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Three-dimensional scaffolds and growth factors have been shown to be important for 
articular cartilage tissue engineering. A major problem in using recombinant proteins in vivo, 
however, is the inability to maintain therapeutic levels over prolonged times due to degradation 
or diffusion from the defect site. The goal of this thesis was to develop a method to employ type 
I1 collagen-glycosaminoglycan (CG) scaffolds for the nonviral delivery of the gene encoding for 
insulin-like growth factor (1GF)-1, as a novel means to provide a local, elevated, and prolonged 
release of a therapeutic growth factor via transfection of cells seeded or migrating within the 
scaffold. In  vitro studies were performed to evaluate gene-supplemented CG (GSCG) scaffolds, 
including: 1) the type of expansion medium to use for growing chondrocytes prior to 
transfection, 2) methods of incorporating genes within scaffolds, 3) additional incorporation of 
transfection enhancers, and 4) the use of mesenchymal stem cells (MSCs) as an alternative cell 
source for articular cartilage tissue engineering. 

The medium used during monolayer expansion not only had a significant effect on 
subsequent biosynthesis and chondrogenesis in CG scaffolds, but also on gene transfer to 
chondrocyte monolayers. The expansion medium that resulted in enhanced 3-D biosynthesis and 
gene transfer to cells in monolayer was used throughout the rest of the studies. 

Greater plasmid retention within GSCG scaffolds was achieved by chemically cross- 
linking the plasmid IGF- 1 (pIGF- 1) to the scaffold (compared to simple plasmid absorption), and 
resulted in more steady and prolonged IGF-1 overexpression by seeded chondrocytes. 
Ir~corporation of a lipid transfection reagent or gelatin nanoparticles encapsulating pIGF-1 
significantly enhanced gene expression. The method of gene incorporation and the type of 
transfection enhancer were important variables that controlled the initiation, amount, and 
duration of growth factor release. IGF- 1 overexpression by cells successfully transfected within 
GSCG scaffolds also increased biosynthesis of cartilage matrix molecules and chondrogenesis. 
Finally, MSCs seeded into GSCG scaffolds were able to be successfully transfected and 
mLaintained IGF- 1 overexpression for at least 2 weeks post-seeding. 

These findings show promise in using GSCG scaffolds for providing a local, prolonged, 
and therapeutic release of desired growth factors using nonviral transfection methods for tissue 
engineering or regenerative medicine applications. 
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CIHAPTER 1: GENERAL INTRODUCTION 

Current methods for treating articular cartilage defects (e.g. microfiacture, autologous 

chondrocyte implantation, and osteochondral autografting) have been successful in alleviating 

immediate patient pain, however, long term affects of these methods have limited follow-up. 

Currently these methods generally result in the formation of a fibrocartilage tissue that is very 

different from the composition and structure of normal articular cartilage. Several studies have 

investigated the collagen-glycosaminoglycan (CG) scaffold as an implantable scaffold with and 

without autologous cells in regenerating dermis ly2, peripheral nerve 3-5, intervertebral disc 6,  and 

articular cartilage 7-9. From these studies, it has been found that CG scaffolds facilitate the 

reparative process and result in the successful growth of various functioning tissues that are 

closer but not yet identical to the structure of natural tissues. Previous research has also found 

significant and positive affects of specific growth factors on the tissue engineering of articular 

cartilage particularly in enhancing proliferation of chondrogenic cells, cell differentiation, and 

the biosynthesis of cartilage specific matrix molecules by these cells. 

A local and prolonged administration of a growth factor such as insulin-like growth 

factor (1GF)-1 could be a significant benefit to in vivo and ex vivo strategies for articular cartilage 

repair. Despite their promising reparative potential, however, administration of recombinant 

proteins may be hindered in vivo due to delivery problems related to degradation or diffusion 

from the defect site. Recent studies in our lab have concluded that incorporation of plasmid 

DNA (specifically plasmid DNA containing the luciferase reporter gene) in CG scaffolds leads 

to successful transfection of and gene expression by the cells seeded within the scaffold. The use 

of plasmid DNA instead of viruses as a means for induced gene expression is desirable as it 

re:duces the risk of a possible immune response. Although several studies have investigated gene 

th~erapy concepts for a variety of tissue engineering applications, there has not yet been an effort 

to develop gene-supplemented collagen-GAG (GSCG) scaffolds for the nonviral delivery of the 

IGF-1 gene for enhancing the synthesis of articular cartilage in vitro or in vivo. Development of 

a11 effective method to supplement CG scaffolds with plasmid DNA encoding for desired 

proteins could result in a novel gene delivery system that elicits a more prolonged and localized 

release of growth factors: cells seeded within these GSCG scaffolds or migrating into the 

scaffold in vivo may be transfected by taking up the incorporated plasmid DNA, leading to 



production of therapeutic concentrations of growth factors that can enhance the repair of articular 

cartilage defects. 

lam BACKGROUND 

ImImIm COLLAGEN-GAG SCAFFOLDS FOR ARTICULAR CARTILAGE REPAIR 

The use of three-dimensional (3-D) scaffolds that mimic the natural in vivo environment 

(viz., extracellular matrix) of cells has been shown to facilitate the reparative process and result 

in the successful growth of various functioning tissues. The 3-D environment supplied by these 

porous scaffolds serves as a desirable structural support for seeded or migrating cells and allows 

for a much greater surface to volume ratio for increased cell attachment as compared to a 2-D 

surface. There are several requirements for a scaffold to be used as an implant for articular 

cartilage regeneration lo. The scaffold needs to be biodegradable, nontoxic, able to be fixed to 

the defect site, facilitate cell attachment, regulate cell expression, and possess sufficient 

mechanical strength l. Natural polymers such as collagen provide a native surface to cells, since 

it is a major component of the natural extracellular matrix, and possesses ligands that favor 

cellular attachment. Collagen substrates have been shown to modify the morphology, migration, 

and in some cases differentiation of cells 12. Moreover, prior studies have demonstrated that type 

I collagen-glycosaminoglycan (GAG) scaffolds produced by freeze-drying techniques can 

facilitate the regeneration of dermis and peripheral nerve 12'. Type I1 collagen-GAG scaffolds 
7,8,13 have also demonstrated promise for enhancing articular cartilage synthesis . 

Studies have confirmed that the addition of cells seeded within these 3-D scaffolds 
8,14,15 enhance matrix synthesis and increase type I1 collagen production in vivo . There are 

various cell types that may be used to enhance cartilage synthesis when seeded into scaffolds. 

These include articular chondrocytes and chondroprogenitor cells derived from marrow, 

periosteum, or perichondrium ' I .  The advantage of using chondrocytes obtained from articular 

cartilage as a cell source is that they already express the desired phenotype for articular cartilage 

repair (i.e. they can synthesize cartilage matrix molecules such as type I1 collagen and aggrecan) 

16. Chondrocytes, however, are very limited in supply especially for autologous transplantation, 

and expansion in culture is necessary to obtain a number sufficient for enhanced repair. 

Furthermore, the site from which autologous chondrocytes are harvested (usually taken from a 



minimal-load-bearing region of the joint) does not spontaneously regenerate and may pose a 

potential problem. To alleviate this problem of donor site morbidity, other cell sources such as 

bone marrow (for marrow-derived mesenchymal stem cells), which have natural regenerative 

capabilities and are readily accessible, have been investigated for articular cartilage repair l6?l7. 

The chondroprogenitor cells from marrow have been shown to be able to differentiate into a 

cartilage lineage when exposed to the appropriate stimuli l1 and therefore may be a more feasible 

cell source for articular cartilage regeneration. For this reason, both chondrocytes and marrow- 

derived stem cells were investigated as cell sources for culture in GSCG scaffolds. 

1.1.2. ROLE OF GROWTH FACTORS 

While recent studies in our lab have demonstrated the promise of implementing 

chondrocyte-seeded collagen-GAG scaffolds for cartilage repair, there are potential problems 

and significant expense associated with the need to culture a cell-seeded scaffold for several 

weeks prior to implantation. This focuses attention on the implementation of growth factors to 

accelerate cell proliferation and matrix synthesis. Numerous studies have shown the effects of 

vi3rious growth factors on chondrogenesis in vivo, and on chondrocyte proliferation, metabolism, 

and matrix synthesis in vitro. Among the most prominent growth factors investigated for 

articular cartilage tissue engineering are insulin-like growth factors (IGFs) 18-23, bone 
24-26 rnlorphogenetic proteins (BMPs) , basic fibroblastic growth factor (bFGF, also FGF-2) 27-29 

and transforming growth factor-p (TGF-p) 30-36. The effects of growth factors in both monolayer 

and 3-D culture of chondrocytes have been shown to be significant. The complexity of choosing 

th~e correct combinations and doses of growth factors to obtain the optimal tissue engineered 

articular cartilage construct in vitro poses a major challenge. While there are numerous 

combinations of factors that can be investigated relative to the type and dose of growth factor 

used, studies have already demonstrated the profound benefits of certain agents for engineered 

articular cartilage constructs. For example, supplementation of the culture medium with IGF-1 

alone has been shown to increase cell proliferation, proteoglycan synthesis, type-I1 collagen 

synthesis, and chondrogenesis, both in monolayer and in 3-D cultures 18,22,37 

In  vivo, an improved histologic appearance and an increased proportion of type I1 

collagen in full thickness cartilage defects in young mature horses was shown using fibrin 

polymers laden with IGF- 1 38. BMPs (specifically BMP-2 and BMP-7) have also been shown to 



increase proteoglycan and matrix synthesis, maintain the chondrocyte phenotype, and stimulate 

cartilage formation in vivo in a manner similar to endochondral ossification 39. In vivo studies 

using New Zealand White rabbits have demonstrated that full-thickness femoral osteochondral 

defects treated with rhBMP-Zsupplemented collagen sponges displayed a greatly accelerated 

formation of new subchondral bone, an improved histologic appearance of overlying articular 

cartilage, and more type I1 collagen and tissue filling in the defect compared to the controls ". 
BMP-7 (also called osteogenic protein- 1,OP-1) has also been shown to stimulate cartilage 

formation and aggrecan synthesis in subchondral defects in goats 41. FGF-2 has demonstrated to 

be a potent mitogen for chondrocytes and a stimulator of matrix synthesis 39. Furthermore, in 

vivo studies in rabbits 42 have reported that treatment of full-thickness cartilage defects with 

intra-articular FGF-2 can enhance differentiation of mesenchymal cells to the chondrocyte 

phenotype, increase proliferation of differentiated chondrocytes, and increase accumulation of 

type I1 collagen and proteoglycan. 

TGF-p has been shown to be most effective in conjunction with other growth factors in 

eliciting its complex effects on cartilage metabolism 39. Many findings, however, have shown 

contradictory effects of TGF-P supplementation in culture (e.g., effects of cell proliferation and 

proteoglycan synthesis) due to its sensitivity to varying experimental conditions in the different 

studies. The more promising effects of TGF-P supplementation include increasing collagen and 

proteoglycan production and inhibiting matrix breakdown 39. It has also been shown that TGF-P 

has a role in the regulatory network of growth factors that maintains articular cartilage in the 

differentiated phenotype 43 and is an important factor in inducing chondrogenesis in marrow- 

derived mesenchymal progenitor cells ' 7. 

The effects of using combinations of growth factors have also been studied in monolayer 

and 3-D cultures and demonstrate the complex interactions and signaling events that can occur. 

Growth factor-supplemented media used for the expansion of chondrocytes in monolayer have 

been shown to directly influence the outcome of 3-D cell pellet cultures grown in a different 

specified serum-free medium ". Not only does supplementation of the expansion medium with 

specific growth factors affect chondrocyte proliferation, morphology, and phenotype, it also 

influences the chondrocytic potential or ability to redifferentiate back into a chondrocytic 

phenotype when re-introduced into a 3-D environment. 



1.1.3. RATIONALE FOR GENE TRANSFER IN TISSUE ENGINERING 

Growth factors can make significant contributions to cartilage repair procedures and 

tissue engineering by stimulating cell proliferation, migration, differentiation, and matrix 

synthesis. There are, however, major challenges faced in the direct application of human 

recombinant proteins in a clinical setting. Proteins are difficult to administer exogenously in 

accurate, sustained, and therapeutically useful amounts to sites of cartilage injury. Single bolus 

doses of growth factors alone in vivo have short half-lives as a result of degradation or diffusion 

from the defect sight. Various strategies including the use of polymers, pumps, and heparin, 

have been investigated as possible methods by which to achieve constant levels of growth factors 

at a given injured site; however, success remains limited 45. Furthermore, although it is now 

possible to produce large quantities of these recombinant proteins for the purpose of treatment, 

the expense is still another unattractive feature. Delivery of a gene that could be expressed 

within the wound is an attractive alternative to application of the recombinant protein. Gene 

transfer provides the DNA that encodes for the desired protein, so that infected cells can create 

higher and more sustained levels of the growth factor over extended periods of time, a likely 

requirement for effective articular cartilage regeneration. More than one gene can be transferred 

and independently regulated to supply multiple growth factors to the defect site at various time 

points in the repair process. Furthermore, prior work has suggested that endogenously expressed 

proteins, induced by gene transfer, may have a more positive and more potent effect on matrix 

synthesis and biological activity than exogenous recombinant proteins 46. 

1.1.4. GENE TRANSFER TO CELLS FOR ARTICULAR CARTILAGE TISSUE 

ENGINEERING 

Many questions are involved in deciding the best method of gene transfer for articular 

cartilage repair. Such variables include: a) the cell, or cells, to be targeted (e.g., chondrocytes, 

rnLesenchymal stem cells, synovial cells, etc.); b) the protein, or proteins, to be encoded; and c) 

the delivery vector to be employed (which is also dependent on the size of the gene encoding the 

growth factor). The vectors used in gene transfer procedures applied to articular cartilage repair 

include: viral vectors such as adenoviruses, lipid-mediated reagents such as liposomes, and 

naked DNA alone. 



Several studies have focused on adenoviral vectors for the transduction of cells due to 

high infection efficiencies and ease of manufacturing. Both in vitro and in vivo studies have 

proved this method of infection to be beneficial to cartilage regeneration. In monolayer studies, 

cultured articular chondrocytes infected with an adenoviral vector containing the IGF- 1 coding 

sequence 47 found that at an optimal adenovirus-IGF- 1 concentration (1 00 multiplicities of 

infection, MOI), gene expression was detected at therapeutic concentrations for at least 28 days. 

This prolonged expression resulted in an 8-fold increase in matrix products secreted in the 

medium and an increased resistance of the cells to de-differentiation over time under serum- 

starved conditions. Moreover, the cells maintained a normal chondrocyte molecular phenotype 

compared to controls. The significant effects of using different genes separately or in 

combination could be seen in another monolayer study which used rabbit articular chondrocytes 

and compared the effects of adenoviral delivery of IGF-1, TGF-P, and BMP-2 in the absence or 

presence of the inflammatory cytokine, interleukin-1 (IL-1) 46. It was found that proteoglycan 

synthesis was significantly stimulated by the BMP-2 (-8-fold) and IGF-1 (2-3 fold) genes 

separately, and the effects were additive upon co-transduction of chondrocyte monolayers. 

Furthermore, the IGF-1 gene most strongly stimulated collagen and noncollagenous protein 

synthesis. Although the addition of IL- 1 decreased proteoglycan synthesis by 50-60%, IGF- 1 

and TGF-f3 genes restored proteoglycan synthesis to control levels, and BMP-2 gene transfer 

further elevated proteoglycan synthesis beyond control levels. It can thus be seen that finding 

the right genes to use individually or in combination can significantly affect the success of the 

final regenerated tissue. Other studies have demonstrated the successfbl transduction of other 

cell types such as mesenchymal stem cells and synovial cells in monolayer and explant cultures, 

for the delivery of therapeutic proteins 48. 

Although the use of viral vectors has proven to be very effective in enhancing the 

biosynthetic activity of cells in vitro, much caution has to be taken when directly injecting viral 

particle solutions in vivo, due to the immunogenic nature of viruses and the possibility of 

transmission to other tissues and organs. This issue has been addressed in an in vivo study 

comparing the direct injection of adenoviral vectors for IGF-1 or BMP-2 to transplantation of 

fibroblasts infected ex vivo with the same vectors - with respect to virus spread, immune 

response, and cartilage formation 49. Inadvertent spread of the adenoviral vector was observed in 

the liver, lung, and spleen in all mice that had received the vector directly, whereas spread rarely 



occurred in fibroblast-mediated gene transfer. Furthermore, administering the genes via 

injection of ex vivo-infected fibroblasts limited cartilage formation to regions near the injected 

site, and also avoided the strong immune response that was elicited following direct application 

of the viral vector. Ex vivo methods of gene transfer to harvested cells (such as chondrocytes, 

fibroblasts, bone marrow cells, or synovial cells) may therefore be safer than direct injection of 

viral particles alone. 

Nonviral methods of gene transfer are also being developed to avoid the potential 

problems associated with adenoviral vectors. Nonviral vector systems offer the advantages of 

low immunogenicity, simplicity of vector design, and relative ease of large-scale production 50. 

Although transfection efficiencies for nonviral vectors have been known to be much lower than 

that of viral vectors, significant advances in the development of more efficient non-viral 

transfection reagents are emerging. Lipid-mediated gene transfer has been shown to result in the 

transfection of articular chondrocytes, and the maintenance of prolonged gene expression. One 

study implemented the lipid-mediated transfection reagent, FuGENE 6, with a hyaluronidase 

treatment to transfect bovine articular chondrocytes with a plasmid vector containing the cDNA 

for human IGF-1. Transfection efficiencies were reported to be about 41% with gene expression 

lasting for over 4 weeks in vivo 51952. Transplantation of the transfected chondrocytes onto the 

surface of articular cartilage explants led to the formation of a new tissue layer on the explant 

surface, which was characterized by the presence of type I1 collagen and proteoglycan and the 

absence of type I collagen, consistent with hyaline-like cartilage. Furthermore, the tissue formed 

by transfected chondrocytes was thicker and contained more cells than the controls. The 

overexpression of IGF-1 also increased DNA and glycosaminoglycan synthesis by the 

underlying explant cartilage chondrocytes 52. A follow-up in vivo study in a rabbit model 

showed that chondrocytes transfected with the IGF- 1 gene, encapsulated in alginate, and 

transplanted in osetochondral defects improved articular cartilage repair and accelerated the 

formation of the subchondral bone at early and later time points compared to controls 53. 

1.J. 5. TISSUE ENGINEERING APPROACHES INCORPORA TING GENE TRANSFER 

A promising approach for enhancing gene transfer and retention of genes or expressed 

proteins within a defect site employs 3-D scaffolds. The combination of gene therapy and tissue 

engineering could provide the ultimate treatment for articular cartilage defects as it involves a 



supporting scaffold that can serve as a carrier for gene vectors or infected cells resulting in a 

sustained, prolonged, and localized delivery of therapeutic proteins in vivo. It has also been 

demonstrated that cells first seeded into 3-D scaffolds and then transfected show higher gene 

expression levels and longer expression times compared to 2-D transfection 54. This observation 

is important in demonstrating how the 3-D environment can influence cell behavior and 

processes, including the transfectibility of cells. 

Most studies using gene therapy and tissue engineering concepts for the regeneration of 
55,56 articular cartilage involve ex vivo infection of cells that are virally transduced or nonvirally 

transfected 57 in vitro and then subsequently seeded into 3-D scaffolds (e.g., fibrin or synthetic 

polymer scaffolds). Several cell types and genes have been investigated for this application 

including: transfection of articular chondrocytes with the IGF-1 gene 57; transduction of 

periosteal stem cells with the OP-1 gene 55; and transduction of mesenchymal cells from rib 

perichondrium with the BMP-2 and IGF-1 genes 56. In all of these cases, chondrogenesis and 

matrix synthesis was significantly enhanced in vivo, following implantation of the constructs. 

The disadvantage of implanting cells transfected or transduced ex vivo as described above 

is that there may be a decrease in expressed protein over time as the infected cells apoptose or 

migrate. It would be ideal if the scaffold could serve as a vehicle to immobilize gene vectors so 

that when implanted: 1) cells migrating into the scaffold and proliferating could take up the gene; 

and/or 2) surrounding cells could take up the genes released as the scaffold degrades. The DNA 

vector as well as the transiently expressed therapeutic protein would be retained within the defect 

site, thereby increasing the opportunity for a maximal therapeutic response 58. With time, more 

endogenous cells could become infected and a prolonged release of growth factor could be 

maintained over the full duration of cartilage regeneration. This scaffold-based gene transfer 

approach could be particularly beneficial in regenerative medicine applications since in vitro 

culture would not be required (i.e. a non-cell-seeded gene-supplemented scaffold could be 

implanted in vivo for endogenous cells to infiltrate and become transfected resulting in the 

release of therapeutic growth factors). Several studies have investigated the use of nonviral 

scaffold-based gene delivery for the treatment of a variety of tissue defects. These studies are 

summarized in the table below with regard to the scaffold material, type and amount of plasmid, 

and the application. 



Table 1.1 Summary of Studies Using Scaffold-Based Nonviral Gene Delivery 

C Publication Scaffold 
I pMAT- 1 

(1 - 100 mg) 
pPDGF 
(1-3 mg) 

pFGF-2, pBDNF, 
pNT-3 (7.5 mg) 

Cationized-gelatin 
Vanoparticles pBMP-2 

(2- 13 mg) 
Biotinlavidin bound 

PEI-DNA 

Bone 
(in vivo-canine) 

I Bonadio et al. " I Collagen I 

I Tyrone et al. 61 
Healing-dermal ulcer 

fin vivo-rabbits) Collagen I 

Retina-optic nerve (in 
vivo-rat) 

Collagen I 

I Hosseinkhani et. al. PGA reinforced 
Collagen (I) sponge 

MSCs 
(for bone) 

Segura et al. 65 
HA-Collagen I 

hydrogel surface Fibroblasts 

Block renal intersitial 
fibrosis (in vivo-mice 

kidney) I Kushibiki et a1 " 1 Cationized gelatin 
hydrogel 

Guo et. a1 59 
pTGFb- 1 

(1 mg) 
pEGF 

(20 vg) 
Peptide-DNA pEGFP 

(10-100 mg) 

Chondrocytes 

I Andree et al. " 
Fibrin (w/ I keratinocvtes) 

Wound healing, 
(in vivo-mice) 

Kidney, endothelial, 
fibroblasts 

Trentin et al. 68 
Covalently I immobilized in Fibrin 

Granulation 
tissue/blood vessels (in 

vivo-rats) 
Shea et al. 69 

Poly(1actide-co- 
glycolide) 

Poly(1actide-co- 

Poly(1actide-co- 
Jang J. et al. glycolide) 

PEI-DNA 
pBMP-4 (200 mg) 

pVEGF 
(500-800 pg) 

Bone-cranial 
(in vivo-rats) 

Blood vessels, 
subcutaneous 
(in vivo-mice) 

Liang et al. 72 
Poly(1actide-co- 

glyco1ide)-electrospun 

PEG-PLA 
Nanoparticles 

MC3T3 pre- 
osteoblastic cell line 

(bone) 



1.2. EXPERIMENTAL APPROACH 

The main goal of this thesis was to use a nonviral scaffold-based gene delivery approach 

specifically developing collagen (type 11)-glycosaminoglycan (CG) scaffolds incorporating the 

gene encoding for insulin-like growth factor (IGF)-1 to induce a localized and prolonged IGF-1 

overexpression for enhancing articular cartilage tissue formation in v i to  and ultimately in vivo. 

Plasmid containing the IGF-1 gene was used throughout the scope of this thesis and chosen on 

the basis of prior work that demonstrated the beneficial effects of IGF-1 on proliferation, 

biosynthesis, and chondrogenesis 18,19,21,22,23,48 

My preliminary studies fust focused on evaluating certain medium conditions both in 

monolayer and in 3-D culture. Prior studies " have found that using a specific medium for 

expanding chondrocytes in monolayer has a direct effect on chondrocyte proliferation and 

chondrocyte rediffaentiation when subsequently placed in pellet cultures and cultured in a 

serum-free 3-D culture medium. More importantly, the use of a serum-free medium in 3-D 

culture would be advantageous in eliminating the variability introduced when using fetal bovine 

serum (FBS) and is desirable when preparing 3-D constructs to be placeplaced in vivo to prevent 

any inherent immunogenicity associated with the addition of FBS. Furthermore, the use of a 

serum-fkee medium in my experiments would ensure that the detected IGF-1 protein in the 3-D 

culture medium is a reflection of successful gene transfer to cells seeded within gene- 

supplemented CG (GSCG) scaffolds, and not IGF-1 protein contributed by FBS. 

Since the expansion medium was found to significantly influence the outcome of 

constructs in 3-D culture (i.e. cell pellets), it was hypothesized that the expansion medium may 

also have a significant effect on the ability to transfer specific genes into cells. To test this, a 

monolayer culture experiment was carried out using either a nonviral or viral method of 

transferring the IGF-1 gene into adult chondroctyes expanded in monolayer using two different 

types of medium. If one expansion medium demonstrated enhanced gene transfer susceptibility 

of cells in monolayer, then that specific medium would be commended for expansion of 

chondrocytes to be subsequently seeded within GSCG scaffolds to increase probable gene 

transfer in 3-D culture. 

Once the specific media were chosen for use during monolayer expansion and subsequent 

3-D culture, various methods to synthesize GSCG scaffolds were investigated. Based on the 

significant enhancement in gene transfer using a lipid mediated transfection reagent 



(Geneporter@) in the prior monolayer culture studies, we investigated incorporating within the 

CG scaffolds, plasmid alone or plasmid complexed to the lipid transfection reagent. Preliminary 

studies eliminated the feasibility of mixing the plasmid solutions within the collagen slurry due 

to issues related to possible degradation of the plasmid within the acidic slurry solution and post 

sterilization techniques that may also compromise plasmid integrity. Methods to incorporate 

plasmid within the scaffolds, therefore, were focused on trying to add the plasmid after the CG 

slurry had been freeze-dried to form porous constructs. 

Although others have successfully added plasmid to 3-D scaffolds using naked plasmid 

DNA alone, significant amounts of plasmid (on the order of milligram levels per scaffold) were 

required to see any beneficial effect. One of the goals of this thesis was to use microgram 

amounts of plasmid DNA per scaffold (for safety and cost reasons) that would still result in 

beneficial amounts of growth factor release by developing a method to better retain the plasmid 

within the scaffold so that not all incorporated plasmid would be released in a short period of 

time. This would entail more than just a mechanical entrapment of the plasmid between the 

collagen fibrils of the CG scaffold. One method that is commonly used in our lab as a means to 

chemically cross-link the CG scaffold is a carbodiimide cross-linking treatment. Upon further 

investigation, this carbodiimide chemical can be used to cross-link proteins to proteins and also 

proteins to nucleic acids. Therefore, one of the methods to incorporate the plasmid into CG 

scaffolds included the use of this carbodiimide treatment to cross-link plasmid DNA alone or 

with the transfection reagent to the collagen scaffold. 

The use of a transfection reagent to enhance nonviral gene transfer is an important aspect 

to also minimize the amount of naked plasmid required to produce therapeutic amounts of 

overexpressed protein. We looked to develop gelatin nanoparticles as a potential alternate to the 

G;enePorter transfection reagent to not only enhance gene transfer to cells, but to also allow 

fiirther control over the lunetics of gene transfer and subsequent gene expression by having the 

ability to alter the processing parameters involved in nanoparticle synthesis. Gelatin is a natural 

material that seemed to be logically compatible with the collagen scaffold and has been 

successfully synthesized into micro- and nanoparticles for drug delivery applications. The 

development of gelatin nanoparticles to be used in conjunction with the CG scaffold to enhance 

gene transfer was, therefore, an important aspect in this thesis. 



After an optimal gene transfer system was determined for chondrocytes in GSCG 

scaffolds, preliminary studies were undertaken to use mesenchymal stem cells (MSCs) as an 

alternative cell source. The goal was to evaluate the behavior of MSCs within GSCG scaffolds 

that were synthesized using optimal conditions for gene incorporation (determined with 

chondrocytes), and to evaluate the ability of MSCs to be transfected and to express the desired 

encoded protein when seeded into GSCG scaffolds. These studies would validate the use of 

GSCG scaffolds as an MSC-seeded construct or as an unseeded gene delivery vehicle to be used 

in conjunction with a microfracture procedure in vivo. In the latter scenario, a microfracture 

procedure in the cartilage defect would allow MSCs from the bone marrow to infiltrate the 

defect, after which an unseeded GSCG scaffold could be placed and serve as both a scaffold for 

cells to migrate and a source for the delivery of genes encoding for desired growth factors that 

can enhance in vivo regeneration. 

1.2.1. SPECIFIC AIMS 

Below are the specific aims of the thesis work: 

1. Determine which medium conditions to use for chondrocyte expansion and 3-D culture 

for evaluation of GSCG scaffolds and investigate if the expansion medium can also 

significantly affect subsequent gene transfer to cells. 

2. Develop a protocol for incorporating plasmid IGF-1 with or without a lipid-mediated 

transfection reagent into CG scaffolds that results in successful gene transfer to seeded 

chondrocytes and elevated expression of the IGF-1 protein over a prolonged time. 

3. Develop gelatin nanoparticles as a means to enhance and control gene transfer to cells 

and evaluate the potential use of these nanoparticles in conjunction with the CG scaffold 

for prolonged growth factor release. 

4. Evaluate the use of undifferentiated mesenchyrnal stem cells (MSCs) as an alternative 

cell source in GSCG scaffolds, for implanting a cell-seeded GSCG scaffold or an 

unseeded GSCG scaffold with a microfi-acture procedure. 

5. Determine the optimal GSCG construct to be used for subsequent in vivo studies using a 

goat model. 



1.2.2. HYPOTHESES 

1. The composition of the monolayer expansion medium not only has a direct effect on 

biosynthesis and chondrogenesis in 3-D culture but also has an effect on gene transfer to 

cells. 

2. Cross-linking naked plasmid DNA to the CG scaffold can result in a more prolonged 

delivery of genes and expression of the encoded growth factor compared to plasmid 

addition without cross-linking. 

3. A lipid transfection reagent complexed to the pIGF-1 can be successfully incorporated 

and cross-linked to CG scaffolds and can result in enhanced gene transfer to seeded cells. 

4. Gelatin nanoparticles can successfully enhance the transfection of chondrocytes and can 

be used in conjunction with a CG scaffold to produce a localized and prolonged release 

of encoded protein. 

5. MSCs can be transfected using GSCG scaffolds and can maintain overexpression of 

desired proteins over prolonged times. 
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CHAPTER 2: EFFECT OF EXPANSION MEDIUM ON EX VIVO GENE 
TRANSFER AND CHONDROGENESIS IN TYPE I1 COLLAGEN- 
GLYCOSAMINOGLYCAN SCAFFOLDS IN VITRO 

1 .  INTRODUCTION 

Several studies have demonstrated that the growth of certain cell types in three- 

dimensional (3-D) scaffolds for articular cartilage tissue engineering can enhance matrix 

synthesis and increase type I1 collagen production in vivo '". These cell types include 

differentiated articular chondrocytes and chondroprogenitor cells derived from marrow, 

periosteum, or perichondrium 4. The advantage of using chondrocytes obtained from articular 

cartilage as a cell source is that they already express the desired phenotype for articular cartilage 

repair and they have been shown to have the ability to synthesize matrix containing type I1 

collagen and aggrecan 5 .  These cells, however, are limited in supply for autologous 

transplantation and expansion in culture is necessary to obtain a number sufficient for cartilage 

repair procedures. Yet, it has been demonstrated that articular chondrocytes lose their 

chondrocytic phenotype (viz., the cells no longer display a rounded morphology or synthesize 

cartilage-specific macromolecules such as collagen type I1 and aggrecan) during in vitro 

expansion in monolayer 697. 

Although studies have shown that monolayer-expanded chondrocytes can redifferentiate 

into the chondrocytic phenotype when introduced into a 3-D environment such as in cell pellets 

or porous scaffolds 899, the greater the number of serial passages, the more fibroblast-like 

chondrocytes become-producing molecules such as collagen type I and versican and losing 

th~eir capability to redifferentiate when put back into a 3-D environment lo. Both the monolayer 

expansion medium and redifferentiation medium (used in 3-D culture) have recently been shown 

to directly influence the ability of chondrocytes to redifferentiate ' . I2 .  Not only does a specific 

combination of growth factors in the expansion medium affect chondrocyte proliferation and 

differentiation, it also influences the chondrocytic potential or ability to redifferentiate when 

transferred back into a 3-D environment (cell pellets) 12. 

Just as selected growth factors have proven to be of importance as supplements to the 

m,edia used for monolayer expansion and redifferentiation of chondrocytes, they have been 



shown to be useful stimulants for chondrogenesis and enhanced biosynthesis for cartilage repair 

strategies. A local and prolonged administration of insulin-like growth factor- 1 (IGF- 1) in vivo 

or in vitro could significantly benefit articular cartilage tissue regeneration, as the IGF-1 

recombinant protein has been shown to increase chondrocyte proliferation, proteoglycan 

synthesis, type-I1 collagen synthesis, and chondrogenesis 3. Administration of the recombinant 

protein alone in vivo, however, may be insufficient for therapeutic results due to protein 

degradation or diffusion fiom the defect site. A promising alternative for a prolonged, localized 

release combines tissue engineering and gene therapy strategies involving ex-vivo gene transfer 

14. In this approach, cells could be transfected in vitro with the genes for proteins that have been 

shown to enhance differentiation and biosynthesis, and then immediately implanted in vivo so 

that the desired proteins can be expressed over the time course of regeneration. In using this 

strategy, the effect that the expansion medium has on the gene transfer susceptibility of cells has 

never been investigated. 

Prior studies have confirmed successful IGF-I gene transfer to chondrocytes in 

monolayer with both viral 15*16 and nonviral l7 techniques. These studies also demonstrated that 

cells overexpressing IGF-1 can enhance chondrogenesis and biosynthesis of matrix molecules in 

monolayer l5 or when subsequently implanted in vivo l6>l7. Prolonged expression of the protein 

fi-om cells infected in monolayer, however, may still be limited in vivo due to possible apoptosis 

or migration of these cells from the defect site. Localization and maintenance of infected cells 

within the defect site may be accomplished using 3-D scaffolds onto which seeded cells can 

attach, migrate within, and proliferate. It has been shown that nonviral gene transfer to cells may 

also be enhanced by the stiffness of the substrate material upon which the cells are grown 18. 

The investigators speculated that the modulation of gene uptake by cells by surface rigidity was 

due to the control over cell proliferation. The type I1 collagen-glycosaminoglycan (CG) scaffold 

has been shown to promote biosynthesis and proliferation of seeded adult articular chondrocytes 

in vitro l9 and improve cartilage repair in vivo 320. Based on this prior work, the ability to 

transfect cells seeded within a type I1 CG 3-D scaffold was also investigated. Not only might the 

type I1 CG scaffold be used to promote chondrogenesis and proliferation, but it may also enhance 

gene transfer to cells seeded within the scaffold. 



There were three objectives in the present work: 1.) To determine the effects of two 

different expansion media (each having different additives and growth factors) on the ability of 

monolayer-expanded adult canine articular chondrocytes to produce cartilage matrix molecules 

(viz., GAG) in cell pellets or when seeded in type I1 CG scaffolds, 2) to determine if the 

expansion medium can also have an effect on the gene transfer susceptibility of adult articular 

chondrocytes in monolayer using the plasmid containing the IGF- 1 gene, and 3) using the better 

of the two media, to determine the possibility of transfecting cells in 3-D culture using CG 

scaffolds Achieving these objectives will allow us to determine certain culture conditions that 

can favor the subsequent chondrogenic potential and biosynthesis of cells in 3-D culture and 

enhanced gene transfer to cells either in monolayer or 3-D culture. 

2,,2. MATERIALS AND METHODS 

2.2.1. Type I1 Collagen Scaffolds Fabrication 

Porous sheets of type I1 collagen were fabricated by freeze-drying a porcine cartilage- 

derived slurry (Geistlich Biomaterials, Wolhusen, Switzerland). Similar type I1 scaffolds have 

been reported in prior studies to have a porosity of 89 * 2% (mean * standard deviation) and a 

pore diameter of 125 * 42 pm 21. 

The collagen sheets were sterilized and cross-linked by dehydrothermal treatment 22. 

Nine-mm diameter disks (-3mm thick) were punched out and additionally cross-linked by a ten 

minute carbodiimide treatment 23 containing an aqueous solution of 14 mM 1 -ethyl-3-(3- 

dimethylaminopropyl) carbodiimide hydrochloride and 5.5 mM N-hydroxysuccinimide (EDAC; 

Sigma Chemical Co., St. Louis , MO). Excess EDAC was removed by rinsing in PBS. The 

m~echanical properties of EDAC-treated collagen-GAG scaffolds have been previously reported 
23 

2.2.2. Cell Isolation and Monolayer Culture 

Chondrocytes were isolated from the trochleae of the knees (stifle joints) from one adult 

m~ongrel dog (2-4 yrs old). Cells from one animal were used in this study in order to eliminate 



variability related to inter-animal differences. The cells were obtained using a sequential 

digestion of pronase (20 Ulml, 1 hr) and collagenase (200 Ulml, overnight) as previously 

described 24. Isolated chondrocytes were then split and suspended in either one of the following 

expansion media: 

1) Medium 1 : Dulbecco's modified Eagle's medium, DMEMIF 12 (Gibco Life 

Technologies, Carlsbad, CA) supplemented with 10% (vlv) fetal bovine serum (FBS, 

Hyclone Technologies, Logan, UT), 25 pglml ascorbic 2-phosphate (Wako Chemical, 

Osaka, Japan), and a penicillin/streptomycin/fixngizone cocktail (Gibco). 

2) Medium 2: High glucose DMEM (4.5 glL D-glucose, without L-glutamine and with 1 

mM sodium pyruvate) containing 10% (vlv) FBS, 0.1 mM nonessential amino acids, 10 

mM N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonc (HEPES) buffer, 1 00 UImL 

penicillin, 100 pg/mL streptomycin glutamate, and supplemented with the following 

growth factors (all from R&D Systems, Minneapolis, MN): 5 ng/mL of fibroblast growth 

factor-2 (FGF-2), 10 n g l d  of platelet-derived growth factor-pp (PDGF-pp), 1 ng/mL of 

transforming growth factor- f3 1 (TGF- PI). 

Medium 1 employed in the present investigation was one that has been widely used as an 

expansion medium for growing chondrocytes in monolayer, while Medium 2 has been found in a 

prior study l2 to increase chondrocyte proliferation and preserve the redifferentiation potential of 

expanded chondrocytes when subsequently placed in pellet cultures and grown in a defined 

serum-free medium. 

Primary chondrocytes were plated in 6-well culture plates at 250,000 cellslwell for 

proliferation studies and in 75-cm2 flasks at 2 million cellslflask for expansion and use in 3-D 

culture or in monolayer gene transfer studies. The cells were incubated at 37OC and 5% COz. 

Once cells reached confluence (PO cells), they were trypsinized, resuspended, and re-plated to 

obtain P 1 cells. 

2.2.3. Cell Proliferation and Morphology in Monolayers 

The cell counts for confluent monolayers of PO and P1 chondrocytes were obtained by 

counting the cells (by hemacytometry) at confluence in 6-well plates with an initial plating 

density of 250,000 cells per well. The total cell number at confluence was used for comparison 



in order to incorporate the effects of the media on both cell attachment onto tissue culture plates 

and cell proliferation. 

2.,2.4. Culture of Cell Pellets and CellMeeded Collagen Scaffolds 

A portion of PO chondrocytes fiom the two different expansion media cultures were 

either spun down to obtain cell pellets or seeded into the porous type I1 collagen scaffolds using 

a static seeding method. The culture of cell pellets is a common method used to easily assess 

cell behavior in 3-D culture, and is used in this study to compare results from prior work 12. Cell 

pellets were obtained by spinning 5 x lo5 cells in 1.5 ml polypropylene conical tubes at 4500 

rpm for 30 seconds. For collagen type I1 scaffolds, scaffolds were pre-wet with serum-free 

medium and placed on agarose-coated wells. Two million cells were added to each scaffold by 

pipetting a suspension of 1 million cells (in 20 p1 medium) onto each side with a 10 minute 

incubation period in between. By this static seeding method approximately 1.6 million 

chondrocytes have been found to attach to the scaffolds. 

While the cells were expanded in two different culture media, the cell pellets and cell- 

seeded scaffolds were cultured in the same defined serum-free medium (SFM), found in previous 

work l2  to enhance differentiation. The SFM used consisted of high glucose DMEM (4.5 g/L D- 

gllucose, without L-Glutamine and with 1mM Sodium Pyruvate), O. l mM nonessential amino 

acids, 10 mM HEPES buffer, 100 U/mL penicillin, 100 pg/mL streptomycin glutamate, ITS" 

(1. OOx, by Sigma Chemical, St. Louis, MO), 0.1 mM ascorbic 2-phosphate, 1.25 mg/ml bovine 

serum albumin, 10 ng/mL of TGF-PI, and 100 nM dexamethasone. Medium was changed every 

2-3 days (0.5 ml for pellets and 0.8 or 1.5 ml for scaffolds). Cultures were terminated after 2 

weeks for histological evaluation and biochemical analysis. For DNA and GAG analysis, pellets 

and scaffolds were lyophilized and enzymatically digested using proteinase K (Roche 

Dliagnostics, Indianapolis, IN). 

2.2.5. Hisrology and Immunohistochemistry of Cell Pellets and Cell-Seeded Scaffolds 

Cell pellets (n = 2) and cell-seeded scaffolds (n = 2) were fixed in 10% neutral buffered 

formalin, dehydrated, embedded in paraffin, and sectioned (eight-micrometer thick) by 

microtomy. Sections were stained with hematoxylin and eosin to determine cell'rnorphology and 



distribution and Safi-anin-0 for sulfated GAG. For type I1 collagen immunohistochemical 

analysis, sections were enzymatically digested by protease type XIV for 45 minutes and stained 

with a standard avidin-biotin complex peroxidase-based antibody staining technique (Vectastain, 

Vector Laboratories, Burlingane, CA). Mouse anti-chick monoclonal antibody for type 11 

collagen was obtained from the Developmental Studies Hybridoma Bank (Iowa City, IA). 

2.2.6. Monolayer Infection 

PO chondrocytes expanded in both types of media were plated in 24-well plates for gene 

transfer studies. At confluence, the cell monolayers were rinsed with phosphate buffered saline 

and incubated with either an aliquot of lipid-mediated transfection reagent (Geneporter@, Gene 

Therapy Systems, Inc. San Diego, CA) complexed to the plasmid encoding for IGF- lor with the 

adenovirus (ad)IGF-1 vector (both vectors supplied by the Center for Molecular Orthopedics, 

Harvard Medical School). An 8: 1 (pVpg) ratio of transfection reagent to IGF- 1 plasmid per 

well was used for nonviral transfections. For viral transductions, 100 x lo6 viral particles were 

added to each well. Three hours later, the vector solutions were removed from cultures and 

replaced with 0.5 ml of SFM. SFM was used during gene transfer and throughout the 2-week 

culture period during which medium was collected and changed every 2-3 days after infection. 

A sandwich ELISA kit for the human IGF-1 protein (R&D Systems) was used to detect the 

amount of IGF- 1 in the medium (n = 3), which reflected the effect of the expansion medium on 

vector uptake by cells, transfection efficiency, and subsequent release of the growth factor. For 

the ultimate purpose of employing the monolayer-expanded cells in constructs for implantation, 

it is the amount of growth factor released that is the principal measure and not necessarily the 

transfection efficiency. It may be that only a few transfected cells are needed to produce 

meaningful therapeutic levels of the growth factors. 

2.2.7. Non viral Gene Transfer in Th ree-Dimensional Culture 

Chondrocytes expanded in the medium that yielded the more favorable results in the 3-D 

chondrogenic assays and monolayer transfection experiments (which proved to be Medium 2) 

were seeded onto the type I1 CG scaffolds as described above. Two hours after seeding, the cells 

seeded in the scaffolds were transfected nonvirally by submerging the construct in a solution 



containing plasmid IGF- 1 (pIGF- 1) complexed with the Geneporter@ (GP) transfection reagent 

using an 8: 1 ratio (v/w) of GP:pIGF- 1. Four micrograms of plasmid was used to transfect cells 

per scaffold (n = 3). Two hours later, the cell-seeded scaffolds were transferred onto agarose- 

coated wells and 0.8 ml of SFM was added to each well. The controls cultured in parallel were 

cell-seeded scaffolds without the addition of plasmid. 

Over a 2-week culture period, medium was collected from the 3-D cultures at various 

time points and assayed for IGF- 1 using the human IGF-1 sandwich ELISA kit (R&D Systems, 

Minneapolis, MN). Less medium was used for these 3-D cultures (0.8 mVscaffold versus 1.5 

m~llscaffold for the chondrogenic assays) in order to concentrate the IGF-1 released in the 

medium. At the end of the culture period, scaffolds were lyophilized and enzymatically digested 

using proteinase K for DNA and GAG analysis. 

2.2.8. DNA Analysis 

The DNA content of cell pellets and cell-seeded scaffolds was measured using the 

Hroechst 33258 dye method 25 (n = 3-4). A 50 yl aliquot of the proteinase K digest mixed with 2 

mil of Hoechst dye solution (10% Hoechst dye in 10 mM Tris, 1 mM Na2EDTA and 0.1 M Na 

CL, pH 7.4) was assayed fluorometrically. The results were extrapolated from a standard curve 

established using calf thymus DNA. 

The sulfated GAG content of cell pellets and cell-seeded scaffolds was determined by the 

dimethylmethylene blue (DMMB) dye assay 26 (n = 3-4). A 100 y1 aliquot of the proteinase K 

digest was mixed with 2 ml of the DMMB dye and the absorbance at 525 nm was measured with 

a spectrophotometer. The results were obtained by extrapolating from a standard curve using 

shark chondroitin-6-sulfate. Newly accumulated GAG was determined by subtracting the 

unseeded values from the sample values. 



2.2.10. Statistical Analysis 

Data were analyzed by one, two, three-factor ANOVA, and Fisher's PLSD post-hoc 

testing using StatView (SAS Institute Inc, Cary, NC). Data are presented as mean + standard 

error of the mean. 

2.3. RESULTS 

2.3.1. Prolifration of Monolayer Cultures 

There were significant differences in the cell counts for PO and P1 chondrocytes 

expanded in monolayer using the two types of media (Fig. 2.1). The cell counts for PO and P1 

chondrocytes grown in Medium 1 were 2.3 million + 0.2 and 2.5 million + 0.1, respectively, 

whereas, cell counts for chondrocytes grown in Medium 2 were 2.7 million + 0.2 for PO and 8.3 

million + 0.3 for P1 cells. P1 cells expanded in Medium 2 showed more than a 3-fold higher cell 

number compared to cells grown in Medium 1 after 4 days (Fig. 2.1). Two-factor ANOVA 

revealed a significant effect of the expansion medium (p < 0.001; power = 1.00) and passage 

number (p < 0.001; power = 1.00) on the proliferation of chondrocytes in monolayer culture. 

2.3.2. Cell Morphology of Chondrocyte Monolayers 

Morphological differences of cells grown in the two different expansion media were 

observed by light microscopy (Figs. 2.2a and b). Chondrocytes expanded in Medium 1 (Fig. 

2.2a) were larger and cell vacuoles were more visible compared to those expanded in Medium 2 

(Fig. 2.2b). Furthermore, when using Medium 2, there were a significant number of cells that 

had a rounded morphology (Fig. 2.2b) instead of the fibroblast-like elongated morphology that is 

usually seen during monolayer expansion of chondrocytes. 



Medium 1 
Medium 2 

Figure 2.1 Cell counts of chondrocyte monolayers grown in Medium 1 or Medium 2. PO cells were 
cultured for 120 hrs and P1 cells were cultured for 96 hours. n = 5-6; mean t SEM. 

Figure i . ~  Light micrographs (phase contrast) of Pl chondrocyte monolayers grown in (a) Medium 1 or 
(b) Medium 2 at confluence (5 days). 





2.) 3.3. Appearance and Biochemical Analysis of the Cell Pellets and Cell-Seeded Collagen- 

GA G Scaffolds 

Over the 2-week culture period the cell pellets slightly increased in size to a final 

maximum diameter of approximately 1.5 mm. The cell-seeded collagen-GAG scaffolds 

contracted only slightly fiom their original diameter of 9 mm. Of note was the disc-like shape of 

the pellets that was maintained throughout the culture period (pellets did not contract to become 

more spherical in shape). There were no statistically significant differences in DNA and total 

GIAG contents for cell pellet cultures prepared with cells expanded in either type of medium. 

The DNA content of cell pellets for chondrocytes expanded in Medium 1 and Medium 2 were 

2.2 A 0.1 pg and 2.4 0.1 pg, respectively. The GAG content of these pellets was 84.7 k 2.1 pg 

for Medium 1-expanded cells and 83.2 * 2.8 pg for Medium 2-expanded cells. 

In contrast to the results fiom the pellet assay, the GAGDNA contents of the collagen- 

G)AG scaffolds seeded with cells expanded in Medium 2 were significantly higher than values 

from constructs prepared with Medium 1-expanded cells (Fig. 2.3). There was also a noticeable 

effect of the amount of medium added per scaffold. For both types of medium, 1.5ml added per 

scaffold produced 40-50% higher GAGDNA values compared to adding 0.8ml of medium per 

scaffold. Scaffolds seeded with cells expanded in Medium 2 showed a 20-40% increase in 

GAGDNA produced compared to cells expanded in Medium 1. Two-factor ANOVA revealed a 

significant effect of both expansion medium and amount of medium on GAGDNA values (p < 

0.0001; power = 1.00). 



Medium 1 Medium 2 Medium 1 Medium 2 
(0.8 ml) (0.8 ml) (1.5 ml) (I .5 ml) 

Figure 2.3 GAGIDNA content of chondrocyte-seeded CG scaffolds (2-week culture) for chondrocytes 
expanded in Medium 1 or Medium 2 with either 0.8ml or 1.5ml of media added per well. n=4; mean SEM. 

2. 3. 4. Histology and Imm unohistochemistry of 3-D Cultures 

Histology revealed that chondrocytes expanded in both types of medium produced 

cartilaginous constructs when cultured as cell pellets for 2 weeks (Fig. 2.4). Most of the cells 

displayed a rounded morphology and appeared in lacunae (Fig. 2.4a and b), consistent in 

appearance with the distinguishing cellular features of hyaline cartilage. Cells near the surface 

of all pellets assumed a more elongated appearance, with a lower percentage contained within 

lacunae. Some areas near the pellet surface were completely devoid of cells (Figs. 2.4a and b). 

A continuous extracellular matrix rich in GAG was clearly demonstrated in the 

histochemical sections of pellets prepared with the cells expanded in either type of media, 

revealed by the intense staining with Safianin 0 (Figs. 2 . 4 ~  and d). In some pellets, however, the 

surface zone (approximately 50 pm thick) had a deficient number of cells and displayed little 

staining for GAGS (Fig. 2.4~). The cell pellet sections also showed positive 

immunohistochemical staining of type I1 collagen (Figs. 2.4e and f) for both types of expansion 

media. Qualitatively, there was more intensive type I1 collagen staining in sections of pellets 

prepared with cells expanded in Medium 2 (Fig. 2.40 compared to pellets prepared with cells 

expanded in Medium 1 (Fig. 2.4e). Although the GAG distribution in pellets was generally 



uniform throughout (except in the surface zone), the distribution of type I1 collagen staining 

generally was more intense on the outer periphery of the pellets and more diffuse in the center 

(Fig. 2.4g and h). 

The cell density in the chondrocyte-seeded collagen-GAG scaffolds was markedly less 

than in the cell pellets. A lower percentage of cells in the collagen scaffolds displayed the 

chondrocytic morphology compared to the pellets, with no noticeable effect of expansion 

medium (Fig. 2.5a and b). For cell-seeded CG scaffolds, chondrocytes expanded in Medium 2 

showed more areas of GAG accumulation within the scaffolds compared to cells expanded in 

Medium 1 (Figs. 2 . 5 ~  and d). Chondrocytes expanded in both types of medium also stained 

positive for type I1 collagen in the CG scaffolds with greater staining found in areas surrounding 

cells (Figs. 2.5e and f ) .  As demonstrated in the cell pellets, cells expanded in Medium 2 showed 

more intense staining for type I1 collagen in the scaffolds compared to cells expanded in Medium 

1 (Figs. 2.5e and f ) .  





Figure 2.4 Histology and immunohistochemistry of chondrocyte pellets (2-week culture) for cells 
expanded in Medium 1 (a, c, e) or  Medium 2 (b, d, f) and differentiated in SFM. Sections were stained with 
Hemotoxylin and Eosin (a, b) to show cell morphology and distribution and with Safranin-0 (c, d) for 
glycosaminoglycans (red is positive stain). Sections were also immunohistochemically stained for type II 
collagen (brown is positive stain) (e, f). Lower magnification micrographs of cell pellets from cells expanded 
in Medium 1-Safranin-0 (g) and collagen type I1 (h). 
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Figure 2.5 Histology and immunohistochemistry of chondrocyte-seeded CG scaffolds (2-week culture) 
for cells expanded in Medium 1 (a, c, e) or  Medium 2 (b, d, f) and redifferentiated in SFM. Sections were 
stained with Hemotoxylin and Eosin (a, b) to show cell morphology and distribution within the scaffolds and 
with Safranin-0 (c, d) for glycosaminoglycans (red is positive stain). Sections were also 
immunohistochemically stained for type I1 collagen (brown is positive stain) (e, f). Lower magnification 
micrographs of scaffolds seeded with cells expanded in Medium 1 S a f r a n i n - 0  (g) and collagen type I1 (h). 





2.3.5. IGF-I Synthesis of Infected Monolayers 

Control monolayers did not display any IGF-1 release into the medium. In contrast, IGF- 

1 protein release reflecting gene transfer was observed for all transfected or transduced 

monolayers (Fig. 2.6). GP/pIGF- 1 transfection of monolayers grown with both media 

formulations demonstrated substantially greater IGF- 1 release within the first 7 days of culture 

(Fig. 2.6a). The peak of IGF-1 release for transfected cells expanded in the Medium 2, however, 

occurred earlier (day 2) than the peak release for cells expanded with Medium 1 (day 5). After 

the peak, IGF-1 release for these monolayers showed a general drop at day 7 followed by a 

gradual decrease in IGF- 1 production until minimal expression was detected in the day- 12 

collection. Monolayers transduced with ad-IGF-1 demonstrated a different IGF- 1 release profile 

compared to transfected monolayers (Fig. 2.6b). For both transduced monolayers, there was 

very little detectable IGF-1 in the medium at the day 2 collection, and both showed similar 

release profiles up to day 9. Thereafter, cells expanded in Medium 2 showed a noticeably higher 

IGF-1 release over monolayers expanded with Medium 1 (days 12 and 14). In contrast to 

transfected monolayers, transduced monolayers showed a significantly lower IGF- 1 expression 

at the early collections, but maintained a more steady release of IGF- 1 (no significant peak) over 

the two-week culture. Although infection conditions were not optimized for either type of gene 

transfer method in this study, the kinetics of gene expression for transfected and transduced 

monolayers appear to correspond with the general trend associated with these types of infection 

methods. 

Three-factor ANOVA demonstrated significant effects of expansion medium (P = 0.02; 

power = 0.63)' method of gene transfer (P < 0.0001; power = I), and time (P < 0.0001; power = 

1) on IGF-1 release in the medium over the two-week period. While the effect of expansion 

medium in the 3-factor ANOVA had only a moderate power (0.63)' subsequent Fisher's PLSD 

post hoc test demonstrated a highly significant difference between Medium 1 and Medium 2 (P < 

0.0001). In order to more fully examine statistical differences between these two types of media, 

1 --factor ANOVA was performed for each time point and gene transfer method comparing the 

two media types. Statistically significant differences in IGF-1 release between Medium 1 and 

Medium 2 for Geneporter03 transfected monolayers occurred at day 2 (P < 0.0001; power = 1)' 

di~y 5 (P = 0.0005; power = I), and day 7 (P = 0.0004; power = 1). Significant differences for 



transduced monolayers were seen at day 2 (P < 0.0001; power = l), day 5 (P = 0.0012; power = 

I), day 7 (P = 0.0212; power = 0.71 I), and day 14 (P = 0.0004; power = 1). 

Of significance is that the accumulated amount of IGF-1 reached a therapeutic level (e.g., 50- 

100 nglml 13) for both gene transfer methods over the two-week period. Moreover, this 

therapeutic level was reached by a nonviral gene transfer method only 5 days after transfection. 

1 -e Medium 1, Control - Medium 2, Control 
+ Medium 1, Nonviral 

Medium 2, Nonviral 

4 Medium I, Control 
-a Medium 2, Control 
+- Medium 1, Viral 
+ Medium 2, Viral 

Figure 2.6 IGF-1 protein production detected in the medium over the 2-week chondrocyte monolayer 
culture grown in Medium 1 or Medium 2 transfected with GP/pIGF-1 complexes (a) or transduced with 
adIGF-1 (b). n = 3; mean * SEM (error bars hidden by symbols). IGF-1 amounts for control cultures are on 
the zero axis. 



2.3.6. Nonviral IGF-I Gene Transfer in CG Scaffolds and Effects on Biosynthesis 

IGF- 1 gene transfer to Medium 2-expanded chondrocytes in type I1 CG scaffolds resulted 

in a substantial elevation of IGF-1 synthesis over the non-transfected control group (Fig. 2.7). 

Chondrocytes grown in type I1 CG scaffolds without treatment with the plasmid (controls) 

produced only minute amounts of IGF-1 in the medium with a total accumulation of about 600 

pg over the 2-week culture (Fig. 2.7). There was, however, evidence of a slight increase in IGF- 

1 production at the end of the 2-week period for these control scaffolds. Transfected 3-D 

cultures showed a 35-fold higher elevation in accumulated IGF-1 collected in the medium over 

the 2-week culture compared to control scaffolds. For transfected cultures, there was a peak 

release of IGF-1 in the medium at about a week (-6 nglml), after which IGF-1 release started to 

slightly decline (Fig. 2.7). 

8000 
-t Control 
-+ Cells transfected in 3D 

Figure 2.7 IGF-1 protein production detected in the collected media of chondrocytes expanded in 
Medium 2 and seeded in type I1 CG scaffolds, with or without subsequent transfection with 
GenePorterWpIGF-1. n = 3; mean SEM. 



IGF-1 over-expression by chondrocytes grown in type I1 CG scaffolds resulted in a 

significant increase of GAGDNA synthesis over control scaffolds. There was a 40% higher 

GAGDNA value for IGF- 1 transfected cultures compared to the control group (Fig. 2.8); the 

control group is the same as the 0.8 ml, Medium 2 group in Fig. 2.3. One-factor ANOVA 

revealed a significant effect of IGF-1 over-expression on GAGDNA (P < 0.0001; power = 1). 

Control Cells Transfected in 
- 3D 

Figure 2.8 GAGIDNA (2-week cultures) of type I1 CG scaffolds seeded with chondrocytes expanded in 
Medium 2, with or without subsequent transfection with GenePorter@/pIGF-1. n = 3; mean + SEM. 

2.4. DISCUSSION 

The current investigation demonstrated that the specific medium used in expanding 

chondrocytes in monolayer has a significant influence on GAG synthesis and chondrogenesis 

when chondrocytes are subsequently grown in a tissue engineering scaffold comprised of 

collagen (Type 11)-GAG. As in previous work 12, addition of specific growth factors within the 

expansion medium significantly increased proliferation of chondrocytes in monolayer. The cell 

morphology, which is one indicator that can define a chondrocyte phenotype, was also affected. 

At confluence, cultures grown in Medium 2 were made up of chondrocytes that were smaller and 

that possessed a rounded morphology (characteristic of a chondrocytic phenotype) compared to 

cultures grown in Medium 1. The smaller cell size of chondrocytes expanded in the Medium 2 

may be a result of a greater number of cells present at confluence. Using Medium 2 resulted in a 



more than 4-fold difference in cell number for P1 cells at confluence. This may be very 

advantageous for decreasing the time needed to obtain a sufficient number of cells for 

preparation of tissue-engineered articular cartilage constructs for implantation. 

Pellet cultures yielded the characteristic small diameter spheroids that contained high 

levels of GAG and type I1 collagen. The small diameters of these cell pellets, however, render 

these constructs undesirable for implantation. There was no significant difference in the total 

GAG accumulated within cell pellets for chondrocytes expanded in Medium 1 compared to 

Medium 2. That the total GAG values may have been maximum levels achieved in the pellet 

cultures, may explain why there were no detectable differences in pellets comparing the two 

expansion media. Despite this undetectable difference in GAG, more intense collagen type I1 

staining was present with chondrocytes expanded in Medium 2, demonstrating greater 

chondrogenesis in these pellets. 

There was a more prominent difference in the effects of expansion media when P1 

chondrocytes were grown in CG scaffolds, compared to the pellet assay. The expansion medium 

demonstrated a significant effect on DNA, total GAG accumulation, and GAG per DNA content 

when chondrocytes were seeded in CG scaffolds and cultured in SFM for 2 weeks. Furthermore, 

a greater number of areas that stained for GAG were apparent in histological sections for 

constructs seeded with chondrocytes expanded in Medium 2. A notable finding was the 

significantly higher amount of total GAG accumulation and GAG staining within cell pellets 

compared to cell-seeded CG scaffolds. It is speculated that this difference between cell pellet 

and scaffold culture may be related to the effects of cell density-cell pellets having a greater 

concentration of cells compared to the seeded scaffolds. Prior work investigating the 

chondroinduction of mesenchymal stem cells in pellet cultures has also supported an association 

between pellet contraction, and hence increasing cell density, to chondrogenesis 27. In the 

present investigation, areas within scaffolds that appeared to have a higher cell density displayed 

more staining for GAG. Within cell pellets, where the cell density was uniform and plentiful 

throughout, there was a continuous matrix rich in GAG. It is also possible that the porosity of 

the scaffold itself may allow for diffusion of GAGS from the scaffold into the medium, as seen in 

a prior study 23, making it more difficult for GAG to accumulate within the matrix. The tighter 

packing of cells within cell pellets may facilitate GAG accumulation. 



Chondrocyte-seeded CG scaffolds also showed evidence of chondrogenesis with the 

positive staining for type ZI collagen. Like the cell pellets, there was more intense staining of 

type 11 collagen within CG matrices that incorporated cells expanded in Medium 2, suggesting 

that more articular cartilage-specific matrix molecules may be produced by these cells compared 

to ones expanded in Medium 1. The varied morphology (including the presencelabsence of 

lacunae) indicated that there was phenotypic heterogeneity in the cell populations within CG 

scaffolds and pellets. Therefore, it was likely that some cells were producing non-cartilagenous 

matrix molecules (including collagen types other than type 11). In the context of the objective to 

produce constructs to facilitate cartilage repair in vivo, future animal studies will be required to 

determine to what extent this heterogeneity in cell phenotype affects cartilage repair. After two 

weeks in in vitro culture, the presence of type I1 collagen serves as an indication that at least 

some of the cells are proceeding down the path of chondrogenesis. 

A significant finding of this study was that viral and non-viral transgene expression levels 

of chondrocytes in monolayer were directly affected by the medium used to expand the cells. 

For transduced monolayers, the effect that the expansion medium had on IGF-1 release was not 

significant until the later collection periods (days 12 and 14), where IGF-1 release from cells 

expanded in Medium 2 had significantly higher levels than those expanded in Medium 1. For 

transfected cells, monolayers expanded in Medium 2 demonstrated an earlier peak in IGF-1 

synthesis compared to cells expanded in Medium 1. This earlier peak in protein synthesis may 

indicate that the cells expanded in Medium 2 were more receptive to non-viral gene transfer. 

This enhanced receptiveness allowed therapeutic levels of IGF-1 to be accumulated in vitro 

sooner (in 2 days) than with cultures of chondrocytes grown in Medium 1. It is speculated that 

the enhanced nonviral gene transfer with Medium 2 may be due to an increased mitotic activity 

of the cells as reflected in the proliferation data. During cell division, the cell membrane and 

nuclear envelope is disrupted, and hence gene uptake and transfer within the cell nucleus may be 

facilitated. The greater number of cell divisions that resulted when using Medium 2 for 

expansion, may therefore enhance the transfection efficiency and may have resulted in the 

increased IGF-1 release especially at the earlier time points. It would be interesting in future 

studies to investigate the effects of medium composition directly on transfection efficiency with 

the use of reporter genes. 



For in vivo applications, an earlier release of growth factor may be advantageous in the 

first stages of repair. The kinetics of growth factor release, however, would most likely require a 

prolonged and more sustained level to enhance biosynthesis over the regeneration process, not 

just a single peak of protein release at an early time point. This may require a system where 

genes can be incorporated within tissue engineering scaffolds to provide continuous transfection 

of seeded or endogenous cells in vivo as the scaffold degrades, to sustain growth factor release 

for the span of in vivo repair. In this study, the make-up of the medium in which chondrocytes 

are expanded may have a meaningful effect on gene transfer and should be considered when 

deciding optimal conditions for both in vitro and in vivo gene transfer. 

Transfecting Medium 2-expanded chondrocytes seeded in type I1 CG scaffolds resulted 

in elevated IGF-1 synthesis when compared to controls that were not treated with the plasmid. 

Interestingly, chondrocytes seeded in 3-D scaffolds (without plasmid) did show some IGF- 1 

release in the medium, in contrast to no expression detected in monolayer control cultures. This 

might indicate that the cell interaction with the type I1 CG scaffold alone can potentially act as a 

stimulus for IGF- 1 expression. The production of IGF- 1 from control scaffolds was most 

noticeable at the end of the 2-week culture period. It should be noted that the actual levels of 

IGF- 1 localized within the scaffold could be significantly higher than the concentrations detected 

in the medium. Future work will investigate methods to quantify IGF-1 expressed by cells that is 

retained within the scaffold in order to determine the minimum local therapeutic concentration 

needed to enhance chondrogenesis. 

IGF-1 release kinetics resulting from cells transfected in the CG scaffolds also differed 

from transfected monolayer cultures. Transfected monolayer cultures showed a maximum 

release of IGF-1 at the beginning of culture period and decreased significantly within a week. In 

contrast, IGF- 1 levels in the medium from transfected cell-seeded scaffolds showed a steadier 

release profile with a gradual increase up to about a week followed by a slight decrease at the 

end of the two-week period. This may indicate that using 3-D scaffolds with gene transfer 

methods may provide a more steady expression of desired growth factors in vitro and in vivo 

over prolonged times. 

In this study, a significant increase in GAG biosynthesis was associated with an 

overexpression of IGF-1 in cultures of Medium 2-expanded cells that were transfected while 

growing in the scaffold. This finding is consistent with prior work demonstrating that IGF-1 



stimulates chondrocyte biosynthesis 13. Future work needs to investigate the biosynthesis of 

other cartilage matrix molecules and the histological features of chondrogenesis. 

Of interest in the present study was the finding that the volume of medium strongly 

affected GAG synthesis, with a 40% increase in GAGIDNA in the cultures with 1.5 ml per 

scaffold compared to the cultures with 0.8 ml per scaffold. GAGIDNA values in cultures 

growing in 0.8 ml of medium, however, was stimulated by IGF-1 overexpression fi-om 

chondrocytes transfected within CG scaffolds up to levels similar to the non-transfected cultures 

grown using 1.5 ml of medium. A possible reason for this finding is that the minimum amount 

of growth factors and nutrients needed for optimal biosynthesis in these 3-D scaffolds was not 

attained using just 0.8ml of medium per scaffold, but additional IGF-1 overexpression by 

transfected cells within the scaffolds stimulated more GAG production. This demonstrates the 

effectiveness of IGF-1 to stimulate GAG production in less than optimal in vitro culture 

conditions. It is speculated that IGF-1 overexpression by transfected cells may also have this 

beneficial effect in vivo where conditions are less controlled. 

Although this study involved the use of cells fi-om one animal, there is reason to believe 

that the major conclusions of this paper will still hold if more experiments are repeated, based on 

other studies involving the use of multiple canines using the same chondrocyte isolation and 

growth conditions presented in these studies. In similar in vitro studies, the coefficient of 

variation between different animals of this specific breed of canine was about 10% (assessing the 

final accumulated GAG values in similar tissue-engineered constructs after 2-weeks in culture). 

This inter-animal variation is smaller than the difference in the present data between 

experimental groups, and therefore the statistically significant differences between the groups in 

this study is most likely a reflection of the varying culture conditions and not from animal to 

animal differences. 

In conclusion, this study demonstrated that the expansion medium used to grow 

chondrocytes has a significant effect on chondrocyte proliferation in monolayer, subsequent 3-D 

culture using type I1 CG matrices, and ex vivo gene transfer. Not only does Medium 2 decrease 

the amount of time it takes to obtain a sufficient number of cells for developing tissue- 

engineered articular cartilage constructs, it also enhances gene transfer kinetics and improves the 

production of matrix molecules and chondrogenesis when cells are seeded within CG scaffolds. 
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CHAPTER 3: GENE-SUPPLEMENTED COLLAGEN- 
GLYCOSAMINOGLYCAN SCAFFOLDS (GSCG) FOR NONVIRAL IGF-1 
GENE DELIVERY IN ARTICULAR CARTILAGE TISSUE 
ENGINEERING 

3.1. INTRODUCTION 

Three-dimensional scaffolds and recombinant growth factors are effective stimulants for 

chondrogenesis and enhanced biosynthesis in articular cartilage tissue engineering. One major 

obstacle in using recombinant proteins for therapeutic delivery in vivo, however, is the inherent 

inability to maintain therapeutic levels of the cytokine for prolonged periods due to their short 

half-lives and the inability to contain the activity in a localized area. A promising alternative for 

a prolonged, localized release of growth factors combines tissue engineering and gene therapy 

strategies where infected cells seeded within tissue engineering scaffolds can express the desired 

proteins over the time course of regeneration. 

Ex vivo gene transfer to cells in two-dimensional (2-D) monolayer culture for subsequent 

transplantation, with or without a three-dimensional (3-D) scaffold, is a common method to 

provide a more prolonged release of desired growth factors for tissue repair, compared to a single 

bolus dose of the recombinant proteins Prolonged expression of the protein from infected 

cells, however, is limited in vivo due to migration of these cells from the defect site or apoptosis. 

An alternative approach that is recently being investigated is a scaffold-based or "substrate- 

mediated" gene transfer approach, in which tissue-engineering scaffolds are used as gene 

delivery vehicles to seeded cells and/or endogenous cells in vivo. This method could provide a 

continual transfection of cells and subsequent protein expression that can be achieved over 

extended periods of time (weeks to months). 
4,7-12 Both viral and nonviral vectors have been employed to provide an elevated 

release of desired proteins fiom infected cells for tissue engineering applications. Although viral 

methods generally have a much higher gene transfer efficiency, especially for slowly dividing or 

non-dividing cells, the inherent immunogenicity of viral vectors commends nonviral methods for 

tissue engineering applications. Furthermore, overexpression of desired proteins in tissue 

engineering applications is needed only through the time period of tissue repair, and therefore 



gene incorporation into the host genome, which is usually associated with viral transductions, is 

not required. Tissue engineering scaffolds incorporating nonviral vectors have the ability to 

localize the concentration of nonviral vector release within the defect area for prolonged times, 

which increases the probability of gene uptake by surrounding cells. Various scaffolding 

materials incorporating nonviral gene vectors that have been shown to provide successll 

prolonged and elevated expression include poly(1actide-co-glycolide) (PLGA) )lo*' '*I3, poly(D,L- 

lactide)-poly(ethyleneg1y col) (PLA-PEG) l, and collagen 7,8,9,12,14 

A local and prolonged administration of insulin-like growth factor (1GF)- 1 could 

substantially enhance cartilage repair, as the IGF-1 recombinant protein has been shown to 

increase chondrocyte proliferation, proteoglycan synthesis, type-I1 collagen synthesis, and 
15-20 chondrogenesis . Although studies have shown effective IGF-1 gene transfer to cells using 

1,4,21 an ex vivo approach for enhancing articular cartilage tissue engineering , there has not yet 

been an investigation demonstrating IGF- 1 gene transfer to cells using a substrate-mediated 

nonviral gene transfer approach using tissue engineering scaffolds. 

In this study, gene-supplemented type 11 collagen-glycosarninoglycan (GAG), GSCG, 

scaffolds were investigated using naked plasmid DNA encoding for the IGF-1 protein, alone or 

with a lipid mediated transfection reagent, Geneporter@. The kinetics of plasmid release 

comparing two different methods of gene supplementation was investigated: 1) soaking the 

scaffold in the plasmid solution followed by freeze-drying, and 2) covalently linking the plasmid 

to the scaffold using a carbodiimide cross-linking agent. It was hypothesized that the first 

method would provide a rapid release of the plasmid and the second a prolonged release, thus 

offering a range for controlling the timing of transfection. 

Adult canine articular chondrocytes were seeded into these scaffolds to assess the ability 

of the GSCG scaffolds to facilitate gene transfer and provide a localized, elevated, and prolonged 

expression of IGF-1. After two weeks in culture, the DNA and accumulated GAG contents were 

assessed by biochemical assays and chondrogenesis assessed by immunohistochemical staining 

for type I1 collagen. The type I1 collagen-GAG (CG) scaffold was used in the current work 
23,24 based on promising prior studies in vitro 22 and in vivo . 



3.2. MATERIALS AND METHODS 

3.2.1. Experimental Design 

GSCG scaffolds incorporating the plasmid for IGF-1 were prepared using 2 methods 

(described in detail in a following section). Specimens were allocated for the evaluation of 

plasmid release kinetics from GSCG scaffolds using a biochemical measurement of DNA, and 

the assessment of the structural integrity of the released and retained plasmid by gel 

electrophoresis. Because of the dramatically different plasmid release kinetics resulting fiom 

leaching studies comparing the two methods of GSCG fabrication, we selected different culture 

conditions (viz., plasmid load and cell seeding density) for evaluating chondrocyte-seeded GSCG 

scaffolds prepared using the two methods. These conditions were based on what we expected 

would be of value for future work in vivo. The goal of the present work was not to perform a 

parametric analysis of the effects of cell seeding density and plasmid load on the transfection of 

cells seeded within the GSCG scaffolds, but rather to determine the nonviral transfection and 

gene expression kinetics that results fiom using the two different incorporation methods with or 

without the addition of a lipid transfection reagent. 

Chondrocyte-seeded GSCG cultures were employed to determine successful transfection 

of seeded chondrocytes by assessing IGF-1 release in the 3-D culture medium using ELISA and 

to determine the effects on biosynthesis by biochemically measuring GAG accumulation in the 

scaffolds over a 2-week culture period. Other samples were allocated for histological evaluation. 

The plasmid containing the gene encoding for the enhanced green fluorescent protein (EGFP) 

was implemented to allow for the imaging of transfected cells seeded within GSCG scaffolds 

using conventional fluorescence and confocal microscopy. Table 3.1 summarizes the 

experimental outline and the allocation of samples used for the aforementioned characterization 

techniques. 



Table 3.1 Experimental Summary for In Vitro Evaluation of 
Gene-Supplemented Collagen-GAG Scaffolds 

3.2.2. Type 11 Collagen- GA G Scaffolds 

Porous sheets of a type I1 CG scaffold were fabricated by freeze-drying a porcine type I1 

collagen-GAG slurry (Geistlich Biomaterials, Wolhusen, Switzerland). Similar scaffolds have 

been reported in prior studies to have a porosity of 89 2% (mean standard deviation) and a 

pore diameter of 125 k 42 pm 25.  The collagen sheets were sterilized and cross-linked by 

dehydrothermal treatment 26, and 8 mm diameter disks (-2 mm thick) were prepared using a 

dermal biopsy punch (Moore Medical, New Britain, CT). 

3.2.3. Plasmid Propagation and Isolation 

Multiplication of plasmids encoding for IGF- 1 (pIGF- 1, obtained from the Center for 

Molecular Orthopedics, Harvard Medical School, Boston, MA) and enhanced green fluorescent 

protein (pEGFP, BD Biosciences, Bedford, MA) was accomplished by heat shock transformation 

into Escherichia coli DH5a competent cells grown overnight in Luria-Bertani (LB) medium 

containing ampicillin and kanamycin, respectively. The pEGFP was used as a reporter gene to 

visualize the transfection of chondrocytes by conventional fluorescence and confocal 

microscopy. Plasmid was isolated and purified using a Mega QIAfilterTM Plasmid kit (Qiagen, 



Valencia, CA). The absorption ratio at 260 nm and 280 nm was used to determine plasmid 

concentration and purity while plasmid integrity was verified by polyacrylamide gel 

electrophoresis. The size of pEGFP was 4.7 Kb, and pIGF-1 was 6-7 Kb. 

3.2.4. Plasmid In corporation into Collagen- GAG (CG) Scaffolds 

Two methods were employed for incorporation of the pIGF-1 into CG scaffolds. 

Method 1 involved additional cross-linking of the DHT-treated scaffolds with a ten-minute 

carbodiimide treatment 27 in an aqueous solution of 14 mM 1 -ethyl-3-(3-dimethylaminopropyl) 

carbodiimide hydrochloride and 5.5 mM N-hydroxysuccinimide (EDAC; Sigma Chemical Co., 

St. Louis , MO) at room temperature. Excess EDAC was removed by rinsing in phosphate 

buffered saline (PBS). A 250 p1 aliquot of a diluted pIGF-1 solution containing 4 pg of pIGF-1 

(at pH = 8) was added to each scaffold followed by incubation for a minimum of one hour at 

room temperature. This incubation in the plasmid solution allowed swelling of the collagen 

fibrils and absorption of the plasmid solution onto the walls/struts of the scaffold. Scaffolds 

were then freeze-dried to allow collapse of the collagen fibrils and entrapment of the plasmid. 

The second method (Method 2) investigated to synthesize GSCG scaffolds involved 

placing a 60 p1 aliquot of the diluted pIGF- 1 solution containing 10 pg of pIGF- 1 onto the DHT- 

treated scaffolds followed by incubation for an hour at room temperature. A 1 ml aliquot of the 

EDAC cross-linking solution described above was then added to each scaffold and incubated for 

about 30 minutes to allow cross-links to forrn among the collagen molecules and between the 

plasmid and collagen (see schematic in Fig. 3.1 for potential chemical bonds that may form 

between the plasmid DNA and collagen protein molecules). Excess EDAC was removed by 

rinsing the scaffolds in PBS for one hour. Additional GSCG scaffolds incorporating pEGFP 

were prepared using Method 2 for imaging analyses to demonstrate success~l  transfection of 

seeded chondrocytes over time. Control scaffolds were run in parallel and synthesized by 

substituting the plasmid solution with tris disodium ethylenediamine tetraacetate (TE) buffer. 

For cell culture studies, plasmid DNA alone or with a Geneportem (GP) lipid 

transfection reagent (Gene Therapy Systems, Inc, San Diego, CA) was incorporated within CG 

scaffolds using Methods 1 and 2. For the groups incorporating the GP transfection reagent with 



pIGF-1, GenePorterIpIGF-1 complexes were made using a 5: 1 (yllyg) ratio of GP:plasmid and 

was used as the plasmid solution for incorporation within CG scaffolds as described above. 
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Figure 3.1 Potential peptide bonds (dotted arrows) that can form between plasmid DNA and collagen 
proteins during plasmid incorporation within the collagen-GAG scaffold by EDAC cross-linking. 

3.2.5. Plasmid Release from CG Scaffolds and Analysis of Structural Integkty 

GSCG scaffolds synthesized with a 20 vg pIGF-1 load and using the two types of 

incorporation methods described above, were submerged in TE buffer (pH = 8) over a 2-week 

period to investigate the plasmid release kinetics. At selected time points, buffer was collected 

from the samples and the wells were replenished with equal volumes of fiesh buffer. After two 

weeks, GSCG scaffolds were digested overnight using Proteinase K (Roche Diagnostics, 

Indianapolis, IN) at 60 OC to release the plasmid remaining within the scaffolds. Plasmid 

released in the buffer and retained in the scaffolds was quantified by the Picogreen assay 

(Molecular Probes, Inc, Eugene, OR). Aliquots of the released and residual plasmid were 

analyzed by gel electrophoresis for comparison with the stock pIGF-1 used to synthesize the 

GSCG scaffolds. Samples run on the gel were digested with the restriction enzyme, XbaI (New 

England BioLabs, Ipswich, MA) to assess plasmid integrity. 

3.2.6. Transmission Electron Microscopy of GSCG Scaffolds 

Nonseeded Control and GSCG scaffolds (made using Method 2), fixed in glutaraldehyde 

and dehydrated in ethanol, were examined by transmission electron microscopy (TEM). 



Samples were postfixed in osmium tetroxide and embedded in Epon. Images of ultrathin 

sections (-600 nm) of the scaffolds were obtained on a Phillips TEM (FEI EM410) at 80kV. 

3.2.7. Chondrocyte Isolation and Expansion 

Chondrocytes were isolated from the trochleae of both knees (stifle joints) from one adult 

mongrel dog (approximate age 2-4 yrs). The cells were obtained using a sequential digestion of 

pronase (20 Ulml, 1 hr) and collagenase (200 Ulml, overnight) as previously described 28. 

Isolated chondrocytes were expanded in monolayer culture using "Medium 2" described in the 

previous chapter, consisting of high glucose Dulbecco's modified Eagle's medium, DMEM (4.5 

g/L D-glucose, without L-glutamine and with 1mM sodium pyruvate), containing 10% (vlv) fetal 

bovine s e w  (FBS), 0. lmM nonessential amino acids, 10 mM N-2-Hydroxyethylpiperazine-Nt- 

2-ethanesulfonic (HEPES) buffer, 100 UImL penicillin, and 100 pg/mL streptomycin glutamate. 

The medium was supplemented with the following growth factors (all from R&D Systems, 

Minneapolis, MN): 5 ng/mL of fibroblast growth factor-2 (FGF-2), 10 ng/mL of platelet-derived 

growth factor-bb (PDGF-bb), 1 ng/mL of transforming growth factor-p1 (TGF-PI). The cells 

were incubated at 37 "C and 5% C02. Once cells reached confluence, they were trypsinized, 

resuspended, and re-plated to obtain passage (P)1 cells for seeding into the scaffolds. 

3.2.8. Nonviral Gene Transfer in GSCG Scaffolds 

Two separate experiments were carried out to assess the behavior of chondrocytes seeded 

within the GSCG scaffolds. The first experiment used a 4 pg plasmid load per scaffold and 

compared the pIGF-1 treatment with and without the GP reagent prepared using Method 1 (soak 

and freeze-dry method). The second experiment used a 10 pg plasmid load per scaffold and 

compared the two different plasmid solutions using Method 2 (cross-linking the plasmid to 

scaffolds). After GSCG scaffolds were prepared and pre-wet in culture medium, scaffolds were 

dried briefly on sterile filter paper, and placed on agarose-coated 12-well tissue culture plates. 

For the first experiment, 2 million cells were seeded onto each scaffold by pipetting a 20 p1 

suspension containing half of the total amount of cells on each side of the scaffold with a 10 

minute incubation period in between. By this static seeding method approximately 80% of the 

seeded chondrocytes have been found to attach to the scaffolds. For the second experiment, the 



amount of cells seeded on to the scaffolds was increased to 4 million cells per scaffold in order to 

increase the rate of scaffold degradation and facilitate the release of the plasmid cross-linked to 

the collagen fibers. The same pipette seeding method was used in the second experiment. 

Cell-seeded scaffolds were cultured in a defined serum-fiee medium (SFM), found in 

previous work 29 to enhance differentiation. The SFM consisted of high glucose DMEM (4.5 g/L 

D-glucose, without L-glutamine and with 1mM sodium pyruvate), 0.1 mM nonessential amino 

acids, 10 mM HEPES buffer, 100 U/mL penicillin, 100 pg/mL streptomycin glutamate, insulin- 

transferrin-selenium (ITS)" (1 OOx, Sigma Chemical, St. Louis, MO), 0.1 mM ascorbic acid 2- 

phosphate, 1.25 mg/ml bovine serum albumin, 10 ng/mL of TGF-p1, and 100 n M  

dexamethasone. Medium was collected and changed at various time points over a two-week 

culture period to assess the amount of IGF-1 released from transfected cells. 

The amount of IGF-1 in the collected medium (n = 3-6) released from the cell-seeded 

scaffolds was detected by a sandwich ELISA kit for the human IGF-1 protein (R&D Systems, 

Minneapolis, MN). The IGF-1 values were reported as rates of release by dividing by the time 

period since the last media exchange, and as accumulated IGF-1 by summing the values of the 

IGF-1 in the medium samples over time. Cultures were terminated after 2 weeks for histological 

evaluation and biochemical analysis of the DNA and GAG contents of the constructs. For DNA 

and GAG analysis, scaffolds were lyophilized and enzymatically digested using proteinase K 

(Roche Diagnostics, Indianapolis, IN). 

Chondrocytes cultured within scaffolds incorporating pEGFP were observed under 

fluorescence and confocal microscopy at various time points to visualize chondrocyte 

transfection over time. Constructs were placed on a sterile glass bottom petri dish to observe 

under the microscope and then returned to the tissue culture wells containing medium. 

3.2.9. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye assay 

kit (Molecular Probes, Inc, Eugene, OR) (n = 4). The Picogreen dye was used with the reagents 

and standard provided according to the manufacturer instructions. 



3. 2. 10. GAG Analysis 

The sulfated GAG content of cell-seeded scaffolds after the 2-week culture period was 

determined by the dimethylmethylene blue (DMMB) dye assay 30 (n = 4). An aliquot of the 

proteinase K digest was mixed with the DMMB dye and the absorbance at 525 nm was measured 

with a spectrophotometer. The results were obtained by extrapolating from a standard curve 

using shark chondroitin-6-sulfate. Newly accumulated GAG was determined by subtracting the 

unseeded values fiom the sample values. The GAG content was normalized to the estimated 

volume of the cell-seeded scaffolds; reported as the GAG density. 

3m2mllm Histology and Immunohistochemishy of CellSeededed Scaffolds 

Cell-seeded scaffolds (n = 2-3) were fixed in 10% neutral buffered formalin, dehydrated, 

embedded in paraffin, and center-cut sections (6pm thick) were stained with S a w n - 0  for the 

presence of sulfated GAG. For type I1 collagen immunohistochemical analysis, sections were 

enzymatically digested by protease type XIV for 45 minutes and stained with a standard avidin- 

biotin complex peroxidase-based antibody staining technique (Vectastain, Vector Laboratories, 

Burlingane, CA). Mouse anti-chick monoclonal antibody for type I1 collagen was obtained fiom 

the Developmental Studies Hybridoma Bank (Iowa City, IA). 

3. 2. 12. Statistical Analysis 

Data were analyzed by one- or two-factor analysis of variance (ANOVA), and the 

Fisher's protected least squares differences (PLSD) post-hoc test using StatView (SAS Institute 

Inc, Cary, NC). Data are presented as mean standard error of the mean. 

3.3. RESULTS 

3. 3. 1. I G M  Plasmid Release from GSCG Scaffolds-Release Kinetics and Plasmid Integrity 

There was a dramatic difference in the amount of pIGF-1 initially incorporated into the 

GSCG scaffolds and the plasmid release profiles comparing the two different incorporation 

methods (Fig. 3.2). Approximately 60% of the loaded plasmid (20 pg) was incorporated in 



scaffolds using Method 1 (soak and freeze-dried), whereas, -40% was incorporated using 

Method 2 (cross-linking plasmid to scaffold). GSCG scaffolds synthesized by Method 1, 

however, released most of the incorporated plasmid (-83%) within the first two days of soaking 

in the TE buffer solution. Only 12% of incorporated plasmid remained in the Method 1 scaffolds 

at the end of the 2-week plasmid release study (Fig. 3.2). In contrast, GSCG scaffolds with 

plasmid cross-linked to the scaffold (Method 2) released only minute amounts of plasmid in the 

buffer during the leaching period, resulting in -99% plasmid retention after 2 weeks in buffer 

(Fig. 3.2). 
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Figure 3.2 Plasmid amounts detected in the leaching buffer and remaining in the GSCG scaffolds after 
the 2-week leaching study (scaffolds loaded with 20pg plasmid IGF-1). n = 3; mean SEM. 

Since most of the plasmid from GSCG scaffolds produced with Method 1 was released in 

the buffer, and most of the plasmid incorporated in GSCG scaffolds synthesized using Method 2 

was retained in the scaffolds, plasmid released in the buffer for Method 1 samples and plasmid 

retained in the scaffolds for Method 2 samples were analyzed by gel electrophoresis for 

comparison with the original pIGF-1 stock solution. Fig. 3.3 shows the gel containing the cut 



and uncut IGF-1 plasmid stock solution (columns b and c, respectively); cut and uncut plasmid 

released in the buffer from Method 1 samples (column d and e, respectively); and cut and uncut 

plasmid obtained from digesting the Method Zsynthesized GSCG scaffolds after the two week 

leach period (columns f and e, respectively). The plasmid released in the buffer from the Method 

1-prepared samples and the plasmid retained in the scaffold for the Method 2-prepared samples 

retained similar migration characteristics compared to the IGF- 1 plasmid stock with and without 

restriction enzyme digestion (Fig. 3.3), thus demonstrating that the structural integrity of plasmid 

released Erom and retained in the GSCG scaffolds was maintained. 

Figure 3.3 Gel electrophoresis of 1Kb DNA ladder (a); IGF-1 plasmid stock solution (b) cut and (c) 
uncut; plasmid released from Method 1-synthesized GSCG scaffolds (d) cut and (e) uncut; and plasmid 
retained within Method 2-synthesized GSCG scaffolds after the 2-week leaching study ( f )  cut and (g) uncut. 
Restriction enzyme XbaI was used to cleave the various IGF-1 plasmid samples. 

3.3.2. TEM of Unseeded GSCG Scaffolds 

Transmission electron micrographs of CG scaffolds incorporating pIGF- 1 alone showed a 

thin darker plasmid layer lining the wall of of the scaffold strut (Fig. 3.4a) compared to no 

apparent dark lining in Control samples (Fig. 3.4b). Scaffolds incorporating GPIIGF complexes, 

on the other hand, revealed aggregation of the complexes and showed clusters of particles lining 

the walls of the scaffold struts (Fig. 3.4~). 





Figure 3.4 Transmission electron micrographs of Control (a) and GSCG scaffolds incorporating pIGF- 
1 alone (b) or GP/IGF complexes. 
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3.3.3. Nonviral Gene Transfer to Chondrocytes Seeded in GSCG Scaffolds 

For GSCG scaffolds synthesized using Method 1, there was no difference in the IGF- 1 

release profiles for scaffolds incorporating naked pIGF-1 alone (IGF group) and the Control 

group (Fig. 3.5a). Incorporation of the GP transfection reagent (GPIIGF group) into the CG 

scaffolds, however, showed significant elevations of IGF-1 release in the medium above the 

controls for all media collections except for the last collection at Day 14 (Fig. 3.5a). The 

GPIIGF group showed a peak in IGF- 1 release rate after about one week in culture (-20 pglhr), 

after which there was a rapid decline fiom Day 11 to Day 14. There was no difference in the 

amount of IGF-1 detected in the Day 14 collection for the GPIIGF group compared to the control 

and IGF groups. After the two-week culture period, the GPIIGF group showed a 7-fold higher 

accumulated IGF-1 level at around 5 ng/ml versus the control and IGF groups at about 0.7 nglml 

(Fig. 3.5b). Two-factor ANOVA showed a significant effect of time (P < 0.01, power = 0.88) 

and type of gene supplementation (P < 0.0001, power = 1) on IGF-1 release. 

GSCG scaffolds synthesized by cross-linking plasmid IGF- 1 to the collagen scaffolds 

with (x-GPIIGF) or without (x-IGF) the transfection reagent (Method 2) resulted in noticeable 

elevated IGF-1 expression levels above the Controls (Fig. 3.5~). Like the GSCG scaffolds 

prepared using Method 1, scaffolds incorporating plasmid IGF-1 complexed to the transfection 

reagent produced significantly higher levels of IGF-1 compared to control scaffolds or scaffolds 

containing plasmid IGF- 1 alone (Fig. 3.5~).  Scaffolds containing the GP reagent and prepared 

using Method 2 (x-GPIIGF group) showed a significant increase in IGF-1 release rate between 

the first two collection time points, followed by a steady release between collections 2 and 4, and 

finally a rise in the IGF- 1 release rate to about 14 pg/hr at the end of the 2-week culture period 

(Fig. 3.5~). There were 4.5-fold and 14.5-fold higher accumulated IGF- 1 levels for the x- 

GPIIGF group compared to the x-IGF and Control groups, respectively (Fig. 3.5d). Two-factor 

ANOVA revealed a significant effect of time (P < 0.0001, power = 1) and type of gene 

supplementation (P<0.000 1, power=l) on IGF- 1 release from cell-seeded GSCG scaffolds 

fabricated using Method 2. 
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Figure 3.5 IGF-1 release rates (a, c) and accumulated IGF-1 (b, d) detected in the serum-free medium 
over the 2-week 3-D culture period from GSCG scaffolds synthesized using Method 1 (a, b), n = 3 and 
Method 2 (c, d), n = 6. mean + SEM. 

GFP expression in chondrocytes seeded within scaffolds supplemented with pEGFP with 

or without the transfection reagent using Method 2 was observed with fluorescence (Fig. 3.6a-c) 

and confocal microscopy (Fig. 3.6d). After 5 days in culture, chondrocytes seeded in Control 

scaffolds (no plasmid) did not show any evidence of GFP expression (Fig. 3.6a). Chondrocytes 

seeded in scaffolds supplemented with pEGFP alone (Fig. 3.6b) or with the GP transfection 

reagent (Fig. 3 .6~)  displayed evidence of transfection, with a significantly higher number of cells 

fluorescing in scaffolds incorporating the plasmid with the transfection reagent. Evidence of 

continued transfection (i.e. presence of fluorescing cells in the scaffold) was still apparent up to 2 

months in the scaffolds. Confocal microscopy of GSCG scaffolds containing the 

plasmid/transfection reagent complex seven days after seeding showed that only a small 

percentage of cells in the scaffold were transfected at that time point (Fig. 3.6d). 



Figure 3.6 Fluorescent microscopy images of GSCG scaffolds synthesized using method 2 (a) without 
any supplementation (control), (b) with incorporation of pEGFP alone, and (c) with incorporation of pEGFP 
and the GenePorter @ transfection reagent after 5 days in 3-D culture. Confocal image of GSCG scaffold 
incorporating pEGF'P and the GenePorter @ transfection reagent using Method 2, after 7 days in culture (d). 

3.3.4. Biochemical Analysk of Cell-Seded GSCG Scaffolds 

Control scaffolds and scaffolds incorporating IGF-1 plasmid alone synthesized using 

Method 1 were similar in DNA content after two weeks in culture with -1 0 pg DNAIscaffold 

(Fig. 3.7a). For the GPIIGF group created using Method 1, however, the DNA content was 

significantly lower, at about half the amount of DNA found in the IGF and Control groups (Fig. 

3.7a). In contrast, GSCG scaffolds incorporating plasmid IGF- 1 with the transfection reagent 

using Method 2 showed a 25% higher DNA content (-21 pg/scaffold) compared to the x-IGF 

and Control scaffolds (Fig. 3.7b). One-factor ANOVA showed a significant difference between 





the GPIIGF group versus the IGF or Control groups (P < 0.0001, power = 1) and the x-GP/IGF 

group versus the x-IGF or Control groups (P < 0.0001, power = 1). 

There was no significant difference in the accumulated GAG densities at the end of the 2- 

week culture period for Method 1-synthesized GSCG scaffolds and its controls, with GAG 

densities of about 1 p g / ~ m 3  for all groups (Fig. 3.7~). For Method Zsynthesized scaffolds, there 

was a significant elevation (-2-fold increase) in accumulated GAG density in the GSCG samples 

compared to the Controls (P < 0.03, power = 0.7). There was no significant difference in 

accumulated GAG density between the x-IGF and x-GP/IGF groups (Fig. 3.7d). 
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Figure 3.7 DNA contents (a, b) and accumulated GAG densities (c, d) measured at the end of the 2- 
week 3-D culture period in GSCG scaffolds synthesized using Method 1 (a, c) and Method 2 (b, d). n = 3-4; 
mean SEM. 



3.3.5. Histology and Immunohistochemistry of 3-D Cultures 

Histochemical results for the Controls and Method 1-synthesized GSCG scaffolds (with 

or without the transfection reagent) were all similar with regard to the amount of tissue 

formation, Safianin-0 staining, and type I1 collagen staining. Most of the cells in these scaffolds 

were elongated fibroblast-like cells with evidence of some tissue formation in the pores. There 

was very little staining for GAG (Fig. 3.8a and c) or collagen type I1 (Fig. 3.8b and d) in the 

synthesized tissue and a significant amount of the scaffold was still present after the 2-week 

culture period. 

Scaffolds prepared in the experiment using Method 2 to synthesize GSCG constructs, on 

the other hand, showed a greater amount of tissue formation even for Control scaffolds (Figs. 3.9 

and 3.10). For all groups in this experiment, there were some cells present in the constructs that 

displayed a rounded chondrocytic morphology and were located in lacunae (see arrows in Fig. 

3.10). The x-IGF and the x-GPAGF groups showed more tissue formation, GAG staining and 

collagen type I1 staining compared to the Control group (Figs. 3.9 and 3.10). For the Control and 

x-IGF groups, more tissue formation was present at the outer faces of the constructs. The x- 

GPAGF group showed the most tissue formation throughout the whole construct, number of cells 

with chondrocyte-like features, Safranin-0 staining, and type I1 collagen staining (Figs. 3.9e and 

f; 3.10e and f )  compared to the other groups. There was still evidence of the collagen scaffold 

still present for all groups (stained green in Fig. 3.9) after 2-weeks in 3-D culture. 

Areas of histological sections that stained for GAG generally seemed to correlate with the 

areas that stained for type 11 collagen (Figs. 3.9 and 3. lo), with more intense staining for GAG 

and type I1 collagen in areas with greater tissue synthesis. Within these areas, there was also a 

smaller amount of residual scaffold (indicating a greater degree of scaffold degradation), a higher 

cell density, and more cells displaying a chondrocytic phenotype (Figs. 3.9 and 3.10). 



Figure 3.8 Typical Safranin-0 stain for GAG (a, c) and immunohistochemical stain for type I1 collagen 
(b, d) from chondrocyte-seeded Control scaffolds and GSCG scaffolds synthesized using Method 1 (with or 
without the GP reagent) after the 2-week culture period. 2 million cells per scaffold were seeded onto the 
scaffolds. Red is a positive stain for the presence of GAG and brown is a positive stain for the presence of 
type I1 collagen. 





Figure 3.9 Safranin-0 stain for GAG (red is positive stain) of scaffolds synthesized using Method 2 for 
Controls (a, b) and GSCG scaffolds incorporating IGF-1 plasmid alone (c, d) or the GPAGF complexes (e, f )  
after 2-weeks in 3-D culture. 4 million cells were seeded onto the scaffolds. 





Rgure 3.10 Immunohistochemical stain for collagen type I1 (brown is positive stain) of scaffolds 
synthesized using Method 2 for Controls (a, b) and GSCG scaffolds incorporating plasmid IGF-1 alone (c, d) 
or the GP/IGF complexes (e, f) after 2-weeks in 3-D culture. 4 million cells were seeded onto the scaffolds. 





3.4. DISCUSSION 

A notable finding of this study was that covalently linking as little as 10 pg of plasmid 

DNA to a type I1 collagen-GAG scaffold can result in the prolonged overexpression of the 

encoding growth factor, thus allowing (nonviral) gene transfer to be successfully combined with 

tissue engineering principles. Prior work using naked plasmid DNA incorporated within 

scaffolds have also demonstrated elevated levels of encoded protein production, but most of 

these studies required the use of significantly higher plasmid loads 7,31-35 (on the order of 

milligram levels per scaffold) compared to the current study. Control over plasmid release rates 

from GSCG scaffolds and incorporating a lipid transfection reagent (compared to the use of 

naked plasmid DNA alone) significantly improved prolonged expression and increased gene 

transfer to seeded cells. 

The kinetics of IGF-1 plasmid release fkom these scaffolds can be modified using 

different incorporation methods. Two approaches were investigated to synthesize GSCG 

scaffolds and resulted in a dramatic variation in plasmid release kinetics over a 2-week leaching 

study. Plasmid incorporation by submerging scaffolds in a plasmid solution followed by a 

freeze-drying step resulted in a faster release of plasmid DNA, with about 82% of incorporated 

plasmid released within the first two days in buffer. It is likely that this passive release was due 

to the weak mechanical entrapment of the plasmid between the collagen fibrils, which resulted 

from the swelling and collapsing of the collagen fibrils during the supplementation and 

subsequent freeze-drying procedure. Once these scaffolds were re-hydrated in solution, the 

collagen fibrils swelled again and released the entrapped plasmid at a rate that was dependent on 

collagen swelling and diffusion kinetics. The 12% plasmid retained in these GSCG scaffolds 

after the 2-week culture may have been due to plasmid that was more securely entangled within 

the collagen network, and which would only be released upon scaffold degradation. Chemically 

cross-linking the plasmid to the scaffold, on the other hand, resulted in 99% retention of 

incorporated plasmid in the scaffold after the 2-week leach study. Although only 40% of loaded 

plasmid was actually incorporated into the scaffold using this procedure (as opposed to 60% 

incorporation with Method I), the fact that most of the plasmid resisted passive release and 

remained within the scaffold commends this method of supplementation for prolonged release. 

In this case, incorporated plasmid would only be released upon scaffold degradation, and 



therefore transfection and subsequent gene expression could occur as long as residual scaffold 

remains over the time course of tissue repair. Of importance was that the integrity and 

functionality of the pIGF-1 released in buffer or remaining in GSCG constructs was preserved, 

indicating that the plasmid structure was not significantly altered by the interaction with the 

collagen scaffold. 

The kinetics of plasmid release fiom GSCG scaffolds had a direct effect on the amount 

and kinetics of IGF-1 protein synthesized by seeded and subsequently transfected chondrocytes. 

Interestingly, chondrocytes placed in a scaffold without any plasmid supplementation also 

showed production of IGF-1 that was released in the medium after about one week in 3-D 

culture, albeit in very low amounts. This IGF- 1 expression by non-transfected chondrocytes may 

have been stimulated by the cellular interaction with the type I1 collagen-GAG scaffold. For 

Method 1-synthesized scaffolds where most of the incorporated plasmid was released within the 

first 2 days in solution, there was no overexpression of IGF- 1 over the controls for scaffolds 

containing naked plasmid IGF-1 alone. With the transfection reagent, there was a significant 

elevation of IGF-1 detected in the medium over control scaffolds, however, IGF-1 release rates 

reached a maximum after about a week and then declined to control levels at the end of the 2- 

week culture period. This peak and decline in IGF-1 release may indicate that transfection of the 

seeded cells may have only occurred near the beginning of the culture period. The decline to 

control IGF-1 levels at the end of the 2-week period was evidence that GPIIGF complexes most 

likely were no longer present in the scaffold at the end of the two week culture period, and that 

the transient expression of earlier transfected cells had faded. 

Unlike GSCG scaffolds made using Method 1, scaffolds created by cross-linking naked 

plasmid IGF- 1 alone demonstrated noticeable elevations in IGF- 1 released in the medium over 

controls. As opposed to a fast release of plasmid only at the beginning of the culture period as 

displayed by Method 1-synthesized GSCG scaffolds, it is speculated that cross-linking the 

plasmid alone to the collagen scaffold (x-IGF group) may have allowed for a continued presence 

and concentration of plasmid as the scaffold was degraded by the seeded cells. This prolonged 

concentration of plasmid may have increased the probability of cellular uptake of the plasmid 

leading to subsequent gene expression. Cells seeded in GSCG scaffolds incorporating both the 

plasmid and transfection reagent using Method 2 resulted in increased release rates up to one 

week, followed by a steady release of IGF- 1, and finally a spike in the IGF- 1 release rate within 



the last 2 days of the 2-week culture. This IGF-1 release profile may indicate the continued 

transfection of seeded cells throughout the culture period (and further on) as the scaffold 

degrades. It is important to note that the actual levels of IGF-1 localized within the scaffold 

could be significantly higher than the concentrations detected in the medium. Future work will 

need to investigate methods to quantify IGF-1 produced by transfected cells that is retained 

within the scaffold in order to determine the minimum local therapeutic concentration required 

for enhanced biosynthesis. 

Visual evidence of prolonged gene expression using GSCG scaffolds was demonstrated 

by incorporating the EGFP gene using Method 2. The presence of fluorescing cells within 

GSCG scaffolds, resulting from successful gene transfection, continued up to about 2 months in 

3-D culture. Although confocal imaging demonstrated that only a small percentage of cells 

showed gene expression at any given time-point, a high transfection efficiency may not be 

required to produced local therapeutic levels of desired growth factors. These findings prove 

that not only can these GSCG scaffolds maintain both plasmid integrity and functionality, but 

they can also facilitate gene transfer to seeded cells resulting in prolonged and elevated gene 

expression. 

Of interest is the effect of the plasmid and the lipid transfection reagent on the resulting 

cell number (reflected in the DNA measurements) at the end of the 2-week culture period. Of 

note is the lower DNA content for the GP/IGF group in the Method-1 prepared scaffolds and the 

elevated DNA content for the x-GP/IGF group in the Method-2-fabricated GSCG scaffolds. 

These results seem to indicate that supplementing collagen scaffolds with the GPIIGF complexes 

using Method 1 may interfere with initial cell attachment. It is speculated that the lipidplasmid 

complexes may have coated the walls of the collagen scaffold, which could have masked some 

of the ligands present on the collagen fibrils preventing integrin-mediated cellular attachment 

directly to the scaffold walls. Cells that were seeded onto these scaffolds may have effectively 

associated with the lipidplasmid "coating" but then could have become detached once the 

collagen fibrils swelled and released the weakly attached complexes. On the other hand, 

chemical cross-linking these lipid/plasmid complexes to the collagen scaffold may still have 

resulted in the association of cells with the lipidplasmid complexes incorporated into the 

scaffold, but detachment of cells could have been prevented due to the stronger chemical bond 

between the lipid/plasmid complexes and the collagen fibrils. Future work using electron 



microscopy may be needed to further understand the cellular interactions with these GSCG 

scaffolds. 

Although the DNA content that was measured in the scaffolds may have included the 

plasmid remaining fkom gene supplementation of the scaffolds as well as the nuclear material 

from the cells, measurements of plasmid DNA loaded into GSCG scaffolds with the transfection 

reagent (data not presented) showed that when plasmid was complexed to the transfection 

reagent it could not be detected by the Picogreen assay. The presence and retention of the 

GP/IGF complexes within the scaffolds was indirectly determined through hctional assays (i.e., 

gene expression of IGF- 1 or GFP proteins), which did indicate that plasmid was present within 

the scaffolds. It is speculated that the lipid transfection reagent may have prevented the 

Picogreen dye fkom interacting with the plasmid DNA, leading to the lack of detection. The 

majority of the DNA content reported for the GSCG groups that incorporated the GP/IGF 

complexes, therefore, was most likely a reflection of the number of cells present at the end of the 

2-week culture period. 

The effect of IGF-1 overexpression of cells seeded in GSCG scaffolds on biosynthesis 

was assessed by the accumulated GAG density amounts and histochemical analysis after 2- 

weeks in 3-D culture. For scaffolds synthesized by Method 1, there was no significant difference 

among the three groups with regard to accumulated GAG density and histochemical staining. 

All of these scaffolds showed minimal staining, if any, for Safianin-0 or type I1 collagen. 

GSCG scaffolds synthesized by Method 2, however, showed a much higher amount of tissue 

formation, more GAG synthesis, and the presence of type I1 collagen, even for the controls, 

compared to scaffolds fabricated with Method 1. This difference in histogenesis may have been 

due to an insufficient cell-seeding density used in the Method 1-synthesized scaffolds (2 million 

cells/scaffold). Even though IGF-1 was significantly elevated in the GPIIGF group, its effects on 

biosynthesis and chondrogenesis may not have been apparent if the cell number was not high 

enough to result in a measurable difference in tissue formation. Prior studies 36y37 have 

demonstrated the importance of cell density on biosynthesis and chondrogenesis in 3-D culture. 

Future work needs to investigate if increasing the cell seeding number in GSCG scaffolds 

supplemented using Method 1 will show the effect of IGF-1 overexpression on biosynthesis and 

chondrogenesis. 



In contrast to the experiment using the Method 1-prepared scaffolds, there was a 

noticeable difference in tissue formation among the groups in the cultures using the cross-linking 

method of gene-supplementation. In this study, 4 million cells were seeded per scaffold. The 

effect of elevated IGF-1 levels over the control group for the x-IGF and x-GPAGF groups was 

reflected in the higher accumulated GAG densities. Both of the groups with plasmid 

supplementation showed an almost two-fold increase in accumulated GAG density over controls. 

Although there was a slightly higher GAG density for the x-GPAGF group over the x-IGF group, 

this difference was not significant. The difference in GAG synthesis was more apparent in the 

histological staining for Safkanin-0, where most tissue formation and GAG synthesis was 

present in the x-GPIIGF group. Scaffolds incorporating plasmid IGF- 1 with the transfection 

reagent also showed the most collagen type I1 staining and the highest number of cells located in 

lacunae and displaying a rounded chondrocyte-like morphology. The x-IGF group also 

displayed a greater degree of histogenesis, GAG synthesis, and type I1 staining compared to the 

Control group. Of note in the histological results is the association among cell density, degree of 

scaffold degradation, and amount of tissue formation and chondrogenesis. These findings 

demonstrate that IGF-1 overexpression by cells transfected when seeded within GSCG scaffolds 

can result in enhanced biosynthesis and chondrogenesis. 

In conclusion, a more prolonged release of plasmid from GSCG scaffolds can be 

successf~lly accomplished by covalently linking the plasmid to the CG scaffold with a 

carbodiimide cross-linking treatment. The kinetics of IGF-1 plasmid release has a direct effect 

on gene expression and IGF-1 release over time from adult canine articular chondrocytes seeded 

within GSCG scaffolds. Furthermore, incorporating a lipid transfection reagent in conjunction 

with the plasmid DNA significantly increases gene transfer and subsequent protein synthesis. A 

local, elevated, and prolonged overexpression of IGF-1 by transfected cells seeded within GSCG 

scaffolds (with or without a transfection reagent) can result in enhanced cartilage formation. 
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CHAPTER 4: DELIVERY OF PLASMID IGF-1 TO CHONDROCYTES 
VIA CATIONIZED GELATIN NANOPARTICLES 

4.1. INTRODUCTION 

It has become increasingly clear that a number of tissue engineering applications would 

benefit from the administration of selected growth factors in conjunction with a biomaterial 

scaffold One approach being investigated for prolonged overexpression of growth factors by 

cells in vivo is the incorporation of gene vectors into 3-D scaffolds 5-7. In an effort to implement 

the safest methodology for wedding gene therapy and tissue engineering, several studies have 

focused on the incorporation of non-viral vectors directly into the scaffold 8y9. An alternative 

approach is to encapsulate plasmid DNA containing the gene encoding for the selected growth 

factor into nanoparticles, which can be injected or implanted along with or bound to a scaffold 

prior to its implantation. The benefit to using nanoparticles as gene delivery vehicles is the 

capability to easily direct and control gene expression kinetics by altering various processing 

parameters used to make nanoparticles. A wide army of materials are undergoing investigation 

as nanoparticle delivery vehicles for plasmid DNA. Because our own work has employed 

collagen-based scaffolds '03' ', we were prompted to investigate gelatin nanoparticles for this 

application. Gelatin, the water-soluble molecular chain resulting from the heat dissolution and 

partial hydrolysis of collagen, has been investigated for the production of nanoparticles for drug 

delivery for almost three decades 12.13. 

While gelatin nanoparticles were initially introduced as carriers for small molecular 
14,15 weight drugs, they were later investigated as carriers for peptides 16. More recently gelatin 

nanoparticles have been studied as delivery vehicles for DNA 17-19. Issues related to the use of 

gelatin nanoparticles for these applications include size distribution 19, charge 20, stability, and 

reproducibility. Methods for producing gelatin nanoparticles 2' include solvent evaporation 

techniques 22, water-in-oil emulsion 23324, complex coacervation 17, and an emulsifier-fiee 

emulsion method 16. While all of these methods can be employed to incorporate small molecules 

into gelatin nanoparticles, a few are particularly useful for incorporating large molecules such as 

plasmid DNA. The advantage of complex coacervation, which is the separation caused by 



interaction of two oppositely charged colloids, is that it is simple and quick, and leads to the 

condensation of plasmid DNA 17. 

Gelatin is ideal for nanoparticle formation due to its versatility to be chemically modified 

and cross-linked to meet specific controlled release needs. In one case, thiolated gelatin 

nanoparticles were developed to release the incorporated molecules in a highly reducing 

environment ". In other studies, DNA-containing poly(ethy1ene glycol)-modified (PEGylated) 

gelatin nanoparticles were synthesized in order to develop systemically administered non-viral 

gene therapy vectors for solid tumors 26y27. Still other applications benefited fiom the 

modification of the surface of gelatin nanoparticles by covalent attachment of biotin-binding 

proteins, enabling the binding of biotinylated drug targeting ligands by avidin-biotin-complex 
28-30 formation . Antibody modified gelatin nanoparticles have also been used as drug carrier 

systems to target nanoparticles to specific cell types 31. Of particular interest is the modification 

of the charge (increased positivity) of gelatin by cationization 19. Cationized gelatin 

nanoparticles have been used for a myriad of applications 18~32-35 that benefit from the increased 

positive charge on the gelatin nanoparticles. As delivery vehicles for plasmid DNA, positively 

charged gelatin nanoparticles could be capable of condensing DNA and favoring interactions 

with the negatively charged cell membrane to facilitate endocytosis. 

The objective of the present study was to investigate the use of gelatin nanoparticles for 

non-viral delivery of plasmid DNA encoding for insulin-like growth factor (1GF)-1 into adult 

articular chondrocytes in vitro. The ultimate goal would be to use such nanoparticles along with 

or incorporated into collagen scaffolds loyl for cartilage tissue engineering. IGF- 1 was 

implemented in the study on the basis of prior in vitro and in vivo studies that have demonstrated 

its favorable effects on chondrogenesis. Supplementation of culture medium with IGF-1 alone 

has been shown to increase cell proliferation, proteoglycan synthesis, type-I1 collagen synthesis, 

and chondrogenesis, both in monolayer and in three-dimensional cultures 36-41. In addition, the 

combination of IGF-1 and osteogenic protein (0P)- 1 promotes increased survival of and matrix 

synthesis by normal and osteoarthritic human articular chondrocytes 42. In vivo, fibrin polymers 

laden with IGF-1 resulted in improved histologic appearance and increased proportion of type I1 

collagen in full-thickness cartilage defects in young mature horses 43. Moreover, ex vivo gene 

transfer of a human IGF-1 cDNA into chondrocytes was found to enhance cartilage tissue 

engineering both in vitro " and in vivo 45. 



4.2. MATERIALS AND METHODS 

4.2.1. Preparation of Cationized Gelatin 

Gelatin (porcine skin; G2625, Sigma-Aldrich, Inc., St. Louis, MO) was chemically 
33-35 modified by grafting amino groups to carboxyl groups as previously reported using a 

carbodiimide chemical treatment: 

EDAC 
0 
I I 

R-COO- + NH3-NH3 r-b R-C- NH-NH,+ 

Briefly, 2.5 g gelatin was dissolved in 0.1 M phosphate-buffered solution (pH 5.0), to which 

were added 7.9 ml ethylenediamine (Sigma-Aldrich, Inc.) and 1.34 g 1 -ethyl-3-(3- 

dimethylaminopropyl) carbodiimide hydrochloride, EDAC (Sigma-Aldrich, Inc.). The pH was 

immediately adjusted to 5.0 with 5-6 N hydrochloric acid. The mixture was stirred at room 

temperature for 16- 18 hours, dialyzed for 48 hours in distilled water, and then fieeze-dried to 

obtain the cationized gelatin. 

4.2.2. Preparation of Plasmid DNA 

The plasmids encoding for IGF- 1 (pIGF-1) and enhanced green fluorescent protein 

(pEGFP) were amplified in Escherichia coli host strain DHSa, and purified by column 

chromatography with the QIAfilter plasmid Mega kit (QIAGEN 1nc.-USA, Valencia, CA) 

according to the manufacturer's protocol. The plasmid for EGFP was used as a reporter gene to 

visualize the transfection of chondrocytes by fluorescence microscopy. The antibiotics used to 

select pIGF- 1 and pEGFP transformed cells were ampicilin and kanamycin, respectively. The 

size of the pEGFP was 4.7 Kb and the pIGF-1 was between 6 and 7 Kb in size. The yield, 

purity, and integrity of the prepared plasmids were evaluated with an ultraviolet 

spectrophotometer and by gel electrophoresis. 



4.2.3. Incorporation of Plasmid IGF-1 into Cationized Gelatin Nanoparticles 

Cationized gelatin-plasmid IGF- 1 nanoparticles (CGPIN) were prepared by complex 

coacervation, in which separation is caused by the interaction of two oppositely charged colloids. 

The cationized gelatin stock solution (80 mg/ml) was made by dissolving 0.24 g cationized 

gelatin in 3 ml distilled water. The solution was then filtered (pore size = 22 pm) for 

sterilization. Working solutions with different cationized gelatin concentrations were diluted 

with sterilized water. The pIGF-1 and pEGFP working solutions (200 pglml) were prepared 

with sterile filtered 50 mM sodium sulfate (Fisher Scientific, Hampton, NH). Aliquots (100-1 50 

pl) of the cationized gelatin and pIGF-1 or pEGFP solutions were heated separately at 55OC for 

30-45 min. Equal volumes of the solutions were quickly mixed and vortexed for 60 sec. 

Nanoparticles, which were prepared with either the pIGF-1 or the pEGFP, were used without 

further purification. The nanoparticles containing pEGFP were prepared with cationized gelatin 

using a ge1atin:plasmid weight ratio of 250: 1 whereas a variety of ratios were investigated when 

making nanoparticles encapsulating pIGF-1. As a control group, nanoparticles were also 

synthesized using the original (non-cationized) gelatin material. 

4.2. 4. Environmental Scanning Electron Mirroscopy 

Environmental scanning electron microscopy (ESEM, XL30, FEIPhilips, Hillsboro, OR) 

was used to investigate the size and shape of the nanoparticles. Samples were prepared by 

placing 1 pl of the nanoparticle suspension onto glass slides and air drying. The air-dried 

samples were then observed directly under ESEM, without the need to coat the samples with a 

conducting layer as required for conventional SEM. 

4. 2.5. Determination of Nanoparticle Size Distribution 

The particle size distribution was determined by a dynamic light scattering technique, 

performed at 25OC using a Brookhaven 200SM goniometer, a BI-9000AT digital auto-correlator, 

and Spectra-Physics Argon laser operating at 5 14 nm (Brookhaven Instruments Corporation, 

Holtsville, NY). The measured scattering intensities were analyzed by software provided by 

Brookhaven. 



4.2.6. Zeta Potential 

The zeta potential of the nanoparticles, with different weight ratios of gelatin to plasmid 

were measured with a Brookhaven Zeta Plus apparatus (Brookhaven Instruments Corporation). 

The electrophoretic mobility was determined at 25OC, and the zeta potential calculated. 

4* 2.7. Gene Transfer to Adult Articular Chondrocytes in Monolayer Using Gelatin 

Nanoparticles Incorporating pEGFP andpIGF-1 

Chondrocytes were isolated from the trochleae of both knees (stifle joints) from one adult 

mongrel dog (approximate age 2-4 yrs) using a sequential digestion of pronase (20 Ulml, 1 hr) 

and collagenase (200 Ulml, overnight). The cells were expanded in number in monolayer culture 

with medium containing Dulbecco's modified Eagle's medium (DMEM, high glucose 4.5% 

without L-glutamine), 0.1 mM nonessential amino acids, 1 OmM N-2-Hydroxyethylpiperazine-N'- 

2-ethanesulfonic (HEPES) buffer, 100 UIrnL penicillin, 100pgImL streptomycin glutamate, 10% 

FBS (Invitrogen Corporation, Carlsbad, CA), and a mixture of the following growth factors 

(R&D Systems, Minneapolis, MN): TGF-p1 (1 ng/ml), FGF-2 (5 nglml) and PDGF-bb (10 

nglml). At confluence, cells were trypsinized and either plated onto glass bottom microwell 

dishes (MatTek Corporation, Ashland, MA) for transfection with nanoparticles incorporating 

pEGFP or into 24-well tissue culture plates for transfection with nanoparticles incorporating 

pIGF- 1. Passage 0 cells were seeded in both types of dishes at a density of 5x1 o4 cells per well 

(density of 30,000 cellslcm2) and were allowed to expand overnight to about 80-90% confluence 

(about 100,000 cells) before transfection. 

For transfection with gelatin nanoparticles incorporating either plasmid, the medium was 

removed and replaced with a 250 pl suspension of nanoparticles diluted in a serum-free medium. 

The serum-free medium consisted of DMEM (high glucose 4.5% without L-glutamine), 0.1 mM 

nonessential amino acids, 10 mM HEPES buffer, 100 UImL penicillin, 100 pg/mL streptomycin 

glutamate, ITS" (loox, by Sigma Chemical, St. Louis, MO), 0. lmM ascorbic acid 2-phosphate, 

1.25 mglml bovine serum albumin, 10 ng/mL of TGF-B 1, and 100 nM dexamethasone. Five 

hours later, the nanoparticle solution was removed and replaced with fi-esh serum-free medium 

(500 ullwell) that did not contain nanoparticles. Based on an average nanoparticle diameter and 

a gelatin density of about 1 glml, we estimated that the number of nanoparticles added to the 



monolayer chondrocytes was on the order of 1012. Assuming that the cultures to which the 

nanoparticles were added contained approximately 100,000 cells, the number of nanoparticles 

per cell was estimated to be lo7. 

Monolayers that were treated with cationized gelatin nanoparticles incorporating pEGFP 

at a weight ratio of 250: 1 and a plasmid amount of 10 pg per well were examined by transmitted 

fluorescence microscopy 48 hours after transfection in order to visualize successfbl gene transfer 

to cells using these nanoparticles. 

4D2D8D IGF-I Expression as a Function of Plasmid Loading in the Nanoparticles 

For IGF- 1 transfected monolayers, the effects of cationized ge1atin:IGF- 1 ratio and 

plasmid amount added to each well were investigated. Five different cationized ge1atin:IGF-1 

ratios were investigated (by weight): 150: 1,200: 1,250: 1,300: 1, and 400: 1. For these groups, a 

constant plasmid load of 10 pg per well was used. In experiments in which plasmid amount was 

the main variable, the five different plasmid amounts used were 2,5, 8, 10, and 12 pg of plasmid 

per well, at a constant cationized gelatin to pIGF-1 weight ratio of 250: 1. Control conditions 

consisted of pIGF- 1 only (10 pg) or no treatment (just added serum free medium). Nanoparticles 

synthesized using unmodified (original) gelatin at a ge1atin:IGF-1 ratio of 250: 1 was also 

included as an experimental condition to deterimine the effect of cationization on nanoparticle 

characteristics and transfectibility. The serum-fiee medium £iom IGF-1 transfected cultures was 

collected at 144 hrs after transfection and assessed for the presence of IGF- 1 protein (n = 4) with 

a human IGF-1 sandwich ELISA kit (R&D Systems, Minneapolis, MN). 

4.2.9. Collagen-GAG (CG) Scaffolds Seeded with Monolayer Transfected Chondrocytes 

Porous sheets of type I1 collagen were fabricated by freeze-drying a porcine cartilage- 

derived slurry (Geistlich Biomaterials, Wolhusen, Switzerland). The collagen sheets were 

sterilized and cross-linked dehydrothermally by placing the sheets in a vaccum oven at 105 OC 

for 24 hours. Nine-mm diameter disks (-2mm thick) were punched out using a dermal punch 

(Moore Medical, New Britain, CA) and additionally cross-linked by a 10 minute carbodiimide 

treatment containing an aqueous solution of 14 mM 1 -ethyl-3-(3-dimethylaminopropyl) 



carbodiimide hydrochloride and 5.5 mM N-hydroxysuccinimide (EDAC; Sigma Chemical Co., 

St. Louis , MO). Excess EDAC was removed by rinsing in PBS. 

Using CGPIN synthesized with a ge1atin:plasmid weight ratio of 250: 1, chondrocyte 

monolayers were transfected and subsequently seeded in CG scaffolds approximately 24 hours 

after transfection to assess the duration of IGF-1 overexpression in 3-D culture and the effects 

on biosynthesis. Four million transfected cells were seeded onto each scaffold by pipetting a 20 

pl suspension containing half of the total amount of cells on each side of the scaffold with a 10 

minute incubation period in between. By this static seeding method approximately 80% of the 

seeded chondrocytes have been found to attach to the scaffolds. Cell-seeded scaffolds were 

cultured in the serum-fiee medium described above. Medium was collected and changed every 

2-3 days over a 14-day culture period. The amount of IGF-1 in the medium (n = 6) was detected 

by a sandwich ELISA kit for the human IGF-1 protein (R&D Systems). Cultures were 

terminated after 2 weeks and scaffolds were lyophilized and enzymatically digested using 

proteinase K (Roche Diagnostics, Indianapolis, IN) for DNA and GAG biochemical analysis. 

4.2. 10. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye assay 

kit (Molecular Probes, Inc, Eugene, OR) (n = 4-6). The Picogreen dye was used with the 

reagents and standard provided according to the manufacturer instructions. 

4.2.11. GAG Analysis 

The sulfated GAG content of cell-seeded scaffolds was determined by the 

dimethylmethylene blue (DMMB) dye assay 46 (n = 4-6). An aliquot of the proteinase K digest 

was mixed with the DMMB dye and the absorbance at 525 nm was measured with a 

spectrophotometer. The results were obtained by extrapolating fiom a standard curve using 

shark chondroitin-6-sulfate. Newly accumulated GAG was determined by subtracting the 

unseeded values from the sample values. 



4a2m12m Statistical Analyses 

Data were analyzed by one or two-factor analysis of variance (ANOVA), and the Fisher's 

protected least squares differences (PLSD) post-hoc tests to determine the significance in the 

difference between selected groups using StatView (SAS Institute Inc, Cary, NC). Data are 

presented as mean * standard error of the mean. 

4.3. RESULTS 

4.3. 1. Morplr ology of the Cationized Gelatin-pIGF-1 Nanoparficles 

ESEM (Fig. 4.1) revealed different sizes and morphologies of the pIGF-1-containing 

nanoparticles prepared with cationized gelatin versus regular gelatin (using the same 

ge1atin:plasmid weight ratio of 250: 1). The cationized gelatin nanoparticles (Fig. 4. la  and b) 

generally appeared to be of spherical shape less than 200 nm in diameter. In contrast, the 

original gelatin formed micro-scale particles with spherical and ellipsoid shapes (Fig. 4. lc  and 

d), with the average diameter (and long axis) appearing to be from 10 pm to greater than 20 pm. 

For both the cationized and non-cationized ge1atin:plasmid preparations, the nanoparticles and 

microparticles, respectively, generally appeared to be of uniform size. 

4.3.2. Particle Size Distribution 

Dynamic light scattering revealed that the size of the cationized gelatin nanoparticles 

ranged from 7 nm to 387 nm, with an average diameter of 172 nm. The original gelatin particles 

displayed a wider size range fiom 139 nm to 1.8 pm (Fig. 4.2). 



Figure 4.1 Environmental scanning electron microcopy images of cationized gelatin-pIGF-1 
nanoparticles (a, b) and non-cationized (original) gelatin-pIGF-1 microparticles (c, d), using a gelatin-plasmid 
weight ratio of 250:l. 
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Figure 4.2 Particle size distribution of cationized gelatin-pIGF-1 nanoparticles (CGPIN) and original 
gelatin-pIGF-1 particles (GPIN). Cumulative percentage of nanoparticles, C(d), plotted against particle size. 
Nanoparticles were made with cationized gelatin and original gelatin at  a weight ratio of 250:l. 





4.3.3. Surface Charge of Gelatin Nanoparticles 

The zeta potential (Fig. 4.3) of the naked plasmid IGF-1 solution was -48 * 2 mV (mean 

h standard error for 5 runs of the same sample). When the plasmid was coupled with different 

amounts of the positively charged cationized gelatin (+I8 h 0.7 mV for cationized gelatin alone), 

the zeta potential went from a negative value to a positive value and increased by approximately 

50-58 mV. Interestingly, with the increasing cationized ge1atin:plasmid weight ratio, the surface 

charge of the nanoparticles did not show a significant change. Cationized gelatin pIGF- 1 

nanoparticles displayed a 4-fold higher positive charge compared to particles made with the 

unmodified gelatin (GPIN) using a 250: 1 gelatin to plasmid weight ratio. 

I gelatin (250:l) (150:l) (200:l) (25O:l) (300:l) (400:l) 

Figure 4.3 Zeta potential of naked IGF-1 plasmid (1" bar), cationized gelatin (2'* bar), original gelatin 
complexed to pIGF-1 at a 250:l weight ratio (3rd bar), and cationized gelatin complexed with different 
amounts of pIGF-1 to yield the following ge1atin:plasmid weight ratios: 150:1,200:1,250:1,300:1, and 400:l. 

4.3.4. Fluorescence Microscopy of the Chondrocytes Transfected with the Nanoparticles 

Containing pEGFP 

There was no noticeable fluorescence from the cells treated with the nanoparticles 

prepared with the original (non-cationized) gelatin particles containing the pEGFP (Fig. 4.4a). In 

contrast numerous cells in the group transfected with the cationized gelatin-pEGFP nanoparticles 

were found to fluoresce indicating successful transfection and gene expression (Fig. 4.4b). 





Figure 4.4 Fluorescence microscopy of chondrocytes transfected with nanoparticles incorporating 
pEGFP 48hrs after transfection using original gelatin (a) or cationized gelatin @). 

4.3.5. IGF-I Gene Expression in Transfeeeted Chondrocyte Monolayers 

The coefficients of variation for the IGF-1 levels recorded fiom all but two of the nine 

experimental groups, varying gelatin to plasmid weight ratios and plasmid loading (n = 4), were 

from 10-30%. In two of the groups (10pg loading with a ge1atin:plasmid ratio of 400: 1 and 10 

pg loading with 250:l) the coefficients were around 60% owing to an outlier in each that was 

about twice the mean value for the group. It was decided to omit the elevated data point in each 

of the two groups, reducing the sample size from 4 to 3, but taking a more conservative approach 

to the analysis of the data (i.e. omitting the outliers decreased the detected levels of protein). 

There was a clear effect of varying the weight ratio of gelatin to pIGF-1 on gene transfer 

and subsequent IGF- 1 release in the medium (Fig. 4.5a). Optimal IGF- 1 expression was 

recorded for gelatin to plasmid weight ratios of 200-300: 1. There was a 5-fold elevation in the 

amount of IGF-1 produced fiom the group treated with nanoparticles synthesized at a weight 

ratio of 250: 1 compared to the control group that was treated with pIGF-1 alone (Fig. 4.5a). 

One-factor ANOVA revealed a significant effect of the weight ratio of cationized gelatin to 

pIGF-1 on the amount of IGF-1 synthesized by the cells (p < 0.0002; power = 1). Fisher's PLSD 

post-hoc testing demonstrated that all plasmid ratios had statistically significant elevations of 

IGF- 1 production over the control condition treated with plasmid only (i.e. no incorporation in 

nanoparticles, p < 0.04). Among the ge1atin:plasmid weight ratios, there was no statistically 





significant difference between the 200: 1,250: 1, and 300: 1 groups, but there was a significant 

difference comparing these groups with the 150: 1 group (p < 0.03), and comparing the 250: 1 and 

300: 1 groups versus the 400: 1 group (p < 0.02). 

There was also a notable effect of varying the amount of plasmid added to each well on 

IGF-1 produced by the transfected chondrocytes (Fig. 4.5b). There was a gradual increase in 

IGF-1 expression with increasing plasmid load. Linear regression analysis demonstrated a 

correlation between IGF-1 expression and plasmid load ( R ~  = 0.65). One-factor ANOVA 

showed a significant effect of plasmid amount added per well on IGF-1 expression (p < 0.000 1 ; 

power = 1). Post-hoc testing revealed that there was a statistically significant elevation in IGF-1 

produced for all plasmid loads except the 2 pg load when compared to the control group. The 12 

pg load showed a statistically significant elevation of IGF-1 expression above the plasmid load 

groups of 8 pg or less (p < 0.02). The 10 pg load showed a significant elevation above plasmid 

loads of 5 pg or less (p < 0.01). There was, however, no significant difference between the 5 and 

8 pg plasmid load groups or the 10 and 12 pg groups. 

The difference between using unmodified (non-cationized) gelatin and cationized gelatin 

nanoparticles for the transfection of the chondrocytes was clearly demonstrated (Fig. 4 .5~) .  

There was a 5-fold elevation in the amount of IGF-1 produced by transfected cells when using 

the cationized gelatin nanoparticles (Fig. 4.5~). ANOVA showed a statistically significant 

difference in the IGF-1 expression between the groups (p < 0.003; power =0.99). 
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Figure 4.5 IGF-1 protein released into the medium from monolayer chondrocytes 144 hours after 
treatment with gelatin-plasmid IGF-1 nanoparticles: varying the cationized gelatin to pIGF-1 weight ratio 
using a 1Opg plasmid load (a); varying plasmid load using a 250:l weight ratio (b); and comparing 
transfection using original gelatin particles vs. cationized gelatin nanoparticles (c). n = 3-4; mean * SEM. 



4. 3.6. IGF-1 Gene Expression of Transfected Chondrocytes Seeded in CG Scaffolds and 

Effects on Biosyn thesis 

Scaffolds seeded with chondrocytes that were transfected in monolayer using 

gelatin1pIGF- 1 nanoparticles (CGPIN group) showed a clear elevation of IGF- 1 release above 

the Control (no treatment, medium only) and Gelatin (gelatin alone, no plasmid) groups for all 

media collections (Fig. 4.6). The CGPIN group showed a steady IGF-1 release of about 2200 

pg/ml every 3 days over the course of the 12-day period. There was no noticeable amount of 

IGF-1 released in the media for the Control or Gelatin groups. Two-factor ANOVA verified a 

significant effect of transfection with gelatin1pIGF- 1 nanoparticles on IGF- 1 release from cell- 

seeded scaffolds (P < 0.0001, power = 1) but no significant effect of time over the 12-day culture 

period. 

-+ Control - Gelatin 
+ CGPIN T 

-500 I 1 1 1 1 

Day 3 Day 6 Day 9 Day 12 

Figure 4.6 IGF-1 released in medium from control cell-seeded scaffolds and chondrocytes transfected in 
monolayer with CGPIN (ge1atin:plasmid IGF-1 of 250:l) and subsequently seeded in CG scaffolds. n = 6; 
mean * SEM. 

There was a slight, significant elevation in DNA content (Fig. 4.7) at the end of the 

culture period for the Control group compared to the other groups (P < 0.03, power = 0.7). GAG 

and DNA analysis showed the highest level of accumulated GAG per DNA for the CGPIN 

group, with a 60% higher level than the Control group and a 40% higher GAGDNA level than 



the Gelatin group. Constructs seeded with cells treated in monolayer with gelatin alone (Gelatin 

group) also showed a 38% higher GAG/DNA content than the Control group. ANOVA showed 

a significant effect of monolayer treatment on the resulting accumulated GAGIDNA content at 

the end of the 3-D culture period (P < 0.001, power = 1). 

Control Gelatin only CGPlN 

Control Gelatin only CGP1N 

Figure 4.7 DNA contents (a) and accumulated GAGJDNA (b) measured at the end of the 3-D culture 
period in CG scaffolds seeded with untreated chondrocyte monolayers (Control), chondrocvtes treated with 
gelatin alone (Gelatin only), or chondrocytes transfected in monolayer with CGPIN at a geiatin:plasmid IGF- 
1 of 250:l (CGPIN). n = 4; mean * SEM. 



4.4. DISCUSSION 

The results of the present study demonstrated the benefits of altering the charge of gelatin 

through cationization, with respect to its use as a delivery vehicle for plasmid IGF-1 for non-viral 

gene transfer to chondrocytes. Increasing the positive charge of gelatin enabled it to condense 

the pIGF- 1 such that smaller (nanometer-sized) particles could be produced. When complexed 

with the plasmid, unmodified gelatin tended to form particles of substantially larger size and 

broader size range. The change in the charge of the gelatin nanoparticles with cationization was 

demonstrated in the zeta potential measurements, with the cationized nanoparticles displaying a 

4-fold higher positive charge than particles synthesized using the original gelatin. 

Of interest were the findings demonstrating the difference in the functionality of the 

cationized and non-cationized gelatin particles as transfection agents for the plasmids encoding 

EGFP and IGF- 1. Virtually no fluorescence was detected in chondrocytes treated with the 

marker gene, EGFP, incorporated in the unmodified gelatin particles, while many cells were 

transfected with the pEGFP using the cationized gelatin nanoparticles. This difference was also 

demonstrated by the 5-fold difference in expression of IGF-1 between groups treated with the 

cationized gelatin-pIGF- 1 versus the non-cationized-pIGF- 1 particles indicating that there are 

important functional differences imparted by charge modification, perhaps owing to a difference 

in particle size or surface charge. A higher positive surface charge may increase interactions 

with the negatively charged cellular membrane and a smaller particle diameter may increase 

probable entry into to cell, resulting in enhanced gene expression. Additional studies will be 

required to provide a deeper understanding of the transfection mechanisms that are responsible 

for the differences in the behavior of the cationized and non-cationized particles. 

The present findings also revealed an optimal cationized ge1atin:pIGF-1 weight ratio 

range for transfecting adult articular chondrocytes, with maximum IGF- 1 expression recorded for 

weight ratios of 200-300: 1. The surface charge of the nanoparticles made with the varying 

weight ratios, however, may not have been a significant factor influencing gene transfer to 

chondrocytes as the surface charge did not seem to change significantly using different weight 

ratios. It will be useful in future work to evaluate other potential mechanisms related to the 

ability of these nanoparticles to transfect cells, such as particle size and morphology and the 

kinetics of plasmid release from nanoparticles prepared with other ge1atin:plasmid weight ratios. 



The current investigation demonstrated a nearly linear increase in IGF-1 production by 

cells with increasing plasmid load applied to the cultures when using cationized gelatin 

nanoparticles. Based on an estimated cell number in each well of about 100,000 cells and using 

a cationized ge1atin:IGF-1 weight ratio of 250: 1, one would need about 50 pg of incorporated 

plasmid within cationized gelatin nanoparticles per cell for meaningful gene expression. The 

approximately 1 ng of IGF-1 collected in the first 144 hours after transfection (using a 250: 1 

cationized ge1atin:pIGF-1 and a 10 pg plasmid load) is well below the minimum therapeutic 

levels generally found in vitro to elicit a response from chondrocytes using the recombinant IGF- 

1 as a medium supplement. However, this 1 ng level was achieved after only 5 hours of 

incubation of the cells with the nanoparticles. Moreover, in a contained defect in vivo, small 

levels of overexpressed IGF-1 concentrated locally may still be able to achieve therapeutic 

results. 

The effect of localized and elevated levels of IGF-1 expression on biosynthesis was 

demonstrated by comparing CG scaffolds seeded with untreated chondrocytes and chondrocytes 

transfected in monolayer with CGPIN. These results showed that IGF- 1 overexpression above 

the control groups can be maintained when transfected chondrocytes are seeded within CG 

scaffolds for up to about 2 weeks in 3-D culture. The CGPIN group showed very steady IGF-1 

release levels with no evidence of decreasing IGF-1 overexpression at the end of the 1 Zday 

culture period. The elevated levels of IGF-1 for the CGPIN group resulted in a 60% greater 

GAG/DNA content than the Control group after 12-days in 3-D culture. Surprisingly, constructs 

containing chondrocytes treated with gelatin alone (without plasmid) in monolayer also resulted 

in a significantly higher GAG/DNA content (38% higher) verses the Control group even though 

there was no elevation in IGF-1 expression for this group compared to the Control. This finding 

seems to indicate that gelatin alone can affect chondrocytes in monolayer and may induce 

elevations in biosynthesis when these cells are subsequently grown in CG scaffolds. 

Few studies have yet investigated the mechanisms by which gelatin nanoparticles gain 

entry into cells. One recent transmission electron microscopy study 23 provided evidence of the 

endocytosis of gelatin nanoparticles by fibroblasts. While the nanoparticles in the cytoplasm of 

the cells appeared to disrupt the F-actin and beta-tubulin cytoskeleton, there was no evidence of 

toxicity. Additional work is necessary to more completely understand the mechanisms by which 



gelatin nanoparticles are endocytosed, and the contained plasmid released and incorporated into 

the cell nucleus. 

In conclusion, the present work demonstrates that gelatin nanoparticles can be 

synthesized to incorporate the plasmid IGF-1 and successfully transfect expanded chondrocytes 

in monolayer culture. Chemical modification of gelatin by cationization for nanoparticle 

synthesis, varying the cationized gelatin to plasmid weight ratio, and varying the amount of 

plasmid added to the cells all significantly affect resulting gene expression and growth factor 

release kinetics. Furthermore, chondrocytes transfected with pIGF using cationized gelatin 

nanoparticles are able to maintain steady IGF- 1 overexpression when subsequently seeded within 

CG scaffolds for up to two weeks in 3-D culture, and show enhanced biosynthesis. These 

findings warrant additional study of the implementation of cationized gelatin nanoparticles 

incorporating growth factor plasmids in conjunction with scaffolds to facilitate tissue 

engineering. 
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CHAPTER 5: SCAFFOLD-BASED NONVIRAL IGF-1 GENE 
DELIVERY USING COLLAGEN-GAG SCAFFOLDS INCORPORATING 
TRANSFECTION ENHANCERS 

5.1. INTRODUCTION 

The combination of nonviral gene delivery and tissue engineering strategies via gene 

incorporation within 3-D scaffolds is an effective means to provide a prolonged release of 

desired growth factors for enhancing tissue regeneration. Previous chapters have demonstrated 

that the Geneporter@ (GP) lipid mediated transfection reagent and cationized gelatin 

nanoparticles can be used to facilitate transfer of the gene encoding for insulin-like growth factor 

(1GF)-1 to adult canine articular chondrocytes, and that IGF- 1 overexpression by transfected 

cells can result in enhanced biosynthesis in type I1 collagen-GAG (CG) scaffolds in vitro. The 

objective of this study was to evaluate the use of these transfection enhancers in combination 

with the type I1 CG scaffold with regard to the ability to successfully transfect seeded goat 

chondrocytes and the ability to control subsequent IGF-1 release kinetics. In order to investigate 

potential techniques for varying vector release from the scaffolds, two methods of incorporating 

the GP/IGF complexes or cationized gelatin pIGF-1 nanoparticles (CGPIN) were employed. The 

first method (Method 1) involved cross-linking half of the total amount of plasmid IGF-1 (5 pg) 

to the scaffold and then adding the second half of the load (5 pg) by absorption into scaffold, 

whereas, the second method (Method 2) involved cross-linking the full plasmid load (10 pg) to 

the scaffold. During the 2-week 3-D culture period, scaffold contraction was monitored and 

media was collected at various time points to detect IGF-1 released in the medium. At the end of 

the culture period, scaffolds were allocated for biochemical and histological analysis to assess 

the effects on biosynthesis and chondrogenesis. 



5.2. WTERIALS AND METHODS 

5.2.1. Type II Collagen- GA G Sea ffolds 

Porous sheets of a type I1 CG scaffold were fabricated by fieeze-drymg a porcine type I1 

collagen-GAG slurry (Geistlich Biomaterials, Wolhusen, Switzerland). Similar scaffolds have 

been reported in prior studies to have a porosity of 89 * 2% (mean * standard deviation) and a 

pore diameter of 125 * 42 pm '. The collagen sheets were sterilized and cross-linked by 

dehydrothermal treatment 2, and 8 mm diameter disks (-2 mm thick) were prepared using a 

dermal biopsy punch. 

5.2. 2. Plasmid Propagation & Isolation 

Multiplication of plasmid encoding for IGF- 1 (pIGF- 1) was accomplished by heat shock 

transformation into Escherichia coli DH5a competent cells grown overnight in Luria-Bertani 

(LB) medium containing ampicillin. Plasmid was isolated and purified using a Mega 

QIAfilterTM Plasmid kit (Qiagen, Valencia, CA). The absorption ratio at 260 nm and 280 nm 

was used to determine plasmid concentration and purity while plasmid integrity was 

demonstrated by polyacrylamide gel electrophoresis. The size the pIGF-1 was 6-7 Kb. 

5.2.3. Preparation of Cationized Gelatin 

Gelatin (fiom porcine skin; G2625, Sigma-Aldrich, Inc., St. Louis, MO) was chemically 

modified to increase the overall positive charge by grafting amino groups to carboxyl groups as 

previously reported3-'. Briefly, a 2% gelatin solution (w/v) was made using 0.1 M phosphate- 

buffered solution (pH 5.0). Ethylenediamine (Sigma-Aldrich, Inc.) and N-(3- 

dimethylaminopropy1)-N'-ethylcarbodiimide hydrochloride (EDAC, Sigma-Aldrich, Inc.) were 

added to obtain a gelatin solution consisting of 6% (v/v) ethylenediamine and 1% (w/v) EDAC. 

The pH was immediately adjusted to 5 with 5-6 N HCl. The mixture was stirred at room 

temperature for 16- 18 hours, dialyzed for 48 hours in distilled water, and then freeze-dried to 

obtain the cationized gelatin. 



5.2. 4. Cation ized Gelatin Plasm id IGF-1 Nan oparticle Synthesis 

Cationized gelatin plasmid IGF-1 nanoparticles (CGPIN) were prepared by a complex 

coacervation method where separation into nanoparticles is caused by the interaction of two 

oppositely charged colloids. An 8% aqueous cationized gelatin stock solution (wlv) was made 

and sterile filtered. Working solutions of cationized gelatin were obtained by dilution in 

sterilized water. The plasmid IGF-1 working solution (200 pg/ml) was prepared with sterile 

filtered 50 mM sodium sulfate (Fisher Scientific, Hampton, NH). 100- 150 pl of the cationized 

gelatin and pIGF-1 solutions were heated separately at 55 OC for 30-45 min. Equal volumes of 

the solutions were quickly mixed and vortexed for 60 seconds. Nanoparticles were used without 

further purification. The nanoparticles containing pIGF- 1 were prepared with a cationized 

gelatin to plasmid weight ratio of 250: 1. 

5.2. 5. Incorporation of GPLGF Complexes or Cationized GelatinbIGF-I Nanoparticles 
(CGPIN) into CG Scaffolds 

To investigate a scaffold-based gene transfer approach to provide a prolonged release of 

nonviral vectors in vitro or in vivo, GPIIGF complexes or CGPIN were incorporated into the 

scaffolds using two methods that would result in a varied vector release profile. The first method 

(Method 1) used to synthesize GSCG scaffolds involved placing a 60 p1 aliquot of the plasmid 

solution containing 5 pg of plasmid onto the DHT-treated scaffolds followed by incubation for 

an hour at room temperature. A 1 ml aliquot of an aqueous carbodiimide solution consisting of 

14 mM 1 -ethyl-3-(3 -dimethylaminopropyl) carbodiimide hydrochloride and 5.5 mM N- 

hydroxysuccinimide (EDAC; Sigma Chemical Co., St. Louis, MO) was added to the scaffold and 

incubated at room temperature for about 30 minutes to allow cross-links to form among the 

collagen molecules and between the plasmid and collagen. Excess EDAC was removed by 

rinsing the scaffolds in PBS. Scaffolds were then briefly dried on filter paper and a 30 pl aliquot 

of plasmid solution containing another 5 pg of pIGF- 1 was added to each scaffold and incubated 

for about an hour before seeding chondrocytes. This method of incorporation provided a total 

load of 10 pg of pIGF- 1 (complexed to the lipid transfection reagent or the cationized gelatin 

nanoparticles) some of which were cross-linked and not cross-linked to the CG scaffold. 

The second method (Method 2) used to synthesize GSCG constructs involved cross- 

linking the full plasmid load to the scaffold. A 60 p1 aliquot of the plasmid solution containing 



10 pg of plasmid onto the DHT-treated scaffolds followed by incubation for at least an hour at 

room temperature. A 1 ml aliquot of the EDAC solution was added to the scaffold and incubated 

at room temperature for about 30 minutes. Excess EDAC was removed by rinsing the scaffolds 

in PBS. Below is a summary of the various conditions investigated in this study. 

Table 5.1 Experimental Conditions: CG Scaffolds Supplemented with GPDGF Complexes 
or Cationized Gelatin pIGF-1 Nanoparticles 

5.2.6. Swelling Ratio Analysis 

Contraction (12) 
IGF-1 ELISA (12) 

The swelling ratio (i.e. inverse of the cross-link density) was determined for unseeded 

control scaffolds and scaffolds containing GPlIGF complexes or CGPIN to determine if gene 

incorporation during the carbodiimide treatment affects the degree of scaffold cross-linking (n = 

4). Scaffolds were immersed in a 90 "C water bath for 2 minutes and placed in between sheets 

of filter paper (Whatman No. 1, Fisher Scientific, Pittsburgh, PA). A one-kilogram weight was 

placed on top of the filter paper for 20 seconds after which the weight was taken off and the 

scaffold was removed and weighed to obtain the wet weight (WM). Scaffolds were then 

completely dried by placing them in a 105 "C oven overnight. The dry weight (DM) was then 
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determined for each scaffold and the swelling ratio was calculated according to the following 

equation: 

Swelling ratio = [(DMAQ + ((Will-DM)/r.,,.)] x r f l M  

where r, = 1.32 g/cm3 (density of collagen) and rWate, = 1 .OO g/cm3 (density of water). The 

inverse of the swelling ratio was then calculated to obtain the cross-link density. 

5.2.7. Chondrocyte Isolation and Expansion 

Chondrocytes were isolated from the trochleae of both knees (stifle joints) from six adult 

Spanish goats (4-5 yrs old). The cells were obtained using a sequential digestion of pronase (20 

Ulml, 1 hr) and collagenase (200 Ulml, overnight) as previously described 7. Isolated 

chondrocytes were expanded in monolayer culture using a medium consisting of high glucose 

Dulbecco's modified Eagle's medium (DMEM, 4.5 g/L D-glucose, without L-glutamine and 

with 1 mM sodium pyruvate), containing 10% (vlv) fetal bovine serum (FBS), 0.1 mM 

nonessential amino acids, 1 0 mM N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic (HEPES) 

buffer, 100 UImL penicillin, and 100 pg/mL streptomycin glutamate. The medium was 

supplemented with the following growth factors (all from R&D Systems, Minneapolis, MN): 5 

ng/mL of fibroblast growth factor-2 (FGF-2), 10 ng/mL of platelet-derived growth factor-bb 

(PDGF-bb), 1 ng/mL of transforming growth factor-p1 (TGF-PI). The cells were incubated at 

37 "C and 5% C02. Once cells reached confluence, they were trypsinized, resuspended, and re- 

plated to obtain passage (P) 1 cells. 

5.2.8. Cell Seeding GSCG Scaffolds 

Four million cells were seeded onto each scaffold by pipetting a 20 pl suspension 

containing half of the total amount of cells on each side of the scaffold with a 10-minute 

incubation period in between. By this static seeding method approximately 80% of the seeded 

chondrocytes have been found to attach to the scaffolds. Cell-seeded scaffolds were cultured in 

serum-free medium consisted of DMEM (high glucose 4.5% without L-glutamine), 0.1 mM 

nonessential amino acids, 10 mM HEPES buffer, 100 U/mL penicillin, 100 pglmL streptomycin 



glutamate, ITS+' (loox, by Sigma Chemical, St. Louis, MO), 0.1 mM ascorbic acid 2-phosphate, 

1.25 mg/ml bovine serum albumin, 10 ng/mL of TGF-PI, and 100 nM dexamethasone. Medium 

was collected and changed at various time points over a two-week culture period. At each 

medium exchange, the diameter of each scaffold was measured to monitor any change in 

scaffold size (n = 12; 2 scaffolds per goat). The amount of IGF- 1 in the collected medium (n = 

12; 2 scaffolds per goat) was detected by a sandwich ELISA kit for the human IGF-1 protein 

(R&D Systems). Cultures were terminated after 2 weeks for histological evaluation and 

biochemical analysis. For DNA and GAG analysis, scaffolds were lyophilized and 

enzymatically digested using proteinase K (Roche Diagnostics, Indianapolis, IN). 

5.2.9. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye assay 

kit (Molecular Probes, Inc, Eugene, OR) (n = 6). The Picogreen dye was used with the reagents 

and standard provided according to the manufacturer instructions. 

5.2.10. GAG Analysis 

The sulfated GAG content of cell-seeded scaffolds after the 2-week culture period was 

determined by the dimethylmethylene blue (DMMB) dye assay (n = 6). An aliquot of the 

proteinase K digest was mixed with the DMMB dye and the absorbance at 525 nm was measured 

with a spectrophotometer. The results were obtained by extrapolating fiom a standard curve 

using shark chondroitin-6-sulfate. Newly accumulated GAG was determined by subtracting the 

unseeded values fiom the sample values. 

5.2.11. Histology and Immun ohistochemis of Cell-Seeded Scaffolds 

Cell-seeded scaffolds (n = 6) were fixed in 10% neutral buffered formalin, dehydrated, 

embedded in paraffin, and sectioned (six-micrometer thick) by microtomy. Sections were 

stained with Safranin-0 for the presence of sulfated GAG. For type I1 collagen 

immunohistochemical analysis, sections were enzymatically digested by protease type XIV for 

45 minutes and stained with a standard avidin-biotin complex peroxidase-based antibody 

staining technique (Vectastain, Vector Laboratories, Burlingame, CA). Mouse anti-chick 



monoclonal antibody for type I1 collagen was obtained from the Developmental Studies 

Hybridoma Bank (Iowa City, IA). 

5.2.12. Statistical Analysis 

Data were analyzed by one or two-factor analysis of variance (ANOVA), and the Fisher's 

protected least squares differences (PLSD) post-hoc test using StatView (SAS Institute Inc, Cary, 

NC). Data are presented as mean 2 standard error of the mean. 

5.3. RESULTS 

5.3.1. Effect of Gene-Supplemen tation on Cross-lin k Density 

Swelling ratio results demonstrated that the Control group was the least cross-linked 

among the groups and that GSCG scaffolds incorporating CGPIN had the highest amount of 

cross-links (Fig. 5.1). There was about a 15% and a 30% higher cross-link density for scaffolds 

containing GPIIGF complexes and CGPIN, respectively, compared to the Control group. 

ANOVA showed a significant effect of gene incorporation on the resulting cross-link density (P 

< 0.002, power = 1). Post hoc analysis revealed a significant difference in the density of cross- 

links for the Control group versus the other groups (PC0.04, power=l), the GenePorter (x-link & 

soak) group verses the Nanoparticles (x-link & soak) and Nanoparticles (x-link) groups (P < 

0.02, power = I), and the GenePorter (x-link) group compared to the Nanoparticles (x-link & 

soak) group (P < 0.04, power = I). 

5.3.2. Cell-Mediated Con traction of GSCG Scaffolds 

GSCG scaffolds incorporating GP/IGF complexes using either method of incorporation 

showed the most contraction, with about a 30% decrease in diameter at the end of the 2-week 

culture. There was no noticeable decrease in size for scaffolds incorporating CGPIN and the 

Control group showed a slight 10% decrease in diameter. Two-factor ANOVA revealed a 

significant effect of type of gene-supplementation (P < 0.0001, power = 1) and time (P < 0.0001, 

power = 1) on scaffold contraction. 
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Figure 5.1 Cross-link density (llswelling ratio) of unseeded control and GSCG scaffolds. n = 4; mean 
SEM. 
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Figure 5.2 Contraction of cell-seeded Control and GSCG scaffolds over the 2-week 3-D culture period. 
n = 12; mean SEM. 





5.3.3. IGF-I Release in 3 -0  Culture Medium 

There was an obvious elevation in IGF-1 protein released in the medium for all GSCG 

scaffolds containing either the GPlIGF complexes or CGPIN above the Control group except for 

the Nanoparticles (x-link) group (Fig. 5.3a). In all groups, there seemed to be a peak in IGF-1 

release after about a week in culture. The GenePorter (x-link & soak) group displayed the most 

IGF-1 release in the 3-D culture medium for all time points. Two-factor ANOVA revealed a 

significant effect of time (P < 0.03, power = 0.7) and type of gene-supplementation on IGF-1 

release in the medium (P < 0.0001, power = 1). Post hoc analysis confirmed a significant 

difference in IGF-1 release for the Controls versus the GenePorter (x-link & soak) group (P < 

0.0001, power = l), GenePorter (x-link) group (P < 0.0002, power = 0.984), and Nanoparticles 

(x-link & soak) group (P < 0.01, power = 1). The GenePorter (x-link & soak) group showed 

significantly higher IGF-1 release over all the other groups (P < 0.0001, power = 1) and there 

was a significant difference between the Nanoparticles (x-link & soak) group compared to the 

Nanoparticles (x-link) group (P < 0.01, power = 1). 

Over the 2-week culture period, the total accumulated IGF-1 detected in the medium 

revealed a 50-fold higher level for the GenePorter (x-link & soak) group and a 14-fold higher 

level for the Nanoparticles (x-link & soak) group compared to the Control group (Fig. 5.3b). 

There was an 1 1-fold difference between the Nanoparticles (x-link & soak) and Nanoparticles 

(x-link) groups and a 5-fold difference between the GenePorter (x-link & soak) and GenePorter 

(x-link) groups. Statistical differences between groups for total accumulated IGF-1 were similar 

to the analysis of the IGF- 1 release data. 
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Figure 5.3 IGF-1 detected in each media collection (a) and total accumulated IGF-1 (b) over the course 
of the 2-week 3-D culture period for Control and GSCG scaffolds incorporating GPIIGF complexes or 
CGPIN. n = 12; mean * SEM. 





5.3.4. Biochemical Analysis of Cell-Seeded GSCG Scaffolds 

DNA content at the end of the 2-week culture period showed noticeably lower values for 

GSCG scaffolds supplemented with the GP/IGF complexes (Fig. 5.4a). There was about a 70% 

lower DNA content for the GenePorter (x-link & soak) and GenePorter (x-link) groups and a 

23% decrease for the Nanoparticles (x-link & soak) group compared to the Control group. 

ANOVA and post hoc analysis revealed a significant effect of gene supplementation conditions 

on final DNA content after 2 weeks in culture (P < 0.0001, power = 1) with the GenePorter (x- 

link & soak) and GenePorter (x-link) groups having a significantly lower DNA content 

compared to the rest of the groups (P < 0.005, power = 1). Although there was no significant 

difference in DNA content between the Nanoparticles (x-link) and Control groups, there was a 

significant difference between the Nanoparticles (x-link) and Nanoparticles (x-link & soak) 

groups (P < 0.03, power = 1). 

The GAG/DNA values for CG scaffolds supplemented with CGPIN were similar to the 

Controls after the 2-week culture period (Fig. 5.4b). GSCG scaffolds containing the GP/IGF 

complexes, on the other hand, showed 64% and 47% higher GAGLDNA content for the 

GenePorter (x-link & soak) and GenePorter (x-link) groups, respectively, over the Controls. 

ANOVA and post hoc analysis confirmed a significant effect of gene supplementation condition 

on GAG/DNA content (P < 0.0005, power = 1) and showed significant differences between the 

GenePorter (x-link & soak) group verses the Control, Nanoparticles (x-link & soak), and 

Nanoparticles (x-link) groups (P < 0.0006, power = I), and the GenePorter (x-link) group versus 

the Nanoparticles (x-link & soak) and Nanoparticles (x-link) groups (P < 0.04, power = 1). 

5.3.5. Histology andImmunohistochemistry of 3-D Cultures 

Histochemical staining for all conditions showed most tissue formation in areas 

surrounding greater cell concentrations located mostly in the center of the scaffolds (Figs 5.5 and 

5.6). In general, there were many cells that displayed a rounded morphology in all sample 

conditions, however, cells displaying a rounded morphology and located in lacunae were evident 

only in GSCG scaffolds containing GP/IGF complexes. All sample conditions showed light 

staining for Safranin-0, especially in areas where more tissue was formed (Fig. 5.5). CG 

scaffolds containing the GPIIGF complexes possessed more areas of high cell densities, tissue 



formation, and GAG staining compared to the Control or scaffolds incorporating CGPIN. Type 

I1 collagen immunohistochemical staining revealed type I1 collagen deposition mostly on the 

struts of the scaffolds (Fig. 5.6). Type I1 staining was most evident in scaffolds containing 

GPAGF complexes and least evident for scaffolds containing CGPIN (Fig. 5.6). There was no 

obvious difference comparing the two methods of gene incorporation regarding the resulting 

cellular distribution, morphology, and histochemical staining (i.e. GenePorter (x-link & soak) 

group was similar to GenePorter (x-link) group and Nanoparticles (x-link & soak) group was 

similar to Nanoparticles (x-link) group). For all conditions, a significant amount of residual 

scaffold was present after two-weeks in culture. 



Control GenePorter, x- GenePorter, x- Nanoparticles, Nanoparticles, 
link & soak link x-link & soak x-link 

Control GenePorter, x- GenePorter, x- Nanoparticles, Nanoparticles, 
link & soak link x-link & soak x-link 

Figure 5.4 DNA (a) and GAGIDNA (b) content for Control and GSCG scaffolds incorporating GP/IGF 
complexes or CGPIN at the end of the 2-week 3-D culture period. n = 6; mean * SEM. 





(a) 

Figure 5.5 Safranin-0 staining (redipink is a positive stain) for Control (a) and GSCG scaffolds 
incorporating GPnGF complexes (b) or CGPIN (c) after 2 weeks in 3-D culture. 





Figure 5.6 Type I1 collagen immunohistochemical staining (brown is a positive stain) for Control (a) 
and GSCG scaffolds incorporating GPnGF complexes (b) or CGPIN (c) after 2 weeks in 3-D culture. 





5.4. DISCUSSION 

Of significance in this study was that both GenePorterlpIGF- 1 (GPIIGF-1) complexes 

and cationized gelatin pIGF-1 nanoparticles (CGPIN) incorporated within CG scaffolds could 

result in successll overexpression of IGF-1 by seeded goat articular chondrocytes. Prior 

chondrocyte monolayer studies have shown that GPIIGF complexes have a higher transfection 

efficiency than the CGPIN, and therefore the greater IGF-1 overexpression that resulted from 

cells seeded within scaffolds incorporating the GPIIGF complexes was expected. The fact that 

cells seeded within scaffolds incorporating CGPIN resulted in elevated levels released in the 

medium over the Control scaffolds shows promise in using this approach as an alternative 

method to control gene transfer and to direct the start, amount, and duration of growth factor 

release for articular cartilage repair. Further studies in developing GSCG scaffolds using CGPIN 

is necessary to find the best nanoparticle synthesis conditions and incorporation methods for 

optimal gene transfer to seeded cells. 

An interesting finding in this study is the effect of gene supplementation on cell-mediated 

contraction of the scaffolds. Cell-mediated contraction can be affected by the scaffold cross- 

linking properties (stiffness and degradation), smooth muscle actin (SMA) expression of cells, or 

cell remodeling of the extracellular matrix (ECM). Although the greatest amount of scaffold 

contraction occurred in scaffolds supplemented with the GPIIGF complexes, the cross-link 

density for this group was actually higher than the Control group. It is, therefore, speculated that 

the cause of the increased cell-mediated contraction for scaffolds incorporating the GP/IGF 

complexes is not due to scaffold cross-linking, but rather on either stimulated SMA activity or 

increased remodeling of the matrix that may have been induced by these complexes. Future 

work should further investigate this contraction phenomenom to understand the mechanism of 

contraction induced by the GPIIGF complexes. 

GSCG scaffolds incorporating the gelatin nanoparticles, on the other hand, posessed the 

highest cross-link density and least scaffold contraction over the two-week period. This elevated 

scaffold stifhess may be due to the increased number of potential cross-link sites present when 

the gelatin nanoparticles are added to the collagen scaffold. The carbodiimide cross-linking 

agent not only could have cross-linked the gelatin nanoparticles to the collagen scaffold, but it 

may have also created cross-links between the gelatin molecules, resulting in a stiffer gel within 

the CG scaffold. This higher cross-link density may have also been the cause of the lower IGF-1 



overexpression for scaffolds containing CGPIN compared to scaffolds with the GP/IGF 

complexes (for both Method 1 and Method 2). That is, a higher cross-link density would have 

made it more difficult for seeded cells to degrade the scaffold, and therefore may have resulted in 

a decreased release rate of incorporated CGPIN and a subsequently lower rate of gene transfer. 

Furthermore, as mentioned before, the transfection efficiency of CGPIN has been shown to be 

lower than that of the GPIIGF complexes in monolayer studies and therefore would also explain 

the difference in the amount of IGF-1 released fiom scaffolds synthesized using Method 1 

(where half of the plasmid load was absorbed and not cross-linked to the scaffolds). Future in 

vitro experiments need to investigate other formulations for synthesizing CGPIN for optimal 

transfection efficiencies and other methods of incorporation within CG scaffolds to control 

vector release rates and subsequent IGF-1 expression kinetics over prolonged times. 

As anticipated, cross-linking half of the plasmid load and absorbing the other half within 

the scaffolds resulted in higher levels of IGF-1 compared to cross-linking the full plasmid load. 

Although after one week in 3-D culture there seemed to be a peak in IGF-1 release fiom all 

sample conditions, it remains to be seen if further breakdown or degradation of the scaffold 

would result in another "wave" of vector release and a subsequent increase in IGF-1 production. 

Histological results did confirm an abundance of residual scaffold left after 2-weeks in culture, 

and therefore a significant amount plasmid that is cross-linked to the scaffold may still be 

present. 

Of note is the dramatically lower DNA content for the scaffolds containing GPIIGF 

complexes compared to the other groups at the end of the two-week culture period. It is 

speculated that the significant decrease in scaffold size may have contributed to cell apoptosis 

and a decrease in the number of live cells at the end of 2-weeks. Further studies involving cell 

attachment assays need to verify that this difference in DNA content was not due to initial effects 

on cell attachment. Prior work using adult canine chondrocytes seeded within GSCG scaffolds 

incorporating GPAGF complexes (using Method 2) did not display this decrease in DNA content 

below the Control conditions, however, they also did not show as much scaffold contraction at 

the end of 2 weeks. 

Although the DNA content was significantly lower for scaffolds incorporating the 

GPAGF scaffolds, the GAG/DNA content was the highest for these groups especially for the 

GenePorter (x-link & soak) group. This elevated GAG/DNA level for the GenePorter (x-link & 



soak) group could be the result of the higher production of IGF-1 by seeded chondrocytes 

relative to the other groups. The fact that there was no noticeable increase in GAGDNA content 

for the Nanoparticles (x-link & soak) group compared to the Nanoparticles (x-link) group, 

despite the higher release of IGF-1 for the Nanoparticles (x-link & soak) group, may indicate that 

scaffold conditions (e.g. degradation properties) may not have been ideal to reflect an enhanced 

biosynthetic response that was expected fkom elevated IGF-1 production. This may also be the 

case when comparing the results fkom the GenePorter (x-link) and Nanoparticles (x-link & soak) 

groups. These groups demonstrated similar IGF-1 release levels over the two-week period; 

however, the GenePorter (x-link) group displayed a significantly higher GAGlDNA amount 

compared to the Nanoparticles (x-link & soak) group. The most obvious difference between 

these two groups is the amount of scaffold contraction over the course of the Zweek culture. 

Prior studies 9y10 have shown that cell density has a significant effect on biosynthesis and 

chondrogenesis within 3-D scaffolds. The much higher contraction of the GenePorter (x-link) 

group may have increased the cell density within the scaffold, which may have also contributed 

to the increase in biosynthesis. Future work should fbrther investigate the individual influences 

of scaffold contraction and IGF-1 expression on enhanced biosynthesis within these GSCG 

scaffolds. 

Histochemical evaluation revealed that for all conditions, there was a majority of cells 

displaying a rounded morphology. Although many cells were rounded, the presence of lacunae 

was difficult to assess since not much tissue was evident, especially for the Control and CGPIN 

scaffolds. There was not an even cellular distribution for most of the samples, with sections of 

the scaffold (particularly the center) having a denser cell population, most likely due to the 

pipette seeding method. Greater cell densities were evident for samples containing GPAGF 

complexes, most likely the result of greater scaffold contraction. The fact that a greater amount 

of histogenesis was demonstrated for GSCG scaffolds containing GPAGF complexes supports 

the significant effect that cell density can have on biosynthesis and chondrogenesis. It is difficult 

to assess the result of the type I1 collagen staining since most staining was present on the struts of 

the scaffold. The fact that there was more collagen type I1 staining on the struts for GSCG 

scaffolds containing the GPlIGF complexes, may indicate that cells within the GP/IGF 

complexes did produce more type I1 collagen but it was mostly deposited on the scaffold walls 

due to insufficient tissue synthesis within the scaffold pores. The lack of tissue formation 



(especially for the Control and CGPIN scaffolds) and the amount of residual scaffold left after 2- 

weeks in culture may indicate that the cross-linking conditions were not ideal for sufficient 

biosynthesis. Future studies need to investigate the behavior of these goat articular chondrocytes 

within GSCG scaffolds using other cross-linking conditions. 

In conclusion, incorporation of GPhGF complexes or CGPIN within CG scaffolds has a 

significant effect on cell-mediated contraction of the scaffolds and IGF- 1 overexpression of 

seeded chondrocytes. The initiation, amount, and duration of IGF-1 release can be potentially 

controlled using different nonviral vector formulations and gene incorporation methods. IGF- 1 

overexpression resulting from successful transfection of chondroctyes seeded within GSCG 

scaffolds can result in enhanced biosynthesis, but is also dependent on scaffold contraction and 

degradation characteristics. This study commends further investigation using nonviral gene 

transfer agents incorporated within CG scaffolds for a prolonged and localized delivery of 

growth factors in articular cartilage tissue engineering. 
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CHAPTER 6: NONVIRAL IGF-1 GENE TRANSFER TO 
MESENCHYMAL STEM CELLS VIA GENE-SUPPLEMENTED 
COLLAGEN-GLYCOSAMINOGLYCAN (GSCG) SCAFFOLDS 

6.1. INTRODUCTION 

Over recent years, there has been a tremendous increase in research directed towards the 

use of adult bone marrow-derived or mesenchymal stem cells (MSCs) for the purposes of tissue 

engineering. The in vitro expansion of chondrocytes that is essential to obtain sufficient cell 

numbers for articular cartilage tissue engineering applications, and the resulting donor site 

morbidity associated with the use of autologous chondrocytes, commends MSCs as a more 

favorable cell source; as these progenitor cells have a natural ability to regenerate and are more 

readily available in vivo. The simplest procedure for using MSCs as a cell source to enhance 

articular cartilage regeneration in vivo is with a microfiacture procedure, in which small holes 

(-1 mm in diameter) are punctured through the subchondral bone to allow blood and bone 

marrow containing MSCs to infiltrate the defect. Prior in vivo studies in our lab comparing 

microfracture treatment alone, microfracture with a type-I1 collagen scaffold placed in the 

defect, and a type-11 scaffold seeded with cultured autologous chondrocytes demonstrated that 

the greatest amount of defect filling (% of cross-sectional area of the original defect filled with 

reparative tissue) after 15 weeks was found in the dogs whose defects were treated with 

microfracture and implantation of the type I1 collagen scaffold '. Tissue filling in all of the 

defects, however, was predominantly fibrocartilage. 

To improve the quality of tissue formation in vivo to a more hyaline-like cartilage tissue 

using the microfracture procedure in conjunction with a type I1 collagen scaffold, it may be 

advantageous to use various regulators to induce differentiation of MSCs toward the 

chondrogenic phenotype. Several studies have demonstrated successful differentiation of MSCs 

into a chondrogenic phenotype under specific in vitro culture conditions 2". Of interest is that 

both type I1 collagen and insulin-like growth factor (IGF)- 17-' have also been shown to have 

potent chondrogenic effects on MSCs. 

Using a scaffold-based gene delivery approach, the objective of this study was to employ 

a collagen (type 11)-GAG (CG) scaffold incorporating the gene encoding for IGF-1 to determine 



if seeded MSCs could be successfully transfected and provide an elevated and prolonged release 

of IGF- 1. Previous chapters have demonstrated that these gene-supplemented CG (GSCG) 

scaffolds can successfully transfect seeded chondrocytes leading to elevated, localized, and 

prolonged delivery of IGF-1 in vitro. It has also been shown that gene transfer in CG scaffolds 

can be enhanced by the incorporation of a Geneporter@ (GP) transfection reagent complexed to 

the plasmid IGF-1 (GP/IGF). In this study, two methods of incorporating the GP/IGF complexes 

into CG scaffolds (investigated in the previous chapter) were employed. The first method 

(Method 1) involved cross-linking half of the total amount of GPIIGF complexes (5pg plasmid 

load) to the scaffold and then adding the second half of the load (also containing 5pg) by 

solution absorption into scaffold. The second method (Method 2) involved cross-linking the full 

plasmid load (10 pg) to the scaffold. During the 2-week 3-D culture period, media was collected 

at various time points to detect IGF-1 overexpression. At the end of the culture period, scaffolds 

were assayed for DNA and accumulated GAG content. The presence of GAG and total collagen 

was also assessed histochemically. 

6.2. MATERIALS AND METHODS 

6.2.1. Type I1 Collagen-GAG Scaffolds 

Porous sheets of a type I1 CG scaffold were fabricated by freeze-drying a porcine type I1 

collagen-GAG slurry (Geistlich Biomaterials, Wolhusen, Switzerland). Similar scaffolds have 

been reported in prior studies to have a porosity of 89 * 2% (mean A standard deviation) and a 

pore diameter of 125 * 42 pm lo. The collagen sheets were sterilized and cross-linked by a 

dehydrothermal treatment l, and 8 mm diameter disks (-2 mm thick) were prepared using a 

dermal biopsy punch (Moore Medical, New Britain, CA). 

6.2.2. Plasmid Propagation & Isolation 

Multiplication of plasmid encoding for IGF- 1 (pIGF- 1) was accomplished by heat shock 

transformation into Escherichia coli DH5a competent cells grown overnight in Luria-Bertani 

(LB) medium containing ampicillin. Plasmid was isolated and purified using a Mega 

QIAfilterTM Plasmid kit (Qiagen, Valencia, CA). The absorption ratio at 260 nm and 280 nm 



was used to determine plasmid concentration and purity while plasmid integrity was 

demonstrated by polyacrylamide gel electrophoresis. The size the pIGF-1 was 6-7 Kb. 

6.2. 3. Incorporation of GenePorter/plasmid IGF-I (GPLGF) Complexes into CG Scaffolds 

Plasmid IGF-1 (pIGF- 1) was complexed to a lipid mediated transfection reagent 

GenePorter @ (GP) (Gene Therapy Systems, Inc., CA) using a 5: 1 (p1 of GenePorter:pg of pIGF- 

1) ratio. GP/IGF complexes were incorporated into the scaffolds using two methods that would 

result in varied release kinetics of the vectors from the CG scaffolds. The frst method used to 

synthesize GSCG scaffolds, GenePorter (x-link & soak) group, involved placing a 60 pl aliquot 

of the GPIIGF plasmid solution containing 5 pg of plasmid onto the DHT-treated scaffolds 

followed by incubation for an hour at room temperature. A 1 ml aliquot of an aqueous 

carbodiimide solution '* consisting of 14 mM 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride and 5.5 mM N-hydroxysuccinimide (EDAC; Sigma Chemical Co., St. Louis , 

MO) was added to the scaffold and incubated at room temperature for about 30 minutes. Excess 

EDAC was removed by rinsing the scaffolds in PBS. Scaffolds where then briefly dried on filter 

paper and 30 pl aliquot of GPlIGF solution containing another 5 pg of pIGF-lwas added to each 

scaffold and incubated for another hour before seeding chondrocytes. This method of 

incorporation provided a total plasmid load of 10 pg (complexed to the lipid transfection reagent) 

some of which were cross-linked and not cross-linked to the CG scaffold. 

The second method (Method 2) used to synthesize GSCG constructs involved cross- 

linking the full plasmid load to the scaffold. A 60 p1 aliquot of the plasmid solution containing 

10 pg of plasmid onto the DHT-treated scaffolds followed by incubation for at least an hour at 

room temperature. A 1 ml aliquot of the EDAC solution was added to the scaffold and incubated 

at room temperature for about 30 minutes. Excess EDAC was removed by rinsing the scaffolds 

in PBS. 

6.2.4. Mesen chymal Stem Cell (MSC) Isolation and Monolayer Expansion 

Mesenchymal stem cells (MSCs) were isolated from heparinized bone marrow aspirates 

obtained from the iliac crest of six adult Spanish goats (4-5 yrs old). The cells were isolated 

using a Ficoll-Paque PLUS gradient (GE Life Sciences, NJ). Isolated cells were plated and 

expanded in monolayer culture using a medium consisting of low glucose Dulbecco's modified 



Eagle's medium, DMEM (Invitrogen), containing 10% (vlv) fetal bovine serum (FBS), and 1% 

penicillin/streptomycin. The cells were incubated at 37OC and 5% COz. MSCs were grown 

through two subcultures to obtain Passage 2 cells. 

6.2.5. Monolayer Transfection of Mesenchymal Stem Cells (MSCs) 

For comparison with transfection in 3-D culture, cells were transfected in monolayer 

culture to be subsequently seeded in CG scaffolds. For monolayer transfection, cells were 

expanded to 80-90% confluence in 150 cm2 tissue culture flasks (about 3 million cells per flask) 

and transfected with the GenePorter transfection reagent complexed to pIGF-1 at a 5: 1 ratio (pl 

of GP:pg pIGF- 1) according to the manufacturer's instructions for transfection of adherent cells. 

15 pg of pIGF-1 was added per flask. Approximately 24 hrs later, cells were trypsinized, 

counted, and seeded into CG scaffolds. 

6.2. 6. Cell Seeding CG Scaffolds, IGF-I Detection in the Medium, and Scaffold contraction 

Two million MSCs were seeded onto each scaffold by pipetting a 20 pl suspension 

containing half of the total amount of cells onto each side of the scaffold with a 10 minute 

incubation period in between. Cell-seeded scaffolds were cultured in a serum-free medium 

containing high glucose Dulbecco's modified Eagle's medium, DMEM (high glucose 4.5% 

without L-glutamine), 0.1 mM nonessential amino acids, 1 OmM HEPES buffer, 100 UImL 

penicillin, 100 pg/mL streptomycin glutamate, ITS+' (loox, by Sigma Chemical, St. Louis, MO), 

0. lmM ascorbic acid 2-phosphate, 1.25mg/ml bovine serum albumin, 10ngIm.L of TGF-p1, and 

lOOnM dexamethasone. Medium was collected and changed at various time points over a two- 

week culture period and the amount of IGF- 1 in the collected medium (n=11- 12; 2 scaffolds per 

goat) was detected by a sandwich ELISA kit for the human IGF-1 protein (R&D Systems). At 

each medium exchange, the diameter of each scaffold was measure to monitor any change in 

scaffold size (n=12; 2 scaffolds per goat). Cultures were terminated after 2 weeks for 

histological evaluation and biochemical analysis. For DNA and GAG analysis, scaffolds were 

lyophilized and enzymatically digested using proteinase K (Roche Diagnostics, Indianapolis, 



6.2.7. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye assay 

kit (Molecular Probes, Inc, Eugene, OR) (n=6). The Picogreen dye was used with the reagents 

and standard provided according to the manufacturer instructions. 

6.2.8. GAG Analysis 

The sulfated GAG content of cell-seeded scaffolds after the 2-week culture period was 

determined by the dimethylmethylene blue (DMMB) dye assay l 3  (n=6). An aliquot of the 

proteinase K digest was mixed with the DMMB dye and the absorbance at 525 nm was measured 

with a spectrophotometer. The results were obtained by extrapolating from a standard curve 

using shark chondroitin-6-sulfate. Newly accumulated GAG was determined by subtracting the 

unseeded values from the sample values. 

6.2.9. Histological Analysis of Cell-Seeded Scaffolds 

Cell-seeded scaffolds (n=6) were fixed in 10% neutral buffered formalin, dehydrated, 

embedded in paraffin, and sectioned (six-micrometer thick) by microtomy. Sections were 

Safi-anin-0 stained to detect the presence of sulfated GAG. For @pe I1 collagen 

immunohistochemical analysis, sections were enzymatically digested by protease type XIV for 

45 minutes and stained with a standard avidin-biotin complex peroxidase-based antibody 

staining technique (Vectastain, Vector Laboratories, Burlingame, CA). Mouse anti-chick 

monoclonal antibody for type I1 collagen was obtained from the Developmental Studies 

Hybridoma Bank (Iowa City, IA). Based on the lack of immunohistochemical staining for type 

I1 collagen, a Mason's Trichrome stain was also performed to assess the presence of total 

collagen. 

6.2.10. Statistical Analysis 

Data were analyzed by one or two-factor analysis of variance (ANOVA), and the Fisher's 

protected least squares differences (PLSD) post-hoc test using StatView (SAS Institute Inc, Cary, 

NC). Data are presented as mean * standard error of the mean. 



6.3. RESULTS 

6.3. I .  Cell-Mediated Con traction of GSCG Scaffolds 

There was a notable decrease in scaffold diameter over the course of the 3-D culture for 

all MSC-seeded scaffolds (Fig. 6.1). Controls (non-transfected MSCs seeded in scaffolds) 

displayed the least amount of contraction with a 30% reduction in diameter after the Zweek 

culture period. The GenePorter (x-link) group demonstrated a 38% size reduction, while the 

Monolayer Transfected and GenePorter (x-link & soak) groups displayed the most contraction, 

with a 44% decrease in diameter. Two-factor ANOVA revealed a significant effect of 

transfection condition (P < 0.004, power = 0.9) and time (P < 0.0001, power = 1) on scaffold 

contraction. Fisher's PLSD post hoc test showed significant differences between the Control 

group versus the Monolayer Transfected and GenePorter (x-link & soak) groups and the 

Monolayer Transfected group versus the GenePorter (x-link) group. 

Control - * Monolayer Transfection 
+ GenePorter, x-lln k 
-+ GenePorter, x-link & soak 

3.0 fi I 1 I I 1 

Figure 6.1 Diameter change of MSC-seeded CG scaffolds over the 2-week 3-D culture period. n = 11-12; 
mean * SEM. 



6.3.2. IGF-1 Release in 3-0 Culture Medium 

The GenePorter (x-link & soak) group and the Monolayer Transfected group showed a 

noticeable elevation in IGF-1 expression over the Control group (Fig. 6.2). At the end of the 2- 

week period, total accumulated IGF-1 for the GenePorter (x-link & soak) and Monolayer 

Transfected groups was 1 1-fold and 2-fold higher, respectively, than the Control group (Fig. 

6.2b). For all conditions, there seemed to be a trend in the kinetics of IGF-1 release in the 

medium with a peak expression occurring at the Day 12 collection (Fig. 6.2a). Two-factor 

ANOVA revealed a significant effect of time (P < 0.0001, power = 1) and transfection condition 

on IGF-1 release in the medium (P < 0.0001, power = 1). Post hoc analysis confirmed a 

significant difference in IGF-1 release for the GenePorter (x-link & soak) group versus all other 

groups (P < 0.000 1, power = 1). 

6.3.3. Biochemical Analysis of Cell-Seeded GSCG Scaffolds 

DNA content at the end of the 2-week culture period for the GenePorter (x-link & soak) 

and the Monolayer Transfected groups showed noticeably lower values compared to the Control 

group (Fig. 6.3a). There was a 54% and 30% lower DNA content for the GenePorter (x-link & 

soak) and the Monolayer Transfected groups, respectively, compared to Controls. ANOVA and 

Fisher's PLSD post hoc results revealed a significant effect of transfection condition on final 

DNA content after 2 weeks in culture (P < 0.0008, power = 1) with significant differences 

between the GenePorter (x-link & soak) group versus the Control and GenePorter (x-link) groups 

(P < 0.001, power = 1) and between the Monolayer Transfected group versus the GenePorter (x- 

link) group. GAG/DNA values for the Control, Monolayer Transfected, and GenePorter (x-link) 

groups were all similar (Fig. 6.3b). The GenePorter (x-link & soak) group displayed about a 2- 

fold higher GAG/DNA value above all other conditions. ANOVA and post hoc analysis 

confirmed a significant effect of transfection condition on GAG/DNA content (P < 0.0015, 

power = 0.97) and showed significant differences between the GenePorter (x-link & soak) group 

versus all the other groups (P < 0.003, power = 0.97). 
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Figure 6.2 IGF-1 detected in the medium at each time point from MSC-seeded constructs (a) and total 
accumulated IGF-1 (b) over the course of the 2-week 3-D culture period. n = 11-12; mean * SEM. 
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Figure 6.3 DNA (a) and GAGIDNA (b) contents of MSC-seeded scaffolds at the end of the 2-week 3-D 
culture period. n = 6; mean SEM 





6.3.4. Histological Analysis of 3-D Cultures 

Histochemical staining showed a concentration of MSCs at the periphery of the scaffold 

for Control, Geneporter (x-link) and Geneporter (x-link & soak) groups (Figs. 6.4 and 6.5). In 

these scaffolds, there was an absence of cells and tissue formation in the mid-region of the cross- 

sectional slices. Some of these scaffolds demonstrated a concavity that was observed to be 

facing up in the tissue culture wells when the cultures were ended after 2 weeks. The Monolayer 

Transfected group showed the most contraction over time and a high cell concentration in the 

middle of the scaffold (Fig. 6.5). Vertical cross-sections could not be obtained fi-om the 

Monolayer Transfected group due to the high deformation of these constructs. Safranin-0 

staining revealed very little GAG in all of the constructs with only lightly pink regions in 

between some of the scaffold pores (Fig. 6.4). Tissue that lightly stained for GAG between 

pores was not dense and had a "string-like" appearance. For the Monolayer Transfected group, 

most of the tissue and scaffold were contracted and areas staining positive for Safianin-0 had a 

denser appearance. Some samples in the Monolayer Transfected group and the GenePorter (x- 

link & soak group) showed cells that appeared to be rounded and in lacunae (see arrow on 6.4b). 

The Masson's trichrome stain (Fig. 6.5) more clearly distinguished remnants of the 

remaining scaffold and newly synthesized collagen. Type I1 collagen immunohistochemical 

analysis revealed that the synthesized collagen did not seem to be made up of type I1 collagen as 

there was very little, if any, positive staining. The Monolayer Transfected group showed the 

greatest amount of degradation of the scaffold with very little residual scaffold left in the high 

cell populated middle region. The stages of scaffold degradation can be seen more clearly in the 

Monolayer Transfected scaffolds were the degrading scaffold displayed a more "foamy" 

appearance (see arrow on Figure 6.5b) as opposed to the more glassy and opaque appearance of a 

non-degraded scaffold strut (see arrow on Figure 6.5~).  Collagen synthesized fi-om seeded cells 

displayed a smoother tissue appearance surrounding the cells and had a less opaque blue staining 

compared to the undegraded scaffold struts (see arrow on Figure 6.5d). All regions that were 

more populated by cells (on the periphery of the scaffold) for the Control, Geneporter (x-link) 

and Geneporter (x-link & soak) groups showed more collagen synthesis in between the cells, in 

contrast to the middle cross-sectional region of the scaffold where most nondegraded scaffold 

was apparent. The GenePorter (x-link & soak) group seemed to have more collagen synthesis at 



the top and bottom of the scaffold that penetrated more deeply into the scaffold compared to the 

Control and GenePorter (x-link) groups. 



Figure 6.4 Safranin-0 stain for GAG of MSC-seeded scaffolds after 2 weeks in 3D culture (a) Control 
group, @) Monolayer transfected group, (c) GenePorter, x-link group, (d) GenePorter, x-link & soak group. 
Scale bars: 1'' column is 500 pm and 2nd column is 50 pm. Red is a positive stain for GAG. 





Figure 6.5 Mason's Trichrome stain of MSC-seeded scaffolds after 2 weeks in 3D culture (a) Control 
group, @) Monolayer transfected group, (c) GenePorter, x-link group, (d) GenePorter, x-link & soak group. 
Scale bars: 1" column is 500 pm and 2"* column is 50 pm. Blue stain is collagen and red stain is cytoplasm. 





6.4. DISCUSSION 

Of significance in this study was that MSCs seeded within gene-supplemented CG 

scaffolds can be transfected and produce elevated levels of IGF- 1 over a 2-week 3-D culture 

period. Control scaffolds containing MSCs seeded within CG scaffolds without gene 

incorporation also showed IGF-1 production that increased up to 12 days in culture. This 

increased production of IGF-1 fiom Control scaffolds may indicate that cell interaction with the 

CG scaffold and cultured in a defined serum-free medium may also upregulate IGF- 1 expression. 

The method of gene incorporation within CG scaffolds significantly affected IGF- 1 

overexpression as reflected in the IGF-1 release kinetics for the GenePorter (x-link) group versus 

the GenePorter (x-link & soak) group. Cross-linking the full 10pg plasmid load to the scaffold, 

GenePorter (x-link) group, did not show any elevated expression levels over the Control group 

during the 2-week culture period. When 5pg of the GenePorterIpIGF-1 complex was cross- 

linked and the other half was absorbed onto the scaffold (GenePorter (x-link & soak) group) 

there was a significantly higher IGF-1 release in the media compared to the Control group. This 

may indicate that the IGF-1 overexpression produced by the GenePorter (x-link & soak) group 

within this 2-week culture period, is most likely the result of MSCs being transfected by the 

absorbed GenePorterlIGF-1 complexes that are quickly released fiom the scaffold at early time 

points. Based on the histological evaluation revealing the significant amount of undegraded 

scaffold left at the end of 2 weeks, it is likely that the majority of the cross-linked 

GenePorterIpIGF- 1 complexes was not released within this time frame. Longer-term studies 

need to assess if IGF-1 overexpression will occur at later time points when the scaffold more 

l l l y  degrades releasing the cross-linked GenePorterIpIGF- 1 complexes. 

Interestingly, transfecting MSCs in monolayer did not result in the highest 

overexpression when subsequently seeded in 3-D culture. There was only about a 2-fold higher 

accumulated amount of IGF-1 produced fiom the Monolayer Transfected group compared to the 

1 1-fold higher level of the GenePorter (x-link & soak) group compared to the Controls. The 

amount of GenePorterIpIGF- 1 complexes used for monolayer transfection was approximately the 

same amount per cell used for the MSC-seeded gene-supplemented scaffolds. This demonstrates 

that nonviral transfection of cells in a 3-D culture environment may be more efficient than 

transfection in 2-D. This was also demonstrated in the study by Xie et al. 13, in which cells were 

seeded onto 2-D films or 3-D scaffolds and nonvirally transfected with pCMV-bgal and pEGFP 



reporter vectors. In this study, 3-D transfection was found to promote a higher gene expression 

level and longer expression times compared to 2-D transfection. 

Unexpectedly, for all groups (including the Control group) there was a peak in IGF-1 

production between days 9 and 12 and then a decrease in IGF-1 release between days 12 and 14. 

It is speculated that this decrease in IGF-1 release may be due to cell apoptosis due to scaffold 

contraction over time. This contraction may inhibit sufficient nutrient diffusion throughout the 

entire scaffold, eventually leading to cell death and the decreased production of IGF-1. Of note, 

however, is an apparent correlation between total accumulated IGF-1 released in the medium and 

scaffold contraction. Samples that showed elevated IGF- 1 expression above the Controls (the 

Monolayer Transfection and Geneporter (x-link & soak) groups), also showed the most scaffold 

contraction over the two-week culture period. This may indicate that IGF-1 might play a role in 

affecting scaffold contraction by increasing enzymatic production and/or smooth muscle actin 

expression of seeded cells. Future studies will need to assess the possible role of IGF-1 in 

regulating matrix remodeling and smooth muscle actin expression. 

Biochemical analysis for DNA content showed that the Monolayer Transfected and 

GenePorter (x-link & soak) groups had lower amounts of DNA after 2-weeks in culture. This 

supports the possible association between scaffold contraction and cell apoptosis since these 

groups were also the ones that contracted the most. Despite this decrease in DNA content, 

however, the GenePorter (x-link & soak) group showed the highest amount of accumulated 

GAG/DNA at the end of the culture period. The 2-fold increase in GAGDNA values for the 

GenePorter (x-link & soak) group above all other groups may be the result of the significant 

elevation of IGF- 1 overexpression over time. 

Although GAGDNA values were higher for the GenePorter (x-link & soak group) this 

increased accumulated GAG production was not clearly illustrated in the S a b i n - 0  

histologically stained sections. In all groups, there were few isolated regions of light staining for 

GAG. The cell distribution for the Control, GenePorter (x-link) and GenePorter (x-link & soak) 

groups were highly concentrated on the periphery of the scaffold with very little cell distribution 

in the middle cross-sections of the scaffolds. Future work will need to investigate other methods 

of cell-seeding MSCs into the CG scaffolds to create an even distribution of cells that results in a 

more ideal environment for enhancing biosynthesis throughout the entire scaffold. The higher 

cell concentrated regions, however, did show collagen synthesis by seeded cells (reflected in the 



Mason's trichrome stain), although immunohistochemical analysis revealed an absence of type 11 

collagen. 

Of interest are the evident stages of scaffold degradation, most apparent in the outer 

periphery of the Monolayer Transfected group, where the degrading scaffold starts to have a 

"foamy" appearance together with a swelling of the scaffold struts. The Monolayer Transfected 

group showed the most scaffold degradation and a very high number of cells concentrated in the 

middle region of the scaffold. The high concentration of cells may have produced a higher 

concentration of secreted enzyme to more rapidly break down the scaffold. Since scaffolds from 

the Monolayer Transfected group deformed the most, it was difficult to obtain vertical cross- 

sections of samples to determine if this cell distribution was carried throughout the depth of the 

scaffold. Despite this high concentration of cells in the mid-region of the scaffold, however, 

there was very little tissue synthesis (i.e. most of this region stained red for cell cytoplasm and 

not collagen). Cell debris was also apparent in the high cell-populated regions, perhaps owing to 

insufficient nutrient diffusion to these areas. The increased scaffold degradation and lack of 

biosynthesis in the high cell-concentrated regions indicates that a very high cell density may not 

be ideal for obtaining a balanced rate of scaffold degradation and new tissue biosynthesis that is 

required for enhanced tissue repair. 

It is important to note that the anabolic effects of IGF-1 are highly dependent on the IGF- 

1 tyrosine kinase receptor l4  and the accessibility of IGF-1 to its receptor is regulated by the 

presence of IGF- 1 binding proteins 15. It has been shown that IGF- 1 itself can stimulate the 

production of IGF-binding proteins in ovine and bovine articular and growth-plate chondrocyte 

monolayers and can diminish the bioactivity of IGF-1 16. Therefore, it is possible that despite the 

significant elevation of IGF-1 expression above the Control levels for the GenePorter (x-link & 

soak) group, the modest response in biosynthesis reflected in the histological results may be due 

to the production of IGF-binding proteins that could have potentially inhibited the anabolic 

action of expressed IGF- 1. Future work will need to assess the presence of IGF-binding proteins 

in these cultures to determine to what extent the goat MSCs seeded within GSCG scaffolds are 

producing IGF-binding proteins. 

In conclusion, gene-supplemented CG scaffolds can effectively transfect seeded MSCs 

resulting in elevated IGF-1 expression levels and enhanced GAG biosynthesis (as reflected in 

biochemical analysis) after 2-weeks in vitro. These findings show promise in using MSCs as a 



cell source for seeding within GSCG scaffolds for tissue engineering purposes, or for 

regenerative medicine applications, in which a GSCG scaffold can be implanted in conjunction 

with a microfracture procedure. 
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CHAPTER 7: LIMITATIONS AND FUTURE WORK 

The work presented in this thesis shows significant promise for the use of GSCG 

scaffolds in articular cartilage tissue engineering. The following discussion describes various 

limitations to the work presented and identifies potential areas of research for fbrther developing 

GSCG scaffolds in tissue engineering applications. 

One limitation associated with the use of natural biomaterials for tissue engineering 

scaffolds was the inconsistent properties of the type I1 collagen slurry and resulting Ereeze-dried 

porous scaffolds employed in the various studies conducted. Since the type I1 slurry or freeze- 

dried sheets used to make the type I1 slurry was provided by an outside source, the resulting 

slurry viscosity and subsequent freeze-dried scaffold properties (i.e. porosity, degradation 

properties, etc.) were difficult to predict and control from batch to batch, even when using the 

same protocols for creating porous constructs. This variability in inherent scaffold properties 

made it difficult to directly compare results from multiple experiments if different sluny batches 

were used. Efforts to more fully characterize the raw materials and establish standardized 

criteria for slurry properties (i.e. viscosity, GAG content, collagen typing, etc.) would be 

beneficial for the creation of scaffolds with more consistent batch-to-batch properties. 

Another potential limitation was that cells were obtained and used from only one animal 

in experiments using adult canine articular chondrocytes. Other studies carried out in our group 

using multiple animals and using the same culture conditions as in the presented studies, 

however, demonstrated that interanimal variability using adult mongrel dogs was minimal 

(coefficient of variance about 10-1 5%). This variability is small in comparison to the difference 

in the outcome variables between groups that show a statistically significant difference. Hence, 

the overall findings presented in these experiments would most likely be confirmed if subsequent 

multi-animal experiments were carried out. For future developments, however, it is 

advantageous to use cells from multiple animals to present more robust findings so that 

differences between experimental groups would not be exaggerated or muted, as is the potential 

case when using one animal. 



Although the findings of this thesis clearly demonstrates the potential of using GSCG 

scaffolds as gene delivery vehicles for localized and prolonged release of desired growth factors 

for the ultimate enhancement of articular cartilage regeneration, below is a list of potential areas 

of research for the W e r  development of GSCG scaffolds: 

P Evaluation of GSCG scaffolds in an in vivo model, assessing the ability of these 

scaffolds to enhance articular cartilage regeneration using either a cell-seeded GSCG 

construct or an unseeded GSCG scaffold used in conjunction with a microfiacture 

procedure. 

P Investigation of better seeding techniques using mesenchymal stem cells for a more 

even cell distribution within GSCG scaffolds. 

9 A more thorough understanding of cell interaction with CG scaffolds incorporating 

naked plasmid alone, with the lipid mediated transfection reagent, or within gelatin 

nanoparticles in regards to cell attachment, scaffold contraction (evaluating 

contributions from varying scaffold cross-link density or SMA expression of seeded 

cells), and transfection efficiency. 

P Alternative methods for incorporation of plasmid within CG scaffolds for a better 

control of vector release. For example: 

Cationization of the type I1 scaffold for better naked plasmid retention using a 

soak and freeze-dry method of incorporation (eliminates the interdependence of 

the amount of gene incorporation and the degree of cross-linking of the collagen 

scaffold associated with using the carbodiimide method of incorporation). 

The use of the avidin-biotin system for plasmid attachment to CG scaffolds (may 

provide a way to have better control over the specific amount of plasmid that is 

incorporated). 

P Incorporation of more than one gene within CG scaffolds and controlling the release 

of each individual gene to be expressed at varying time points in the repair process. 

P A more thorough investigation of the effect of plasmid size (when incorporated 

within CG scaffolds) on the ability to transfect seeded cells. 

P Determination of optimal conditions for synthesizing and incorporating gelatin 

nanoparticles within CG scaffolds. 



CHAPTER 8: SUMMARY 

The overall goal of this thesis was to investigate a scaffold-based gene transfer approach 

employing collagen (type 11)-GAG scaffolds as nonviral gene delivery vehicles to provide local, 

elevated, and prolonged release of growth factors for enhancing articular cartilage tissue 

engineering in vitro and ultimately in vivo. The main variables investigated in the process of 

developing gene-supplemented 3-D constructs for implantation in vivo are: 1) media culture 

conditions in both monolayer expansion and 3-D culture, 2) methods to incorporated genes 

within type I1 CG scaffolds, 3) methods to enhance gene transfer using lipid-mediated 

transfection reagents or nanoparticles, and 4) potential cell sources. This chapter provides a 

summary of the significant findings from the experiments presented in the previous chapters in 

relation to the aforementioned hypotheses. 

The fust experiments in Chapter 2 involved comparing two different expansion media for 

growing chondrocytes in monolayer to be subsequently cultured in CG scaffolds using a serum- 

free culture medium. Although the initial purpose of this experiment was to assess specific 

expansion medium culture conditions that would result in better cartilaginous formation when 

using a defined serum-free medium in 3-D culture, an interesting finding was the fact that the 

composition of the expansion medium also had a significant impact on the ability to (nonvirally) 

transfect or (virally) transduce chondrocytes in monolayer. Fortunately, the expansion medium 

(Medium 2) that enhanced biosynthesis and chondrogenesis in 3-D culture also proved to be the 

expansion medium that resulted in improved gene transfer to chondrocytes in monolayer. These 

results commended the use of Medium 2 for expanding chondrocytes in conjunction with a 

defined serum-free culture medium for 3-D culture, throughout the rest of the subsequent 

experiments for evaluating gene-supplemented collagen-GAG scaffolds for articular cartilage 

tissue engineering. 

The findings of this study support the first hypothesis that the make up of the monolayer 

expansion medium not only has a direct effect on biosynthesis and chondrogenesis in 3-0 

culture, but also affects gene transfer to cells. 



Chapter 3 included a comparison of two different gene incorporation methods. One 

method involved soaking the scaffold in the plasmid solution followed by a freeze-drying 

process (Method 1) and the other involved chemically cross-linking the plasmid to the scaffold 

(Method 2). This study evaluated these two incorporation methods regarding the kinetics of 

IGF-1 plasmid release from the scaffolds, the ability to maintain plasmid integrity, and the 

resulting IGF- 1 expression kinetics from cells seeded and subsequently transfected within the 

GSCG scaffolds. Another aspect of this study was a comparison between supplementing CG 

scaffolds with either naked plasmid IGF-1 alone or plasmid complexed to a (Geneportem) lipid- 

mediated transfection reagent (GPIIGF), evaluating the differences in IGF- 1 gene expression 

over time and the effects on biosynthesis and chondrogenesis. The significant findings from 

these studies are as follows: 

P Cross-linking plasmid DNA to CG scaffolds (Method 2) results in a greater 

retention of plasmid DNA as opposed to the quick passive release of plasmid 

(majority of plasmid is released within 24 hrs in buffer) from the soak and freeze- 

dry method of gene incorporation (Method 1). 

9 Plasmid integrity is maintained for plasmid released or retained in GSCG scaffolds 

for both methods of incorporation. 

P Plasmid release kinetics from GSCG scaffolds dictates the kinetics of IGF-1 

expression from chondrocytes seeded and subsequently transfected within GSCG 

scaffolds; scaffolds synthesized by Method 2 result in a more steady and prolonged 

IGF- 1 release compared to scaffolds synthesized by Method 1. 

9 Incorporation of a lipid-mediated transfection together with the IGF-1 plasmid 

results in enhanced gene transfer and higher IGF-1 release compared to using naked 

plasmid alone. 

9 A localized, elevated, and prolonged release of IGF-1 from chondrocytes seeded and 

subsequently transfected within GSCG scaffolds (with as little as 4-10pg of plasmid 

IGF-1) results in enhanced biosynthesis and chondrogenesis in vitro. 

The results from these studies support the second hypothesis that cross-linking naked 

plasmid DNA to the CG scaffold can result in a more prolonged delivery of genes and expression 

of the encoded growth factor compared to plasmid addition without cross-linking; and the third 



hypotheses that a lipid transfection reagent complexed to the plasmid can be successfully 

incorporated and cross-linked to CG scaffolds, and can enhance gene transfer to seeded cells. 

Chapter 4 included the development and characterization of cationized gelatin plasmid 

IGF-1 nanoparticles (CGPIN) and evaluates 1 .) the potential use of these nanoparticles as 

nonviral gene transfer reagents in chondrocyte monolayers and 2.) the behavior of CGPIN- 

transfected cells seeded within CG scaffolds in regards to the IGF-1 release kinetics and 

subsequent effects on GAG biosynthesis. The results from these studies showed that: 

9 Gelatin nanoparticles formed by a complex coacervation method using cationized 

gelatin and plasmid IGF- 1 can effectively form uniformly-sized nanoparticles that 

can successfully transfect chondrocytes with the IGF-1 (and GFP) genes in 

monolayer culture. 

9 Nanoparticle morphology and zeta potential (which is affected by gelatin 

cationization), the weight ratio of gelatin to plasmid used to synthesize the 

nanoparticles, and the plasmid amount applied to cells during transfection 

significantly affects the resulting transfection of chondrocytes in monolayer. 

9 CGPIN-transfected cells subsequently seeded within CG scaffolds can maintain an 

elevated and prolonged expression of IGF-1 up to 2-weeks in culture. 

9 As demonstrated in previous studies, the effect of IGF- 1 overexpression localized 

within CG scaffolds can result in a significant improvement in GAG biosynthesis 

compared to the control conditions. 

This experiment corroborates the fourth hypothesis that gelatin nanoparticles can 

successfully enhance the transfection of chondrocytes and can be used in conjunction with a CG 

scaffold to produce a localized and prolonged release of encoded protein. 

Based on promising results from monolayer transfection studies using CGPIN, Chapter 5 

evaluated methods to synthesize GSCG scaffolds using either CGPIN or GPAGF complexes 

using two different modes of incorporation: 1 .) cross-linking half the total plasmid load to the 

scaffold and allowing the other half of the load to be absorbed into the scaffold (Method 1) or 2.) 

cross-linking the full amount of plasmid load (Method 2-also used in prior experiments). The 

significant conclusions from these studies are the following: 



CGPIN and GP/IGF complexes can be successfully incorporated within type I1 CG 

scaffolds and can result in elevated IGF- 1 release into the 3-D culture medium. 

Method 1 -synthesized GSCG scaffolds results in higher IGF- 1 release levels 

compared to Method 2 over the 2-weak period for scaffolds containing either CGPIN 

or GPDGF complexes. 

Scaffolds incorporating GPDGF complexes demonstrate higher IGF- 1 expression 

levels compared to scaffolds containing CGPIN. The type of gene supplementation, 

however, also significantly affects the cross-link density as well as the resulting cell- 

mediated contraction of GSCG scaffolds. 

IGF- 1 overexpression resulting from successful transfection of chondroctyes seeded 

within GSCG scaffolds can result in enhanced biosynthesis and chondrogenesis in 3- 

D culture. 

These findings also support the third and fourth hypothesis that a lipid-mediated 

transfection reagent or gelatin nanoparticles can successfilly enhance the transfection of 

chondrocytes and can be successfilly incorporated within a CG scaffold to produce a localized 

and prolonged release of encoded protein. 

Chapter 6 evaluated mesenchyrnal stem cells (MSCs) as an alternative cell source to be 

used in conjunction with GSCG scaffolds for articular cartilage tissue engineering, by assessing 

the the ability of MSCs to be transfected within GSCG scaffolds and to maintain prolonged 

overexpression of the encoded protein. The results fi-om this study showed that: 

> MSCs can be successfully transfected by incorporated gene vectors when seeded 

within the CG scaffolds and can maintain prolonged IGF-1 overexpression up to 2 

weeks in culture. 

These results accept the fifth hypothesis that MSCs can be transfected using GSCG 

scaffolds and can maintain overexpression of desired proteins over prolonged times. 

Based on these investigations, the optimal GSCG scaffold commended for subsequent in 

vivo studies for articular cartilage repair (particularly with a microfi-acture procedure) would 

consist of a type I1 CG scaffold supplemented with 10-20 pg of total plasmid IGF-1 complexed 

with a lipid-mediated transfection reagent (Geneportem), incorporating half of the total amount 



of the GenePorterIpIGF-1 complexes using a carbodiimide cross-link method and incorporating 

the other half by simple absorption. This type of construct will allow immediate transfection of 

cells through passive release of the absorbed plasmid complexes, and prolonged transfection and 

protein overexpression as the cross-linked GenePorterIpIGF- 1 complexes are released upon 

scaffold degradation over time. 





CHAPTER 9: CONCLUSIONS 

Below are the main conclusions that this thesis supports: 

1. The composition of the monolayer expansion medium not only has a direct effect on 

biosynthesis and chondrogenesis in 3-D culture, but also on gene transfer to cells in 

monolayer. 

2. Cross-linking plasmid DNA to the CG scaffold achieves a more steady delivery of genes, 

resulting in a more stable and prolonged overexpression of the encoded growth factor 

from seeded chondrocytes compared to plasmid incorporation without cross-linking. 

3. A lipid mediated transfection reagent complexed to plasmid DNA can be successfilly 

incorporated and cross-linked to CG scaffolds and results in enhanced gene transfer to 

seeded cells. 

4. Cationized gelatin nanoparticles can successfully enhance gene transfer to chondrocytes, 

and when used in combination with a CG scaffold, can produce a localized and prolonged 

release of encoded protein. 

5. IGF- 1 overexpression resulting from successful IGF- 1 gene transfer to chondrocytes 

seeded within GSCG scaffolds enhances the resulting synthesis of cartilage matrix 

molecules and chondrogenesis. 

6. MSCs can be transfected when seeded into GSCG scaffolds and can maintain 

overexpression of desired proteins over prolonged times. 
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APPENDIX A: IMPORTANCE OF TRANSFORMING GROWTH 
FACTOR (TGF)-p 1 AND/OR OSTEOGENIC PROTEIN (0P)-1 IN 
THE 3-D SERUM-FREE CHONDROGENIC CULTURE MEDIUM 

A.1. INTRODUCTION 

Several studies have demonstrated the favorable effects of human recombinant 

transforming growth factor (TGF)-f31 and human recombinant osteogenic protein (0P)- 

1 (or bone morphogenetic protein-7, BMP-7) '-I4 on chondrogenesis in vitro and on 

cartilage repair in vivo. The current study investigated the effects of supplementing the 

3-D serum-free differentiation medium w/ TGF-f3 1, OP- 1, or TGF-f3 1 & OP- 1 together, 

on chondroctyes grown in collagen (type 11)-GAG (CG) scaffolds. This investigation 

was performed to assess the necessity of adding TGF-f31 in the 3-D culture medium for 

evaluating CG scaffolds incorporating the gene encoding for OP-1 and to also verify that 

OP-1 has beneficial effects on tissue regeneration in our 3-D culture system. 

A.2. MATERIALS AND METHODS 

A.2.1. Type 11 Collagen Scaffold Fabrication 

Porous sheets of type I1 collagen were fabricated by freeze-drying a porcine 

cartilage-derived slurry (Geistlich Biomaterials, Wolhusen, Switzerland). The collagen 

sheets were sterilized and cross-linked dehydrothermally by placing the samples in a 

vacuum oven at 105 "C for 24 hours. Eight-mm diameter disks (-2 mm thick) were 

punched out with a dermal punch (Moore Medical, New Britain, CA) and additionally 

cross-linked by a ten minute carbodiimide treatment containing an aqueous solution of 14 

mM 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and 5.5 mM N- 

hydroxysuccinimide (EDAC; Sigma Chemical Co., St. Louis , MO). Excess EDAC was 

removed by rinsing in PBS. 



Am2m2m Chondrocyte Isolation and Expansion 

Chondrocytes were isolated from the trochleae of both knees (stifle joints) from 

one adult mongrel dog (approximate age 2-4 years). The cells were isolated using a 

sequential digestion of pronase (20 Ulml, 1 hr) and collagenase (200 Ulml, overnight). 

The cells were then expanded in monolayer culture using a medium consisting of high 

glucose Dulbecco's modified Eagle's medium, DMEM (4.5 g/L D-glucose, without L- 

glutamine and with 1 mM sodium pyruvate), containing 10% (vlv) fetal bovine serum 

(FBS), 0.1 mM nonessential amino acids, 10 mM N-2-Hydroxyethylpiperazine-N'-2- 

ethanesulfonic (HEPES) buffer, 100 UImL penicillin, and 100 yg/mL streptomycin 

glutamate. The medium was supplemented with the following growth factors (all from 

R&D Systems, Minneapolis, MN): 5 ng1m.L of fibroblast growth factor-2 (FGF-2), 10 

ngIrnL of platelet-derived growth factor-bb (PDGF-bb), 1 n g / d  of transforming growth 

factor- fl1 (TGF-fll). The cells were incubated at 37OC and 5% C02. Once cells reached 

confluence, they were trypsinized, re-suspended, and re-plated to obtain passage (P) 1 

cells for seeding into the scaffolds. 

A.2.3. Cell Seeding and Chondrocyte Culture in Collagen (type 10-GAG Scaffolds 

For seeding collagen type I1 scaffolds, hydrated scaffolds (previously cross- 

linked) were briefly dried on filter paper and placed on pre-warmed agarose-coated wells. 

Four million cells were added to each scaffold by pipetting a suspension of 2 million cells 

(in 20 pl medium) onto each side with a 10 minute incubation period in between. Cell- 

seeded scaffolds were cultured in a defined serum-free medium (SFM) which consisted 

of high glucose DMEM (4.5 glL D-glucose, without L-Glutamine and with 1mM Sodium 

Pyruvate), 0.1 mM nonessential amino acids, 10 mM HEPES buffer, 100 UImL 

penicillin, 100 p g / d  streptomycin glutamate, ITS" (1 OOx, by Sigma Chemical, St. 

Louis, MO), 0.1 mM ascorbic 2-phosphate, 1.25 mg/ml bovine serum albumin, and 100 

nM dexamethasone. To examine the effects of adding human recombinant TGF-PI 

andlor OP-1 to the SFM, the following conditions were investigated: 1 .) no growth 

factor addition (NoGF group), 2.) addition of 10 ng/ml TGF-P 1 (TGF group), 3 .) 

addition of 10 ng/ml OP-1 (OP(10) group), 4.) addition of 10 ng/ml TGF-PI + 10 ng/ml 

OP- 1 (TGFlOP(10) group), or 4.) addition of 10 ng/ml TGF-P 1 + 100 ng/ml OP- 1 



(TGF/OP(100) group). Media was changed every 2-3 days (1.5 ml per scaffold). At each 

medium change, the diameters of the scaffolds were monitored to assess scaffold 

contraction over time. Cultures were terminated after 2 weeks for histological evaluation 

and biochemical analysis. For DNA and GAG analysis, scaffolds were lyophilized and 

enzymatically digested using proteinase K (Roche Diagnostics, Indianapolis, IN). 

A. 2.4. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye 

assay kit (Molecular Probes, Inc, Eugene, OR) (n=4). The Picogreen dye was used with 

the reagents and standard provided according to the manufacturer instructions. 

A. 2.5. GAG Analysis 

The sulfated GAG content of cell-seeded scaffolds after the 2-week culture period 

was determined by the dimethylmethylene blue (DMMB) dye assay l 5  (n = 4). An 

aliquot of the proteinase K digest was mixed with the DMMB dye and the absorbance at 

525 nm was measured with a spectrophotometer. The results were obtained by 

extrapolating from a standard curve using shark chondroitin-6-sulfate. Newly 

accumulated GAG was determined by subtracting the unseeded values fi-om the sample 

values. 

A.2.6. Histology of Cell-Seeded Scaffolds 

Cell-seeded scaffolds (n = 2-3) were fixed in 10% neutral buffered forrnalin, 

dehydrated, and embedded in paraffin. Six-micron thin sections were stained with 

Safranin-0 to assess the presence of sulfated GAG. 

A. 2.7. Statistical Analysis 

Data were analyzed by one- or two-factor analysis of variance (ANOVA), and the 

Fisher's protected least squares differences (PLSD) post-hoc test using StatView (SAS 

Institute Inc, Cary, NC). Data are presented as mean 2 standard error of the mean. 



A.3. RESULTS 

A.3.1. Macroscopic Appearance and Contraction of Cemeeded CG Scaffolds 

There was an obvious difference in appearance and contraction comparing 

scaffolds grown with or without the addition of TGF-PI at the end of the 2-week culture 

period (Fig. A. 1). Scaffolds grown with TGF-f31 (Figs. A. ld-f) seemed to have more 

tissue formation and possessed a more homogeneous opaque appearance throughout the 

entire scaffold. In contrast, scaffolds grown without TGF-f31 (Figs. A. 1 a-c) were much 

smaller in size, had greater deformation, and showed an opaque area mostly in the center 

of the scaffold (around the periphery, the scaffold appeared more transparent). The color 

of the resulting medium was also more pink for cultures grown without TGF-PI. There 

was no obvious macroscopic difference in scaffold appearance after 2 weeks resulting 

from the addition of OP- 1 at either concentration (10 nglml or 100 ng/ml) with or without 

TGF-p1 . 
Measurements of scaffold diameter at the end of 2 weeks showed that scaffolds 

grown in medium without TGF-f31 contracted to 3.5-4 mm in diameter, whereas, the 

scaffolds cultured with TGF-P1 supplementation had diameters in the range of 5-6 mm 

(Fig. A.2). Two-factor ANOVA revealed a significant effect of time (P < 0.0001, power 

= 1) and type of growth factor supplementation (P < 0.0001, power = 1) on cell-mediated 

contraction. Additional post hoc analysis showed significant differences between all 

scaffolds grown with TGF-P1 versus all scaffolds grown without TGF-p1 (P < 0.0001, 

power = 1). Of the scaffolds grown without TGF-PI, the NoGF group was significantly 

different fiom the OP(10) group (P < 0.0005, power = 1). For the scaffolds grown with 

TGF-PI supplementation, there was a significant difference between the TGF and 

TGFlOP(10) groups (P < 0.0001, power = 1). 



Figure A. 1 Macroscopic view of cell-seeded 3-D scaffolds grown in serum-free medium 
supplemented with no growth factors (a), lOnglml OP-1 (b), 100nglml OP-1 (c), 10nglml TGF-pl (d), 
l0ngIml TGF-$l+lOnglml OP-1 (e), l0nglml TGF~1+100nglml OP-1. Scale bar is 400pm. 
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Figure A. 2 
t SEM. 
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Contraction of cell-seeded CG scaffolds over the 2-week culture period. n = 6; mean 





A.3.2. Biochemical Analysis of Cell-Seeded CG Scaffolds 

At the end of the 2-week culture, DNA (Fig. A.3a) and accumulated GAGIDNA 

content (Fig. A.3b) were noticeably higher for scaffolds grown in TGF-pl-supplemented 

medium. ANOVA showed a significant effect of type of growth factor supplementation 

on DNA content and on accumulated GAGDNA content (P < 0.0001, power = 1) with 

significant difference between all scaffolds grown with TGF-PI versus those grown 

without TGF-PI (P < 0.0001, power = 1). Post hoc analysis revealed that for scaffolds 

grown without TGF-p 1 supplemented in the medium, the addition of OP- 1 at 100 nglml 

did result in a significantly higher DNA content (-20% higher value) compared to the 

NoGF and OP(10) groups (P < 0.002, power = 1). Additionally, there was a slight 

significant difference (-10%) in DNA content between the TGFlOP(10) and the 

TGFlOP(100) groups (P < 0.04, power = I). There was no significant difference in 

GAGIDNA content among the cultures grown without TGF-PI. For scaffolds grown 

with TGF-p1, however, there was a significant effect of adding OP- 1 at the 100 nglml 

concentration on GAG/DNA at the end of the 2-week period, with a 22% and 3 1 % higher 

GAGIDNA value compared to the TGF group and the TGFlOP(10) group, respectively 

(P < 0.004, power = 1). 

A.3.3. Histological Analysis of Cell-Seeded CG Scaffolds 

Safranin-0 staining for GAG revealed an obvious difference in tissue formation 

and staining between scaffolds grown without TGF-81 (Figure A.4a and b) verses 

scaffolds cultured with TGF-PI (Figure A.4c). There were no obvious differences in 

histological appearance when OP- 1 was added at either concentration (with or without 

TGF-PI). Scaffolds that were cultured without TGF-p1 showed a very dense population 

of cells in the middle of the scaffold with very little tissue formation and Safranin-0 

staining (Figure A.4a and b). In contrast, scaffolds grown in medium with TGF-p1 

demonstrated significantly more tissue formation that stained intensely and uniformly for 

GAG. Some cells within these scaffolds were also rounded and located in lacunae 

(Figure A.4c). 
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Figure A. 3 DNA content (a) and GAGlDNA content (b) at the end of the 2-week 3-D culture 
period. n = 4; mean * SEM. 





Figure A. 4 Representative sections stained with Saffranin-0 (red is positive stain for GAG) of 
scaffolds cultured without growth factor supplementation (a), with OP-1 (no TGF-fJ 1) (b), or with 
TGF-$1. 





A.4. DISCUSSION 

The results of this study verified the importance of adding TGF-PI in the 3-D 

serum-fiee culture medium. The addition of TGF-p1 significantly increased tissue 

formation, GAG biosynthesis, and chondrogenesis in chondrocyte-seeded CG scaffolds. 

The increased tissue formation in scaffolds cultured with TGF-f31 resulted in a larger 

construct size compared to scaffolds grown without TGF-f31. Without TGF-PI 

supplementation, the cells contracted the scaffold (resulting in high cell densities in the 

scaffold center), but hardly any tissue or GAG was produced. The effects of OP-1 were 

not as obvious in the macroscopic or histological appearance of scaffolds cultured with 

OP- 1, however, there was a significant beneficial effect on accumulated GAG/DNA at 

the end of the 2-week culture when using 100 ng/ml of OP- 1 (with 10 ng/ml TGF-f31) 

supplemented in the medium compared to using TGF-f31 alone. This demonstrates the 

potential synergistic effects of TGF-p1 and OP-1 on cartilage formation. Future work 

should determine the concentrations of OP-1 (when used with TGF-p1) required for 

optimal biosynthesis and chondrogenesis in CG scaffolds. 

These findings commend the continued use of TGF-P1 as a supplement in the 3-D 

culture medium for evaluating gene-supplemented collagen-GAG (GSCG) scaffolds, and 

justify the development of GSCG scaffolds incorporating the gene encoding for OP- 1. 
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APPENDIX B: GENE-SUPPLEMENTED COLLAGEN-GAG 
SCAFFOLDS FOR NONVIRAL GENE DELIVERY OF 
OSTEOGENIC PROTEIN (0P)-1 

B.1. INTRODUCTION 

The recombinant protein for osteogenic protein (0P)- 1 or bone morphogenetic 

protein (BMP)-7 has been shown to have favorable affects on chondrogenesis in vitro 

and to stimulate cartilage formation and aggrecan synthesis in vivo 5-7. A local and 

prolonged administration of OP- 1 may be beneficial for articular cartilage formation. 

Therefore, a plasmid encoding for (0P)- 1 was another plasmid of interest to use in 

conjunction with the collagen (type 11) scaffold for providing a prolonged, elevated, and 

local release of OP- 1 via a nonviral scaffold-based approach. This preliminary study 

investigates the potential use of CG scaffolds for the delivery of a plasmid containing the 

OP- 1 gene (supplied by Stryker Biotech). Plasmid OP- 1 (POP- 1) was cross-linked to the 

CG scaffold with or without a Geneportem transfection reagent. The OP- 1 released in 

the 3-D serum-free medium fiom seeded chondroctyes was assessed over a 2-week 

culture period. At the end of the 2-weeks, scaffolds were allocated for biochemical and 

histological analysis. 

B.2. MATERIALS AND METHODS 

B. 2.1. Type 11 Collagen- GA G Scaffold Fabrication 

Porous sheets of type I1 collagen were fabricated by freeze-drying a porcine 

cartilage-derived slurry (Geistlich Biomaterials, Wolhusen, Switzerland). The collagen 

sheets were sterilized and cross-linked dehydrothermally by placing the samples in a 

vacuum oven at 105 "C for 24 hours. Eight-mm diameter disks (-2 mm thick) were 

punched out with a dermal punch (Moore Medical, New Britain, CA). 



B.2.2. OP-I Plasmid Propagation and Isolation 

Multiplication of plasmids encoding for OP- 1 (POP- 1) was accomplished by heat 

shock transformation into Escherichia coli DH5a competent cells grown overnight in 

Luria-Bertani (LB) medium containing ampicillin. Plasmid was isolated and purified 

using a Mega QIAfilterTM Plasmid kit (Qiagen, Valencia, CA). The absorption ratio at 

260 nm and 280 nm was used to determine plasmid concentration and purity while 

plasmid integrity was demonstrated by polyacrylamide gel electrophoresis. The size of 

POP-1 was 1 1 - 12kb. 

B. 2.3. Plasmid In corporation into CG Scaffolds 

Plasmid OP-1 was cross-linked to the CG scaffold with or without a Geneporter@ 

(GP) transfection reagent. An aliquot of diluted POP-1 solution containing 10 or 50 pg 

of POP-1 was placed onto the DHT-treated scaffolds followed by incubation for an hour 

at room temperature. For scaffolds incorporating the GP/pOP-1 complexes, a 10 pg 

plasmid load per scaffold was employed and a 5: 1 (pllpg) ratio of GP:plasmid was used 

to synthesize the GPIpOP-1 complexes. An aliquot of an aqueous carbodiimide cross- 

linking solution consisting of 14 mM 1 -ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride and 5.5 mM N-hydroxysuccinimide (EDAC; Sigma Chemical Co., St. 

Louis , MO) was then added to the scaffold and incubated for about 30 minutes to allow 

cross-links to form among the collagen molecules and between the plasmid and collagen. 

Excess EDAC was removed by rinsing the scaffolds in PBS. The resulting OP-1 plasmid 

load was assessed by enzymatically digesting unseeded GSCG scaffolds using proteinase 

K (Roche Diagnostics, Indianapolis, IN) and assessing the amount of DNA using the 

Picogreen Dye assay kit (Molecular Probes, Inc, Eugene, OR). 

B. 2.4. Ch ondrocyte Isolation and Expansion 

Chondrocytes were isolated from the trochleae of both knees (stifle joints) from 

one adult mongrel dog (approximate age 2-4 years). The cells were isolated using a 

sequential digestion of pronase (20 Ulml, 1 hr) and collagenase (200 Ulml, overnight). 

were expanded in monolayer culture using a medium consisting of high glucose 



Dulbecco's modified Eagle's medium, DMEM (4.5 g/L D-glucose, without L-glutamine 

and with 1mM sodium pyruvate), containing 10% (vlv) fetal bovine serum (FBS), 0.1 

mM nonessential amino acids, 1 0 mM N-2-Hydroxyethylpiperazine-N'-2-ethanesulfonic 

(HEPES) buffer, 100 U/mL penicillin, and 100 pg/mL streptomycin glutamate. The 

medium was supplemented with the following growth factors (all fiom R&D Systems, 

Minneapolis, MN): 5 ng/mL of fibroblast growth factor-2 (FGF-2), 10 ng/mL of platelet- 

derived growth factor-bb (PDGF-bb), 1 ng/mL of transforming growth factor- p1 (TGF- 

PI). The cells were incubated at 37OC and 5% CO2. Once cells reached confluence, they 

were trypsinized, re-suspended, and re-plated to obtain passage (P)1 cells for seeding into 

the scaffolds. 

B. 2.5. Nonviral Gene Transfer in GSCG Scaffolds and Scaffold Contraction 

For seeding GSCG scaffolds, hydrated scaffolds were briefly dried on filter paper 

and placed on pre-warmed agarose-coated wells. Four million cells were added to each 

scaffold by pipetting a suspension of 2 million cells (in 20 p1 medium) onto each side 

with a 10-minute incubation period in between. Cell-seeded scaffolds were cultured in a 

defined serum-free medium (SFM) which consisted of high glucose DMEM (4.5 gR. D- 

glucose, without L-Glutamine and with l mM Sodium Pynwate), O. l mM nonessential 

amino acids, 10 mM HEPES buffer, 100 U/mL penicillin, 100 pg/mL streptomycin 

glutamate, ITS" ( 100x, by Sigma Chemical, St. Louis, MO), 0.1 m M  ascorbic 2- 

phosphate, 1.25 mg/ml bovine serum albumin, 10 ng/mL of TGF-P1, and 100 nM 

dexamethasone. Medium was collected and changed at various time points over a two- 

week culture period, and the amount of OP-1 in the collected medium (n = 6) was 

detected by an OP- l DuoSet ELISA kit (R&D Systems). During each medium change, 

the diameters of the scaffolds were monitored to assess scaffold contraction. Cultures 

were terminated after 2 weeks for histological evaluation and biochemical analysis of the 

resulting DNA and GAG content. For DNA and GAG analysis, scaffolds were 

lyophilized and enzymatically digested using proteinase K (Roche Diagnostics, 

Indianapolis, IN). 



B. 2.6. DNA Analysis 

The DNA content of cell-seeded scaffolds was measured using the Picogreen Dye 

assay kit (Molecular Probes, Inc, Eugene, OR) (n = 4). The Picogreen dye was used with 

the reagents and standard provided according to the manufacturer instructions. 

B.2.7. GAGAnalysis 

The sulfated GAG content of cell-seeded scaffolds after the 2-week culture period 

was determined by the dirnethylmethylene blue (DMMB) dye assay * (n = 4). An aliquot 

of the proteinase K digest was mixed with the DMMB dye and the absorbance at 525 nm 

was measured with a spectrophotometer. The results were obtained by extrapolating 

from a standard curve using shark chondroitin-6-sulfate. Newly accumulated GAG was 

determined by subtracting the unseeded values from the sample values. 

B.2.8. Histology of Cell-Seeded GSCG Scaffolds 

Cell-seeded scaffolds (n = 2-3) were fixed in 10% neutral buffered formalin, 

dehydrated, and embedded in paraffin. Six-micron thin sections were stained with 

Safranin-0 to assess the presence of sulfated GAG. 

Statistical Analysis 

Data were analyzed by one- or two-factor analysis of variance (ANOVA), and the 

Fisher's protected least squares differences (PLSD) post-hoc test using StatView (SAS 

Institute Inc, Cary, NC). Data are presented as mean e standard error of the mean. 



B.3. RESULTS 

B. 3.1. OP- I Plasm id Load in Unseeded GSCG Scaffolds 

OP- 1 plasmid detected in unseeded scaffolds after plasmid incorporation using the 

carbodiimide cross-linking method revealed -85% incorporation of the 10 yg load within 

the scaffold for the OP(10) group (without the GP reagent) and 24% incorporation of the 

50 pg load for the OP(50) group (Fig. B.l). It appeared that the GenePorterIpOP-1 

complexes incorporated within the CG scaffold for the GPlOP(l0) group could not be 

detected by the Picogreen assay. 

OP(10) OP(50) GPlOP(1O) 
Figure B. 1 Incorporated POP-1 alone or with the GP transfection reagent. n = 2; mean * SEM. 

B. 3.2. Cell-Mediated Con traction of Chon drocyte-Seeded GSCG Scaffolds 

Over the 2-week culture period, the GPlOP(l0) group displayed the most cell- 

mediated contraction with a 28% decrease in scaffold diameter. The OP(10) and OP(50) 

groups both showed about a 20% size reduction and the Control group had a 10% 

decrease in scaffold diameter at the end of the culture period. Two-factor ANOVA 

revealed a significant effect of type of gene supplementation (P < 0.0001, power = 1) and 



time (P < 0.0001, power = 1) on cell-mediated contraction. Post hoc analysis showed a 

significant difference between the Control group and all the other groups (P < 0.0001, 

power = 1) and between the GPlOP(l0) group verses the rest of the groups (P < 0.0001, 

power = 1). 

Figure B. 2 Contraction of cell-seeded GSCG scaffolds over the 2-week culture period. n = 6; 
mean * SEM. 

B.3.3. OP-I Release in the 3-0  Culture Medium 

Detectable OP-1 in the medium (Fig. B.3a) was not apparent for any of the groups 

until about 8 days in culture (at the Day 11 and Day 14 collections). At these time points, 

OP-1 release in the medium from the Control group was about 27 pglml. The GP/OP(lO) 

group showed a noticeably higher elevation in OP-1 compared to the rest of the groups. 

Two-factor ANOVA revealed a significant effect of type of gene supplementation (P < 

0.01, power = 0.8) on resulting OP-1 expression, but no significant effect of time. Post 

hoc analysis showed a significantly higher elevation in OP-1 release for the GP/OP(lO) 

group above all other groups (P < 0.03, power = 0.8). There was no significant 

difference in OP- 1 expression between the Control group and scaffolds supplemented 



with POP-1 alone. Total accumulated OP-1 at the end of the 2-week period showed a 

30% higher level for the GPlOP(10) group compared to the Control group (Fig. B.3b). 

45 U Day 11 Collection 1 
III Day 14 Collection 

Control 

(b) Control OP(10) OP(50) GPlOP(10) 

Figure B. 3 OP-1 detected in the media (a) at Day 11 and Day 14 and total accumulated OP-1 
(b) produced from chondrocytes seeded in control and GSCG scaffolds over the 2-week culture 
period. n = 6; mean * SEM. 





B.3.4. Biochemical Analysis of GSCG Scaffolds Incorporating POP-1 

The GPlOP(10) group had a slight, but significantly higher (1 1%) DNA content 

(Fig. B.4) compared to the other groups at the end of the 2-week culture (P < 0.03, power 

= 0.8). Since DNA content detected by the Picogreen assay includes both nuclear 

material and POP-1 remaining in the scaffold after the 2-week period, GAG contents 

were not normalized to DNA values. The GPlOP(10) group showed a 16%, 34%, and 

47% higher accumulated GAG after 2-weeks compared to the Control, OP(10), and 

OP(50) groups, respectively (Fig. B.5). ANOVA and post hoc analysis revealed a 

significant effect of the type of gene supplemenation on accumulated GAG with 

significant differences between the Control group versus the other groups (P < 0.05, 

power = 1) and the GPlOP(10) group compared to the rest of the groups (P < 0.05, power 

= 1). 

Control OP(l0) OP(50) GP/OP(IO) 

Figure B. 4 DNA content at the end of the 2-week 3-D culture period. n = 4; mean SEM. 



Control 

Figure B. 5 Accumulated GAG content at the end of the 2-week 3-D culture period. n = 4; mean 
* SEM. 

B. 3.5. Histological Analysis of GSCG Scaffolds Incorporating POP-1 

Cell-seeded scaffolds from the Control group displayed a high concentration of 

tissue formation and GAG staining in the center of the scaffold with a significant amount 

of scaffold still remaining after 2 weeks in culture (Fig. B.6a). The morphology of the 

cells in the control scaffolds appeared more elongated and fibroblast-like compared to the 

other groups. Scaffolds incorporating POP- 1 alone (Fig. B.6b) demonstrated tissue 

synthesis throughout most of the scaffold, although GAG staining was more diffuse with 

a lighter pink appearance. Interestingly, there was a high number of cells in this group, 

that seemed to display a chondrocytic phenotype, with a rounded morphology and located 

in lacunae (see arrows in Fig. B.6b). The GP/OP(10) group displayed the most tissue 

formation and GAG staining, but also with a higher concentration in the center of the 

scaffold. Some cells in this group were also rounded and located in lacunae. In most of 

the scaffolds, a significant amount of residual scaffold still remained (undegraded 



scaffold struts stained green) mostly in the outer palphery of the scaffolds where the 

least amount of cells and tissue was present. 

Figure B. 6 Saffranin-0 stained sections (red is positive stain for GAG) of scaffolds from the 
Control group (a), OP(10) group (b), and GPlOP(l0) group (c) after 2 weeks in 3-D culture. 





B.4. DISCUSSION 

Of significance in this study is that the plasmid containing the gene for OP-1 

could be successfully incorporated within the CG scaffold by a carbodiimide cross- 

linking treatment. Addition of the GP transfection reagent resulted in successful gene 

transfer to and subsequent OP-1 expression by seeded chondrocytes. Interestingly, at the 

lower plasmid load (10 pg), a high percentage (85%) of the plasmid was incorporated 

within the scaffold, whereas, at a higher plasmid load (50 pg) only 24% of the plasmid 

was successfully incorporated. This indicates that when incorporating naked POP- 1 

alone by this cross-linking method, there seems to be a limit as to how much plasmid can 

be incorporated. The large size of the OP- 1 plasmid (between 1 1 - 12 Kb) may also be a 

limiting factor in the amount of plasmid that can be incorporated within the scaffold. 

Unfortunately, the quantitative amount of incorporated POP- 1 that was complexed with 

the GP transfection reagent could not be detected with the Picogreen assay. It is 

speculated that the complexation of the plasmid to the GP reagent interferes with the 

binding of the Picogreen dye to the plasmid DNA and, therefore, detection was not 

possible. The presence of the GPIOP complexes within the scaffold, however, was 

apparent due to the resulting OP-1 overexpression detected from cells seeded within 

scaffolds incorporating the GPIOP complexes above the control levels. Future work 

should investigate other methods of tracking the plasmid amounts incorporated within the 

CG scaffold when employing the GP transfection reagent (e.g. tagging the plasmid with 

small fluorescent molecules prior to mixing with the GP reagent). 

Of interest is the effect of gene incorporation on resulting cell-mediated 

contraction during 3-D culture. In this study, control scaffolds contracted the least, 

scaffolds incorporating POP-1 alone contracted a little more than the controls, and 

scaffolds incorporating the GPIOP complexes contracted the most. Cell-mediated 

contraction can be affected by the scaffold cross-linking properties (stiffness and 

degradation), smooth muscle actin (SMA) expression of cells, or cell remodeling of the 

extracellular matrix (ECM). Histological analysis verified that there was a greater 

amount of residual scaffold and the least amount of scaffold degradation in the control 

scaffolds compareQto the other groups. This may be an indication that these scaffolds 
b 



may have been more cross-linked than the other groups. The difference in contraction 

between scaffolds incorporating POP- 1 alone and scaffolds incorporating GPIOP 

complexes also indicates that these vectors may significantly affect the resulting scaffold 

mechanical and degradation properties, induce cell expression of SMA, or stimulate 

remodeling of the ECM. Future work needs to more fully understand the mechanism(s) 

by which vector incorporation within CG scaffolds affects cell-mediated contraction. 

Interestingly, measurements detecting OP- 1 in the culture medium revealed that 

OP-1 was produced by cells seeded in control scaffolds after about a week in culture. 

This delayed response in OP-1 expression fkom controls seems to indicate that interaction 

between the cell and the type 11 collagen scaffold with time, may induce the expression of 

OP- 1. At this collection point, there was also an indication of OP-1 overexpression from 

chondrocytes seeded in scaffolds incorporating the GPIOP complexes above control 

levels. Compared to prior work employing the plasmid containing the gene encoding for 

insulin-like growth factor (1GF)-1 within GSCG scaffolds, there seems to be a slower 

gene transfer rate and lower expression levels when using plasmid OP-1. Past studies 

have shown that IGF-1 overexpression can be detected as early as 3 days after seeding 

cells within the GSCG scaffolds using this scaffold-based approach. This difference in 

gene transfer kinetics and expression levels may be due to the significantly larger plasmid 

size of the POP- 1 compared to the IGF- 1 plasmid (with POP- 1 being about 2 times larger 

in size than pIGF-I). The lack of overexpression fiom scaffolds incorporating the naked 

POP-1 alone (i.e. without the GP transfection reagent) may also be due to the size of the 

OP-1 plasmid. The vector size may have been too large for sufficient cellular uptake. 

The addition of the GP transfection reagent, however, may have helped condense the 

plasmid, increasing the probable entry into the cell and leading to the resulting OP-1 

overexpression above the control levels. Future work needs to M e r  investigate the 

effect of plasmid size on the ability to use this scaffold-based nonviral gene transfer 

approach for efficient gene transfer to seeded cells. 

Of significance is that the 30% higher accumulated OP-1 level for the GPIOP 

group compared to controls resulted in a slight but significantly higher DNA content and 

-20% higher accumulated GAG content found in the scaffolds after 2 weeks in culture. 

Since the Picogreen assay could not detect plasmid complexed to the GP transfection 



reagent, the higher DNA content of the GP/OP group is most likely a reflection of cell 

proliferation and not due to the residual plasmid left in the scaffold. DNA content 

detected for the OP(10) and OP(50) groups, however, could have contained both nuclear 

material and POP- 1 still remaining in the scaffold. Since histological analysis revealed a 

considerable amount of residual scaffold left after 2 weeks for these groups, it is likely 

that POP-1 was still present within the constructs and contributed to the DNA amount 

detected by the Picogreen assay for scaffolds incorporating POP-1 alone. Accumulated 

GAG content was therefore reported per scaffold and not normalized to the DNA values. 

The quantitative accumulated GAG values determined biochemically seemed to 

coincide with the histological findings. Safranin-0 staining for GAG revealed the most 

tissue formation and GAG staining for the GPIOP group and the least amount of GAG 

staining in scaffolds incorporating POP-1 alone. Interestingly, the scaffolds incorporating 

10 pg of POP-1 without the GP reagent still contained a high percentage of cells that 

were rounded and located in lacunae despite the lack of GAG biosynthesis. In contrast, 

the control scaffolds showed a high concentration of GAG present in the center of the 

scaffold, but cells displayed a more elongated and fibroblast-like appearance. It is 

important to note that differences in biosynthesis and chondrogenesis between groups 

could have also been affected by the resulting cell-mediated contraction of the scaffold. 

Future work needs to further understand the contributions of cell-mediated contraction, 

the presence of plasmid vectors within the scaffold, and localized OP-1 overexpression 

on the resulting biosynthesis and chondrogenesis within GSCG scaffolds. 

In conclusion, plasmid vectors containing the OP-1 gene are able to be 

incorporated within CG scaffolds and can result in successful gene transfer to seeded 

chondrocytes when incorporated with the GP transfection reagent. The large size of the 

plasmid OP-1 may be a significant factor inhibiting gene transfer to chondroctyes when 

incorporated alone. Supplementation of these vectors within the CG scaffold also has a 

significant effect on the resulting cell-mediated contraction. These findings warrant 

further research in the development of GSCG scaffolds for OP-1 gene delivery in 

articular cartilage tissue engineering. 
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APPENDIX C: FABRICATION OF COLLAGEN (TYPE 11)-GAG 
SCAFFOLDS 

C.1. TYPE I1 COLLAGEN SLURRY PREPARATION 

For I OOml type 11 collagen slurry: 

1. Prepare 0.001N HCl (pH-3): add 25ul of 12N HCl to 3.25m1 dH20 to make 

0.1N HCl (pH-1.1); add lml of 0.1N HCl to 99ml dH20 to make 0.001N HCl 

(pH-3) 

2. Add l g  of type I1 Chondrocell sponge--cut collagen sheet into small pieces with 

clean scissors 

3. Blend at 1500 rpm (slightly past setting 3) for 5 minutes-use a small glass 

container (-1 50 ml) and place on ice to keep cool during blending 

4. Degas (vacuum or centrifuge on low setting) and freeze-dry (50ml per -5in. x 5in. 

metal pan) with normal ramping protocol 

C.2. VITREOUS FREEZE-DRYING "RAMP" PROTOCOL 

1. The ramp program used for freeze-drying a collagen slurry consists of a hold at 

20°C for 5 minutes, ramp down to -40°C over 65 minutes (fastest cooling time 

when actual time is set for 15min), and held at -40°C for a minimum of 60min 

(set time for this step is longer than 60 minutes) 

Auto set program reads: Step 1 T = 2 0  t = 5  Hold 

Step 2 T = -40 t =  15 Ramp 

Step 3 T = -40 t = 165 Hold 

2. Press auto switch off, turn on heater and freezer switches, and set temperature to - 

40°C 

3. Make sure chamber release button is off and turn on the vacuum. Press door shut 

while vacuum is being pulled until a sufficient seal is produced 

4. Once vacuum is below 200 mtorr (dOmin), set the temp. to O°C. Leave 

overnight or at least 12 hrs for sublimation 

5. Set temp to 20°C and turn off freeze button 



6. When freezer is at 20°C, turn off the heat, vacuum, and condenser buttons. 

Release the chamber and drain the condenser chamber. After defrosting, chamber 

and condenser should be wiped dry. 



APPENDIX D: SWELLING RATIO 

1 SWELLING RATIO PROTOCOL TO DETERMINE DEGREE OF 
CROSS-LINKING 

D. 1.1. Materials 

Distilled water 
Hot plate 
100 ml beaker 
Tweezers 
Thermometer 
Filter paper sheets (Whatman #1) 
1.0 kg weight 

D.l.2. Procedure 

1. Fill beaker w/ distilled water and heat to 90°C on hot plate. Place thermometer 

inside beaker to adjust the hot plate over time. 

2. Place matrix in the hot water bath for 2 min. in order to denature the collagen and 

allow it to swell w/ water--samples will shrink in size 

3. Expel water from pores by placing hydrated matrix between sheets of filter paper 

W/ the 1.0 kg weight placed on top for 20 seconds. Need sufficient number of 

filter paper so that there is no water visible on the outer layers of the filter paper 

when the weight is taken off. Usually 7 pieces of filter paper on the bottom and 4 

pieces on top of the matrix is sufficient 

4. Immediately weigh sample after being pressed and record mass as the wet mass 

(WM) 

5. Dry samples in the DHT oven overnight at 1 10°C 

6. Weigh samples after taken out of the oven and record mass as dry mass (DM) 

7. Calculate the swelling ratio (which is the inverse of the volume fraction of dry 

collagen, Vf) using this equation: 

I)-* = 1Nf = [(DMIrc) + ((WM-~M)/rwater)]*rc/~~I 

where rc = 1.32 g/cm3 (density of collagen) and rwater = 1 .00g,/cm3 (density of water) 



APPENDIX E: SYNTHESIS OF GENE-SUPPLMENTED 
COLLAGEN-GAG SCAFFOLDS 

E l  BACTERIAL TRANSFORMATION AND PLASMID ISOLATION 

E.l.1. Materials Needed 

P LB Broth Base (LENNOX L BROTH BASE, Invitrogen, Cat# 12780-052): 

follow instructions 

P LB Agar (LENNOX L AGAR, Invitrogen, Cat# 22700-025): follow instructions 

on bottle; plate in petri dishes overnight (store in cold room) 

Antibiotic (see chart below) 

P Plasmid 

P Mega ~ 1 ~ f i l t e r ~ ~  Plasmid kit (Qiagen, Cat #I228 1) 

TE buffer for plasmid storage: 

P lml 1M Tris (pH=8) (UltraPure Tris, Invitrogen, Cat# 15504-020, FW=12 1.1; 

or use 1M Tris (pH=8.0), Ambion, Cat# 98556) 

P 0.2 ml0.5M EDTA (pH=8) (Disodium Ethenediamine Tetraacetate, Fisher, 

Cat#S311, FW=372.24; or use 0.5M EDTA (pH=8.0), Invitrogen, Cat# 15575- 

03 8) 

P 98.8mldH20 

Em 1.2. Bacterial Transformation Protocol Using Heat Shock 

(Place LB agar plates in warm room) 

1. Take competent E.coli cells (DH5a, Invitrogen, Cat# 18258-012) fiom -80C 

freezer and thaw them on ice (-20min). 

2. Turn on water bath to 42C. 

3. Put 50ul competent cells in 1.5 ml tube (Eppendorf or similar) for transforming a 

DNA construct and keep tubes on ice. 

4. Add 1 - 10 ng of circular DNA into E. coli cells. Never exceed (1/10) of the total 

volume. Ideally add 5ul of construct to 50 ul of competent cells. Mix gently by 

swirling pipette tip in solution (DO NOT pipette up and down). 

5. Incubate on ice for 30 min. 



6. Put tube(s) with DNA and E.coli into water bath at 42C for 45 seconds. 

7. Put tubes back on ice for 2 minutes to reduce damage to the E.coli cells. 

8. Add 500 ul of pre-warmed LB (with no antibiotic added). 

9. Incubate tubes for 1 hour at 37C and shake at 225 rpm. 

10. Spread about 100 ul (can include also a different spread volume on another 

plate-20 to 200ul) of the resulting culture on LB plates (with appropriate 

antibiotic added - usually Ampicillin or Kanamycin.)--wait until plates are dry 

before putting in the cold room. Grow overnight. 

1 1. Pick and grow colonies about 12- 16 hours later. 

Bacterial Growth and Isolation 

Place 5 ml of LB medium wl Ampicillin (1 00ugIml) in culture tube. 

Pick isolated colony w/ a sterile stick and place it in the tube. 

Spin at max revolutions in the warm room for 6-8hrs (medium should look cloudy 

when ready). 

For mega prep, transfer whole contents of tube into a sterilized 3000ml flask 

containing 1000ml of LB medium w/ antibiotic. 

Put on shaker (-260rpm-max to prevent severe shaking of bench) overnight. 

Isolate plasmid wl Qiagen Plasmid Purification kit. 

Check amount of plasmid isolated w/ spectrophotometer and integrity w/ gel 

electrophoresis (cutting w/ appropriate restriction enzymes). 

E. 1.4. Antibiotics Used for GSCG Scaffolds 

Ampicillin (sodium salt) 
(Sigma Cat# A-835 1) 

Stored in Iml aliquots at -20C and used 1 tube per 1L LB medium 
Ampicillin used for pIGF-1 prep; Kanamycin used for pEGFP prep 

Kanamycin Sulfate 
(Invitrogen Cat# 1 1 8 1 5- 

024) 

100 mglml in 
water 

50 mglml in 
water 

-20°C 
100 pglml 
(111 000) 

-20°C 50 pglml 
( 1  / 1000) 



E.2. PABRICATION OF GELATINIPLASMID NANOPARTICLES 

E. 2.1. Materials Needed 

P Gelatin from porcine skin, Type A, -1 75 bloom (Sigma, Cat #G2625- 100G) 

P Ethylenediamine (Sigma, Cat# 107- 1 5-3) 

P N-(3-Dimethylaminopropyl-N'-ethyl) carbodiimide hydrochloride, EDAC- 

commercial grace (Sigma, Cat # E7750) 

P HCL (Fisher Scientific, Cat # A508-212) 

P Plasmid DNA 

P 50mM Sodium Sulfate solution (Fisher, Cat # 42 1 - 1) 

P PBS solution (0. lM, pH = 5.0)-Mix equal volumes of the following solutions & pH 

W/ HCl: 

P 0.1M Sodium phosphate dibasic (Mw = 141.96g/mol, Sigma, Cat # S0876) 

0.1M Sodium phosphate monobasic (Mw = 1 37.99g/mol, Sigma, Cat # S9638) 

E. 2.2. Gelatin Cationization 

1. Add 2.5g gelatin in 125ml PBS solution (0.1 My pH 5.0) 

2. Stirr and put in waterbath (37C) or on a hotplate in a container w/ water, until 

gelatin is completely dissolved 

3. Under hood, add 7.9ml ethylendiamine and 1.34g EDAC 

4. Adjust pH to 5 with 5-6N HCl 

5. Stirr (medium-fast setting) for 16- 18h, overnight (in a hood) 

6. Soak dialysis tubing overnight in dH20 

7. Next day, open dialysis tubing completely, add the gelatin solution, and clamp 

securely 

8. Soak for dialysis 48hrs, changing dH20 preferably every 8hrs 

9. Pour gelatin solution in containers for freezedrying and put in freezer until 

solution is fiozen (-2hrs) 

10. Lyophilize until gelatin is completely dry (1-2 days depending on amount) 



E. 2.3. Preparation of Cationized Gelatin-Plasmid Nan oparticles (Complex 
Coacervation Method) 

1. 200nglul plasmid DNA in 50mM filtered Na2S04, keep at 5 5 ' ~  

2. Mix 5-8% (w/v) lyophilized cationized gelatin (in dH20), filter, keep at 55C 

3. mix equal volume of 1) and 2) lmin, usually 100- 150ul 

E.3. GENE INCORPORATION OF CG SCAFFOLDS 

* Scaffolds previously DHT crosslinked, 105C-24hrs in vacuum oven & 8mm diameter 
discs cut out with dermal biopsy punch (Moore Medical, Cat# 52443) 

E. 3.1. EDAC Calculations-1 :1:5 (EDAC:NHS:COOH) 

(Change calculations accordingly depending on number of scaffolds) 

100 discs x 0.0023g collageddisc x 0.0012mol COOWg collagen x 5mol EDAC15mol 

COOH x 19 1.7g EDACImol EDAC = 0.05298 EDAC (small bottle) 

100 discs x 0.0023g collageddisc x 0.0012mol COOWg collagen x 2mol NHSI5mol 

COOH x 1 16.0g NHSImol NHS = 0.0128g NHS 

E.3.2. Gene supplementation by soak and freeze-dry 

E. 3.2.1. EDA C Cross-linking of CG scaflolds 

1. Place scaffolds previously DHT cross-linked in sterile petri dishes. 

2. Hydrate scaffolds w/ sterile dH20 (0.5ml/scaffold). 

3. Weigh out necessary EDAC and NHS and dissolve in same volume amount of 

dH20 used to hydrate scaffolds and sterile filter. 

4. Add EDACINHS solution to hydrated scaffolds (pipette over scaffolds several 

times to ensure good mixing) and cross-link at room temperature for -3Ominutes. 

5. Remove EDACINHS solution and rinse in PBS by swirling petri dish. 

6. Transfer scaffolds in falcon tubes containing fresh PBS and rinse for at least lhr 

on rocker. 

7. Transfer scaffolds back to petri dishes and remove PBS. 



E. 3.2.2. Plasmid Incorporation 

1. Place 60- 100ul diluted plasmid solution onto scaffolds (briefly dry on filter paper 

before adding plasmid aliquot if supplementing right after PBS rinse). 

2. Incubate for at least and hour. 

3. Freeze-dry scaffolds using similar fieeze-drying protocol used to make scaffolds 

from slurry (See Appendix C). 

E.3.3. Gene supplementation of Scaffolds by EDAC Cross-linking 

E.3.3. I .  Plasmid Supplementation by EDAC Cross-linking 

1. Hydrate scaffolds wl aliquots of plasmid solution or TE buffer (-60ul/scaffold). 

2. Dissolve the EDAC and NHS in 50ml dH20 and sterile filter (0.45 mm). 

3. Pipette 0.5ml solution/scaffold over scaffolds to ensure good mixture. 

4. Allow chemical cross-link at room temperature for about 15 minutes. 

5. Pipette 0.5ml sterile dH2Olscaffold over scaffolds to ensure good mixture. 

6. Allow chemical cross-link at room temperature another 15 minutes. 

7. Remove EDACMHS solution wl pipette, rinse w/ PBS and transfer scaffolds to 

15ml falcon tubes containing sterile PBS and rock for -1hr. (prepare cells & SF 

medium during this time). 

8. Transfer back to petri dish, remove PBS wl pipetteready to seed. 



APPENDIX F: MEDIA PREPARATIONS FOR CHONDROCYTE 
AND MESENCHYMAL STEM CELL CULTURES 

(modzfied protocol from Jakob et. al, J Cell Biochem 2001;81(2):368- 77) 

1 MEDIUM FOR EXPANDING CHONDROCTYES 

F. I. I. J-Base Medium 

9 500 ml hg-Di\lEM ( high glucose: 4.5%) without L-Glutamin with Sodium 

Pyruvate (by GIBCO@) 

9 5 ml MEM Nonessential Amino Acids (NEAA) (solution lOmM, by GIBCO@ 

cat. No. 11 140 050) 

9 5 ml Hepes Buffer (solution 1 M, by GIBCO@ cat. No. 1 5630 056)-can also 

make 1M solution wl Hepes powder (238.3glmol) in distilled water (ie. 0.2383g 

Hepes powderlml dHzO--need to sterile filter) 

9 5 ml PSG consisting in 10000U/ml penicillin, 10000mg/ml streptomycin 

glutamate (by GIBCO@, cat. No. 10378 0 16) 

* J-Base is the base medium used for both making both expansion and serum-free 

medium 

F. 1.2. J-FBS 

P 450ml J-Base medium 

> 50 ml FBS (by GIBCO@ , cat. No. 10270 106 or equivalent) 

F. 1.3. J-Expansion Medium 

P J-FBS medium 

ADD growth factors just before use: 

9 human 'I'GFfi 1-1 nglml of media (R&D Systems, cat. No. 240-B-002) 

+Reconstitute in sterile 4mM HCl containing at least lmg/ml human serum 

albumin or bovine serum albumin in the vial to prepare a stock solution of no less 

than lug/ml of TGFP 1 

Obtain sterile eppendorf tubes (preferably G5ml tubes) 



166.5u1(7.5% glml) BSA solution + 500~10.1 N HCl + 1 1.5ml H 2 0  in 

5ml centrikge tube and vortex (we have HCl plus that is 12.1N HC1 so 

add 0.5ml of 12.1N HCl + 60.51111 H20 to get 0.1N HCl) 

Sterile filter lOml of the bdfer and add it to l m g  of TGF-f3 (concentration 

= lug of TGF-f3 llml) 

-- Per ml of media, add lul of the TGFpl stock to have lng TGFBl per ml of 

media 

Aliquot in sterile microtubes and store @ -70°C for three months wlout 

detectable loss of activity 

Avoid repeated freeze-thaw cycles for all growth factors 

> human FGF basic (FGF-2)-5 nglml (R&D Systems, cat. No. 233-FB-025) 

-.Reconstitute in sterile PBS containing at least 0.1% (lmglml) human serum 

albumin or bovine serum albumin and 1mM DTT (154.3glmol) in the vial to 

prepare a stock solution of no less than l0uglml of cytokine: 

Obtain sterile eppendorf tubes (preferably 0.5ml tubes) 

Add 0.0025g B S A m  33.3u1(7.5% g/ml) BSA solution +0.0004gDTT 

+ 2.5 ml PBS 

Sterile filter wl syringe, and add to the 25ug of FGF-2 in vial 

--Per ml of media, add 0.5ml of the FGF-2 stock to have 5ng FGF-2 per mi 

of media 

Aliquot in sterile microtubes and store @ -70°C for three months wlout 

detectable loss of activity 

Avoid repeated freeze-thaw cycles for all growth factors 

> human PDG.Fb f3-10 nglml (R&D Systems, cat. No. 220-BB-0 1 0) 

+Reconstitute in sterile 4mM HCl containing at least 0.1% human serum 

albumin or bovine serum albumin in the vial to prepare a stock solution of no less 

than 10uglml of cytokine 

Obtain sterile eppendorf tubes (preferably 0.5ml tubes) 

Add 0.0025g bovine serum albumin + lOOul0.1N HCl + 2.4ml H 2 0  OR 

33.3u1(7.5% g/ml) BSA solution + 50ul O.2N HCl + 2.4ml H 2 0  in 5ml 



centrifuge tube and vortex (we have HCl plus that is 12.1N HCl so add 

0.5ml of 12.1N HCl + 60.5ml H20 to get 0.1N HCl) 

Sterile filter lml of the buffer and add it to the lOug of PDGFPP 

(concentration = 1 Oug of PDGFPPlml) 

-- Per ml of media, add lul of the PDGFPP stock to have 1 Ong PDGFPP per 

ml of media 

Aliquot in sterile microtubes and store @ -70°C for three months wlout 

detectable loss of activity 

Avoid repeated freeze-thaw cycles for all growth factors 

F.2. MEDIUM FOR EXPANDING MESENCHYMAL STEM CELLS 

9 500mL low glucose DMEM (Invitrogen # 1 1885-092) 

9 50mL FBS (Invitrogen # 16000-044) 

9 5mL penicillin/streptomycin 

F.3. 3-D CULTURE DIFFERENTIATION MEDIUM 

F. 3.1. SF Base Medium 

9 500ml J-Base medium 

9 5 ml IrrS+l (100X) (SIGMA-Cat. No. 12521) 

9 9 ml(7.5% glml) BSA solution (1.25mg BSAIml of media 17ul(7.5% glml) 

RSA solutionlml of media) 

F. 3.2. SF Medium 

ADD supplements at the last minute before use: 

> TGFPl (1 0nglml)-Add 1 Om1 of TGFPl stock solution per ml of media 

9 Dexnmethasoee (100 nM) non-water soluble (MW=392.5g/mol-Sigma D-4902) 

or water soluble (-65mg dexamethasone/gram of powder-MW of dexamethasone 

= 392.5g/mol-by Sigma 29 15) 

+ 1 Oul of a 111 00 dilution of M dexamethasone stock solution/ml of media 



Make M dexamethasone (DM) stock in 100% ethanol (stable for 1 yr, 

stored @ -20°C) by adding 3.92mg of dexamethasone (non-water soluble) 

per lOml of 100% ethanol or 6.03mg of dexamethasone (water soluble) per 

lml of 100% ethanol 

(Calc: lml 10~3~DMx0.001molDM/1000mlx392.5gDM/lmol DMx lg  

powder1 0.065g DM = 0.00603g powder -- in lml of ethanol) 

Make M dexamethasone in low glucose DMEM (LG) by adding 20ul of 

M dexamethasone stock + 1.98 ml LG-DMEM 

Store as sterile aliquots @ -20°C 

L-Ascorbic acid 2iPhosphate (0.1 m . )  - lOul of a 11100 dilution of ascorbate 2-phosphate (MW = 289.54glmol) 

Add 37.5 mg ascorbate 2-phosphate (Wako Chemical) + lOml Tyrodes 

solution (Sigma) 

Sterile Nter the ascorbate 2-phosphate solution and store cozen (-20°C) in 

2ml aliquots 



APPENDIX G: CELL ISOLATION METHODS 

1 CHONDROCYTE HARVEST PROTOCOL 

(modifiedfrom H. A. Breinan, B WH Orthopaedics Research Lab and Kuettner et al., 

1982 and C. Lee Thesis, 2001 ) 

Gm 1.1. Materials 

G. I. I. I. OR Supplies 

Scalpel handle (#3) 

Scalpel blades (2 #lo) 

Sterile gloves 

Ifremoving whole joint: 

Surgical saw 

Sterile specimen bags (plastic bags in histo room) 

Sterile towelslwrap 

Sterile PBS to moisten towels 

I f  removing shavings (ie: for subsequent autologous seeding): 

Extra scalpel blades 

50 ml tubes w/ complete PBS: 40 ml D-PBS (Gibco #14190-144) + 
0.4 ml PedStreplFungizone cocktail (1 OOX; Gibco #15240-062) 

G. 1.1.2. Lab Supplies 

Sterile petri dish (100 mm diameter) 

Sterile spatula 

Sterile forceps (2) 

Sterile razor blades (flat edges are easiest to use) 

Sterile centrifuge tubelbottle with sterile stir bar 

Clean stir plate in incubator (one that doesn't heat up too much during prolonged 

operation) 

10-20 mlljoint complete PBS (see above) 



T-75 and/or T-25 tissue culture flasks 

G. 1.1.3. Solutions 

1. Pronase solution (20 Ulml) - - 40mV2 joints 

a. Dissolve appropriate amount of pronase (Sigma protease type XIV #P 5 147) in 

lOml HG-DMEM (high glucose: 4.5%, without L-Glutamin with Sodium 

Pyruvate by GIBCO@) 

where V-'=volume of solution 

b. Sterile filter (0.2 mm) solution (use syringe filter; it will take a while for pronase 

to dissolve and it will be difficult to pass solution through filter) 

c. Add remaining volume of DMEMIF 12 (ex: 3 0 ml if making 40 mV2 joints) 

d. Add 1 % vlv of 1 OOX pedstreplfungizone cocktail (antibiotic) (ex: 0.4 ml) 

2. Collagenase solution (200 Ulml) - approx 40mV2 joints 

a. Dissolve appropriate amount of collagenase (Worthington Biochemical CLS2) in 

10 ml HG-DMEM (this dissolves quickly) 

where V = volume of solution 

b. Sterile filter solution using a 0.2 mm syringe filter 

c. Add remaining volume of HG-DMEM 

d. Add 1 % vlv 1 OOX pen/strep/fungizone cocktail 

3. Jakob Base or Expansion Media (see Appendix H) 

G. 1.2. Procedure 

1. Using scalpel blades, remove slices of articular cartilage fiom joint surfaces and 

place in complete PBS (or in tubes and store on ice if harvesting in OR) 



Don't dig into the hard calcified cartilage or subchondral bone, cartilage should 

offer little resistance to the blade; full thickness slices should be 0.5-1.5 mm thick 

depending on joint location 

If harvesting whole joint, open joint in sterile hood, cutting ligaments and 

removing menisci; take cartilage from tibial, femoral and patellar surfaces 

If slices are large, use razorlscalpel blade to cut into pieces no larger than 

3x3xlmm 

Using forceps and spatula, transfer cartilage pieces into tubelbottle with stir bar 

and pronase solution, cap loosely 

Incubate 1 hr (37"C, 5% C02) on spinner plate (or shake every 15 minutes or so if 

can't use spinner plate in incubator) 

Centrifuge the pronase and tissue solution, remove the pronase, and resuspend 

pellet in collagenase solution 

Incubate overnight (maybe as short as 4-6 hours until all tissue is digested) on 

spinner plate; make sure cap is loose! 

Strain through 40-70 mm pore strainer into new 50ml centrifuge tube 

Centrifuge (10 min @ 1500 rpm) 

Remove supematent and resuspend in -30 ml complete media; centrifuge again 

and resuspend in known amount of complete media to do cell count (usually 

20ml) 

Count cells and assess viability (should have at least -7-8x10~ cellsljoint with 

>90% viable if cap was loose during digestion) 



G.2. MESENCHYMAL STEM CELL HARVEST AND EXPANSION 

1. Aspirate cells from the iliac crest into tube containing heparin 

2. To a 15mL tube, add 2mL of anticoagulant treated blood to equal volume of PBS 

3. Mix well with pipette 

4. Mix Ficoll-Paque by inverting bottle several times 

5. Using 20mL syringe and 18 gauge needle - add 5mL air and add 3mL Ficoll to 

15mL tubes (Falcon 352059 tubes) 

6. Layer 4mL diluted blood onto 3mL Ficoll - carefully so as not to mix 

7. Spin at 3000 for 30 minutes 

8. Transfer lymphocyte layer to clean 15mL tube with 5mL PBS 

This means: 
-- Carefully aspirate the Ficoll above the lymphocyte layer leaving 

-1 5mm above. With p1000, carefully remove the lymphocyte band PLUS the 

material above and below. You can take the mixture almost to the bottom pellet. 

This should be about 2 ml total volume per tube. 

9. Put all bands from the same animal in one 15 ml conical tube 

10. Mix with pipette 

1 1. Centrifuge 1500 rpm for 10 minutes 

12. Aspirate supernatant (note - leave a little bit above pellet) 

13. Resuspend lymphocytes and MSCs in DMEM - 1mL 

14. Add 29mL DMEM in 50 mL Falcon tube and mix gently 

15. Put in T- 150 (count) 

16. Check cells after 2-3 days for attachment. 

17. After 3 days - Aspirate cell that are not adhered to the plate 

18. And feed remaining MSCs with 30mL of warm medium. 

19. Subsequently change medium twice a week. 

20. Passage cells or freeze when they have reached 90% confluence 

2 1. Reseed cells in T- 150 flasks at 1000 cells/cm sq in T- 150 flasks. 

22. Freeze cells PO at 0.5 ml at 5E5 

23. Thaw cell at 5E5 and seed new flask (PI) 



APPENDIX H: CHONDROCYTE MONOLAYER CELL CULTURE 

H.1. THAWING CELLS 

H. 1.1. Materials 

J-FBS Medium 

75 cm2 TC flasks 

Sterile pipettes and pipetteman 

Flame 

Sterile glass pasteur pipettes 

Vacuum flask and tubing to hook up to vacuum 

15 ml tube@) 

H. 1.2. Procedure 

Place cells directly into a 37OC water bath. Agitate gingerly while cells thaw for 

40-60 seconds. 

When defrosted minimally (liquid appears around outer edges) add a drop of 

complete medium. 

Wait a minute and add another drop of medium. Repeat until tube is full- 

ensures that the cells thaw into the medium. 

Transfer cells suspension in a 15 ml centrifuge tube and spin for 10 minutes at 

1500 rpm. 

Resuspend the pellet and count the number of cells. 

Add appropriate amount of medium to obtain the desired concentration. 

Should culture the cells at least 3-4 days before being used for experimentation 

(or before changing medium). 

H.2. FREEZING CELLS 

H. 2.1. Materials 

J-FBS Medium 

Dimethyl Sulfoxide (DMSO) 



0.45 pm sterile filter 

Sterile pipettes and pipetteman 

Sterile cryogenic tubes 

H.2.2. Procedure 

1. Add 10% v/v DMSO to J-FBS medium. 

2. Filter solution through the 0.45 urn sterile filter. 

3. Adjust cell concentration to 1x10~ cellslml of J-FBSIDMSO solution. 

4. Aliquot cell suspension in sterile cryogenic tubes (be sure to account for 

expansion during freezing-1 -1.5ml in 2 ml cryogenic tubes is a safe amount) 

5. Freeze in the -20°C freezer for 2-4 hrs (longer the better) and then transfer to the 

-80C keezer or use isopropanol fieezing containers and place straight into -80C 

freezer. For long-term storage, place cells in liquid nitrogen tank. 

H.3. PASSAGING CELLS 

H. 3.1. Materials 

J-FBS Medium 

J-Expansion Medium 

Trypsin 

PBS 

Collagenase type I1 (in fiidge, Rm 108) 

50ml centrifuge tubes 

Centrifuge tube holders 

Sterile pipettes and pipetteman 

Vacuum flask and tubing to hook up to vacuum 

150 cm2 culture flasks (5) 

H. 3.2. Procedure: 

1. Warm the medium, trypsin, and PBS in 37°C water bath. 

2. Make necessary amount of J-FBS (See Appendix H)-8ml/150cm2 flask; 

5d75cm2 



3. Remove the medium in flasks w/ the vacuum pipettes. 

4. Rinse once w/ solution of 0.15% collagenase I1 in PBS (g/ml)-for 1, 75cm2 flask 

need -5ml (ie. 0.0015 g Collagenase + 5 ml PBS, sterile filter w/ syringe filter)- 

incubate 3-5 minutes 

5. Remove CollII/PBS solution from flask w/ a pipette and put this solution in a 

50 ml centrifuge tube-DO NOT ASPIRATE wl vaccum (cells do get 

detached during this rinse so we need to keep this). 

6. Add trypsin (3-5 ml for 75 cm2 flask) 

7. Incubate for 3-5 minutes. Tap on the sides of the flask to loosen the cells and 

check under the microscope to ensure cells are no longer attached. If some are 

still attached, incubate longer checking every minute until all are unattached. 

8. Once the cells are floating, collect trypsin and add it to the collected collagenase 

type I1 solution. 

9. Add J-FBS medium to rinse the flask, collect, and add to the collagenase/trypsin 

solution to inactivate the trypsin (-5 ml for 75 cm2 flask) 

10. Balance the tubes and centrifuge for 10 minutes at 1500 rpm. 

11. Once the pellet is on the bottom, draw off the medium w/ the vacuum pipette. 

12. Resuspend in J-Expansion medium (20ml) and count number of cells (see 

following protocol for cell counting). 

13. Once the cells are counted and recorded, split the cell suspension into 5 flasks by 

adding 4ml of the cell suspension in each 150cm2 flask. 

14. Bring volume of medium in each flask to 30ml by adding 26ml more of J- 

Expansion medium to each flask. 

H.4. PLATING DENSITIES MONOLAYER CULTURES 



H.5. CELL COUNTING PROTOCOL 

Ha 5.1. Materials 

Jakob-FBS Medium + 3GFs (J-FBS-GF) 

Trypan Blue 

Hemacytometer & glass slide cover 

Micropipetter 

Sterile pipette tips and pipette extender 

70% alcohol 

Kimwipes 

Cell counter 

Calculator 

H. 5.2. Procedure 

1. Resuspend pellet by adding 20 ml of J-FBS-GF media to cell pellet and mix well 

WI pipette to ensure equal spacing of cells. 

2. Clean the hemacytometer and cover slide wl alcohol and a kimwipe. 

3. Place the cover slide on top of the hemacytometer so that it covers the tip of the 

grove near the edge of the hemacytometer. 

4. For a dilution factor of 2, mix a 1 : 1 ratio of a 15pl aliquot of trypan blue wl a 

1 5 ~ 1  aliquot of the cell suspension into a microcentrifbge tube (use the sterile 

pipette extender to obtain the aliquot of cell suspension if needed)--mix well by 

pipetting mixture up and down. 

5. Obtain a 15ml aliquot of the trypan blue1 cell suspension mixture and release it 

into the groove at the edge of the hemacytometer so that the mixture reaches the 

edges of the silvered surface-try not to overfill as this may make the count 

inaccurate. 

6. Place the hemacytometer on the microscope stage, remove yellow glass filter, 

and view with standard lox objective. 

7. Count cells in each of the four comer squares and the central square (clear 

"glowing" cells are viable, blue stained cells are dead). To prevent overcounting, 



count cells that lie on the top and left lines but not those on the bottom or right 

lines of each square. 

8. Calculate the viability wl the following equation: 

9. Calculate and record the total cell number wl the following equation: 

Where T = Total number of cells in suspension 

Nc = Number of viable cells counted 

Ns = Number of squares counted (ie. 5 boxes) 

D = Dilution factor (ie. 2) 

V = Volume of media used to suspend the cell pellet (ie. 20ml) 

--For this case, I would like to split the PO cells (in the 75cm2 flask) into 5 flasks 

(1 50cm2 flasks) with at least 4 million cells per flask using 30 ml of media in each 

150cm2 flask (I'm estimating we'd get 20-30 million PO cells from first plating). 

However, regardless of the number of cells counted (if less than 20 million or more than 

30 million), still split the total number into 5 flasks and note what the exact plating 

number is. 

H.6. STAINING CELLS WITH CELLTRACKER DYE FOR CONFOCAL 
MICROSCOPY ANALYSIS 

H. 6.1. Materials Needed 

P ~ e l l ~ r a c k e r ~ ~  Red CMTPX Fluorescent Stain (Molecular Probes) 

9 Sterile PBS (Gibco) 

P Trypsin-EDTA (Invitrogen) 

9 Culture medium (Expansion & Serum-free) 

9 Polystyrene cell culture 12-well plate (Falcon, VWR) 

9 Ultra-low Attachment 6-well plate (Coming, Fisher Scientific) 

9 Sterile filter paper 

9 8 mm dermal biopsy punch (Moore Medical) 



H. 6.2. Procedure 

1. Cut scaffolds to desired dimension with 8 mm dermal biopsy punch. 

2. After EDAC cross-linking scaffolds, scaffolds should be rinsed in sterile PBS for 

-1 hour. 

3. While rinsing scaffolds, start the fluorescent cell staining process in parallel. 

Thaw CMTPX in hand. Mix 1 ul CMTPX stain per 1 ml medium (1 : 1000). (use 

expansion medium w/ FBS) 

Stock CMTPX (1 OmM in DMSO): 

--Add 250ul sterile DMSO to lmg CMTPX powder provided. 

--Aliquot into 1 Oul stocks (to be mixed w/ 1 Om1 media-1 : 1000 dilution) 

4. Aspirate medium from expansion flask & add Medium + CMTPX solution to 

flask (30ml/150cm2 flask). Place flask back into incubator for 20 minutes. 

5. Aspirate medium. Add sterile PBS to wash. Aspirate PBS and continue basic 

procedures for trypsinizing monolayer cultures. 

H.7. MONOLAYER TRANSFECTION OF CHONDROCYTES WITH 
GENEPORTER TRANSFECTION REAGENT 

1. Expand PO chondrocytes in 24-well plates, plated at 50,000 cells per well. 

2. At confluence, prepare dilute GenePorter solution and plasmid solutions in SF 

medium (For 24-well plate, according to manufacturer's instructions, per well): 

P 2ug plasmid in 125111 SF medium (if stock is at lmglml, add 2ul) 

1 Oul GP reagent in 125111 SF medium (5: 1, GP:plasmid) 

Add diluted DNA to the diluted GP reagent, vortex, and incubate at room 

temperature for 30minutes 

3. Aspirate medium from well, add an aliquot of the GP/plasmid solution 

(25OuVwell) and incubate at 37C for 4 hrs. 

4. Four hours later, remove GPIplasmid solution and replace with 0.5ml of SF 

medium. 

5. Collect and change every 2-3 days after infection (Day 2, 5,7,9. 12, and 14) 

6. Assess amount of expressed protein released in the medium w/ the sandwich 

ELISA kit for the human IGF-1 protein (R&D Systems). 



H.8. TRANSFECTING MONOLAYERS WITH GELATIN NANOPARTICLES 

1. Seed chondrocyte at a density of 20,000 cells per well for a 24-well tissue culture 

plate in expansion medium. Change media every 2-3 days until cells become 

confluent. 

2. At 80-90% confluence, remove media and wash with PBS (500~1). 

3. Add 250ul NPIplasmid solution (-l Oug plasmid per well)-diluted in serum-free 

medium. 

4. Incubate 4 hrs. 

5. Remove NPIplasmid solution and add 500ul of fresh serum-free medium to each 

well. 



APPENDIX I: 3-D CHONDROCYTE CULTURES 

1.1. MAKING CHONDROCYTE CELL PELLETS 

1. After expanding cells to PI, collect cells in monolayer and resuspend in SF 

medium at 1 x lo6 cells/ml. 

2. Aliquot 500ul of cell suspension in sterile tubes (15ml falcon tubes or 

microcentrifuge tubes). 

3. Centrifuge at 4500rpm for 30 seconds. 

4. Vent caps and place in incubator. 

5. Change medium every 2-3 days. 

1.2. MAKING MSC CELL PELLETS 

1. After expanding MSCs to P2, collect cells in monolayer and resuspend in SF 

medium at 400,000 cells/ml. 

2. Aliquot 500ul of cell suspension in sterile tubes (15ml falcon tubes or 

microcentrifuge tubes). 

3. Centrifuge at 1 500rpm for 10 minutes. 

4. Vent caps and place in incubator. 

5. Change medium every 2-3 days. 

1.3. CELL SEEDING SCAFFOLDS 

Day of seeding for seeding density of #million celldscaffold): 

1. EDAC cross-link scaffolds. 

2. Trypsinize confluent cells and count. 

3. Resuspend in serum-fiee medium @ 100,000 cellsful. 

4. Prewet scaffolds (in PBS after EDAC), dry on sterile filter paper (-6-8 scaffolds 

at a time) then transfer to warm agarose-coated 12-well TC plates. 

5. Seed 2million per side (20uVside) with -1 Omin incubation in between. 

6. Incubate for 2hrs and then add 0.5ml SF medium-dispense slowly against well 

wall. 

7. Next day, add 0.5 ml medium. 

8. Change media every 2-3 days. 



1.4. SCAFFOLD MEASUREMENT TEMPLATE 



APPENDIX J: BIOCHEMICAL ASSAYS 

1 PROTEINASE K SAMPLE DIGESTION 

(Lyophilize samples prior to digestion) 

1. Digest samples overnight (12-24 hours) at 60°C in the following solutions: 

--If digesting 8mm scaffolds, use 500ugAml proteinase K solution: 

For 100 ml solution: 100 ml Tris-HC1 buffer (see below) 

50 mg proteinase K powder (Sigma, Cat# P-6556, -20C) 

--If digesting cell pellets (or 4mm scaffolds), use 100ug/ml proteinase K solution: 

For 100 ml solution: 100 ml Tris-HC1 buffer (see below) 

10 mg proteinase K powder 

2. Sterile filter proteinase K solution & keep left over solution at 4C 

3. Add lml of Proteinase K solution per sample 

4. Vortex before putting in water bath & once again before leaving it overnight 

5. Keep digested samples at -20C until used for biochemical analysis 

Tris-HC1 buffer (1L)-keep at room temperature 

0.05M Ultrapure Tris--6.1 g/L (Mw=12 1.14gImo1, Invitrogen, Cat #15504-020) 

9 1 mM CaC12 Dihydrate-0.147glL (Mw=147.02g/mol, Sigma (Fluka), Cat #2 1097) 

9 Dissolve above salts in 900 ml distilled water 

P Adjust pH to 8.0 with IN NaOH 

P Bring to IL with distilled water 



5.2. DETERMINING DNA CONTENT USING THE PICOGREEN ASSAY 

J.2. I. Materials Needed 

Quant-iT PicoGreen dsDNA Assay Kit (Molecular Probes, Cat# P75 89) contains: 

P PicoGreen dye reagent (1mL solution in DMSOFlight sensitive (keep covered) 

P 20X TE (25mL of 200mM Tris-HC1,20mM EDTA, pH 7.5) 

P Lambda DNA standard (1m.L of 100 mg/mL in TE) 

TE buffer for diluting samples: 

P 1 ml 1 M Tris (pH=8) (Ultrapure Tris, Invitrogen, Cat# 15504-020, FW=12 1.1 ; 

or use 1M Tris (pH=8.0), Ambion, Cat# 98556) 

P 0.2 ml0.5M EDTA (pH=8) (Disodium Ethenediamine Tetraacetate, Fisher, 

Cat#S3 1 1, FW=372.24; or use 0.5M EDTA (pH=8.0), Invitrogen, Cat# 15575- 

03 8) 

P 98.8 mldH20 

96-well plate-Black Isoplate (Clear bottom plates, Wallac, Cat# 1450-57 1) 

J.  2.2. Procedure 

1. Assay Buffer Preparation: Add 25ml(20X TE) + 500 ml sterile, dH20 

2. DNA std working solution (2mg/ml): Add 294ml of TE buffer + 6ml DNA stock 

(1 00 mg/mL) 

3. Dilute all digested samples I:IO with TE buffer (not from kit): I80ul TE + 20ul 

digest (can be diluted in microcentrifbge tubes or 96-well plate) 

4. Prepare the DNA standards as follows in the first 8 wells of Picogreen 96-well 

plate: 



5. Add 20ul of diluted digested sample to each well-vortex samples before adding 

6 .  Add 80ul TE buffer (from lut) to each well (for total of lOOul solution per well) 

7. Dilute PicoGreen dye stock with TE buffer (from kit), 200X-Prepare just before 

use 

-- 1 00 ul of working dye solution needs to be added to well used 

--Make more working dye then needed (i.e. add solution for 5 additional wells) 

For example, if there are 96 wells to fill, make enough dye for 110 wells: 

11 0 x 1 OOul = 11 OOOul (or 1 lml); 11 000/200 = 55ul of PicoGreen stock + l l m l  

TE 

8. Dispense 100 ul PicoGreen working dye solution to each well being used 

9. Take fluorescence reading on microplate reader (WALLAC  VICTOR^ 1420 

Multilabel Counter, Perkin Elmer Life Sciences)): Protocol assigned in computer 

program under DNA Assay-"Fluorescein (485nm/535nm7 1 .Os)" (includes a 5 

min incubation period & shake) 

* If samples end up having a reading greater than the highest standard, samples need 

to be diluted more and re-run 



5.3. GAG ASSAY USING DIMETHYLMETHYLENE BLUE (DMMB) DYE 

J.  3.1. Solutions Needed: 

Color Reagent 

For 500ml of DMMB dye solution, mix the following: 

P 425m1dH20 

P 1.52 g glycine (Sigma, Cat# G-8898) 

P 1.19 g NaC1 (Fisher, Cat# S642) 

a. Adjust pH to 3.0 with concentrated HCl and NaOH 

b. Add more dH20 to bring volume up to 500rnl 

P Add 8mg of DMMB dye 

P Solution good for 3 months and should be kept in a light-protected bottle (stir 30 

min prior to use) 

TE buffer for diluting samples 

1 ml 1M Tris (pH=8) (Ultrapure Tris, Invitrogen, Cat# 1 5504-020, FW=12 1.1 

or use 1M Tris (pH=8.0), Ambion, Cat# 98556) 

0.2 ml0.5M EDTA (pH=8) (Disodium Ethenediamine Tetraacetate, Fisher, 

Cat#S3 1 1, FW=372.24) 

or use 0.5M EDTA (pH4.0) (Invitrogen, Cat# 1 5575-03 8) 

J.  3.2. Procedure 

1. Stir DMMB dye working solution at least 30min before use 

2. Prepare the Chondroitin Sulfate (CS) stock solution at 2 mg/mL (keep in -20C 

freezer) 

3. CS working solution (200mglml): Add 100 ml of CS stock + 900 ml dH20 

4. Prepare the CS standards as follows: (Start wI7 labeled tubes filled w/ 200ul TE 

buffer) 



5. Dilute all digested samples 1:10 with TE buffer: 180ul TE + 20221 digest 

(can be diluted in microcentrifuge tubes or 96-well plate) 

6. Add 20ul of each standard and sample to the 96-well plate (Clear plates, Packard 

Bioscience Spectraplate-96, Cat# P 12- 106-043)-good to do this in duplicate, at 

least for the standard (Use 20ul aliquot of TE buffer as blank) 

7. Dispense 200 mL of DMMB dye solution to each well used 

8. Take reading at 530 nm on microplate reader (WALLAC  VICTOR^ 1420 

Multilabel Counter, Perkin Elmer Life Sciences): Protocol assigned on computer 

program for the microplate reader is under GAG Assay-"GAG-DMMB Assay 

protocol (530nm- 1 s)" 

* If sample reading is outside the standard curve range (or at the extremes of the 

standard curve), it is recommended that another dilution and reading of the sample be 

performed-the ideal is to have the reading land on the mid-range of the standard 

curve (usually a znd order polynomial is the bestj?t curve for this standard) 



5.4. IGF-1 DUOSET SANDWICH ELISA ASSAY (R&D SYSTEMS CAT. 
#DY291) 

J.  4.1. Solutions Needed 

PBS: 137 mM NaCl, 2.7 mM KC1,g.l mM Na2HP04, 1.5 mM KH2P04, pH 7.2-7.4 

--Used lpacket powdered PBS + 1L DI water, 0.2pm filtered 

Wash buffer: 0.05% Tween 20 in PBS, pH 7.2-7.4 

1L PBS + 0.5g Tween 20 (per liter) or 0.5L PBS + 0.25g Tween 20 (per liter) 

(Weigh out Tween 20 in 15 rnl falcon tube and dissolve in PBS before adding to rest of 

PBS solution-Tween 20 very viscous) 

Block buffer: 5% Tween 20 + 0.05% NaN3 in PBS 

For 100ml: 100 ml PBS + 5g Tween 20 + 0.05g NaN3 

Reagent Diluent (RD): 5% Tween 20 in PBS-0.2pmunfiltered 

For 50ml: 5 h l  PBS + 2.5g Tween 20 

Substrate Solution: 1 : 1 mixture of Color Reagent A (H202) and Color Reagent B 

(Tetramethylbenzidine) (R&D Systems Cat. # DY999) 

Stop Solution: 2 N H2S04 

X 4.2. Day I: Plate Preparation 

Coat plates: Capture Antibody (R&D, Part 840264stock concentration 720 pglml, 

reconstituted wl 1.0 ml PBS, working concentration 4pglml in PBS, 1 00 pVwell 

Ex (96 wells): 58 p1 Capture Ab stock + 10.4 ml PBS 

(adjusted for weak signal: 70ul CapAb stock + 10.5 ml PBS) 

Tap plate to cover bottom of wells, check for bubbles 

Cover plate with plate sealer, incubate overnight at room temperature 



J.4.3. Day 2: IGF-1 ELISA 

1. Wash plate 3x with wash buffer, 400uVwell-after last wash, invert plate and blot 

against clean paper towels 

2. Block plates w/ Block Buffer, 300 yllwell 

3. Cover plate, RT, 1 hr minimum 

4. Wash plate 3x 

5. Prepare IGF- 1 standard dilutions: 

--Standard (R&D, Part 840266, 1 vial)-stock concentration 70 nglml, reconstituted 

W/ 0.5 ml Reagent Diluent. Store reconstituted standard at 2-8OC for up to 60 days 

10-point standard curve using 2-fold serial dilutions in Reagent Diluent w/ high standard 

at 2ng/ml: 

STOCK 8 7 5 2 1 Tube# 
(70ng/ml) 
582.9~1 300yl 3 0 0 ~ 1  3 0 0 ~ 1  3 0 0 ~ 1  3 0 0 ~ 1  300yl 3 0 0 ~ 1  Reagent 

Diluent 

6. Wash plate 3x 

7. Add standards or samples: run standard in duplicate, 100uVwell-Include blank 

well w/ Reagent Diluent only 

8. Cover plate, RT, 2 hrs 

9. Wash plate 3x 

10. Add Detection Antibody (Part 840265)-stock concentration 14.4 yglml, 

reconstituted w/ 1.0 ml Reagent Diluent (store at 2-8C up to 6 months), working 

concentration 80nglml in Reagent Diluent, 100 yllwell 

Example (96 wells): 56ul Det. Ab stock, 10 ml Reagent Diluent 

(adjusted for weak signal: 8Ou1 Det. Ab stock + 10.5 in1 RD) 

Cover plate, RT, 2 hrs 

1 1. Wash plate 3X 



12. Add Streptavidin HRP (Part 890803, store at 2-8C up to 6 months)--working 

concentration: dilute stock solution 1 :200 in Reagent Diluent, 100 pllwell 

Example (96 wells): 50ul Streptavidin HRP stock, 10 ml Reagent Diluent 

(adjusted for weak signal: 80ul CapAb stock + 10.5 ml RD) 

Cover plate, RT, 20 minutes-Avoid direct light 

13. Wash plate 3X 

14. Substrate Solution: mix 1 : 1 Color Reagent A & Color Reagent By lOOul/well 

Example (96 wells): 5.2 ml A, 5.2 ml B 

Wipe pipette tips with paper towel in between rows 

Cover plate, RT, 20 minutes-Avoid direct light 

15. Add Stop Solution-5Oul per well, gently tap plate to ensure thorough mixing 

16. Determine optical density immediately using microplate reader set to 450 nm. 

Subtract readings at 540nm or 570 nm fiom 450nm readings for wavelength 

correction (corrects for optical imperfections in the plate). 



APPENDIX K: HISTOCHEMICAL STAINS 

1 HEMATOXYLIN AND EOSIN STAIN 

Formalin fmed, parafin embedded specimens 

K. 1.1. Solutions 

Harris Hematoxylin Solution (Sigma Cat# HHS-128)-filter 200ml of stock 

solution into staining dish 

Eosin Y Solution Aqueous (Sigma Cat# HT 1 10-2- 128) 

Acid Alcohol 0.5 % in 80% alcohol (99.5ml of 80% alcohol + 0.5 ml HC1) 

K. 1.2. Other Materials 

Cytoseal60 (Cat# 18006, Electron Microscopy Sciences) 

K. 1.3. Methods 

Deparaffinize and Rehydrate 

Xylene (or substitute) 2 x 5 min. 

100% alcohol 2 x 3 min. 

95% alcohol 2 x 2min. 

80% alcohol 1 min. 

Wash in tap water 5 min. 

Hematoxylin, 3 min. Note: be sure to filter hematoxylin prior to use! 

Wash in tap water for 5 min. 

One quick dip in acid alcohol. 

Wash in tap water for 5 min. 

Eosin, 3 quick dips. 

Dehydrate 

100% alcohol 

Xylene (or substitute) 

Coverslip with Cytoseal 

2 x 3 min. 

2 x 3 min. 



K.2. SAFRANIN-0 STAIN 

K2. I.  Solutions 

9 Safranin-0: 0.2% wlv. Add 1 ml acetic acid per 100 ml dH20. 

Example: 0.2 g Saf-0 + lml acetic acid + 100 ml dH20. 

9 Fast Green Stock Solution: 0.2g Fast green + 1 ml acetic acid + 100 ml dfiO. 

Fast Green Working Solution: 1~500 dilution of stock solution in M20. 

9 0.5% Acetic Acid: 1 ml acetic acid in 200 ml dH20. 

K 2.2. Other Materials 

Cytoseal60 (Cat# 18006, Electron Microscopy Sciences) 

Gill's Hematoxylin 

K.2. 3. Methods 

1. Deparaffinize and Rehydrate: 

Xylene (or substitute) 2 x 5 min. 

100% EtOH 2 x 3 min. 

% EtOH 2 x 2min. 

80% EtOH 1 min. 

Wash in tap water 5 min. 

2. Hematoxylin, 3 min. Note: be sure to filter hematoxylin! 

3. Wash in tap water for 5 min. 

4. Fast green - 3 quick dips. 

5. 0.5% acetic acid - 3 quick dips. 

6. Safranin-0 - 30 minutes 

7. Dehydrate 

95% EtOH a few quick dips 

100% EtOH 2 x 3 min. 

Xylene (or substitute) 2 x 3 min. 

8. Coverslip with Cytoseal 



K.3. TYPE It COLLAGEN IMMUNOHISTOCHEMISTRY 

1. Put slides on hot plate (setting 6 for 2 hours or overnight at setting 4 or 5) 

2. Prepared TBS solution as necessary (from Dako packets - box on shelf) 

3. Set up protocol on autostainer & fill all necessary reagents (see steps below) 

- Open "Scott" file 

- 150ul on bottom and middle position of each slide 

4. Prior to loading in autostainer, de-paraffin and rehydrate 

- Xylene 2 x 5min 

- 100% alcohol 2 x 3min 

- 95% alcohol 2 x 2min 

- 80% alcohol 1 min 

- Water 5min 

5. Keep slides wet with TBS while loading in autostainer. 

6. Prime the pumps (make sure fluids fieely moving) and start the program 

7. The autostainer steps: 

* Rinse 

* Proteolytic digestion to unmask antigenic sites (40 min.) 

--Prepared 0.1 % (wlv) Protease XIV (0.0 1 5g in 1 5ml TBS) 

* Rinse 

* Endogenous peroxidase quench (10 min.) 

--Use from Dako kit 

* Rinse 

* Block non-specific binding (30 min.) 

--Prepared 5% horse serum. (0.75ml serum in 14.25ml TBS) 

* Rinse 

* Primary Antibody or negative control (30 min.) 

--Prepare 1:20 dilution of CIICI collagen 2 antibody in Dako diluent 

(Add 0.375ml antibody to 7.125ml diluent) 

--If using diluent with BSA as a protein block, incubation with horse serum may 

not be necessary 



* Rinse 

* Secondary Antibody (1 0 min.) 

--Biotinylated link: biotin labeled goat anti-rabbit and goat anti-mouse IgG. 

--Yellow liquid in Dako kit. (Prepared 15ml) 

* Rinse 

* Tertiary reagent (10 min.) 

--Streptavidin HRP: streptavidin conjugated to horseradish peroxidase 

--Red liquid in Dako kit (prepared 1 5ml) 

* Rinse 

* ''switch" 

* Subtrate-Chromogen solution (1 0 min.) 

--Diaminobenzidine (DAB) 

--Add 1 drop (20ul) of DAB Chromogen per lml of buffered substrate (fiom 

D AKO kit). 

--Mix in supplied graduated test tube and transfer pipette. (prepared 151x11) 

8. Remove slides from autostainer 

9. Wash in dH20 (3 min.) 

10. Stain with hematoxylin (3min. Be sure to filter hematoxylin prior to using) 

1 1. Wash in dH20 (3 min.) 

12. Acid Alcohol - a few quick dips 

--Prepare 1% acid alcohol (lml HCl in 99ml of 80% ethanol) 

13. Wash in dH20 (3 min.) 

14. Dehydrate through xylenes (times rather arbitrary) 

-40% ethanol, a few dips 

--95% ethanol, a few dips 

--loo% ethanol, 1 minute 

--Xylene 

1 5. Coverslip 



K.4. MASON'S TRICHROME STAIN 

1. Dehydrate (as described in previous protocols) 

2. Hematoxylin (Gill or Harris-do not use the Weigert hematoxy1in)-5min 

3. Rinse-5min 

4. Rinse in deionized water-a few dips 

5. Biebrich-Scarlet Acid Fuchsin (deep red)-for 10 rnin 

6. Phosphotungstic/Phosphomolybid Acid (Prepare by mixing equal volumes of 

each)- lmin 

7. Aniline Blue-5 min 

8. 1% Acetic Acid-2 quick dips 

9. Rehydrate rapidly and coverslip 



APPENDIX L: TRASMISSION ELECTRON MICROSCOPY OF 

UNSEEDED GSCG SCAFFOLDS 

1 FIXATION 

L. 1.1. Solutions 

9 0.2M cacodylate stock buffer: Sodium Cacodylate 4.28 g + loom1 distilled water 
Note: addition of acid produces Arsenic gas, work in the hood ifpossible 
Store in refrigerator 

For pH 7.2 add 8.4 ml of 0.2N Hydrochloric Acid to 100 ml of the Sodium 
cacodylate buffer. 

For pH 7.4 add 5.6 ml of 0.2N Hydrochloric Acid to 100 ml of the Sodium 
cacodylate buffer. 

L. 1.2. Procedure 

L. 1.2.1. Primary Fix 

10 ml8% glutaraldehyde 
6 ml0.2M buffer 
6 ml distilled water 

9 Fix specimens in 2% glutaraldehyde in 0.1M cacodylate buffer, on ice, 20 minutes 
rinse with 0.1 M cacodylate working buffer 5 minutes, x3 

L. 1.2.2. Post Fixation 

9 2% osmium tetraoxide in 0.1 M cacodylate buffer for 1 hr on ice in dark 
9 Rinse with 0.1 M cacodylate buffer 5 minutes, x 3 

L.2. ENBLOC STAINING 

9 2% Uranyl Acetate in 50% EtOH for 20 min. 

L.3. DEHYDRATION 

P 70% ethanol, 5 minutes 
80%, 90%, 10 minutes each 

9 100% ethanol x 3, 10 minutes each 
50% ethanol, 50% propylene oxide (PO) for 5 min 

9 Pure PO for 5min x 2 



L.4. INFILTRATION 

Spurr's embedding resin: medium hard mixture; can use 50ml tri-pour beakers to 
measure this out 
> Mix Spurr's embedding resin gently for 5 min with tongue depressor 
> 1 : 1 Spurr:PO o/n on rotator 
> 100% Spurr's mixture (not more than 24 hours old) for 4-6 hours on rotator 
> Embed 70C for 24 hours 

L.5. MICROTOMY 

Trim specimens to lmm square block face 
> Thick sections can be cut 0.51nm, stained with toludine blue to check morphology 
> Thin sections approx 60nm thick (silver to gold) 

Pick up sections on 400 mesh copper grids 

L.6. POST STAIN 

In Evaporator, clean grids by glow discharging 
On bench set up two petri dishes and 3 50-ml beakers of distilled wate 
Place drop of 2%-8% uranyl acetate in petri dish on parafilm 
On each drop place grid sample side down, 15 min in darkness 
Rinse 3x in series of 50 ml beakers containing H20 
Blot dry on lens paper 
While the samples are staining in UA, place one drop of Reynold's lead citrate (with 4 
or 5 pellets of NaOH). Do not breathe on lead! 
Stain grids 7- 10 min, covered petri dish 
Rinse 3x in series of beakers containing H20 and dry on lens paper 
Store in grid box 

* Protocol provided by Patricia Reilly (Assistant Director, DuPont MIT Alliance) 
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