of 213 ob- 

servations in camera(a),1056 observations in camera (b), 1554 observations in camera 

( 4 .  

In our cameras, all the streets are two way streets, i.e. each source is also a sink. 

For simplicity, we merge sources and sinks into groups of source/sinks. The detected 

source/sinks in each camera are learned by clustering the spatial distribution of each 

observation's trajectory's beginning and ending points (i.e. the appearing coordinate 

and disappearing coordinate). The detected source/sinks are shown in Figure 4-2. 

For each source/sink, there is an associated Gaussian distribution with mean and 

variance. From the cameras' spatial relationship, we know that there exists directly 

links between source/sink 3 and source/sink 4, source/sink 6 and source/sink 7, and 

there is no other direct link among those sources/sinks. Visible links can be easily 



Correlation between sourcelsink 6 and 7 

Figure 4-3: Cross correlation functions between different views. Left one gives the cross 
correlation between camera b,source/sink 3 and camera c, source/sink 4, with transition 
time 3 seconds; Right one shows correlation between camera c, source/sink 6 and camera 
a,  source/sink 7, with transition time 4 seconds. 

learned using trajectories information. Our goal is to learn such "blind" links. 

Because we only focus on learning the "blind" link between disjoint views, we know 

that the transition time must be non-negative which is determined by the nature of 

traffic flow, i.e, the same vehicle must first disappear at one specific location, then 

can reappear at the other different location. However, if overlapping views have been 

considered, the transition time may be negative. 

For any pair of source/sinks, we have using the disappearing vehicles at one sink 

and the appearing vehicles at the other source to calculate the weighted cross corre- 

lation function. A possible link has been detected if there exists a significant peak 

in the cross-correlation function (See equation 3.4, in our experiments, w is set to 

2). Only two possible links have been detected as shown in Figure 4-3. The left one 

gives the cross correlation between camera b,source/sink 3 and camera c, source/sink 

4, with transition time 3 seconds; The right one shows correlation between cam- 

era c, source/sink 6 and camera a, source/sink 7, with transition time 4 seconds. 

Notice that the detected "blind" links don't include the links like the one between 

sourcefsink 10 to source/sink 6 through source/sink 7. The reason is that we have 

used the visible trajectory's information. If we want to check the possible "blind" 

link between sourcefsink 10 and sourcefsink 6, we would use the observations that 



Figure 4-4: Statistics of the simulated data 

leave the scene through source/sink 10 and the ones that enter the scene through 

source/sink 6, which wouldn't give the link through source/sink 7. So the cameras' 

topology can be fully recovered. 

Simulated Data 

We also tested our algorithm on a simulated network. This simulator synthetically 

generates the traffic flow in a set of city streets, allowing for stop signs, traffic lights, 

and differences in traffic volume (i.e. morning rush hours and afternoon rush hours 

have a higher volume, as well as lunch traffic). The network includes 101 cameras 

which are located at roads' intersections (including cross and T intersections). For 

each camera, there are two observers that look in the opposite directions of the traffic 

flow (i-e. Observer 1 and 2 belong to camera 1 , Observer 3 and 4 belong to camera 

2, etc). Every observer can be treated as a source/sink. Tracking data has been 

simulated 24 hours every day for 7 week days, including 2597 vehicles (Fig. 4-4). 

Transition time may change with the road condition. For example, it will be larger 

during rush hour than during non-rush hour. So in our experiment, we only pick one 

particular hour data (loam to Ham) each day for 5 days. For each camera, the only 

information we have is that vehicles appear then disappear from this location roughly 

the same time (i.e. the duration is very short), so we can treat it like a delta function. 

For each pair of the observers, we first calculate the cross correlation function that 

has been learned for each pair of the observers. A possible link has been detected 



Figure 4 5 :  Cross correlation for each pair of the observers from 17,18, ..., to 26. The column 
index from left to right is: observer 17, observer 18, . ..., observer 26; The row index from 
up to bottom is: observer 17, observer 18, ...., observer 26. 



Figure 4-6: The recovered topology based on the weighted cross correlation,the red cross 
indicates the false link based on the group truth. 

if there exists a significant peak in the cross-correlation function (See equation 3.4, 

in our experiments, w is set to 2). Figure 4-5 shows the cross correlation results for 

each pair of the observers from 17, 18,. . . , to 26, each row is the parent observer, 

each column is the child observer, detected possible links are highlighted in black 

background figures. From the detected links, however, the topology wasn't correctly 

recovered(see Figure 4-6). For example, there are detected links from observer 25 to 

22, from observer 22 to 23 and from observer 25 to 23. We don't know if the link 

from observer 25 to 23 is actually through observer 22, or if there exists another link 

between them. 

4.3 Problems 

Unlike the real data, this camera view has only one source/sink and we have no 

information of any visible links, so we don't know where the vehicles are coming from 

and where they are going. Hence all the vehicles have been used to calculate the cross 

correlation function. In order to get rid of those "fake" links and recover the true 

topology, we think of mutual information. 



Chapter 5 

Mutual Informat ion and 

Estimation 

From the previous chapter, we know that weighted cross correlation function can 

only help us to detect "possible" blind links, which may include "fake" links. In this 

chapter, we will focus on how to solve this problem and discuss how to use mutual 

information to remove the fake links and fully recover the network topology. 

5.1 Mutual Information 

Mutual information is a measure of the amount of information that one random 

variable contains about another random variable. It is the reduction in the uncertainty 

of one random variable due to the knowledge of the other. 

5.1.1 Entropy 

First, we will introduce the concept of entropy, which is a measure of uncertainty 

of a random variable and a measure of the amount of information required on the 

average to describe the random variable. Let X be a random variable and p(x )  be 

the probability distribution function of X . 
Deftnition[21]: The entropy H ( X )  of a discrete random variable X is defined 



The definition of entropy is related to the definition of entropy in thermodynamics; 

The higher the entropy of one random variable, the more uncertain of this random 

variable. Next, we will introduce the two relate concepts: relative entropy and mutual 

information. 

5.1.2 Relative Entropy and Mutual Informat ion 

The relative entropy is a measure of the distance between two distributions. In 

statistics, it arises as an expected logarithm of the likelihood ratio. The relative 

entropy D(p\  \q)  is a measure of the inefficiency of assuming that the distribution is q  

when the true distribution is p. For example, if we knew the true distribution of the 

the random variable, then we could construct a code with average description length 

H ( p ) .  If, instead, we used the code for a distribution q, we would need H ( p )  + D(p\\q) 

bits on the average to describe the random variable. 

Definition [2 11 : The relative entropy or Kullback- Leibler distance between two 

probability distributions p ( x )  and q ( y )  is defined as: 

It can be easily shown that relative entropy is always non-negative and is zero if 

and only if p  = q. However, it is not a true distance between distributions since it 

is not symmetric and does not satisfy the triangle inequality. Nonetheless, it is often 

useful to think of relative entropy as a "distance" between distributions. 

Now we are ready to introduce mutual information, which is a measure of the 

amount of information that one random variable contains about another random 

variable. It is the reduction in the uncertainty of one random variable due to the 

knowledge of the other. 

Definition[21]: Consider two random variables X and Y with a joint probability 



distribution p(x, y) and marginal probability distribution functions p(x) and p(y). 

The mutual information I(X;  Y) is the relative entropy between the joint distribution 

and the product distribution p(x)p(y): 

R-om the definition of mutual information, it can be easily shown that I (X;  Y) > 0 

with equality if and only if X and Y are independent (i.e. the joint distribution is 

the same as the product of the marginal distributions). In other words, the higher 

the mutual information between two variables, the more likely the two variables are 

dependent. Also, it can be shown[21] that for a Markov chain type topology between 

three random variables X -> Y -> 2, we have I(X;  Y) $: I (X;  2) .  

Mutual information can also be interpreted by the concept of entropy. 

Mutual information between X and Y is the uncertainty of X minus the uncer- 

tainty of X given the information of Y. In other words, mutual information is the 

amount by which the uncertainty about X decreases when Y is given: the amount of 

information Y contains about X. 

Mutual information has been used in many fields to recover the topology[23] [24], 

which means to find the dependency relationships between the variables involved. 

Graphical models provide a useful methodology for expressing the dependency struc- 

ture of a set of random variables[27]. Random variables can be treated as nodes of a 

graph, while edges between nodes indicate the dependency, which can be estimated 

by the pairwise mutual information. It has been showed that the graph with the 

maximum edge weight will be the optimum tree dependency approximation. 

5.1.3 Data Processing Inequality 

As mentioned before, for a Markov chain type topology between three random vari- 

ables X Ã‘ Y -> 2, we have I(X;  Y) > I(X; Z),  this is called data processing inequal- 



ity. Considering our camera network problem, the mutual information of neighboring 

cameras should be greater than non-neighboring cameras. We can use this property 

to refine the network topology. 

5.2 Mutual Informat ion Estimation 

In order to calculate the mutual information, we need to estimate the joint and mar- 

ginal distributions of X and Y, which is computationally hard. However, with the 

assumption that X and Y are jointly Gaussian distributed with correlation coefficient 

pxy, the quantity of mutual information can be computed analytically as (pxy can cap- 

ture the linear dependence between X and Y regardless of their joint distribution) [26] 

[25] : 
1 2 

I ( X ;  Y) = -- 10g2(l - p,,) 
2 (5.5) 

From Chapter 3, we already know how to estimate the weighted cross correlation 

R i j  (T). So if there exists a clear peak in Ru (T) at time T = Tpeak, the correlation 

coefficient can be estimated as: 

Because the cross correlation function is under the assumption that the signals are 

transient, which is not accurate for our case, we have used median of Ri,j(T) instead 

of mean of Ri,j (T). 

5.3 Overall Review of The Algorithm 

To implement the proposed algorithm, four steps must proceed sequentially : 

1. For each possible pair of source/sinks, learn the cross correlation function; 

2. Detect the possible links using the peak detection algorithm; 



3. For the detected links, estimate the cross correlation coefficients, otherwise, set 

the cross correlation coefficient to 0; 

4. Recover the network topology based on the estimated mutual information. 





Chapter 6 

More Experiments 

In this chapter, we will use the estimated mutual information to recover the simulated 

network topology based on the weighted cross correlation function. 

6.1 Simulated Network cont' 

As we discussed in Chapter 4, for the simulated network (there is only one sourcefsink 

per camera view), only using the weighted cross correlation function, the topology 

cannot be correctly recovered. 

So after the cross correlation function has been learned, mutual information has 

been estimated as shown in Figure 6-1(a) with intensities corresponding to the mag- 

nitude of the mutual information. The brighter the figure, the higher the mutual 

information. F'rom the data processing inequality, we know that mutual informa- 

tion for the neighboring cameras is higher than the mutual information for the non- 

neighboring cameras. So we can cluster the mutual information into two clusters 

based on the magnitude. The cluster with higher mutual information would be used 

to recover the network topology. Figure 6-l(b) is the recovered topology for observer 

17 to observer 26. We can see that the link from observer 25 to 23 is actually through 

22 which is consistent with the ground truth. Table 6-1 shows the learned associated 

transition time for each link. Finally, the fully recovered topology of the simulated 

network is shown in Figure 6-2. Number means the index of the observers. 



. I.. . 
Figure 6- 1: (a) The adjacency matrix of the mutual information. (b) The recovered corre- 
sponding topology. 

For the real data, since there are multiple source/sinks per camera view, which 

means we can get information of visible trajectories, we can successfully recovery the 

topology without using mutual information. If there is only one source/sink per cam- 

era view (i.e. zooming in), or every camera view is treated as one large source/sink, 

however, mutual information will be needed to learn the network topology. 

Parent  observer 1 Child observer 1 Ttan. time(Seconds) 1 

Table 6.1 : The learned associated transit ion t irne 



Figure 6-2: The fully recovered simulated network topology 





Chapter 7 

Informat ion Inference and and 

Unusual Track Detection 

In the previous chapter, we discussed how to recover the network topology using 

the far-field vehicle tracking data. Now given the network topology, we can learn 

the transition probability information, the sour ce/sink information, and finally can 

detect unusual tracks. 

7.1 Transition Probability Learning 

7.1.1 Markov Process 

A discrete-time stochastic process[29][28] is a collection Xn for n E 1 : N of random 

variables ordered by the discrete time index n. In general, the distribution for each of 

the variables Xn can be arbitrary and different for each n. There may also be arbitrary 

conditional independence relationships between different subsets of variables of the 

process-this corresponds to a graphical model with edges between most nodes. 

Now we will consider discrete-time first-order Markov chains[30], in which the 

state changes at certain discrete time instants, indexed by an integer variable n. At 

each time step n, the Markov chain has a state, denoted by Xn, which belongs to 

a finite set S of possible states, called the state space. Without loss of generality, 



and unless there is a statement to the contrary, we will assume that S = 1, , m, 

for some positive integer m. The Markov chain is described in terms of its transition 

probabilities pi, : whenever the state happens to be i, there is probability pi, that 

the next state is equal to j. Mathematically, 

The key assumption underlying Markov processes is that the transition probabil- 

ities pi, apply whenever state z is visited, no matter what happened in the past, and 

no matter how state i was reached. Mathematically, we assume the Markov property, 

which requires that 

for all times n, all states i ,  j <E S, and all possible sequences 20, . . , of earlier 

states. Thus, the probability law of the next state Xn+1 depends on the past only 

through the value of the present state Xn. The transition probabilities pi, must be 

of course nonnegative, and sum to one: 

m 

5,. = 1, for all i. 
j=1 

We will generally allow the probabilities pi,, to be positive, in which case it is 

possible for the next state to be the same as the current one. Even though the 

state does not change, we still view this as a state transition of a special type (a 

self-transition). 

Specification of Markov Models 

A Markov chain model is specified by identifying 

1. The set of states S = 1, , m. 

2. The set of possible transitions, namely, those pairs (2, j) for which p~ > 0. 

3. And, the numerical values of those pi, that are positive. 



The Markov chain specified by this model is a sequence of random variables 

Xo, Xi, X2, *, that take values in S and which satisfy 

P(Xn+1 = J\Xn = Z, Xn-1 = ..., Xo = to) = P(Xn+1 = l\Xn = 2) = Pi, 

(7.4) 

for all times n. all states i ,  j E S, and all possible sequences ia, , in-i of 

earlier states. 

All of the elements of a Markov chain model can be encoded in a transition 

probability matrix, which is simply a two-dimensional array whose element at the zth 

row and j th column is pij : 

Pll P12 " Plm 

P21 P22 * * .  

Pml Pm2 " ' Pmm 
It is also helpful to lay out the model in the so-called transition probability graph, 

whose nodes are the states and whose arcs are the possible transitions. By recording 

the numerical values of pij near the corresponding arcs, one can visualize the entire 

model in a way that can make some of its major properties readily apparent. 

7.1.2 Transition Probability Learning 

After we know the connectivity of the network, we can fit a first order Markov model 

to this network, hence to learn the transition probability from nodes to nodes. 

In the real world, traffic patterns do not remain the same all the time. We wouldn't 

expect the traffic of morning rush hour to have the same pattern as that of evening 

non-rush hour. In other words, the transition probability of the network will change 

with time. Therefore, we would also like to learn the transition probability in the 

function of time. 

We will continue to use the simulated network to demonstrate. As we said before, 

this simulator synthetically generates the traffic flow in a set of city streets, allowing 

for stop signs, traffic lights, and differences in traffic volume (i .e. morning rush hours 
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and afternoon rush hours have a higher volume, as well as the lunch traffic). The 

network includes 101 cameras which are located at roads7 intersections (including 

cross and T intersections). For each camera, there are two observers that look in the 

opposite directions of the traffic flow (i-e. Observer 1 and 2 belong to camera 1 , 

Observer 3 and 4 belong to camera 2, etc) . So there are total of 202 observers. Every 

observer can be treated as a source/sink. Tracking data has been simulated 24 hours 

every day for 7 week days, including 2597 vehicles. The learned transition probability 

is shown in the Figure 7-1. The number means the observer. The width of the link 

is proportional to the magnitude of the transition probability. The thicker the link, 

the higher the transition probability between the two observers. 

We have studied the transition probability for every two hours from morning to 

evening. Figure 7-2 shows the Transition probability of the network between Sam to 

9am. Figure 7-3 shows the transition probability of the network between 12pm to 

Ipm. And Figure 7-4 shows the transition probability of the network between 6pm 

to 7pm. From those figures, we can see that transition probability does change with 

the time. 

The traffic patterns do not remain same for all types of vehicles either. We 

wouldn't expect the traffic of buses to have the same pattern as that of gas trucks. 

In other words, the transition probability of the network will change with different 

kinds of vehicles. So we try to learn the transition probability in the function of 

vehicle type. In the simulator, there are total 7 kinds of vehicles: sedan, bus, SUV, 

minivan, pickup, gas truck, and panel truck. And the results are shown from Figure 

7-5 to 7-8. Figure 7-5 shows the transition probability for sedan. Figure 7-6 shows 

the transition probability for bus. Figure 7-7 shows the transition probability for gas 

truck. And Figure 7-8 shows the transition probability for panel truck. F'rom those 

figures, we can see different type of vehicles has totally different transition probability. 

Especially for gas truck, it only contains activity at limited regions. 



Figure 7-1: Transition probability of the network. The number means the observer. 
The width of the link is proportional to the magnitude of the transition probability. 
The thicker the link, the higher the transition probability between the two observers. 



Figure 7-2: Transition probability of the network between Sam to 9am. The number 
means the observer. The width of the link is proportional to the magnitude of the 
transition probability. The thicker the link, the higher the transition probability 
between the two observers 



Figure 7-3: Transition probability of the network between 12pm to lpm. The number 
means the observer. The width of the link is proportional to the magnitude of the 
transition probability. The thicker the link, the higher the transition probability 
between the two observers. 



Figure 7-4: Transition probability of the network between 6pm to 7pm. The number 
means the observer. The width of the link is proportional to the magnitude of the 
transition probability. The thicker the link, the higher the transition probability 
between the two observers. 



Sedan 

Figure 7-5: Transition probability of the network for sedan. The number means the 
observer. The width of the link is proportional to the magnitude of the transition 
probability. The thicker the link, the higher the transition probability between the 
two observers. 



Bus 

Figure 7-6: Transition probability of the network for bus. The number means the 
observer. The width of the link is proportional to the magnitude of the transition 
probability. The thicker the link, the higher the transition probability between the 
two observers. 



Figure 7-7: TYansition probability of the network for gas truck. The number means 
the observer. The width of the link is proportional to the magnitude of the transition 
probability. The thicker the link, the higher the transition probability between the 
two observers. 



Figure 7-8: Transition probability of the network for panel truck. The number means 
the observer. The width of the link is proportional to the magnitude of the transition 
probability. The thicker the link, the higher the transition probability between the 
two observers. 



7.2 Source and Sink Learning 

In the field of view, vehicles tend to appear and disappear at certain locations. These 

locations may correspond to garages entrances, or the edge of a camera view, which 

have been called sources and sinks, respectively [20]. Source/sink information is also 

important for motion pattern analysis. It will help us to get an overall sense of what 

type of vehicles tend to appear and disappear at specific locations and get to know 

existence of certain infrastructure. For example, if we observe that the gas truck 

always disappear at one location, we may conclude that there might be a gas station 

around. It will also help us to detect some unusual events. So in this part, we focus 

on to learn the source and sink distribution for all the data and also learn the source 

and sink distribution for different type of vehicles. 

Figure 7-9 , 7-10 and 7-11 show the source and sink distribution for all the tracking 

data, for the tracking data of gas truck and for the tracking data of panel truck, 

respectively. In the figures, the size and color of the number is corresponding to the 

probability of that observer to be a source or a sink. The larger and brighter the 

number, the higher the probability of that observer to be a source or a sink. From 

those figures, we can see that different type of vehicles yields different source/sink 

distribution. For example, for gas truck, it only tends to appear at observer 200 and 

observer 75, and disappear at observer 188 and 71. For panel truck, however, it tends 

to appear at observer 17, observer 172, observer 187, etc, and disappear at observer 

18, observer 171, observer 188, etc. 

7.3 Unusual Track Detection 

The ultimate goal of most surveillance system is the automatic detection of unusual 

activities thereby triggering alarms. How to define unusual? In Merriam-Webster dic- 

tionary, "Unusual" is defined as "uncommon, rare" . For the motion pattern analysis, 

unusual tracks means the trades which are different from the normal tracks. Given 

the large number of observations, after we get the statistics(i.e. normal pattern) of 



Source 

Sink 

Figure 7-9: Source and sink distribution. The size and color of the number is corre- 
sponding to the probability of that observer to be a source or a sink 



Figure 7- 10: Gas truck source and sink distribution. The size and color of the number 
is corresponding to the probability of that observer to be a source or a sink. 



Pimdmck Source 

Figure 7-11: Panel truck source and sink distribution. The size and color of the 
number is corresponding to the probability of that observer to be a source or a sink 



the tracking data, we could explore the unusual tracks in the following aspects: 

Does the track include any unusual path given the time and vehicle type ? In 

another word, is this track associated with very low transition probability? 

Does the track coming from an unusual source or disappearing at an unusual 

sink given the vehicle type? 

Does the track has repeated pattern? 

If any track has yes to above questions, it will be flagged. In the following part, we 

will discuss in detail how to detect an unusual track using two examples. 

Case 1: For the surveillance problem, a gas truck is one special kind of vehicle. 

In most of cases, it follows a specific route, say appearing from a certain location to 

the gas station, then, reappearing from the gas station to a specific sink. When it 

has a different route from its routine route, there may exist some kind of situation we 

should pay attention to. For example, if we detect a gas truck has a track of following 

sequence: observer 72, observer 70, observer 104, observer 106. From the source and 

sink distribution, we know that for a gas truck, the probability that it will disappear 

at observer 106 is 0.02, which is too small. We may flag this as an unusual track. 

Case 2: For the surveillance problem, we should also pay attention to the re- 

peated motion pattern. Consider this scenario: A terrorist plans on bombing a certain 

critical asset, say a power supply facility. He transports supplies using a pickup truck 

from his hideout to the parking lot of the facility in several separate, consecutive trips 

to load and unload supplies. The track looks like: observer 50, 58, 62, 149, 150, 61, 

57, 49, 50, 58, 62, 149,150, 61, 57, 49, 50, 58, 62, 149, 150, 61, 57, 49, 50, 58, 62, 149, 

150. This track has repeated under camera 25, 29, 31, 75 for 7 times. We need to find 

and flag this track. In the one week data, for pickup truck, there are total 1 track 

which has a pattern repeated for 7 times, 8 tracks which have a pattern repeated 

for 6 times, 46 tracks which have a pattern repeated for 5 times. The track we are 

interested ranks number 1 in all the repeated tracks, and will stand out from all the 

tracks. Therefore, we can flag this track as unusual track. 





Chapter 8 

Summary and Discussion 

In this thesis, we have studied how to learn the motion pattern of the vehicles using 

far-field vehicle tracking data. The first and most important step is to recover the 

network's topology. In order to solve this problem, we proposed a weighted cross- 

correlation technique. First, an appearance model is constructed by the combination 

of the normalized color and overall size model to measure the moving object's ap- 

pearance similarity across the non-overlapping views. Then based on the similarity 

in appearance, the votes are weighted to exploit the temporally correlating informa- 

tion. From the learned correlation function the possible links between disjoint views 

can be detected and the associated transition time can be estimated. Based on the 

learn cross correlation, the network topology can be recovered based on the estimated 

mutual information. 

This method combines the appearance information and statistics information of 

the observed trajectories, which can overcome the disadvantages of the approaches 

which only use one of them. This method avoid doing the camera calibration, avoid 

solving the tracking correspondence between disjoint views. 

However, our algorithm is based on three assumptions: (a) The appearance of 

the moving objects doesn't change. (b)The objects are moving at a roughly constant 

velocity. (c)The trajectories of the moving objects are highly correlated across non- 

overlapping views. If any of these three assumption fails, the proposed algorithm 

would present uncorrect results. 



Another limitation of this method is that it can only solving the topology with one 

popular transition time between disjoint views; If the transition time is multi-model, 

one possible way to solve it is to estimate the mutual information directly, which 

means to estimate the joint distribution and marginal distribution of variables. 

After we discover the topology of the network, we then gather statistics about 

motion patterns in this distributed camera setting. This would then allow us to record 

site usage statistics, to classify types of activities, and to detect unusual movements. 

First , we fit a first order of markov model to this network, hence to learn the transition 

probability from nodes to nodes, to learn the transition probability in the function 

of time, as well as the transition probability in the function of vehicle type. Then we 

infer the information of the source/sink distribution, and the source/sink distribution 

in the function of vehicle type. Finally, we explore the problem how to detect unusual 

tracks using the information we have inferred. 

In future, we would like to explore the problem of recovering the network topology 

associated with multi transition time. Estimating the mutual information directly 

from estimating the joint and marginal distribution of the variables is probably good 

given the condition of multi transition time. The next work is to find a more "general" 

way to define unusual tracks using the statistics information of the tracking data. 
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