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Abstract 

Woven fabrics are used in many applications, including ballistic armors and fabric- 
reinforced composites. Advances in small-scale technologies are enabling new 
applications including fabrics with embedded electronics, active yam materials, or micro- 
fluidics. hi order to facilitate the design and improvement of such applications, we 
propose a modeling approach that relates the macroscopic response of the fabric to the 
behavior of the underlying yams and weave. The resulting continuum model is more 
computationally efficient than a discrete model that represents every yam or fiber 
explicitly. Because it is physically based on the fabric mesostructure, the model can be 
used to predict the behavior of novel fabric designs. It can be easily tailored to a wide 
variety of different applications through the choice of suitable, physically motivated 
constitutive behaviors for the components that make up the assumed underlying 
mesostructure. 

We first describe a model suitable for slip-free planar deformations of a plain weave 
K e v l d  fabric in response to in-plane loads. We next extend this model to three 
dimensional behaviors through the development of an anisotropic shell implementation 
that includes the resistance of the fabric to bending and twist. The model predictions are 
validated against a number of experimental investigations. 

Yam friction and yam pullout experiments are used to study the phenomenon of yam slip 
and to characterize the frictional forces that oppose it. We propose a novel approach for 
capturing slip in a continuum fabric model, where a single deformation mapping 
describes the motion of the weave crossover points, and velocity fields describe the 
relative motion of the yams past these crossover points. This approach allows the same 
modeling methodology that was developed for the slip-free case to be used in the 
presence of yarn slip. The resulting theory is non-local-the characteristic unit cell 
representing the weave mesostructure evolves with the gradients of the slip velocities, 
and the slip velocities are driven in turn by the gradients of yam tensions. Consequently, 
implementing the slip formulation into a commercial finite element code presents 
significant challenges. Different implementation methods are discussed, and the model is 
validated by conducting analyses of load conditions where slip can be experimentally 
observed. 

Thesis Supervisor: Simona Socrate 
Title: d'kbeloff Assistant Professor of Mechanical Engineering 
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Chapter 1 
Introduction 

1.1 Motivation 
Woven fabrics are used in a wide variety of applications. The most common use for fabrics 

is apparel. However, fabrics are also used in a wide variety of engineering applications by various 

other industries. For example, fabrics are used to make air bags and seat belts in the automotive 

industry. Both the military and the sporting goods industry employ fabrics to make harnesses, 

parachutes, tents, and other fabric structures. Fabric awnings and roofs are often used in 

architectural applications. Two fabric applications that are of particular interest are ballistic 

armors used to make bulletproof vests and woven composites used by the automotive and aircraft 

industries to make lightweight, failure-resistant structural members. 

All of these applications can be improved by using effective fabric modeling techniques to 

optimize their designs, so there is already a significant incentive to develop robust and accurate 

fabric models. However, in addition to these existing fabric applications, emerging small scale 

technologies are enabling the development of advanced fabric systems. For example, DuPont Inc. 

recently developed a method of introducing 12 pm micro-channels into 50 pm diameter polymer 

fibers, shown in Figure 1-1. By spinning these fibers into yams and weaving them into a fabric, 

microfluidics technology could be introduced directly into woven fabrics. Such technology could 

be used to create clothing with cooling or heating capabilities. Other examples of new fabric 

technologies that have been proposed include fabrics used for military applications, with 

interwoven electronics devices that could be used as part of a soldier's communication system, or 

a network of biosensors used to monitor the soldier's medical condition, woven directly into his 

or her uniform. Still other examples include the use of active polymers in fabrics, that can change 

their stifhess or length in response to electrical or chemical stimuli. Such technology would 

enable fabric armor panels or other fabric structures that could become rigid at the touch of a 

button, or artificial muscle patches incorporated into a worker's clothes that would augment their 

mechanical strength. 

Development of novel technologies like these requires versatile modeling techniques that can 

be adapted to accurately represent a wide variety of fabric behaviors, since the specific behaviors 

that are important in any given new technology are largely unknown when the technology is 



designed. The modeling technique must be able to accurately predict the response of a fabric 

without the need for extensive testing of fabric samples, since it is often desirable to know how a 

given fabric technology that is based on unproven small-scale innovations will behave, before it 

is practical to manufacture sufficient quantities for testing. It is therefore not sufficient to develop 

phenomenological fabric models that are fit to specific behaviors by adjusting a large number of 

arbitrary parameters to match extensive experimental results. Rather, physically motivated fabric 

models are required that can be used to predict the fabric response based on measured or 

proposed constitutive parameters of the yams and the weave structure, and that can be tailored to 

a wide variety of different fabric applications that employ innovative small scale technologies. 

1.2 Fabric Deformation Mechanisms 
Fabrics are a challenging material to model, especially when treated as a continuum. They are 

highly anisotropic-a fabric has a preferred material direction aligned with each yam family. In 

general, the behavior of a fabric in one direction is coupled to the behavior in the other in a 

nonlinear manner. Even under uniaxial loading conditions, the response of a fabric is often 

highly nonlinear due to geometric effects of the weave and to nonlinearities in the material 

response of the component yams. In addition, most applications involving fabrics involve finite 

(large) rotations and deformations. Fabric deformation mechanisms may include both elastic 

effects (e.g. stretching of the yams) and inelastic effects (e.g. slip of yams resisted by friction). 

Consequently, we must develop an inelastic, anisotropic, nonlinear continuum model suitable for 

large deformations and finite strains in order to represent a fabric. 

Various deformation mechanisms control the mechanical response of a fabric. First, like the 

fibers of a composite, the yams of a fabric are capable of stretching, which is one mechanism by 

which the fabric can accommodate strain parallel to a yam family. Because the yam stifhesses 

are often relatively large, deformations accommodated by yam stretch tend to have significantly 

larger associated stiffnesses than deformations accommodated by other mechanisms, so yam 

stretch is generally important only when strains and loads are large. Other deformation 

mechanisms dominate when loads are small. Unlike the fibers of a composite, the yams of a 

fabric are not straight in the unloaded configuration; because the yams are interwoven they 

undulate up and down through the weave. This undulation is referred to as crimp. Consequently, 

small and moderate strains parallel to a yam family can be accommodated by straightening the 

yams of that family, with little yam stretching. This behavior is referred to as uncrimping. 



Uncrimping is resisted primarily by the bending resistance of the yams, and generally requires 

much smaller loads than yam stretching, provided that it is permitted by the boundary conditions. 

Of course, when one family straightens or uncrimps, the other yam family must undergo an 

increase in crimp in order to satisfy the geometrical constraints imposed by the fact that the two 

families are interwoven. This process is known as crimp interchange and is illustrated in Figure 

1-2. It is the primary mechanism by which load is transferred from one yam family to the other. 

As the other family increases its crimp, the fabric must either contract along that yam family, if 

boundary conditions do not prevent such contraction, or the yams of that family must stretch and 

the tension carried by those yams will increase. The crimp interchange phenomenon is similar to 

a Poisson effect, although it is nonlinear, so the effective Poisson's ratio evolves as the fabric is 

deformed. This mechanism represents an important difference between fabrics and other 

anisotropic materials, such as long fiber composites, because it permits the two families of 

reinforcing structures to interact in a nonlinear manner. to a long fiber composite, the different 

fiber families do not interact with each other in this manner, and load is not transferred form one 

family to the other. 

The yam families in a fabric interact in other ways as well. Because the yams are interwoven, 

certain modes of deformation will cause the yams to jam against one another. When this occurs, 

the yam cross sections are subjected to transverse loads and are compressed, and the macroscopic 

mechanical response becomes increasingly stiff. We refer to this phenomenon as locking (not to 

be confused with the numeric locking exhibited by certain finite element formulations), a1 though 

it is sometimes also called jamming. This phenomenon is shown schematically in Figure 1-3. It is 

most evident when the fabric is subjected to large shear deformations. A fabric can be sheared 

only so far before the yams jam and the shear response becomes dramatically stiffer. However, in 

tightly woven fabrics the locking phenomenon can also occur in response to uniaxial deformation 

along a yam family. As the fabric contracts due to crimp interchange effects, the yam cross 

sections can begin to jam against one another. Some fabrics are so tightly woven that the yam 

cross sections are subjected to a state of transverse compression even when the fabric is 

macroscopically unloaded. to this case, the compressive stresses acting on the yam cross sections 

are balanced by small tensile forces in the yams, and the net macroscopic stress in the fabric is 

zero. We refer to such a fabric aspre-locked. 

Fabrics accommodate in-plane shear deformation by relative rotation of the yam families at 

the crossover points, which is sometimes called trellising. This mechanism can have both an 

elastic component and a dissipative component. Of course, at large rotation angles, locking 

effects will provide additional resistance to shear deformation. Note that shear deformation that 



results from yam rotation is not pure shear or simple shear as defined in the classical sense, and is 

not volume conservative. As the yams rotate past one another in the fabric plane, the fabric area 

decreases because negligible extension takes place along the yam families while the angle 

between the families decreases. The volume decrease corresponds to the elimination of the voids 

between yams or, once locking has commenced, the compaction of the yam cross sections. 

Deforming a fabric in a classically defined pure shearing mode would involve extension along the 

yam families and would have a significantly stiffer associated response. 

Under certain conditions, yams can slip past one another and slide through the weave. This is 

a non-local phenomenon-slip of a yam at a given crossover point is driven by the gradient of 

tension across that point, and slip at one location affects the mechanical behavior of the fabric at 

other locations along the yam. Slip plays an important role in many situations, including the 

forming of fabric composites, the resistance to impact of a fabric armor system, and the 

propagation of damage in biaxially stressed fabrics, e.g. in inflated fabric structures and 

parachutes. 

All these deformation mechanisms-yam stretch, uncrimping, crimp interchange, locking, 

trellising, and yam slip-determine the mechanical response of a fabric. Although some other 

materials (e.g. long-fiber composites with two orthogonal fiber families) may exhibit similar 

characteristics to fabrics in certain deformation modes, no other material combines all these 

mechanisms, and consequently the behavior of fabrics is unique. While not all of these 

mechanisms may be relevant to every application, our models must be able to capture any of 

them in order to be sufficiently versatile. 

1.3 Background in Fabric Modeling 
Fabrics have existed for a substantial amount of time, and many different methods for 

modeling them have been proposed by researchers from a variety of different industries. Even the 

meaning of the term "model" differs among researchers. To some, "modeling" means proposing a 

detailed idealization of the geometry of the weave mesostructure, or developing analytical or 

computational methods for determining the response of this idealized mesostructure to 

homogeneous deformation conditi0ns~e.g. to uniaxial or biaxial extension along the yam family 

directions. To others, bbmodeling" means the development of continuum constitutive theories that 

can be implemented into a finite element framework. An exhaustive list of all fabric modeling 

efforts is beyond the scope of this work. In this section, we identify several common modeling 



approaches, describe the capabilities and disadvantages of each approach, and cite selected 

examples of researchers who have employed these methods. 

One of the simplest approaches used to model fabrics is to homogenize the behavior of the 

underlying mesostructure and approximate the fabric as an anisotropic continuum. In the 

framework of a continuum formulation, a woven fabric can be treated as an anisotropic planar 

continuum with two preferred material directions. Homogenized formulations for fabrics or fabric 

composite structures have been proposed by a number of different researchers. These include 

Steigrnann [I9921 and Baseau [2003], who have developed continuum formulations for 

"filamentary networks" appropriate for non-reinforced fabrics, Reese [2003], who considers an 

elastoplastic anisotropic continuum formulation, Xue et al. [2003] and Shockey et al. ([I9991 - 

[2002]), who describe continuum models for woven composites, Tabiei and Ivanov [2002] who 

develop a continuum model for analyzing ballistic impacts on woven fabrics, and Raun and Chou 

[I9951 and Gommers et al. [I9961 who use continuum models for knitted composites. 

Homogenized continuum models of this type are more computationally efficient than models 

that represent every yam discretely, and they are easy to integrate with other continuum material 

models when analyzing multi-component systems, such as an armor system with multiple layers. 

However, the identification of appropriate homogenized material parameters can be a formidable 

challenge. Different researchers have approached this challenge in different manners. For 

example, Xue et al. determine material properties through empirical testing, while Shockey et al. 

rely both on empirical testing and on detailed finite element modeling. Reese employs mixed 

element modeling approach of the fabric mesostructure to determine appropriate constitutive 

properties for a continuum model. Tabiei and Ivanov employ a homogenization method to 

develop properties that reflect the behavior of a representative fabric unit cell. A common 

problem with many of these approaches is that fabric responses tend to be nonlinear, and the 

appropriate homogenized properties may evolve as the fabric deforms. In order to capture this 

evolution and the resulting nonlinearities, complex relations describing the evolution of the 

homogenized parameters may be necessary, and the homogenized parameters must be evaluated 

at different states of deformation in order to quantify these relations. Another problem is that 

many of these homogenized continuum models are incapable of accounting for all of the fabric 

mechanisms described in the preceding section, especially mechanisms that stem from the 

interactions between the yam families, such as crimp interchange, resistance to trellising, and 

locking. The omission of potentially important mechanisms makes these models unsuitable for 

the general analysis of novel fabric systems. 



An alternative to representing the fabric as a homogeneous anisotropic continuum is to 

develop a detailed analytical representation of interwoven yams that comprise the fabric 

mesostructure. A large number of such analytical models have been proposed to quantify the 

structure and behavior of the fabric mesostructure. Such mesostructurally-based analytical models 

typically are comprised of a set of assumptions about the yam geometries and a set of 

mathematical relations that predict the mechanical response of the fabric and its component yams 

in specific homogeneous modes of deformation. For example, a model could be formulated to 

predict the load-extension behavior of a fabric under uniaxial or biaxial tension along the yam 

family directions. These mesostructural models are sometimes used to quantify homogenized 

material properties for use in continuum models of the type described above. Hearle, Grosberg, 

and Backer [I9691 describe a number of classical analytical fabric models. One of the most 

widely adopted of these, a model proposed by Peirce [I9371 and shown in Figure 1-4, provides a 

mathematical framework for relating the parameters that describe the geometrical configuration 

of a plain weave fabric with circular yams. 

A number of researchers have employed modified forms of Peirce's geometry to account for 

yams with non-circular deformable cross sections. Warren [I9921 uses such a modified geometry 

to predict the response to uniaxial and biaxial response of a woven K e v l d  fabric by treating the 

yams as elastica, so that yam extension and bending effects are coupled. Sagar and his colleagues 

(Sagar et al. [2003] and Sagar and Potluri [2004]) employ a similar modified form of this 

geometry and use the principle of stationary potential energy to determine the fabric 

configuration and deformation in response to applied loads. However, all such analytical models 

are only valid in the specific loading modes for which they have been developed; for example, 

both Warren's and Sagar's models assume that the yam families remain orthogonal and hence 

neither of these models allows shear deformation. Extension of these models to more general load 

cases is challenging due to the complexity of their geometry. 

Other researchers have proposed simpler analytical representations of the mesostructure in 

order to achieve greater mathematical simplicity or computational efficiency. In a series of three 

classical articles, Kawabata et al. [I9731 propose analytical models for the biaxial, uniaxial, and 

shear deformation behaviors of fabrics based on the much simpler truss geometry shown in 

Figure 1-5. Other researchers have subsequently employed similar geometries to develop 

improved analytical models, including Realff et al. [I9971 who modify Kawabata's uniaxial 

model to include more complex behaviors such as yam flattening and consolidation. Kato et al. 

[I9991 propose an analytical model based on an alternative truss geometry for predicting the 

constitutive behavior of a coated fabric composite. This geometry is similar to that proposed by 



Kawabata but with additional spars to capture the effect of the coatings and create a unit cell 

capable of resisting shear deformation. A detailed summary of several other analytical fabric 

models is given by Realff [1992]. 

Analytical models of the fabric mesostructure can be incorporated into anisotropic continuum 

formulations to yield multi-scale models that track the fabric mesostructure as the continuum 

deforms, thereby combining the benefits of continuum modeling with the capabilities of 

mesostructural models to follow the evolution of the fabric mesostructure in a single modeling 

step. We described a such a general multi-scale continuum model in King [2003] and in King et 

al. [2005] that could be tailored to a wide variety of different applications. Other researchers have 

also proposed similar approaches, although many of these models have more restrictive 

assumptions. For example, Nadler et al. [2006] recently proposed a similar multi-scale modeling 

approach, which uses the sophisticated elastica geometry described by Warren to represent the 

fabric mesostructure and hence accurately captures the yam bending, crimp interchange and yam 

stretching mechanisms, but Nadler's model does not include resistance to shear deformation or 

locking. Boisse and his colleagues (Boisse et at. [I9971 and Boisse et al. [2001]) have developed 

a simple finite element for simulating the response of plain weave fabric composites during 

forming processes. The yam directions evolve as the elements deform, and the fabric response is 

based on Kawabata's analytical truss model of the weave geometry, thereby capturing yam stretch 

and crimp interchange effects along evolving material directions. However, Boisse's formulation 

requires that the element edges be aligned with the yam family directions, and hence arbitrary 

meshes cannot be used. Rattensperger et al. [2003] take a similar approach for modeling fabric- 

reinforced hydraulic hoses, with an assumed fabric lattice geometry similar to that used by Kato, 

and use a conventional finite element formulation with rebar reinforcements to capture the effects 

of the reinforcing fabric. However, neither Boisse's nor Rattensperger's models include yam 

bending effects, and, like Nadler's model, they also omit locking and resistance of the fabric to 

shear. On the other hand, Tanov and Brueggert [2003] present a mesostructurally based 

continuum model that includes shear and locking resistance through diagonal spar elements 

within the assumed unit cell network. However, a diagonally oriented spar is a less realistic way 

of capturing the shear or locking resistance in fabrics than that described in King ([2003] and 

[2005]), and also Tanov's model does not include the crimp interchange mechanism. 

For small fabric systems, an effective alternative to continuum modeling is to directly model 

every yam in the fabric discretely. For example, the fabric geometry can be recreated exactly 

using a finite element model, with yams modeled as homogeneous solids, as is shown in Figure 

1-6. This method is used by Ng et al. [1998], Boisse et al. [200 11, and Shockey et al. ([I 9991- 



[2002]) among others. This method has the advantage of capturing all yam interactions and 

providing a detailed description of all mechanisms of fabric deformation. However, its very large 

computational requirements limit it to relatively small systems. This approach is not suitable to 

the analysis of large or multi-component systems, and is generally used only to gain insight into 

the mechanics of fabric deformation at the mesostructural level or to estimate homogenized 

properties for simpler continuum models. Furthermore, the constitutive behavior of the individual 

yams can be a source of model uncertainty, as the yams themselves in many fabrics are not 

homogeneous but rather are composed of individual fibers. Describing this complex morphology 

accurately may require even more detailed sub-modeling. In order to achieve greater 

computational efficiency, discrete models are sometimes constructed from a mix of more efficient 

structural finite elements (such as trusses, beams, and membranes) which directly model the 

fabric mesostructure. A wide variety of researchers have employed this mixed element approach, 

including Reese [2003], MacGlockton et al. [2003], who model 3D textile composites, and 

Cherouat and Billoet [2001], who model pre-impregnated woven composites. While such 

approaches reduce the computational cost of discrete modeling, there still remain many situations 

where it is more appropriate or convenient to model the fabric as a continuum. 

Some researchers with very specific modeling objectives have developed alternative 

techniques that do not rely on finite element techniques, especially for ballistic analyses. The 

most widely used model for predicting the ballistic response of fabrics was developed by 

Roylance et al. [I9731 (and has since been refined, e.g. in Roylance [1995]) and consists of a 

planar array of point masses located at the fabric crossover points to capture the inertia of the 

fabric, connected by trusses to capture the yam compliances. Strain waves from a ballistic impact 

are determined by solving the dynamic force balance at each point mass and propagating the 

solution forward through time. Similar models with extensions and improvements have been 

proposed by a number of researchers, including Shim et at. [I9951 and Terrnonia [2004], and 

have been shown to be effective at predicting the ballistic performance of certain classes of 

woven fabrics. However, models of this type capture only the selected aspects of the behavior of 

fabrics that are most commonly used in ballistic armors, and therefore are not suitable for more 

general analyses. An example of a completely different approach that is specialized to a specific 

application is the model proposed by Breen et al. [1994], which is composed of interacting 

particles and which is specialized to predict the low stress behavior, especially the draping 

behavior, of woven fabrics. While often very effective at predicting specific behaviors for 

specific fabrics, these modeling approaches are not sufficiently general to aid in the development 

of advanced fabric systems based on small-scale technologies. 



hi this work we discuss the extension of the modeling approach presented in King [2003] and 

King et al. [2005] to three dimensional deformations, and present a method for including slip and 

failure. Only some of the models mentioned above account for out-of-plane loads and 

deformations. Those that model every yarn explicitly (e.g. those described by Ng et al. [I9981 

and Shockey et al. [2001]) can obviously capture three-dimensional deformations. Some of the 

models that do not use traditional finite elements (e.g. the interacting particle model described in 

Breen et al. [1994], the ballistic impact model developed by Roylance et al. [I9731 and by Shim 

et al. [1995], or the analytical model described by Sagar and Potluri [2004]) are also capable of 

capturing out-of-plane deformations. Most continuum fabric finite element models that include 

out-of-plane deformations (e.g. those described by Boisse et al. [1997], Cherouat and Billouet 

[2001], Shockey et al. [2001], and Tanov and Brueggert [2003]) treat fabrics as membranes with 

negligible bending and twisting stifhess, although bending and twisting effects may be important 

in some applications. 

Yam slip is relatively easy to account for in non-continuum models; e.g. a discrete model that 

models every yam like that of Shockey et a/. [2001] or a dynamic wave propagation model like 

that of Termonia [2004]. Capturing yam slip in a continuum model is significantly more 

challenging, as is discussed in Chapter 5, and very little literature concerns continuum fabric 

models that include slip. Nadler and Steigmann [2003] have proposed a continuum model that 

uses two different deformation mappings to separately describe the motion of the two yam 

families. Slip is calculated from the difference between the two mappings. However, this model 

does not directly track the locations of the crossover points and omits several important 

mechanisms that stem from interactions at the crossover points, such as locking. 

1.4 Overview of Thesis 
Chapter 2 reviews the basic multi-scale modeling approach presented in King [2003] and 

King et al. [2005], and describes how this approach is used to develop a planar, slip-free 

continuum fabric model for a Kevla- fabric commonly used in military body armor. 

Specialization of the approach to the particular fabric, development of the model, and details 

regarding implementation of the model into the commercial finite element code ABAQUS are 

described. The model is validated by comparing the predictions of the model to experimental 

observations of the fabric behavior in response to various simple and complex load conditions. 

Chapter 3 describes how the modeling approach is extended to three dimensions through a 

shell implementation that is capable of capturing resistance to bending and twist. A description of 



anisotropic shell behavior is given, since fabrics are highly anisotropic. Next, the assumptions 

used to develop the shell implementation are described; the most significant is that the membrane 

response of the shell can be determined using the planar model described in Chapter 2. 

Experimental and numerical studies used to characterize the bending and twist behavior of the 

K e v l d  yams and fabric are detailed. The shell model, like the planar model, is validated by 

comparing its predictions with experimental observations. 

Chapter 4 through Chapter 7 are all concerned with extending the model to include the effects 

of yam slip, which is extremely challenging to do in a continuum framework. Chapter 4 describes 

a series of yam-to-yam friction and yam pullout experiments performed to understand and 

quantitatively characterize the fictional forces that resist yam slip. Because of the complexity of 

the yam slip phenomenon, a simplified analytical model is developed that allows a hypothesized 

constitutive law describing yam slip in a fabric to be related to the observed experimental results. 

Chapter 5 describes the difficulties of capturing slip in a continuum framework, and presents 

a novel approach for doing so. This approach has several advantages over more traditional 

approaches, such as that proposed by Nadler and Steigmann [2003], the most significant of which 

is that the same modeling technique described in Chapter 2 can be employed with only modest 

modifications. The kinematics describing yam slip, the forces that drive yam slip, and the 

appropriate form for a constitutive law relating the two are described. We demonstrate that slip is 

a non-local phenomenon, hence the theory we use to capture it involves gradients of yam tensions 

and slip velocities. 

Chapter 6 addresses the challenges that arise when the non-local slip theory described in 

Chapter 5 is implemented into a finite element framework. First, a simple constitutive law of the 

form given in Chapter 5 is developed that is consistent with the experimental studies conducted in 

Chapter 4. Next, various methods of implementing the non-local slip theory are explored, and 

their various advantages and shortcomings are described. Appropriate boundary conditions on 

quantities that control slip are developed. Chapter 7 presents several analyses that are used to test 

and validate the slip implementation. Finally, Chapter 8 gives recommendations for further 

research into these topics. 



Figure 1-1 Microchannels in polymer fibers manufactured by DuPont, Inc. 
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Figure 1-4 Analytical model of fabric mesostructure proposed by Peirce [I9371 
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Figure 1-5 Truss geometry proposed by Kawabata el at [I9731 
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Figure 1-6 Detailed finite element model that represents every yarn discretely 



Chapter 2 
Slip-Free Planar Model 

2.1 Scope of Model and Assumptions 
Many of the fabric deformation mechanisms that are of interest, such as crimp interchange 

and locking, relate to the membrane response of the fabric. Therefore, the initial model developed 

was a two-dimensional planar model capable of capturing the in-plane response of the fabric to 

in-plane macroscopic loads. In other words, the initial model assumes that the midsurface of the 

fabric is initially planar and remains planar throughout deformation, and that all applied loads lie 

in the plane of the midsurface. The lack of transverse loads means that the through-thickness 

stresses must be zero on the fabric surfaces. Because the through thickness response of the fabric 

is so weakly coupled to the in-plane behavior, the through-thickness strains are assumed to be 

negligible and thickness is assumed to remain constant. Under these conditions, plane stress and 

plane strain conditions are equivalent, so for simplicity we take the fabric thickness to have a 

constant unit value. The development of a fabric shell implementation to capture three 

dimensional behaviors is discussed in Chapter 3. 

In the slip-free model it is assumed that that yams do not slip through the weave, although 

they are permitted to rotate relative to one another where they cross. In other words, the yams act 

as if they are pinned together at the crossover points. The initial model also assumes that the 

yams do not break and that no other modes of failure occur. These assumptions are valid in a 

wide variety of applications and over a wide range of loads, but there are of course some 

applications and some load ranges where slip and failure comprise a significant part of the fabric 

response. Expansion of a fabric continuum model to include slip and failure is a challenging 

undertaking, and is discussed in Chapter 5 through Chapter 7. 

The modeling approach that we propose can be easily tailored to particular applications 

through the inclusion of relevant deformation mechanisms and the omission of mechanisms that 

do not play a significant role. In this initial model, we include only the mechanisms that are 

relevant to the experimental responses against which we validate our model. These mechanisms 

include crimp interchange, locking effects, yam stretch, yam bending resistance, and both elastic 

and dissipative resistance to relative yam rotation during the trellising process that accommodates 

in-plane shear. We omit "wrapping" effects that stem from changes in curvature of the yams 



which occur at large shear angles, and other effects that relate to geometric nonlinearities that 

develop at large shear angles. We develop a representative geometry and associated constitutive 

laws that are as simple as possible in order to optimize computational efficiency. 

2.2 Mechanics of an Anisotropic Planar Continuum 
The fabric is represented as a two-dimensional anisotropic continuum where the yams are not 

modeled explicitly; rather, the woven fabric is treated as a homogenized anisotropic material, as 

shown in Figure 2-1. In order for this continuum approximation to be meaningful, the 

characteristic length scale for the boundary value problem that is analyzed using this approach 

must be sufficiently large compared to the length scale of the fabric mesostructure, i.e. the 

distance between crossover points. We review the continuum mechanics that are necessary to 

describe the mechanical behavior of a two-dimensional anisotropic continuum. 

The macroscopic state of deformation is described using the deformation gradient F, which is 

a tensor that describes the gradient of deformation with respect to reference configuration spatial 

coordinates. The components of F in a Cartesian coordinate systems are obtained as: 

h, (4 F~~ ( t )  = - , 
dX,, 

where xj(t) is the j-coordinate of a material point at time t, and 4 is the j-coordinate of that point 

in the reference configuration. Because we consider a two-dimensional continuum, j, k E {l,2}. 

The deformation gradient has the useful property that it describes the transformation of material 

lines with deformation: a vector 'a that describes a material line in the reference configuration is 

transformed by deformation into a vector a according to: 

a = F  'a. (2.2) 

The deformed length a of this vector is given by: 

a J=JS^aT^a)=J"a-iF^)'. (2.3) 

In this manner, the deformation gradient allows stretch and strain along a material line to be 

determined. 

The angle 6 between two intersecting material lines a and b can also be determined from the 

deformation gradient by taking the dot product of the two vectors in the deformed configuration: 

a-b = (F OÃ̂ )*( "b)= abcose.  (2.4) 

This angle relates to the relative rotation of the two material lines and hence to the shear strain at 

the point where they intersect. 



A commonly used stress measure is the Cauchy stress a. If a small surface with area dS 

within the deformed body is defined by a vector ndS, where n is the unit normal to the surface, 

and the Cauchy stress in the body at that point is a, the traction force vector t that results from a 

acting on dS is given by: 

t = ondS . (2-5) 

This stress measure that must be determined from the applied deformation history in order to 

define a continuum constitutive model. 

An anisotropic material can be described using unit material vectors g that are oriented 

parallel to the material directions. In the case of a fabric, the material directions are the directions 

parallel to the yam families within the fabric plane. We describe these directions using vectors gi 

and 62, which give the in-plane orientations of the warp and weft yam families respectively. 

Because these vectors are material lines, they transform according to Equation (2.2). Since their 

reference orientations are known, we can track the evolving anisotropy of the fabric with in-plane 

deformation. 

One important requirement of any continuum constitutive law is that it must be "material 

frame indifferent", meaning that the functional relationship between stress and deformation must 

not depend on the frame of reference chosen by the observer. For an isotropic material, it can be 

shown that this requirement is satisfied as long as the stress depends only on histories of 

invariants of the stretch tensor C = F'F: 

= &(I, ,12913)  

Equation (2.6) the invariants of C that are most commonly employed. Spencer [I97 11 shows that, 

for an anisotropic material with two preferred material directions (such as a fabric), material 

frame indifference will be satisfied in the hyperelastic limit (e.g. no slip) as long as the stress 

depends only on the invariants of C given in Equation (2.6) and on certain "pseudoyy invariants of 

C and the reference configuration vectors Ogi and Og2 that are of the form given below: 

Therefore, the constitutive law that determines stress c from the deformation gradient F must 

employ only the invariants of the forms given in Equations (2.6) and (2.7). 



2.3 Overview of Modeling Approach 
Our objective is to relate the Cauchy stress c to the macroscopic deformation gradient F in a 

manner that accurately reflects the behavior of the underlying fabric mesostructure (the yams and 

the weave), and at the same time determine how the mesostructural configuration evolves and 

what meso-level forces (e.g. yam tensions, contact forces between yams, etc) develop in response 

to the macroscopically applied deformation. This is accomplished through a five step process: 

1). Select a geometry that adequately represents the fabric mesostructure and define a 

characteristic unit cell. This geometry will not be explicitly represented in the 

continuum model, but rather provides a means of characterizing the mesostructural 

configuration using a set of state variables that can be stored at different locations 

within the continuum. 

2). Determine physically motivated component constitutive relations that relate the 

deformations of the components of the mesostructure to the meso-level forces that 

evolve. For example, the yams might behave in a linear elastic manner when 

stretched, so the yam tension carried by a yam truss in the unit cell geometry would 

be linearly related to the extension of that truss. 

3). Establish a method for determining the geometric configuration of the fabric 

mesostructure from the macroscopic deformation gradient. At any given point in the 

continuum model the macroscopic deformation gradient is known. The evolved 

configuration of the fabric unit cell must be related to this macroscopic deformation 

gradient. This can be accomplished by enforcing equilibrium within the unit cell at 

the meso-level. 

4). Calculate meso-level forces. Once the mesostructural configuration corresponding to 

a given macroscopic deformation measure has been determined, the meso-level 

forces that develop in the components of the unit call can be calculated from the 

component constitutive relations. 

5). Finally, transform these meso-level forces into continuum stresses at the macroscopic 

scale. Although the meso-level forces are themselves of interest (e.g. to predict 

failures such as yam breakages or crushing of embedded components by locking 

forces), a complete continuum model requires that continuum stresses be calculated 

from the macroscopic deformation gradient. Meso-level forces can be converted into 

equivalent continuum stresses by finding the stress tensor that generates tractions on 



the unit cell boundaries that equal the net effect of the meso-level forces on those 

boundaries. 

This approach is sufficiently general to permit the development of models appropriate for a 

wide variety of applications. The geometry and constitutive relations chosen in the first two steps 

control which mechanisms a model can capture and how accurately the model will capture those 

mechanisms. More sophisticated geometries and more complex, physically realistic constitutive 

laws will yield more accurate fabric models, at the cost of increased computational cost. Hence 

these choices can be used to tailor the model to specific applications where particular mechanisms 

may be of greater or lesser importance. 

2.4 Unit Cell Geometry 
The initial model is intended to simulate a plain weave ballistic Kevl- fabric manufactured 

by DuPont, Inc., designated as fabric style S706. The model is validated against experiments 

performed on this fabric. The geometry of the weave mesostructure of the particular KevlaI-0 

fabric to be modeled is shown in Figure 2-2. This image was created by embedding unloaded 

fabric samples in epoxy, sectioning the samples, and photographing them under an optical 

microscope. These images show that the yam cross sections have an approximately oval shape 

and that the weave geometry differs for the two yam families (the weft yam families have greater 

initial crimp amplitudes). Unfortunately, quantitative measurements of the weave geometric 

parameters cannot be obtained from such images, because the precise location and orientation of 

the sectioning plane is unknown. However, most of the relevant geometric parameters (yam 

spacing, crimp amplitude, fabric thickness, yam length per unit cell, crimp angle, yam family 

orientations) can be determined through macroscopic measurements (see King [2003] for more 

details). Other parameters, such as the major radii of the yams, can be estimated from images 

such as these in conjunction with other macroscopic and microscopic measurements. 

We represent this weave mesostructure using a truss geometry similar to that proposed by 

Kawabata [1973], shown in Figure 2-3. The yams are represented as a network of trusses 

connected by pin-joints at their crossover points. These trusses do not lie in the plane of the fabric 

but are interwoven to capture crimp interchange. They have axial compliance to allow for yam 

stretch but are infinitely stiff in bending. The effects of yam bending are modeled as being 

concentrated at the crossover points, where the trusses are hinged and bending is resisted by 

rotational "bending springs". Interactions between yams at the crossover points are captured by 

vertical "crossover springs" connecting the truss hinges. The crossover springs have two modes 



of deformation. They are capable of extending and contracting to simulate the effects of cross- 

sectional deformation, which allows the yams to change their crimp amplitude while remaining in 

contact. The crossover spring elements also offer elastic and inelastic resistance to relative in- 

plane rotation of the yam families-the mechanisms by which fabrics accommodate in-plane 

shear. Similar truss networks has been used by a number of different authors, such as Ben 

Boubaker et al. [2002], to represent fabric mesostructural geometries. 

This geometric representation is somewhat simplistic. Its chief limitation is that it models the 

yams as straight with sharp comers at the crossover points, whereas the yams actually wrap 

around the crossing yams with a smooth radius of curvature. This geometry consequently permits 

configurations that are incompatible because of interpenetrations between the yams, and cannot 

capture complex behaviors that are controlled by yam wrapping effects. However, the effects of 

wrapping become significant only in very tight weaves with solid yams, or at very large shear 

angles. For the specific K e v l d  fabric and load cases considered here, where the yams are 

composed of multiple fibers and the shear angles are typically small to moderate, wrapping 

effects do not impact the fabric response significantly. The proposed geometric description 

therefore is adequate for capturing the relevant behaviors and is more computationally efficient 

than more sophisticated geometric descriptions. This modeling approach can be extended to other 

applications by selecting more suitable geometric descriptions capable of capturing behaviors 

relevant to those applications. 

K e v l d  fabrics exhibit locking behavior, where yams of one family jam against yams of the 

other family either due to large shear deformations or to crimp interchange. When the yams jam, 

their cross sections deform. The model geometry does not track changes in the size or shape of 

the yam cross sections; however, locking effects are accounted for by introducing truss elements 

that are oriented normal to the yams, shown in Figure 2-4. The forces carried by these locking 

trusses simulate the contact forces between the yams and resist increasing deformations when 

locking conditions are met. 

The configuration of the weave mesostructure is described by the parameters shown in Figure 

2-3 and Figure 2-4: 

the quarter-wavelengths (half the spacing between yams), 

the yam length per quarter-wavelength, hereafter referred to simply as "yam lengths" Zi 

(half the yam length between adjacent crossover points), 

the crimp angles pi, 
the crimp amplitudes Aiy 

the locking truss lengths diy 



the angles that the locking trusses make with the fabric plane, and 

the in-plane included angle between the yam families 6. 

We have adopted the convention that the subscript "i" designates the yam family-1 for the warp 

yams and 2 for the weft yams. Several of these parameters are related through geometric 

constraints, so that of the thirteen parameters listed, only five are independent. For example, 

amplitude and crimp angle can be related to wavelength and yam length through the following 

expressions: 

The locking parameters di and ai can be related to the Li and pi through significantly more 

complex relationships: 

with 

di = J- for (i, j )e  {1,2}, i * j, 

No summation is implied by repeated indices. For more details, refer to King [2003]. The 

configuration of the weave mesostructure can therefore be completely determined from just the 

two wavelengths pi, the two yam lengths Li, and the yam angle 6. It should be noted that this 

selection of five independent parameters is not unique; for example, the two crimp amplitudes Ai 

could be used as independent parameters instead of the yam lengths Li. The most convenient set 

of independent parameters should be selected. 

The reference configuration values of these geometric parameters for K e v l d  S706 are given 

in Table 2-1. 

2.5 Component Constitutive Relations 
Constitutive relations relate the forces that develop in the components of the unit cell to 

changes in the mesostructural configuration that are brought about by macroscopically imposed 

deformation. A constitutive relation is required for possible mode of deformation of the unit cell 



components: eight are necessary for the geometry described in the preceding section. Two 

describe the response to extension of the yam trusses. Two describe the response of the rotational 

bending springs at the crossover points. Two describe the responses of the contact spring. And 

two describe the response of the locking trusses to compression. 

Once uncrimped, K e v l d  yams generally exhibit linear elastic behavior up to failure. 

Therefore, the model uses linear elastic relations to describe yam extension from an initial length 
0 Li to a deformed length Li: 

T, = k, (4-OL,), (2.13) 

where T, is the tensile force in the trusses representing the yams of the ith family and ki is the 

stiffhess of the yam segments in the unit cell (which may depend on the yam family). Some 

sources (e.g. Shim et al. [2001]) suggest that K e v l d  may display rate dependent behavior at 

large strain rates (greater than 100 s"). While we do not consider rate dependence of the yam 

extension, it could be readily included in the model by changing this constitutive relation. The 

yam axial stifhesses ki can be determined from tension tests performed on single yams. Figure 

2-5 shows the results of tests on single weft yams removed from K e v l d  S706, performed using 

a Zwick tensile tester model BTC-FR010TH.A50. These tests were conducted under quasi-static 

loading conditions with a strain rate of 0.01s"'. Because the yams used in this test had been 

removed from a woven fabric sample, they were initially crimped rather than straight in the 

unloaded configuration. Consequently, the load-extension response shows an initially compliant 

regime as the yams straighten, followed by a linear elastic response up to a failure load of 

approximately 90 N. Warp yams behaved in a similar manner but with a shorter compliant 

response due to less initial crimp, and a larger average breaking load of approximately 105 N, 

probably due to the fact that these yams are damaged less during the weaving process. The axial 

stiffhess of the yams is calculated from the slope of the linear portion of these curves and is 

reported in Table 2-1. 

Although the yam bending stiffhesses are relatively small, under loading conditions where 

crimp interchange can occur yam bending is the dominant mechanism that resists deformation, 

until locking forces begin to develop or until the yams completely straighten. Therefore, yam 

bending resistance must be included in order to guarantee a nonzero stiffness at small strains. For 

the selected geometry, bending is modeled as concentrated at the hinges between yam trusses at 

the crossover points. Bending resistance is imparted through rotational springs at these points and 

is assumed to be linear elastic, with the bending moment Mbi exerted on the yams at the crossover 

points proportional to the change in the crimp angle 0,: 



If necessary, the unloaded crimp angle O f i  can be adjusted to account for different amounts of 

permanent set in the yams. A reasonable estimate of the bending stifmesses kbi can be determined 

by manipulating the load-extension data from the single yam tests shown in Figure 2-5. In the 

uncrimping (low load) regime, the load-extension data can be converted into moment-crimp angle 

data provided the initial yam crimp is known (it can be measured by examining the yams under a 

microscope). This allows the moment acting at the crimp peaks to be expressed as a function of 

the crimp angle, and the slope of this resulting curve corresponds to kbi. In Chapter 3 we discuss 

more accurate methods for characterizing the yam bending stiffiesses, which indicate effective 

rotational spring stiffhesses that are reasonably close to those measured using this method. The 

measured stiffhesses reported in Table 2-1 are so small that they have a negligible effect on the 

response of the fabric once the yams begin to stretch, but they are sufficiently large to impart 

nonzero stifhess to the model in the low-stress regime. 

Relations describing interactions between yams at the crossover points are generally difficult 

both to measure and to model at the macroscopic level, since they involve interactions between 

yam fibers at a very small scale. In general, the deformations of the yam cross sections depend 

nonlinearly on the contacting force between yams and possibly on other parameters, such as the 

relative diameters and angles of the crossing yams and the tensions carried by the yams. The 

model adopts a significant simplification: the through-thickness compression of the yams due to 

cross sectional deformations at the crossover points is captured by a nonlinear crossover spring 

that separates the crossing yam trusses. This spring simulates soft contact conditions, with 

negligible stiffiiss in tension and an initially compliant compressive response that becomes 

increasingly stiff as the distance between yam centers decreases. An exponential relation with 

two material parameters KI and a has been chosen to capture this behavior: 

FI = K, (eal - 1). (2.15) 

Here I is the interference that would exist between the cross sections of the crossing yams if they 

remained undeformed. It is defined to be the sum of the initial crimp amplitudes (one half of the 

fabric thickness) minus the sum of the current crimp amplitudes. 

This interference relation is fairly simplistic. A number of researchers, such as Chen et al. 

[2001], Realff [1992], and Realff et al. [1997], have shown that yam interactions at the crossover 

points are more accurately described by far more complex relations. They have proposed models 

to capture these interactions that include additional dependencies such as yam tension or that 

represent the interactions through distributed pressures rather than point loads. More sophisticated 



relations would allow more accurate predictions of changes to the fabric thickness and of the 

fabric response to transverse pressure loads. However, the effects of these more sophisticated 

relations on the in-plane response of K e v l d  S706 to in-plane loads are expected to be small. 

We attempted to measure the parameters Kz and a using a "sandwich compression test", 

shown schematically in Figure 2-6. It was believed that through thickness compression would 

approximately reproduce the cross sectional deformations that occur when the yams compress 

against one another at the crossover points. Unfortunately, the material properties measured in 

this manner are excessively compliant compared to the other measured stiffhesses, which causes 

the model to predict that the yam cross sections will almost completely pass through one another 

rather than cause crimp interchange to occur. We hypothesize that the excessive compliance 

measured in this test is due to many modes of deformation other than cross sectional compaction 

at the crossover points that allow the fabric to accommodate the macroscopically applied 

transverse compression. Additionally, the yams may be more resistant to cross sectional 

compaction when under tension than they are in this test. In order to obtain a physically realistic 

response, it was necessary to scale the values of Kz and a. The values selected for the scaled 

properties are given in Table 2-1. Because actual displacements associated with cross sectional 

compaction are small, the model is relatively insensitive to these parameters, as long as they are 

sufficiently large to cause crimp interchange to occur. 

The remaining component constitutive relations all control how the fabric responds to in- 

plane shear deformation (although the relations that describe locking also can affect in-plane 

deformations that do not involve shear in a tightly woven fabric). In-plane shear is accommodated 

in fabrics by relative rotation of the yam families at the crossover points, sometimes known as 

"trellisingtt. A large number of works concerning the experimentally measured shear response of 

woven materials appear in literature: for example, the works of Mohammed et al. [2000] and 

Peng et al. [2004]. Fabrics typically can exhibit three regimes of shear behavior, shown in Figure 

2-7. Loads build rapidly through a stiff elastic regime, which is followed by a far more compliant 

regime in which the yams rotate significantly relative to one another. During much of this regime, 

the resisting forces increase only slightly if at all, and the majority of the energy that is used to 

deform the fabric is dissipated through frictional effects. If the load is removed, only a small 

amount of deformation is elastically recovered. As the relative yam rotation angle becomes large, 

the response becomes increasingly stiff and more energy is stored elastically. This is due 

primarily to locking or wrapping effects. Finally, the locking forces and corresponding stresses 

become very large, and some other mode of deformation (such as unraveling of the weave or out- 

of-plane wrinkling) occurs. 



We have identified two mechanisms that accommodate trellising, shown schematically in 

Figure 2-8. Some of the total, macroscopically observed shear angle y is accommodated by S- 

shaped bending of the yarns between crossover points; we expect this mechanism to be resisted 

elastically and designate this component of the total yam rotation angle to be ye. The rest of the 

rotation angle must be accommodated by relative rotation of the yams at the crossover points 

themselves, which is resisted primarily by friction and therefore is a dissipative mechanism; we 

designate this component of the yam rotation angle to be yf . The total rotation angle will be the 

sum of these angles: 

Y = Y e + Y f .  (2.16) 

Changes in these angles are driven by the same applied moment M, which describes the total 

resistance of the fabric to trellising in the absence of locking. As shear angles become large, 

locking will provide additional resistance. In order to cause shear deformation, the total 

macroscopically applied load must be sufficient to overcome both the locking resistance to shear 

deformation and the effective resistance of these two mechanisms that accommodate trellising, as 

shown in Figure 2-9. 

Before the static frictional resistance to rotation has been overcome, no relative rotation at the 

crossover points can occur and all changes in rotation angle must be accommodated by the s- 

bending between the crossover points. At small shear angles, resistance from locking is generally 

negligible. Therefore, the initially stiff elastic regime in the experimentally observed shear 

behavior is dominated by the S-bending effect. Experiments indicate that the shear response over 

this small elastic region is approximately linear: 

M = K,ye. (2.17) 

The elastic stiffhess Ks is generally so large enough that the moment M increases rapidly and 

quickly exceeds static frictional resistance to yam rotation at the crossover points, and hence the 

dissipative rotation initiates at very small shear angles (on the order of 10"~ rad). We represent 

the resistance to dissipative rotation with a rate-dependent power law, with yo giving the 

reference dissipative rotation rate at some reference moment Mo, and an exponent b capturing the 

rate sensitivity of the dissipative shear behavior: 

Once the static frictional resistance has been overcome, a constant rotation rate can be supported 

by a constant applied moment M, and hence the rotation angle due to "S"-bending Ye will also 



remain constant. This accounts for the flat portion of the shear response in the middle regime. 

As shear angles become large, locking forces will begin to increase, which accounts for the 

ultimate stiffening of the shear response. The parameters in these expressions may exhibit 

dependencies on the fabric state (e.g., frictional resistance to rotation may be greater when the 

contact forces between yams are higher). For simplicity, they are treated as constant material 

properties, although further dependencies could be included if necessary. 

At large shear angles, the locking response dominates. When the fabric locks, the yams jam 

against each other and their cross sections are forced deform in order to avoid interfering with one 

another. Hence locking involves cross sectional compaction. However, the ovalized yams in 

Kevlad9 S706 typically deform along their longer cross sectional axis (parallel to the fabric 

plane) during locking, as opposed to the shorter axis (through the fabric thickness). Consequently, 

the locking response is more compliant than the through-thickness compaction response 

discussed above. A power law relation is used to describe the compressive force FL that develops 

in the locking trusses when their length has been shortened by an amount I,: 

with IL = do - d, where d is the length of the locking truss and do, the length of the truss when 

locking first starts to occur, depends on the initial geometry of the yam cross sections and the 

weave. The locking trusses have no stiffhess in tension. The coefficient Kd and the exponent c are 

two material parameters that, together with do, determine the locking behavior. Like some other 

relations used in this model, this relation is somewhat simplistic, but it has proved effective for 

the particular fabric and load cases that we have examined. 

The material parameters associated with trellising and locking are among the most difficult to 

determine, since they involve complex interactions between yams that are essentially bundles of 

fibers, compressing against one another and rotating past one another in irregular geometries. 

Although detailed finite element modeling of individual fibers might provide an accurate means 

of determining these parameters, they can also be determined by examining the shear response of 

the fabric. 

The shear response of the fabric is measured using a "shear-frame" apparatus similar to that 

described by McGuinness et al. [I9971 and others (e.g., Mohammed et al. [2000] and Peng et al. 

[2004]). The shear frame is a rhomboidal fixture with hinged comers, shown in Figure 2-10, that 

grips a square or cruciform specimen of fabric with its yams aligned parallel to the frame sides. 

Our specimens were 29.0 cm square. Diagonally opposite comers of the shear frame are pulled 

apart using the Zwick tensile tester. This subjects the fabric to a state of nearly pure yam rotation, 



with negligible extension along the yam directions, until the onset of out-of-plane wrinkling at 

large shear angles. Cruciform samples exhibit less wrinkling. 

Most of these tests were conducted at an axial displacement rate of 30mdmin, which 

corresponds to an initial yam rotation rate of approximately 2.83~10'~ rad/s. All of the shear- 

related properties and locking properties were determined at this rate (except for the rate 

sensitivity exponent in Equation (2.1 8), which required tests at a variety of different rates). 

The results of these tests are shown in Figure 2-11. Because the different resistance 

mechanisms dominate different portions of the response, the material parameters could be readily 

determined. The elastic stiffiiess associated with "S"-bending, Ksy relates to the initial slope of the 

response curve. The reference rotation rate yo and reference moment Mo relate to the rotation 

rate imposed in the test and the load at which the response flattens, respectively. The rate 

sensitivity exponent b relates to how much this load varies when the test is conducted at different 

rates. The yam major radii Ri, which control the initial length of the locking trusses do, relate to 

the amount of shear that occurs before the response starts to significantly stiffen due to locking, 

and the locking truss constitutive parameters Kd and c relate to the stiffening rate and non- 

linearity of the response at large shear angles. Geometric complexities prevent these parameters 

from being directly extracted from the response curves. By simulating the shear frame tests using 

the model and varying each property in turn, the appropriate portion of the predicted response can 

be fitted to the experimental data and the locking and yam rotation properties can be determined. 

The fitted properties are given in Table 2-1. 

2.6 Relating Continuum Deformation to Mesostructural 
Evolution 

The geometric and constitutive relations characterize the behavior of the fabric 

mesostructure, but in a continuum model the mesostructural behavior must be related to the 

behavior of the macroscopic continuum. A means of determining the weave mesostructural 

configuration from the state of deformation of the macroscopic continuum is required. For the 

selected geometry, five independent parameters are required to characterize the fabric 

configuration at a given location. A convenient set consists of the quarter wavelengths pi and the 

angle between yam families @(which describe the amount of stretch and shear, respectively, that 

the unit cell has undergone), and the yam lengths Zi (which relate to stretch of the yams and the 

change in their crimp). More complicated geometries, especially those used to represent different 

weave patterns (e.g. twill or satin weaves) would require more independent parameters. 



At the continuum level, the yam families can be described by vectors that are aligned with the 

yams and that connect adjacent crossover points. These vectors will have magnitudes equal to 

2pi, twice quarter wavelengths, and describe the dimensions of the unit cell measured along the 

yam family directions, as is shown in Figure 2-3. The angle between these vectors is 0, the angle 

between the yam families. Under the assumption that no yam slip occurs, the crossover points 

deform in an afine manner with the continuum and hence these vectors are material lines and 

transform with the deformation gradient according to Equation (2.2). Three parameters-the 

quarter wavelengths pi and the angle 0 between the yam families-can therefore determined 

directly from the deformation gradient: 

Note that the pi and 0 depend only on pseudo-invariants of C = F'F, Og1, and 0& that are of the 

form given in Equation (2.7). Therefore, the relation between the macroscopic deformation 

gradient and the evolution of the weave mesostructure that forms the basis of the constitutive law 
t 

will satisfy material frame indifference. 

The deformation gradient does not directly determine the other independent parameters 

required to characterize the fabric configuration. With only the wavelengths pi and yam angle 0 

fixed, an infinite number of configurations are possible with varying yam lengths Li of the two 

families, as is shown in Figure 2-12. In a quasi-static case, the mesostructure will adopt the 

configuration that satisfies through-thickness equilibrium, where the through-thickness forces 

exerted by one yam family equals the through-thickness force exerted by the other yam family. 

For this model, the equilibrium configuration can be found by using energy-based arguments. 

As the two free parameters are varied, the yams undergo different degrees of stretch and 

crimp, and the locking trusses and contact spring are compressed by different degrees. Hence, the 

remaining parameters control the balance between the elastic energy stored in the unit cell 

through yam extension, yam bending, and locking in each of the two families, and the elastic 

energy stored in the crossover spring. Every possible configuration will correspond to a particular 

level of total elastic energy stored within the unit cell. For a given state of macroscopic 

deformation, the fabric will assume the configuration with the smallest stored elastic energy, 

subject to the constraint that the configuration must satisfy the requirements imposed by the 

macroscopic deformation gradient-i.e. the configuration must have the appropriate values of pi, 

p2 and 0. This minimum energy configuration will satisfy through-thickness equilibrium. 



In this model there are only two free parameters, L, and &, and the elastic energy stored in 

the unit cell for a given macroscopically imposed deformation gradient F can be visualized as a 

function of these parameters, as shown in Figure 2-13. We refer to this function as a "conditional 

energy function" because it depends on the deformation gradient. The values of the free 

parameters L, and L2 that minimize this energy function while the parameters fixed by the 

deformation gradient are held constant will describe the equilibrium configuration that the 

mesostructure will adopt. In most cases, numerical techniques are necessary to minimize the 

conditional energy function, as a closed form for the state of minimum energy does not exist. 

Refer to King [2003] for a more detailed description of this energy minimization method. 

More complicated representative geometries (e.g. geometries used to represent other weave 

patterns, such as twill and satin weaves) may have a larger number of free parameters. At this 

time we have not considered in detail any geometry other than that shown in Figure 2-3. 

One final comment must be made with regard to dissipative deformation mechanisms and 

ratedependent effects. In this model, different possible configurations corresponding to various 

values of the free parameters Li can all be instantaneously adopted through purely elastic 

deformation mechanisms, and so the only constraint on these configurations is that they must be 

consistent with the applied macroscopic deformation gradient. However, in more sophisticated 

models, different configurations may be accommodated through rate-dependent dissipative 

deformation mechanisms. Examples of such models include those with elastic-viscoplastic yams 

where the tension depends not only on their extension but also on the extension rate, or with 

visco-elastic yam cross section behavior that leads to energy dissipation during the locking 

process, described in Appendix A. In these cases, there is an additional constraint on the 

configurations that the mesostructure may adopt-the configuration must be reached by an 

evolution path that satisfies the appropriate equations of state. Finding the mesostructural 

configuration that satisfies equilibrium in such situations is more challenging. 

2.7 Relating Meso-level Forces to Macroscopic Stress 
Once the mesostructural configuration that corresponds to a given deformation gradient has 

been determined, the internal forces carried by the unit cell components, including yam tensions, 

yam bending moments, moments between yams at the crossover point, and contact forces at the 

crossover point and from locking, can be calculated from the component constitutive relations. In 

many cases, these forces may themselves be of interest, especially for predicting the onset of 

failure. For example, embedded components in advanced fabric systems may be crushed by 



excessive contact forces. Or, the yam tensions may be used to predict what level of macroscopic 

load will cause the yams to break. However, in order to completely describe the constitutive 

behavior of the fabric continuum, these internal forces must be transformed into equivalent 

macroscopic continuum stresses. 

For traditional hyperelastic material models that have a well defined strain energy density 

function <I> that depends only on invariants of C and pseudo-invariants of C and Ogi, the Cauchy 

stress 0 at the continuum level can be calculated from by differentiating the strain energy density 

function with respect to the stretch tensor C : 

c = J-~FSF' 

Here Ik are the invariants and pseudo-invariants, F is the deformation gradient, and J is the 

determinant of F. Note that 6 is the traditional strain energy density function, not the conditional 

energy function discussed in the previous section. The strain energy density at any deformation 

gradient F corresponds to the minimum value of the conditional energy function per unit 

reference volume, minimized over all admissible configurations consistent with F. For a very 

simple fabric model where 4 can be calculated exactly as a function of F, this approach can be 

used to calculate the stress. For example, consider a simplified fabric-like model with no crimp 

interchange, locking, or dissipative yam rotation, zero crimp in both yam families, and linear 

elastic relations relating yam extension to force F carried by the yams, and relating relative yam 

rotation to moment M between yam 

case are: 

F, = k, (pi-~p,),  

M = Ks{Â¡0-6) 

families. The relative component constitutive relations in this 

where ki are the stiffhesses associated with each yam segment in the unit cell, and Ks is the elastic 

shear stiffness (clockwise rotation of the 2-direction yam family relative to the 1-yam family is 

defined as positive). Since pi, pi, and 6 depend only on F, the mesostructural configuration of this 

simplified fabric depends only on F and hence has an energy density function 6 that can be 

expressed in closed form: 

When pi, p2, and 6 are expressed in terms of invariants of the form given in Equation (2.7) 



according to Equations (2.20) and (2.21), Equation (2.22) can be used to calculate o exactly. It 

can be shown that the Cauchy stress in this case is: 

1 M cos0 
0 =  

2p2 sin0 2p, sin 0 

Each term corresponds to the effects of one of the three meso-level forces Fl, F2, and M acting on 

the unit cell faces, as is shown in Figure 2-14. Each yam force Fi acts along a yam direction gi. 

The distance between yams measured in a direction normal to 8 is 2pj sine, where j # i, so the 

force is divided by this quantity to give force per unit width. Unit thickness is assumed. The 

moment M exerts a traction FMi = M/2pi on each of the four unit cell faces, but these tractions act 

normal to the directions gi. In order to be expressed in terms of gi 63 gj tensor products, these 

forces from the moments must be resolved along directions parallel to gl and 82, which requires 

additional sineand cost9 factors. We note that when this stress tensor is applied to any of the unit 

cell faces intersected by the ith yam family using Equation (2.5), the resulting traction exactly 

equals the net effect of Fi and FMi acting on that face. 

Unfortunately, this approach cannot be used in cases where the strain energy function cannot 

be expressed in a closed analytical form. This is the case for the proposed model because the 

mesostructural configuration, and hence the energy stored per unit volume, is not directly 

determined by the deformation gradient-the additional free parameters Li must be determined 

numerically, as described in King [2003]. Instead, the continuum stress can be determined from 

the meso-level forces using equilibrium arguments. The macroscopic Cauchy stress o that is 

equivalent to a set of meso-level forces must exert a traction on a unit cell face that equals the net 

effect of the meso-level forces acting on that face. Therefore, the Cauchy stress must always have 

the general form: 

Here Ni and N2 are the total meso-level forces per unit width and thickness that operate along the 

yam directions (parallel to the fabric midsurface), and Sn is the total shear force (per unit width 

and thickness) acting on the unit cell faces (also parallel to the fabric midsurface) that counteracts 

any moment between the yam families. It can be proved that as long as the unit cell components 



are in local equilibrium, the stress tensor will be symmetric, and that the out-of-plane components 

of the meso-level forces will cancel. 

For the actual fabric model, we must use this equilibrium approach to determine the stress. 

The stress tensor is determined according to the following procedure: 

Determine all load-bearing mesostructural components that intersect the boundaries 

of the unit cell. 

Determine the tractions that these components exert on the unit cell faces, including 

the effects of any moments that are carried by the components. 

Project these tractions onto a plane parallel to the midsurface of the fabric. The out- 

o f-plane components will cancel. 

Resolve the projected tractions along the gl and Â£ vectors. 

Divide the resolved forces by the appropriate projected areas to obtain stresses. 

Express the results in the tensorial form given in Equation (2.27). 

Note that this process could have been used to obtain the stress tensor for the simplified 

model; it yields the same expression given in Equation (2.26) that was calculated from Equation 

(2.22). The stress tensor for the actual K e v l d  S706 fabric model is more complex; it has 

contributions from yam tensions yam bending moments Mbi, the locking forces Fu, and the 

moment between the yam families M 
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The stress expression does not involve the force that compresses the crossover spring, since this 

spring does not intersect the unit cell faces In addition to the force parameters, the stress 

expression also contains geometrical parameters that describe the current configuration of the unit 

cell. 



2.8 Implementation and Numerical Issues 
The K e v l d  S706 fabric model was implemented into ABAQUSIStandard, a commercially 

available implicit finite element code, through a user-defined material "UMAT" subroutine. 

ABAQUS solves nonlinear problems by using a ~ewton-Rhapson iteration scheme to find the 

equilibrium solution at the end of each time increment. For each integration point in the finite 

element mesh, the UMAT is called and is supplied with the deformation gradients F(t) and 

F(t + At) at the beginning and the end of the time increment respectively, and also the values of 

all state variables at the beginning of the increment. The UMAT must calculate the Cauchy stress 

o at the end of the time increment, and also the updated values of the state variables at the end of 

the increment (which are used to track and output the evolving configuration of the unit cell). The 

Newton-Rhapson scheme also requires the material Jacobian do/dEt to be calculated, which gives 

the variations of the stress o that result from variations of the incremental strain Et . ABAQUS 

uses a small strain measure for the incremental strain: 

where the incremental deformation gradient Ft describes the change in deformation at the end of 

the time increment (at time t + At) relative to the state of deformation at the beginning of the time 

increment (at time t): 

~ ( t  + ~ t )  = F, ~ ( t )  . (2.30) 

This model was limited to in-plane, quasi-static analyses only. Issues related to the numerical 

implementation of the model are briefly discussed in this section. 

The minimization of the conditional energy function that relates the deformation gradient to 

the fabric mesostructural configuration must be performed numerically because no closed form 

exists for the conditional energy function due to the complexity of the model geometry. Various 

numerical minimization schemes were investigated. For a detailed description of these 

techniques, refer to King [2003] and to Press et at. [1992]. Of these techniques, the downhill 

simplex technique was found to be the most effective for the current model, partly because it does 

not require derivatives of the conditional energy function. For different unit cell geometries, other 

numerical minimization techniques might prove more effective. 

Steigmann [1992], Baseau [2003], and others have shown that an un-reinforced elastic 

network, like the K e v l d  S706 fabric model, is mathematically guaranteed to be stable only as 

long as the network is in tension. Even when the fabric continuum is constrained to remain 

planar, the fabric geometry chosen for the current model is unstable and capable of budding 



when placed in compression. For the unit cell geometry considered, two modes of buckling are 

possible: the yam trusses can bend at the crossover points and rotate out of the fabric plane, 

increasing their crimp (subsequently referred to as "yam buckling"); or they can rotate about axes 

perpendicular to the fabric plane, causing a shearing motion of the fabric (subsequently referred 

to as "shear buckling"). These buckling modes are shown in Figure 2-15, and can lead to 

instabilities that prevent convergence during a nonlinear quasi-static analysis using an implicit 

finite element code, since quasi-static implicit codes do not include the stabilizing effects of 

inertia. 

A related shortcoming of the continuum fabric model is that it does not explicitly represent 

the internal material structure, so inertial effects associated with the rotational motions of 

mesostructural components are not accounted for in the mass matrix used in dynamic analyses. 

The continuum model tracks the inertia associated with motions of the centers of mass of the 

yams, but not the inertia associated with rotation of the yam trusses. Hence the continuum mass 

matrix will underestimate the intertia of the fabric. 

These issues can be both addressed by the explicit addition of inertial resistance to yam 

rotation at the meso-level. The changes in orientation of the yam trusses over a given time 

increment in can be divided by the length of that time increment to determine average rotational 

velocities, and the change in velocity can be divided by the same time increment to approximate 

average rotational accelerations. These accelerations are then multiplied by the rotational inertias 

of the yam segments about appropriate axes to yield reaction moments, which can then be 

converted into effective forces at the unit cell faces and included in the stress along with the 

quasi-statically determined meso-level forces. This procedure stabilizes the buckling modes in 

quasi-static implicit analyses and accounts for the additional rotational inertia of the yam 

segments in dynamic analyses. 

It should be noted that in a quasi-static case, inertial effects are not included and this inertial 

stabilization technique therefore becomes a purely numerical technique for imparting stability. 

The magnitude of the stabilizing forces depends both on the size of the time increment employed 

by the Newton-Rhapson scheme and the inertias used to calculate the stabilizing forces. In some 

cases, very small time increments may be necessary to achieve sufficient stabilization for 

obtaining convergence. In these cases, the rotational inertias of the yam segments can be scaled in 

order to increase the stabilizing forces and permit larger time steps, as long as the stabilizing 

loads do not become so large that they approach the magnitude of the actual meso-level forces, 

since inertial effects should be negligible in a quasi-static analysis. For the K e v l d  S706 fabric 

model that we considered, use of the actual rotation inertia of the yam segments was sufficient to 



stabilize the model, and resulted in stabilizing loads that were several orders of magnitude smaller 

than the meso-level forces for reasonably sized time steps. 

One final numerical issue that arises is that the fabric constitutive model exhibits a behavior 

similar to the numeric "locking" that is traditionally observed when fully integrated displacement- 

based finite elements are used to model incrompressible or nearly incompressible materials. This 

numeric locking should not to be confbsed with the physical phenomenon that we refer to as 

"fabric locking" that occurs because interwoven cross sections jam against one another. Like 

nearly-incompressible material models that lock, the fabric model exhibits oscillating stress (and 

yam tension) contours and variable element stiffhesses that depend on the element formulations 

when certain boundary conditions are applied. The stress oscillations do not vanish as the mesh is 

refined. For fabrics, this behavior does not arise fiom incompressibiliQ-fabrics are 

compressible, undergoing large volume changes during shear and crimp interchangebut rather 

fkom inextensibility of the yams. Just as a nearly incompressible material is much stiffer in 

response to volumetric changes than it is in response to isochoric deformation, the fabric is much 

stiffer in response to deformations that involve stretching of the yams than it is in response to 

deformations that do not (e.g. during crimp interchange, etc.). We have devoted significant effort 

towards understanding this phenomenon, but have not yet been successfbl in developing an 

element formulation that eliminates it. The problem is especially noticeable when the fabric is 

subjected to non-uniform strains that can be accommodated by trellising or crimp interchange. 

Fortunately, even in this worst case, the errors in the stresses (and the tensions) calculated at the 

integration points are acceptably small, and as actual tensions and stresses become large, the 

errors become negligble. Refer to Appendix C for a detailed discussion of this phenomenon and 

of different techniques that we have investigated for eliminating it. 

2.9 Validation - Uniaxial Strip Tests 
In order to test and validate this initial model, we considered three sets of quasi-static 

experiments on samples of K e v l d  S706. Each set of experiments involved more complex 

boundary conditions. In each set of experiments, our goal was to establish whether the fabric 

model was capable of predicting the appropriate macroscopic loading and deformation response, 

and whether the fabric model correctly captured the evolution of the fabric mesostructure and the 

growth of meso-scale level forces that would cause failure. 

In the first set of experiments, rectangular strips of fabric were cut parallel to one of the two 

yam family directions and loaded using a Zwick uniaxial tensile tester at a nominal axial strain 



rate of 0.01 s-l. A photograph of such a test is shown in the inset of Figure 2-16. For these testsy 

the load-direction yams at each edge of the strips were removed over a width of 0.64 cm in order 

to control the exact number of yams per specimen and to eliminate effects due to yarn slip and 

fiaying at the fiee edgesy leaving an effective specimen size of 2.54 cm by 25.4 cm with exactly 

34 loaded yarns. This large aspect ratio was chosen to minimize end effects at the grips. Each of 

these tests was simulated in ABAQUS/Standard using the geometric parameters and constitutive 

properties determined as described above and summarized in Table 2-1. The models were 

uniformly meshed with approximately square elements of sufficient density determined through a 

mesh refinement study. Eight-node plane strain reduced integration elements, designated CPE8R 

elements within ABAQUSy were employed. Because yam tensions were largey the numerical 

locking problem described in Appendix C did not affect the results. 

The models successfully predicted the macroscopic deformations and loads and the growth of 

meso-level forces that lead to failure in this case. In the experiments, the fabric strips undergo 

uniform lateral contraction in response to the imposed axial strain (except near the grips, where 

the clamping effects prevent lateral contraction). This behavior was well captured by the model. 

For the warp direction testsy the model predicts that at 4% nominal axial strainy the fabric strip 

will have undergone a 4.5% transverse contraction due to crimp interchangey compared to a 4.0% 

average contraction observed in the experiments. For the weft-direction testsy the model predicts a 

5.8% contraction at 4% nominal axial strainy compared to a 5.9% average contraction observed in 

experiments. Greater contraction occurs in the weft-direction tests because the weft yams have a 

greater degree of initial crimp and consequently crimp interchange dominates a larger portion of 

the response in the weft-direction test. 

The model predictions of the macroscopic load response were very accurate as well. Figure 

2-17 and Figure 2-18 show the experimental load-strain curves for the warp and weft direction 

testsy along with the corresponding model predictions. Note that load has been normalized to 

average load per yam; this does not imply that the load carried by all the yams is the same. The 

total loads on the samples can be computed by multiplying the loads shown in these figures by 

the number of yams per sample (thirty-four). The model accurately predicts the correct 

mechanical response using only the properties determined independently fiom the tests described 

above; no curve fitting was performed. 

The last requirement for the model is the capability to predict the growth of meso-level loads 

when the continuum is subjected to macroscopic loading. This is especially important for 

predicting the onset of failure. In the uniaxial strip tests, failure occurs when the yams bean to 

break, which is governed by the tensile load carried by the yams. Figure 2-16 shows the model 



predictions for the warp yam loads in the warp-direction tensile test at 4% nominal axial strain. 

The model indicates that the outermost yams carry the greatest loads and are expected to fail first, 

with yam failures propagating inwards. This is consistent with the behavior observed d i n g  

experiments, as shown in Figure 2-19. Of course, the model predicts that the largest yam loads 

will occur at the gnps due to the clamping effects there. In the experiments, the strips did indeed 

often fail at the grips, but not always. Slippage in the grips, which is not included in the model, 

sometimes alleviated the loads at grips and failure instead occurred at intermediate locations 

along the strip. Because the average yam strengths can be estimated fiom the single yam tests, the 

model can be used to predict the macroscopic loads at which the yam failure will initiate in the 

loaded fabric strip, even though the model does not capture failure directly. Figure 2-17 and 

Figure 2-1 8 show the model predictions of the load at which the yams will begin to fail, which 

are in very good agreement with the experimental data. 

2.1 0 Validation - Bias-Extension Tests 
The model was in good agreement with experiments in the very simple case of uniaxial 

extension, so we next considered a more complex loading case, commonly refmed to as a "bias- 

extension test". In this test, a rectangular fabric strip is cut so that the loading direction is 

oriented at 45O to the yam directions. Such tests are described by various authors, e.g Peng and 

Cao [2005]. In order to avoid gripping yams at both ends, it is generally recommended that the 

strips have an aspect ratio of approximately 3: 1 or greater. Our samples measured 3.49 cm by 

9.50 cm. 

Relatively complex deformation pattems manifest during a bias extension test. Yams in the 

central portion of the strip undergo a state of almost pure yam rotation as they attempt to align 

with the loading direction-this portion of the strip undergoes a large and relatively uniform 

lateral contraction. Clamping effects at the ends prevent lateral contraction, which results in a 

triangular region at each end of the strip that undergoes almost no deformation at all. These 

triangular regions are bounded by narrow bands characterized by large tensions and jamming 

forces and increasing shear strains. These deformation contours are illustrated in Figure 2-21. 

Lines have been drawn on the samples parallel to the yam directions and in a rectangular grid 

pattern to show the deformations clearly and facilitate comparison to the model predictions. As 

was the case for the uniaxial tests, the model predicts these deformation pattems very well, as is 

evident in Figure 2-21. The model predictions shown in this figure are not scaled to match the 



photos of the experiments-the lateral contraction predicted by the simulation and the lateral 

contraction observed in the experiment are in good agreement. 

The macroscopic load response in a bias-extension test is dominated by the shear and locking 

properties of the fabric. Unfortunately, bias-extension tests are generally poorly suited for 

quantitative comparisons of load responses due to their variability. The extremely low resistance 

to shear deformation of the fabric before it locks, combined with the sensitivity of the test to 

small variations in the bias angle and the sample orientation, introduces a great deal of 

inconsistency into the experimental measurements. For example, in one set of nine tests, the 

extension at failure varied between 24 and 32 mm and the failure load varied between 1000 and 

1300 N. In Figure 2-22 we display experimental load-displacement curves that were within one 

standard deviation fkom the average. Model predictions, obtained using the properties in Table 

2-1, are also shown in Figure 2-22. The model predicts the average bias-extension response 

accurately with regard to both the strain at which stiffening begins to occur and the stiffened 

slope. At very large strains, where the stresses greatly exceed the stresses that develop in the 

shear fiame tests, the model response is too stiff compared to the experimental response. This 

may be an effect of the inherent limitations of this initial model, which is capable of capturing 

only failure-fiee in-plane deformation. The fabric in the bias-extension tests exhibits both 

wrinkling and unraveling of the weave at large strains, which lead to a more compliant response. 

The deviation may also be a result of the simplistic geometry used to represent locking. The truss- 

based locking geometry captures the locking effect relatively accurately at small to moderate 

shear angles, but becomes far less accurate at large shear angles. 

In the bias extension tests, the strips fail when gradients in the locking forces become so great 

that they cause the weave to begin to unravel at the edges, as is shown in Figure 2-23. The 

unraveling occurs along diagonal bands that flank the low-deformation triangles at each end of 

the strip and that continue across the sample. The fabric is eventually pulled apart along these 

bands. While the initial model can not capture the unraveling, which involves yam slip, it can 

predict the distribution of locking forces up to the onset of failure. Locking force contours 

predicted by the model are shown in Figure 2-24. The model predicts bands of large locking 

forces bounding the low-deformation triangles at the ends and continuing across the sample. Such 

bands are also evident in the experiments by examining how tightly compacted the weave 

becomes in these regions. The gradients of these locking forces, were they to drive yam slip, 

would cause the weave to unravel in the manner observed in Figure 2-23. Hence we are able to 

use the model's capability of tracking meso-level loads to predict macroscopic failure in this case 

as well as the simple case of uniaxial extension. 



2.1 1 Validation - Slit-Damage Tests 
We considered one final case to validate this initial model. In some applications, fabrics are 

subjected to biaxial loads and their resistance to propagation of damage is of interest. Examples 

of such applications include inflatable fabric structures and parachutes. Godfiey and Rossettos 

(119981 and [1999]) have studied damage propagation in biaxially stressed fabrics using a "slit- 

damage" test. In this test, shown schematically in Figure 2-25, a cruciform-shaped fabric 

specimen is cut so that the yam families are oriented parallel to the cruciform arms. In the center 

of the specimen, a number of adjacent yams are cut to create a slit. The specimen is then loaded 

biaxially. The first uncut yam at the end of the slit is subjected to a very large tension, much 

larger than the nominal tension across the specimen width. This concentration of tension is 

similar to a stress concentration that manifests at the tip of a sharp crack, and depends on the size 

of the slit. Godfiey and Rossettos have shown that in a fabric which does not permit significant 

yam slip, this tension concentration will become large and a self-propegating tear will result in a 

sudden, catastrophic failure of the sample, similar to a brittle fiacture in a cracked material that is 

resistant to plastic deformation. However, if yam slip can occur, it tends to reduce the tension 

concentration and prevent a catastrophic failure, just as plasticity in a ductile material reduces the 

stress concentration at a crack tip and prevents brittle hcture. Godfiey and Rossettos identified 

two modes of slip around the slit, shown in Figure 2-26. A visually obvious mode of slip 

involves the cut yams slipping through the weave away fiom the slit. In the presence of biaxial 

stresses, these yams drag the horizontal crossing yams along with them. However, this creates a 

second mode of slip, as the crossing yams are forced to slip past the uncut vertical yarns at the 

end of the slit. It is this mode of slip that relieves the tension concentration in the yams at the end 

of the slit. 

Godfiey and Rossettos arrived at these conclusions using a combination of experiments and 

simple analytical models. We wanted to reproduce their results using our more versatile finite 

element model. We recreated their experiments and observed the same phenomena and same 

modes of slip around the slit. We then simulated the experiment using the model and analyzed the 

predicted tension contours, shown in Figure 2-26. Our model predicts physically realistic tension 

fields: tensions in the cut vertical yams are low near the slit, but tensions in the uncut vertical 

yams at the end of the slit are very large, which in the absence of slip would lead to self- 

propagating tearing. This is consistent with the rapid damage propagation in fabrics that do not 

permit significant slip that was observed by Godfiey and Rossettos, and with the tension 

predictions of their simple model.. 



Although this model does not include yam slip, it can be used to predict where and how slip 

will begin to occur. Yam slip in a fabric must be necessarily accompanied by gradients in tension 

along a yam, because if a yam is slipping past a crossover point, it must be resisted by certain 

forces at that crossover point. Under steady-state conditions, tension in the slipping yam must be 

greater on one side of the crossover point than the other to offset these resisting forces, which 

implies a step increase in tension along a slipping yam at each crossover point. In a continuum 

approximation, step changes in tension at points along the yam correspond to a gradient in 

tension along the yam. For more details regarding slip in fabrics, refer to Chapter 4 through 

Chapter 7. 

We examined the gradients in the tension in the vertical yams, shown in Figure 2-26. There 

are two regions of large tension gradients near the slit. The tensions in the cut yams increase as 

distance from the slit increases, which implies that these yams will tend to slip away from the slit, 

which is readily observed in experiments. However, the model also predicts that tensions 

decrease in the un-cut yams at the end of the slit as distance from the slit increases, which implies 

slip in the opposite direction. These yams will tend to slip towards the slit, or, equivalently, the 

crossing yams will tend to slip along these yams away from the slit. This is the second slip mode 

that Godfrey and Rossettos observed and predicted would alleviate the tension concentration. 

Although this model cannot capture the slip process, it does predict the two modes of slip that 

Godfrey and Rossettos observed and predicted using their simple analytical model. 



Discrete Yam Tensions 

Continuum Stresses 

Figure 2-1 Approximating a fabric as an anisotropic continuum 



Figure 2-2 Micrographs of KevlarB S706 weave mesostructure 



Figure 2-3 Representative mesostructural geometry used for Kevlara S706 model (locking trusses 
not shown) 
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Figure 2-4 Trusses used to capture locking in representative mesostructural geometry 
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Figure 2-5 Single yarn tensile test (sample, results, and apparatus) 
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Figure 2-6 Sandwich compression test schematic and results 
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Figure 2-7 Different regimes of the typical response of a fabric to in-plane shear 
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Figure 2-8 Decomposition of relative yarn rotation angle 



Figure 2-9 Schematic of different resistances to shear deformation 



Figure 2-10 Shear frame apparatus loaded with square specimen 
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Figure 2-1 1 Experimentally measured shear response of fabric, with Fitted model prediction 



Figure 2-12 Different mesostructure configurations possible for the same p;, p2, and 0 
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Figure 2-13 Energy stored in unit cell as a function of Li and L2 for a particular deformation 
gradient 



Figure 2-14 Tractions from meso-level forces acting on unit cell faces 
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Figure 2-15 Possible buckling modes of the unit cell geometry when compression 
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Figure 2-16 Tension contours in fabric strip subjected to uniaxial tension; (inset) photograph of 
uniaxial fabric strip test 
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Figure 2-17 Load-strain response in warp-direction uniaxial fabric strip tests, with model prediction 
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Figure 2-18 Load-strain response in weft-direction uniaxial fabric strip tests, with model prediction 



Figure 2-19 Yarn failure in uniaxial strip test 

Figure 2-20 Schematic of bias-extension test 



Figure 2-21 (Top) Predicted and observed yarn orientations near the end of a bias-extension sample 
(lines are parallel to yarn families); (Middle and Bottom) Observed and predicted deformations (with 

shear-strain contours) near the end of a bias-extension sample 
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2-22 Some load responses measured in bias-extension tests, with model prediction 

Figure 2-23 Failure in bias extension due to weave unraveling from locking effects 
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Figure 2-24 Predicted locking force contours in bias-extension 



Figure 2-25 Schematic of slit-damage test 



Tension gradients that 
Tensions In vertical yarns drive yarn slip 

\ 
Large tensions at end of silt 

Shear for es cause horizontal 

Vertical yams sUpping 

\ 
yarns to slide along unbroken 

Kevlar fabric after slit damage test Yarn slip In slit damage test 

Figure 2-26 Mechanisms that affect damage propagation in slit-damage test; (Top left) Model 
prediction of tensions in vertical yarns (Top right) Gradients in tension in vertical yarns; (Bottom 

left) Photograph of slit after application of sub-critical loads; (Bottom right) Schematic showing two 
modes of slip around slit (Godfrey and Rossettos, [I9981 and [1999]) 



Table 2-1 Measured Properties of KevlarB S706 used in planar model 

I Property I Symbol I Value I Unit I rn " I w I I 

Geometric Properties 
I I I 

1 Fabric Thicknessa 1 - 1 0.300 1 mm 1 
1 Warp Minor (through-thickness) Radius ] rl 1 0.075 1 mm 1 
1 Weft Minor (through-thickness) Radius 1 r, 1 0.075 1 mm 1 
1 Warp Major (in-plane) Radius 1 Ri 1 0.400 1 mm 1 
I 
1 Initial Weft Quarter Wavelength I OP, I 0.374 I mm 1 

- 

Weft Major (in-plane) Radius 

I 
1 Initial Warv Amvlitude a 1 ' A ,  1 0.060 1 mm 1 

Initial Warp Quarter Wavelength 
I R2 

0 

Initial Weft Half Yarn Length Between 1 ' L ,  1 0.381 1 mm 1 
Crossovers a 

P 1 0.374 mm I 

Initial Weft Amplitudea 

Initial Warp Half Yam Length Between 
Crossovers 

0.400 

- I . A I I 

Single Yarn Properties 
f 
-. 

mm 

0 
A2 

Warp Relaxed Crimp Angle 

Weft Relaxed Crimp Angle 

1 Warp Yam Stiffiiess Per Half Yam Length I k, 1 3764 1 N/m 1 
1 Weft Yam Stiffaess Per Half Yam Length 1 k2 1 3948 1 N/m 1 

0.090 

0.378 

"1 
0 B, 

1 Warp Yam Bending Stiffness 1 hi 1 0.00124 1 Nmhadian 1 

mm 

mm 

1 Weft Yam Bending Stiffaess 1 k2 1 0.00073 1 Nm/radian 1 

1.412 

1.334 

1 Warp Yam Mass Density 1 PI 1 1441 1 ks/m3 1 

radians 

radians 

1 Weft Yam Mass Density 

1 Interference Relation Coefficient I KT I 0.00309 I N 1 
1 Interference Relation Exponent 1 a 1 1 x lo6 1 l /m 1 , , , 

Locking Stiffness Properties 
' 

1 Locking Stiffness 1 KI 1 1 . 3 6 ~  1013 1 N/mc 1 
1 Locking Exponent , I 

Yarn ~otat ion (shear) properties 
1 Elastic Rotational Stiffaess 1 Ks 1 0.0131 INmhadian 1 
1 Reference Dissipative Rotation Rate I (dy1dt)d  0.00284 1 radiands 1 
1 Reference Dissipative Rotation Moment I I 3.2 x I Nm 1 
1 Dissinative Rotation Rate Sensitivity 1 b 1 4.0 1 - 1 
a Dependent on other parameters or not required by model 



Chapter 3 
Out of Plane Deformation 

3.1 Mechanics of Anisotropic Continuum Shells 
In some applications, the out of plane response of a fabric is of interest. Examples include 

the forming of composites with fabric reinforcement, the penetration of a fabric armor system by 

a ballistic projectile, and the bending of apparel as it is worn. As described in Section 1.3, most 

existing continuum fabric models capture three-dimensional behaviors by treating the fabric as a 

membrane, with negligible bending and twist stifkess. While the planar model described in 

Chapter 2 can be readily implemented into a membrane formulation, in some applications the 

bending and twist stiffiiess of the fabric may have a non-negligible effect on the deformations that 

occur. We therefore extend the planar continuum model described in Chapter 2 to a three- 

dimensional shell implementation to permit the analysis of out-of-plane fabric deformations, 

including transverse penetration and fabric wrinkling that occurs at large shear deformations (a 

common phenomenon in fabric composite forming operations). As in the case of the planar 

model, we specialize our model to plain weave K e v l d  fabric, manufactured by DuPont Inc. 

Two KevlarQ3 fabrics were considered: style S706, which is a very tightly woven fabric; and style 

S726, which has larger yams and is more loosely woven. 

For an in-depth description of the development of a shell implementation, refer to Bathe 

[2003]. In any shell formulation, the shell response is characterized by a set of generalized forces 

that must be related to the different modes of shell deformation. We first identify these modes of 

deformation and the corresponding generalized forces. Following classic methodologies (e.g. as 

described in Belytschko et al. [2000]) to describe the kinematics of a shell, we define the 

midsurface of the shell as a reference surface and then choose a suitable theory of shell 

kinematics. Most fabrics are relatively thin and insensitive to transverse shear effects; 

consequently, it would be appropriate to use the classical Kirchhoff-Love shell theory, which 

assumes that material lines that are initially straight and normal to the midsurface remain straight 

and normal. However, some commercially available finite element codes (e.g. ABAQUS) offer 

only extremely limited Kirchhoff-Love shell element formulations. Consequently, we consider 

the more general Mindlin-Reissner theory, which assumes that material lines that are initially 

straight and normal to the midsurface remain straight, but not necessarily normal; such shells 



allow transverse shear. By using the appropriately small fabric thickness, and by choosing 

relatively stiff transverse shear behaviors, our shell elements will exhibit negligible transverse 

shear strains and will approach the Kirchhoff-Love limit. Using Mindlin-Reissner shells has the 

additional benefit that the shell implementation could also be used (with some modification) for 

woven fabric composites, where transverse shear effects may be important to the material 

response. 

To describe the shell kinematics, we define a curvilinear coordinate system (el, Â£2 c3) with 

the Â£ and c2 directions tangent to the shell midsurface and c3 normal to the midsurface at every 

point. The c1 and Â£ coordinates parametrize the midsurface, which lies at e3 = 0. The location of 

any material point X in the reference configuration is given by (Xi, X2, X3), where (Xi, X2, 0) 

gives the location of point k, which lies at the projection of X onto the midsurface, and X3 gives 

the perpendicular distance between X and the midsurface. In the deformed configuration, point 

2 will occupy location 2 ,  located at (xi, x2, 0). The position of point X (which now occupies 

location x )  relative to location 2 can be described by a vector C. Because Mindlin-Reissner 

theory permits transverse shear, this vector will not necessarily be normal to the reference 

surface. 

A Mindlin-Reissner shell has nine modes of deformation. Three involve membrane 

deformations of the midsurface~membrane stretch along the c1 and directions and membrane 

shear. These membrane deformations can be described using a two-dimensional membrane 

deformation gradient Fm, which has components: 

where a, = {1,2}. Consider a point that lies on the fabric midsurface and a plane tangent to the 

midsurface at that point. The orientation of a midsurface material line passing through the point 

can be described by a vector a that lies in the tangent plane and hence only has components in the 

e1 and Â£ directions. The vector a has length a equal to the length of the material line and is 

oriented parallel to the projection of the material line onto the tangent plane. to the reference 

configuration, we refer to this vector as 'a. Provided this reference vector 'a is known, the 

corresponding vector in the deformed configuration will be mapped according to: 

a = F m  'a. (3 -2) 

The length of the material line in the deformed configuration, and consequently the membrane 

stretch in the direction of the material line, can be calculated as: 



The in-plane angle between two material lines a; and a2 can be determined by dotting them 

together: 

By comparing this angle to the angle between 'al and 'a2, the amount of membrane shear can be 

determined. 

The shell has two modes of transverse shear, which can be characterized by two scalar strain 

values &TI and Â£12 Consider two planes that each contain the normal to the deformed midsurface 

and a material line along one of the two directions Â£ or Â£2 the scalars ETI and &~2describe the 

angles that the respective projections of vector onto these planes make with the deformed 

midsurface normal. We expect these strains to be small. There is also a mode of through- 

thickness deformation, which can be described by a scalar giving the through thickness stretch At: 

Finally, because the midsurface is not flat, we must consider three additional modes of 

deformation that describe the bending curvature along the Â£ and Â£ directions and the twisting 

curvature of the midsurface at any given state of deformation. This is typically done using a 

symmetric bending tensor B, which is defined in the following manner. Given any material line 

contained in the midsurface, described by vector a as defined above, the bending tensor B is the 

rank two symmetric tensor that gives: 

where is the curvature (the inverse of the radius of curvature) of the material line in space. This 

tensor is sometimes called the "second fundamental form". Assuming it is known, the bending 

curvatures KI and ~2 along directions Â£ and Â£ can be calculated from Equation (3.6). 

The final mode of deformation is twist, which is defined as follows. Consider vectors parallel 

to the Â£ and t2 directions tangent to the midsurface at a point (Â£1 Â£2) These vectors define a 

tangent plane P at point (Â£1 c2). As variations in position along the directions are considered, 

the vectors parallel to the and Â£ directions may change their orientations with respect to P by 



angles yl and y2, respectively. Twist <pd, can be defined as the change in orientation ya of material 

lines parallel to the ga direction with respect to changes in SB: 

In other words, it is the change in orientation of material lines in the midsurface parallel to one 

direction per unit distance traveled in the other direction. A shape exhibiting a state we refer to as 

"pure twist" (where ~1 = ~2 = 0 and cp12 # 0) is shown in Figure 3-1. It can be shown that (pl2= 

921, and that this value can be calculated from the bending tensor in the following manner: 

p,- = (a, Ba, + a2 ~ a , ) ,  (3.8) 

where a1 and a2 are aligned with the c1 and S2 directions, respectively. 

We have described how a Mindlin-Reissner shell has nine different modes of deformation- 

two "membrane" stretching modes, a "membrane" shearing mode, a mode involving changes to 

the shell thickness, two transverse shearing modes, two out-of-plane bending modes, and one out- 

of-plane twisting mode. We next characterize nine generalized forces that correspond to these 

nine deformation measures. 

Because the fabric is an anisotropic material, the membrane stresses can be expressed using 

tensors defined using the yam orientations, as discussed in Chapter 2. If we redefine the vectors 

gi and g2 to be unit vectors in the tangent plane to the midsurface at a given point, parallel to the 

projections of material lines along the yam families, then the membrane stresses can still be 

expressed in the form given by Equation (2.27), substituting the membrane stress o" for 0. The 

three generalized forces N ,  N2, and Sn correspond to the three modes of membrane deformation. 

The out-of-plane bending and twisting moments (per unit width), which correspond to the 

bending and twisting modes of deformation, can be expressed in a similar tensorial form: 

M = ~ , k l  @ g A + ~ 2 k 2  @g2)+~2(gl @g2 +g2 @ g J  (3 -9) 

where MI and M2 give the moments (per unit width) associated with bending the shell about the 

tangent axes perpendicular to the gl and gz directions respectively, and the term Tu reflects the 

moment (per unit width) resisting twist deformation between the two families, as defined above. 

Physically, the or/̂ -components of the M tensor in a two dimensional Cartesian coordinate system 

on the tangent plane give the magnitude of the moment (per unit width) acting about a tangent 

axis perpendicular to the a-direction, on a face perpendicular to the Firection. This quantity 

represents a bending moment when a=/? and a twisting moment otherwise. The bending moment 

M transmitted by the shell about an arbitrary tangent axis b is calculated as M = IMbI. This 



moment has contributions from both the bending resistance of each yam family and the twisting 

resistance between the yam families. 

The generalized forces corresponding to transverse shear and through-thickness stretch can be 

expressed by the quantities cr~l, On, and ON, which give the transverse shear stresses along the 

and C2 directions and the through-thickness stress respectively. 

In order to describe the general response of an anisotropic shell, it is necessary to relate M, 

8, the transverse shear stresses C T ~  and 0~2 ,  and the out-of-plane normal stress ON to the 

kinematic quantities Fm, B, the transverse shear strains &TI and E T ~ ,  and the through-thickness 

stretch L. 
In commercial finite element codes, these relationships are often derived by integrating the 

material response through the shell thickness. This approach is appropriate as long as the 

structure being represented by the shell is actually continuous and homogeneous through its 

thickness, or composed of multiple layers that are continuous and homogeneous. However, a 

fabric is not composed of layers of homogeneous media but rather is a very complex spatial 

structure that we are only approximating as a continuum shell. Therefore, these relationships 

cannot be calculated by integrating the material response through the shell thickness. Instead, it is 

necessary to establish appropriate constitutive relations either by deriving them from knowledge 

of the fabric structure or by experimentally measuring the response of fabric samples to simple 

modes of deformation. Because fabrics are an anisotropic material, these relations will depend on 

material directions-the orientations of the yam families gi within the plane of the fabric-that 

may evolve during the deformation process. 

3.2 Limiting Assumptions 
In order to relate the generalized shell forces to the shell deformations, we introduce a 

number of simplifying assumptions. First, we assume that the membrane response (the 

relationship between c" and F") can be described by the planar fabric model described in Chapter 

2, and that this relationship is not affected by out-of-plane deformations and loads. This implies 

that the membrane response described by the planar model for a fabric with a flat midsurface 

remains valid as the fabric is deformed out-of-plane and the rnidplane becomes curved. In other 

words, we neglect coupling effects that cause the membrane response to change as the fabric 

deforms out-of-plane. (Note that this assumption does not imply the converse; the anisotropic out- 

of-plane bending response will have a strong dependence on the current state of membrane strain, 

since membrane strain can change the orientations of the yam families). The error associated with 



this assumption should be small provided that the curvatures do not become excessively large; 

that is, as long as the radii of curvature p remain significantly larger than the yam spacing 2p and 

the fabric thickness t, as shown in Figure 3-2. We expect this error to be especially small for 

loosely woven fabrics. More tightly woven fabrics might exhibit coupling between out-of-plane 

deformations and the membrane response as curvatures become large, since large curvatures 

could affect the manner in which the yams jam against one another. 

We choose not to define the shell thickness to be equal to the local fabric thickness, which 

varies in space due to the undulation of the yams in the weave, but rather to have an initially 

uniform characteristic value t (which we take to be equal to the sum of the yam thicknesses). In 

the cases we have examined, changes in fabric thickness tend to be small and are of little interest, 

so for simplicity we assume that this characteristic thickness remains constant, and we assume 

that through-thickness stresses have no effects on the other out-of-plane behaviors or on the 

membrane response. In cases where the through-thickness behavior is of interest, it can be readily 

measured using transverse compression tests of the sort described in Chapter 2 and related to the 

compaction of the crossover spring in the unit cell geometry shown in Figure 2-3. 

As discussed in the preceding section, we expect transverse shear strains to remain small 

because fabrics are typically very thin compared to their other dimensions. Therefore, we assume 

that transverse shear is uncoupled from the other shell behaviors and relate transverse shear 

strains to transverse shear stresses assuming linear elastic behaviors, with very large stiffhesses. 

Under these limiting assumptions, CT" can be calculated from F" by using the planar 

continuum fabric model. The through-thickness and transverse shear responses are controlled by 

simple relationships and are uncoupled from other modes of deformation. The final necessary 

components of the shell behavior are the relationships describing bending and twist. 

3.3 Experimental Investigation of Bending 
The bending of fabrics, especially fabrics woven from multi-fiber yams, is a relatively 

complex phenomenon, even under the assumptions that curvatures are small enough so that linear 

elastic material laws and small-strain large-rotation theory can be used. Interfiber sliding and 

yam friction effects create nonlinearities in the bending response of a multifiber yam, as 

discussed by Grosberg [1966], even when the yam is initially straight. The presence of initial 

curvatures of the yams due to "set" induced by the weaving process introduces additional 

nonlinearities, as described by Sagar and Potluri [2004]. Hence we expect the moments about 



tangent axes perpendicular to the yam directions MI and M2 to depend on curvatures of the yam 

families KI and KZ respectively in a nonlinear manner. 

To determine My and M2, we must determine the moment-curvature relation per yam 

associated with bending a fabric sample about a tangent axis orthogonal to a given yam family. 

This relation is not the same as the relation associated with a single yam isolated from the fabric; 

a woven fabric is stiffer (per yam) than a single yam due to various effects. For example, crossing 

yams may provide some additional resistance to fabric curvature. Furthermore, the response of 

multi-fiber yams is controlled by inter-fiber frictional effects and hence depends on the transverse 

forces on the yams, which are greater in a fabric (also discussed by Grosberg [1966]). In addition 

to merely measuring or deriving a bending relation to be implemented in the shell model, it is 

important to understand the phenomena that control the bending response and to account for any 

deviations between the measured response and the values that can be predicted analytically. This 

will provide insight on how modifications to the fabric material or architecture will affect the 

fabric bending behavior and aid in the design of fabric technologies. 

We first consider the bending response associated with a single yam. In many fabrics, 

including the plain weave KevlarO fabrics with which we are specifically concerned, the yams 

are composed of a large number of untwisted circular fibers. The yams have a fixed cross- 

sectional area (dependent on the number of fibers per yam) but a variable cross-sectional shape, 

which is frequently approximated as ellipsoidal or lenticular. K e v l d  interfaces have a fairly low 

friction coefficient, which means that frictional forces between fibers in a yam are typically 

small, especially when transverse forces on the yam are also small. Although the bending 

response can be nonlinear and can include dissipative effects, we can determine upper and lower 

analytical bounds for the maximum and minimum bending stiffhesses associated with a single a 

yam by considering bounding cases for which the response is linear elastic. The lower bound is 

calculated by assuming that the fibers which compose the yam are all bent to the same radius of 

curvature, that the curvature is sufficiently small so that the individual fiber bending response can 

be described by small-strain, large-rotation theory with a linear elastic material law, and that the 

fibers do not interact (inter-fiber frictional forces are negligible). In this case the minimum 

bending stiffhess of a single yam (expressed as an effective value of the quantity (El)) is the sum 

of the bending stiffhesses of its individual fibers: 

where E is the modulus of the Kevlafl, rf is the radius of the individual fibers, and n is the 

number of fibers per yam. This quantity has units of [N-m2]. The upper bound is calculated using 



the same assumptions except that in this case we assume that the fibers cannot slip relative to one 

another (infinite friction) and hence the yams act as if they were a homogeneous structure with 

the same cross-sectional shape (assumed to be ellipsoidal) that they have when woven in the 

fabric: 

where R and r are the major and minor radii of the yams ellipsoidal cross sections respectively. 

Refer to Table 3-1 for the values of these bounds for the K e v l d  yams under consideration. 

The actual bending response of the single yams was measured using two methods. In one 

method, tensile tests were performed on single yams pulled from the fabric, as shown in Figure 

2-5. The yam response exhibits two regimes-a low-stifhess regime where the yams straighten 

or "uncrimp", and a high-stifhess regime where the yams stretch. The high stifhess regime 

shows that the K e v l d  yarns under consideration exhibit a linear elastic response up to their 

breaking strain. By employing knowledge of the initial crimped shape of the unloaded yam, the 

low-stiffhess portion of the force-displacement curves can be transformed into moment-crimp 

angle curves, and the bending response can be roughly estimated. This method was used to 

estimate the response of the bending springs in the unit cell for the planar model in Chapter 2. 

Only the responses (for both families) of the KevlaB style S706 yams were characterized using 

this method. 

We developed a more direct method of determining the bending response of a single yam. 

Samples were prepared by cutting rectangular specimens of fabric approximately 2.5 cm by 5 cm. 

These specimens have a known number of yams N crossing their shorter dimension. Most of the 

yams of the other family were removed, leaving only a narrow strip of woven fabric to hold the 

sample together. A sample of this type is shown in Figure 3-3. The parallel single yams were then 

placed in an elongated three-point bending test apparatus (shown in Figure 3-4) and the bending 

response of the yams was directly measured. The fabric thickness was approximately two orders 

of magnitude smaller than the test span and the vertical displacement of the center probe was 

limited to ranges where the curvature of the sample was smaller than the curvature of the probe, 

meaning that the contact area between the center probe and the yams remained small relative to 

the test span. Consequently, we were able to use beam theory to calculate the effective bending 

stifhess per yam of the sample: 



where F is the measured force, L is the test span, and d is the displacement of the center probe. 

This test was performed on yams from both families of both the KevlarQ styles S706 and S726. 

The bending stiffhess (per yam) of the woven fabric was measured by cutting rectangular 

samples and testing them in the same elongated three-point bending, with (he yams of interest 

oriented perpendicular to the fixture's longer dimension. The samples were similar to those used 

to measure the stiffness of the individual yams, except that the crossing yams were not removed. 

Both KevlarO styles S706 and S726 were tested in this manner. 

Interestingly, the measured moment-curvature response of both the single yams and the 

woven fabric for both K e v l d  styles was linear up to relatively large curvatures, though we do 

concede that our experiments to date are not exhaustive, and that there may be nonlinearities that 

manifest at larger curvatures or under different loading conditions. It is also possible that the 

nonlinearities described by other researchers are negligibly small for the plain weave KevlaS 

fabrics that we consider. 

Because the measured response is linear, we characterize the bending response with a single 

bending stiffness (EI)@ The measured stiffhesses for both the single yams and the woven fabric 

samples are presented in Table 3-1. The single yam stiffhesses measured by the two different 

methods are comparable for both the yam families of the S706 fabric, although the data from the 

elongated 3-point bending tests was considered to be more reliable because it relies less on 

idealizations of the geometry. The single yam stiffhesses for the S726 samples were measured 

using only the elongated 3-point bending test. For single yams taken from both fabrics, the warp 

yams were somewhat stiffer in bending than the weft yams. One possible explanation for this is 

that the weft yams are damaged during the weaving process; another is that the yams of the two 

families have slightly different cross sectional shapes due to the geometry of the weave. 

The measured values for the single yam bending stiffnesses all lay between the analytically 

estimated bounds. One bound assumes frictionless behavior between yam fibers, while the other 

assumes infinite friction. Grosberg [I9661 has shown that the actual behavior, which corresponds 

to finite friction, should lie between the bounds, which is consistent with our experiments. In all 

cases, the measured stiffhesses of the single yams were much closer to the lower bound, which 

implies that in single yams isolated from a fabric, the frictional forces between the fibers are 

relatively small and the fibers tend to slide past one another when the yam bends. 

As expected, the fabric exhibited a stiffer bending response per yam than the unwoven yams 

did. For the S706 fabric, the per-yam stiffhess was approximately 2.2-2.3 times greater than the 



stiffness of the unwoven yams for both the warp and the weft yam families. The S726 fabric also 

exhibited in increase in stiffhess over the single-yam stiffhess; the increase in this case was 

between 1.9 and 2.1 times. However, the measured per-yam bending stiffness values still fall 

between the analytically calculated lower and upper bounds. 

As mentioned above, there are several possible reasons for the increase in bending stiffness 

when the yams are woven into a fabric. Some of the increase in stiffness may be due to the 

presence of the crossing yams. However, since these yams consist of bundles of fibers aligned 

parallel to the bending axis, the additional bending stiffness from these yams is likely small. A 

more probable explanation is that the transverse compressive forces on the yams are greater when 

they are woven into a fabric. Consequently, the frictional forces between fibers are greater. 

Greater frictional forces result in greater interactions between the fibers, and the yams behave 

more like solid beams and less like bundles of fibers. Therefore, their stiffhess should increase, as 

Grosberg shows. This effect would be greater for a tightly woven fabric, which could explain 

why the tightly woven S706 exhibits a slightly greater increase in stiffness per yam than the more 

loosely woven S726. 

While we understand why the fabric has a larger bending stiffhess per yam than a group of 

individual yams, the exact bending stiffness of the fabric is difficult to predict without using 

extremely detailed models of the interacting fibers. However, the bending stiffness can be 

analytically bounded, and because the mechanisms that control the bending stiffness are 

understood, relative changes to the bending stiffhess resulting from changes to the yam design 

can be predicted. For example, a coating applied to the yams would increase inter-fiber 

interactions and the fabric's bending stiffness would increase, approaching the upper bound. If 

the fabric were wetted with a lubricant or woven more loosely, inter-fiber interactions would 

decrease, and consequently the fabric's bending stiffness would also decrease, approaching the 

lower bound. 

Because the experiments indicate that the yam moment-curvature relation remains 

approximately linear even at moderately large curvatures for the fabrics that we consider, we use 

this linear relation in our current shell implementation: 

Mi = tÃˆr = k,i(gi -B~,). (3.13) 

Here 6 is the curvature of the fabric in the direction of the i-th yam family, calculated using 

Equation (3.6), and ku is the bending stiffness per unit width associated with the i-th yam family 

given in Table 3-1. If a more complex relation is necessary to describe a given fabric, this relation 

can be readily modified. 



3.4 Experimental and Numerical Investigations of Twist 
Twist is the other mode of out-of-plane deformation that must be accounted for, but twist in 

woven fabrics is a very complex phenomenon. In order to better understand the kinematics of 

twist, we first consider several bounding cases of simple prototypical structures subjected to a 

state of pure twist. The first is the case of a continuous plate subjected to the pure twisting mode 

pictured in Figure 3-1. A continuous plate accommodates pure twist by developing gradients of 

in-plane shear strain that vary through the plate thickness. Shear strains are positive on one face 

and negative on the other. Twist is somewhat analogous to bending: bending of a plate is 

accommodated by in-plane normal strain gradients, while twist is accommodated by in-plane 

shear gradients. The twist stiffhess of a plate is dependent on the shear modulus of the material; 

the bending stiffhess of a plate is dependent on the Young's modulus. 

The other bounding case is a material formed from two continuously distributed orthogonal 

families of non-interacting fibers with no supporting matrix. A sparsely woven fabric with 

circular, frictionless yams that do not significantly interact might be approximated by this model. 

When these fibers are aligned with orthogonal directions t1 and t2, this structure has no resistance 

to twist as defined in Equation (3.7). Twist is accommodated by linear gradients of the out-of- 

plane fiber angles. Since the fibers do not interact, they are not subject to any local twisting about 

their own axes, and since this state of pure twist results in zero bending curvatures along the fiber 

directions, the fibers are not subject to any bending either. The structure accommodates twist with 

purely rigid body motions of the component fibers and hence has zero twist stiffhess. 

An intermediate case is that of a network of interwoven beams that are clamped together at 

their crossover points. A sparsely woven fabric in which the yams do not rotate relative to one 

another at the crossover points (e.g. due to friction or to non-circular cross sectional shapes) 

would be approximated by this case. In this structure, twist is accommodated by linear gradients 

of the out-of-plane rotation angles of the beams as in the preceding case, but because the beams 

cannot rotate relative to one another at the crossover points, there must be a longitudinal gradient 

of the rotation of the beam cross sections along the beams' axes. The beams are therefore locally 

twisted about their longitudinal axes. The twist stifhess of the structure depends on the torsional 

stiffhess (and hence on the shear stiffhess) of the beams. 

In order to understand the twist behavior of a fabric and to determine which of these 

prototypical cases best approximate the fabrics that we are considering, we constructed detailed 

finite element models of the fabric structure, shown in Figure 3-5. Both models represented 

flattened yams woven in an initially orthogonal plain weave. The more densely woven model 

represents the Kevl& S706 weave geometry. The more sparsely woven model has a similar 



weave geometry except that the yam cross sections are 50% smaller, which effectively eliminated 

all locking effects. Consequently, we were able to study the mechanisms that control twist in both 

densely and sparsely woven fabrics. The models use linear elastic transversely isotropic material 

models to simulate the yams, since the yams are much stiffer axially than in the transverse or 

shear directions. This material model is characterized by four moduli that correspond to the yam 

stiffness in response to axial loading, transverse loading, longitudinal shear loading, and 

transverse shear loading, as shown in Figure 3-6. A "hard contact" algorithm is used to prevent 

interpenetration of the yams, and tangential sliding is modeled using simple Coulomb friction. 

Contacting surfaces are permitted to separate after contact. Since the goal of these models is to 

obtain a qualitative understanding of the phenomena that govern twist at the structural level, we 

did not directly measure all the yam properties or the friction coefficients. Estimated properties 

were sufficient for a qualitative understanding. 

In order to study the mechanisms that resist twist deformation, we analyzed the stress fields 

that developed in the yams and the elastic strain energy stored in the models (as predicted by the 

finite element code) when they are subjected to a state of pure twist. We also varied the elastic 

properties in order to determine which aspects of the yam behavior impact the fabric's twisting 

mechanisms most significantly. 

For the sparse fabric model, twist is accommodated by longitudinal gradients of cross 

sectional rotation of the yams, as in the third prototypical case discussed above. Twist is 

accompanied by the buildup of axial stresses and longitudinal shear stresses. These stresses are 

shown schematically in Figure 3-7. The axial stresses indicated bending about an angled cross 

sectional axis, which is a mode other than torsion by which a beam-like structure with a non- 

circular cross section can accommodate a longitudinal gradient of cross sectional rotation. The 

shear stresses correspond to torsion about the yam longitudinal axis, which is a more obvious 

mode of accommodating longitudinal gradients of cross sectional rotation. The energy stored 

within the sparse weave structure increases monotonically with twist angle, as shown in Figure 

3-8, which is consistent with the observed monotonic increases in the stresses. Increasing the 

axial modulus or the longitudinal shear modulus of the yams resulted in a significant increase in 

the stiffhess of the structure since these moduli increase the bending and longitudinal twist 

stifhesses respectively, while increasing the transverse modulus or the transverse shear modulus 

had little effect on the response. We conclude that a sparse fabric is closest to the intermediate 

prototypical case discussed above. Twist is accommodated by torsion and bending of the yams, 

and any mechanism that increases the torsional or bending stiffness of the yams will 

correspondingly increase the stiffness of the fabric twist response. Because the bending and 



torsional stifhesses of the individual multi-fiber yams are relatively low, the twist stiffhess of a 

sparse fabric will be fairly small. 

The dense weave exhibits different behaviors. Because the weave is dense, the fabric is in a 

'locked" state in the untwisted configuration, meaning that there are compressive forces acting on 

the yam cross sections even when the fabric is macroscopically unloaded. Accordingly, the model 

predicts compressive transverse stresses in the yams in the untwisted configuration. As the twist 

is applied, these compressive transverse stresses actually decrease because the twisted 

configuration imposes less compaction upon the yams and the compressed cross sections are 

allowed to relax. Because the yams are under greater constraints in the dense weave, the bending 

and twisting modes of the individual yams that were observed in the sparse weave are not 

possible. Instead, the only significant stresses that developed with the application of twist 

deformation were longitudinal shear stresses acting in the plane of the fabric. These stresses were 

positive on one face of the fabric and negative on the other, varying through the fabric thickness. 

A dense fabric therefore reacts to twist in a similar manner to the first prototypical case discussed 

above (a homogenous plate), where twist is accommodated by through-thickness gradients of in- 

plane shear strain. 

As shown in Figure 3-8, the energy stored in a dense fabric is much higher that that 

associated with a sparse weave for equal twist angles, and does not increase monotonically with 

twist angle. The strain energy is initially nonzero (due to the initial state of yam compression 

from locking). It initially decreases with twist, as the transverse from locking stresses relax, 

before the longitudinal shear stresses that result from the twisting deformation have increased 

significantly. The strain energy reaches a minimum and then increases when the loss in locking 

energy is exceeded by the increase in twisting energy. Variation of the elastic properties 

illustrates these trends. Increasing the transverse modulus shifts the minimum in the strain energy 

response curve to the right, since there is more compressive locking energy to be released, but the 

positively sloped portion of the curve exhibits the same stiffhess (since this part of the curve 

reflects a stage when no additional transverse compression is relaxing). On the other hand, 

increasing the longitudinal shear modulus both shifts the minimum to the left, since the twisting 

energy accumulates faster, and increases the ultimate twist stiffhess of the fabric. A minimum in 

the strain energy at a non-zero twist angle is also consistent with observations of the macroscopic 

behavior of the fabric. A small, flat sample of fabric tends to snap to a twisted "saddle" shape 

when perturbed. We conclude that the twist response of a densely woven fabric is controlled by 

two competing mechanisms-the relief of compressive stresses from locking and the build up of 

longitudinal shear stresses in response to twist. Initially the locking response dominates, which 



means that a dense fabric is actually in an unstable configuration when flat and will tend to snap 

to a slightly twisted configuration. At larger twist angles, the resistance of the yams to 

longitudinal shear dominates the twist response. 

As was the case for bending, the twist stiffhess of the fabric is very difficult to predict 

analytically. However, once the twist response has been measured, the effects on this response of 

changes to the yam or weave structure can be predicted since the underlying controlling 

phenomena are understood. 

We investigated two methods for measuring the twist behavior. First, we experimented with a 

"twist harness test" pictured in the lower inset in Figure 3-9. A harness consisting of a loop of 

thread is secured to each pair of opposite comers of a small fabric sample (approximately 2.5 cm 

x 2.5 cm), and a tensile tester applies load in opposite directions, creating a state of nearly pure 

twist. The second method uses a custom-built test apparatus shown in Figure 3-9. A fabric strip is 

clamped between a pair of grips. One grip slides and is tensioned by a dead weight that applies a 

small, constant tensile load to the sample while permitting axial stretching. The other is attached 

to a shaft with a cable wound around it; tension on the cable rotates the shaft with a moment 

proportional to the shaft diameter, while a counterweight applies a twisting load in the opposite 

direction. Because the mode of deformation created by this apparatus is not pure twist (as 

evidenced by the irregular deformed shape visible in Figure 3-9), the twist properties must be 

found by fitting the prediction of the shell model to the measured data. 

The two methods for measuring the twist properties yield comparable results for the ultimate 

twist stifhess. However, the hamess test results were difficult to reproduce consistently-slight 

variations in the initial configuration of the fabric sample caused significant variation in the 

measured results. The results of the twist tests performed on Kevl- S706 using the twist 

apparatus are shown in Figure 3-10. This fabric has a dense weave, so we expect to see an 

instability at a twist angle of zero-small positive twist angles should result in a negative moment 

as the fabric snaps to a slightly twisted configuration. However, as can be seen from Figure 3-10, 

the forces associated with the instability and corresponding snap through are either negligibly 

small compared to the twisting forces that develop at even relatively small twist angles, or are 

counteracted by fictional effects and hence are not evident in the measured response. Instead, we 

see two regimes in the response-the fabric first provides negligible resistance to twist, and then 

(as the twist angle exceeds the angle that presumably corresponds to the energy minimum) the 

resisting moment begins increasing, approximately linearly. Since numerical implementation of 

the twist instability and any counteracting frictional forces would be challenging and 

computationally expensive, and would affect only a very small region of the twist response, we 



do not include them in the material response that we implement into the shell model. Instead, we 

implement a bilinear twist response: 

% = fbilinear (%) = fbilinear (gl Bg2 + g2 'gi 1; (3.14) 

with 

Here (pc is the "critical" twist angle that corresponds to the point where the resisting moment 

begins to increase linearly (which is presumably close to the point of minimum strain energy), kT 

is the stiffhess associated with twist after the fabric has been twisted beyond (pc, and ko << kT is a 

small positive number that imparts numerical stability at twist angles smaller than pc. This 

bilinear model allows a good fit of the experimental data shown in Figure 3-10 up to relatively 

large twist values (greater than 10 radlm). 

Note that when the appropriate twist properties given in Figure 3-10 are used, the shell model 

predicts the correct deformed shape for the specimen in the twist test apparatus, as shown in the 

upper inset in Figure 3-9. It is energetically more favorable for the sample subjected to twisting 

rotation at its ends to form triangular facets that accommodate the rotation through bands of 

localized twist and bending instead of through uniform twist deformation. This pattern was 

observed in the experiment and is well predicted by the shell model. 

3.5 Implementation and Validation 
The fabric shell constitutive relations discussed above were implemented into a pre-existing 

shell formulation in the implicit finite element code ABAQUS/Standard. We experimented with 

both "S4" and "S4R shell elements, which are four node doubly curved elements with six 

degrees of freedom per node (three displacements and three rotations, although the so called 

"drilling" degrees of freedom-the rotations about the midsurface normal-have no associated 

stiffhess in this implementation). The S4 elements are fully integrated while the S4R elements 

employ a reduced integration scheme (and hence hourglass control). Both are suitable for "thick 

shell theory" (i.e. they include transverse strains and through-thickness effects, although they 

approach the Kirchhoff limit as their thickness becomes small), and can be used for cases with 

finite membrane strains and large rotations. The two element types gave nearly identical results 

when membrane forces were large. When membrane forces were small, the fully integrated 

elements exhibited the same numeric locking-like behavior discussed in Chapter 2 and Appendix 



C, and the reduced integration elements required hourglass stiffness to avoid the problem of 

spurious modes. However, for the load cases considered the locking errors were small and with 

the addition of hourglass stiffhess the two element types performed comparably. We therefore 

used the S4R reduced integration elements for the bulk of our analyses due to their greater 

computational efficiency. The shell behavior was defined using a user-defined general shell 

section bbUGENS" subroutine, which directly calculates the shell response characterized by or", 

M, OTI, %, and ot from Fm, By Â£12 and At, along with any relevant state variables. The 

material constants were taken from Table 2-1, Table 3-1, and Figure 3-10. 

We performed various experiments on complex out-of-plane behaviors of the fabric, and then 

simulated these experiments using the shell implementation to verify that the model correctly 

captured the observed fabric response. These experiments included bias-extension tests, shear 

frame tests (both of which are described in Chapter 2), and low-speed transverse indentation tests. 

All tests were performed using the K e v l d  fabric style S706. 

In the bias-extension test, a rectangular strip of fabric at least with a length to width ratio of at 

least 3: 1 is cut and loaded so that the yam families are oriented at 45' to the loading direction. Its 

deformation is characterized by lateral contraction in the central region of the strip as the yams 

rotate to align with the load. Once the jamming forces between the yam families become large, 

the fabric buckles and develops a central wrinkle running along the length of the sample. The 

shell model predicted these deformation patterns well, as shown in Figure 3-1 1, provided that 

small out-of-plane perturbations of the initial strip configuration were applied to the model to 

initiate the buckling. These perturbations were approximately three orders of magnitude smaller 

than the dimensions of the strip. The specific post-buckled shape displays a limited dependence 

on the initial out-of-plane perturbation and on the level of mesh refinement, but the essential 

features of the buckled configuration remain realistic and consistent with the experiments. 

As described in Chapter 2, bias extension tests do not generate consistent, repeatable load- 

extension data, since small variations in the orientation and the initial deformation state of the 

samples can significantly affect the measured responses. Figure 3-12 shows the experimentally 

measured bias extension responses that were within one standard deviation of the average. The 

load-displacement curve predicted by the shell model was consistent with the average 

experimentally measured response. The response predicted by the shell model is slightly less stiff 

than the response predicted by the planar model using a comparable mesh. This result is 

consistent with the fact that the shell model allows the additional wrinkling mode of deformation. 

The second type of test that we considered was a shear-frame experiment. In this experiment, 

shown in Figure 3-13 , a cruciform-shaped sample is clamped into a frame with hinged comers. 



Opposite comers are pulled apart, which subjects the fabric to a state of nearly pure yam rotation 

with negligible extension along the directions of the yam families. Consequently, these tests are 

well suited for measuring the response of the fabric to shear deformation. However, as the shear 

angle becomes large and jamming starts to dominate the in-plane response of the fabric, the fabric 

begins to wrinkle or buckle out of plane. The wrinkled shape (i.e. the buckling mode) is not the 

same in every test; it is very sensitive to defects in the fabric and variations in the manner in 

which the fabric is clamped within the frame. The magnitude of this effect also depends on the 

sample size and geometry and the applied shear angle. The test shown in Figure 3-13 shows 

certain buckled shapes starting to initiate in compression and tension, although the wrinkles here 

are relatively small in magnitude compared to the sample size. 

The shell model captured the physically observed wrinkled shapes, again provided that small 

out-of-plane perturbations were initially applied to the model. As was the case in the bias- 

extension test, the specific buckled shape that occurred depended on the initial perturbation and 

the level of mesh refinement. Figure 3-14 shows examples of various wrinkled shapes exhibited 

by the fabric shell model when it was used to simulate the shear frame experiment, with 

deformations scaled for clarity. The lower energy modes, on the left of the figure, were consistent 

with the shapes actually observed in the experiments (the higher energy modes shown on the right 

did not physically occur). As in the bias-extension case, the load-displacement responses for the 

shear frame tests predicted by the shell elements were consistent with experimental measurements 

and slightly more compliant than those predicted by the planar fabric model. 

We also performed and simulated a low-speed transverse indentation tests. A cruciform 

sample of fabric approximately 15 cm x 15 cm was clamped into a horizontal frame, and a 1 cm 

diameter probe was pushed 25 mm into the sample. The measured force-displacement curve was 

significantly less stiff than the predicted curve, presumably due to difficulties in uniformly pre- 

tensioning the sample. However, the simulation accurately predicted the rounded diamond shape 

of the z-direction contours shown in Figure 3-15, which occur because the fabric is anisotropic 

and stiffer along one yam direction. These contours were made clearer on the actual sample by 

the addition of a small amount of fluid. 

Ideally, we would like to have run more extensive validation cases, including composite 

forming analyses. However, as an implicit finite element code, ABAQUSIStandard is not well 

suited for large deformation shell analyses with complex contact conditions, and was unable to 

analyze such cases even for simple material models. We recommend the implementation of this 

shell model into an explicit finite element code in order to analyze a wider variety of large- 

deformation three-dimensional cases. 



Figure 3-1 Saddle shape associated with pure twist 



Figure 3-2 Comparison of characteristic fabric dimensionsp and t to radius of curvature 



Figure 3-3 Sample used to measure single yarn bending stiffness in three point bend test 



Figure 3-4 Fabric sample in elongated three-point bending apparatus 

Figure 3-5 Detailed finite element models for analysis of twist in sparse and dense weave fabrics 
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Figure 3-6 Different loading modes on a transversley isotropic material 

Figure 3-7 (Top) Shear stresses corresponding to twist about longitudinal axes; (Bottom) Axial 
stresses corresponding to bending about angled cross sectional axis 
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Figure 3-8 Strain energies associated with twist in detailed finite element models 

Figure 3-9 Twist test apparatus with corresponding model prediction of twisted shape (upper inset) 
and an alternative harness twist test method (lower inset) 
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Figure 3-10 Twist test results and fitted model prediction 



Figure 3-11 Wrinkled shape prediction for bias extension test with actual shape (inset) 
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Figure 3-12 Typical load extension curves for the bias extension tests, compared to the predictions of 
the planar model and the shell model 



Figure 3-13 me experiments showing undeformed configuration (top left), deformed shape 
in compression (bottom left), and in tension (right) 

Figure 3-14 Different wrinkled shapes exhibited by the fabric shell model in shear frame 
experiments during extension (top) and compression (bottom) (deformations scaled for clarity) 



Figure 3-15 Predicted deformation contours and actual deformed shape in transverse indentation 
test (fluid added to specimen to show z-direction contour) 



Table 3-1 Bending Properties of Kevlar Yarns and Fabrics 

1 Fabric Style $706 Fabric Slyte S726 

Fiber Diameter (pm) 1 12 12 

Fibers per Yam 1 400 560 

Thread Count per cm 1 13.4 10.2 

Yam Minor Radius 1 - 0.075 1 
Yam Major Radius I 

Upper Analytical 
Bound 5.53 x l O* I 8.86 x 1 O* 





Chapter 4 
Experimental Investigation of Slip 

4.1 Overview of Slip in Fabrics 
Yam slip in fabrics in plays an important role in a variety of applications, especially in 

studying the impact of a projectile on a woven ballistic armor, as described by Terrnonia [2004], 

and in the forming of a fabric composites. Yam slip also plays a key role in the concentration of 

yam tensions near damaged regions in the fabric and in the propagation of damage, as described 

by Godfrey and Rossettos ([I9981 and [1999]). Slip is also the primary mechanism by which 

failure occurs in the bias-extension test described in Chapter 2-large locking force gradients 

cause yams to slip out of the weave at the edges, the weave unravels, and the samples are pulled 

apart. However, yam slip in fabrics is very difficult to characterize experimentally. Yam slip is 

resisted by frictional interactions both with neighboring yams and the crossing yams over and 

under which the slipping yams is woven, but these interactions are extremely complex and 

depend strongly on the configuration of the weave mesostructure. 

Various methods have been proposed for studying these frictional interactions. Rebouillat 

[I9981 describes a series of experimental studies of the tribological properties of K e v l d  yams, 

especially the yam-to-yam frictional coefficients and the fabric surface frictional coefficients at 

different rates. However, because of the complex geometry of contact areas between yarns in a 

fabric, the frictional effects that control yam slip in a fabric are difficult to predict from friction 

coefficients measured for individual yams. A number of different researchers, including Pan and 

Yoon [I9931 and Shockey et al. [2001], have conducted yam pullout tests, which are another 

method of experimentally quantifying frictional effects that control yam slip. In these tests, one or 

more yams are pulled from a fabric sample and information about the frictional resistance to the 

slip of the pulled yam can be inferred from the measured pullout response. We have employed 

both these methods in order to gain a qualitative and quantitative understanding of the frictional 

forces that resist yam slip. 

4.2 Yarn-to-Yarn Friction Measurement 
We first measure the yam-to-yam frictional resistance between yams that have been removed 

from the fabric, following a protocol recommended by ASTM standards. Contact between the 



yams is achieved by twisting them around one another. The yams are subjected to very different 

loading conditions when they are woven into a fabric: the contact areas have different sizes and 

orientations, the yam cross sections may be different shapes, and the yams are subjected to 

different tensions and transverse compressive forces. Consequently, we cannot quantitatively 

predict the resistance to slip in a fabric from the coefficients of friction measured in this type of 

test. However, we can use this test to characterize the qualitative frictional behavior of these yam 

materials-i.e. to determine what friction coefficient values are reasonable for these yam 

materials, and whether or not frictional effects associated with the yam materials exhibit rate 

dependence. 

The American Society for Testing and Materials describes a test method for determining the 

coefficient of friction between two yams in ASTM D3412-01: Standard Test Method for 

Coefficient of Friction, Yarn-to-Yarn. The apparatus recommended by ASTM is shown 

schematically in Figure 4-1. A yam is passed through a sequence of pulleys and twisted around 

itself to form a yam helix. As the yam is pulled through the apparatus at a constant rate, an input 

tension T, is applied at one end, and the output tension To is measured at the other end. (Rebouillat 

[I9981 uses a slightly different method to measure yam-to-yam friction, where yam is wrapped 

around a drum and another yam is pulled over the drum. This method is also described in ASTM 

D34 12-0 1). According to the ASTM standard, the yam-to-yam friction coefficient ,u can be 

calculated from the tension differential as follows: 

where AT is the tension differential measured when the yam is not twisted about itself. ATresults 

from frictional resistance in the pulleys. The parameter n is the number of times the yam is 

twisted about itself, and a is the apex angle given by: 

a = itm-'f-"-). V - w  

where H, V, and W are geometric parameters that relate to the dimensions of the test apparatus 

shown in Figure 4- 1. 

We designed and built a modified version of this test apparatus, shown in Figure 4-2, that has 

the ability to adjust the apex angle a. The upper part of the apparatus is connected to the lower 

part via a pair of threaded rods that allow for the height V to be varied. Additionally, the spacing 

between the pulleys 2H can be varied by attaching the pulleys in different holes along the 

apparatus. The input tension T, is applied by hanging a weight from one end of the yam. The 



fixture is attached to the lower grip on a tensile tester and the yam is clamped in the upper grip 

and pulled through the apparatus by the tensile tester crosshead. The tensile tester load cell is 

used to measure the output tension To. 

The ASTM equations given above encompass certain simplifying assumptions. We re-derive 

the equation for the friction coefficient ,u in order to identify these assumptions and ensure that 

they are valid for our modified fixture. We assume that the twisted yams forms a helix as shown 

in Figure 4-3, and that the helix is oriented vertically. Note that the tensions T, and T4 acting on 

the yams as they enter and exit the helix respectively are not necessarily equal to the input and 

output tensions T, and To, and that the intermediate tensions Ti and T3 are not necessarily equal to 

each other, because there may be frictional resistance in the pulleys. 

A helix is defined by the following set of parametric equations that depend on the total 

rotation angle 6 about the central axis: 

~ ( 0 )  = R cos 0 

y(0) = R sin 0 , 
z(0) = c0 

where R and c describe the radius and the pitch of the helix respectively. At any given point in the 

helix, the radius of curvature is given by: 

and the arc length associated with a differential change in 6is: 

This differential section di passes through angle d4, given by: 

The helix parameters R and c can be related to the apex angle a in the following manner. At the 

point where the yam first enters the helix, where 0=0, the slope of the yam must be continuous, 

so the following relation must hold: 

Some algebraic manipulation allows d4 to be expressed as a function of a and df f .  



We now consider a balance of forces on the differential yam section shown in Figure 4-4. 

We assume that one end of the section is subjected to tension T, and the other end to tension T + 
dT > T; tension increases in response to shear loads from frictional effects. Frictional effects 

exert a shear force per unit length r = p acting parallel to the contact area, where cr is the force 

per unit length acting normal to the contact area, and p is the friction coefficient that we are 

attempting to measure. Taking d&o be small and dT to be negligible compared to T, a balance of 

forces in the radial direction gives: 

In the tangential direction, balance of forces gives: 

T + T ~ Â £ - ( T + ~ T ) = o =  
,Uapq-dT=O=^ 

For each full twist, the total fr-range through which the yams pass increases by 2 s  radians for 

each side of the helix. If we assume that the pulleys that lie between T2 and T3 are frictionless (so 

that T2 = T3), and that all the remaining pulley friction AT is evenly divided between the pulleys 

before the helix and the pulleys after the helix (so that T4 = To - AT/2 and TI = T, + AT/2) , we can 

integrate Equation (4.10) to find the tension differential that results in the test: 

# a 
47zn sin - 

2 

For small helix angles a,  this equation is identical to Equation (4. I), the equation given in the 

ASTM standard. However, as we have noted, this equation is valid only as long as the helix is 

vertical, the pulleys between T2 and T3 are frictionless, and a is small. While it is relatively easy 

to ensure that the helix remains vertical during the test, the other two assumptions may not hold in 

our modified apparatus. 

We therefore modify the ASTM equation to be correct for our apparatus. Since there are two 

pulleys each between T, and TI, between T2 and T3, and between T4 and To, we assume that each 



pair of pulleys contributes one third of AT; therefore, Ti = T{ + ATI3, TJ = T2 + ATl3, and To = T4 + 
ATl3. It follows from Equation (4.10) that T21Tl = T41T3, which allows us to calculate T2 knowing 

AT, G, and To: 

and hence calculate p: 

a 
2m sin - 

We conducted a series of tests at different rates, for different numbers of twists n. All tests 

were conducted with the same V and H values; however, the helix angle a varied because W 

depends on n. We conducted tests at 10, 100, and 1000 mmlmin, with one, two, and three twists 

(which correspond to n = 0.5, 1.5, and 2.5 respectively, because the first half twist brings the 

yams into contact but does not wrap them about one another). No tests were conducted with one 

twist at 10 mmlmin. The results of these tests are summarized in Table 4-1. 

The tests with more than one twist gave far noisier and more variable data, presumably 

because in these tests the yam fibers tended to become entangled throughout the helix. 

Interestingly, the friction coefficients calculated for these tests were lower than those 

corresponding to the single twist tests (n = OS), in spite of the fact that the single twist tests had 

fewer visible fiber entanglements. This may be due to the fact that, with only half a twist, the 

geometry of the twisted yams is not really a double helix and hence Equation (4.10) may not be 

an accurate means for calculating the friction coefficient p. Since the difference in calculated 

p between two twists and three twists is smaller than the difference between one and two twists, 

the data may be converging as the number of twists increases. The ASTM standard recommends 

using three twists (n = 2.5) to measure p. 

The three-twist tests indicate a friction coefficient of p - 0.27. This value is consistent with 

the values reported by Rebouillat [1998]. There appears to be some slight rate dependence of the 

friction coefficient p-for example, as the rate is increased from 10 to 1000 rnmlmin, the 

coefficient increases from -0.25 to 0.29 for the cases with three twists. This trend is apparent for 

all three sets of tests with different numbers of twists. However, the increase is so small relative 

to the variance of the test results that rate dependence of the friction coefficient cannot be 

conclusively established. The measured rate dependence is on the order of a 5-10% increase in p 



per order of magnitude increase in slip rate. Although Rebouillat observes little rate dependence 

of p over speed ranges of 96 mm/min to 600 mmlmin for the particular yams that he considers, he 

states that K e v l d  yams are known to exhibit an increase in the friction coefficient at increasing 

rates. 

4.3 Yarn Pullout Tests 
Yam pullout tests are a more attractive method for investigating the phenomenon of yam slip 

in woven fabrics, because they directly cause yams to slip through a weave. In these tests, a fabric 

specimen is loaded to some fixed load or displacement in a direction parallel to one of its yam 

families, and then a yam or yams of the other family are pulled from the weave at a constant rate. 

Since the macroscopically measured pullout force at any given time depends on the embedded 

length of the pulled yam, which is a well defined value, and on the frictional resistance to slip at 

each crossover point along the embedded length, information about frictional resistance to slip 

within a fabric at different rates can be determined from such tests. 

We have developed two different test methods for performing yam pullout tests. The first 

utilizes a biaxial tensile testing machine, shown in Figure 4-5. The biaxial machine can 

independently apply displacements and measure loads on two different axes. For these tests, 

rectangular strips of Kevlar style S706 fabric are prepared that are approximately 30 cm long and 

12 cm wide, with the yams that are to be pulled out aligned along the shorter dimension. 

Crossing yams (parallel to the long direction) are removed until exactly 85 remain, with a 12.7 

mm "tail" on one side of the sample and approximately 5 cm of loose yam on the other side. As 

many crossing yams as possible are used in order to maximize the measured forces during the 

test; for this particular fabric, samples with more than 85 crossing yams require pullout forces 

that can locally exceed the breaking strength of the yams. The sample is clamped in the biaxial 

tester with its longer dimension parallel to the machine's x-axis, and with the tail oriented away 

from the machine's y-axis load cell. The sample is loaded to a target cross load by x-direction 

displacement, which is then held constant throughout the test. The y-displacements of the x-axis 

grips are coupled to the moving y-axis grip using a set of linkages, and one or more of the yams 

parallel to the machine's y-axis are clamped in the static y-axis grips that are attached to the load 

cell. Applying y-direction displacement causes the sample to be pulled away from the clamped 

yams, and as the yams are pulled from the fabric the pullout force is measured. Tests can be 

performed with cross loads varying from initial values of 100 to SOON, at speeds between 5 and 

50 mdmin. 



This test apparatus suffered from several shortcomings. First, the biaxial machine was 

designed to test much larger loads (in the range of -10-100 kN) than those that occur during the 

pullout test (-0-50 N), so there is significant noise in the measured data. Secondly, the biaxial 

machine is capable only of displacement control, meaning that the applied displacement in the 

cross direction is held constant but the applied cross load can vary throughout the test. Because of 

the crimp-interchange mechanism by which a fabric transfers load from one yam family to the 

other, a constant cross displacement causes the applied cross load to increase as the pullout force 

increases, and the average cross loads over the course of the tests are therefore larger than the 

nominal cross loads at the start of the test. Ideally, the test should be performed under constant 

cross load conditions. Finally, the biaxial machine is driven by mechanical screws and is capable 

of a maximum pull speed of 50 rnmlmin; ideally, we would like to test at much faster load rates to 

better investigate rate dependence of the frictional behavior. 

We therefore designed a special fixture to address these concerns, shown in Figure 4-6. The 

fixture attaches to the lower grip of a Zwick uniaxial tensile tester. A sample of the same type 

described above is clamped between two sliding grips. Pneumatic air cylinders attached to these 

grips are pressurized to apply a constant cross load, between 90 and 900 N. One of the yams is 

then gripped in the tensile tester's upper grip and pulled from the sample, at load rates up to 2000 

mmlmin. The Zwick supports smaller load cells, and hence this apparatus is capable of measuring 

the pullout forces much more accurately at a wider range of load rates than the biaxial apparatus, 

under constant cross load rather than constant displacement conditions. 

We performed tests using both methods. The results of these tests are described in Section 

4.5. Because of the shortcomings of the biaxial apparatus, we consider the data measured using 

the pneumatic fixture on the Zwick uniaxial test machine to be the more accurate. 

4.4 Analytical Model of Yarn Pullout 
Throughout the pullout process, the number of crossover points through which the embedded 

yam passes and the force required to pull the yam through these points are both known. 

Although some researchers (e.g. Pan and Yoon [I9931 or Shockey et al. [200 11) suggest that the 

total resistance to slip will be proportional to the embedded length, the nonlinearity of the force- 

displacement response exhibited in many cases indicates that this is unfortunately not the case. 

This nonlinearity was also observed by Shockey et al. [2001], who suggest that it results from 

differences in the static and dynamic friction response of the yams, or from local relaxation of the 

fabric around the yam as it is pulled out. While these effects certainly may contribute to 



nonlinearity of the response, they do not fully account for it. Even without these effects the 

pullout response is nonlinear in most cases due to an effect sometimes called the "capstan effect". 

The pulled yam is not straight but is bent over and under a succession of crossing yams, as shown 

in Figure 4-7. The conditions along the pulled yam are not uniform; tension increases from zero 

at the free end to the total pullout force at the gripped end, while the crimp decreases over the 

same embedded length. The frictional forces resisting slip depend on contact force between the 

pulled yam and the crossing yams, and hence on the tension and the crimp angle of the pulled 

yam. Since both these parameters vary along the yam, the frictional resistance at the crossover 

points also varies along the pulled yam in a complex manner. Therefore, the frictional resistance 

to slip at a given crossover point cannot be determined simply by dividing the total pullout force 

by the number of crossover points the pulled yam passes through. 

We have developed an analytical model that predicts the nonlinear yam pullout response 

from a set of geometric assumptions and from a hypothesized constitutive law describing the 

frictional resistance to slip at each crossover point. By fitting the predictions of this model to 

experimentally measured pullout data, a suitable yam slip constitutive law can be determined. 

The model is derived in the following manner. We start by considering the n* crossover point 

from the free end along the slipping yam. A simplified representation of the forces acting at this 

crossover point is shown in Figure 4-8. The slipping yam is being pulled through this crossover 

point at a constant velocity #@. We refer to the direction along the slipping yam towards which it 

is moving as "downstream," and the opposite direction as "upstream". The crossover point 

downstream of point n  is point n + l .  We next assume that, at a given instant in time, the 

geometrical configuration of the yams can be represented using a truss-like geometry shown in 

Figure 4-9, where all the yam bending is concentrated at the crossover points. This geometry is 

the similar to the truss geometry used in Chapter 2 to represent the weave mesostructure in the 

fabric continuum model. Trusses represent both the yams and also the lines of contact force 

between yams. 

We define the following parameters for the analytical pullout model. At any given crossover 

point n, we designate the crimp amplitude of the slipping yam as An, the length of the slipping 

yam between crossover point n  and point n+l  as 2Ln, the in-plane spacing between the yams that 

cross at n  and at n+l  as 2pn, and the angle the slipping yam makes with the fabric plane 

immediately downstream of crossover point n as the crimp angle &,. Similarly, we designate the 

amplitude of the crossing yarn family at n to be Acn, the crossing yam length between crossover 

point n and the neighboring crossover points as 2Lcny the in-plane spacing between the sliding 

yam and its neighbors as 2pcn, and the angle that the crossing yam makes with the fabric plane 



between the slipping yam and its neighbors as the crossing crimp angle Kn. Using this geometry, 

we can express Ben in terms of Len and Acn: 

Because the amplitude of the sliding yam may vary from one crossover point to the next, the yam 

length and crimp angle of the slipping yam, 2Ln and A, both depend on the amplitude An at point 

n and the amplitude An+1 at the downstream crossover point, as well as on the in-plane yam 

spacing pn : 

We next define the forces acting at the crossover point. The yam slipping through the weave 

is under tension Tn just downstream of crossover point n. Because there are forcesf," acting on 

the yam that resist slip, the tension in the yam on the "upstream" side of the crossover point Tn-I 

must be less than the downstream tension Tn in order to satisfy equilibrium under steady-state 

conditions (no acceleration) and maintain a constant slip velocity. Furthermore, unless the crimp 

amplitude is zero, the yams make an angle with the fabric plane, and therefore there also must be 

a net normal force FNn acting between the slipping and crossing yams to counteract the out-of- 

plane components of the yam tensions. Note that the net forces/,," and FNn are not actually point 

loads but rather represent the net effect of the complex pressure and shear stress distributions over 

all the interfaces between contacting yams. 

In densely woven fabrics like the one shown in Figure 4-8, the "locking" or "jamming" 

phenomenon described in Section 1.2 occurs. Because the yams are interwoven, they can jam 

against one another, compacting their yam cross sections and increasing the fabric resistance to 

further deformation. This state can occur even when the fabric is macroscopically unloaded; such 

a fabric is said to be "pre-locked". Locking can significantly increase the size and change the 

orientations of the contact surfaces between yams, and can apply additional contact pressures 

over these surfaces. Hence locking will affect both FNn andf,". 

We capture locking effects in the manner detailed in Chapter 2, by placing trusses along the 

lines of contact between the yam cross sections. The same nonlinear locking force relation that is 

used in the continuum model is used in this simple analytical model to describe the load in these 

trusses: 



where KL and a are material properties determined from picture-frame shear tests described in 

Chapter 2. The parameter dL is the length of the locking truss, and Re' and a are parameters that 

relate to the geometry of the locking truss and the interference between the contacting yam cross 

sections (which are assumed to be oval shaped). At a given crossover point n, these parameters 

are: 

where r and R are the minor (through-thickness) and major radii of the oval yam cross sections, 

respectively. Refer to Chapter 2 for further description of this locking model. 

We next introduce a number of simplifying assumptions. First, we assume that the tensions in 

the crossing yams Ten are the same at all crossover points along the sliding yam. Furthermore, we 

assume that these tensions remain constant throughout the experiment: 

Tcn = constant = Tc . (4.2 1) 

For the pneumatic fixture, which applies a constant load to the crossing yams, this assumption 

should be accurate provided that the grips holding the sample are correctly aligned. For the 

biaxial machine, which applies a constant cross displacement rather than a constant cross load, 

this assumption will not be strictly true. 

Next, we assume that the axial stifiesses of the yams are sufficiently large so that the 

changes in yam length due to yam stretching are negligible. Therefore, any extension along a 

yam family must occur through the flattening of the crimp in the yams (a decrease of A and a 

corresponding increase of p). This assumption is reasonable because the axial stifhesses of the 

KevlarO yam segments between crossover points are large, on the order of 1 x lo7 ~ l m ,  while the 

loads in this test are very small compared to this stifhess, less than 50 N. We also assume that, 

because they are under tension, the yam cross sections are sufficiently resistant to compaction in 

the fabric's through-thickness direction that the sum of the crimp amplitudes of the sliding yam 

and the crossing yam (i.e. half the fabric thickness t) at any given crossover point remains 

constant, regardless of the tensions and crimp angles at that crossover point: 



t 
An + A = constant = - . (4.22) 

2 

This assumption is consistent with experimental observations: while the cross sections do 

compact and change their shape under load, the total changes in the fabric thickness tend to be 

small. 

Next, we assume no slip occurs in the direction parallel to the crossing yams. This 

assumption, when coupled with the negligible yam stretch assumption, has the important 

implication that the length of the crossing yams between crossover points Lcn must be the same at 

every crossover point along the sliding yam and remains constant throughout the analysis: 

LC,, = constant = LC.  (4.23) 

Finally, we assume that the spacing between the crossing yams 2pn is the same at every crossover 

point along the sliding yam and remains constant throughout the analysis: 

p = constant = p (4 .24) 

In other words, we expect differences in the fabric shear angle along the sliding yam to be small. 

We derive the analytical model by enforcing equilibrium at each crossover point along the 

yam. In the direction normal to the fabric plane, equilibrium implies: 

Tn sin A, + 7. sin j3,,-, + F," = IT. sin An + F" . (4.25) 

Here F," and F~,," are through-thickness forces that arise from effects other than the out-of-plane 

components of yam tension. Although these components are generally small compared to the 

components that stem from yam tensions, they are important near the free end of the slipping 

yam where tensions are small. They originate primarily from yam bending and locking effects: 

Here kÃ is the bending stiffhess of the yams, O f l  gives the reference crimp angle corresponding to 

zero bending moment in the yam, and Fg gives the component of the through-thickness force that 

stems from non-bending effects, such as the out-of-plane component of the locking forces. We 

expect this term to be much smaller than the other terms thus neglect it. We define Fh to be the 

net through-thickness force acting between the yam families, and define it as the average of the 

out of plane contributions of each yam family (which should be equal, according to Equation 

(4.25)): 



t, 

In-plane equilibrium along the slipping yam gives: 

The resistance to slip/,*, which is the net in-plane effect of all forces acting on the sliding yam, 

must counteract the change in the in-plane projection of the yam tension across the crossover 

point. In general,/,R will depend on the specific geometry of the contacting regions and the exact 

pressure distributions. In our simplified model we express it as a function of the normal force 

between the yam families Fun, the locking force Fin, and the geometry of the weave as 

characterized by A, 0, L, and p, and the rate of slip V'? This function is the constitutive law that 

must be characterized. 

If we assume that a given constitutive relation allows/aR to be calculated, we can combine it 

with equilibrium Equations (4.25) and (4.29), the constitutive relations for locking and bending 

given in Equations (4.1 7), (4.26), and (4.27), the geometric relations in Equations (4.14), (4.1 5), 

and (4.16), and the simplifying assumptions in Equations (4.21), (4.22), (4.23), and (4.24) to 

generate a system of two equations at each crossover point. These equations depend only on 

constitutive parameters, known constants, and on T, and An (the downstream tension and 

amplitude of the slipping yam) and on the neighboring values Tn-1, An-l, and Am1, (the upstream 

tension and the amplitudes of the pulled yam at the upstream and downstream crossover points, 

respectively). If we then consider a yam that passes through N crossover points, with T, and A, 

as two unknown degrees of freedom at each crossover point, we get 2N equations that depend on 

2N+3 unknowns. The extra unknowns, Ao, AN+i, and To are boundary values that describe the 

amplitudes at each end of the sliding yam and the tension just upstream of the last crossover 

point. 

If suitable boundary conditions are defined, then the number of unknowns is reduced to 2N 

and the system can be solved to determine the tension and geometry at every point along the 

slipping yam. However, rather than solve a system of 2N nonlinear equations simultaneously, we 

make one additional simplification. We assume that the changes in crimp along the pulled yam 

are gradual, so that the relative change in crimp amplitude between adjacent crossover points is 

small : 

While this assumption holds, Equations (4.15) and (4.16) become: 



2 L,, s p ' + ~ ,  . (4.32) 

For the particular experimental cases that we have examined, this assumption is reasonable. In all 

cases the maximum change in amplitude between adjacent crossover points is less than 4% the 

size of the smallest predicted amplitude at any point along the pulled yam, which corresponds to 

negligible errors in crimp angle, yam length, and tension. 

The simplification allows the system to be solved recursively, since the equations at a given 

crossover point no longer depend on the conditions downstream of that crossover point. Provided 

the upstream tension and amplitude corresponding to the nth-/ crossover point are known, a 

system of two equations at the nth crossover point can be used to calculate the downstream tension 

and amplitude at that crossover point. This procedure can be repeated for each of the N crossover 

points. The tension downstream of the Â  crossover point is the applied tension necessary to pull 

the yam from the weave when it passes through N crossover points. By performing this procedure 

for N = {1,2.. .} and then converting the different values of N into embedded lengths (by 

multiplying N by the crossover point spacing 2p), the force-displacement curve necessary to pull 

a yam at a constant velocity from the fabric corresponding to a proposed constitutive law can be 

determined. 

We next define suitable boundary conditions at the free end of the yam. We assume that 

before passing through the n=l crossover point, which we define as the first crossover point 

where equilibrium Equations (4.25) and (4.29) are satisfied, the sliding yam passes over a yam at 

n=0, as shown in Figure 4-10. Because the sliding yam does not pass around the crossing yam at 

n=O as it does at all other crossover points, but merely bends against it, we expect a different set 

of equilibrium conditions be satisfied. The tension upstream of this crossover point will be zero, 

since the end of the yam is free, but a small tension To just downstream of this crossover point 

may exist due to frictional interactions where the yams contact. Furthermore, the yam will be 

bent about the n=l crossover point so that there is some crimp angle just upstream, Po, and an 

amplitude A. that corresponds to that value of /^ consistent with Equation (4.15). As long as To is 

small, the model is relatively insensitive to these boundary conditions, especially if locking 

effects are non-negligible. Nevertheless, they must be defined realistically. 

Since we assume the crossing tension Tc to be non-negligible and since the tensions in the 

sliding yam are very small at the n=0 crossover point, we assume the crossing yam will be 

almost straight, with crimp amplitude Ac&. We apply the constant thickness assumption, 



Equation (4.22), and take A. to be approximately t/2. We estimate the downstream tension To to 

be approximately half what it would be at any other crossover point with T,., = 0 and A,,., = t/2, 

since both locking effects and normal forces at this crossover point will be approximately half as 

large (because the yam only is bent around on one side of the crossover point). For reasonable 

constitutive laws with realistic friction coefficients, this gives a To - 0.01 N, which is consistent 

with the last non-zero force measured in the pneumatic apparatus pullout tests before the yam is 

pulled completely from the weave. 

For any given constitutive law relatingfnR to forces Fnn and fin, geometric parameters A, p, L, 

and p, and slip velocity v"@, the analytical model can be used to predict the yam pullout force- 

displacement curve. By comparing this curve to experimentally measured curves corresponding 

to different applied cross loads and pull speeds, an appropriate constitutive relation can be 

developed. 

4.5 Experimental Results 
We conducted a series of yam-pullout experiments using both the biaxial machine and the 

pneumatic fixture on the Zwick uniaxial tensile tester. All samples had 85 crossing yams and 12.7 

mm tails. On the biaxial machine, we conducted tests with 100 N, 300 N, and 500 N nominal 

axial cross loads, although because the machine was displacement controlled, the cross loads 

increased as load was applied to the pulled yam and hence the actual average cross loads were 

somewhat higher. Tests were conducted at pullout rates of 5 mmlmin, 27.5 mm/min, and 50 

mdmin. On the Zwick machine we conducted tests with constant cross loads of 100 N, 300 N, 

and 500 N, at rates of 5 mmlmin, 50 mdmin, and 500 d m i n .  

A typical pullout response from the biaxial machine is shown in Figure 4-1 1. Because of the 

load cells on the biaxial machine were designed to measure much larger loads than these, the data 

from these tests was very noisy; the curve in Figure 4-1 1 has had this noise filtered out. A typical 

curve from the Zwick machine is shown in Figure 4-12. The loads shown in this figure are lower 

than those in Figure 4-1 1 because this particular test was performed with a smaller cross load. No 

filtering of the Zwick data was necessary because the load cells on the Zwick machine are more 

precise. In some of the Zwick experiments, photos were taken of the sample as the yam was 

pulled out using a camera that was synchronized with the test machine. Selected photos are also 

shown in Figure 4-12. 

Both sets of experiments show a steep initial increase in load as displacement is applied to the 

gripped yam that is to be pulled out. Some of the displacement during this initial load ramp is due 



to flattening of the crimp in the pulled yam as it is loaded, and some is due to shearing of the 

sample (since the crossover yams apply frictional resistances normal to their orientation in the 

unloaded configuration, some shearing is necessary so that they can support these loads). Both 

phenomena are visible in the photographs in Figure 4-12. Once a critical load is reached, the load 

abruptly drops as the yam starts to slip. This drop may indicate that dynamic frictional resistances 

are smaller than static frictional resistances. A period of relatively constant load follows as the tail 

is pulled into the sample and the yam slips through the fabric under steady state conditions-we 

refer to this constant load as the "steady-state pullout force". As the tail enters the sample, the 

load begins to drop in a nonlinear manner-we refer to this region of the response as the "pullout 

region. 

Because the load cell on the Zwick machine was more sensitive than that on the biaxial 

machine, no noise filtration was necessary and it was possible to see oscillatory peaks in the 

pullout response at the 5 mdmin and 50 mdmin test rates (the machine sampling rate was not 

sufficient to see these peaks clearly in the 500 mmlmin tests). These peaks are not experimental 

noise. They occur because the yams have some set to them-an unloaded yam pulled from the 

fabric retains some crimp. As these yams are displaced so that their set undulations become out of 

phase with the undulations imposed by the weave, bending forces cause the total pullout force to 

increase. When the phase shift reaches the point where the imposed undulations are exactly 

opposed to the set undulations (i.e. after the slipping yam has slipped a distance equal to the 

spacing of the crossing yams), the bending forces tend to drive the slipping yam to the next 

position which aligns the undulation phase, and the load drops. This continues until the total 

distance slipped equal twice the crossing yam spacing, at which point the process starts to repeat. 

This accounts for the fact that the wavelength of the oscillations in the load-displacement 

response is, on average, 1.5 mm, almost exactly double the spacing of the crossing yams. Because 

the pulled yam is under larger tension near the gripped end and therefore straighter with less 

crimp than it is near the free end, the set undulations do not have exactly the same period at all 

locations along the length of the pulled yam, which accounts for the double peaks evident near 

the beginning of the load displacement curve when tensions are largest. These double peaks occur 

because not all of the set undulations are in phase with the weave-imposed undulations at the 

same time. These oscillatory peaks allow us to verify the accuracy of the assumption described in 

Equation (4.24), that the spacing of the crossing yams remains constant along the pulled yam 

throughout the analysis. The data implies that it is not strictly accurate because the wavelength of 

the oscillations of the load-displacement exhibited a slight but consistent increase from the 



beginning to the end of the tests. However, the change in wavelength is less than 5% over the 

course of any test. 

Only 40 to 41 peaks appear on average during the pullout region after the tail has been pulled 

into the sample. The length of the this region is only 60 to 61 nun on average before the pullout 

load reaches zero. With a yam spacing of 0.747 mm, this corresponds to about 80 to 82 crossing 

yams, which is consistent with the 40 to 41 observed peaks. However, all samples were prepared 

with 85 crossing yams. The reasons for the discrepancy can be discerned from the photographs in 

Figure 4-12. When the force reaches zero, a small length of the pulled yam is still embedded in 

the sample, passing over and under several crossing yams. These crossing yams likely impart 

negligible resistance to slip because the yams are composed of many small, untwisted fibers. 

Near the end of the yam, where tensions are very low, there are no forces that tend to preserve the 

shape of the yam cross section or cause the fibers to interact. The fibers are splayed apart, and 

hence the locking forces on the pulled yam vanish and the bending stiffhess of the pulled yam 

drop almost to zero. The drop in bending stiffhess of a multi-fiber yam that results from the 

removal of transverse forces is discussed in Section 3.3. With negligible locking and bending 

forces, very little tension builds up in the yam near the free end. Therefore, even though the yam 

passes through 85 crossing yams, the last few have almost no effect on the response and only 

about 80 to 82 are effective. Also, in some cases, one or more crossing yams would separate from 

the others at the very beginning of the test and slip down along the tensionless yam tails. Such a 

yam is also evident in Figure 4-12. This also reduces the number of effective crossing yams that 

the pulled yam passes through. 

We first hypothesized that the frictional resistance to slip, f *, could be decomposed into a 

component f-at depends on the normal force at a crossover point Fn, and a componentfi" that 

is independent of the normal force and that stems primarily from locking effects: 

fR =7^)+f/ .  (4.33) 

The first constitutive relation that we explored was one where f/ was proportional to the normal 

force with a ratedependent constant of proportionality Ã§v and where /iR was a constant /Ã̂  The 

property f i  was assumed to vary with slip velocity v"*' only. Using this relatively simple relation, 

the analytical model predicted a nonlinear pullout response that can be fit to the experimental data 

very well, as shown in Figure 4-13. The analytical model does not, of course, predict the 

oscillations in the response that come from yam set. Increasing the constantfo scales the entire 

response since it increases the resistance at every crossover point equally, while increasing UN 

changes the degree to which the "capstan effect" causes a nonlinear buildup of tension and hence 



changes the nonlinearity of the pullout region. A largefo and a small UN result in a nearly linear 

curve; a larger / f ~  and a smaller fo that predict the same steady state pullout force predict a far 

more nonlinear drop in the pullout region. The analytically predicted response can be fitted to any 

experimental response by adjusting these two constitutive parameters so that the analytic model 

predicts the same steady state pullout force and the same pullout work from the point where the 

tail enters to sample to the point where the force reaches zero-the area under the pullout curve. 

This ensures that the correct amount of overall scaling and nonlinearity has been achieved. 

These parameters were calculated for every experiment performed on the biaxial machine, 

which were completed first. The resulting values are shown in Figure 4-14, withfo plotted against 

UN. By assuming that UN varies linearly with slip rate, a simple rate dependent constitutive law 

was established: 

The parameter fo was estimated by averaging the fo data from all experiments, while the 

parameters f i  and were determined by averaging the ,un data at each rate. This one 

constitutive law was then used to predict the pullout response for a variety of different load cases. 

These responses are compared to the experimentally measured responses in Figure 4-1 5. In most 

cases, the analytical model predicts the experimentally observed pullout curves remarkably well, 

even with this very simplistic constitutive model. 

However, the data implies that a more sophisticated model may be necessary. As is evident in 

Figure 4-1 5, the response is overpredicted for some cases with a 100 N nominal cross load. 

Figure 4-14, which shows all the measured p~ andfo values, also implies shortcomings in the 

simple constitutive law. On this plot there are negatively sloped isolines that characterize pairs of 

properties (UN, fo). All property pairs falling on one of these lines will predict the same total 

steady state pullout force for a given applied cross load, but with different amounts of 

nonlinearity of the pullout curve. Lines further from the origin correspond to larger steady state 

pullout forces. Ideally, if this constitutive law was sufficiently descriptive, all the values from 

experiments conducted at the same rate should occupy a single point-there should only be one 

common pair of values at any given slip rate. This was not the case. Most of the values 

corresponding to the 300 N and 500 N nominal cross loads did fall on one isoline, meaning that 

properties measured from these experiments all predict the same steady state pullout force for a 

given applied cross load, although they imply different degrees of nonlinearity of the pullout 



curve. Since the fitting process is relatively sensitive to the nonlinearity of the curve, scatter along 

this line is not surprising-small changes in the nonlinearly of the curve can produce large 

variations in the fitted properties. However, experiments conducted with a 100 N nominal cross 

load consistently fell on a different isoline, closer to the origin. These tests required a very 

different set of material properties in order to get a good fit. This is also evident from Figure 4-16. 

This figure plots the observed steady-state pullout force as a function of applied cross load per 

crossing yarn, along with the prediction of the analytical model based on the constitutive law 

given in Equation (4.34). While the prediction fits the measured data relatively well for the cases 

with 300 N and 500 N nominal applied cross loads, it significantly overestimates the steady state 

pullout load foe the cases where the nominal applied cross load was 100 N. Since constitutive 

properties should not vary depending on the loads that are applied, we concluded that a more 

sophisticated constitutive law was necessary. 

We hypothesized that the deficiency in the simple constitutive law related to the resistance 

that stems from locking, fi. As the cross load is decreased, the fabric is compacted less and 

locking forces become smaller, and hence we would expect fi" to decrease. However, the 

constitutive law given in Equation (4.34) treatsff as constant, independent of the locking forces. 

This could explain why the model overpredicts the frictional resistance for the cases where the 

cross load is only 100 N. Fortunately, the locking force FL can be calculated from the analytic 

model, using Equation (4.17). We therefore proposed a more realistic constitutive law that 

includes the effect of locking force variation where resistance f * is proportional to both normal 

contact force FNand the locking force FL: 

f * = f i N  (IJs1@ )F, + 2fi,(vs1@ )FL . (4.35) 

This law provides a much better fit of the biaxial data. Not only did the fitted property pairs (UN, 

UL\ from the biaxial tests fall on the same isoline when plotted against each other, as shown in 

Figure 4-17, but the analytical prediction of the steady state pullout force as a function of cross 

load, using averaged and ,UL data, did not significantly over- or underestimate the 

experimentally measured results, as shown in Figure 4-1 8. 

4.6 Interpretation of Experimental Results 
Using this constitutive model, we analyzed the data from the Zwick tests and determined UN 

and ,uL pairs for each experiment that fit the analytically predicted response to the experimental 

measurements. The resulting data for both the Zwick and the biaxial experiments are given in 

Figure 4-19, although the Zwick data is considered to be more accurate. Nearly all the (UN, ,uL) 



pairs fall on the same isoline, indicating that, with this constitutive model, the analytical model 

predicts the same steady state pullout forces for nearly all the experiments conducted at the same 

cross load. Only the cases with the highest displacement rates and smallest cross loads (500 

mdmin and 100 N, respectively) have a different steady-state response. These cases indicate a 

significantly larger value of ,UN and a significantly smaller value of k, and a larger steady state 

force. 

The fitted values are also shown in Figure 4-20 and Figure 4-2 1, plotted against slip velocity. 

The component of slip resistance that depends on the normal contact force FN increases slightly 

with slip rate. The average value of UN measured from the Zwick experiments increases 

approximately 3% from 0.086 to 0.089 when the rate is increased from 5 to 50 mdmin, and 

approximately 20% from 0.089 to 0.107 when the rate is increased from 50 to 500 mdmin, 

although the data measured at this rate was far more variable. This is roughly consistent with the 

increase in the friction coefficients measured in the yam-to-yam frictions tests described in 

Section 4.2, which increased approximately 4% when the rate was increased from 10 to 100 

mmlmin, and approximately 10% when the rate was increased from 100 to 1000 mdmin. 

However, the increase in ,un at higher rates is somewhat larger than might be expected from the 

yam-to-yam friction tests. 

Additionally, the measured values of UN are significantly smaller than might be expected 

from the friction coefficient values pmeasured in the yam-to-yam friction tests. The coefficient 

p~ is not a friction coefficient like u, which relates a tangential resistance force per unit area to a 

contact pressure, but rather is a constant of proportionality that relates a net effective resisting 

force to a net effective through-thickness force which is represented in the analytical model by 

the crossover spring, as shown in Figure 4-22. In the absence of locking, Equation (4.10) implies 

that the tension T2 downstream of any crossover point can be calculated from the upstream 

tension TI according to the following relation: 

T, = q e 2 @ ,  (4.36) 

because the total angle through which the slipping yam wraps about the crossing yam is twice the 

crimp angle 0. Hence, the following relation between p and pN can be derived: 

For Pvalues that are reasonable for this fabric, ranging from 0.0 to about 0.4 radians, this 



expression implies that dependence on p i s  very small (and hence we are justified in treating fin 

as a material property), but p~ should be only slightly smaller than p. For p = 0.27 (as measured 

in the yam-to-yam friction tests), UN should be approximately 0.256. Therefore, there must be 

other effects that cause the measured values p~ to be so much smaller, on the order of 0.08 - 
0.10. Locking effects no doubt account for some or all of this discrepancy, because in the 

presence of locking, the contact pressures over some portion of the contact area are assumed to 

contribute to the locking force FL and not the normal force FN, as is shown in Figure 4-22. Also, 

locking effects may change the pressure distributions even on contact areas not directly subjected 

to locking pressures. Another possibility is that, because the yams cross at nearly right angles in 

the fabric in the pullout test, as opposed to wrapping around one another in a helical manner, fiber 

entanglements between yams or other effects that increase the friction coefficient may play less 

of a role than in the yam to yam friction tests. 

The average values of measured from the Zwick experiments ranged from approximately 

1.11 at 5 mmlmin to 0.89 at 50 mdrnin to 0.65 at 500 mdmin, decreasing approximately 

logarithmically. The biaxial experiments indicated larger values of pL that decrease more rapidly. 

The values of p. are so large because of the idealized geometry assumed in the analytical model 

to represents the locking phenomenon. As is shown in Figure 4-9 and Figure 4-22, the analytical 

model represents this effect with a truss inclined to the fabric plane. As is described in Chapter 2, 

the properties for the locking trusses are determined by fitting the model predictions to the 

experimentally measured shear response of the fabric, where the primary effect of locking is to 

apply in-plane forces that resist shear deformation. However, as is evident in Figure 4-22, the 

actual net locking forces are oriented at a much greater inclination to the fabric plane than the 

locking trusses are. Therefore, to apply the same effective in-plane forces, the locking trusses 

must carry loads FL that are smaller than the actual net locking forces that act in the fabric. Since 

the model calculates locking resistance fi" from the effective locking forces FL carried by the 

trusses, which are smaller than the real locking forces, the corresponding coefficient p~ will be 

larger than the real friction coefficient. For the geometry of the fabric in question, the in-plane 

projection of a unit force carried by the locking trusses is on the order of eight times larger than 

the projection of a unit force oriented normal to the actual locking contact surfaces shown in 

Figure 4-22, so we expect the p~ values to be on the order of eight times larger than they would 

be if they related the real locking forces toftR. 

The decrease in pL with slip rate is likely related to the fact that the yam cross sections 

deform inelastically in response to locking effects. Appendix A describes a series of experiments 



where the fabric is subjected to cyclic shear loads. These experiments imply that the yam cross 

section become compressed due to locking effects, but that this compression is not immediately 

recovered upon the removal of load. Instead, the cross sections relax slowly, over seconds or tens 

of seconds, in a manner that can be described by a visco-elastic relation. This inelasticity is 

probably due to the fact that the yams are composed of many untwisted fibers, and the 

deformation of the yam cross section is affected by inter-fiber frictional effects. The slow 

recovery of the cross sections from transverse compaction may account for the decrease in 

with slip rate. At low slip velocities, the cross sections have time to relax and apply large locking 

forces within the weave. As the slip velocity is increased, the cross sections do not have time to 

relax and are forced into their compressed configuration all along the yam as it is pulled through 

the weave. Because the cross sections never have time to relax, locking forces are probably 

considerably smaller at larger rates. As the rates become very large, may approach a limiting 

value because there is a limit to the amount of compression the crossover points undergo. 

This phenomenon could also explain why the increase in ,un is larger at large rates. At large 

rates, when the cross sections have no time to relax and generate locking forces, the fabric would 

behave more similarly to a sparsely woven fabric. The contact areas over which locking forces 

are exerted, shown in Figure 4-22, would be smaller, and hence the dependence of the resistance 

on the normal forces FN, characterized by ,uN, would become larger. 
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FIG. 1 Twisted Strand Yarn-to-Yarn Friction Apparatus-Twisted-Yarn Method 

Figure 4-1 Schematic of yarn-to-yarn friction test apparatus from ASTM D3412-01 

Figure 4-2 Modified yarn-to-yarn friction test apparatus 
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Figure 4-3 Yarn helix in a yarn-to-yarn friction test 

Figure 4-4 Forces on a differential section of a helically wrapped yarn 



Figure 4-5 Yarn pullout test using biaxial tensile tester 

Figure 4-6 Pneumatic fixture for performing yarn pullout test using a uniaxial tensile tester 
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Figure 4-7 Varying conditions along a slipping yarn 

Figure 4-8 Simplified representation of forces acting a yarn crossover point 
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Figure 4-9 Truss geometry for analytical pullout model 



Figure 4-10 Conditions at the free end of a slipping yarn 

Figure 4-11 Typical force-displacement response during yarn pullout using biaxial machine 





Figure 4-13 Pullout response predicted by initial constitutive law 
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Figure 4-14 Fitted ,u~ and fo values using initial constitutive law 



Figure 4-15 Experimental pullout responses under different conditions with analytical predictions 
using initial constitutive law 
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Figure 4-16 Experimentally measured steady state pullout force, with predictions of the initial 
constitutive law 
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Figure 4-17 Fitted p~ and p~ values using revised constitutive law 
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Figure 4-18 Experimentally measured steady state pullout force, with predictions of the revised 
constitutive law 
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Figure 4-19 Fitted ,u~ and ,u~ values using revised constitutive law for all tests 
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Figure 4-20 Fitted p~ values using revised constitutive law as a function of @' 
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Figure 4-21 Fitted p~ values using revised constitutive law as a function of tfl@ 



Figure 4-22 Geometry of forces at crossover point 



Table 4-1 Results of yarn-to-yarn friction experiments 





Chapter 5 
Continuum 

5.1 Kinematics of 

Slip Model 

a Continuum Fabric Model with Slip 
The kinematics of a continuum representing a fabric that is subject to slip are much more 

complex than those associated with a slip-free fabric. In a slip-free fabric a single deformation 

mapping can be used at the continuum scale to describe the motion of both yam families, because 

the crossover points of the weave are material points, and both families of yams move in an affine 

manner with the weave. However, when slip occurs, a single deformation mapping can no longer 

be used to describe the motion of yam material of both families. Since each yam family can slip 

relative to the other, points on the two yam families that occupied the same location in the 

reference configuration may occupy distinct locations in a deformed configuration. Therefore, 

two distinct deformation mappings, characterized by deformation gradients Fi and F2, are 

necessary to describe the motion of the two yam families, as is shown at the top of Figure 5-1. 

By comparing these deformation gradients, the amount of slip at any given location can be 

determined. A two-deformation gradient approach of this kind has been proposed by Nadler and 

Steigrnann [2OO3]. 

A drawback of this approach is that the locations of the crossover points are not directly 

followed. The interactions between the two yam families occur at the crossover points and 

determine the evolution of the fabric mesostructure and its macroscopic mechanical response. 

Without directly tracking the crossover points, it is difficult to accurately describe the complex 

interactions of the two yam families through mechanisms such as crimp interchange, trellising, 

locking of the weave, etc. The multi-scale modeling approach described in Chapter 2 cannot be 

easily modified to account for a description of the fabric deformation with two deformation 

gradients. 

An alternative, more effective approach is shown at the bottom of Figure 5-1. In this 

approach, we use a single mapping to describe the motion of the crossover points of the weave, 

rather than the motion of the actual yam material that composes the fabric. We refer to the 

gradient of this mapping as the "weave deformation gradient", even though it does not describe 

the motion of actual material and hence is not actually a "deformation gradient" in the classical 

sense. The motion of yam material is described by slip velocity fields that give the velocity of the 



material that composes each yam family relative to the weave crossover points at every location. 

With this approach, we consider the fabric continuum to represent a "pseudo-material" that is 

defined by the location of its crossover points rather than the locations of its component yams. 

Like the true deformation gradient in the slip-free case, the weave deformation gradient F allows 

the relative motion of adjacent crossover points to be calculated, and hence F determines the in- 

plane deformation of the fabric unit cell (the stretches of the unit cell along the yam family 

directions and the shear angle corresponding to relative in-plane rotation of the yam families). 

However, there is one important difference from the slip-free case. In the slip-free case, the 

amount of yam material associated with every crossover point remains constant, and hence (in the 

absence of shear deformation) the unloaded unit cell configuration remains constant and uniform 

throughout the fabric. In the slip-enabled case, the yams are allowed to slip past the crossover 

points and through the weave at different rates, and hence the amount of yam material of each 

family that is associated with each crossover point becomes a state variable that evolves at every 

point as the fabric is deformed. In other words, at every location the unloaded unit cell 

configuration evolves with deformation and varies from point to point in the weave, as is shown 

in Figure 5-2. 

This approach for describing the kinematics of a slip-enabled fabric has several advantages. 

It is easy to compare model predictions and experimental measurements since the model directly 

follows the locations of the crossover points, which are readily observable in experiments. 

Another advantage is that failure modes such as yam pullout and weave unraveling can be readily 

included in the formulation. By tracking the amount of yam that has slipped past a crossover 

point at a given location and comparing it with the distance from that yam's free end in the 

reference configuration, the onset of weave unraveling can be determined and the unraveled 

crossover point can be removed from the continuum model. Because the yams will never re- 

weave themselves, crossover points will never be created. 

The most significant advantage of this approach is that it allows a model to be developed 

using the same multi-scale modeling approach described in Chapter 2, provided that the response 

of the fabric to deformation is calculated with respect to the evolved unit cell. In the slip-free 

model, the deformation gradient F maps the wavelength vectors pi of the yam families (which 

give the orientations of the yam families and the spacing between crossover points, and hence 

determine stretch and shear of the unit cell) from their reference values to their values in the 

deformed configuration. The evolution of the weave mesostructure, the meso-scale level forces, 

and the corresponding macroscopic stresses are then determined from physically motivated 

relations at the mesoscale. In the slip-enabled formulation, the weave deformation gradient is 



used to determine pi in the deformed configuration, and the response of the fabric can be 

calculated in the same manner. The only difference is that the unloaded configuration of the unit 

cell evolves in the presence of slip and is defined by a set of state variables rather than by 

material properties. The remainder of this chapter details how this evolution is determined from 

meso-level forces within the fabric. 

5.2 Kinematics of Slip at Mesoscale 
We first quantify the unloaded configuration of the unit cell. Any given crossover point can 

be identified either by its location X in the reference configuration or by its location x(t) in the 

deformed configuration at time t, since the mapping between X and x(t) is unique. At time t, 

adjacent crossover points along a yam will have an in-plane spacing 2p measured along the in- 

plane projection of the yam family. However, because of the crimp of the yams, the length of 

yam between the crossover points will have a value of 2L > 2p. In the deformed configuration, 

this section of yam may carry a load. The corresponding unloaded length of that yam section 

is2Â£ shown in Figure 5-3. We define t i  ( ~ , t )  to be the unstretched yam length per quarter 

wavelength at time t (hereafter referred to as the "unstretched yam length") that is associated with 

yam family i and with the crossover point that was located at X in the reference configuration. In 

the slip-free model, the tension in the yams was given by Equation (2.13) and depended on the 

difference between the yam length Li in the deformed configuration and the length OLi in the 

reference configuration. In the presence of slip, the tension for the same linear elastic yams is 

given by: 

T, = k , ( ~ ,  - t,). (5.1) 

It depends on the yam length Li in the deformed configuration and the unstretched yam length t i  

at that time and location. 

This parameter I, is one of the state variables that describe the unloaded configuration of the 

unit cell. It will initially have the value of OLi (assuming that the yams are unstretched in the 

reference configuration) but will evolve as the yams slip. We must develop relations that describe 

this evolution. Define: 

to be the stretch of the yam of family i at a given location and time. We next define two scalar 

fields v,(X,t) and v/X,t) to be the instantaneous velocities at time t at which un-stretched yam 



material of the warp and weft families respectively are sliding past a crossover point that was 

located at X in the reference configuration. We refer to these velocities as SLIDY (SLIp 

Displacement of the Yam) velocities. If a stretched yam of family i has some macroscopically 

observable velocity v?(x,t) at time t relative to a crossover point which was located at X in the 

reference configuration, then the SLIDY velocity is given by: 

v;[@ (x, t ) 
vi (x, t ) = 

A, ( K t )  

These velocities can alternatively be considered as functions of the location x in the deformed 

configuration: 

vi (x(x, t), t) = vi (x, t) . (5.4) 

Next consider a section of the weave consisting of n crossover points along a yam whose 

associated average wavelength vector is given by pi =p&\. (Recall that gi is a unit vector parallel 

to pi). In the deformed configuration, one end of the weave section lies at x - npi and the other 

end at x + npi. In the reference configuration, the average wavelength vector associated with these 

crossover points is given by 'pi = "p̂ Sh and the ends of the same weave section lie at X - nopi and 

X + nopi. At some time t, this weave section will contain a total unstretched yam length of 

2n I.?, where IT is the average unstretched yam length associated with each crossover point in 

the weave section. The instantaneous rate of change of the total unstretched yam length in the 

section will be: 

when vi is expressed as a function of current locations of the crossover points, or 

when vi is expressed as a function of reference locations of the crossover points. The SLIDY 

velocity vi is defined to be positive when it acts in the same direction as vector pi. 

Since n is constant, the instantaneous rate of change of the average unstretched yam length 

associated with each crossover point in this section is: 

The velocities at each crossover point are discrete values. But under the continuum 

approximation, we assume that the length scale of the problem is sufficiently large so that the 



velocities can be approximated as smooth, continuous fields. Under this assumption, as the length 

of the weave section becomes small, the terms v(x - np,t) and v(x + np,t) can be approximated as: 

Here we define ti as a coordinate in the deformed configuration measured parallel to pi so that: 

Substituting Equations (5.8) and (5.9) into Equation (5.7) and assuming that the average 

unstretched yam length over a number of crossover points near x are representative of the 

individual unstretched yam length at x gives the following expression for j i  : 

4 = -piV(vi) gi . (5.10) 

In many finite element formulations, it is convenient to express gradients in terms of the 

reference configuration coordinates. If v is expressed in terms of reference configuration 

coordinates of the crossover points, we can approximate v(X - nop,t) and v(X + nOp,t) as: 

We define Gi as a coordinate in the reference configuration measured parallel to 'pi so that: 

Equation (5.10) can then be written in the following equivalent form: 

Here we define the following operator: 

( ),' = ~ r a d (  ),.mOg,. (5.14) 

Assuming that the SLIDY velocity fields v,<X,t) at a given instant are known, the evolution 

rate of the unstretched yam lengths 4 can be calculated. 



5.3 Slip Driving Force 
We now characterize the forces that drive slip. As described in Chapter 4, slip can occur 

under a variety of different conditions in a fabric. For example, if a single yam is gripped and 

pulled, or if a yam under tension breaks, that yam will slide through the weave due to differences 

in tension acting on its ends. If the fabric is damaged by adjacent yam breakages (i.e. "slit-like" 

damage described in Section 2.1 1 and pictured in Figure 2-26) and is subjected to biaxial tension, 

two modes of slip will occur, as is discussed by Godfrey and Rossettos ([I9981 and [1999]) and in 

Section 2.11. The broken yams will tend to slip out of the weave away from the slit, but they will 

drag the crossing yams with them and hence these crossing yams will slip along the unbroken 

yams at the ends of the slit. The first mode of slip occurs due to uneven tensions acting on the 

broken yams; the second is due to gradients in shear angles of the crossing yams that are under 

tension, which cause transmission of force from neighboring slipping yams. Inertial effects drive 

slip in fabrics in a bulletproof vest during a ballistic impact, as discussed by Tennonia [2004]. A 

small number of yams are impacted by a projectile and are subjected to large displacement rates. 

However, inertial forces prevent the surrounding yams from displacing at the same rates, and the 

impacted yams slip through the weave. 

Still other types of macroscopic loadings can drive slip in other cases. When fabrics are 

subjected to large loads that are not aligned with the yam directions, such as in a bias-extension 

test described in Section 2.10, the yam families rotate relative to each other and attempt to align 

with the loads until the locking phenomenon arrests this motion. At this point, increasing loads 

cause the yam ends to slip out of the weave at the edges of the fabric, and the fabric starts to 

unravel, as is shown in Figure 2-23. In this case, slip is caused by gradients in the locking forces, 

which are very large inside the fabric but necessarily zero at the edges. Another case where fabric 

slip is observable is during composite forming operations, where dry or impregnated fabrics are 

formed into various three dimensional shapes by stamping or drawing applications. During these 

processes, the fabrics are subjected to transverse shear loads as they are dragged across the 

surfaces of the dies or drawing tools. These transverse shear forces can induce significant 

amounts of yam slip within the fabric. 

Although slip can be caused by a wide variety of different loading conditions at the 

macroscopic scale, we must identify a single driving force f at the mesoscale that causes slip to 

occur. As is described in Chapter 4, when a yam is slipping past a crossover point, the crossing 

yam exerts complex tractions on the slipping yam. Some component of these tractions provides 

resistance to slip, which we designate as f *. We consider f * to be a positive scalar, with the 

understanding that it always acts in a direction that opposes slip. We can identify the meso-level 



force f that drives slip by considering steady state slip conditions, where slip velocity is constant. 

Under these conditions, the slip driving force f must equal the slip resistance f ", so whatever 

meso-level force counteracts the slip resistance f * must be slip driving force/ 

Consider a single crossover point which a yam is slipping past under steady state conditions. 

Just "downstream" of the crossover point (i.e. in the direction which the yam is slipping) the 

slipping yam intersects the fabric plane at some crimp angle pD and is under some tension To, 

while it intersects the fabric plane at a different crimp angle pu and is under a different tension Tu 

just "upstream" of the crossover point. Under steady-state conditions, the difference between the 

upstream and downstream tensions, projected onto the fabric plane, must exactly counteract the 

slip resistance f R  in order to satisfy equilibrium: 

f R  =T~COS/!,, - T ~ C O S A , .  (5.15) 

Since it exactly counteracts f *, the we identify this difference in the projected tension across a 

crossover point as the slip driving forcef: 

f = T o ~ ~ ~ / ? D - T u ~ ~ ~ / ! u .  (5.16) 

When the projected tension is greater on one side of a crossover point than on the other, the 

differential will tend to cause the yam to slip past that crossover point. While slip is occurring, 

the resistance to slip f R  supports the projected tension differential. Regardless of the macroscopic 

conditions that result in slip, at the mesoscale slip always corresponds to projected tension 

differentials across the crossover points. 

In a discrete model where every yam is modeled individually, the projected tension 

differential across a crossover point is easily determined. In a continuum model, the length scale 

is assumed to be sufficiently large that tensions can be approximated by smooth, continuous 

fields. As shown in Figure 5-4, a series of step changes in projected tension across successive 

crossover points along a yam can be represented by a smoothly varying projected tension field. 

The gradient of the projected tension field at a given crossover point determines magnitude of the 

projected tension differential at a crossover point. Consider a yam slipping past a crossover point 

located at x, with a p vector describing the quarter-wavelength and orientation of the slipping 

yam and pointing in the direction of slip. A point on this yam halfway between the crossover 

point and the crossover point immediately downstream lies at x + p; a point halfway between the 

crossover point and the crossover point immediately upstream lies at x - p. Under the continuum 

assumption of smooth continuous tension fields, the downstream projected tension TDcosflD, 

which is evaluated at x + p, can be approximated as a function the upstream projected tension 



Tfj~os& (which is evaluated at x - p), the gradient of the projected tension field at x, and the 

distance between the two points 2p: 

= Tu cos flu + 2pV(T cos fl)- g 

Here p, g, T, and f l  are, respectively, continuum approximations at x of the quarter-wavelength, 

the in-plane yam orientation vector, the tension, and the crimp angle. The gradient operator 

a( )/a{ is defined in the same manner as in Equation (5.9). This equation can be substituted 

into Equation (5.16) to determine an expression for the driving force f in terms of the continuum 

tension fields: 

f = Tn cos A, - Tn_, cos Ã 2 p V ( ~  cos 8- g . (5.18) 

The driving force f carries a sign that indicates the direction along the yam along which the 

tension is increasing, relative to the vector g. 

As was the case for evolution of the unstretched yam length, described in Equation (5.1 O), the 

slip driving force depends on a gradient of a quantity projected along a yam family. However, 

unlike the equation for the evolution of the unstretched yam length, the slip driving force 

equation has a coefficient of 2p instead of -p. The factor of 2 appears because the tension 

differential is determined across a crossover point, which has an in-plane size of 2p. In the case of 

the unstretched yam length evolution, there are two segments of yam per crossover point, so the 

evolution of each occurs across half a crossover point, which has an in-plane size ofp. The slip 

driving force equation has a positive coefficient because increasing tension along a yam 

corresponds to a positive driving force according to our sign convention, whereas increasing slip 

velocity along a yam corresponds to a net loss of yam material in any given section and hence a 

negative evolution rate. 

As we did for (. , we can re-write the expression for f in terms of reference-configuration 

gradients. Restoring the yam family identifiers i (which have thus far been omitted for clarity) 

gives a final expression for the slip driving forcefi in yam family i: 



The gradient along the yam family operator ( ) is defined in Equation (5.14). If the tension 

fields and the yam crimp angles Bare known, the forces f, that drive slip can be calculated. 

In the slip-free case, the crossover points provide infinite resistance to slip, and hence they 

can support arbitrarily large projected tension gradients. As the gradients in the tension fields 

increase, the driving force f  will increase, but the resistance to slip f  " will undergo a 

corresponding increase and no slip will occur. In the slip enabled case, there will be some 

maximum resistance that the crossing yams can exert through static frictional effects. When the 

tension gradients become large enough so that the driving force f  exceeds this maximum static 

resistance, the yams will begin to slip at some velocity v'*. It can be shown that, provided slip 

velocities increase as the driving force increases, slip will tend to reduce gradients in the 

projected tensions. Consequently, a slip-enabled fabric can support only finite projected tension 

gradients. 

5.4 Slip Constitutive Law 
In the preceding sections, we describe how the forcesf, that drive slip can be determined from 

the gradients in the projected tensions along the yams, and how the mesostructure around a 

crossover point evolves (through the evolution of the unstretched yam lengths I ) in the presence 

of gradients of the SLIDY velocities vi, which can be calculated from the slip velocities of the 

stretched yams v,"? The final element required by the slip theory is a constitutive law that relates 

the slip driving forces f, and the slip velocities v,'"~. In Chapter 4 we describe various 

experimental investigations that we conducted in order to understand the relationship between the 

forces f R  that resist slip and the slip velocity vil? We now present a generalized form for a 

constitutive law and then specialize it according to the experimentally studied slip resistances. 

In some ways, yam slip in woven fabrics can be considered to be analogous to plasticity in 

elastic-plastic materials. Elastic-plastic materials deform only elastically until an appropriate 

loading metric (e.g. a Mises stress) reaches some critical resistance of the material to plastic 

deformation (e.g. a yield stress), at which point plastic deformation can occur. Slip-enabled 

fabrics deform in a slip-free manner until the magnitude of the slip driving force exceeds a critical 

resistance to slip, at which point slip can occur. We define the parameter f to be the smallest 

magnitude of the driving force f at which non-zero slip velocities can occur at a given fabric state. 



Before yams begin to slip, this parameter is equal to the maximum slip resistance that can be 

exerted by static frictional effects. As long as the magnitude of the driving force f  is smaller than 

f at every crossover point, no slip will occur. At some point, the projected tension gradients may 

become sufficiently large so that the magnitude off reaches f  ', at which point slip can occur. 

Note that once slip commences and the slip velocity #@' is nonzero, the value off may change 

due to differences between dynamic and static frictional effects. f c  may also evolve as the fabric 

state evolves; for example, if the through thickness force FN increases, frictional effects would 

become larger and f would likely increase. We can define a "slip overforce function" that is 

analogous to the yield function in plasticity theory: 

f 0  + f I -  f C .  (5 -20) 

Next, we define a "flow rule" that describes the direction of slip. We expect slip to occur in 

the direction of the driving force: 

vS* = lvsi@l sign(/). (5.2 1) 

We define v"@' to be positive when the yam is sliding past the crossover point in the direction 

indicated by g and p. To verify that v'* and f should have the same sign, imagine a yam slipping 

past a crossover point with a positive velocity. Since the resisting force f R  acts in the negative 

direction, we expect the downstream tension, which lies in the positive direction, to be greater 

than the upstream tension. Thus tension increases in the positive direction and /, as calculated 

from Equation (5.19), will have a positive sign. 

In general, slip could be governed be either a rate-independent or a rate-dependent 

constitutive law. In the rate-independent case the overforce can never exceed zero: 

f "  = l f l -  f c  S O .  (5.22) 

When f is less than zero, no slip occurs and lv"@'l = 0. Only when f  = 0 can lv"@'l can be 

nonzero. This allows us to define a consistency condition: 

lvsi@l f = 0. (5.23) 

In this case, as the fabric is macroscopically loaded and the projected tension differentials become 

large enough to drive slip, exactly enough yam slip will occur at every moment so that at all 

times the magnitude of the driving force f  at every point is limited to the value off (which 

depends on the fabric state and which may evolve), regardless of the applied loading rates. The 

magnitude of the slip velocity lv"*'l can be arbitrarily large in order to satisfy this condition. We 

note that implementation of such a rate-independent constitutive law presents significant 

challenges, as the implementation of three-dimensional rate-independent plasticity laws do. 



However, implementation of slip is further complicated by the fact that the slip theory is non- 

local: the slip driving forces and the evolution of the of the yam lengths must be calculated from 

gradients of yam tensions and slip velocities, respectively. 

Fortunately, the experiments described in Chapter 4 indicate that the resistance to slip 

depends on the slip rate, and consequently it is more appropriate to develop a rate-dependent slip 

law. In a rate dependent model, a bbviscosity" law relates the magnitude of the slip velocity I$'? to 

the magnitude of the slip-driving force 1 f I. In many rate dependent plasticity models, a power law 

type relation is used to relate the plastic strain rate to the magnitude of the stress that drives 

plasticity. An analogous power-law type viscosity model for yam slip in a fabric would have the 

following general form: 

where a describes the rate sensitivity of the expression and vo gives the slip velocity magnitude at 

some reference driving force magnitude fo. We will show that such a viscosity law fits the 

experimental measurements described in Chapter 4 well. 

The experiments indicate that the essential features of the slip response for the KevlarO fabric 

can be captured with a relatively simple law that describes the resistance f * that opposes steady- 

state slip at a constant velocity $*: 

( s b  bL f R  = gN (vsl@ bN + 2FL v (5 .25) 

Here FN is the through-thickness force exerted by one yam family on the other at the crossover 

point, and FL is the force camied by the locking truss in the idealized unit cell geometry that 

represents the compressive contact between the cross sections when the fabric jams. The yam 

pullout experiments in Chapter 4 give average values of ,uN and iti, at three different slip velocities 

v"@, shown in Figure 4-20 and Figure 4-21. The UN values increase non-linearly with slip 

velocity, while the , u ~  values decrease with slip velocity. 

Decreasing frictional resistance with increasing velocity leads to inherently dynamic effects 

which cannot be easily captured in the quasi-static implicit framework that we will use to validate 

the slip model. We therefore neglect the rate dependence of /4 and treat it as constant. For the 

same reason, we also neglect the abrupt drop in resistance as the yams start to slip, which is 

presumably due to the difference between the static and dynamic frictional resistance. 



Because the experiments in Chapter 4 were conducted under steady state conditions, the 

magnitude of the slip driving force 1 f 1 must balance the slip resistance f R ,  so we can write the 

following expression: 

\f\s f i N  (v"" )FN + 2@ (5.26) 

If we invert the general power-law viscosity relation given in Equation (5.24) to get 1 f 1 as a 

function of I#@[, we get: 

1 

Comparing this relation with Equation (5.26) implies that, in order for the power-law viscosity 

relation to be consistent with the experimentally measured constitutive behavior for the slip 

resistance, pN must have the following form: 

1 - 

fill = pc + ̂ io - pc(I'-l)aÂ with 

- - PC = and ,u0 = 
fo - ̂ F L  

FN FN 

As is shown in Figure 5-5, this form for UN fits the experimentally measured data very well, 

and hence a power-law relation is a reasonable means of approximating the relationship between 

~v'*l and I f I .  Substituting this expression into Equation (5.26) and inverting to solve for 1v""l 
gives a final form for the constitutive relation: 

0 \A *LFL + ̂ cFN 

The critical slip resistance f ' depends on both the locking force FL carried by the locking truss 

and the contact force FN carried by the crossover spring in the model: 

f ' = 2 ~ ~ F ~  + U C ~ N -  (5.30) 

The constitutive relation has five material properties that can be determined from the pullout 

experiments. pi. is determined directly by averaging all the pi values at all slip velocities. The 

value is the value of at some slip velocity V* = vo. The value of tic is the value of UN that 

corresponds to zero slip velocity; it can be determined by extrapolating the pH-V1@ data back to 



i/lf = 0. Finally the rate sensitivity a can be determined provided the value of pn is known at 

some velocity li/*l other than vo: 

Data fiom the biaxial tests and the Zwick tests yield slightly different values for these properties 

as reported in Table 5-1. 

The behavior of the simplified slip constitutive relation is shown in Figure 5-6. For a given 

value of FÃ there is a critical force f " = 2ML + MN that is independent of slip velocity. When 

the driving force f is smaller in magnitude than f ", no slip occurs. Increasing the magnitude of the 

slip driving force past f causes increasingly large slip velocity magnitudes, with the rate of 

increase determined by the exponent a and the reference forcefo = 2p& + UifN that results in a 

corresponding reference velocity vO.' 

Even though this simple constitutive relation omits several aspects of the slip response, such 

as the decrease of with v^, it still predicts the pullout behavior measured in Chapter 4 with 

very good accuracy. Figure 5-7, Figure 5-8, and Figure 5-9 show the pullout responses measured 

using the Zwick apparatus at 5 mmlmin, 50 mndmin, and 500 mmlmin respectively at different 

cross loads, and compare these responses with the predictions of the analytical model using the 

slip constitutive relation and the material properties from the Zwick tests in Table 5-1. Although 

the representation of as constant causes the response to be slightly overpredicted at the fastest 

rates and the largest cross loads, where locking effects are most important and where the locking 

friction should drop, the predictions of the pullout responses are generally accurate. This indicates 

that this simplified slip law is sufficient for validation of the slip theory. In future work more 

complex and accurate slip constitutive laws may prove to be more effective, especially if a 

dynamic analysis is performed utilizing an explicit finite element framework. 

-- 

' As FN is increased, the critical force f increases and the rate of increase of slip velocity with f decreases. 
When there is no through-thickness force, Fn = 0 and the only resistance stems from locking effects, which 
are treated as rate independent. Hence in this case, the response becomes rate independent, with f c  = 

2,uLFL. Once this resistance is exceeded, ~v"*l can be arbitrarily large. To avoid this situation, which can 
introduce instabilities in an implicit analysis, we enforce a numerical "floor" of 0.01 N on the value of FN 
used to calculate h/lv\. If the actual value of FN is smaller than this value, the constitutive law uses this 
value instead, so the relation always retains some rate dependence. 



5.5 Combined Slip Formulation 
Combining all the elements of a slip formulation discussed in this chapter results in a non- 

local slip theory. A single deformation mapping is used to describe the motion of the weave 

crossover points in space relative to some reference configuration. The gradient F of this 

mapping, referred to as the "weave deformation gradient", can be used to calculate the deformed 

configuration of the unit cell, including the deformed yam lengths Li. The tensions are calculated 

from the difference between these deformed lengths and the unstretched lengths 1c. 

The initial values of these unstretched yam lengths are known, but they evolve with deformation. 

Gradients in the tensions along the yams result in driving forcesf: 

/Â = 2 Opi(q c o s ~ )  (5.33) 

If sufficiently large, these forces drive slip velocities v,"@ according to a constitutive law that 

depends on the meso-level forces in the fabric: 

s l i p  - ,,slip - 1  Is id/ ) .  (5.34) 

Using the stretches in the yams 4, which can be calculated from Li and 4, these slip velocities can 

be converted to SLIDY velocities vi that reflect the rate at which unstretched yam material slips 

relative to the crossover points: 

slip 
- "i vi =-â 

A: 
L 

Finally, gradients of the SLIDY velocities along the yams cause the unstretched yam lengths to 

evolve: 

t i  =-OP i v'. i (5.37) 

So the yam tensions, and hence the stresses, depend on state variables that evolve in the presence 

of gradients of quantities calculated from gradients of tensions. Implementing this non-local 

theory into a finite element framework presents significant challenges which are discussed in the 

next chapter. 



Figure 5-1 Two approaches for describing the kinematics of a fabric in the presence of slip; (Top) 
Use separate deformation mappings to describe the motion of each yarn family; (Bottom) Use a 

single deformation mapping to describe the motion of the crossover points 



Figure 5-2 Differences between the slip-free and slip-enabled formulation (a) Yarn lengths 
associated with a crossover point remain constant and uniform throughout fabric (b) Yarn lengths 

associated with crossover point evolve with slip and vary from point to point 



Figure 5-3 Description of the amount of yarn material between adjacent crossover points 
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Figure 5-4 Continuum approximation of step changes in tension along a slipping yarn 
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Figure 5-5 Power-law viscosity requires p~ relation that approximates experimental data well 
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Figure 5-6 Behavior of simplified slip constitutive law 

Figure 5-7 Comparison of pullout response predicted using analytical model and simplified slip 
constitutive law to experimental data at 5 mm/min 



Figure 5-8 Comparison of pullout response predicted using analytical model and simplified slip 
constitutive law to experimental data at 50 mdrnin 

Figure 5-9 Comparison of pullout response predicted using analytical model and simplified slip 
constitutive law to experimental data at 500 mdrnin 



Table 5-1 Properties for simplified slip constitutive law 

Simplified Slip Constitutive 
Law Properties (Biaxial) 

Simplified Slip Constitutive 
Law Properties (Zwick) 



Chapter 6 
Implementation of Continuum Slip Model 

6.1 Challenges of Implementing Continuum Slip 
Chapter 5 describes a theory for capturing yam slip in a continuum fabric model. The forces 

that drive slip, fi, are calculated from the gradients of yam tension Grad(7}) according to 

Equation (5.19). When they become sufficiently large, these forces cause the yams to begin to 

slip at velocities v,'*, according to the constitutive law given in Equations (5.21) and (5.29). The 

slip velocities of the stretched yams v,"@ can be converted into SLIDY velocities vi using 

Equation (5.3). The unstretched yam lengths 4 evolve at a rate {., that is proportional to the 

gradients of the SLIDY velocities, Grad(vi), according to Equation (5.13). The yam lengths at a 

given time are calculated by integrating the evolution rates forward through time from known 

starting values OL~. Implementing this theory into a finite element framework presents a number of 

complex challenges. 

The most significant challenge arises from the fact that traditional finite element frameworks 

are well suited only for use with "local" material models-there is an assumption that the 

response of a material at a given location depends only on the gradient of deformation (or the 

strain) and on other quantities, such as stresses, state variables, etc, evaluated at that location. 

Traditional finite element frameworks are not generally well suited for theories where the 

material response at a point depends on gradients of quantities other than the deformation. 

According to the slip continuum theory described in Chapter 5, the material response depends on 

the unstretched yam lengths t i ,  which evolve based on the gradients of slip velocities, which are 

driven by gradients of tension. So the material response depends on the gradient of the gradient of 

the yam tensions. 

Unfortunately, the yam tensions (like the stresses) are not calculated as smooth, continuous 

fields, but rather are calculated at discrete locations within the finite element mesh-the 

integration points of the elements. In order to implement the slip theory, a method must be 

devised for estimating a smooth tension field from these discrete values so that the slip velocities 

can be calculated, and for estimating a smooth velocity field from the calculated slip velocities so 



that the evolution of the unstretched yam lengths can be calculated at the integration points. 

Estimation of these smooth fields is complicated by three factors. 

First, for an arbitrary finite element mesh of quadrilateral elements, the integration points are 

located at non-regular locations, as is shown in Figure 6-1. It is much more difficult to estimate 

smooth fields in multiple dimensions when the points at which the field values are sampled are 

not located on a regular lattice. 

Secondly, the numeric locking problem discussed in Appendix C introduces small oscillatory 

errors into the tension values calculated at the integration points, which do not vanish as the mesh 

is refined. These errors cause larger errors into the calculated gradients, especially where the 

mesh is refined and the integration points are close together, and can even result in the 

appearance false gradients. When these inaccurate tension gradients are used to calculate slip 

velocities, the errors are further magnified, because the slip velocities in K e v l d  fabrics are very 

sensitive to variations in the tension gradients. When the gradients of the erroneous slip velocities 

are calculated, the error is magnified again, especially in areas where the mesh is refined. 

Thirdly, in many applications it is most important to accurately measure slip near the edges of 

a fabric, especially if the redistribution of loads near a clamp or a damaged area of fabric are 

being investigated, or if yam pullout or weave unraveling are being simulated. However, it is 

more difficult to accurately estimate the gradient of a field near the edge of the region where the 

field is sampled. A method of estimating the gradients must be adopted which allows for realistic 

boundary conditions on the tensions and slip velocities to be applied, to ensure that slip near the 

edges of the model is captured accurately. 

We have developed a number of different methods for calculating the tension and slip 

velocity gradients and implementing the slip theory into the commercial finite element code 

ABAQUS. None of these methods is completely satisfactory; better numerical methods need to 

be developed for implementing a non-local material model that suffers from numerical locking 

into a finite element framework. However, our methods are sufficient for validation of the slip 

theory against several physical cases, despite some persistent numerical inaccuracies. 

6.2 Hybrid Element Implementation 
In order to calculate tension and slip velocity gradients in a finite element framework, we first 

tried developing hybrid elements which estimate smooth, continuous fields that approximate the 

calculated tensions and slip velocities at the integration points and that are interpolated over each 

element from tension and velocity degrees of freedom. The gradients of these fields can be 



calculated from the degrees of freedom and the gradients of the interpolation functions. This 

method is attractive because it allows slip velocities and yam length evolution rates to be 

calculated element by element, as compared to other methods that require the fabric state to be 

calculated over a patch of multiple elements before gradients can be determined and slip 

calculations can be made. Integration of the evolution of the unstretched yam lengths forward 

through time can be performed implicitly if the slip velocities and evolution rates are calculated 

using this method, while for other methods explicit time integration with very small time steps is 

the best alterative. Although this approach ultimately proved unsatisfactory due to numeric issues 

introduced by the locking problem described in Appendix C, we nevertheless detail the method 

under the expectation that further investigation may lead to numerical techniques that eliminate 

the locking problem. 

We begin with the hybrid element formulation described in Appendix B. This element 

formulation introduces a mean amplitude field to the element with corresponding additional - 
degrees of freedom A ,  and uses these degrees of freedom to calculate the amount of crimp 

interchange that occurs everywhere in the element. This formulation is more computationally 

efficient that a purely displacement-based formulation and is easier to implement in the presence 

of inelastic phenomena such as slip. We then introduce additional fields that are used to estimate 

smooth projected tension fields within the element in order to calculate the tension gradients. For 

each yam family, we introduce a set of interpolation functions N ~ ( x )  that describe the estimated 

projected tension field T at any point X within the element, given a set of n~ tension degrees of 

freedom fa : 

These interpolation functions may be different from the functions that are used to interpolate 

displacements or mean amplitudes. It is more convenient to estimate the projected tension field 

Tcos /? instead of just the tension field T because the slip driving force f depends on the gradient 

of the projected tension, according to Equation (5.19). Unlike the tension fields described in 

Appendix C, which were intended to eliminate the element locking problem, the tension fields 

described by Equation (6.1) are "informational" fields in that they are not directly used to 

calculate the stress or the through thickness forces. Stress and through thickness force are 

determined from actual tension values T that are calculated at the integration points from the yam 

stretches. Consequently, the reaction forces associated with the displacement and mean amplitude 



fields will have no dependence on the projected tension degrees of freedom and the 

corresponding terms of the stiffhess matrix will be zero. 

In order to solve for the additional degrees of freedom, we must develop corresponding 

equilibrium equations. Since the estimated projected tension fields should approximate the actual 

projected tension values Tcosp calculated at the integration points, we introduce the following 

equilibrium equation in strong, or local, form: 

f(x) = T(X)COS /?(x). (6.2) 

The corresponding weak or integral form is obtained by multiplying this expression by an 

arbitrary admissible test function T and integrating over the element: 

For any estimated field f ( x ) ,  there will be residual generalized forces A/ that are conjugate 

to each of the degrees of freedom f a .  These forces are determined by choosing a test function 7 

that is interpolated from test degrees of freedom according to Equation (6.1), and then 

choosing successive sets of test degrees of freedom = ljab for b = {l,2,. . .nr}. This gives nr 

residuals associated with each of the nr tension degrees of freedom: 

Because integration in a finite element code is typically performed numerically, this integral 

expression can be rewritten as a sum over the integration points: 

Here wq is the integration weight associated with integration point q, Jq is the element 

isoparametric Jacobian at q, and T, and fl, are the actual tension and crimp angle, respectively, 

calculated at integration point 4, which depend on the displacement and mean amplitude degrees 

of freedom of the element. Refer to a finite element text such as Bathe [I9961 for further details 

regarding numeric integration. Note that the same integration orders need not be used for 

evaluating the tension field residuals and the displacement and mean amplitude residuals. 

However, using different integration orders for different residuals would require multiple sets of 



integration points per element. Not only would this practice cause the memory storage 

requirements for such an element to become large, but it would also pose challenging questions 

regarding how the evolution of the state variables for the two sets of integration points should be 

calculated. For simplicity, we assume the same integration order for all residual equations, 

sufficiently large so that the displacement equations are fully integrated (since reduced integration 

is known to introduce spurious deformation modes into the fabric element, as is discussed in 

Appendix C). 

When all residuals A/ are zero, the corresponding set of nodal tension degrees of freedom fa 

generate an estimated tension field T(x) that best approximates T(X). These degrees of freedom 

can be calculated by the Newton-Rhapson algorithm used by implicit finite element codes, 

provided that the variations of all the residuals with all degrees of freedom are known. Because 

the through thickness forces and the stresses do not depend on T(x), the residuals associated 

with the displacements u, and the mean amplitude 2 have no dependence on and hence the 

corresponding variations are all zero: 

AjaU and R: give the residuals associated with displacement of displacement node a in the j- 

direction, and with a change in mean amplitude at amplitude node a, respectively. The variations 

associated with the residuals AaT are given below: 

8 ( ~  cos f l )  9 

9  
< ~ 9 J 9  



Here qb is the displacement of displacement node 6 in the /-direction, F,K give the components of 

the deformation gradient l?, NaU gives the interpolation functions associated with the displacement 

degrees of freedom at displacement node a, N/ gives the interpolation function associated with 

the mean amplitude degree of freedom 2 , and ifanK gives the gradient of NaU in the K-direction 

in the reference configuration. The residuals given in Equation (6.5) and the variations given in 

Equations (6.8) - (6.10) are added to the element residual vector and stifhess matrix, 

respectively, and the resulting hybrid element formulation can be used to determine the additional 

tension degrees of freedom. 

Once these tension degrees of freedom are known, the gradients of the estimated projected 

tension fields can be readily calculated: 

Here e~ is a unit vector in the reference configuration K-direction, and N~~ is the gradient of the 

interpolation function N in the reference configuration AT-direction. 

At each integration point, the through-thickness and locking forces Fn and FL are known, as 

are the yam stretches A and quarter-wavelengths p. ~ rad(T ' ) ,  which approximates Grad(Tcos,@, 

can be evaluated, and so the SLIDY velocity vi can then be calculated using Equations (5.19), 

(5.29), and (5.3). However, in order to calculate the evolution of the unstretched yam lengths I 

using Equation (5.13), the gradient of vi must be determined. We therefore repeat the procedure 

outlined above to estimate a smooth Vi field. Suitable interpolation functions N/ are introduced 

that allow smooth estimated SLIDY velocity fields 9 to be calculated from SLIDY velocity 

degrees of freedom ca : 

We require (hat the difference between the calculated SLIDY velocities v and the estimated 

SLIDY velocity fields ? vanish at the integration points, which result in a set of residuals that 

must be zero: 

vq is the SLIDY velocity that is calculated at integration point q. The variations of R,' with 

respect to the displacement, mean amplitude, and tension degrees of freedom are: 



Note that v depends on the weave deformation gradient F and hence on the displacements - 
because FN, FL, andp depend on F. v depends on 2 because FN and FL depend on A . v depends 

on the nodal tension degrees of freedom fa because it depends on the slip driving forcef. as fa 

vary, ~ r a d ( f )  varies and hence f varies. 

If an explicit evolution scheme for I is used, the value of I for the current increment, It'& , 

is determined by the size of the increment At and the evolution rate I' at the end of the previous 

increment: 

p+At = I t  + At?' . (6.17) 

Such an approach typically requires very small values for At in order to ensure accuracy and 

stability, and hence can be very computationally expensive. to this case, the value of I that is 

used to calculate stresses, through thickness force, etc., will not depend on the estimated SLIDY 

velocity fields calculated during the current increment and hence none of the residuals other than 

RaV will depend on the SLIDY velocity degrees of freedom c, . Consequently, if" = IKAV = IKTV = 

0. Furthermore, the variation of RaV with respect to cb will only have a single term: 

However, an advantage of this hybrid element approach is that it permits an implicit 

evolution scheme for I . In other words, if the evolution rate at the end of the previous increment 

is given by (.' and the rate at the end of the current increment is calculated to be 2"" from the 

estimated SLIDY fields, then the length for the current increment i'+̂  can depend on both rates 

according an approximate implicit integration scheme such as the trapezoidal rule below: 

Such an algorithm permits much larger time increments 

(6.19) 

and guarantees stability. However, 



because the stresses, through thickness force, etc., depend on it*" , which now depend on i'*" 
and hence on the estimated SLIDY fields, all of the residuals will now depend on and K'", 

K"', and K" will no longer be zero. Furthermore, ~ % l l  have additional terms: 

The resulting element stifhess matrix will be neither sparse nor symmetric. Our numerical trials 

indicate that convergence is not guaranteed and may be extremely slow. Further research into the 

numerical behavior of this system is necessary. 

We still must address the choice of suitable interpolation schemes for T and $. 

Interpolation using piecewise polynomial functions is most common. However, the oscillatory 

noise in the tension data calculated from the locking phenomenon described in Appendix C limits 

the order of the polynomials that can be chosen. For example, consider the simple one 

dimensional case shown in Figure 6-2. In this case, the tension field increases linearly from 0.8 to 

1.0 along one element of unit length, remains constant at 1.0 along a second element, and 

decreases linearly to 0.8 along a third. This tension is sampled at three Gauss integration points, 

which is consistent with full integration of an element with quadratic displacement interpolation. 

In the cases shown at the top of the figure, the tension is sampled accurately. In the cases shown 

at the bottom, oscillatory noise has been added to the sampled tensions: the outside integration 

points have been increased by a random value between 0 and 0.1, and the central integration point 

has been decreased by a random value between 0 and 0.1. Such noise is consistent with the noise 

generated by the numeric locking phenomenon. In the noise free cases, both a continuous linearly 

interpolated estimated tension field and a continuous quadratically interpolated estimated tension 

field exactly reproduce the real tension fields. In the presence of noise, the linear estimated field 

still closely approximates the real tension field. However, the quadratic estimated field conforms 

to the oscillatory noise and indicates oscillating tensions and large, artificial gradients. Such 

problems are even more severe when discontinuous interpolation fields are used, and when the 

estimated field is approximated over a two dimensional domain, as it is in actual elements. In 

general, in order to avoid large, artificial gradients from the oscillatory noise, the estimated 

tension fields must be interpolated at a lower polynomial order than the displacement fields, as 

the interpolation order of the displacement fields determines the order of integration and hence 

the number of Gauss integration points per element. 

The simplest possible interpolation scheme, which is discussed in greater detail in Section 

6.5, is to treat the estimated tension and SLIDY velocity fields as piecewise constant over each 



element, so that n~ = nv = 1 and and tf are equal to unity. This is equivalent to finding the 

average value of tension and SLIDY velocity over the element. However, a field that is constant 

over an element has no gradients, so use of such an interpolation scheme would never result in 

slip. The next simplest scheme would be to assume that the fields vary linearly over each element, 

with three degrees of freedom describing the linear variation in two dimensions: 

f = f , + f , ~ + f , ~ .  (6.2 1) 

The fields yielded by this scheme are discontinuous at the element boundaries We experimented 

with such an interpolation scheme and were met with limited success. The chief shortcoming of 

this scheme is that the gradients it predicts are extremely sensitive to small errors in the tension 

values sampled at the integration point values, especially when the mesh is significantly refined, 

so the oscillatory noise from the locking phenomenon resulted in tension gradients with large 

errors. 

Interpolation schemes that are continuous across element boundaries proved to be less 

sensitive to errors at individual integration points. The continuous bilinear and biquadratic 

interpolation schemes used for traditional finite elements (see Bathe [1996]) are not suitable for 

representing fields that are specific to a particular material direction in an anisotropic material, 

because they cannot accurately represent certain common physical situations, as is described in 

Appendix D. We therefore developed an interpolation scheme that is continuous across element 

boundaries and that can accurately represent fields specific to a specific material direction. We 

refer to this scheme as "chordal interpolation" because it involves linearly interpolating along a 

chord parallel to the material direction that connects points on the element edges. The field values 

at these points are interpolated either linearly or quadratically from the nodal field values at the 

end points of each element edge. When the material directions are aligned with the edges of a 

rectangular element, chordal interpolation is equivalent to linear interpolation in one direction and 

either linear or quadratic interpolation in the other. Because we commonly use a biquadratic 

interpolation scheme for displacement interpolation, we limit the chordal interpolation scheme to 

linear interpolation along the element edges. The chordal interpolation scheme is discussed in 

detail in Appendix D. 

We investigated a wide variety of different hybrid element formulations, including 

formulations that combined bicubic, biquadratic, or bilinear displacement interpolations with 

biquadratic, bilinear, or linear chordal tension and velocity interpolations, and with different 

orders of integration. As is described in Appendix C, some of these formulations suffer more 

severely from the numeric locking phenomenon than the fully integrated biquadratic 

displacement based elements do. Some exhibit spurious modes that caused extremely unrealistic 



displacements to be predicted or that caused the element stiffiess and the tension gradients to be 

severely underestimated. The most successful element formulation used biquadratic interpolation 

for the displacement and mean amplitude degrees of freedom, linear chordal interpolation for the 

tension and velocity degrees of freedom, and nine integration points to ensure that the 

displacement residual equations were fully integrated. This element suffered from the numeric 

locking phenomenon, but not as severely as some of the formulations, exhibited no spurious 

modes, and predicted realistic (although somewhat noisy) tension and velocity fields in all 

physical cases investigated. 

This element was ultimately unsatisfactory. Because the estimated tension fields were 

continuous but not smooth across element boundaries, the tension gradient along a given yam is 

constant within each element but abruptly changes at each element boundary. Furthermore, 

numerical errors caused oscillations in the estimated tension fields-tension would be 

overpredicted in one element and underpredicted in the next (although the net error integrated 

over the elements is necessarily zero). It is not clear if these oscillations are caused by the 

numeric locking problem or other instabilities in the hybrid element formulation. They result in 

abruptly changing tension gradients from one element to the next, and in some cases even created 

"saw-tooth" shaped estimated tension fields, with tension increasing across one element, 

decreasing across the next, then increasing again, etc. The corresponding slip velocities would 

therefore also vary abruptly from element to element and could oscillate from positive to negative 

along subsequent elements. This in turn would cause the model to predict large yam length 

evolution rates near the element boundaries, which cause the yams "bunch up" along the element 

boundaries. The resulting predictions of the fabric mesostructural evolution is therefore highly 

mesh dependent and non-physical. This behavior is shown in Figure 6-3 for the bias-extension 

case with a very fine mesh. Even though the tension contours appear reasonably smooth, a great 

deal of oscillatory noise is evident in the SLIDY, velocities, and the true yam length evolution 

rates are outweighed by erroneously large values at the element boundaries. 

6.3 Fourier Smoothing Techniques 
The problems with the hybrid elements stemmed from the fact that the fields they predicted 

were non-smooth. Higher order interpolation functions that yield smooth functions are more 

adversely affected by the oscillatory noise from numeric locking. Therefore, we investigated 

other means of smoothing the estimated tension and velocity fields. One common method of 

smoothing a data field is to approximate the field with a surface constructed of splines. This 



procedure is straightforward in one dimensional domains and in two dimensional domains where 

the sampled points are regularly spaced, as is shown at the top of Figure 6-1. However, it is 

extremely challenging to generate a smooth field using splines on a two dimensional domain with 

irregularly positioned data points, such as a model arbitrarily meshed with quadrilateral elements 

shown at the bottom of Figure 6-1. Therefore, we investigated non-spline techniques for 

smoothing the data fields. 

The first such technique that we investigated involves transforming the tension data from a 

spatial domain to a frequency domain using fast Fourier transforms. The transformed data can 

then be passed through a filter to eliminate any noise that appears above a given cutoff frequency. 

In other words, any features that have a length scale smaller than a certain value can be 

eliminated. When small length scale features, such as abrupt peaks or troughs in tension at the 

element edges, are eliminated, the data is smoothed. The filtered data can then be transformed 

back into the spatial domain and analyzed. Examples of these transformations are shown in 

Figure 6-4 for a state of tension predicted in the bias-extension case, and in Figure 6-5 for a state 

of tension predicted in the slit-damage case using a quarter-symmetry model. These test cases are 

described in detail in Sections 2.10 and 2.1 1, respectively. Note that these fields are plotted in the 

reference configuration geometry. Provided that a sufficient filter size is chosen, the noise in the 

tension fields can be smoothed and the mesh-dependent erroneous slip velocities and yam length 

evolution rates can be eliminated. In the un-filtered cases on the left of the figures, the mesh- 

dependent oscillations in the driving force are visible, as are the large yam length evolution rates 

at the element boundaries. After sufficient filtering, both cases qualitatively predict realistic 

velocity fields and yam length evolution rates that are consistent with experimental observations. 

In the bias case, slip velocities grow along the diagonal lines that experimental samples separate 

along, and yam length evolution rates become positive at the edges of the strip, indicating that the 

weave at the edges will being to unravel. In the slitdamage case, two modes of slip develop 

around the slit, as is described by Godfrey and Rossettos ([1998] and [1999]) and in Sections 

2.10. 

However, this method suffers from several problems. First, the smoothing process tends to 

blunt large tension concentrations, so the smoothed tension contours may underestimate slip that 

actually occurs. As is evident in Figure 6-4 and Figure 6-5, the greater the smoothing, the more 

tension concentrations are artificially reduced. Secondly, in order to eliminate the mesh- 

dependent noise, the smoothing method must filter out features that have a length scale equal to 

the characteristic length scale of the elements. However, in many cases real slip-driven 

phenomena, like the redistribution of tension concentrations at the tip of a slit or the unraveling of 



the weave at the edge of the bias-extension sample, occur over only a few yams. Since the fabric 

cannot be treated as a continuum at length scales smaller than a few yams, the mesh cannot be 

refined to smaller length scales and still give realistic results. Consequently, the smallest possible 

characteristic element length will be the same size as the length scale over which some slip 

phenomena occur. Therefore, these slip phenomena will be filtered out along with the numeric 

noise. Finally, this smoothing technique introduces errors into the smoothed fields near the 

boundaries, which are apparent in Figure 6-5. These errors are magnified when the gradients are 

calculated. As discussed previously, it is often most important to accurately calculate slip near 

the fabric edges. 

6.4 Virtual Shell Coupling 
The next smoothing approach that we investigated was motivated by conceptualizing the 

tension fields as three dimensional surfaces whose heights vary as a functions of position on a 

two dimensional plane. The non-smooth, noisy tension data is represented by a rough surface 

with sharp peaks and valleys. Our goal is to determine a smooth surface without any sharp peaks 

that approximates the rough surface as closely as possible. Provided that the variations in height 

are small, this can be accomplished by bending a thin, elastic plate into a shape that closely 

approximates the rough surface. We therefore developed a method of estimating smooth gradients 

by using shell elements whose out-of-plane displacement degrees of freedom are coupled to the 

nodal tensions calculated by the fabric elements. This approach is attractive because shells are 

inherently non-local; since rotations are continuous across element boundaries, the response of a 

given element to out of plane deformations is influenced by the response of the neighboring 

elements. The out-of-plane displacement fields will always be smooth, and the gradients of those 

fields can be calculated from the shell rotations. 

We refer to this technique as virtual shell element coupling, and we explored two slightly 

different implementations. The algorithm for the first implementation is shown in Figure 6-6. 

Hybrid fabric elements with tension degrees of freedom are used. These elements also possess 

degrees of freedom corresponding to estimated locking force and through-thickness force fields, 

and lack SLIDY velocity degrees of freedom. The tension, locking force, and through-thickness 

force degrees of freedom serve as a means of extrapolating the actual tensions, locking forces, 

and through-thickness force calculated at the integration points to the comer nodes in a manner 

that eliminates the oscillations introduced by numeric locking. These fields are interpolated using 

a linear chordal interpolation scheme described Appendix D and therefore are continuous from 



element to element but not smooth. Two "tension shell" models (one for each yam family) that 

are topologically identical to the real model are constructed out of thin shell elements composed 

of a linear elastic material, and then constrained against rigid body motion. The out-of-plane 

displacements of the tension shell nodes are connected to base nodes using linear spring elements. 

The out-of-plane displacements of these base nodes are coupled to the tension degrees of freedom 

in the fabric elements using multi-point constraints, scaled so that the shell deformations remain 

small. 

The base nodes and spring elements are used because, if the shell nodes were coupled directly 

to the tension degrees of freedom, the shell surface would not smooth the tension field. By 

separating the shell nodes from the base nodes with springs, the shell elements are free to assume 

a smoother shape with a lower energy cost than that prescribed by the non-smooth nodal tension 

values. However, the more the shape of the tension shells deviate from the actual tension field, 

the greater the energy cost in the connecting springs. By varying the ratio of the connecting 

spring stiffhess to the flexural rigidity of the shells, different amounts of smoothing can be 

achieved. However, the total stiffhess of the composite system consisting of the shell elements 

and the springs must be significantly smaller than the stiffhess associated with varying the tension 

degrees of freedom in the real model. Otherwise, the resistance of the shells to deformation will 

feed back to the real model and adversely affect the calculation of the estimated tension fields, 

since the multi-point constraints that couple the shells transfer force in both directions. 

Boundary conditions on tension are applied to both the fabric elements and the tension shells. 

For example, when yams intersect a free edge, the tension in those yams should be zero. Both the 

appropriate tension degrees of freedom in the fabric elements and the out-of-plane displacements 

of the appropriate tension shells can be constrained to be zero on free edges to capture this 

boundary condition. 

Two more topologically identical "velocity shell" models are created to calculate smooth slip 

velocity fields. Like the tension shells, the velocity shells are constrained against rigid body 

motion and are coupled in the out-of-plane direction to a set of base nodes with linear springs. 

The rotational degrees of freedom of the tension shells are then used to calculate the tension 

gradients at the nodes, which are used in conjunction with the locking force and through- 

thickness force degrees of freedom from the fabric elements to calculate slip velocities according 

to the slip constitutive law given in Equation (5.29). These slip velocities are coupled to the out- 

of-plane displacements of the base nodes attached to the velocity shells. Appropriate boundary 

conditions on slip velocity are applied (e.g. zero slip velocity at clamped edges). Like the tension 

shells, the stiffhess associated with the velocity shell nodes must be significantly smaller than the 



stiffhess associated with rotations of the tension shells and the stifhess associated with the nodal 

locking force and through-thickness force degrees of freedom of the fabric elements, in order to 

avoid feedback. Unfortunately, because the displacements of the velocity shells are coupled to 

these quantities through a nonlinear slip constitutive law, it can be difficult to quantify the relative 

stiffhesses of the two structures. 

The nodal rotations of the slip velocity shells can be used to calculate the SLIDY velocity 

gradients and the corresponding unstretched yam evolution rates. These values can be written to 

an output file at the end of each increment and read in at the beginning of the next increment in 

order to explicity calculate the evolution of the unstretched yam lengths. The subroutine that 

calculates the fabric element behavior interpolates between the evolution rates at the nodes to find 

the evolution rates at each integration point, and calculates the evolution of the unstretched yam 

lengths explicitly. 

This method proved more effective than the Fourier transform smoothing described in the 

preceding section. Figure 6-7 shows the predicted tension, slip velocity, and yam length evolution 

rate fields in both the bias-extension test and the slit-damage test. The same physically realistic 

contours that were evident from the Fourier-smoothed plots appear, but most of the noise and 

non-physical numerical artifacts have been eliminated without significantly blunting the tension 

concentrations (some blunting is inevitable in any smoothing process) or introducing error near 

the boundaries. to fact, the application of accurate boundary conditions is a major benefit of the 

virtual coupled shell method. However, three chief problems with this method remain. First, it is 

difficult to determine appropriate numerical parameters, such as the factors that scale tension and 

slip velocity before applying them as displacements, the stiffhess of the coupling springs, the 

thickness of the shells, and the properties of the materials that compose the shell elements. These 

parameters must yield stiffhesses that are small enough to avoid feedback but large enough so 

that resulting global stiffhess matrix does not become ill conditioned. Secondly, this method is 

extremely expensive, both in computational cost and in memory requirements, since n fabric 

elements require an additional 4n shell elements. Finally, it does not completely eliminate mesh- 

dependent numeric noise and oscillations from one element to the next, as is evident in the plot of 

the bias-extension case in Figure 6-7. Though these errors are much smaller than those in the 

unsmoothed data, they are significant enough to prevent accurate, physically realistic slip fields 

from being predicted in all but the most simple cases. 

We modified the coupled virtual shell element method to try to farmer reduce these errors. 

The process of extrapolating estimated tension values to the nodes by interpolating them as 

continuous fields over the element introduces some of the numeric noise. If the tensions are 



instead averaged over each element, the resulting tension values are much more accurate and less 

noisy. The average tensions in an element are calculated by placing a node at each element center 

and introducing just one "informational" degree of freedom f per element for each tension field. 

The residual associated with this degree of freedom is the difference between its value and the 

values of the project tensions integrated over the element, as calculated from the integration point 

values: 

where Tgcosflg is the projected tension calculated at integration point q, Jg is the isoparametric 

Jacobian, associated with integration point q, wg is the weight associated with integration point q, 

and Ve = J Ã ‡  is the volume of the element (unit thickness is assumed). When this residual 
9 

vanishes, the value f will reflect the average value of Tcosft over the element. This can 

equivalently be thought of as estimating a projected tension field f that is piecewise constant 

over each element and discontinuous between elements. The interpolation functions associated 

with this a field, N~(x), are equal to unity and Equation (6.5) reduces to Equation (6.22). 

Piecewise constant fields are unable to exhibit oscillatory behavior over an element and hence 

completely eliminate the oscillations in the tension fields that stem from numeric locking of the 

fabric elements, discussed in Appendix C. They also do not introduce "saw-tooth" oscillations 

from one element to the next; since the estimated tension field is not required to be continuous 

across elements, it is calculated as accurately as possible in every element. Therefore, no 

smoothing is necessary. Instead, the virtual shell elements are used to calculate continuous fields 

from the averaged data, since the estimated tension fields are discontinuous and piecewise 

constant and cannot directly be used to calculate gradients. Once the averaged projected tensions 

are imposed on the coupled virtual shells as displacements, the gradients can be calculated from 

the virtual shell rotations. 

Because the tensions that are to be applied as displacements to the shell elements are now 

located at the center of the real elements, the shell mesh must be refined so that shell nodes lie at 

the centers of the fabric elements. For each fabric element, four shell elements are used, with 

comer nodes at the comers, mid-edges, and centers of the fabric elements. Because there are now 

unconstrained shell nodes between the constrained nodes, and because the averaged projected 

tension data do not require smoothing, base nodes and spring elements are unnecessary-the 

averaged projected tension values at the element centers can be scaled and directly applied to the 

corresponding shell nodes as out-of-plane displacements. The locking and through-thickness 



forces are also averaged at the centers of the real elements and are used with the projected tension 

gradients from the tension shell rotations to calculate slip velocities. The scaled slip velocities are 

then applied directly to the appropriate velocity shells, which are topologically identical to the 

tension shells. The rotations of the velocity shells can be used to calculate the velocity field 

gradients and the yam length evolution rates, which are written to an output file and read in and 

applied in the next increment, as described above. 

This second coupled virtual shell method was more accurate and had less noise than the first 

method. Provided suitable values for the shell material properties, shell thicknesses, and tension 

and velocity scale factors were used, the model predicted stable, physically realistic slip contours 

with almost no numeric noise. For simple cases where the mesh did not need significant 

refinement to capture phenomena that occur over small length scales, this method was effective. 

However, it also suffered from several problems. First, it was even more computationally 

expensive than the first method, requiring 16n shell elements for models with n fabric elements. 

Secondly, in certain situations the shells would buckle in complex three-dimensional modes that 

would sometimes generate non-physical slip velocities or yam evolution rates. The most 

significant problem with both coupled virtual shell methods is the choice of suitable values for 

the shell material properties, shell thicknesses, and tension and velocity scale factors. 

In order to predict smooth fields that are accurate and physically realistic, three conditions 

must hold for the tension shells. First, the shells must behave as "thin" shells-i.e. the shell 

bending stiffhess must be much smaller than the shell transverse shear stiffness so that the shells 

accommodate deformation through bending rather than through transverse shearing. Secondly, 

the out-of-plane displacements of the shell elements must be small enough so that membrane 

effects in the shells remain negligible. Thirdly, the shells must have small enough stiffness so that 

feedback through the coupling is negligible and the shell stiffhess does not affect the estimated 

tension field calculation. Specifically, the force residual that results from varying the out-of-plane 

displacement of one of the shell nodes must be small compared to the residual that results from a 

corresponding variation (scaled appropriately) of the corresponding tension degree of freedom. 

The bending stiffhess ks of a shell element composed of a linear elastic material scales with 

E& 1 ie2, where ET is the Young's modulus of the tension shell, tr is the tension shell thickness, 

and Le is the characteristic length of the shell element. The transverse shear stiffness km of a shell 

scales with Gt, where G is the shear modulus, which generally scales with E for a constant 

Poisson's ratio. Therefore, the thin shell requirement gives: 



In order to maintain thin shell behavior, the ratio of the shell thickness t to the characteristic 

element length Le must remain smaller than some unknown constant SB, . 

The easiest way to ensure that membrane forces remain negligible is to constrain only as 

many of the in-plane shell degrees of freedom as are necessary to prevent rigid body motion, and 

then to ensure that the maximum change in out-of-plane displacement ( A u ~ ) ~ ~ ~ / /  imposed on 

adjacent shell nodes is less than the distance between those nodes. This can be ensured by 

requiring: 

('? )shell = KT'- < Le . (6 .24) 

A 

Here ( u ~ ~ ~ ) ~ ~ ~ ~ ~  is the maximum displacement applied to any shell node, T_- is the maximum 

projected tension anywhere in the model, and KT is the scale factor that transforms the projected 

tensions into displacements of the virtual shell nodes. It is assumed that, since fabrics cannot 

support compressive stresses, f_,, = ( u ~ " ~ ) ~ ~ ~ ~ ~  = 0. 

Assuming negligible transverse shear displacements and negligible membrane effects, the 

residual force associated with varying the out-of-plane displacement of one of the shell nodes 

scales with ks ( u ~ ) ~ ~ ~ ~ ~  = kB (KT f ). From Equation (6.22), the residual in the fabric element 

associated with variation of i? scales with TVe = f ~ :  (unit thickness is assumed). The 

requirement that the stifhess of the fabric element be much larger than the stiflhess associated 

with out-of-plane shell displacements gives: 

&,KT f }  

The ratio must be smaller than a second unknown constant 91,. 

The same three requirements hold for the velocity shells. The thin shell requirement gives: 



Here Ev and tv are the modulus and thickness of the velocity shells, respectively. The requirement 

for negligible membrane effects gives: 

 he^^ K V v ~  < Le 9 

where Kv is the scale factor that converts velocities into out-of-plane displacements of the 

velocity shells, and vno is the maximum SLIDY velocity calculated over the entire model. The 

relative stiffiess requirement is much more challenging to bound for the velocity shells, because 

the displacements of the slip velocity shells are related to the rotations of the tension shells and to 

the locking and through-thickness forces from the real elements in a nonlinear manner. The 

residual associated with a small rotation (p of the tension shell is proportional to (pEr tf. The 

residual associated with a small change of out-of-plane displacement us of the velocity shells 

scales with ~s Ev ta L: = (&v) Ev ta L:, the product of the displacement and shell bending 

stifhess. The slip driving force f scales with (p / KT. However, the slip velocity v and the slip 

driving force f are related by the nonlinear constitutive law. Requiring that the velocity shells be 

significantly less stiff than the tension shells gives: 

Here %, is not a constant, but a function that depends on the values of the slip driving force and 

the force degrees of freedom. 

%, and 91, can be determined by conducting parametric studies with varying values of tT 

and && for a fixed element size La. When transverse shear deformation of the shells become 

negligible, t is sufficiently small relative to Le. When feedback effects vanish, KTET t: is 

sufficiently small compared to L:. $ for a particular range off, FN, and Fi present in a model 

can be approximated by conducting parametric studies with varying values of KvEv for a model 

that exhibits the appropriate range of values of 0, FN, and FL, with a fixed element size Le. 



These requirements create problems when the mesh is refined. As the mesh is refined by 

some factor R, the thin shell requirement requires the shell thicknesses tT and tv be reduced by R 

as well. The negligible membrane effects require that the scale factors KT and KT also be reduced 

by R. The requirement for negligible tension shell stifihss compared to the real elements will 

automatically be satisfied, because both the numerator and the denominator will be decreased by 

a factor of R*. However, the requirement for negligible velocity shell stiffness compared to the 

tension shell stiffness requires that Ev be reduced by a factor of R ~ .  In principle, these 

requirements can all be satisfied by making try tv, ET, Ev, KT, and Kv all very small. However, the 

global stiffhess matrix becomes ill-conditioned and the residuals associated with the shell 

elements become immeasurably small if the shell stiffiiesses become too much smaller than the 

stifhesses associated with the real elements. The tension shells undergo a net reduction of 

stiffhess of R~ and the velocity shells undergo a net reduction of stiffhess of R~ when the mesh is 

refined by a factor R. The requirement that the global stiffhess matrix be well conditioned and the 

residuals be measurable, when combined with the other requirements on the coupled virtual shell 

method, place a numeric restriction on the refinement of the mesh. The slip theory relies on the 

assumption that the mesh can be sufficiently refined. Unfortunately, in all but the simplest of the 

validation cases we examined, the mesh could not be sufficiently refined to accurately capture the 

slip-driven phenomena that were of interest. Therefore, even though the virtual coupled shell 

method was effective in eliminating most of the numeric problems that degraded the accuracy of 

the slip-enabled model, it ultimately proved unusable in complex cases which require a fine mesh. 

6.5 Quadratic Gradient Estimation on Element Patches 
Since none of the sophisticated techniques for estimating smooth tension and slip velocity 

fields discussed in the preceding sections were completely successful, and since all were 

computationally expensive, we adopted a less sophisticated, more computationally efficient 

approach for calculating tension and velocity gradients. We essentially use a second order finite 

difference approach to estimate the gradients at the center of an element based on the average 

field values at that center and at the centers of the neighboring elements. 

We restrict our analyses to cases where the mesh consists only of quadrilateral elements. In 

the first step of any analysis, the element nodal connectivity matrix and the reference- 

configuration coordinates of every node in the model are stored. For every element e, the four 

elements that share its four edges are identified. We define the element that shares the edge 

between its first and second comer nodes to be the element "below" it-, the element that shares its 



second and third comer nodes to the element "to the right", the element that shares its third and 

fourth comer nodes to be the element "above" it, and the element that shares its first and fourth 

comer nodes to be the element "to the left". We designate these elements as ev., e ~ + ,  ev+, and e ~ -  

respectively. This convention is for the sake of record keeping and does not necessarily 

correspond to the orientation of the elements relative to the global coordinate frame. From the 

nodal coordinates, the reference configuration distances from the center of element e to its mid- 

edge nodes, and then from these mid-edge nodes to the centers of the adjacent elements are 

calculated and designated as s t ,  sH+, sy', and sH, shown in Figure 6-8. The reference 

configuration unit vectors nn and nv that give the orientations of the chords connecting the "left" 

and "right" mid-edge nodes and the "bottom" and "top" mid-edge nodes, respectively, are also 

calculated. 

Let T be any of the fields whose gradient must be calculated, such as the projected tension 

field. The average values of this field are calculated at the element centers using Equation (6.22), 

as is detailed in the preceding section. The values at the centers of the elements e, ey, e u ,  e / ,  

and e n  are designated as T, Tv, T$, T / ,  and T i  respectively, shown in Figure 6-8. The field 

gradient is calculated by assuming that the field varies quadratically from the center of an element 

on one side of e, through the center of e, to the center of the element on the other side of e, along 

lines where one element isoparametric coordinate is constant (i.e. along the straight line segments 

connecting the center nodes to the mid-edge nodes). For details regarding isoparametric 

coordinates in elements, refer to a finite element text such as Bathe [1996]. This assumption is 

reasonable assuming that the mesh is sufficiently refined and not too severely distorted; highly 

distorted elements and abruptly changing element sizes can introduce errors into the calculation. 

The quadratic equation T = a 2  + alX + an that fits the three calculated field values along either 

the H- or V-direction can be found by solving the following system of equations: 

The gradient of the field at the center of element e, projected along the nn or nv direction, is 

given by the a, value from this system when it is solved for the H- or V-direction, respectively. 

The components of Grad(7) in a Cartesian coordinate system, which are the gradients of the T 

field along the reference configuration X- and Y-directions, can be found by solving a second 

system of equations: 



The unknowns are Q T / X  and QT/QY , the components of Grad(7). 

This procedure is performed at the end of each time increment to determine the projected 

tension gradient Grad(Tcosi0) and the corresponding slip driving force f at time t, according to 

Equation (5.19). This driving force, along with the normal force between the yams and the 

locking forces (which are also averaged at the node centers according to the method described by 

Equation (6.22)) are used to calculate a slip velocity #'*' at every element center according to the 

constitutive law that relates f and v. The velocity #'*' is converted to a SLIDY velocity v using 

Equation (5.3). The gradient estimation process is then repeated for the velocity values to 

estimate the slip velocity gradient and the corresponding evolution rate of the unstretched yam 

length 4 at time t, as described by Equation (5.13). The unstretched yam lengths at the end of 

the next time increment, at time t + At, are calculated explicitly at all integration points in the 

element according to: 

f'̂ = f + A&. (6.3 1) 

Although explicit calculation of the evolution of the unstretched yam lengths requires very small 

time steps to ensure stability, it is necessary due to the impossibilities of implementing an implicit 

evolution scheme within a commercial finite element code where the full equilibrium tension 

field is accessible only for the previous time increments. 

6.6 Boundary Conditions 
Special provisions must be made near the boundaries of the mesh. The finite difference 

scheme described in the preceding section requires the field values at the centers of neighboring 

elements on both sides of an element. We assume that the mesh is sufficiently refined so that an 

element always has at least two neighbors~one in the H-direction and one in the V-direction. 

However, when an element e lies at the boundary of the mesh, there will be no neighboring 

element on one side (or on two sides, if it is a comer element). Using only one neighbor to 

estimate a gradient can result in inaccurately calculated gradients. It is frequently most important 

to accurately capture yam slip in the regions near the boundaries, for example, in cases where 

yams pull out of the weave, where the weave unravels, or where slip alleviates large tension 

concentrations generated by slit-like damage. Therefore, we must develop suitable boundary 



conditions for the tension and slip velocity fields Ti and vi that are used to calculate evolution of 

t i .  

Several types boundary conditions are possible, shown in Figure 6-9. All of these boundary 

conditions can be captured by treating the element as if it were neighbored by another "phantom" 

element beyond the boundary with appropriate tension and velocity field values. We assume that 

the distance s from the center of e to the center of the phantom element is the same as the distance 

from the center of e to the center of its actual neighbor on the other side-in other words, we 

assume that the phantom elements mirror the mesh across the center of e. 

The simplest case occurs when the yams intersecting an edge are free. In this case, the 

unwoven tails of the yams extending beyond the weave and the model boundaries are unloaded. 

Consequently, the neighboring phantom element will have zero tension: T = 0. Since there are no 

forces beyond the boundary resisting the flow of the loose yams, the slip velocity in the phantom 

element will be the same as the slip velocity in e: v = Ve. 

The next case is when the fabric is clamped or encased. In this case, we assume that some 

crossover points are held in the clamps as well as the yams. The tension and velocity in the 

neighboring phantom element must be defined. Since this element would be completely encased 

by the clamp, we take the slip velocity in the phantom element to be zero: v = 0. Tension should 

not be taken to be zero, since this would imply an abrupt drop in tension at a clamp, which is not 

the case. We take the phantom element tension to be equal to the tension in the element adjacent 

to the clamp: T = Te. This is consistent with a tension gradient that approaches zero at the clamp, 

which implies zero slip velocity at the clamp. 

In the third case, we assume the yams to be gripped beyond the last set of crossover points. 

This case may arise in various situations-for example, during a yam pullout test. In this case, the 

yams may be under tension beyond the boundary. We expect that tension in the yam beyond the 

weave can be different from the tension at the center of the edge element (otherwise the tension 

gradient at the edge would be zero and yam slip, and thus yam pullout, could never occur). We 

assume that similar effects that cause tension to increase (or decrease) by some amount AT from 

the center of the element e's actual neighbor, element e+1, to the center of e, will cause the 

tension to increase or decrease by the same amount from the center of e towards the center of the 

phantom element, so T = 2Te - Note that this is equivalent to calculating the tension 

gradient at e by finding the gradient between e and e+1. As in the case of the free edge, we 

expect that the yam slip velocity beyond the boundary will be the same as it is just inside the 

boundary, SO v = Ve. 



The next case can occur when one edge of a fabric is hemmed or sewn, so that the edge is 

free but the yams cannot slip. In this case, the slip velocity in the phantom element is zero: v = 0. 

The tension at the edge must also be zero, so T = 0 as well. 

The final case occurs when the boundary represents a line of symmetry. In this case the 

phantom element is a real element that is a mirror image of element e. Tension in the phantom 

element is the same as the tension in element e: T = T,. Slip velocity must be equal and opposite 

to the slip velocity in e: v = -ve. Note that this permits evolution of yam lengths across a line of 

symmetry, which is physically realistic-the crossover points at the centerline of some symmetric 

fabric specimen can undergo a net loss or gain of yam material, although the slip velocity at the 

exact centerline must of course be zero. 

Two other issues must be addressed near the boundaries. First, when a yam family is parallel 

to an edge, the gradients of fields along that yam family should be insensitive to the boundary 

conditions associated with that edge. However, if the mesh is distorted, numeric effects can create 

a dependence in the gradients along the parallel yarn family on the boundary condition. For 

example, consider the case shown in Figure 6-10 where a yam family parallel to a free edge is 

carrying a large, constant load, and passes through a distorted element with one edge on the free 

edge boundary. Because the load carried by the yam is large, and the free edge condition requires 

that tension be zero in the phantom neighbor, there will be a large gradient calculated in the nv 

direction. If the element were rectangular, the nv direction would be normal to the yarn family 

orientation Og, and the large V-direction gradient would not affect the calculation of the tension 

gradient along the yam. However, since the element is distorted, nv will have a small but nonzero 

projection on Og, and hence a very large tension gradient V-direction will introduce error into the 

gradient calculation along Og. To avoid this problem, the gradient estimation algorithm checks if 

the yam family in question is parallel to any boundary in the reference configuration before 

applying the boundary condition. If it is, a special "parallel family" boundary condition is applied 

instead, where T = IT, - Te+l and v = 2ve - ve+l. In other words, we calculate the gradient along 

the n~ or nv direction using only the element value and the value at the actual neighbor e+1. 

The final issue that must be addressed near a boundary concerns the nodal displacements on 

that boundary. Since the nodal displacements correspond to the displacements of the crossover 

points, not the displacements of the yam material, the nodal displacements at an edge must be 

defined according to constraints on the crossover points. In the case of a free or sewn edge, the 

crossover points at the boundary are free to move, so the nodal displacements u should be 

unconstrained. In the case of a clamped edge, some crossover points are gripped along with the 

yam material, so the nodal displacements must be constrained: u = 0. 



Along a line of symmetry, displacements parallel to the symmetry line should be 

unconstrained. Displacements perpendicular to a line of symmetry should neither be constrained 

to be zero nor left free. The continuum length scale is assumed to be sufficiently large that there 

may be many crossover points in the vicinity of a given location. A pair of crossover points that 

straddle a line of symmetry may separate away from one another. Hence the nodes that lie on a 

line of symmetry should be permitted to displace away from the line of symmetry, provided this 

displacement is accompanied by slip of yam material past the node (and hence past the associated 

crossover point) towards the line of symmetry so that the net flow of yam material through the 

line of symmetry is zero. Consequently, the displacement of a node that initially lies on a line of 

symmetry must be constrained by: 

U - s = O ,  (6.32) 

where s is the total length of yam material that has flowed past the node towards the line of 

symmetry, and u is the displacement away form the line of symmetry. In the case where yams 

beyond a fabric edge are clamped and subjected to some imposed displacement i7 normal to the 

fabric edge (e.g. during a yam pullout test), the displacement u of the edge nodes in the same 

direction should be constrained by: 

U - s = U ,  (6.33) 

where s is the total yam length that has slipped past the edge node out of the fabric. When no slip 

occurs, s = 0 and displacement of the yam that extends out of the fabric will cause corresponding 

displacement of the crossover points at the edge of the fabric. Once slip occurs, s > 0 and the 

displacement of the crossover points, described by u should be less than that of the yams, 

described by ii . These constraints are applied through a user defined MPC subroutine. 



Figure 6-1 Regularly located points versus irregularly location integration points in an arbitrary 
finite element mesh 



Linear Interpolation uadratic Interpolation 

Figure 6-2 One dimensional interpolation with and without noise 



Figure 6-3 Tension, slip driving force, and unstretched yarn length evolution rates in bias-extension 
test using hybrid elements 





Slit\ y Increasing Feature Size Filtered 

Figure 6-5 Tension, slip driving force, and yarn length evolution rates in slit-damage test, filtered to 
smooth features with increasingly large length scales 
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Figure 6-7 Tension, slip driving force, and yarn length evolution rates in bias-extension test and in 
slit-damage test, calculated using virtual shell coupling method 



Figure 6-8 Five element patch for gradient estimation 



Free edge Clamped Edge 
T = 0  T = T Q  
V = V* v=O 

Clamped Yarn 
T = 2T. - TQ+l 

Sewn Edge 
T = 0  
v=O 

Figure 6-9 Possible boundary conditions 





Chapter 7 
Validation of Slip Theory 

7.1 Numerical Problems with the Slip Theory Implemented 
into an Implicit Finite Element Code 

The slip-enabled fabric model was implemented into an implicit finite element code, 

ABAQUSIStandard. This code was initially chosen because its architecture is more easily 

customized, through the use of user-defined subroutines, than that of many other available 

implicit or explicit commercial finite element codes, including ABAQUSIExplicit. 

ABAQUSIStandard is well suited to finding equilibrium solutions to steady state problems and is 

an effective tool for validating the fabric models in most cases. However, explicit codes are often 

better suited for transient, time-dependent problems, like many problems that involve yam slip in 

fabrics. After performing several implicit analyses to validate the slip-enabled model, we 

concluded that the model would be far more effective if it were implemented into an explicit 

code. The main reasons leading to this conclusion are described below. 

Because the slip velocities and the evolution of the unstretched yam lengths are calculated 

from yam tension gradients, which are calculated over multiple elements, it is significantly easier 

to integrate the evolution of the unstretched yam lengths forward in time using a purely explicit 

integration procedure, described by Equation (6.31). However, when an explicit integration 

procedure is used, the time increment At must be small in order to ensure accuracy and stability. 

If the chosen time increment size is too large, the slip formulation become unstable, and large, 

wildly oscillating slip velocity fields and nonphysical displacement predictions result. Many 

small increments are typically required for any given analysis to ensure accuracy and stability. 

Usually, when explicit integration schemes are used, the increased computational cost of the large 

number of increments is offset by the smaller computational cost of each explicit calculation, 

compared to implicit calculations. However, when an explicit integration procedure is included in 

a formulation that is implemented into an implicit finite element code, then a large number of 

computationally expensive increments are necessary. 

As a result, the computational costs associated with the slip-enabled model with explicit 

integration of the unstretched yam lengths, implemented into the implicit ABAQUSIStandard 

framework, are large. Since our goal is to validate the slip theory, not to develop a commercially 

viable finite element tool with minimal computational costs, we used the implementation in 



ABAQUS/Standard. The computational costs can be reduced somewhat by modifying the slip- 

constitutive relation so that smaller slip velocities are calculated, since the maximum acceptable 

size of the time increment depends, in part, on the magnitude of the yam length evolution rates, 

and these depend on the gradients of the slip velocities. While this approach is unsuitable for 

dynamic analyses of transient phenomena, it is effective for the quasi-static validation cases that 

we consider. However, even for quasi-static cases, there is a limit on how small the slip velocities 

can be, since excessively slow velocities prevent the steady-state solution from being achieved 

over the course of the analysis. 

Consequently, some analyses have prohibitively large computational costs. When there is 

very little resistance to slip in certain parts of the model, slip velocity gradients can become large 

and the required time increments to ensure stability become so small that 10' or more increments 

are necessary to conduct an analysis. In these cases, the computational cost of the analysis is 

prohibitively large. In general, large slip velocities occur in analyses involving large slip 

displacements, greater than several times the characteristic length of the weave structure 2p. 

Consequently, we do not model cases with large slip displacements or include pullout or 

unraveling effects using the ABAQUS/Standard model implementation, since these cases are too 

computationally expensive to analyze. We limit validation cases to cases where small slip 

displacements result in the redistribution of loads. We recommend implementation of the slip- 

enabled model into an explicit finite framework so that problems with large slip displacements 

can be considered. 

In addition to the requirement for very small time increments, use of explicit slip integration 

in an implicit code can introduce another numerical problem. As is described in Appendix B, 

convergence difficulties can occur when the slip-free formulation is used to model cases where 

one family carries extremely large tensions (on the order of 150 N, in excess of the yam strength) 

and the other carries near zero tensions. This problem relates to how the model captures crimp 

interchange. In such cases, the highly tensioned yam family becomes nearly flat, and its crimp 

amplitude and crimp angle approach zero, as the crimp amplitude and angle of the other yam 

family approach finite values. A scaling function is used so that all real values for the mean 

amplitude degree of freedom correspond to an admissible range of mean amplitudes. However, 

use of this scaling function causes the sensitivity of the through-thickness forces to variations in 

the mean amplitude to decrease when one yam family is flattened, which can, in extreme cases, 

result in an ill-conditioned stiffhess matrix and in convergence difficulties. These difficulties are 

compounded by numerical inaccuracies in the through-thickness force and corresponding 



stiffhess terms, which are introduced as the crimp amplitude of one family becomes small, 

because large tensions are multiplied by the sine of very small crimp angles. 

This problem only occurs in rare, unrealistic loading cases for the slip-free model. 

Unfortunately, it is exacerbated by the presence of slip. In regions where yam tensions differ 

greatly between the two families and one family becomes almost flat, the through thickness force 

becomes small and inaccurate. Consequently the resistance to slip at that point becomes very 

small and unstable. Slip velocities can then become large and variable, so slip velocity gradients 

can become artificially large. Explicit integration of the corresponding artificially large evolution 

rates of the unstretched yam lengths can result in artificially small tensions, or even negative 

tensions. Such erroneous tensions cause the residuals associated with the through-thickness forces 

to become unacceptably large, but these residuals cannot be reduced by variation of the mean 

amplitude degree of freedom because the scaling function makes them insensitive to this degree 

of freedom. Therefore, they must be reduced by unrealistic distortions of the mesh. This problem 

propagates because small or negative tensions result in near-zero or negative through thickenss 

forces, which provide little resistance to slip and result in abruptly changing slip velocities, which 

in turn require smaller time increments and cause yam lengths to evolve so that tensions become 

even more negative. Eventually, the solution begins to diverge. In the presence of slip, the 

algorithmic instability associated with the crimp interchange phenomenon can occur at much 

smaller tensions than in the slip-free case, and limits the maximum loads which can be applied in 

certain analyses. 

7.2 Raked Strip 
We first attempted to validate the slip continuum model by devising a very simple case where 

slip effects are carefully controlled and easily predicted. In this case, shown in Figure 7-1, a 

vertically oriented rectangular strip with the yam families aligned with the edges is clamped at 

each end. The top edge is displaced by some distance 8. The vertical displacements of the nodes 

lying on the horizontal centerline are constrained to be less than 812 (a value of 813 was used); 

this simulates the effect of a rake pushed through the fabric constraining the crossover points 

from displacing the entire 812 distance that they would if they were unconstrained. This case was 

analyzed for both a slip-free case, where the yam evolution rates were set to zero regardless of the 

slip driving forces, and a case with slip enabled. 

We examined both the resulting tension contours throughout the strip and the reaction forces 

on the clamps and the rake. The reaction forces are shown in Figure 7-2 and the tension contours 



in the vertically oriented yams are shown in Figure 7-3. In the slip-free case, the rake essentially 

acts as a clamp, because the crossover points are constrained and the yam material deforms in an 

affine manner with the crossover points. In this case, the top half of the strip must support larger 

strains than the bottom half, and hence is subjected to much larger tensions. This also causes the 

top half to undergo larger lateral deformations due to crimp interchange. No transfer of tension is 

possible through the rake because no slip is allowed. The bottom clamp is subjected to a very 

small load-the majority of the downward load which opposes the upwards load on the top edge 

is supported by the rake, across which there is a very large tension gradient. 

When slip is allowed, the response changes dramatically. The fabric no longer supports large 

tension gradients across the rake-gradients cause the yams to slip past the rake, and as they slip 

the yams stretch and hence the tensions that the yams carry become more evenly distributed. 

Both lateral displacements and axial yam tensions are nearly equal in the top and bottom halves 

of the specimen. Because slip limits the tension gradient the specimen can support across the 

rake, the load that the rake can bear is also limited and the reaction at the rake drops to a small 

value (equal to the sum of the critical slip resistances f at all the rake-supported crossover 

points), compared to the loads on the ends. Yam tension is now transferred from the top half of 

the sample to the bottom half, and so the bottom clamp now sees a greater load, comparable to the 

load on the top clamp minus the small load on the rake. The total load at the top clamp is lower 

than in the slip-free case, because it is not necessary to force such large stretches upon such short 

sections of yams. 

These responses are physically realistic and the loads predicted by the analysis in the two 

cases can be quantitatively verified by simple calculations. The slip implementation works for 

this very simple case, where a localized tension gradient is applied uniformly across a strip to 

cause one yam family to slip in a predictable fashion. We now examine more complex cases to 

further validate the slip model. 

7.3 Yarn Pullout 
We next simulated yam pullout tests of the type described in Chapter 4. In these tests, a 

sample of fabric is subjected to a cross load by a lateral displacement parallel to one yam family. 

One or more of the crossing yams are then gripped and pulled from the fabric, while either the 

lateral displacement or the lateral load are held constant. Analysis of this kind of test was 

significantly afflicted by the numerical problems identified in Section 7.1. Near the free end of 

the pulled yam, tensions are necessarily small. Small tensions correspond to small contact forces 



Fn between the yams, and hence there is very little resistance to slip. As a result, the slip 

velocities predicted by Equation (5.29) can become very large once the critical resistance to slip 

has been exceeded by the driving forcef, and become very sensitive to small variations inf, as is 

shown in Figure 5-6. Therefore, small spatial variations in f can result in very large slip 

gradients, and the time increment necessary for stability in this region becomes extremely small. 

to some cases, the convergence problems associated with the flattening of one yam family while 

the other carries low tensions also afflicted this analysis, in regions near the free edges far from 

the pulled yam. These convergence difficulties manifested at similar load levels to the load levels 

where the necessary time steps became very small, just after steady-state slip was initiated. We 

therefore simulated yam pullout tests only up to the point where the critical resistance to slip was 

reached at all points along the yam and steady state slip was initiated. 

Two sets of analyses were conducted for two different geometries. The first set of tests re- 

creates the pullout tests described in Chapter 4 performed using the pneumatic apparatus. The 

model, shown in Figure 7-4, had a width equivalent to 85 crossing yams and was subjected to a 

constant 100 N nominal cross load (about 1.2 Nlyam). A displacement rate of 50 mmhnin was 

applied to a section of the model equal in width to a single yam, using the appropriate boundary 

conditions described in Chapter 6 for a clamped yam. Because a fine mesh was necessary in the 

vicinity of the pulled yam, a non-uniform mesh of variable density was used in order to reduce 

computational costs. This analysis was conducted using both the slip-free and the slip-enabled 

models. For the slip-enabled case, the parameter in Equation (5.29) was increased by two 

orders of magnitude in order to scale down the slip velocities calculated, which allowed larger 

time increments to be used and reduce the computational cost of the analysis, as is described in 

Section 7.1. The slip velocities were still sufficiently large so that the results reach the steady 

state response. 

The progression of the tension distribution (for both cases) and the velocity distribution (for 

the slip-enabled case) along the pulled yam at different times are shown in Figure 7-5 and Figure 

7-6, respectively. For the slip-enabled case, the tensions increase smoothly up until approximately 

the t = 4-5 s states, while nonzero slip velocities propagate downwards along the pulled yam 

from the gripped end to the free end. Once the free end begins to slip, the entire yam quickly 

accelerates. At this point, the shape of the tension distribution is the same as the shape of the yam 

pullout curves shown in Figure 5-7 - Figure 5-9, which is expected. At this point, we would 

expect the velocity along the entire yam to slip at the applied steady-state pull rate. However, 

once the velocities near the free end, where there is very little resistance to slip, become nonzero, 

the necessary time increment size for stability of the explicit integration algorithm becomes very 



small, smaller than the time increment that was actually used in the analysis. Large, nonphysical 

oscillations appear in both the velocity and the tension profile and the model prediction becomes 

inaccurate. 

Figure 7-5 shows that the tension gradients supported along the pulled yam are lower in the 

slip-enabled case than in the slip-free case, at equivalent levels of tension (recall that as tension 

increases, resistance to slip increases and hence the yams in the slip-enabled model can support 

larger tension gradients when they carry larger tensions). However, tensions in the pulled yam are 

actually larger in the slip-enabled case. The reason is apparent in Figure 7-7, which shows tension 

contours in both the slip-free and slip-enabled model at a time where the slipping yam in the slip- 

enabled model approaches the steady state configuration. In the slip-enabled case, the pulled yam 

is flattened and stretched due to the tension it carries. It slips relative to its neighbors and transfers 

very little of the tension it carries to them. In the slip-free case, the pulled yam cannot flatten and 

stretch without transferring some load to its neighbors, and consequently the applied load is 

shared across a wider section of fabric and the load carried by just the pulled yam is lower. 

However, the macroscopic resistance to deformation of the entire structure is smaller in the slip- 

enabled case, as is evident in Figure 7-8. 

The loads in Figure 7-8 are larger than the tensions in Figure 7-7 because when a finite 

element is displaced, the load transmitted to its comer nodes has contributions from the stress (i.e. 

the yam tensions) in both that element and in the neighboring elements. Consequently, the 

predicted reaction force will be larger than the product of the force per unit width in the pulled 

element and the element width. 

One shortcoming of this pullout model was that its irregular mesh caused the finite difference 

gradient estimation algorithm to predict non-physical tension gradients, and hence slip velocities, 

in certain areas. In order to eliminate these effects, and to build a more computationally efficient 

model which could be run with a smaller time increment and hence capture more of the pullout 

behavior before stability was compromised, we constructed a smaller model that had a uniform 

mesh and that represented a square of fabric that was only 20 yams by 20 yams. This model is 

shown in Figure 7-9. It has a regular mesh, so the non-physical slip velocities introduced by 

mesh irregularities are eliminated. It also has fewer elements, and hence is more computationally 

efficient and can be analyzed using a smaller time increment. A very small time increment was 

used in order to ensure stability for a larger portion of the analysis. A cross load of 24 N (1.2 

Nlyam) was applied to the sample, and was then maintained by either load or constant 

displacement conditions. 



The smaller embedded yam length led to much smaller tensions necessary before the 

initiation of slip over the entire yam length. Smaller tensions mean a larger area with little slip 

resistance, and hence the stability problem was worse for this model. Even with the smaller time 

increments, oscillations in the tension and velocity distributions along the pulled yam indicated 

that the stability limit had been exceeded, as is shown in Figure 7-10 and Figure 7-1 1. In this 

case, the analysis was continued beyond the onset of instabilities. As the excessively large time 

steps cause artificially large slip velocities to be calculated, extreme yam slip occurs through the 

lower portions of the specimen. As excessive amounts of yam flow to the top portion of the 

specimen, the large tensions in the pulled yam are relaxed and the tension field along the entire 

yam drops. Loads are transferred to neighboring yams and slip velocities also drop. The 

macroscopic load-displacement curve, shown in Figure 7-12, which had been leveling off towards 

the steady-state condition, begins to increase again, since the decreasing yam slip velocities cease 

to accommodate the increasing displacements. This case illustrated the importance of maintaining 

stability in order to achieve accurate results. 

In the displacement controlled case, cross tensions are larger, since tension in the pulled yam 

is transferred to the crossing yams via the crimp interchange effect. In this case, the larger cross 

tensions increased the resistance to slip, and hence the time increment used was sufficiently small 

to maintain stability until just after the steady-state conditions were achieved. Figure 7-13 shows 

the load-displacement curve for this case, for both the slip-free and the slip-enabled models. The 

loads are larger than in the force-controlled case, because the higher cross tensions lead to greater 

slip resistance. The load in the slip-free case increases rapidly since the system has very little 

compliance. The slip-enabled model predicts a far more compliant response that reaches a steady- 

state load as the entire yam begins to slip at the imposed displacement rate. Unfortunately, shortly 

after this point was reached the numeric problems detailed in Section 7.1 prevented further 

analysis. 

The model also predicts realistic unstretched yam length contours throughout the analysis, as 

is shown in Figure 7-14. At the top edge, the pulled yam drags the leading crossing yams away 

from the rest of the specimen, slipping along the untensioned yams that neighbor the pulled yam. 

At the bottom edge, the trailing crossing yams try to remain straight and hence separate from the 

rest of the sample, again slipping along the untensioned yam tails. This response was observed 

during the pullout trials described in Chapter 4. Both these phenomena increase the amount of 

yam material between crossing yams, and hence the yam length increases. At the same time, the 

central portion of the pulled yam tends to flatten and stretch where it is under tension, slipping 



past its neighbors and through the crossing yams. Hence the amount of unstretched yam length 

between crossing yams decreases. 

These analyses demonstrate that the model can predict observed and physically realistic 

phenomena in the yam pullout tests, provided that a small enough time increment is used so that 

the explicit integration of the evolution of the unstretched yam lengths is stable. Oscillations in 

the tension and velocity fields and non-physical behaviors are predicted when the time increments 

are too large. The model predicts realistic yam length evolutions, yam tension distributions, slip 

velocities, and force-displacement behaviors up until the point where steady-state conditions are 

achieved. At this point, the necessary time increment for stability becomes so small that the slip 

enabled model implemented into an implicit code becomes too computationally expensive. 

7.4 Slit-Damage in a Biaxially Loaded Specimen 
As shown by Godfrey and Rossettos ([I9981 and [1999]) and discussed in Section 2.1 1, slip 

plays an important role in the propagation of damage in biaxially stressed fabrics. When a fabric 

with a slit consisting of consecutive breaks in parallel yams is biaxially loaded, the broken yams 

tend to pull apart. This creates a tension concentration at the tip in the slit, as the first unbroken 

yam must support tensions that are much larger than the nominal tension far from the slit, much 

like a crack in an elastic solid creates a stress concentration at the crack tip. We successfully 

predicted the tension fields, including the tension concentration, using the slip-free model, as is 

described in Section 2.1 1. In a fabric where no slip occurs (e.g. because a coating bonds yams 

together where they cross), these tension concentrations can lead to fast propagation of slit-like 

damage and catastrophic failure. Godfrey and Rossettos have shown that when slip can occur 

(e.g. in an uncoated fabric), two modes of slip develop. The broken yams slip through the weave 

away from the slit, but as they do so they drag the crossing yams with them, and these crossing 

yams slip upwards along the unbroken yams at the ends of the slit. This second mode of slip 

alleviates the tension concentration and can prevent catastrophic failure, similar to the manner in 

which plasticity can alleviate stress concentrations at a crack tip and prevent fracture. We have 

experimentally verified the presence of two modes of slip by conducting experiments on biaxially 

loaded Kevla* fabrics with slit-like damage and measuring the slip fields around the slit using 

image analysis software, shown in Figure 7-15. We then simulated these experiments using the 

slip model to verify that our model predicts the same phenomena. 

We conducted tests using two different model geometries. We used the quarter-symmetry 

cruciform geometry described in Section 2.11, which has an irregular mesh, and also a more 



detailed half-symmetry model of just the region near a slit, with a uniform mesh. The quarter- 

symmetry model had symmetry-type boundary conditions along the two lines of symmetry, with 

the ends of the cruciform arms clamped and the sides of the cruciform arms left free. The 

appropriate boundary conditions on the tensions and slip velocities described in Chapter 6 were 

applied to all edges. The nodes on the lines of symmetry were allowed to displace away from the 

line of symmetry, which corresponds to crossover points that straddle the symmetry line moving 

away from one another, provided the yams slip past the nodes so that there is zero net flow of 

yam material at the line of symmetry. Biaxial loading is applied by applying a horizontal 

displacement to the clamp at the right-hand side of the cruciform while holding the displacement 

of the top clamp constant. The crimp interchange effect transfers load from the horizontal yam 

family to the vertical yam family and causes both families of yams to be loaded. The geometry of 

the half-symmetry model is shown in Figure 7-16. It is 5.08 x 3.8 1 cm. The bottom edge of the 

model, which contains a 1.27 cm slit at its center, is a line of symmetry, and symmetry boundary 

conditions are applied to this edge. Equal displacements are applied normal to the other three 

edges (displacements parallel to the edges are unconstrained). Clamped yam boundary 

conditions, described in Chapter 6, are enforced on these edges. 

Both models predict the expected slip phenomena. Figure 7-17 shows the slip displacements 

of the vertical yams predicted by the quarter-symmetry cruciform model when the applied 

horizontal strain is approximately 1.1 %. Both modes of slip are clearly visible. The yams that 

intersect the slit have positive slip displacements, indicating that they have slipped upwards past 

the crossing yams. The model indicates negative slip displacements of the yams at the end of the 

slit, indicating that the yams have slipped downwards past the crossover points (or, actually, that 

the crossover points have slipped upwards along the yam). 

This slip mode tends to reduce the tension concentration at the tip of the slit. Figure 7-18 

shows the reaction force at the node at the end of the slit as a function of time for both the slip- 

free and the slip-enabled case. This reaction force is proportional to the tension concentration that 

results from the slit. The force in the slip-enabled case is smaller, indicating that slip has reduced 

the tension in the first unbroken yam, which is consistent with the conclusions of Godfrey and 

Rossettos. This reduction is also evident in Figure 7-19, which shows the tension distribution in 

the vertical yams measured along the horizontal line of symmetry in front of the slit shortly after 

the onset of slip in the slip-enabled case, and at the same load in the slip-free case. Not only does 

slip reduce the tension concentration immediately in front of the slit, but it distributes the tensions 

over a larger section of fabric, just as plasticity distributes stresses over a larger section of an 

elastic-plastic material at the tip of a crack. Figure 7-19 shows the conditions shortly after the 



onset of slip; at larger loads after large slip displacements have occurred this reduction in the 

tension concentration will be more significant. The half symmetry model with the uniform mesh 

gives the same results, and its uniform mesh eliminates artificial slip contours far from the slit 

that result from numerical errors in the gradient estimation scheme. 

As in the yam pullout case, it is computationally feasible to conduct these simulations only 

up to the point where large slip displacements begin to occur, when the broken yams that 

intersect the slit start to pullout out of the weave. At this point, the slip velocity gradients become 

large and very small time steps become necessary. The algorithmic instability discussed in 

Section 7.1, which occurs when one yam family carries much larger tensions than the other, also 

limited these analyses, especially in the half-symmetry model. The weakly tensioned vertical 

yams near the center of the slit exhibit this instability. The highly tensioned crossing yams are 

nearly flat and the through-thickness forces are negligible, so the weakly tensioned vertical yams 

begin to undergo very rapid slip velocities near the slit. Integration of the corresponding yam 

lengths cause very large unstretched yam lengths to evolve, which place the yams unrealistically 

in compression and eventually prevent convergence to a realistic solution, since the through- 

thickness forces cannot be equilibrated. 

7.5 Bias-Extension 
The final case that we simulated in order to validate the slip model was the bias extension 

test, described in Chapter 2. In this test, shown in Figure 7-20, a strip of fabric is cut so that its 

yam families are oriented at 45' to the load direction. The strip is then pulled and the yams rotate 

relative to one another to align with the applied load. Chapter 2 describes how the slip-free model 

accurately captures the interesting phenomena in this test, up to the onset of slip. Initially, slip 

only occurs at the comers, where the edges of the strip are gripped and where there is a large 

tension concentration. The weave tends to pull apart and separate from the grips at these points. 

After very large deformations, the yam rotation is arrested by locking forces as the yams jam 

against one another, and the resulting tensions that develop drive more extensive yam slip fields 

that causes the weave to unravel at the edges of the strip and that causes the strip to be pulled 

apart along diagonal lines along the yams that intersect the strip comers, as is shown in Figure 

7-20. 

We simulated this test using the slip enabled model. The model captures the early stages of 

slip near the comers well, as shown in Figure 7-2 1. The model predicts that the weave will begin 



to separate and pull away from the grips, starting at the comers and working inward, reducing the 

tension concentration at the comers. This is consistent with experimental observations. 

Unfortunately, the current implementation of the model cannot be used to simulate the later 

stages of slip, where the weave unravels and the fabric separates along diagonal bands. This is 

partly due to the very small time step necessary once slip velocities and slip velocity gradients 

become large, as id discussed in Section 7.1. However, there is another numerical problem with 

the model that precludes the advanced stages of this analysis. As the fabric shear angle becomes 

large, both the slip-free and the slip-enabled models encounter convergence difficulties. 

Increasingly small time increments are necessary to prevent divergence of the Newton-Rhapson 

algorithm, regardless of whether slip is enabled or not. At large loads, these difficulties prevent 

the analysis from converging. These load levels are relatively large, corresponding to applied 

loads of over 100 N for a 3.5 x 9.5 cm strip, but are not sufficient to initiate the advanced stages 

of slip that pull the sample apart. Since problem is encountered for both the slip-free and the slip- 

enabled model, it is not a result of the slip implementation. In fact, slip delays the onset of the 

convergence difficulties slightly. 

We attribute these convergence difficulties to the inaccurate geometric and constitutive 

assumptions used to capture shear and locking effects at large shear rotations. The truss geometry 

described in Chapter 2 that is used for the model is relatively simplistic; for example, it does not 

include the effects of yam wrapping, which combine with locking effects to exert additional 

resistance to relative yam rotation and likely arrest yam rotation sooner than the current model 

predicts. The truss geometry and constitutive laws that are assumed to capture the locking effects 

are admittedly inaccurate: the trusses are oriented differently than the actual contact forces would 

be, and relatively simple constitutive laws were used to describe the response of these trusses to 

compression. This model was developed to be accurate for moderate shear angles, where the 

errors associated with these assumptions is relatively small. At the large shear angles that are 

present when the advanced stages of slip initiate, the locking trusses become extremely 

compacted and wrapping effects become important, so the errors become more severe. In order to 

simulate the advanced stages of slip in bias-extension, a model with a far more accurate and 

detailed representation of the weave geometry and the locking effects must be developed. 

We note that the tension fields and corresponding driving forces that develop in the model 

prior to convergence failure are consistent with the failure patterns shown in Figure 7-20. Figure 

7-22 shows the warp yam tensions near the end of the analysis (plotted on the undeformed mesh), 

with the contour range reduced to show more detail in the center of the strip, and the 

corresponding slip driving forces calculated from these tensions. These slip driving forces are 



only on the order of 0.25 N at this point, which is too small to overcome static resistances to slip. 

But it is evident that, as they increase with the macroscopic load, they will dnve the slip fields 

that will cause the strip to unravel and separate in the experimentally observed manner shown in 

Figure 7-20. Along the two edges of the strip, the warp yam driving forces will tend to cause slip 

velocities up and to the right at the left edge, and down and to the left at the right edge, which will 

result in the yam ends pulling into the strip and the weave unraveling along the edges. At the 

lower left and upper right regions bounding the central portion of the strip, the driving forces will 

cause bands of slip that are consistent with the weave separating just downstream of these bands. 

The weft slip driving forces (not shown) indicate the same trends on the opposite sides of the 

strip. Therefore, even though the current ABAQUSIStandard implementation of the slip-enabled 

model cannot simulate these advanced slip stages, it does predict loads that are consistent with the 

observed experimental failure patterns. 



CLA MPS 

Figure 7-1 Schematic of raked strip slip validation case 
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Figure 7-2 Predicted reaction forces in raked strip test 
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Figure 7-3 Tension contours in raked strip test 
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Figure 7-5 Evolution of tension distributions along pulled yarn for slip-enabled and slip-free models 
in yarn pullout simulation 
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Figure 7-6 Evolution of velocity distributions along pulled yarn for slip-enabled model in yarn 
pullout simulation 



Figure 7-7 Tension contours in slip-free (top) and slip-enabled (bottom) model in yarn-pullout 
simulation 
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Figure 7-8 Yarn pullout load-displacement response for slip-free and slip-enabled models 



Figure 7-9 Small yarn pullout model, with slip velocity contours as pulled yarn approaches steady 
state 
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Figure 7-10 Evolution of tension distributions along pulled yarn in unstable small pullout simulation 
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Figure 7-11 Evolution of velocity distributions along pulled yarn in unstable small pullout simulation 
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Figure 7-12 Yarn pullout load-displacement response in unstable small pullout simulation 
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Figure 7-13 Yarn pullout load-displacement response in stable small pullout simulation with fixed 
lateral displacement 
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Figure 7-14 Unstretched yarn length contours in small pullout simulation 
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Figure 7-15 Experimentally observed slip fields around a slit in a biaxially stressed fabric 
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Figure 7-16 Geometry of half-symmetry slit-damage model 
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Figure 7-17 Slip displacement of yarns around slit predicted by quarter-symmetry model 
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Figure 7-19 Vertical yarn tension distribution along horizontal line of symmetry in front of slit 
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Figure 7-21 Tension, slip-velocity, slip displacement, and unstretched yarn length of the warp yarn 
family (oriented 4S0 to horizontal in reference configuration) during early stages of slip 
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Chapter 8 
Summary and Recommendations 

8.1 Summary 
We have proposed a unified approach for modeling the mechanical response of a woven 

fabric at different length scales. The approach consists of choosing a characteristic geometry and 

representative unit cell that represents the weave, and appropriate constitutive relations that 

describe the response of the components of the unit cell. The model can be tailored to different 

applications through this choice of geometry and constitutive relations-more detailed and 

complex relations allow different fabric deformation mechanisms to be captured with increased 

accuracy, at the expense of increased computational cost. The configuration of the weave 

mesostructure is then related to the state of macroscopic deformation by enforcing local 

equilibrium within the unit cell, which can be accomplished either by enforcing the local 

equilibrium equations at the macroscopic scale, or by finding the mesostructural configuration 

which is consistent with the given deformation history that has the minimum stored elastic 

energy. Once the mesosturctural configuration is determined the meso-level forces such as yam 

tensions and bending moments can be calculated. These forces are then transformed into 

equivalent continuum stresses at the macroscopic scale through equilibrium arguments. In order 

to validate this approach, we developed a fabric model that is specialized to modeling the in-plane 

quasi-static slip-free behavior of a particular plain weave K e v l d  fabric. We measured the 

appropriate material properties and then compared the model predictions to experimental 

observations in a variety of different two-dimensional load cases, e.g. uniaxial extension, bias- 

extension, biaxial tension in the vicinity of slit-like damage. The model was in good agreement 

with experiments up until the onset of slip and failure. 

We next extended the model to three dimensions, by developing an anisotropic shell 

implementation. Because the fabric is not actually a thin homogeneous structure, but rather a thin 

three dimensional network being approximated as a shell, the shell behavior cannot be determined 

by integrating the material behavior through the shell thickness. Instead, we characterized the 

nine independent modes of deformation of an anisotropic shell, and the corresponding nine 

generalized forces. The planar model was assumed to describe the membrane response of the 

shell, irregardless of the out-of-plane shell deformations. Various other simplifying assumptions 

defined the through-thickness and transverse shear responses of the shell. We conducted bending 



experiments on single yams and on fabric samples, twist experiments on fabric samples, and 

detailed finite element analyses of fabrics subjected to bending and twist, where every yam was 

modeled discretely. These experiments and analyses revealed the mechanisms that control 

bending and twist of fabrics, and allowed constitutive relations that describe bending and twist 

response to be characterized. For the Kevlaa fabric we examined, a linear bending response and 

a bilinear twist response were used. The shell implementation was then used to predict the fabric 

response in various load cases where out-of-plane deformations occur, and these predictions 

favorably compared to experimental observations. 

We next explored the phenomenon of yam slip in fabrics. Yam-to-yam friction and yam 

pullout experiments were used to characterize the frictional behavior that resists slip of yams in a 

fabric. The yam-to-yam friction tests were not suitable for quantitatively measuring the frictional 

forces that resist slip in a fabric, because the geometry of the test is significantly different from 

the geometry of a yam in a weave, but the tests are useful to determining a range of reasonable 

friction coefficients and for evaluating any potential rate dependence of frictional effects. The 

friction tests indicated that friction is slightly rate dependent. We then developed a simplified 

analytical model that permits the load-displacement response measured in a yam pullout test to be 

predicted from a hypothesized constitutive law for frictional resistance to slip in a fabric. If the 

model prediction can be fit to the experimental results using the same constitutive properties for a 

variety of loading conditions, the hypothesized constitutive law is descriptive. By fitting the 

model prediction to the experimental measurements, we determined a sufficiently descriptive 

constitutive law to validate the slip model. The associated constitutive parameters are consistent 

with the yam-to-yam friction tests. 

We developed a slip-enabled continuum fabric model by describing the fabric continuum in a 

novel manner. In the presence of slip, a single deformation mapping can not be used to describe 

the motion of all the yam material, since the two yam families do not move affinely with one 

another. One approach is to use a separate deformation mapping for each yam family. However, 

using this approach makes it is difficult to accurately capture yarn interactions at the crossover 

points that control mechanisms such as crimp interchange and locking. Therefore, we use a single 

mapping that describes the motion of the weave crossover points. The spatial gradient of this 

mapping is not a deformation gradient in the traditional sense, since it does not map the motion of 

material points. The motion of the yam material relative to the crossover points is given by 

velocity fields. With this description, the same modeling approach and unit cell that were used for 

the slip See model can be used for the slip-enabled model. However, as the yams slip through the 

weave, the unloaded configuration of the unit cell evolves throughout the weave. 



We derive equations that describe this evolution as a function of the gradient of slip velocity 

along the yam families. We determine the meso-level forces that drive these slip velocities at the 

mesostructural scale and derive their dependence on the gradient of the tensions along the yam 

families. The slip velocity can be related to the driving force using a constitutive law that is 

determined from yam pullout experiments. 

Because the evolution of the fabric behavior depends on gradients of slip velocities, which 

are calculated from driving forces that depend on gradients of yam tensions, the proposed slip 

theory is non-local. Implementation of a non-local theory into a commercial finite element 

framework is challenging, primarily because of difficulties in determining gradients from tension 

and velocity values that are calculated at irregularly spaced integration points in the presence in 

numeric noise. We explored various methods for determining these gradients, including the use of 

hybrid elements, spatial filtering and smoothing techniques, and coupling the displacements of 

shell elements to the tension and velocity values. Ultimately the most effective and 

computationally efficient method involved averaging the tension (or velocity) values at the 

centers of the elements, and then estimating the gradients using a finite difference technique over 

patches of elements. This method is inaccurate when the mesh is distorted, and requires 

appropriate boundary conditions be applied to the tension and velocity fields, but it allowed the 

slip approach to be validated. We developed boundary conditions for a free edge, a clamped edge, 

an edge where yams but not crossover points are clamped, and lines of symmetry. 

We validated the slip-enabled model by simulating four cases where slip occurs-a rake test 

where a rake through the fabric causes slip, a yam pullout test, a biaxial tension test around a 

region containing slit-like damage, and a bias-extension test. The model effectively predicts small 

slip displacements that redistributes tensions. All the slip fields predicted in these cases were in 

good agreement with experimental observations. Unfortunately, numerical problems prevented 

analyses involving large slip displacements from being conducted. Most of these problems stem 

from the use of an explicit integration scheme for the evolution of the yam lengths while the 

model is implemented into an implicit finite element framework. We recommend that the slip 

formulation be implemented into an explicit framework in order to analyze a wider variety of 

load cases. 

8.2 Recommendations for Continued Work 
We recommend a number of different avenues for further research into these topics. Slip-free 

models of the type described in Chapter 2 are very useful for many applications, but the model 



that we have developed was specialized for plain weave K e v l d  fabrics subjected to small to 

moderate shear deformations. The simplified truss geometry used is adequate to validate the 

model and capture the behaviors that were of particular interest to us, but has known 

shortcomings. More accurate (although more computationally intensive) geometries have been 

proposed, e.g. by Warren [1992], Sagar et al. [2003] or Nadler et al. [2006]. Employment of a 

more accurate geometric representation would make the model more accurate in certain cases 

where phenomena that cannot be captured by the simple truss geometry are important, such as 

wrapping effects, although the computational cost of the model would be increased. Some fabric 

applications may also require more complex constitutive relations to describe the response of the 

components of the unit cell; for example, some fabrics may be woven of yams that exhibit 

nonlinear, inelastic behavior when stretched. The model would especially benefit from more 

accurate geometric and constitutive relations that describe to the locking phenomenon, since these 

improvements would allow it to be used in applications where shear angles become large. The 

current model gives inaccurate results and eventually fails to converge at large shear angles 

largely because the locking behavior is not faithfully represented by the assumed geometry and 

constitutive relations. 

A key component of the model is the determination of the mesostructural configuration that 

corresponds to a macroscopic state of deformation. We have described two methods for 

accomplishing this-minimization of the conditional energy function, described in Chapter 2 and 

King [2003], and introduction of global degrees of freedom that describe the unit cell 

configuration, such as a mean amplitude, which is described in Appendix B. We have not 

explored other methods, such as using Lagrange multiplier methods or penalty methods, which 

could prove to be more robust or efficient. Alternatively, the methods we did explore could be 

optimized further-different minimization algorithms or different choices of global degrees of 

freedom might prove to be more effective. Developing better methods of relating the 

mesostructural configuration to the macroscopic deformation could eliminate the problem 

described in Appendix B, where convergence difficulties arise from numeric problems when one 

family of yams becomes straight through the application of uneven tensions. 

Extension of the same modeling approach to other weave structures requires the development 

of different unit cell geometries. Fabrics can be woven into many weave structures other than 

plain weaves, such as basket, twill, and satin weaves, shown in Figure 8-1. The repeating unit 

cells associated with these weaves are more complex that the unit cell associated with a plain 

weave, even if simple truss-based geometries are used to represent them. For example, Figure 

8-2 shows a truss representation of a 2-2 twill weave, with the representative unit cell. Because 



this unit cell lacks the symmetry of the plain weave unit cell, more than five parameters are 

necessary to define its configuration. Consequently, different methods will be necessary for 

determining the mesostructural configuration from the macroscopic deformation gradient. If the 

conditional energy minimization approach described in Chapter 2 is employed, the conditional 

energy must be re-derived for each unit cell geometry, and different algorithms may prove more 

effective at finding the preferred state where the conditional energy is minimized. If a global 

degree of freedom approach is used, more degrees of freedom than just the mean amplitude 

would be necessary, and the corresponding equilibrium equations must be carefully derived. In 

addition, the unit cell components intersect the unit cell boundaries in different ways than in the 

plain weave, so the macroscopic stress tensor associated with a given set of meso-level forces 

must be re-derived. 

The extension of the model to three dimensional behavior encompassed a number of 

simplifying assumptions, and it may be valuable in some applications to relax some of these 

assumptions. For example, it was assumed that the membrane response of the fabric was 

decoupled from out-of-plane deformations. However, bending or twisting a fabric to large 

curvatures (so that the radius of curvature approaches the size of the characteristic unit cell) could 

impact the locking response. Applied through-thickness stresses, which can arise during fabric 

composite forming operations or in multilayer fabric structures such as ballistic armors, affect the 

through-thickness forces in the weave and therefore can affect crimp interchange and the 

membrane response in some fabrics. Since both locking forces and through-thickness forces are 

known to resist yam slip, out-of-plane deformations can affect the slip-response of a fabric as 

well. The analysis of fabric composite forming operations and ballistic impacts on multi-layered 

armors also requires an effective means of modeling fabric-to-fabric or fabric-to-surface contact. 

Rebouillat [I9981 shows that the tribological properties of the surface of a woven fabric are 

different from the properties of individual yams. Accurate surface interaction models must be 

developed, and the effect that these interactions have on the mechanical behavior of the fabric 

must be determined. 

The shell model used to capture the effects of bending and twist resistance is significantly 

more computationally expensive than a membrane implementation that omits these resistances. 

For a given application where the three-dimensional deformations of fabrics are of interest, the 

importance of the bending and twist resistance must be evaluated so that an appropriate choice 

between a membrane and shell implementation can be made. In other words, criteria for when the 

bending and twist resistances can be neglected must be established. Further study of the bending 

and twist responses themselves could also be useful. Currently, the bending and twist responses 



must be measured experimentally from fabric samples, because of the complexity of the 

phenomena that control them. Ideally, the bending and twist response of the fabric should be 

predicted from the weave structure and the properties of the individual yams or fibers. 

Further study of yarn slip is necessary. More extensive yam friction tests and yarn pullout 

tests that investigate a wider variety of geometries and a wider range of input parameters would 

allow a much more detailed understanding of frictional effects that control yam slip. The 

frictional response at large rates are of especial interest if slip is to be included in a model used 

for simulating ballistic impacts. Apparatuses capable of measuring high rate friction coefficients 

or pullout responses must be devised and constructed. The analytical model used to relate a 

frictional constitutive law to the measured pullout response described in Chapter 4 can also be 

improved. The simulations of the pullout test discussed in Chapter 7 imply that some of the 

assumptions of this model, most notably the assumptions that negligible slip occurs perpendicular 

to the pulled yam and that the average crossing yam spacing 2p remains constant along the yam 

throughout the test, may not be accurate. Refinement of the analytical model could result in a 

better fit between the analytical model and the experimentally measured curves, and hence in 

more accurate slip constitutive relations. Further study of the pullout tests, both through 

numerical simulation or more detailed observation of the experimental trials, would aid this 

refinement. More complex forms of the slip constitutive relation could also be used; for example, 

the time-dependent relaxation of the cross sections and the corresponding variation of the locking 

forces described in Appendix A could be taken into account. Further exploration of this relaxation 

phenomenon may also be of interest. 

The slip implementation described in Chapter 6 is not ideal. In particular, the finite difference 

method used for gradient estimation is prone to error, especially near the edges of the model and 

in regions with a non-uniform mesh. A more accurate method of calculating tension and slip- 

velocity gradients is required. One effective method would be to develop a non-local element is 

capable of predicting accurate tension and velocity gradients at its integration points. We 

investigated a few element formulations with tension and slip velocity degrees of freedom that 

could calculate tension and velocity gradients, but these elements introduced non-physical 

oscillations into the solution that may relate to the numerical locking problem discussed in 

Appendix C. Eliminating the numeric locking problem is vital to the development of a robust 

non-local element, and would also improve the accuracy of the slip-free model. A robust non- 

local element would more accurately determine gradients and predict slip than the current finite 

difference method, and it would allow the tension and velocity gradients to be determined on an 

element-by-element basis. Determining the gradients on an element-by-element basis would 



make implicit integration of the yam length evolution feasible, which would permit larger time 

increments and more computationally efficient analyses. Also, it would facilitate the 

implementation of rate-independent slip constitutive models, which cannot be easily implemented 

when the evolution of the yam lengths are calculated explicitly. 

The most significant work that should be pursued is the implementation of both the slip-free 

and the slip-enabled models into an explicit finite element framework. Although suitable for 

validation of the modeling techniques, implicit codes are poorly suited to studying ballistic 

impacts and fabric composite forming, which are two of the most interesting contemporary fabric 

applications. They also suffer from convergence problems under certain conditions. Furthermore, 

as long as an explicit integration scheme is used to integrate the evolution of the unstretched yam 

lengths in the presence of slip, it is undesirable to implement the model into an implicit 

framework, as this combines the large computational cost per increment of implicit analyses with 

the large number of very small increments necessary for stability of an explicit integration 

scheme. An explicit implementation would be much more computationally efficient in many 

cases, and would be able to model a much larger range of applications, including applications 

involving large three dimensional deformations and contact, such as fabric composite forming, 

and applications with large slip displacements, such as yam pullout tests. When an explicit 

implementation is developed for transient dynamic analyses, care must be taken in developing 

appropriate equilibrium relations for the fabric mesostructure that take inertial effects into 

account. Care must also be taken in deriving the appropriate mass matrix for the fabric, so that 

not only the inertia associated with the in-plane location of yam material is included, but also 

inertia associated with the three dimensional motions of the yams within the unit cell. 

Once large slip deformations can be simulated, fabric failure can be included in the model 

formulation. Failure due to yam pullout and weave unraveling in the slip-enabled model can be 

implemented in the following way. The yam length between any weave point and the free ends of 

the yam can be calculated in the reference configuration. Since the yam velocity past the weave 

point is known throughout the history of the analysis, the amount of yam that has slipped past that 

point can be calculated at each time increment. When the free end of the yam reaches the weave 

point, the effects of the yam on the mechanical response of the fabric at that point can be 

removed, e.g. by reducing the effective yam stifiess at that point to a very small value. This is 

equivalent to imagining that every yam has an thread of a very compliant material extending 

infinitely from its end. Once a yam is pulled out of an element, appropriate boundary conditions 

on the tension and velocity fields in the neighboring elements must be imposed. It is possible that 

yams of both families may be pulled from an element. In this case, the element can be 



deactivated. Because yams never spontaneously weave themselves into a fabric, additional 

elements that are not present in the reference configuration never need be generated. 

Failure due to yam breakage can be accomplished in a similar manner. Once the breaking 

strength or breaking strain of a yam is exceeded at a given weave point, the effects of the yam on 

the mechanical response of the fabric can be removed, e.g. by reducing the yam stifhess to a very 

small value. Appropriate boundary conditions on the tension and velocity fields must be imposed 

on the neighboring elements. If the pullout of the broken yam is of interest, the model must re- 

calculated the yam length between every affected weave point and the new free ends of the yam 

each time a break is detected. 

A final avenue of research involves the combination of this fabric model and other material 

models to simulate the behavior of composite systems. For example, a simple fabric composite 

model could be developed by combining the fabric model in series with a hyperelastic material 

model that represents the composite matrix. More advanced composite models could be 

developed by modifying the fabric and matrix models to take into account coupling and 

delamination effects between the two mechanical system. A model of an armor system consisting 

of multiple layers of fabric and other materials could be assembled by combining the fabric 

elements with elements that model the response of the other components, with appropriate 

interactions defined. The continuum implementation of the fabric model is extremely versatile in 

that it can be easily combined with other continuum models to simulate advanced composite 

systems. 

Further development of fabric modeling techniques along the avenues described here will 

result in a robust fabric model that can predict the mechanical behavior of practically any woven 

fabric system at both the macroscopic scale and the mesoscale, in a wide variety of applications 

that may involve large three-dimensional deformations, yam slip, and fabric failure. 
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Figure 8-1 Examples of different fabric weaves 

Figure 8-2 Truss representation of 2-2 twill weave, with representative unit cell 
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locking effects begin to dominate, the load increases and the response becomes increasingly stiff. 

When the applied displacement is reversed, the data exhibits an abrupt drop in load, probably 

indicating elastic unloading of some kind. The load gradually becomes negative and reaches a 

load corresponding to a moment of -Mc at each crossover point when the test passes through the 

point of zero applied displacement. This is consistent with the hypothesis that Me = Mo, the 

moment required in the absence of locking forces to cause the yams to rotate relative to one 

another at the rate at which the test is conducted. The test exhibits the same trends in the negative 

direction; however, the peak loads are not as large because the applied rotation angles are smaller 

in this direction, as is evident from Figure A-1 . Interestingly, when the specimen is re-loaded in 

subsequent cycles, smaller loads result at given applied displacements than during previous 

cycles. This indicates that some component of the weave mesostructure is evolving from cycle to 

cycle, and that this change is not completely reversed over consecutive cycles. 

A.2 Deficiency of Original Model 
The original model described in Chapter 2 does not capture the cyclic shear behavior 

accurately, as shown in Figure A-3. It predicts the loading curves of the final cycle fairly well, 

but fails to capture the unloading behavior or the drop in load over subsequent cycles. The model 

predicts that far less energy is dissipated during the load cycles (as measured by the area enclosed 

by the load-displacement loops) than actually is dissipated. In order to understand why the model 

behaves in the way it does, we examine in detail the mechanisms included in the model that resist 

shear deformation, and the component constitutive relation associated with these mechanisms. 

Shear deformation corresponds to relative rotation of the yam families. A change in angle 

between the yam families must be accommodated a some combination of two mechanisms, 

shown in Figure 2-8-either the yams must bend in an bbS"-shape between crossover points or 

they must rotate past one another where they cross. These two mechanisms are driven by the 

same applied moment. However, relative yam rotation can also cause locking forces to increase. 

The total resistance to yam rotation will be the sum of the moment that drives s-bending and 

rotation at the crossover point and the moment that arises from locking effects, as is shown in 

Figure 2-9. The S-bending mechanism is assumed to be linear elastic, according to Equation 

(2.17). The response to yam rotation at the crossover points is assumed to obey a power law 

dissipative relation given in Equation (2.18). Locking occurs when the yam cross sections are 

compacted, which was assumed to be an elastic phenomenon that could be described by Equation 

(2.19). 



This representation of the shear resistance will exhibit the response to loading and unloading 

shown in Figure A-4. In the absence of locking effects, shearing the fabric causes the reaction 

moment to increase linearly to some critical moment Mo corresponding to the resistance to 

relative yam rotation at the appropriate rate of deformation. Once this moment is reached, the 

moment remains constant. When the deformation is reversed, the load immediately decreases 

linearly to -Mo, and then remain constant until the deformation is reversed again. The difference 

between the loading and unloading curve is 2Mo at all points where elastic loading and unloading 

do not take place. When a nonlinear elastic locking element is added, the two responses are 

additive and the moment increases continuously as increasing deformation is applied, but the 

difference between the loading and unloading curves remains 2Mo because the additional element 

is purely elastic. Subsequent cycles will always pass through the same load at the same level of 

displacement. This behavior is evident in the model's prediction of the cyclic shear test shown in 

Figure A-3. 

A.3 Improved Model 
The facts that the difference between any given loading and unloading curve does not remain 

a constant and subsequent cycles have less load at the same level of displacement indicate that 

there is another mode of dissipation in the fabric. We hypothesized that the additional dissipation 

stems from inelastic deformation of the yam cross sections during the locking process. The yams 

are composed of a large number of untwisted fibers. As the fabric is cycled to increasingly large 

shear angles, the yam cross sections increasingly deformed and compacted. However, they may 

not elastically return to their original configuration upon the removal of load. Instead, changes in 

shape to the yam cross sections may be accompanied by dissipation of energy from inter-fiber 

frictional effects, which would cause the yam cross sections to deform in a manner that could be 

described by a viscous or visco-elastic relation. This would account for the behaviors observed in 

the cyclic shear tests. Once the fabric is loaded to a given shear angle, a small reduction in the 

applied shear angle would immediately relieve most of the locking forces, since the compacted 

cross sections would not immediately re-expand and maintain locking contact. The locking forces 

dropping rapidly would cause the total load to drop almost to zero. The net load then becomes 

negative as the load required to drive the dissipative element in the opposite direction exceeds 

any residual positive locking forces. On subsequent cycles, the cross sections still would not have 

returned to their original uncompacted shape, and so at the same level of deformation, locking 



forces would smaller than they were during the first cycle, resulting in the observed drop in load 

over subsequent cycles. 

Once we identify a component whose constitutive response could be causing the predicted 

behavior to be erroneous, the model can be modified appropriately. We modified the model to 

capture the features of the cyclic shear test by replacing the elastic locking truss in the unit cell 

model with a visco-elastic element, shown schematically in Figure A-5. As in the original model, 

the element has an elastic spring that represents the locking contact between the yams, with a 

nonlinear constitutive response that can be described using Equation (2.19). The parameter "d 

that appears in Equation (2.19) represents the perpendicular distance between yam centers when 

their cross sections first come into contact and defines the unloaded length of the locking spring. 

As the cross sections are inelastically compacted, "d will become smaller and reduce the force in 

the locking spring. Therefore, the spring representing locking contact is placed in series with a 

dissipative element whose resistance to deformation represents the resistance of the yam cross 

sections to inelastic compaction. 

The yarns are assumed to have oval cross sections, with a minor radius r measured through 

the fabric thickness and a major radius R measured in the plane of the fabric that characterize 

their shape in an unloaded configuration. The parameter Od increases with both R and r. We 

assume that as the yams become inelastically compacted, R becomes smaller, and hence we 

characterize the unloaded cross sectional configuration and the value of Od with the value of R. 

Experimental observations indicate that upon removal of load, the yam cross sections will 

eventually return to their original shape, characterized by the major radius in the reference 

configuration OR. We therefore include an elastic recovery spring element in parallel with the 

dissipative element. The force in this recovery spring is assumed to be proportional to the amount 

by which the yam cross sections have been compacted: 

F = K J R O  - R)  (A. 1) 

The new constitutive parameter K, reflects the stifhess of the elastic recovery response, as the 

yam cross section tends to return to the original configuration. 

Since the yams are composed of many fibers that interact with one another through friction, 

we expect that the unloaded cross sectional shape, characterized by R, cannot evolve 

instantaneously but rather has some viscosity that limits the rate of deformation. We assume that 

the rate of deformation R depends on the difference between the instantaneous locking force and 

the resisting recovery force. Because the yams cross sections can only undergo a certain amount 

of compaction before all available free space is consumed, we limit the deformation of the cross 

section by the introduction of an exponential term that prevents the cross section from 



compacting beyond a critical point. We arbitrarily selected the point where the cross section 

becomes circular: R = r. The model is relatively insensitive to the selection of this critical point, 

as long as it is physically reasonable. The evolution of the parameter R, which defines the 

response of the dissipative element, is: 

R = -^(eR-^ - l)(FL cosa - Q) . ( A 3  

Here A is a new constitutive parameter that relates to the effective viscosity of the dissipative 

element, and FL and a are the force carried by the locking truss and the inclination of the truss to 

the fabric midsurface, respectively, as described in Chapter 2. All of these material parameters 

can be determined by fitting the model prediction of the cyclic shear test to the experimentally 

measured results. The fitted material parameters imply that, in the absence of constraining 

locking forces, compacted yam cross sections will return to their reference shape in a matter of 

tens of seconds, which is a sufficiently slow response to account for the observed phenomena. 

The predictions of the modified model with evolving inelastic yam cross sections and fitted 

material properties are shown in Figure A-6. Unlike the original model, the modified model 

captures both the large amount of energy dissipated in the loading-unloading cycles, and the drop 

in force at a given level of displacement over subsequent cycles. These results indicate that the 

additional deformation mechanisms which were implied by the cyclic shear experiments have 

been successfully included in the constitutive model. This highlights the flexibility of this 

modeling approach. Because the model is based on physically motivated components, 

increasingly complex behaviors are easily included simply by changing the constitutive response 

of the appropriate component. In this case, a purely elastic locking relation was unable to capture 

an observed physical behavior. Replacing this elastic component with a physically motivated 

visco-elastic component gave the model the ability to capture very complex physically observed 

phenomena with the addition of two material parameters, Kr and A. 
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Figure A-4 Response of original model to loading and unloading 



Figure A-5 Schematic of the resistances to shear deformation in the revised model, with a visco- 
elastic locking truss 
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Figure A-6 Model prediction of cyclic shear response with evolving yarn cross sections 



Appendix B 
Reformulation of the Displacement-Based 
Modeling Approach with Mean 
Amplitude Degrees of Freedom 

The slip-free model described in Chapter 2 is a displacement-based model. The macroscopic 

stresses and the evolution of the weave mesostructure depend only on the displacement field u(X) 

and on the corresponding deformation gradient F(X); when implemented into a finite element 

framework, the only nodal degrees of freedom are the x- and y-direction displacements u, and u,,. 

In this model, the macroscopic deformation gradient F is used to find the corresponding 

configuration of the fabric unit cell at the mesostructural scale, which allowed meso-level forces 

and corresponding macroscopic stresses to be calculated. However, as is described in Section 2.6, 

the macroscopic deformation gradient alone does not explicitly determine the complete 

configuration of the unit cell. It describes only the in-plane stretches and shear of the unit cell; 

different configurations involving different yam stretches and crimp angles are possible for the 

same deformation gradient. The displacement-based model described in Chapter 2 determined the 

unit cell configuration using an energy-based argument. Different configurations involve different 

amounts of elastic energy stored in the various unit-cell components (e.g. stretch of the trusses 

representing the yams, compression crossover contact spring, compression of the locking trusses, 

etc.). The model determines the equilibrium configuration by finding the configuration with the 

minimum stored elastic energy, subject to the constraint that it must be compatible with the 

macroscopic deformation gradient. 

Unfortunately, due to the complex functions describing the constitutive response of the 

various unit-cell components, there is no closed-form expression for the configuration giving the 

minimum stored elastic energy corresponding to a given deformation gradient. Therefore, this 

energy function had to be minimized numerically. Not only is this approach computationally 

expensive, but it becomes challenging when inelastic mechanisms such as yam slip are included 

in the formulation. Therefore, we first re-formulate the model to use a different means of relating 

the mesostructural configuration to the macroscopic deformation and eliminate the energy 

minimization procedure. 

As is described in Chapter 2 and King [2003], five independent parameters are necessary to 

characterize the configuration of the unit cell for the geometry that we have chosen. Three of 



these parameters-the quarter-wavelengths of each yam family pi and the angle 9 between yam 

families-relate to the stretches and shear of the unit cell, and can be directly calculated from the 

deformation gradient F using Equations (2.20) and (2.21). The remaining two parameters relate 

to the amount of crimp in each yam family. Either the two yam truss lengths Li, the two crimp 

amplitudes Aiy or the two crimp angles fk can be used as the remaining two parameters that are 

necessary to completely determine the configuration of the unit cell. In the model described in 

Chapter 2, we chose the lengths Li to be the free parameters; for the new formulation, it is 

mathematically more convenient to use the crimp amplitudes Aim 

We eliminate the need for energy minimization by introducing two additional field variables 

MAX) at the macroscopic scale, which represent the change in the crimp amplitudes relative to 

the reference configuration. Hence the model degrees of freedom will include not only the 

displacements u but also the fabric crimp amplitudes Mi. Rather than try to locally determine the 

values of Ai that correspond to a given deformation gradient F using energy minimization 

techniques, the mesostructural evolution and macroscopic stresses can be directly expressed as 

functions of the global fields F(X), M1(X), and A&@). At any given point, if F, M I ,  and A& 

are known, the mesostructural configuration can be completely determined without locally 

minimizing a conditional energy function. 

For every unknown field, there must be an equation that allows that field to be determined. In 

the displacement-based formulation, as in most two-dimensional finite element formulations, in- 

plane macroscopic equilibrium provides the two equations that allow the calculation of the two- 

dimensional displacement field. Equilibrium (in the absence of body forces) can be expressed in 

local, or strong form, as: 

The quantities & are the components of the first Piola-Kirclihoff stress P = J~F"', where CT is the 

Cauchy stress and J= det(F). hi integral or weak, equilibrium can be expressed as: 

where F is the deformation gradient that corresponds to an arbitrary admissible virtual 

displacement field, vat is the external virtual work of boundary loads acting through the virtual 

displacements, and Qo is the volume occupied by a body in the reference configuration. Given a 



finite element discretization of no, the corresponding finite element equations can be calculated 

from the weak form equation. However, in the new formulation, the stress P now depends on &Ai 

and &Az as well as on F, and hence two additional equations are necessary. 

To determine the additional equations necessary to calculate these fields, we note that the 

state with the minimum stored elastic energy that we determined in Chapter 2 is the state at which 

the forces from the various components within the unit cell are internally in equilibrium with one 

another. Hence, in the desired state, local equilibrium equations at each end of the crossover 

spring must hold: 

F,=?".  03.3) 

Here F1 is the axial force carried by the crossover spring (positive when the spring is in 

compression), and F," is the net through-thickness force applied to the end of the crossover spring 

from the yam trusses (positive when acting inwards towards the fabric midplane). Fi is calculated 

from an appropriate constitutive relation and depends on the deformed length of the crossover 

contact spring, and hence can be determined from &Ai and A&. F," has dependencies on the 

tension carried by the yams, the moments from the bending springs, and the forces from the 

locking spars: 

For a yam family i, T, is the tension carried by the yam truss of that family, is the compressive 

force carried by the locking truss associated with the other yam family, a, is the angle which that 

locking truss makes with the fabric midplane, kbi is the stiffiiess of the bending spring, and MSi is a 

small stabilizing moment that is added to the model to provide numerical stability, as described in 

Section 2.8. However, all these parameters can be directly determined if the configuration of the 

unit cell is known, and so F'," can be expressed as a function of F, &Al, and &As. 

Small virtual displacements of the ends of the crossover contact spring must do zero virtual 

work in the equilibrium state. We therefore multiply Equation (B.3) by virtual fields and 

integrate over the body to convert the local equilibrium equations into integral or weak form 

equations: 

These are the additional two equations (one for each yam family i) necessary to solve for the two 

additional fields. 



The fields AA, and AAi represent only one possible choice for the additional fields. Another 

convenient choice of fields with important physical significance is: 

The parameter 2 gives the mean change in the crimp amplitude, which we subsequently refer to 

as the "mean amplitude". It can be used to quantify the total amount of crimp that one yam family 

gained at the expense of the other yam family. The negative sign appears because positive A^/ 

and M2 values imply motion in opposite directions within the same unit cell. The parameter I 

give the total change in length of the crossover spring. 

Adding the two equations given by Equation (B.5) together, substituting in these parameters, 

and re-arranging terms gives a different weak form equation: 

- 
Because the virtual fields 2 and /are arbitrary, they can be varied independently, and hence 

both terms enclosed in square brackets the above equation must be zero, yielding two equivalent 

strong or local form equations: 

^ 

In other words, the local equilibrium equations that correspond to this choice of field parameters 

require that the through thickness forces associated with each yam family must equate (i.e. 

equilibrium through the fabric thickness must be satisfied), and the force carried by the crossover 

contact spring must equal the average of the through thickness forces associated with each yam 

family. 

For many fabrics the yams are sufficiently resistant to compaction that the crossover contact 

spring is orders of magnitude stiffer than any other unit cell components in compression. (When 

in tension the crossover spring is modeled as having near-zero stiffness, allowing the yams to lose 

contact with one another. However, in all practical cases a fabric is loaded in tension, which 

corresponds to compression of the crossover spring, and hence this case does not generally arise). 

When the crossover contact spring is very stiff, the parameter I will be very small compared to 

&Ai and 2. In such cases, we can simplify the model and reduce computational costs by taking 



the crossover contact spring to be inextensible, so I = 0. In this case, AA, = -AA2 and Fi can no 

longer be calculated from a component constitutive relation; it must be determined from F~" and 

F," according to Equation (B.8). Since I = 0, any nonzero virtual / becomes inadmissible and 

the second half of Equation (B.7) vanishes. The problem is reduced to only one additional field 

variable, the mean amplitude 2 ,  and is characterized by the following equations in strong form: 

and in weak form: 

(B. 10) 

This approach eliminates the energy minimization process, since the field variables F and 2 
now explicitly describe the complete configuration of the unit cell. The extra field variable is 

calculated by enforcing local through-thickness equilibrium at the macroscopic scale in addition 

to macroscopic in-plane equilibrium at every point. In this formulation we do not allow for the 

yams to lose contact at the crossover point (since we assume I=O), but in cases where this 

phenomenon may be important, we can use the more complex weak from given in Equation 

(B.7). 

Of course, a suitable discretization and interpolation scheme must be introduced to solve the 

additional weak form equation. For simplicity, we use the same finite element discretization and 

interpolation scheme that is used for n. We assume that the field A can be represented by a 

continuous bilinear or biquadratic interpolation of nodal values 2 at each node a. Such 

interpolation functions are described in Bathe [l996]. 

The admissible values of the 2 field are limited, because the crimp amplitude and crimp 

angle of either yam family cannot become negative, since this would imply that the yams were 

inverting in the weave. This limit is imposed numerically through the use of a scaling function: 



Any value for the mean amplitude degree of freedom AD that is calculated at a given integration 

point is passed through this function to calculate the actual value 2 that is applied in the material 

law. When 2 is near zero, 2 and AD will be approximately equal. As AD approaches positive 

or negative infinity, 2 will approach the limiting values or respectively. This allows the 

mean amplitude degree of freedom to have any real value, which is necessary because the 

Newton-Rhapson algorithm used by implicit finite element codes may guess inadmissible values 

for this degree of freedom that lie outside the bounds. 

We experimented with other numerical methods of preventing the Newton-Rhapson 

algorithm from guessing inadmissible values for the mean amplitude, including reduction of the 

time step when such values were guessed or creating a "hard stop" that applies arbitrarily large 

forces to prevent either family from becoming completely flat. All these methods worked equally 

well in most cases. In extreme cases, where one yam family carried a large tension and the other 

carried very small tensions, the scaling function method proved most effective. However, even 

this method encountered problems in very extreme cases. As one yam family becomes flat and its 

crimp amplitude and crimp angle approach zero, two effects occur. First, the calculated through- 

thickness force and corresponding stiffness terms associated with this yam family become 

inaccurate, because numerical inaccuracies are introduced when the large tensions are multiplied 

by the sine of the very small crimp angles. However, the sensitivity of the through thickness force 

to changes in A" as A" increases in magnitude becomes small, since large variations in AÂ 

correspond to increasingly small variations in 2. As the highly-tensioned yarns become 

increasingly flattened, the stiffness terms relating the through-thickness force residual to 

variations in the mean amplitude become very small and the stiffness matrix becomes ill 

conditioned. 

Convergence problems in the Newton-Rhapson implicit scheme result from both these 

effects. For example, in regions of the plain weave KevlarO model where one yam family carries 

tensions in excess of approximately 150 N and the other yam family carries near zero tensions, 

the solution begins to diverge and zero-pivot problems are sometimes reported by the analysis 

code, which are indicative of an inaccurate or ill-conditioned stifhess matrix. Since this generally 



only occurs when tensions exceed the breaking strength of the K e v l d  yams (approximately 100 

N), more advanced methods to eliminate this problem were not investigated. 





Appendix C 
Numerical Locking in Fabrics 

C.1 Locking-like Behavior in Strip Tests 
Early in the modeling process, we noted a troublesome response predicted by the fabric 

material model in certain load cases. The finite elements would predict that the yam tensions, and 

hence the stresses, would vary in a non-physical oscillatory manner that depended on the finite 

element mesh and the elements formulation used. Examples of these tension oscillations are 

shown in Figure C-1. These oscillations manifest in load cases with non-uniform strains, and they 

are most significant in cases where deformation is primarily accommodated through crimp 

interchange. The oscillations are a result of small oscillatory errors in the tension values (and 

hence in the stress) calculated at the integration points. In cases where the elements have three 

integration points along a given dimension, the extrernal points would develop error in one 

direction and the central point would develop error in the opposite direction. In cases where there 

were only two integration points per dimension, they would develop errors in opposite directions. 

Although the magnitudes of these errors tend to be small compared to the actual tension values, 

especially when the tensions become large, the errors do not vanish as the mesh is refined. 

Reduced integration bilinear elements have only a single integration point and inherently assume 

constant tension (and stress) over the element; hence such elements do not exhibit oscillations. 

In addition to the oscillatory tensions and stresses, equivalent meshes composed of elements 

with different formulations require different amounts of energy to be deformed to the same 

configuration, as shown in Figure C-1. Although lower order elements generally are stiffer than 

higher order elements, we noted that, in general, the elements that exhibited the most severe 

tension oscillations required the largest amount of energy to deform. The reduced integration 

bilinear elements, which cannot exhibit oscillations, require hourglass stifhess to control 

spurious hourglassing modes, but when the additional energy lost to this hourglass control is 

subtracted, these elements required the smallest amount of energy to deform. The differences in 

energy to deform the elements appear to be related to the tension oscillations. 

This behavior resembles a well known phenomenon that occurs when fully integrated 

displacement-based elements are used to model incompressible or nearly incompressible 

materials. In such cases, the element predictions become inaccurate. Element stifmesses become 



artificially large as the bulk modulus increases, and the elements predict increasingly 

discontinuous, often oscillatory stress contours. This phenomenon is commonly referred to as 

numeric "locking" of the element, not to be confused with the "locking" phenomenon in fabrics 

that results when yams cross sections jam against one another. The numerical locking problem 

associated with nearly incompressible materials develops when the stifiess associated with 

changes in volume is significantly larger (i.e. by several orders of magnitude) than the stiffness 

associated with isochoric deformations. Purely isochoric deformations result in relatively small 

stresses. However, small variations of the nodal displacements cause small variations in the 

volumetric strains, which result in large variations in the stresses, because the volumetric 

component of the stress becomes large. Consequently, the elements become artificially stiff, since 

small variations in the nodal displacements result in very large nodal forces, unless the strain 

variations that result from the nodal displacement variations happen to be purely isochoric. 

Fabrics are not incompressible. They typically can undergo significant volume changes 

(assuming constant thickness) under very little applied load. The crimp interchange process is not 

volume conservative-the effective Poisson's ratio associated with this mechanism varies but is 

significantly less than 0.5, and approaches zero as one yam family becomes completely 

straightened. The trellising process by which fabrics accommodate in plane shear also results in 

significant changes in volume, despite the fact that stresses generally remain small until the fabric 

jams. However, like a nearly incompressible material, certain modes of fabric deformation are 

orders of magnitude stiffer than other modes, especially for fabrics woven from a high-stiffness 

material such as K e v l d .  Because the tensile modulus of the yams is so large, any mode of 

deformation that requires the yams of either family to be stretched is much stiffer than any mode 

that can be accommodated by crimp interchange or by trellising. Any mode of deformation that is 

accommodated purely through these low-stiffness mechanisms will result in relatively small 

stresses. However, small variations of the nodal displacements result in deformation modes that 

cannot be accommodated purely through crimp interchange and trellising, and hence cause the 

yams to become stretched. This results in large tensions and large stresses. Therefore, the 

elements will lock in a manner similar to that which afflicts nearly incompressible materials. If 

the yam stifhesses are reduced or the bending and trellising stiffhesses are increased so that the 

various deformation modes have similar stiffhesses, the numeric locking problem vanishes. 

This explanation accounts for the oscillations in the tensions field. The oscillations occur 

when non-uniform strain fields are applied to the fabric, and are only significant compared to the 

actual tension magnitudes in cases where deformation is accommodated primarily through 

trellising and crimp interchange. Consider the case shown in Figure C-2. A strip of elements is 



subjected to small, linearly increasing y-direction displacements, which impose a linearly varying 

axial strain field. X-direction displacements and hence transverse strains are unconstrained. As 

long as transverse strains are unconstrained and axial strains are small, the deformation can be 

accommodated purely by crimp interchange-no yam stretch is necessary. However, the 

relationship between the imposed axial strain and the transverse strain that corresponds to no 

transverse yam stretch is nonlinear, as is shown in Figure C-3. Even when axial strains that vary 

linearly across an element are imposed, the transverse strains that correspond to a pure crimp 

interchange deformation mode will vary nonlinearly across the element. Neither displacement- 

based elements with bilinear nor with biquadratic interpolation schemes can accommodate this 

nonlinear variation exactly. Consequently, no set of nodal displacements can yield a state of 

deformation that can be accommodated purely by crimp interchange at all integration points 

simultaneously. As is shown in Figure C-3, small deviations from the optimal strains will be 

present at every integration point. Because small variations in the strains away from a pure crimp 

interchange deformation mode result in yam stretch, corresponding errors in the tension and 

stress will develop at the integration points. Because the stiffhess associated with yam stretch is 

so much larger than that associated with crimp interchange, the tension and stress errors will be 

significant compared to the tensions and stresses that develop in the physical case. The modes 

that minimize the tension errors, integrated over each element, involve the oscillatory tension 

fields that are evident in Figure C-1 and Figure C-2. When macroscopic modes of deformation 

that require yam stretch are imposed, such as uniaxial extension to large strains or biaxial 

extension, the physical yam tensions become large compared to the tension errors that develop in 

the model, and the locking problem becomes unimportant. 

There are two methods commonly used to eliminate numerical locking problems in nearly 

incompressible materials-the use of reduced-integration elements and the use of hybrid 

elements. We investigated both methods and developed element formulations that did reduce or 

eliminate the observed locking errors in the tensions. A reduced-integration displacement-based 

biquadratic element with only four integration points greatly reduces the locking errors, and a 

bilinear element with only a single integration point eliminates them. Alternatively, the locking 

errors can be eliminated through the use of a hybrid element where the stress is calculated from 

tension fields as well as displacement fields, and where the tension fields are determined by 

introducing an additional equation to the finite element formulation that is derived from the 

constitutive law. Unfortunately, both of these formulations exhibited unacceptable spurious 

modes that led to non-physical displacement or tension fields in certain specific situations. These 

modes could not be eliminated without making convergence impossible or without re-introducing 



the locking problem, because in certain situations the formulations that eliminate locking have no 

solution that satisfies all equilibrium equations without these spurious modes. 

C.2 Reduced Integration Elements 
To illustrate the spurious modes that develop for the reduced-integration elements, consider 

the test case shown in Figure C-4. The bottom edge of a unit square of material is constrained in 

the vertical direction. All horizontal displacements are unconstrained (except for one, to prevent 

rigid body motion). A vertical displacement 8 is applied to one of the top comers of the square. 

Similar cases arise any time an abrupt change in boundary condition is applied along an edge; for 

example, in simulations of yam pullout tests described in Sections 4.3 and 7.3, or of the slit- 

damage tests described in Sections 2.1 1 and 7.4. The exact solution for this test case is shown in 

Figure C-4, where the curvature of the deformed top edge depends on the ratio of the shear 

stiffhess and the axial stiffhess of the material. For a fabric, which has a relatively small shear 

stiffhess, the vertical displacement of the top edge will decay very rapidly. To illustrate how the 

spurious modes develop, we choose a very simple material model with no coupling between the 

x- and y-direction behavior: 

This material model might represent a composite with two families of non-interwoven fibers 

oriented parallel to the x- and y-directions, and some sort of interaction (from a matrix or from 

bonding where the fibers cross) that imparts shear resistance. This is very similar to a fabric 

material model, except that it excludes crimp interchange, yam bending, fabric locking, and 

dissipative yam rotation effects, all of which have relatively low stifhesses associated with them. 

If a single fully-integrated displacement-based bilinear element with four nodes is used to 

model the square of material in Figure C-4, it can be shown that the vertical displacement of the 

unconstrained top corner, & will be: 

For a fabric, Ky << Kw, and as KJK,, -> 0, the solution will approach & -> -91. This implies 

that the first few elements adjacent to an abrupt boundary condition change may adopt a "bow- 



tie" shape shown in Figure C-5 as the vertical displacements oscillate, but since 1 & 1 < 1 S\, the 

oscillatory displacements will decay, and as the mesh is refined, the finite element solution will 

approach the exact solution. This can also be shown for a fully-integrated displacement-based 

biquadratic element with eight nodes. In this case, as KJK' -> 0, the vertical displacements & 
Sc, S,L, and 8,11 of the nodes at the free comer, the center of the top edge, the center of the left 

edge, and the center of the right edge, respectively, approach: 

so the single element solution will take the shape shown in Figure C-6. Again, because the 

displacements are all smaller in magnitude than 8, they will decay over multiple elements and as 

the mesh is refined this solution will also approach the exact solution. 

This is not the case for reduced-integration elements. For example, a reduced-integration 

displacement-based biquadratic element will take the following shape as KJK' -> 0: 

This shape is shown in Figure C-7. to this configuration, < x ~  is nonzero at various locations 

throughout the element, but is exactly zero at the four integration points. Therefore, there will be 

no y-direction reaction forces at any of the nodes and the element can assume this deformed 

shape with no energy cost. It is therefore a spurious mode. Similarly, a reduced-integration 

displacement-based bilinear element can adopt a configuration where & -> -6as KJK' 3 0. to 

this configuration, ow happens to be zero at the single integration point at the element center, and 

hence there are no reaction forces at the nodes. Because the displacements of the free comer node 

are equal in magnitude to the displacement of the constrained node for these elements, the 

displacement oscillations will not decay over multiple elements and the solution will not 

converge to the exact solution as the mesh is refined. 



Of course, in a real fabric Km is nonzero, and there is also some coupling between x- and y- 

direction deformation through the crimp interchange effect. These mechanisms will impart some 

stiffhess to the spurious modes. However, these phenomena have very small stifhesses associated 

with them compared to the stifhess of the fabric parallel to the yams. Consequently, reduced- 

integration fabric elements will tend to adopt the spurious modes to exploit the smaller energy 

costs. The stifhess of the elements will be severely underestimated, and the non-decaying 

displacement oscillations will result in unrealistic displacement predictions. This may account for 

the smaller stiffhess associated with reduced integration elements shown in Figure C-1. The 

spurious modes and unrealistic oscillating displacement fields were evident when reduced 

integration elements were used to simulate the fabric behavior in both the slit-damage test and the 

yam-pullout tests. 

C.3 Hybrid Elements 
The second method commonly used to eliminating numeric locking errors is the use of hybrid 

elements. For nearly incompressible materials, the stress is separated into hydrostatic and 

deviatoric components: 

The hydrostatic stress (the negative pressure), is introduced as an additional solution field that is 

interpolated over each element from pressure degrees of freedom. In order to solve for this 

additional field, the hydrostatic constitutive law is introduced into the finite element formulation. 

For materials with a linear hydrostatic response to small volumetric strains, the pressure is given 

by: 

where tzvis the volumetric strain and is calculated from the deformation gradient F according to: 

gV =detF-1. (c-7) 

For a nearly incompressible material, K -Ã no, so the hydrostatic constitutive law is introduced to 

the finite element formulation in a weak form that remains well defined as the bulk modulus K 

becomes arbitrarily large: 

Here jj is an arbitrary admissible test function that is interpolated in the same manner asp. This 



expression is enforced along with the equilibrium expressions, and the stress at any point is 

calculated by adding the interpolated pressure p to the deviatoric stress dm calculated from the 

isochoric component of the deformation. As the bulk modulus becomes large, this formulation 

does not predict large variations in stress resulting from small, non-isochoric variations in the 

displacement field. Instead, it enforces the constraint that the volumetric strain should approach 

zero. It therefore eliminates the locking problem, provided that a suitable interpolation scheme is 

used for p. 

A great deal of work has been devoted to deriving criteria that determine whether a given 

element formulation that uses various interpolation schemes for displacement and pressure will 

lock. Unfortunately, the bulk of this work pertains only to linear elastic material laws and small 

strain analyses. For nonlinear, finite strain analyses, numerical experimentation with different 

formulations is the only method currently available for determining if a given hybrid formulation 

will prevent locking. For more information about hybrid elements used to eliminate locking, refer 

to a finite element text such as Bathe [l998]. 

We followed a similar approach to develop a hybrid element to eliminate the numeric locking 

problem in our fabric elements. Numeric locking in fabrics occurs because the fabrics are nearly 

inextensible along the yam family directions (when crimp interchange is not permitted) rather 

than nearly incompressible. Therefore, the stress is not separated into hydrostatic and deviatoric 

components, but rather into components that stem from yam stretch, and components that stem 

from all other mechanisms: 

We use the alternative formulation described in Appendix B, where the fabric configuration 

depends not only on the deformation gradient F but also on the mean amplitude 2, which is 

interpolated from mean amplitude degrees of freedom and solved for by enforcing through- 

thickness equilibrium. This eliminates the need for minimizing the conditional energy to 

determine the fabric configuration, which is described in Chapter 2 and in King [2003], and 

allows the configuration to be determined directly and the stress to be decomposed. o " gives the 

component of stress that depends on the tension in yam family i, which generally acts in the gi 81 

gi direction. a Other includes all other components of stress, including stress from yam bending 

effects, jamming effects, and yam rotation effects. Components of a Other may act in any direction. 

We introduce Ti and T2 as fields that are interpolated from tension degrees of freedom. Note 

that, unlike the "informational" tension degrees of freedom described in Section 6.2, these tension 



degrees of fieedom are "actual" degrees of freedom used to calculate the stress. The tension 

degrees of freedom are solved for by introducing constitutive laws in weak form into the finite 

element formulation. For linear elastic yam behavior, the weak form constitutive laws are: 

(C. 10) 

where T is an arbitrary admissible test function interpolated in the same manner as 7}; ki is the 

stifhess of the yam; Li is the length of the stretched yam in the deformed configuration, which 

depends on the deformation gradient F and the mean amplitude 2 ; and t i  is the unstretched 

length of the yam, which is equal to O L ~  for the slip-free model. As the yams become increasingly 

stiff and ki becomes arbitrarily large, this formulation does not predict large variations of stress 

resulting from small variations in the displacement field that cause the yams to be stretched. 

Instead, the formulation enforces a constraint that the yams become inextensible. It therefore has 

the potential to eliminate the numeric locking problem, provided that suitable interpolation 

schemes are used for displacement and tension. 

In general, interpolation schemes that successfully eliminate locking for nearly 

incompressible materials are schemes where pressure is interpolated using lower order 

polynomials than those used to interpolate displacement. For example, biquadratic displacement 

elements with discontinuous linearly interpolated pressures or with continuous bilinearly 

interpolated pressures are effective elements. We therefore considered similar element 

formulations for the hybrid fabric elements. We identified three elements in particular that 

appeared to eliminate the numerical locking problem. The first two were biquadratic 

displacement elements with nine displacement nodes and either discontinuous linear tension 

interpolation with three tension degrees of freedom per yam family or continuous tension 

interpolation using the linear chordal interpolation scheme described in Appendix D. The second 

was a bicubic displacement element with twelve displacement nodes on the element edges and 

continuous tension interpolation using a quadratic chordal interpolation scheme. 

Unfortunately, these elements also suffered from spurious modes and predicted unrealistic 

displacement and tension fields. We first consider the elements with biquadratic displacement 

interpolation and either discontinuous linear tension interpolation or continuous linear chordal 

interpolation. Both these formulations allow only linear tension variations across an element. 

Consider again the case shown in Figure C-4 and the following simple material law: 



(C. 1 1) 

where T is the interpolated value of a tension field that describes the tension per unit width 

carried by fibers aligned in the y-direction, and can be solved for by enforcing the following weak 

form equation: 

(C. 12) 

In the limiting case where Km is small compared to Kvm the y-direction nodal forces will 

depend only on the tension distribution T. However, it can be shown that the only linear tension 

distribution that can simultaneously provide zero force residuals at all nodes for the applied 

tractions is one where T = 0 everywhere, as shown in Figure C-8, since the y-direction nodal 

forces must be zero both at the free comer and at the free nodes at the centers of the top and side 

edges. Therefore, the formulations that use linear tension distributions and biquadratic 

displacement interpolation must predict zero tension throughout the element in order to satisfy 

equilibrium. This is unrealistic because it implies that the y-direction nodal force is also zero at 

the constrained comer node-in other words, that it requires no force to deform the element. 

Uniformly zero tension does satisfy equilibrium (although unrealistically), but it must also be 

consistent with the displacement field according to the constitutive law integrated over the 

element given in Equation (C. 12). For a biquadratic displacement field with nine nodes, there is a 

solution that satisfied this equation and results in = 0 when averaged over the nine integration 

points: 

6, =6 

(C. 13) 

Here & 4, &, and S,R are defined as before, and &, is the vertical displacement of the node at the 

center of the element. The shape of one such mode is shown in Figure C-8. This mode will result 

in positive errors at some integration points, and corresponding negative errors at others, for zero 

net residuals. Note that not only is there a solution that satisfies the governing equations with an 

unrealistic, uniformly zero tension distribution, but that there an entire family of solutions that do 

so-any two of &, GR, and & can be arbitrarily varied as long as all three satisfy the given 

relation. Also note that because 4 = 8, this solution will introduce non-decaying displacement 



oscillations into a multi-element model, just as the reduced integration formulations did. We 

therefore see that any element family with biquadratic displacement interpolation and linearly 

varying tension fields can assume a configuration with uniformly zero tensions and unrealistic 

non-decaying displacement oscillations for no energy cost-in other words, such elements 

possess a spurious mode that prevents them from being used. It can be shown that the bicubic 

displacement elements with quadratically interpolated tension fields possess similar, although 

more complex spurious modes. These elements also predict uniformly zero tension distributions 

and non-decaymg displacement oscillations as KJKD -  ̂0. 

Of course, in a real fabric, Km is not zero and there is coupling between the x- and y- 

directions through the crimp interchange mechanism, so the energy cost of assuming these modes 

is not quite zero. However, as mentioned previously, the stiffiesses associated with these 

mechanisms are much smaller than the stifmesses associated with yam stretch, and so the 

elements will choose the spurious modes because they are energetically inexpensive, and the 

model stiffhess will be underestimated and unrealistic displacements will be predicted. 

C.4 Failure to Control Spurious Modes 
One common way of controlling spurious modes is to associate some artificial stiffness with 

any spurious modes that have no energy cost. This artificial stiffhess is sometimes called 

"hourglass control stiffhess" because it was originally applied to control spurious displacement 

modes that caused elements to assume an hourglass shape. Sufficient hourglass stiffhess must be 

applied so that the energetic cost of assuming the spurious mode is greater than the energetic cost 

of assuming physically-realistic deformation modes. Unfortunately, this technique could not be 

applied to control the spurious modes that develop in either the reduced-integration displacement- 

based elements or the hybrid elements that we have explored so far. Sufficient hourglass control 

to eliminate the spurious modes cause the elements to begin to exhibit numerical locking 

problems again. Indeed, it is possible that no solution to the governing equilibrium equations 

exists for a formulation that is capable of eliminating locking. One of the techniques we 

investigated for eliminating the spurious modes was to square the errors at the integration points, 

so that spurious modes that have zero residuals due to positive error in some locations and 

negative error in others no longer exist. When this approach was implemented for the biquadratic 

displacement linear tension hybrid elements, the Newton-Rhapson implicit algorithm could not 

converge to a solution. Indeed, no physical solution is apparent for this formulation-no non- 

zero linear tension distribution can produce nonzero forces at the constrained comer node and 



zero forces at all of the unconstrained nodes. Higher order tension distributions can do so, but 

when the same interpolation order is used for both the tension fields and the displacement fields, 

the numeric locking problem reappears, just as it does when the same interpolation order is used 

for both pressure and displacement fields in models of nearly incompressible materials. 

C.5 Conclusions Regarding Numerical Locking 
To date, we have been unable to develop an effective means of eliminating the numeric 

locking problem. It manifests as oscillatory errors in the tensions and stresses calculated at the 

integration points, and varying stiffhess that depend on the element formulation used. The 

problem appears to stem from the large differences in stiffness between deformation modes that 

involve yam stretch and deformation modes that can be accommodated by crimp interchange; 

when these stiffhesses are comparable, the problem vanishes. We have investigated both reduced- 

integration displacement-based element formulations and hybrid element formulations designed 

to eliminate numerical locking, and while we have successfully identified several formulations 

that eliminate the characteristic errors in tension, all of these formulations have spurious modes 

that cause the element stifhesses to be underestimated and unrealistic displacement and tension 

fields to be predicted. Elimination of the spurious modes causes the locking problem to reappear 

or prevents convergence to a solution. 

More research into this phenomenon is necessary. Although the tension errors are relatively 

small and are non-negligible only in the low-load regime before yams have become significantly 

stretched, the oscillatory nature of the errors and the fact that they do not vanish with mesh 

refinement means that they introduce far more significant errors into tension values extrapolated 

to the element nodes and into tension gradients determined from the calculated tension values. 

Accurate extrapolation of the tensions and determination of the tension gradients are very 

important when yam slip is included in a fabric model, because yam slip is driven by the tension 

gradients and appropriate boundary conditions on the tension must be enforced at the edges of the 

model. 
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Figure C-1 Numeric locking in fabric elements; (Top) Energy to deform various elements; (Bottom) 
Yarn tension oscillations that appear in various elements 



Figure C-2 Tension contours in bilinear (top) and biquadratic (bottom) fully-integrated 
displacement-based elements subjected to a linearly varying axial strain field 
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Figure C-3 Relationship between axial and transverse strains that can be accommodated purely 
through crimp interchange (no transverse yarn stretch), with strains in bilinear fully-integrated 

displacement-based elements subjected to a linearly varying axial strain field 



Figure C-4 Simple test case to illustrate spurious modes in element formulations used to eliminate 
numeric locking 

Figure C-5 "Bow-tie" deformation mode over first few elements for fully-integrated displacement- 
based bilinear element formulation 



Figure C-6 Solution pr( icted by fully-integrated displacement-based biquadratic element 

Figure C-7 Solution predicted by displacement-based biquadratic element with reduced integration 
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Figure C-8 Physical solution and spurious mode for hybrid element with a linear tension distribution 
and biquadratic displacement interpolation 



Appendix D 
Chordal Interpolation 

D.1 Motivation 
Finite element schemes rely on the discretization of a body into subdomains (elements). 

Suitable interpolation functions are chosen to evaluate fields at different points inside the element 

from the values of those fields at the element nodes. These nodal values are referred to as the 

nodal degrees of freedom. At any given material point X contained in an element e, the value of 

some field u can be expressed as a weighted sum of the nodal degrees of freedom 4 : 

The weights are the interpolation functions N,  associated with each node a, and depend on 

position. They form a partition of unity and must have the following properties: 

Here x,, gives the location of node b, and <SÃ is the Kroneker delta (equal to unity when a=b and 

zero otherwise). 

Continuum finite elements are sometimes used to represent anisotropic materials such as 

woven fabrics, which have preferred material directions (e.g. along the yams) that may be 

oriented arbitrarily within the element. It is sometimes desirable to express quantities that are 

specific to these material directions as fields interpolated throughout the element from degrees of 

freedom at the nodes. For example, yam tension in a hybrid fabric element could be represented 

as a continuous fields that is interpolated from nodal degrees of freedom. As described in Chapter 

6, a continuous field can be estimated from discrete values calculated at the integration point 

values by requiring that the difference between the estimated field and the calculated values 

vanish when integrated over the element, which can be accomplished by introducing the 

following equation (given in weak form) to the finite element formulation to solve for the field 

degrees of freedom: 



Here T represents the field values calculated at the integration points, f is the estimated field 

evaluated by interpolating field degrees of freedom f a ,  and T is an arbitrary admissible test 

function. 

Whatever interpolation schemes are used to represent a field, they must be able to accurately 

reproduce fields that physically occur, given a sufficiently refined mesh. The most commonly 

used interpolation schemes are bilinear and biquadratic schemes, which are effective for a wide 

variety of traditional displacement-based elements. These schemes are described in detail in 

several finite element texts, e.g. Bathe [1996]. Unfortunately, traditional bilinear and biquadratic 

interpolation schemes are not suitable for interpolation of material direction specific quantities 

unless the element is rectangular and the material directions are aligned with the element edges. 

For arbitrary meshes and arbitrarily oriented material directions, bilinear and biquadratic 

interpolation schemes cannot always capture realistic distributions of direction-specific quantities, 

such as yam tensions in a fabric. For an example, consider the case shown in Figure D-1. Yams 

in a woven fabric are oriented at a 45' angle to a square element. The yams passing through the 

lower left and upper right comers of the element carry large tensions, while those passing through 

the other comers carry near-zero tensions. Yam tension varies linearly in a direction 

perpendicular to the yam direction, and is constant along the yams. This is a very simple case that 

can physically occur in many situations (e.g. during yam pullout tests, ballistic impacts, 

propagation of slit-like damage, or bias-extension tests, which are described in Chapter 2). 

Neither a bilinear nor a biquadratic interpolation scheme is capable of capturing this simple 

physical case. Given the correct tension values at the element nodes (large positive tensions at 

two opposite comer nodes, near zero tensions at the other two comer nodes, and intermediate 

tensions at the midside nodes if they are present), these interpolation schemes yield a saddle 

shaped tension distribution, shown in Figure D-2. (We consider 8-node biquadratic interpolation 

schemes. A 9-node biquadratic interpolation scheme, with a node at the center of the element, 

produces a different but equally unsuitable distribution through the interior of the element.) This 

is an unrealistic distribution, as it implies that tension first decreases and then increases along 

each yam, rather than remain constant. This interpolation scheme prevents tension from being 

correctly evaluated at both the nodes and at points within the element (e.g. the integration points) 

at the same time. It also prevents calculation of the realistic tension gradients along the yarns 

from the nodal tension values. 



D.2 A Chordal Interpolation Scheme 
We propose an alternative interpolation scheme for material direction specific fields, such as 

yam tensions in a fabric. First, note that for a sufficiently refined mesh, field values evaluated on 

the element boundaries using linear or quadratic interpolation along the boundaries will be 

accurate, provided that the nodal values are accurate. Next, provided that the element in question 

is convex (a requirement for accurate finite elements in most cases case), any point within the 

element that is not on the element boundary will lie on a material direction vector that, when 

extended, passes through the element boundary at exactly two points. We postulate that it is 

reasonable to linearly interpolate values along the material directions between these two points, 

and that for a sufficiently refined mesh, these linearly interpolated values will be accurate. 

We refer to this interpolation technique as "chordal interpolation", since we are interpolating 

along a chord that crosses the element. We designate the interpolation functions for this 

interpolation scheme as N f  , and define them in the following manner, analogous to Equation 

(D. I): 

Note that the chordal interpolation function depends on the material point location X, and also on 

g, a unit vector that describes the in-plane orientation of the material direction in the reference 

configuration as it passes through X. 

We follow the scheme described in OYRourke [I9981 to determine the end points of the 

chord-the points where a line through X parallel to the material direction crosses the element 

boundaries. We restrict this analysis to elements with straight edges in the reference 

configuration. (Extension to elements with curved edges is straightforward, although it involves 

complex algebra). Consider an arbitrarily shaped convex quad element with straight edges, as 

shown in Figure D-3, with comer nodes at positions Nj in the reference configuration. At any 

point X within the element there is a unit vector g that gives the in-plane material direction that 

passes through that point. We define the chord associated with X and g to be the straight line 

segment contained in the element that passes through X parallel to g. We assume that g remains 

constant along the chord-i.e. that the yam or fiber that the chord represents is straight in the 

reference configuration. This assumption is reasonable provided the mesh is sufficiently refined. 

Define a parametric vector function p(s) = X + sg, which describes points on the chord that 

are distance s from point X. Consider one of the edges of the elements with endpoints Nj and Nk. 

Define a second parametric function q(t) = Nj + t(Nt - Nj) that gives the percentage of the 

distance traveled along the edge from node NJ to Nk. The intersection between the line containing 



the chord and the line containing that edge lies where p = q. Hence we can establish a system of 

equations with two unknowns, s and t, the solution of which is given below. We designate mi 

and ms to be the coordinates of Nj, n; and n2 to be the coordinates of Nt, gi and g2 to be the 

components of g, and x andy to be the coordinates of X: 

with 

D = - g p 2  + g1n2 + g2m1 - g2n1 (D.6c) 

Note that it is possible for D to be zero, in which case s and t are undefined (they approach 

positive or negative infinity as D approaches zero). This indicates that the edge between Ni and Nj 

is parallel to g and hence the chord will never intersect that edge. 

For 0 5 t 7, the intersection point lies on the element edge. When t exactly equals 1 or 0, 

the intersection lies on one of the nodes. When t < 0 or t > 1, the line containing the chord 

intersects the line containing the edge outside of the element. Provided that the point X does not 

lie on a comer node or on an edge that is parallel to g, there must be exactly two distinct points Xi 

and X2 where the chord intersects the element boundaries. In order to find Xi and Xz, we find the 

intersections (si, ti) and (s2,t2) that give two distinct points Xi and X2 with 0 <  ̂t 5 1. In the special 

case where X corresponds to one of the comer nodal locations Ni, it is possible that there may be 

only one intersection point for certain vectors g, which would be indicated by two of the 

intersection points having a t value out of the range 0 < t <: 1 and the other two intersections 

having s=0, meaning that they lie at the same point. In this case, Xi = X2 = Nj. When X lies on 

an edge that is parallel to g, (the D value for that edge is zero and two other admissible points 

have t = 1 or t = 0) we define Xi and Xi to be Nj and Nio the nodes at the ends of the parallel 

edge. 

Once points Xi and X2 have been found, the value of Tat these two points can be calculated 

using the traditional linear or quadratic interpolation functions along the edge: 

We interpolate linearly between these two points to find ?(X): 



For the special case where X lies on a comer node, Xi = Xi and sl = s3 = 0, so this expression will 

be undefined. To complete the theory, we can redefine sl and s2 to be any partition of unity in this 

special case because ?(XI) = ?(X2); sf = s2 = Vi is convenient. However, note that when these 

interpolation schemes are used in a finite element analysis to evaluate fields at Gauss quadrature 

points, this special case will not arise, because Gauss quadrature points never lie on the comer 

nodes for quadrilateral elements. 

By comparing Equation (D.8) to Equation (DS), we see that the chordal interpolation 

functions N~~ are: 

Note that sf, s2, XI, and X2 depend on X and g, as well as the reference configuration coordinates 

of the comer nodes Nj. The chordal interpolation functions will satisfy the properties given in 

Equations (D.2) and (D.3) provided that the interpolation function Nu that are used to interpolate 

along the edges satisfy these properties. 

In some cases, the reference configuration gradients of interpolated fields along the material 

directions may be of interest. For example, in a fabric the gradient of tension along a yam might 

be of interest, since this gradient drives yam slip through the weave. If we define to be a 

coordinate in the reference configuration measured along the material direction parallel to g, the 

gradient of a field f along this direction is: 

(D. 10) 
2 

Since we assume a linear interpolation along the yam, we can calculate this gradient in the 

following manner: 



with 

(D. 1 la) 

(D. 1 1 b) 

Note that we designate Xi to be the point that lies in the direction indicated by g relative to X, and 

X2 to be the point in the direction indicated by -g. If the nodal values fa of some field that is 

chordally interpolated are known, these gradient interpolation functions can be used to calculate 

the reference configuration gradients of those fields along the material directions. 

D.3 Implementation 
Certain issues arise when these chordal interpolation junctions are implemented into a 

computational framework. In many finite element codes, the bilinear or biquadratic shape 

functions are frequently expressed in terms of isoparametric coordinates (often designated as r 

and s) instead of global coordinates x and y, and the global coordinates of isopararnetric locations 

within the element must be determined through isoparametric interpolation, as described in Bathe 

(D. 12) 

The locations of the Gauss quadrature points are often stored in isoparametric coordinates. 

Therefore, the first step in calculating the chordal interpolation functions is to convert coordinates 

of the Gauss quadrature points to global coordinates, so that Equation (D.6) can be used to find 

the corresponding ends of the chords through these points. 

For each of the four edges, Equation (D.6) either gives s and t parameters or indicates that D 

is zero and s and t are undefined. Provided that the point in question lies within the interior of the 

element, there must be exactly two unique intersection points. However, it is possible that there 

may be three or even four edge intersections with 0 5 t < 1, if the chord intersects one or two of 

the comer nodes. When this occurs, the two unique intersection points Xi and Xz can be identified 

by identifying a pair of points with different s values. 



When a point lies near an edge that is nearly parallel to the chord through that point, numeric 

round off error can create difficulties in the calculation of the intersection points. Consequently, 

logical tests for edges parallel to the chord must include suitable tolerances. 

The endpoints of the chord Xi and X2 are calculated in global (x and y) coordinates. In order 

to calculate the chordal interpolation function using Equations (D.9) and (D. 1 lb), it is necessary 

to evaluate the standard bilinear or biquadratic shape functions N, at these points. However, as is 

mentioned above, in many codes the standard shape functions are expressed in terms of 

isoparametric coordinates (r and s). Therefore, the isoparametric coordinates of the end points Xi 

and X2 must be calculated. Equation (D.12) relates the isoparametric coordinates to the global 

coordinates; unfortunately, these relations do not have a closed form inverse. Therefore, the 

isoparametric coordinates and the corresponding values of the shape functions at points Xi and X2 

must be calculated numerically using iterative techniques. Only then can the chordal interpolation 

functions be calculated using Equations (D.9) and (D. 1 lb). 

D.4 Validation of Chordal Interpolation Scheme 
Chordal interpolation schemes can accurately represent any physically realistic field that is 

accurately represented by bilinear or biquadratic interpolation schemes, with the caveat that the 

chordal interpolation scheme can capture only linear variations along the material directions. 

They can also represent fields that cannot be accurately represented by bilinear or biquadratic 

schemes. 

For cases where the material direction is parallel to parallel edges of a rectangular or 

trapezoidal element, the chordal interpolation scheme is equivalent to a bilinear scheme (or, if 

quadratic interpolation along the element edges is used, it is equivalent to a linear-quadratic 

scheme). For example, the field shown in Figure D-4, which increases linearly in the x- and y- 

directions, is accurately represented by both chordal and by traditional bilinear and biquadratic 

interpolation schemes. When the field increases linearly along a material direction oriented 

parallel to the y-direction and quadratically along the x-direction, a bilinear scheme cannot be 

represent it, but both a biquadratic and a chordal interpolation scheme (using quadratic 

interpolation along the edges) can, as shown in Figure D-5. 

There are cases where neither the bilinear nor the biquadratic schemes can accurately 

represent a physical field that can be represented by a chordal interpolation scheme. For example, 

consider a case similar to the one described in Section D.1, where the material direction is 

oriented at 45' to the element, and where the field is constant along the material direction and 



increases quadratically from zero at the upper left and lower right comers of the element to unity 

at the center of the element. As is shown in Figure D-6, only the chordal scheme (with quadratic 

interpolation along the edges) can accurately represent this field given correct values at the nodes. 

The inability of the chordal interpolation scheme to capture nonlinear variations along the 

material direction means that there are certain cases where a finer mesh may be required than 

would be for a biquadratic scheme. However, because a biquadratic scheme will not always give 

correct results when the material directions are not aligned with the element edges, the chordal 

interpolation scheme provides greater flexibility when meshing a model of an anisotropic material 

with direction-dependent degrees of freedom, because arbitrarily shaped elements that are 

oriented arbitrarily with respect to the material directions can be used. 



^ -% v ^ ̂  'Ã‘Ã‘vÃ 
a ?. Low Tension "̂  Yarns 

Figure D-1 A case where bilinear and biquadratic interpolations fail-yarns oriented diagonally 
across the element 

Figur 



Figure D-4 Field increasing linearly in x- and y-directions 







Appendix E 
Mechanical Drawings 

The subsequent pages contain mechanical drawings for a fabric gnp (used on the biaxial 

machine), the twist test apparatus described in Chapter 3, the yam-to-yam friction test apparatus 

described in Chapter 4, and the pneumatic apparatus used for pullout tests, also described in 

Chapter 4. All of these were designed and machined at MIT. 

The fabric grip is designed to attach to a Deben biaxial tensile tester. Grips of this type 

proved to be very effective in all fabric experiments at gripping fabric specimens so that the 

fabric neither slips significantly in the grip nor is sheared or broken at the edge of the grip. The 

fabric is wrapped around a bar with a diamond-shaped cross section, and this bar is clamped 

between two jaws. 

The twist test apparatus is designed to be attached to a cantilever texture analyzer uniaxial 

tester. Neither the cables nor the counterweights are shown in the drawings. Because the moving 

portion of the device is not rotationally symmetric about the twisting axis, the weight of the 

apparatus components affect the measured response. Consequently, a test must be performed with 

no specimen loaded so that the portion of the response that comes from the weight of the 

components of the apparatus can be subtracted from responses measured for various specimens. 

The yam-to-yam friction test apparatus is designed to be attached to a Zwick uniaxial tensile 

tester. The weight used to apply the input tension is not shown. The pulleys (which are mounted 

on shoulder screws), threaded rods, thumbnuts, etc., are also not shown. These parts were 

ordered from McMaster-Cam. 

The pneumatic apparatus is also designed to be attached to a Zwick uniaxial tensile tester. It 

employs fabric grips where the fabric is wrapped around a rod with a diamond-shaped cross 

section and clamped between two jaws. The pneumatic cylinders and the associated pneumatic 

tubing and hardware are not shown. These components were ordered from McMaster-Carr. 
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