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Abstract

We consider the problem of assigning a scarce number of iuterceptors to a wave of incoming
atmospheric re-entry vehicles (RV). In this single wave. there is time to assign interceptors
to a wave of incoming RVs. gain information on the intercept status. and then if necessarv.
assign interceptors once more. However. the status information of these RVs mayv not be
reliable. This problem becomes challenging when considering the small inventory of inter-
ceptors. imperfect information from sensors. and the possibility of future waves of RVs.

This work formulates the problem as a partiallv observable Markov decision process
(POMDP) in order to account for the uncertainty in information. We use a PONDP solu-
tion algorithin to find an optimal policy for assigning interceptors to RVs in a single wave.
From there. three cases are compared i1 a simulation of a single wave. These cases are
perfect information from sensors: imperfect information from sensors. but acting as it were
pertect: and accounting for imperfect information from sensors using the POMDP formu-
lation. Using a variety of parameter variation tests. we examine the performance of the
POMDP formulation by comparing the probability of an incoming RV avoiding intercept
and the iuterceptor inventory remaining. We vary the reliabilitv of the sensors. as well as
the nmumber of interceptors in inventory. and the number of incoming RVs in the wave. The
POMNDP formulation consistently provides a policy that conserves more interceptors and ap-
proaches the probability of intercept of the other cases. However. situations do exist where
the POMDP formulation produces a policy that perforins less effectively than a strategy
assuming perfect information.
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Chapter 1

Introduction

1.1 Problem Description

For decades. the United States has been vulnerable to ballistic missile attacks that could
devastate the nation with nuclear, biological. or chemical weapons. In today’s world. these
attacks could come from not only a traditional foe such as North Korea or Iran. but also
an accidental or unauthorized launch or, more likely. a stateless terrorist organization [15].
Many of these enemies view weapons of mass destruction as an asymmetric means to counter

the conventional military might of the United States.

In recent vears, ballistic missile technology has spread to more and more countries. Na-
tions all over the world are developing missiles capable of reaching the United States [1]. On
August 31. 1998. North Korea successfully launched the three-stage Taepo Dong 1 missile
over Japan that almost reached Hawaii [5]. While it is not known whether this was a failed
space launch or an intercontinental ballistic missile test, this initially undetected three-stage
niissile proved that North Korea had the capability to hit any point on earth with a several-
hundred pound warhead [5]. Presently it is known that North Korea's Taepo Dong 2 missile
could reach Alaska and Hawaii with a nuclear payload in a two-stage rocket configuration.
If a third stage were added. this missile would likely be able to reach all of North America

[15]. In addition to North Korea, China and Iran are also reported to be developing and
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testing offensive ballistic missiles. These growing threats have led the U.S. to upgrade its
current deterrence posture with a ballistic missile defense system. The goal of this system

is to render missile attacks on the U.S. ineffective.

In 2004 the United States stood up its first defense against long-range missile attacks [15].
For the first time. the U.S. possesses the capability to intercept and destroy an incoming
ballistic missile before it strikes its target [1]. While President Reagan envisioned a robust
defense system capable of rendering missile attacks completely futile, the initial system is
simpler and smaller. This Ground-based Midcourse Defense (GMD) system includes 10 silo-
based interceptor missiles in central Alaska and southern California, which will be connected
by an extensive command and control network to a mix of space- and land-based sensors [1].
Fort Greely, Alaska. currently has eight operational ground-based interceptor missiles and

Vandenberg Air Force Base, California, has control of two more interceptors [3].

This ballistic missile defense system is designed to be the last line of defense if diplomacy
and threats of retaliation fail. Employment of the ground-based interceptor missile is cued on
satellite and radar data and then it uses its own sensors to identify targets launched from any
site [5]. The interceptor correlates its observations with the information from the satellites
and radar, and discriminates between decoys and actual warheads [5]. Interceptor missiles
include a three-stage booster and are tipped with an Exoatmospheric Kill Vehicle (EKV)
[15]. After the interceptor is approximately 140 miles in space. the kill vehicle detaches from

the missile, locates an incoming missile, and destroys it with its sheer kinetic force.

As important as the interceptor missiles themselves is the sensor network used to detect
an incoming attack. This network includes the Air Force’s Defense Support Program (DSP)
infrared early warning satellites. an upgraded early warning radar at Beale Air Force Base,
California, an upgraded Cobra Dane surveillance radar on Shemya Island at the western
end of the Aleutian islands. and three forward-deployed Navy Aegis destroyers equipped
with Spy-1 radars [1]. These Aegis ships provide early target-track data [1]. All of these
sensors and missile launch sites are connected to the heart of the system, the Command and

Control, Battle Management and Communications network, based at Schriever Air Force
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Base. Colorado.

The command and control aspect of this system ultimately relies on human operators
to make decisions about how to defend against an incoming attack. In 2002. United States
Northern Command (USNORTHCONM) was created and given the respousibility to defend
the (1S, against any attack including a long-range missile attack [5]. In twrn. the commander
of USNORTHCOAI holds that responsibility and would likely have tlie authority to make a
decision as to how best to use the interceptor missiles to defend America agaiust an attack.
This commander will rely on United States Strategic Command (USSTRATCONMI) to provide
earlv warning from the previously described sensors and radars [5].

The following is a demonstration of how all components work together in an actual

engagement [1]:

1. DSP satellites initially detect a threat missile’s plume soon after it is launched.

[S]

This alerts the fire-control network which begins planning an intercept. Simultaneously.
the other sensors such as Cobra Dane in Alaska. radars at Beale AFB. California. and

Spv-1 radars on Aegis ships begin tracking the incoming missiles.

3. As operators receive higher quality data on the incoming attack. thev launch their

interceptor missiles.

1. As each EKV detaches from the missile and is deploved into space. radar continues to

update it with track data.

5. Using these updates and its own sensors. the EKV locates the warhead of the incoming

missile and collides with it.

G. Radar then assesses whether or not the incoming warhead was destroved to determine

if other interceptor missiles should be fired.

There are three phases of flight for an incoming ballistic missile: boost. midcourse. and

terminal. The first phase. boost, usually lasts three to five minutes in which the missile is
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powered by its engines [2]. During the midcourse phase. the wissile travels above the at-
mosphere and releases its warheads becoming multiple objects [2]. When the warhead falls
back into the atmosphere it enters the terminal phase [2]. Of these three stages, intercep-
tors target and destroy incoming missiles in the midcourse phase-the longest duration of
the three. During the 20 minute midcourse phase. a single engagement is assumed to be a
“shoot-look-shoot” scenario, in which there are two opportunities to shoot interceptors at a
wave of incoming missiles. We define a shot as a one-time assignment of multiple intercep-
tors to multiple targets. The initial information regarding the number of incoming missiles
is assuined to be completely accurate, and the decision maker has an opportunity to fire
multiple interceptor missiles at this set of incoming missiles. Next, the decision maker has
an opportunity to gain information on which incoming missiles were destroyed and which
incoming missiles remain intact. Lastly. a final decision is made as to how many intercep-
tors to fire at the believed remaining incoming missiles. We assume only enough time for
two shots at a wave of incoming missiles. hence the term “shoot-look-shoot.” The decision
maker must weigh two important issues: saving some interceptor missiles for future waves of
attacks, and stopping all incoming missiles from striking a target. This becomes a resource

allocation problem under uncertainty with multiple objectives.

While this system aims to provide a very robust network of sensors to detect and track
an incoming attack, there are several known limitations. The Cobra Dane radar’s field of
view can only detect a portion of North Korean missile launches [15]. The Beale AFB radar
system has not completed all of its operational testing [15]. Overall. the entire system needs

more extensive testing before America is assured to be safe from a ballistic missile attack.

The future holds a great deal of expansion for the ballistic missile defense system. As
stated in the Missile Defense Agency’s ballistic missile defense system overview, “The mission
of the Missile Defense Agency is to develop an integrated, layered Ballistic Missile Defense
System (BMDS) to defend the United States, its deployed forces. allies, and friends froni
ballistic missiles of all ranges and in all phases of flight” [1]. This means that in the future

the defense system will include more than just the 10 ground-based interceptor missiles
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designed to destroy missiles in the midcourse phase of flight. Eventually the BNIDS will
include Patriot Advanced Capability-3 missiles and Aegis Ballistic Missile Defense Standard
Missile-3 missiles located on forward deployed ships used to destroy short- and medimmn-range
ballistic wissiles. The BNIDS will have ground-based interceptors for intermediate-range and
intercontinental ballistic missiles. An Airborne Laser will he added to the BNDS. emnploying
a high-powered laser attached to an Air Force aircraft designed to destroy a missile in its
boost phase. Lastlv. the BNIDS will have a terminal high altitude area defense element
designed to destroy incoming missiles in their terminal phase [1]. In addition to adding more
methods to shoot down incoming missiles. there will be improvements to current sensors and
added sensors in other parts of the world to augment the current surveillance and detection

compounent of the BMDS.

While all of these future components will likely prove to be important in the lavered.
integrated defense of the United States. this thesis will focus only on the GMD. as it is the

newest and presently the only operational defense against a long-range missile attack.

1.2 Motivation

Because the single engagement problem is a “shoot-look-shoot™ situation. there is infor-
mation to be gained in between the first and second decisions. However, in order for this
“shoot-look-shoot™ technique to be successful, it requires accurate kill assessment after the
first shot opportunity [17]. To the best of our knowledge, this is the first wbrk that addresses
imperfect kill assessment in this domain. Previous work has assumed that after the first shot,
it is known with certainty whether each target has survived or not. This assumption. how-
ever, may not actually be valid. One of the main objectives of this thesis is to compare
the performance of a system making this assumption and a system that tries to account for
imperfect kill assessment. The focus of this thesis will be managing the uncertainty in kill

assessment.
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1.3 Overview of Thesis

This thesis describes the single engagement problem assuining imperfect. kill assessment. We
provide an overview of related research and previous approaches to this problem. We then
introduce a partially observable Markov decision process (POMDP) formulation and assess
the performance of this formulation compared to other methods of solving the problem. We
measure the value of our formulation through a series of experiments and statistical analysis.

The individual chapters are summarized as follows:

Chapter 2: Related Research

In this chapter we discuss the related research applicable to the single engagement prob-
lem. We begin with a discussion of dynamic programming and its characteristics. as well as
guidelines for solving a dynamic programiing problem. We continue with a description of
Markov decision processes (MDP) as a class of problems typically solved by dynamic pro-
gramming. We outline the components and decision cycle of an NIDP. Next, we describe a
variant of the MDP: the partially observable Markov decision process (POMDP). We discuss
the differences between the MDP and POMDP and how they are handled. This chapter con-
cludes with a discussion of the weapon-target assignment (WTA) problem as an approach
to the single engagenient problem. We explain how this approach fails to account for the

imperfect information that is assumed by this thesis.

Chapter 3: Problem Formulation

This chapter outlines three cases of the single engagement problem that we will use to
assess the impact of imperfect kill assessment: perfect information, imperfect information
assumed perfect, and imperfect infc')rmation taken into account. Case 1 acts as a best-case,
and is the case assumed by previous approaches to this problem. Case 2 uses the same
strategy as the first case. except that the assumptions of perfect information no longer ex-
ist. Case 3 accounts for this imperfect information and makes decisions based on this new

assumption. We focus on the third case and formulate it as a POMDP.
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Chapter 4: Implementation

We begin this chapter with a description of the solution process for PONDPs. We start
with a description of the POMDP solver software and the solution algorithms it uses. Next
we discuss how we simulate the single engagement using either the PONDP solver for Case
3 or the maximun marginal return (MMR) algorithm for Case 2 to generate a policy so-
lution. This chapter continues with a description of the experimental design. We divide
our experiments into three sets: initial experiments. a central composite design experiment.
and a set of single-factor experiments. All experiments begin with a baseline setting for
all factors and change factors from this scenario. First. we conduct initial experiments to
examine the effect of three factors on the performance of the PONDP solver and MMR
algorithm. These factors are left constant in the remaining experiments. Next. we use a
central composite design (CCD) experiment testing the effects of five different factors on
the difference in perforinance between the two cases with imperfect information. Lastly, we
run a series of single-factor experiments that vary the same five factors individually. This

provides a more detailed understanding of each factor’s effect on the performance of each case.

Chapter 5: Results and Analysis

This chapter presents the results and analysis of the experiments described in Chapter
4. We begin with outcomes of the baseline scenario and the results from three initial exper-
iments. We continue with statistical analysis on three quadratic models created from the
CCD in Experiment 4. Lastly. we assess the impact of the factors in the final four one-factor

experiments.

Chapter 6: Summary and Future Work

This chapter summarizes the single engagement problem and the POMDP formulation.
along with experimental results and conclusions. It ends with a discussion of suggested

future work for this problem.
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1.4 Chapter Summary

The U.S. has begun to stand up its Ground-based Midcourse Defense-the first defense system
designed to defend against long-range ballistic missile attacks. This system'’s 10 interceptor
missiles are designed to locate and destroy incoming missiles in space based on information
from a complex sensor network of satellites and radar. Due to the very limited number of
interceptor missiles in inventory. each interceptor is a high-valued asset. While still being
tested and upgraded. there is a great deal of uncertainty in this system. It is not known how
effective the interceptors will be at destroying incoming missiles. and there may be problems
detecting and tracking incoming missiles accurately with the current sensor network. The
problem of assigning interceptors to incoming missiles in an attack becomes much more
challenging due to the uncertainty in information from the sensor network. With only two
shots at an incoming missile. it is very important to have accurate kill assessment: that
is, to know which incoming missiles have been destroyed and which ones are still headed
inbound. Finding a way to decide how many interceptors to use in an attack that accounts
for this imperfect kill assessment could be very valuable. This task will be the focus of this
thesis. We accomplish this by assessing the impact of a POMDP formulation that accounts
for imperfect information, and comparing it to existing approaches that do not account for

this uncertainty.
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Chapter 2

Related Research

[ this chapter we discuss the research related to this problem in order to formulate it
mathematically and ultimately solve it. We begin with a discussion of dyuamic programming
and Markov decision processes. Then we discuss the partially observable Narkov decision
process. which will be used in our formulation. Finally. we discuss previous formulations of

related problems and their applicability to other domains.

2.1 Dynamic Programming

The single engagement problem described in Chapter 1 is a sequential decision problem. One
of the primary techniques used to solve a problem that optimizes an objective over several
decisions is dynamic programming. Although dynamic programming problems do not have

a specific formulation. they can be easily recognized by several characteristics [9]:

1. The problem can be partitioned into stages. At each stage a policy decision or action

must be made.

o

Each stage has a munber of states associated with that stage. which are the possible
conditions that the svstem could be in at that stage. There mav be a finite or infinite

numnber of states.



c

~1

9.

The policy decision made in each stage will transforin the current state into a state

associated with the next stage.

A recursion can be created on the optimal cost/reward from the origin state to the

destination state.

To solve the problem. an optimal policy over the entire problem must be found. This

policy provides the optimal decision at each stage for each possible state.

An optimal policy for a future stage is only dependent on the current state and not
the decisions made in previous stages. This property is the Markovian property and is

the principle of optimality for dynamic programming.

. The solution procedure begins by finding the optimal policy for the final stage.

There is a recursive relationship that provides the optimal policy for stage n given the

optimal policy for stage n + 1.

The solution procedure uses the recursive relationship to start at the last stage and
move backward iteratively finding the optimal policy at each stage. This is carried out

until the optimal policy at the first stage is found.

In dynamic programming the time indices are called epochs. The 0-epoch begins at the

end of the planning horizon at the final stage and the epochs increase until the first stage is

reached. In other words an epoch is the nuinber of stages left in which actions can be taken.

According to Bertsimas and Tsitsiklis, the following are guidelines for solving a dynamic

programming problem [4]:

. View the choice of a feasible solution as a sequence of decisions occurring in stages,

and the total cost or reward as the sum of the costs of each decision.
Define the state as a summary of all relevant past decisions.

Let the cost/reward of the possible state transitious be the cost/reward of the corre-

sponding decision.
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2.2 Markov Decision Process

One variant of the tvpical dynamic programining problem in which state traunsitions are
non-deterministic is a Markov decision process (MDP). An MDP is the specification of a
sequential decision problem for a fully observable environment with a Markovian transition

model and additive rewards [14]. Au MDP is defined by four primary conmponents:
1. A set of states: s € S
2. A set of actions for each state: a € A
3. A traunsition model: T'(s.a.s")
4. A reward function for both internediate and terminal rewards for each state: R(s.a. ")

The trausition model specifies the probability of transitioning from one state. s. to an-
other state. &’ in one time step given an action. a. In an MDP there can be rewards for
transitioning from one state to another in intermediate time steps as well as a terminal reward
for being in a state at the final stage. An NDP mayv transition an infinite number of tines
(infinite horizon) or it may only transition a finite number of times (finite horizon). The goal
of an MDP is to choose the optimal actions for the respective states when considering the
expected rewards/costs of those actions. For infinite horizon problewms, a discount factor. 4.
is used to value current rewards over future rewards [14]. Again. the Markovian property.
or “lack-of-memory propertv.” applies because the transition probabilities are unaffected by
the states in stages prior to the current stage [9]

The decision cvele of a Markov decision process is as follows:

1. Based on the current state, an optimal action or decision is chosen from a set of possible

actions.

]

2. The selected action determines the probabilities of transitioning into a new state.

3. An immediate reward/cost is incurred.
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4. The state of the system is determined after each transition.
5. The process is repeated.

A complete policy for the MDP is a specification of the optimal actions for each state.
A solution maps a state to an action (S — A) where s € § and a € A. The objective is to
find an optimal policy of actions considering both immediate and terminal rewards.

Markov decision processes are an important class of problems that are often solvable
through dynamic programming. There are solution methods for MDPs that run in poly-
nomial time in |S|. |A|. and finite horizon or infinite horizon with a discount of 1. The
concept of dynamic programming applied to MDPs forms the basis for the focus of this

thesis: partially observable Markov decision processes.

2.3 Partially Observable Markov Decision Process

A Markov decision process as defined in Section 2.2 assumes that the environment is fully
observable. This means that the state of the system is always known with certainty. However,
in many real-world problems the environment is only partially observable, and the state of
the system may not be known with certainty. As an example, this partial knowledge may
occur if the observer is removed from the process in some way and must gain information
over an imperfect communicatious channel [16]. In the world of ballistic missile defense,
human operators are forced to rely on sensors and radar to determine the status of incoming
ballistic missiles.

Using an MDP to model this type of partial observability falls short as step one of the
decision cycle is not possible. In order to model systems with these characteristics. they are
defined as partially observable Markov decision processes (POMDP). The POMDP. originally
developed by Drake [8], but formalized by Sondik [16]. is “the specification of a sequential
decision problem for a partially observable environment with a Markovian transition model
and additive rewards” [14]. A POMDP is an MDP that handles the case in which states

can “look” the same or where the same state can “look” different each time it is visited. A
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POAIDP is defined by six primary components:

1. A set of states: s € S

D

2. A set of actions for each state: a € A

3. A transition model: T'(s.a.s')

N

. A set of observations: o € O

i

~

5. An observation model: O(s.o0.a. ')
6. A reward function for both intermediate and terminal rewards for each state: R(s.0,a.5)

These elements are defined in 1more detail and in terms of the single engagement problem in
Chapter 4.

A POMDP has the same elements as an MDP with the addition of the set of observations
and the observation model. The observation model specifies the probability of perceiving
observation o given that the system started in state s, ended in state s'. and took action a
to get there. In addition. the reward function may now also depend on observation o.

In MDPs the optimal action depends only on the current state. and a solution maps a
state to an action. In POMDPs the current state is not known. so there is no way to map
a state to an action. Without knowing the current state, the optimal action depends on
the complete history of the system, including the initial information about the svstem. as
well as all subsequent actions and observations. Sondik proved that a sufficient statistic for
this complete history of the system is the belief state [16]. A belief state. b € II(.S). is the
probability distribution over all possible states where I1(S) is the set of all possible belief
states [14]. Let b(s) be the probability of being in the actual state s given the belief state
b. In a POMDP. the optimal action depends only on the system’s current belief state [14].
A solution maps the belief state to an action (II(S) — A). A graphical depiction of a two
state belief state is shown in Figure 2-1. In this two-state POMDP. the belief state can be
represented by a single probability. p. of being in one state. The probability of being in the

other state is simply 1 — p. Therefore, the entire belief space can be represented as a line
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Figure 2-1: Two-state Belief State

segment. The point at 0 on the line segment indicates there is no way the system is in state
s1 and must be in state sy. Likewise. the point 1 on the line segment indicates the system
is in state s; with certainty, and there is no chance of being in state so. This means that
b= (p,1 — p) where b(s;) = p and b(s2) = (1 — p).

While the Markovian property does not hold for the state of the system, it does hold for
the belief state of the system. The optimal policy for any given stage is only dependent on
the current belief state and not decisions made in previous stages.

The decision cycle in a POMDP formulation is now:

1. Based on the current belief state, an optimal action or decision is chosen from a set of

possible actions.

o

The selected action determines the probabilities of transitioning into a new state.
3. An observation on the state of the system is made.
4. An immediate reward/cost is incurred.

The new belief state is calculated based on the action and observation after each

(@24

transition.
6. The process is repeated.

The current belief state can be calculated as the conditional probability distribution over

the actual states given the previous observations and actions so far. If b was the previous
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belief state. action a was taken. and observation o was perceived. then the new belief state.

0. is caleulated for each state. s'. bv Equation 2.1.

O(s".a.0) Y o T(s.a.5")b(s)

(/ }‘/ —
() Pr(ofa. b)

The denominator normalizes the resulting belief state so that it swuns to one. and can be

computed by Equation 2.2.

Pr(ola.b) = Z O(s'.a.0) Z T(s.a.s)b(s) (

eS s€S

1o
o

As an example of updating the belief state. assume the system has two possible states
(s1 and sa). two possible actions (a; and ay). and two possible observations (0, and 0,).

A graphical representation is shown in Figure 2-2. The larger black dot represents the

Figure 2-2: Updating the Belief State

starting belief state. and each of the smaller dots represent a possible resulting belief state
given a certain action and observation. The ares linking these belief states represent the
trausformation of belief states by Equation 2.1. In this example there are onlv four new
possible belief states; one for each combination of actions and observations.

A complete policy for the POMDP is a specification of the optimal actions for each belief

state. The objective is to find an optimal policy of actions considering both immediate
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and terminal expected rewards. However. the challenge in finding an optimal policy for a
POMDP is that. unlike the discrete state space in an MDP, the belief space for a POMDP is
continuous. In contrast to NIDPs. the belief state probabilities create a state space of infinite
size. To deal with this, the belief space can be partitioned into regions where certain actions
are optimal and the long-term value is a linear function of the belief state.

Assume now that the system has three possible actions. The belief space could be par-
titioned into three regions where each of these actions is optimal as shown in Figure 2-3.

These lines in two dimensions, and hyperplanes in greater dimensions, are called alpha vec-

sseuvesnasoranvesenell
T LTI LT T T

0 a, a; a, 1
Figure 2-3: Belief State with Value Function

tors. They are simply vectors with a value for each state, and correspond to an action. An
action is optimal where its alpha vector dominates other alpha vectors. Graphically, this
means one alpha vector lies above another. The value function for a POMDP, V (b), is simply
the upper surface of the alpha vectors over the belief space—a piecewise linear combination
of the alpha vectors. V/(b) is a mapping of the belief space to the expected total reward [7].
Because the 'value function is piecewise linear and convex, the belief space can be partitioned

into regions where certain actions are optimal. Despite the simplicity of Figure 2-3. a belief
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space mav be partitioned into many more regions than actions. and therefore an action can
bhe optimal in several different regions. The belief state can also be represented as a vector
with probabilities for each state. Finding the optimal action for a given belief state requires
calculating the dot product of the belief state vector and each alpha vector and finding which

dot product has the greatest value.

2.4 Mathematical Approaches

Once previous approach to problems similar to the single engagement problem is the weapon-
target assignent (WTA) problem. In the static WTA. weapons are assigned to targets in
order to minimize either the total expected number or the expected value of the remaining
targets [10]. A value is assigned to each target. and each weapon-target pair has a kill
probability associated with it. This is the probability that a certain weapon will destrov a
certain target. The assignment of a weapon to a target is independent of all other weapons
aud targets.

A dyvnamic weapon-target assigniient problem is a static weapon-target assigniment prob-
lem that involves multiple stages. This means that the outcome of an assignment in one

stage can affect the assignment in the next stage. Each stage consists of two steps:
1. Determine which targets have survived the assignient in the previous stage.

2. Assign a subset of the remaining weapons to the targets that survived based on the

objective.

The missile :nlefense single engagement problem can be defined as a dynamic weapon-
target assignment problem. In this application. the weapons are interceptor missiles or
kill vehicles. and the targets are incoming missiles. A certain portion of the inventory of
interceptor missiles (the weapons) must be assigned to a number of incoming missiles (the
targets). In a single engagement there are two stages, so that the outcome of the first
“shot™ in stage 1 may determine the assignment of interceptor missiles for the second “shot™

i stage 2. The objective may be to minimize the probability an incoming missile leaks
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through defenses. to minimize the damage done if incoming missiles are headed for different
locations, or a variety of other potential objectives. The objective function may also be a
weighted function maximizing not only the probability of no leakage, but also the remaining
interceptor missiles left in inventory.

In this problem all incoming missiles (targets) are assumed to have the same value.
In addition, because all interceptors are assumed to be identical, all kill probabilities are
assumed equal. With these assumptions, Hosein, Walton, and Athans showed that in a
dynamic problem with N targets and A weapous. it is optimal to spread the weapons
evenly among all targets at each stage. In addition, given a two-stage problem in which
A > N with M; being the number of assigned weapons in stage one and Af, being the
number of assigned weapons in stage two. it was shown that the optimal assignment has the
property that Af; > N [10].

These conclusions prove to be very useful in solving the single engagement problem.
However, the addition of imperfect kill assessment after the first stage makes it more difficult
to use the weapon-target assignment formulation. Under imperfect information, step one
of each stage becomes verv challenging: determine which targets have survived the last
assignment. This information is no longer known with certainty, and this makes it much

more difficult to accomplish step two: assign weapons to the targets which survived.

2.4.1 Applicability to Other Problems

By no means is this problem only applicable to ballistic missile defense. The work on
this problem can easily be applied to a wide range of battle management problems. More
specifically, the issues of a limited time window. limited resources. impertfect kill assessment,
and severe consequences for every action are very relevant to many defense and non-defense
related problems. As an example of a type of problem that could be formulated in this
manner, we consider the use of unmanned aerial vehicles (UAVs) for reconnaissance and
surveillance. A limited number of UAVs may be assigned to a number of different ground

targets. Information on these targets may be required in a timely manner. Imagery from
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the UAVs mayv not be complete or conclusive. but assigning more UAVs to a target may
improve the infornation received. Assigning more UAVs to a target may cowme at some cost.
such as losing information from other targets. This is one example of a problem to which

the approach in this thesis may also apply.

2.5 Chapter Summary

This chapter progressed through a discussion of the mathematical tools used in this thesis
beginning with the general technique called dynamic programming, a class of problems called
Markov decision processes. and ending with a variant of NDPs. the partially observable
Markov decision process. All of the nine characteristics of dyvnamic programming problems
previously described are applicable to the POMDP when applied to the single engagement
problem. In particular. POMDPs are solved backwards iteratively. The basis for the PONDP
is the Markov decision process and its four primary elements. The POMDP is simply an
MDP with ouly partial knowledge of the state. This complication adds two new elements to
the NMDP: the set of observations and the observation model. Instead of making decisions
based on the current state. decisions must be made based on the belief state. a probability
distribution over all states.

Previously. Hosein. Walton, and Athans formulated the single ballistic missile engage-
ment as a weapon-target assigninent problem. Using this formulation, several key results
were proved about the optimal assigniment of interceptors to incoming missiles. While this
formulation provides valuable insight into this problem. it fails to account for the imperfect
kill assessment in the GMD. Lastly. we discuss the applicability of our approach to other
problems. The value of formulations accounting for imperfect information transcend ballis-
tic missile defense. This approach could be applicable to any problem dealing with limited

resources, uncertainty, and assignments.
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Chapter 3

Problem Formulation

This chapter discusses the three cases we use to assess the impact of imperfect information
on the single engagement problem. These three cases describe different assumptions and
realities in the single engagement problem: a svstem that has perfect kill assessment. a
svstemn that assumes pertect kill assessment incorrectly. and a svstem that makes decisions
taking the imperfect kill assessment into account. We formulate the third case as a partially
obscrvable Markov decision process (PONDP). In order to assess the performance of this

approach. we compare it to the other two cases.

3.1 Perfect Information

In the best case. Case 1. the information received after the first action would be completely
accurate. In this “perfect information™ case. the probability of observing a miss given a
miss actually oceurred. Pr(miss|miss). and the probability of observing a hit given a hit
actually occurred. Pr(hit|hit). would both equal one. The assumption that an observation
is completely accurate simplifies the problem. Case 1 describes the assumptions of previous

work conducted on the single engagement problem.
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3.2 Imperfect Information Assumed Perfect

Given that previous formulations of this problem have assumed perfect information. an
important situation to analvze is one where Pr(miss|miss) # 1 and Pr(hit|hit) # 1. yet
the policy is created assuming that Pr(miss|miss) = 1 and Pr(hit|hit) = 1. This means
that the observations of which incoming targets were hit and missed are taken to be true.
even though there is a chance those observations are incorrect. These assumptions could
have disastrous consequences in an actual engagement. If an incoming target were falsely
believed to be destroved. and consequently no more interceptors were fired at it, it would be
allowed to leak through defenses without being engaged. We refer to this situation as Case
2. In this case the decisions are made with the same assumptions as the first case. Reality.

however, is different.

3.3 Imperfect Information: POMDP Formulation

In Case 3, the imperfect information from sensors after the first shot is known and the policy
solution attempts to account for it. In order to do this. the single engagement problem is
modeled as a partially observable Markov decision process (POMDP). This POMDP has a
horizon of two stages to model the “shoot-look-shoot” aspect of the problemn. Each decision

or “shot” is the action of that stage.

States
We define a state, s, as the following:
§ = (d /))

where 3 is the interceptor inventory remaining and p is the number of targets remaining.

Given this state definition, an initial interceptor inventory (%, and an initial wave of targets
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po- the size of the state space is:

(13() + 1)([)() + 1)

Adding 1 to both 3y and py in this expression. accounts for the states in which 4 = 0 or

p = 0.

Actions

We define an action, a € A, as the total number of interceptors assigned to all targets. given
the current state. s. Many logical restrictions could be placed on the action. As an example
of an action that could be restricted, consider the action of assigning fewer interceptors than
targets even with enough interceptors in inventory. This action would allow a target to pass
through defenses without being engaged. and appears not to be logical. However. in our
formulation the only restriction placed on the allowable actions is ¢ < /3. By assigning a
large negative value in the reward function. these impossible actions. in which a > /3, are
restricted. Although this is the only restriction placed on actions. in theory an optimal
policy will not choose illogical actions given the proper reward function. Given the state.

s = (/4. p). the number of allowable actions is equal to 3 + 1.

Transition Model

In our formulation the only uncertainty affecting the transition from one state to another
is the single-shot probability of kill (SSPK). which is the probability a single interceptor
hits a single target. The probability of transitioning from state s € S to state s’ € S after
taking action a € A is denoted by T'(s.a.s’). The transition model is the three-dimensional
matrix of all of these values. Assuming that the interceptors are evenly distributed among all
targets, either all targets will have the samne number of interceptors assigned to them, or one
group of g; targets will have n interceptors assigned to them and the remaining ¢, targets
will have n — 1 interceptors assigned to them. As an example, if 7 interceptors were assigned
to 3 targets. one target would have three interceptors assigned to it. and two targets would

each have two interceptors assigned to them. This means that g; = 1 target, go = 2 targets.
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and n = 3 interceptors. Let PK; and PK, equal the overall probability of no leakage for
one target given the number of interceptors assigned to each target in the groups containing
g1 and gy targets respectively. PR; and PR, can be calculated using Equation 3.1 and
Equation 3.2.

PK,=1-(1- SSPK)" (3.1)
PKy,=1-(1-8SPK)"-1 (3.2)

Let h be the number of hits or nunber of targets destroyed. This value is calculated by
Equation 3.3.
h=ps— po (3.3)

Because there may be two groups of targets with PA; and PR, associated with them. there
are many combinations of hits from each of the two groups of targets that result in the same
number of overall hits and thus the same transition. To calculate the transition probabilities,
T(s.a,s"), Equation 3.4 sums over all possible combinations that result in the same number
of hits.
h
T(s.a.s) = Y [ (VPR (1 = PR [(7) PE,® (1 = PE))#] | ViesVaesVazs

= (3.4)

It should also be noted that for any action, a, the transition probabilities sum to one over

the ending states:

Z T(s,a,s') =1

s'eS

Observation Model

The observation model is the main component that differentiates a POMDP from an MDP. In
this problem the observation probability, O(s'. a, 0), is based on the probabilities Pr(miss|miss)
and Pr(hit|hit). Table 3.1 depicts a confusion matrix of these probabilities. Ultimately, the
observation model is a three-dimensional matrix dependent on the starting state, action, and

resulting state.
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Observed
Hit Miss
_ Hit | Pr(hit|hit) | Pr(miss|hit)
Actual Miss | Pr(hitjmiss) | Pr(miss|miss)

Table 3.1: Confusion Matrix

In order to calculate the observation probabilities we define the following variables:

| Variable | Definition |
P, Pr(miss|miss)
P Pr(hit|miss)
P],;, Pl‘(lliﬂh-ﬁ)
P Pr(miss|hit)
my, number of observed target misses
h, number of observed target hits
My nunber of actual target misses
h, number of actual hits
b lower bound on number of actual misses
ub upper bound on number of actual misses

Table 3.2: Variable Definition for Observation Probability Calculation

where b = max(0, (m, — h,)) and ub = min(m,.m,) in order to account for the correct
combinations of possible observations. Equation 3.5 shows the equation to calculate each

observation probability, where O(s', a.0) = Pr(o|<. a)
! .

ub

()(SI- a. 0) = Z [ [(:‘,na)Pmmi(l - Pmm)ma_i] [(fnao_j)thmn_i(1 - Rnh)ha%m“_”] ] (3 r)
i=lb

where

Z O(s',a.0) =1

0€e0

Reward Model

The objective of the single engagement problem is to minimize the probability that any
targets leak through defenses while maximizing the number of interceptors left in inventory

after the engagement. To reconcile these two competing objectives, a weight, wy. is used.
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where 0 < w; < 1.0. Let P, equal the probability of no leakage for the entire single
engagement. The reward function in Equation 3.6 balances the percentage of initial inventory
of interceptors remaining and the probability that no targets leak through defenses after the
transition. We scale the remaining inventory by the initial inventory in order for 0 < %Oi <1
just as 0 < P,y < 1. A wy close to zero tells the POMDP solver to be much more conservative
with its inventory of interceptors. while a wy close to one tells the POMDP solver to value
minimizing leakage much more than saving interceptors. This weight is varied in subsequent

experiments to determine its iipact on engagement success.

3
R(s.0.a.8") = (1 —wy) (/—> + wy Py (3.6)
Bo

In the context of this problem, as with many POMDPs, the ending state is more im-
portant than the intermediate states. For example, targets remaining after the final shot
have far more severe consequences than targets remaining when there is still one shot left at
them. To account for this characteristic, terminal rewards can be specified for the POMDP.
These rewards simply place a value on each of the possible final states. The terminal reward
function in this problem took the form of Equation 3.7. where wr, is the weight given to the
inventory remaining and wr, is the weight given to the targets remaining. In this equation,
(s is not scaled as it is in the intermediate reward function, because its competing metric is

ps, Which is the number of targets remaining.

F(s) = wr, s — wr,ps (3.7)

3.4 Chapter Summary

This chapter discusses the three cases to be used for comparison to assess the effect of
imperfect information on interceptor assignment. The first case assumes (correctly) perfect
information from sensors. The second case assumes (incorrectly) perfect information from

sensors in a world where information is not perfect. The third case attempts to account for
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imperfect information in its decision making. The focus of this chapter is on the last case.

which is formmlated as a partiallv observable NMarkov decision process.
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Chapter 4

Implementation

This chapter discusses the methodology used to solve and test each of the three cases outlined
in Chapter 3. We begin with a description of the maximmumn marginal return (MMR) algo-
rithim used to make assignments for Cases 1 and 2. Next. we discuss the PONDP solution
algorithims used in Case 3. We then outline how these algorithins are used in the solution
process. Finally. we discuss the experimental design utilized to compare the performance of

the three cases.

4.1 MMR Algorithm

Although they deal with different information certainty. the first two cases described in
Chapter 3 use the same algorithm to make interceptor assignments: the maximum marginal
return (NMMR) algorithm. The NNMR algorithm variant used in this work assigus interceptors
to targets in a single engagement. The objective of this algorithm is to minimize the munber
of interceptors used while meeting a probability of no leakage threshold. These two goals are
i opposition to each other. In order to do this. the algorithm iteratively assigns interceptors
to targets one-at-a-time until either the overall probability of no leakage reaches the threshold
or no interceptors remain in inventory. The threshold for this MNR version is 0.99 to focus

on maximizing F,; without using all inventory. If the threshold was P,; = 1.0. the algorithm
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would consistently use all interceptor inventory. After each iteration. every target’s marginal
probability of leakage is calculated and the target with the highest probability is the next
target to gain another interceptor assignent in the following iteration.

The MMR algorithm also assigns interceptors to one of the two time stages. For instance,
the algorithin initially assigns some interceptors for stage one and some for stage two. but
the assigned interceptors for stage two are not actually fired in stage one, but are planned to
be fired. In this way the algorithin chooses the best two-stage strategy, with the knowledge
that it will replan after kill assessment of the first stage. After the assignment is made in
stage one, the algorithm is run again to make a new assignment for stage two based on the
number of targets that still remain. During the first assignment, when determining which
time stage to assign an interceptor, if none have been assigned to a target, the assignnent
is made to the first time stage. Otherwise. the assigninent is made to the stage with fewer
interceptors assigned. with the second stage gaining the assignment in the event of a tie.
This second stage preference provides the same probability guarantee with fewer expected

interceptors used. A description of this algorithm is shown in Algorithm 4.1.

Algorithm 4.1 Maximumm Marginal Return Algorithin
B &3
Pnl <0
while P,; < 0.99 and B > 0 do
for all p targets do
Find target with highest probability of leakage
Assign one interceptor to that target
if In stage 1 then
if First interceptor assigned to target then
Interceptor assigned to first stage
else if Each stage has equal interceptors assigned then
Interceptor assigned to second stage
else
Interceptor assigned to stage with fewer interceptors assigned
Recalculate F,; based on new assignments
B&B-1

The MMR algorithm was tested on a variety of scenarios of varying interceptors and

targets under the Case 1 assumptions. The algorithm provides a policy solution and from
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that policy a probability of no leakage as well as an estiinated inventorv remaining are
calculated for each scenario. These measures of performance. P,; and /. are calculated
using SSPAR. The values shown in Table 4.1 and Table 4.2. were estimated using Monte
Carlo simulation of 10.000 trials of the single engagement assuming SSPR = (0.8. These
probabilities provide a good benchmark for the probabilities for the other cases. Likewise.
the average remaining inventory for Case 1 provides a good benchmark for the other cases’
remaining inventory. Hypothetically. P,; is greater in this case. than in the case in which

the information is imperfect.

| Interceptors | Targets ]

1 2 3 4 D 6 7 8 9 10

1 0.7961 0 0 0 0 0 0 0 0 0

2 0.9593 | 0.6403 0 0 0 0 0 0 0 0

3 0.9922 | 0.8963 | 0.5076 0 0 0 0 0 0 0

4 0.9984 | 0.9708 | 0.8214 | 0.4059 0 0 0 0 0 0

) 0.9984 | 0.9888 | 0.9438 [ 0.7445 | 0.3294 0 0 0 0 0

6 0.9982 | 0.9931 | 0.9737 | 0.9020 | 0.6626 | 0.2675 0 0 0 0

7 0.9982 | 0.9968 | 0.9872 [ 0.9504 | 0.8541 | 0.5773 | 0.2060 0 0 0

8 0.9980 | 0.9973 | 0.9911 | 0.9775 | 0.9173 | 0.7915 | 0.5084 | 0.1671 0 0

9 0.9980 | 0.9985 | 0.9957 | 0.9812 | 0.9572 | 0.8794 | 0.7371 | 0.4406 | 0.1277 0

10 0.9987 | 0.9986 | 0.9963 | 0.9910 | 0.9684 | 0.9376 | 0.8428 | 0.6811 { 0.3731 | 0.1093

11 0.9979 | 0.9982 | 0.9975 | 0.9927 | 0.9879 | 0.9515 | 0.9047 | 0.8052 | 0.6194 | 0.3166

12 0.9985 | 0.9977 | 0.9988 | 0.9943 | 0.9871 | 0.9764 | 0.9325 | 0.8779 | 0.7610 | 0.5655

13 0.9988 | 0.9977 | 0.9990 | 0.9952 | 0.9915 | 0.9810 | 0.9664 | 0.9153 | 0.8439 | 0.7125

14 0.9987 | 0.9981 | 0.9995 | 0.9968 | 0.9943 | 0.9898 | 0.9746 | 0.9510 | 0.8915 | 0.8094

15 0.9982 | 0.9982 | 0.9991 | 0.9974 | 0.9951 | 0.9910 | 0.9843 | 0.9610 | 0.9326 | 0.8599

16 0.9984 | 0.9984 | 0.9996 | 0.9988 | 0.9957 | 0.9928 | 0.9880 | 0.9753 | 0.9526 | 0.9086

Table 4.1: Probability of No Leakage with Perfect Information (Case 1) using MMR Algo-
rithm. SSPR = 0.8

4.2 POMDP Solver

To solve the POMDP used in Case 3, we use the software pomdp-solve, version 4.0. developed
by Cassandra [6.. Using a basic dynamic programming approach working backwards in
time. this software can use a variety of different algorithms to solve the POMDP. It is

capable of solving both finite and infinite horizon problems and implements a number of
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[ Interceptors | Targets

1 2 3 4 5 6 T 8 9 10
1 0 0 0 0 0 0 0 0 0 0
2 0.8012 0 0 0 0 0 0 0 0 0
3 1.613 | 0.639 0 0 0 0 0 0 0 0
4 2.4 1.2772 | 0.5181 0 0 0 0 0 0 0
) 3.4081 | 1.9284 | 1.0178 | 0.4146 0 0 0 0 0 0
§ 4.4102 | 2.8783 | 1.5303 | 0.8242 | 0.3323 0 0 0 0 0
7 5.4009 | 3.2964 | 2.4007 | 1.2546 | 0.6544 | 0.2624 0 0 0 0
8 6.385 | 4.2925 | 3.3375 | 2.0682 | 0.9771 | 0.5216 | 0.2056 0 0 0
9 7.4147 | 5.2842 | 4.2498 | 2.8728 | 1.727 | 0.7743 | 0.4052 | 0.1688 0 0
10 R.3841 | 6.2662 | 4.6554 | 3.6867 | 2.4393 | 1.4451 | 0.6363 | 0.3236 | 0.1334 0
11 9.3958 | 7.2503 | 5.1462 | 4.4978 | 3.1653 | 2.0832 | 1.2433 | 0.4938 | 0.2654 | 0.104
12 10.384 | 8.2628 | 5.6412 | 5.3329 | 3.9222 | 2.7741 | 1.77567 | 0.9779 | 0.3978 | 0.2114
13 11.402 | 9.2543 | 6.6572 | 5.907 | 4.6885 | 3.4174 | 2.3616 | 1.519 | 0.8415 | 0.3273
14 12.392 | 10.267 | 7.6374 | 6.4342 | 5.6035 | 4.091 | 2.9768 | 2.0154 | 1.2544 | 0.71G9
15 13.408 | 11.266 | 8.6178 | 6.9909 | 6.517 [ 4.943 | 3.5021 | 2.4982 | 1.6992 | 1.0675
16 14.39 | 12.252 | 9.6342 | 7.4991 | 7.1632 | 5.8672 | 4.3381 | 3.0246 | 2.1616 | 1.4079

Table 4.2: Average Inventory Remaining with Perfect Information (Case 1) using MMR
Algorithm, SSPK = 0.8

algorithms including the enumeration. witness. and incremental pruning algorithms. The
software requires an input file specifying the number of states, actions, and observations.
as well as the complete transition model. observation model, and reward model. We wrote
and used an input file writer to create such an input file. The input file writer begins with
the basic settings: By. po. SSPK. Py. Py, and wy. It then calculates the transition
probabilities. observation probabilities, and reward matrix using the equations described in

Chapter 3 and then writes them to a file.

4.2.1 POMDP Solution Algorithms

Ever since Sondik’s formalization of the POMDP and his “One-Pass Algorithm,” [16], so-
lution algorithms for POMDPs have been proposed and researched. Because the ballistic
missile defense single engagement problem is a “shoot-look-shoot” problem with two possible
actions. it has a horizon of only two. Therefore, only finite-horizon algorithms are discussed
in this section. All finite-horizon algorithms follow the same general structure as shown in

Figure 4-1. First, the 0-epoch value function, V4(b), is constructed using the terminal values.
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Figure 4-1: Finite-horizon POMDP Algorithm Structure

Terminal values place a reward or cost on each state for the final stage of the system. Next.
the value function for the next epoch is computed. This dynamic programming update of
the value function for each belief stage works backwards iteratively from the final stage in a
recursive manner until the epoch equals~ the horizon of the problem. This process defines a

new value function. V'(d). from the current value function. V(b) as shown in Equation 4.1
[7].
V'(b) = max Z R(s.a)b(s) + Z Pr(ola, b)V (b2) (4.1)

aeA s€S 0€0

This equation states that the value function for a belief state, b. is the value of the best action
possible from b of the expected immediate reward for that action plus the expected value
of the resulting belief state, b. This dynamic programming update is conducted until the
horizon is reached. At that point. an optimal policy is produced [18]. This policy specifies
the best action to take at that stage given the observation.

The main distinction between POMDP solution algorithms is the way they generate a
finite set of points to build the alpha vectors for the value function. The process of finding
dominant alpha vectors requires the use of linear programming. It should be noted that

in some problems it is difficult to find regions where one alpha vector dominates others.
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This may cause numerical instability in the linear programming problems. The work in this
thesis investigated three primary algorithms to solve the POMDP: Monahan's enumerative

algorithm, Littman’s witness algorithm, and Zhang and Liu’s incremental pruning algorithin.

Enumeration Algorithm: This type of algorithm. which was mentioned by Sondik in
1971. but formalized by Monahan in 1982. does not actually try to find a finite set of points
to build the alpha vectors [6]. Instead it simply enuwerates all alpha vectors [12]. From
this superset of vectors, extraneous vectors are deleted if they are dominated by others.
Ultimately the algorithm generates a set of dominant alpha vectors of minimal size. The
problemn with this algorithm is that the nunber of alpha vectors becomes very large as the
horizon or number of epochs in the problem increase [6]. Even using the simple example in
Figure 2-2 with two actions and two observations, the number of alpha vectors can become
very large. This problemn starts with only one alpha vector at the 0-epoch. which is the
terminal value function. At each epoch the number of alpha vectors grows exponentially, so
the total munber of alpha vectors is doubly exponential in the horizon. It is clear that more
complex problems with more possible actions and observations would require the generation
of an excessively large number of alpha vectors. For this reason, enumerative algorithms are

best suited to problems with small numbers of actions. observations, and a short. horizon.

Witness Algorithm: This algorithm, developed by Littman. Cassandra. and Kaelbling,
differs in the way it finds a set of alpha vectors of minimal size [11]. Instead of enumerating
all possible alpha vectors and paring that set down. it builds up to that set one vector
at a time. The witness algorithm defines regions for an alpha vector and looks for places
where the vector is not dominant [11]. It starts with an arbitrary belief state. and finds
the dominant alpha vector for this belief state. While it is known that the alpha vector is
optimal for this point. it is not known where this vector is not dominant. The algorithm
then defines a region of the belief space for this alpha vector and then searches for a point
where it is not dominant. Unlike other algorithms, the witness algorithm defines a value
function in this manner for each action separately. Then, it combines the value functions in

the end to create the final value function. In addition to maximizing over actions in isolation.
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the witness algorithm deals with one observation at a time. In choosing a vector for each
observatiow. it chooses an action. The algorithm then searches one observation at a time for
a choice that improves the overall value. If it finds an action and corresponding vector that
improves the value function. then that serves as witness that the current value function is
not the final value function [6].

Incremental Pruning Algorithm: This algorithm. originally proposed by Zliang and
Liu [19] but developed by Cassandra. Littman. and Zhang [7]. is the latest and fastest
algorithm for solving POMDPs. It combines elements of Monahan's enumeration algorithm
and the witness algorithin [6]. Instead of finding the regions where alpha vectors dominate.
this algorithin focuses on finding different combinations of future strategies. It begins by
generating alpha vectors for a fixed action and observation. These vectors are compared and
dominated vectors are removed. creating a dominant set of alpha vectors for only this action
and observation. From there. the sets are combined for all the observations and dominated
vectors are removed. creating a dominant set of alpha vectors for each action. Finally. the
sets for each action are combined and dominated vectors are removed. creating the value

function. V(b).

4.3 Solution Process

The assumptions of this thesis make the single engagement a stochastic process based on
several probabilities: SSPK, Py, and P,,,,. In order to determine how the policies generated
by the MAMIR algorithiu and the POMDP solver perform, we used a Monte Carlo simulation
of the single engagement, to calculate estimates for P,; and /4. This simulation can be run
using either the MMR algorithm for Case 2 or the POMDP solver solution for Case 3. The
Monte Carlo simulation for Case 1 is much simpler. as Py, = 1 and P,,,, = 1. Therefore,
the only uncertainty comes from SSPK.

Figure 4-2 depicts the solution process for Case 2. In this case. the input file writer begins
with the basic settings: interceptors. targets, SSPK. Py, Ppnm, and wy. It then calculates

the transition probabilities and the observation probabilities. All of the initial settings, the
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Figure 4-2: Solution Process Using MMR Algorithm

transition model, and the observation model are then used by the simulation. To determine
the actions. the simulation calls the MMR algorithm. which takes the observation as the true
number of targets remaining. The MMR algorithm then provides an optimal policy back
to the simulation. The single engagement is simulated many timnes for the same settings in

order to calculate average measures of performance.

When using the simulation with the POMDP solver of Case 3, the program flow is
as depicted in Figure 4-3. As with Case 2, the input file writer begins with the basic
settings and produces an input file for the simulation. In addition, it also produces two
input files for the POMDP solver: one containing the transition model, observation model.
and reward function and one containing the terminal rewards for each state. With these input
files, the POMDP solver uses the selected POMDP solution algorithm, such as incremental
pruning. and produces a solution file containing alpha vectors and their associated actions.
After translating this file into a matrix for the alpha vectors and a vector for the actions
corresponding to each alpha vector, the simulation uses them along with the initial settings
from the input file writer. Again the simulation is run many times to estimate average

probability of no leakage and average inventory remaining. The entire process depicted in
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Figure 4-3: Solution Process Using POMDP Solver

Figure 4-2 for Case 2 and Figure 4-3 for Case 3 combine to form one run of each experiment

to be described in detail in the following section.

The simulation was developed to run a simulated single engagement a large number of
times to gain an accurate assessment of the strategy and settings chosen based on several
response variables. It begins by using either the MMR algorithm or the PONDP solution
policy to determine an initial action. If the simulation is using the POMDP strategy, the
belief state is multiplied with each alpha vector to produce a value. The alpha vector resulting
in the highest value corresponds to the best action to take. If the MMR strategy is used,
the simulation simply invokes the MMR algorithm to determine the best action given the
situation. The algorithim plans the assignment for two stages. and the simulation uses the
first stage assigniment as the first action. The simulation then determines how many targets
are in g; and g, and how nany interceptors are fired at each target n and n — 1. respectively.
With those values it calculates PK; and PK,. It then generates a random number between
zero and one for each target and compares it to PK; or PR,. If the random number is
less than PR, or PKj. the target is hit. Then, a new random number is generated for

each target. This number is compared to Py if the target was hit and P, if the target
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was missed. If the random number is less than P, or P,m, the observation is correct.
Next, a second action is determined from either the POMDP solution policy or the MMR
algorithm based on the observed number of targets remaining. For the POMDP case, this is
accomplished by updating the belief state, and multiplying it with each alpha vector to find
the highest value corresponding to the best action. For the MMR strategy. the algorithm
replans its assignment for stage two based on the new observations. providing the second
action. The process of generating a random number to compare to PK; and PK, is then
repeated to determine the final state of the system. Running this simulation over many trials
produces an average estimate of the response variables: inventory remaining. targets leaked.

and probability of no leakage. A description of this simulation is depicted in Algorithm 4.2.

4.4 Experimental Design

The experimental design has three separate sets of experiments. First, three initial experi-
ments were run varying factors that are later held constant. In this set of experiments we
screen these variables to determine their effect on system performance. as well as establish
an optimum set of values for the factors. Next, a central composite design of 87 runs was
conducted varying five different factors at two levels each, in order to see how these factors
and their interactions affected the results. Lastly, one-factor experiments were conducted on
those five factors to determine how they affected the results when varied over a wide range of
values. Whereas, in the second set of designed experiments, we used a CCD to determine if
each factor had significant influence on the response variables, and if there were interactions
between factors. this last set of experiments provides different information by showing the

effect of the input variables over the full spectrum of their possible values.

o4



Algorithm 4.2 Single Engagement Simulation

I<=0.L<0
fori=1totdo
he=0.m, < 0. hy,<=0.m, <0
if Case 2 then
Determine a from MMR Algorithm
else {Case 3}
Determine a from POMNDP alpha vectors
1< J—a
Calculate ¢,. go. n. PK;. PK,
for all g, targets do
Generate random number 0 < PR ;,, <1
if PK,;,, < P, then
he < hya+1
else
Mg <= mg+1
for all g, targets do
Generate random number 0 < PRy, <1
if PR, < PR, then
he, < h, +1
else
My <= Mg+ 1
for all p targets do
Generate random number 0 < P, <1
if Target hit then
if Pobs S }—)h.h then
h,< h,+1
else
m, <= m,+ 1
else {Target miss}
if Pob.s- < Rn'm. then
m,<m,+1
else
h, < h,+1
Repeat once
if m, > 0 then
L& L+1
l<=1+/
R)I = %
Py &= %

%)



4.4.1 Initial Experiments

The initial experiments started with a baseline scenario that is a combination of input factors
chosen as a likely real-world scenario. We then ran three different experiments varying the
algorithm. terminal rewards, and the single-shot probability of kill (SSPK), leaving all other
factors at the baseline level. The purpose of these experiments is to get a general idea of how
these factors affected the POMDP solver software, before leaving them constant in the main
experiments. The baseline scenario was first run for 10,000 trials of the simulation with the

settings shown in Table 4.3.

| Factor | Value |

Bo 10
Po 3
SSPK 0.8
F)hh. 0.8
Pom 0.8
Wy 0.7
wr, 1
ur, 100

Table 4.3: Baseline Scenario

Each of the three initial experiments began with the baseline scenario and varied one of

the factors.

Experiment 1: This experiment varied the algorithm used in the POMDP solver software.
The three algorithms examined are enumeration, witness, and incremental pruning.
While Cassandra, Littman, and Zhang assert that the incremental pruning algorithm
is the fastest algorithm to date, we conduct this experiment to test the algorithms on
our problem. The response variables are the following: solving time. instability, policy
solution, and number of alpha vectors. Each run of this experiment consisted of 10,000

simulation trials.

Experiment 2: This experiment varied the terminal reward function for the POMDP solver

software. From Equation 3.7, wr, and wrp, were varied. This experiment set wr, to
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different orders of magnitude, and one experimental run also set both wr, and wr, to

zero. One run also turned off the terminal reward setting for the solver. Each run is

compared on the following response variables: solving time. instability. policy solution.

and number of alpha vectors. Due to increased execution time of the simulation. each

run in this experiment consisted of 1,000 simulation trials.

Experiment 3: This experiment varied SSPK at different levels between 0.5 and 1 to

examnine its effect on the two cases assuming imperfect information. Due to the con-

siderable time required to generate Table 4.1 and Table 4.2 for the perfect information

case. further experiments were run using only one value: SSPR = 0.8. Runs were

compared on the following response variables: policy solution. targets leaked. remain-

ing inventory. and probability of no leakage. Each run in this experiment also consisted

of 1.000 simulation trials.

Table 4.4 summarizes these three experiments.

| Experiment | Varied Factor | Levels Response Variables |
Enumeration S(;h'ltngi)}jtm?
1 Algorithms Witness nstabiuty

Incremental Pruning

Policy Solution
Alpha Vectors

None
wr, =0, ur, =0
wr =1 wp =1
2 Terminal Rewards, F(s) | wr, =1, wp, = 10
wr, = 1, wr, =100
un = 1, wr, = 1000
wr, = 1. wr, = 10000

Solving Time
Instability
Policy Solution
Alpha Vectors

3 SSPK 0.5 <SSPK L1

Policy Solution
Targets Leaked
Remaining Inventory
Prob of No Leakage

Table 4.4: Initial Experiments
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4.4.2 Central Composite Design Experiment

The purpose of Experiment 4 is to understand how five different factors affect the outcome
using the MMR algorithm and the POMDP solver. The five factors varied in this experiment
were the number of interceptors (3, ), the number of targets (pg), the observation probabilities
(Pup and Py, ). and the intermediate weight (wy). In order to truly know the effects of the
five factors, including quadratic effects and interactions between factors, a central composite
design (CCD) was used. The importance of this design is two-fold. First, it allows us to
determine interaction effects of different factors. While “one factor at a time” experiments
may show that the response increases as a factor increases, it may be true that the response
actually decreases when that factor increases and another factor decreases. This implies
that there is a significant effect on the response by an interaction between the two factors.
If we only examine the effect of a factor as all other factors are held constant we really
do not know how the response performs in other regions of the factor space. As a result,
our conclusions are very dependent on the initial conditions and we may be led to a false
conclusion. Secondly, the CCD allows the fitting of a second-order model [13]. This would
imply that the effect of some factors on the response is not linear. Both of these occurrences
seem likely with respect to our problem. First, it seems likely that factors such as the number
of interceptors and targets would have significant interaction effects. Secondly, it seems likely
that the effect of some factors on the response is nonlinear given that one response term is

a probability.

The CCD begins with a 2° factorial design, which sets the five factors at a high and
low level, creating 32 runs for all combinations of each of these levels. Then to check for
curvature, axial runs and center points are added to the design. A center point simply sets
all the factors to a level halfway between the high and low levels. Axial runs set all factors to
the center level and one factor to a certain distance from the design center, o [13]. With five
factors, this experiment had 10 axial points. A graphical depiction of a two-factor central
composite design is shown in Figure 4-4. In order for the model to provide good predictions

throughout the region of interest, the design must have rotatability, which means that the
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Figure 4-4: Two-factor Central Composite Design

variance of the predicted response should have equal variance at all design points that are
equal distance from the design center [13]. This is a‘ttjained by choosing the proper a. In
general. setting a = n;!/* where n s is the number of factorial runs leads to a rotatable
design [13]. In this experiment, n; = 32 so a = 32!/ & 2.378. Multiplying o by the distance
from the factorial points to the design center provides the distance from the axial runs to
the design center for each factor. This distance was rounded to the nearest integer for the

factors 3y and py.

The factorial runs, ny, and the axial runs, n,. were replicated twice. while the center
point. n, was replicated three times for a total of 87 runs. According to Montgomery, three
to five center points provide reasonable stable variance of the response [13]. In experimental
design. replication is used to obtain an estimate of experimental error and to obtain more
precise estimates of the effects of the factors [13]. In this experiment, the same settings
for the POMDP solver produce the same policy, and the output of the POMDP solver
provides the input for the simulation. Therefore, the only variation in results comes from
the stochastic simulation. If enough trials are used in the simulation, there should be very

little difference in the response variables between replicates of the same factor settings.
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Each run in this experiment consisted of 1.000 simulation trials. Table 4.5 shows the design
matrix for this experiment without any of the replicates. Because the POMDP solver, MMR
algorithm, and simulation have no memory. each run is completely independent. Because
of this independence, randomization of trials is not necessary in this experiment. and runs

were conducted in the order depicted in Table 4.5.

4.4.3 Single-Factor Experiments

Finally. one-factor experiments were conducted on each of the five factors varied in the CCD.
In each of these experiments, all settings were set to the baseline level, except for the factor
of interest. From there. that factor was varied over a wide range of relevant values. The
goal of these experiments is to compare the performance of the three cases as each of the
five factors changed over a wide range of values. They provide a more detailed depiction
of what happens to the response variables as one factor changes. The important response
variables examined in all of these experiments were: policy solution, targets leaked, inventory
remaining, probability of no leakage, and a linear combination of inventory remaining and
probability of no leakage based on the weight, w;. Except for Experiment 5, each run in all

experiments consisted of 1,000 simulation trials.

Experiment 5: This experiment varied the intermediate rewards weight. w;, used by the
POMDP solver software. We set u'; to values between zero and one at intervals of 0.1.
Because the MMR algorithm does not depend on w; to make decisions, Case 2 only
required one experimental run. This decreased simulation time greatly, and each run

consisted of 10,000 simulation trials.

Experiment 6: This experiment varied Py, and P, simmultaneously. While this is not
truly a single-factor experiment, it was found that varying Py, and P, separately
produced the same results as varying them simultaneously. This experiment set Py
and P,,, to values between 0.5 and 1. While it is possible to examine values between

zero and one, the most relevant values were those in which Pyp, = Py > 0.5. If sensors
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[ Run | Type I /j() I 0 I ]D/z/l I Pmm [ wy |

1 Ny 7 3 0.6 0.6 0.3
2 "y 11| 3 0.6 0.6 0.3
3 0y 7 b 0.6 0.6 0.3
1 ny 11| 5 0.6 0.6 0.3
5 Ny 7 3 0.8 0.6 0.3
6 ny 111 3 0.8 0.6 0.3
7 N 70508 06 0.3
8 ny 111 5 0.8 0.6 0.3
9 Ny 7 3 0.6 0.8 0.3
10 ny 11| 3 0.6 0.8 0.3
11 n;, | 7] 5] 06| 08 |03
12 Ny 1115 0.6 0.8 0.3
13 "y 7 3 0.8 0.8 0.3
14 ur; 11| 3 0.8 0.3 0.3
15 ny 7 ) 0.8 0.8 0.3
16 ny 1115 0.8 0.8 0.3
17 ny 7 3 0.6 0.6 0.7
18 ny 11| 3 0.6 0.6 0.7
19 uk; 7 5 0.6 0.6 0.7
20 ny 11] 5 0.6 0.6 0.7
21 ny T 3 1 0.8 0.6 0.7
22 ny 111 3 0.8 0.6 0.7
23 "y 7 5 0.8 0.6 0.7
24 ny 111 5 0.8 0.6 0.7
25 Ny 7 3 0.6 0.8 0.7
26 ny 11| 3 0.6 0.8 0.7
27 ny 7 5 0.6 0.8 0.7
28 ny 11| 5 0.6 0.8 0.7
29 ny 7 3 0.8 0.8 0.7
30 ny 111 3 0.3 0.8 0.7
31 ny 7 b5} 0.8 0.8 0.7
32 nyg 111 5 0.8 0.8 0.7
33 Ng 5 4 0.7 0.7 0.5
34 Ng 13| 4 0.7 0.7 0.5
35 Ne 9 2 0.7 0.7 0.5
36 Ny 9 6 0.7 0.7 0.5
37 Ny 9 4 ] 046 0.7 0.5
38 Ng 9 4 10941 0.7 0.5
39 Ng 9 4 0.7 | 046 | 05
40 Na 9 1 0.7 | 0.94 | 0.5
41 Na 9 4 0.7 0.7 | 0.02
42 Ng 9 4 0.7 0.7 | 0.98
43 Ne 9 4 0.7 0.7 0.5

Table 4.5: Central Composite Design Matrix
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were so unreliable that thev gave the wrong information most of the time, this entire

exercise as well as the actual system would be ineffectual.

Experiment 7: This experiment varied the number of initial interceptors in the scenario
between 3 and 16. The experiment did not include runs with the initial inventory
less than 3. because the most relevant runs involved more interceptors than targets.
With fewer or equal interceptors than targets. the best action is to assign all of the

interceptors in inventory.
Experiment 8: The number of initial targets in this experiment was varied between 1
and 10. Again. as the nummber of targets approaches the number of interceptors, the

resulting policy solution is less interesting, as all of the inventory will be assigned.

Table 4.6 summarizes these three experiments.

| Experiment Varied Factor | Levels [ Response Variables |
Policy Solution
Targets Leaked
Remaining Inventory
Prob of No Leakage
Policy Solution
Targets Leaked
Remaining Inventory
Prob of No Leakage
Policy Solution
Targets Leaked
Remaining Inventory
Prob of No Leakage
Policy Solution
Targets Leaked
Remaining Inventory
Prob of No Leakage

5 Intermediate Weight, w; 0<u; <1

05<P,m<1
6 Pmm and Ph,h‘ 0.5 S P hh S 1
P, mm — Ph,h.

7 Interceptors, Gy 3to 16

8 Targets, po 1 to 10

Table 4.6: Single-Factor Experiments



4.5 Chapter Summary

This chapter describes the implementation of the problem formulation from Chapter 3. It
begins with a discussion of how the MMR algorithm is used to provide a policy solution for
the first two cases and how a POMDP solver is used to provide the policy solution for Case
3. It discusses the various POMDP solution algorithims and how thev are differentiated by
the method used to create a value function over the belief states. We then describe how the
performance of the cases is estimated with a simulation of the single engagement using the
policy solution created from the MMR algorithm or the POMDP solver. The chapter finishes
with a discussion of the experimental design beginning with initial experiments. continuing

with a central composite design. and ending with a series of single-factor experiments.
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Chapter 5

Results and Analysis

This chapter assesses the potential impact of imperfect information on the performance of
interceptor assignment. and the possibility of accounting for this uncertainty with a PONDP
approach. In order to do this we carry out a series of experiments that compare the decisions
and performance of the three cases described in Chapter 3: perfect information, imperfect
information assumed perfect. and imperfect information known to be imperfect. This chapter

discusses the results of the experiments outlined in Chapter 4.

We begin with the results from the baseline scenario. This serves as a basis for comparison
for all other results. We then compare the three POMDP solution algorithms in Experiment
1. Next, we examine the performance of the POMDP solver with various terminal reward
functions in Experiment 2. With the last initial experiment. we assess the performance of
each case with varying SSPKs.

Experiment 4 provides us with the data necessary to develop three statistical models.
We conduct an analysis of variance (ANOVA) on each of these three quadratic models and
then check for model adequacy. The response variables in each model are a difference in
performance between Cases 2 and 3 using three different measures of performance. Each

model includes five factors.

Our final four experiments assess the factors used in Experiment 4, by varying them

individually. We assess the impact of w; from the results of Experiment 5. In Experiment
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6, we vary Py, and B, simultaneously, and determine how they affect the performance of
Cases 2 and 3. Finally. in Experiments 7 and 8. we assess the impact of the number of initial
interceptors and initial targets respectively. We end this chapter with overall conclusions

based on these experiments.

5.1 Initial Results

5.1.1 Baseline

As stated in Chapter 4, experimentation began with a baseline scenario. Chosen for its
realistic settings. this baseline is the starting point for all following experiments. The results

for the baseline scenario are shown in Table 5.1.

| Response | Case 1 | Case 2 | Case 3 |
Execution Time NA NA 35.40 sec
Instability NA NA 243,388
Alpha Vectors NA NA 67

Policy Solution 4:0,3.6.6 | 4:0,3.6,6 | 3:1,2,2.3
Prob of No Leak 0.9963 0.9494 0.9367
Remaining Inventory 4.6554 3.468 5.2829
Leaked Targets 0.0037 0.0524 0.0697

Weighted Combination | 0.83707 | 0.76862 | 0.814177

Table 5.1: Results from Baseline Scenario

In this table, “Case 1” corresponds to perfect information, “Case 2” corresponds to
perfect information assumed perfect, and “Case 3" corresponds to imperfect information that
is known to be imperfect. This terminology is used throughout the chapter. In Table 5.1,
the first three results only apply to the POMDP solver (Case 3). “Execution Time" shows
the time required for the POMDP solver to execute and solve the problem. This correlates
to the size and complexity of the problem, as well as the speed of the algorithm used to
solve it. “Instability” is the number of linear programming subproblems that had numerical
instability during the execution of the POMDP solver. “Alpha Vectors” refers to the number

of alpha vectors in the solution provided by the POMDP solver, and is highly correlated with
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the instability. As the instability increases in a problem. it is more difficult to tind which
alpha vectors dominate over the belief space. Consequently. the number of alpha vectors in
the solution increases. Much like instability. this also correlates to the complexity and size
of the problem. These three results ouly apply to Case 3 and give a general baseline for the

performance of the POMDP solver.

The next five results in Table 5.1 are used as a baseline for comparison between each of

the three cases. The “Policy Solution” is depicted in the form
(ay :ag',ad?, a3, adt)

where a, is the first action and a3 is the second action based on an observation. Because this
problem begins with three targets. there are only four possible observations. “Probability of
no leak.” P,. “Remaining Inventory.” /3,. and “Leaked Targets” are direct ways to compare
the performance of each case in this baseline scenario. Lastly. “Weighted Combination.”
W. is a method to assess each case based on the weight, w; in the reward function. This
value provides an overall metric of performance combining F,; and /3. ¥ is calculated by
Equation 5.1.

3
W =w;Py + (1 — ’U’]) (/—2) (51)
3o

As can be seen in Table 5.1, Case 3 has a more conservative policy solution than the two
other cases. and consequently has a greater remaining inventory. In spite of this conservatism.
Case 3 almost matches the probability of no leakage of Case 2: 93.67% compared to 94.49%.
Case 1 proves to have the highest probability of no leakage. allowing only 0.0037 targets
leak through defenses on average. In comparison of . Case 1 does the best. followed by
Case 3. and Case 2. It is important to note that if the weight, w;. is truly the importance
of probability of no leakage compared to inventory remaining, then 1 is probably the best

metric when comparing the three cases.
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5.1.2 Experiment 1

Experiment 1 is simply a comparison of three algorithms used to solve the PONDP. The

results of this experiment are shown in Table 5.2. The first important result from this exper-

| Algorithm | Enumn | Witness | Incprune |

Execution Time | 30 min 24.91 sec | 23.81 sec | 35.40 sec
Instability 892.667 256,785 | 243,388

Alpha Vectors 531 42 67

Policy Solution 3:1.2.2.3 3:1,2.23 | 3:1.2.2.3

Table 5.2: Results from Experiment 1

iment is that all three algorithms produce the same policy solution. So. aside from the fact
that some algorithms may take longer than others. all three could be used interchangeably
in further experiments. However, Table 5.2 clearly shows that the algorithm does matter
when it comes to execution time. The enumeration algorithin takes over 30 minutes to run
for this one scenario, while both the witness and incremental pruning algorithms require
only around 30 seconds to run. In addition, the enumeration algorithm has far more alpha
vectors and linear programming subproblems with instability than the other two algorithms.
In this experiment the witness and incremental pruning algorithms are very similar in execu-
tion time and instability. Ultimately the incremental pruning algorithm was chosen for the
remaining experiments not only because this experiment proved it to be fast and efficient,
but also due to previous research by Littman, Cassandra, and Zhang that showed it to be

the simplest and fastest algorithm to date [7].

5.1.3 Experiment 2

In the next experiment we examine various terminal reward functions, F(s) and their effect
on the POMDP solver. The results of this experiment are shown in Table 5.3 where the
terminal reward function, F'(s), is described by (wr;, wre). While the results of this exper-
iment are not completely conclusive, they do provide some useful insights. First, it is clear

that as wry increases by orders of magnitude, the execution time, instability, and number of
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| F(s) | None | (0.0) | (1) ] (11o) T (1.100) T {(1,1000) ] (1.10000) ]
Execution Tine 0.24 sec 0.49 sec 1.76 sec H.28 sec | 35.39 sec | 55.15 sec | 49.72 sec
Instability 531 531 10.748 50.940 243,388 335.882 305.38%
Alpha Vectors 24 21 46 44 67 74 45
Policy Solution | 1:NANA.1.6 | :NANA.1.7 [ 2NA2,1,1 | 3:1.21.2 | 3:1.2.23 | 6:1.2.2.2 | 6:2.2.2.2

Table 5.3: Results from Experiment 2

alpha vectors generally increase. We note that higher instability may not indicate an inferior

solution. but more likely a larger or more complex problem.

Most importantly. this experiment shows that the policy solution highly depends on the
terminal rewards. In this baseline scenario. no terminal rewards or even terminal rewards
with small weights on targets remaining, wrs. provide somewhat strange policy solutions.
in which the first action is very small. When the first action is less than the number of
targets. it is impossible to have an observation of zero or more targets depending on the
difference between action and targets. This is depicted in Table 5.3 where a second action
is listed as “NA.” This indicates that an action is not applicable to that situation, because
a; < po. However, even with these strange cases, as wro increases. the policy solution uses
more interceptors. This result is logical. as increasing w7y places more value on stopping

targets compared to conserving interceptors.

Overall. this experiment shows that a logical and balanced policy solution results from
wpe ~ 100. With this setting. all actions were at least as great as the number of targets
thought to be remaining. and more interceptors were used as more targets were observed.
Subsequent experiments were conducted with the settings wr; = 1 and wpe = 100. In
a sense this says that at the end of the engagement, we are 100 times more concerned
about stopping targets from leaking through defenses than saving our inventory. To change
the policy solution slightly based on the preferences of an actual decision maker, we could

increase or decrease wry from a value of 100.
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5.1.4 Experiment 3

Experiment 3 examines the effects of various single-shot probabilities of kill (SSPK) on the
performance of each of the three cases. Table 5.4 shows the policy solutions for each of

these cases. This table only lists values of 0.5 < SSPK < 0.98. because those are the most

| SSPK | Cases 1 and 2| Case 3 |

0.5 4:0,6.6,6 6:2.2.2.2
0.6 4:0.6.6,6 6:1.2.2,2
0.7 4:0,4.6.6 6:1.2.2.2
0.8 4:0,3.6.6 3:1.2.2.3
0.9 3:0.3.6.7 3:1.1.1,2
0.98 3:0.2.4,6 2:NA.1,1.1

Table 5.4: Policy Solutions for Experiment 3

relevant values. As previously mentioned, it makes little sense to use interceptors that have
a higher probability of missing a target than hitting one. In addition. an interceptor with
SSPK = 1.0, although operationally outstanding, provides little interesting insight into our
work. In that scenario. imperfect kill assessment matters little when every target can be hit
with certainty on the first shot.

In Table 5.4, we first note that Case 1 and Case 2 always have the saime policy solution, as
they both use the MMR algorithin to determine how many interceptors to assign to targets.
The difference in the two cases is that in Case 1, an observation is always true, and in Case
2 it may not be true. This difference is not indicated in the policy solutions.

Table 5.4 also shows that in all of the cases, as SSPK increases the policy solutions
become more conservative with interceptor inventory. This result occurs because as kill
probability of a single interceptor versus a single target increases, fewer interceptors should
be required. The policy solutions in Cases 1 and 2 gradually become more conservative as
SSPK increases, while the policy solutions in Case 3 have a major decrease in number of
interceptors assigned in action 1 from SSPK = 0.7 to SSPK = 0.8. This occurs because
the POMDP solver generally assigns enough interceptors in action 1 so that each target is

assigned the same number, while the MMR algorithm generally does not. For Cases 1 and
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2. most policy solutions assign four interceptors to three targets in action 1. while Case 3

typically assigns either six or three interceptors to three targets in action 1.

While this trend of becoming more conservative as SSPK increases exists in all cases.
(Case 3 begins much more conservatively in the first shot than the other cases. using six
as opposed to four interceptors with SSPR = 0.5. Likewise. with this SSPA. Cases 1
and 2 use six interceptors when at least one target is observed, while Case 3 uses only two
interceptors regardless of the observation. Although it seems illogical not to use as many
interceptors as targets observed in Case 3. the POMDP solver knows that Pmh > (. and
that missing all three targets is unlikely. Therefore. while not necessarily the safest course
of action. it does make sense to use only two interceptors even when three targets were

observed.

Another major difference between Cases 1 and 2 and Case 3 is the number of interceptors
thev assign with an observation of no targets remaining. While the MMR algorithm never
assigns any interceptors with an observation of no targets remaining. the POMDP solver

always assigns at least one interceptor, as it accounts for imperfect kill assessment.

Finally. it is important to note that as SSPK approaches values very close to one. the
cases vary greatly. Cases 1 and 2 still assign one interceptor for each target in the first
shot. and two interceptors for each target in the second shot. Case 3. however. continues
to become more conservative. With SSPK = 0.98 the POMDP solver initially uses only
two interceptors. and then uses only one more interceptor regardless of the observation. In

essence it always uses three interceptors for three targets. when SSPK =~ 1.

In addition to comparing the policy solutions of each case, it is important to examine the
performance of each case. We begin by comparing the probabilities of no leakage for various
levels of SSPK in Figure 5-1. This chart includes more experimental runs than depicted in
Table 5.4. as we varied SSPK at increments of 0.02 between 0.7 < SSPR < 1.0. In this
chart. the probability of no leakage generally increases as SSPK increases for all three cases.
Case 1 provides an upper bound on the probability of no leakage for the other cases. For

these other two cases, Case 2 outperforms Case 3 with SSPK = 0.5 and SSPK = 0.6. After
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that region. Case 3 generally matches the P, of Case 2. The P,; in Case 2 increases much
more gradually than that of Case 3, which can be attributed to the more gradual changes in
policy solutions shown in Table 5.4. The chart shows that for Case 3. large decreases in the
number of interceptors assigned in action 1 correspond to a decrease in P,;.

[n addition to comparing performance on probability of no leakage. we examine the
inventory remaining for each of the three cases. Figure 5-2 depicts a chart of this metric

as SSPHK is varied. This chart shows that for all cases. as SSPHK increases. the average
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Figure 5-2: (35 versus SSPK

inventory remaining also increases. This flows logically. as fewer interceptors should be
used if each interceptor is more lethal. Except for SSPHA values around 0.7. the remaining
inventory for Case 3 generally matches that of Case 1, with Case 2 typically the lowest of
the three. Again. this makes sense, as the POMDP approach is the most conservative with
inventory of the three cases. As with Figure 5-1, the inventory remaining for Case 3 increases

less gradually due to its more drastic changes in policy solutions.
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Lastly, we examine the effect of SSPR on W. Figure 5-3 depicts a chart comparing each

case. In a sense, this chart is a way to assess overall performance by combining the trends

0s - T - T —

05 086 07 08 09
SSPK

PO S

Figure 5-3: W versus SSPK

of the two previous charts using the weight, w;. Figure 5-3 shows that as SSPK increases,
W also increases, as it is a linear combination of F,; and inventory remaining, which were
both shown to increase as well. Case 1 again proves to be an upper bound on the other
two cases. In addition, Case 3 almost always outperforms Case 2. This indicates all other
factors constant, as SSPK is varied, accounting for imperfect kill assessment proves better

than not accounting for it.

5.2 Central Composite Design Results

With a general idea of how the three cases perform from Experiments 1 through 3, we now

conduct a full statistical analysis to better understand how Cases 2 and 3 compare. Our
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focus in Experiment 4 is on the cases that have imperfect information. In order to estimate
an appropriate statistical model we use the central composite design described in Chapter
4. which varies the factors 3y. po. Pune Pnm, and w; simultaneously. In this section. we will

refer to the effects of factors Jy. po. Pany Prm, and wy as A, B. C. D. and E respectively.

5.2.1 Model 1

Because we wish to compare the performance of Cases 2 and 3. we investigate three statistical
models with different response variables: Ap . Ag,, and Ay-. These variables represent the
difference in Case 2 and Case 3 probability of no leakage. remaining inventory, and W

respectively. and are calculated by the following equations:

APm = PSI - Pgl (5.2)
Ay = W3 —W? (5.4)

where the superscript indicates Case 2 or Case 3.

We begin with a quadratic model on Ap, that initially includes all five main effects,
all two-way interactions, and all square terms. We pare down this model in a stepwise
process to the significant factors at the o = 0.10 significance level to produce the analysis of
variance (ANOVA) results in Table 5.5. This table shows that the model is significant with a
p < 0.0001. In addition. all main effects are significant. One quadratic effect, B2, and three
two-way interaction effects, AB. BD, CD, are also significant. The lack of fit significance
indicates that this model may not fit, and that significant terms are omitted. However, this
mode] has significant lack of fit regardless of the terms included. The model also has an
R?* = 0.8415 and R?; = 0.8230. This indicates that approximately 84% of the variability in
the data is explained by this model [13]. Rﬁdj is an adjusted R? for the number of factors
included in the model. R‘jdj is useful. because in general, increasing the number of terms in

a model alone increases R2.

75



| Source [ Sum of Squares [ DF | Mean Square | F Value | P-Value |

Model 0.43 9 0.047 45.42 < 0.0001

A 0.029 1 0.029 27.62 < 0.0001
B 0.12 1 0.12 119.07 | < 0.0001
C 0.020 1 0.020 18.81 < 0.0001
D 0.047 1 0.047 44.51 < 0.0001
E 4.577E-003 1 4.557E-003 4.38 0.0397
B? 0.082 1 0.082 78.61 < 0.0001
AB 0.11 1 0.11 105.10 | < 0.0001
BD 3.844E-003 1 3.844E-003 3.68 0.0589
CD 7.353E-003 1 7.35E-003 7.03 0.0097

Residual 0.081 77 1.046E-003

Lack of Fit 0.073 33 2.217E-003 13.24 | < 0.0001

Pure Error 7.365E-003 44 1.674E-004

Cor Total 0.51 86

Table 5.5: Analysis of Variance on Ap,

Equation 5.5 shows the final quadratic model.

Ap, = —0.023 4 0.0194 — 0.039B + 0.015C — 0.023D + 7.252 x 107°E 5.5
5.5
—0.039B% + 0.0414B + 7.750 x 10™3BD — 0.011CD

This equation indicates that although significant, ' and BD have verv little effect on the
response. In other words, the weight, w; and the interaction between targets, py, and P,
do not greatly affect the difference in P,; between Case 2 and 3. It is important to note that
the effect of pg on this difference is quadratic. In addition, factors 3, and py and factors Py
and P,,,, both have strong interaction effects on this difference.

In order to test the adequacy of our model, we must make sure some assumptions hold
true. If € is the error between predicted values and actual values, we assume that € is
normally and independently distributed with a mean zero and constant variance [13]. We
first examine the normality assumption with Figure 5-4. For the normality assumption to
hold, the data points should fall along the line drawn through the chart. In this chart, we
see that some points at the top right of the chart lie off of that line. This indicates slight

departures from normality, but overall the majority of points lie close to the line. Therefore,
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overall the normality assumption is valid.

Next. we examine the residuals for independence between runs. We already discussed
that there should be no relationship between runs. as our simulation and POMDP solver
have no memory. Therefore. we did not randomize our experiments. Regardless of this fact,

we examine the independence of runs in Figure 5-5. This chart shows that there is no reason
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Figure 5-5: Residuals versus Runs in Model 1

to suspect any violation of the independence or constant variance assumption.

Lastly. we examine a plot of the residuals versus the predicted values from our model
shown in Figure 5-6. If our assumptions hold true, the residuals should not be related to
the predicted response variable. In this chart, no unusual structure or pattern is apparent.

Overall, we have shown that our assumptions hold true and that our model is valid.
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5.2.2 Model 2

Our second model fits a regression equation on the response variable, Ag,. As with the first
model, we begin with an all-inclusive quadratic model. and reduce the model in a stepwise

manner to only significant termns. Table 5.6 shows the ANOVA results for this model. We

| Source | Sum of Squares | DF | Mean Square | F Value | P-Value |

Model 95.90 10 9.59 109.98 | < 0.0001
A 59.73 1 59.73 685.00 | < 0.0001
B 7.67 1 7.67 87.97 < 0.0001
C 12.58 1 12.58 144.25 | < 0.0001
D 4.21 1 4.21 48.26 < 0.0001
FE 0.80 1 0.80 9.14 0.0034
A? 2.27 1 2.27 26.03 < 0.0001
B? 2.39 1 2.39 27.36 < 0.0001
AB 4.10 1 4.10 47.01 < 0.0001
AC 2.40 1 2.40 27.49 < 0.0001
BC 0.46 1 0.46 5.29 0.0242
Residual 6.63 76 0.087
Lack of Fit 6.46 32 0.20 52.94 | < 0.0001
Pure Error 0.17 44 3.813E-003
Cor Total 102.52 86

Table 5.6: Analysis of Variance on Ay,

see that with a p < 0.0001. Model 2 is significant. In addition to all main effects, two
quadratic effects, A? and B2. are significant. This indicates that the relationship between
both interceptor inventory and number of targets to the difference in remaining inventory
is non-linear. The model also includes three two-way interactions: AB, AC, and BC. This
suggests that the interceptor inventory, number of targets, and Py, have interacting effects
on the remaining inventory. As with Model 1, this model has a significant lack of fit for
likely the same reasons. However, with R* = 0.9354 and R%; = 0.9269, we know that about

93% of the variation in the response is explained by the model.
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Our final quadratic model is shown in Equation 5.0.

~

Ag, = 1.28 + 0.864 — 0.31B — 0.38C + 0.22D — 0.096E 56)
5.6

+0.21A4% +0.21B% — 0.25AB — 0.19AC + 0.085BC

We again check the assumptions of our model through three separate charts. Figure 5-7

shows the normal probability plot for Model 2. This chart shows slight departures from
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-345 <217 -0.88 040 1.6%

Studentized Residuals

Figure 5-7: Normal Probability Plot of Residuals for Model 2

normality, especially at the ends of the data points. with most points in the center falling
along the line. According to Montgomery, slight deviations from normality such as these do
not significantly impact the validity of the ANOVA results [13]. Therefore, we may proceed
with our analysis of the model.

We next examine the independence between runs shown in Figure 5-8. This chart depicts
no pattern between the runs and so there is no reason to suspect any violation of the

independence or constant variance assumption.
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Finally. Figure 5-9 shows a chart of the residuals versus the predicted values from our

model. The model is valid if the error is not related to the predicted response variable. This
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Figure 5-9: Residuals versus Predicted Values in Model 2

chart suggests no pattern or structure in the error. Our model proves to be valid as it does

not violate any of the assumptions.

5.2.3 Model 3

In our third model. we fit a quadratic equation to the response variable Ay that includes
terms based on their significance, determined in a stepwise manner. The results from the
ANOVA are shown in Table 5.7.

Based on a p < 0.0001, Model 3 is significant. Although factor D is not statistically
significant, it is included in the model. Despite a lack of statistical significance, we include
F,.., because of its operational importance as a factor in a single engagement. In addition

to main effects, this model has many other terms that are significant. Two square terms
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| Source | Sum of Squares | DF | Mean Square | F Value | P-Value |
Model 0.45 13 0.035 100.79 | < 0.0001

A 0.11 1 0.11 333.38 < 0.0001
B 0.10 1 0.10 304.24 < 0.0001
C 0.015 1 0.015 44.42 < 0.0001
D 3.920E-004 1 3.920E-004 1.14 0.2894
E 0.18 1 0.18 529.31 < 0.0001
B? 3.614E-003 1 3.614E-003 10.50 0.0018
E? 2.464E-003 1 2.464E-003 7.16 0.0092
AB 7.042E-003 1 7.042E-003 20.46 < 0.0001
AC 2.025E-003 1 2.025E-003 5.88 0.0178
AFE 2.275E-003 1 2.275E-003 6.61 0.0122
BC 5.131E-003 1 5.131E-003 14.91 0.0002
CFE 7.704E-003 1 7.704E-003 22.38 < 0.0001

Residual 0.025 73 3.442E-004

Lack of Fit 0.023 29 7.811E-003 13.90 L< 0.0001

Pure Error 2.473E-003 44 5.621E-005

Cor Total 0.43 86

Table 5.7: Analysis of Variance on Ay

are significant: B2 and E2. Therefore, we know that the number of targets and the weight
have a quadratic effect on the difference in our weighted performance metric, W. Model
3 also includes six two-way interactions: AB. AC. AE, BC, and CE. It should be noted
that these six effects are the three included in Model 2: AB, AC, BC'. in addition to all of
the statistically significant main effects interacting with factor E from Model 3. It is logical
that factor F is significant in addition to its interactions as w; has a direct impact on the
calculation of Ay,. Therefore, we know that w; has a large impact on the overall performance
of Case 3. Model 3 also has significant lack of fit regardless of the terms included. but its

R? = 0.9472 and Ridj = (0.9378.

Our final quadratic model is shown in Equation 5.7.

Ag, = 0.064 + 0.0384 — 0.0368 — 0.013C + 2.122 x 107D — 0.046E
—8.329 x 1073 B? + 4.847 x 107 3E? + 0.010AB — 5.624 x 1073 AC (5.7)

—5.962 x 1073AF + 8.954 x 1073BC + 0.011CE — 5.356 x 10"°DE
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We check the validity of our model by verifying the assumptions about the error term.

¢. First. we check the normality of the residuals with the chart in Figure 5-10. The points
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Figure 5-10: Normal Probability Plot of Residuals for Model 3

in this chart all lie very close to the normality line, so we can assume the error is normally
distributed.

To determine if the runs are independent, we use the chart in Figure 5-11. The residuals
in this chart appear completely random. which indicates independence and constant variance.

Third, we examine Figure 5-12 to check if the residuals are related to the predicted
response. There is no pattern to suggest that the residuals are not independent of the
response. Based on these three charts, we have checked all of the assumptions of Model 3.

From our three statistical models, we have seen that each of the five factors does not
have a simple linear effect on the performance of Cases 2 and 3. In all three models, there
were significant quadratic and two-way interaction terms. This implies that the response

variables are many times determined by a complex interaction of factors. Knowing this
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Figure 5-11: Residuals versus Runs in Model 3
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result. we proceed to our single-factor experiments.

5.3 Single-Factor Results

After gaining insight as to how five factors affect the performance of Cases 2 and 3, we further
investigate the effects of these factors in single-factor experiments. Experiments 5 through
8 give us a more in-depth idea as to how sensitive the response variables are to changes
in each factor. We note that based on the results of Experiment 4, we cannot expect that
the results of these single-factor experiments to be completely typical of all scenarios. Due
to interactions between factors, beginning these experiments with different baselines could
prove to yield somewhat different results. Despite this fact, we still gain valuable insight

from these one-factor experiments.

5.3.1 Experiment 5

We begin by varying the intermediate weight, wy;, in Experiment 5. In this experiment,
we examine the performance of each case as wy is varied at levels between zero and one.

Table 5.8 shows the policy solutions for each case at various levels of w;. In this table, Cases

| w; | Cases 1 and 2 | Case 3 |
0.0] 40366 |30123
0.1 4:0,3,6.6 3:0,1,2.3
02| 40366 |31.123
0.3 4:0.3,6.6 3:1.1,2.3
0.4 4:0.3.6,6 3:0.1.2.3
0.5 4:0.3,6,6 3:1,1,.2,3
0.6 4:0.3.6.6 3:1.1,2.3
0.7 4:0.3.6,6 3:1.2,2.3
0.8 4:0.3.6.6 3:1,2.2,3
09| 40366 |32223
1.0 4:0,3,6.6 3:2.2.2,3

Table 5.8: Policy Solutions for Experiment 5

1 and 2 always have the same policy solution regardless of w;. This occurs because the MMR
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algorithm used in these cases does not take w; into account when making decisions. The
MAIR algorithm relies only on 3. p. and SSPR to make decisions. In contrast. the PONDP
solver used in Case 3 relies on the reward function calculated by w; to determine a policy

solution.

Table 5.8 also shows that in general as w; increases. the policy solution uses more inter-
ceptors in the second action. The first action consistently remains at a; = 3 regardless of
the w;. This decrease in conservatism occurs due to the nature of the reward function in

Equation 3.6. Higher levels of w; correspond to a R(s,0.a.s’) that values P,;. and likewise

8.

lower levels of w; correspond to a R(s.o0.a.s') that values 5 We should note that while the

policy solutions for Case 3 generally add more interceptors to action 2 as wy increases. this
trend does not occur for w; = 0.4. In this scenario the PONDP solver chooses to use one
less interceptor for aJ than the policy solutions for w; = 0.3 and w; = 0.5. This aberration

may result from some instability in the POMDP solver solution.

We further investigate the impact of w; on the performance of each case by examining the
probabilities of no leakage as w; changes. A chart of w; versus P, is shown in Figure 5-13.
In this chart. Cases 1 and 2 are denoted by a single line. This occurs because the MMNR
algorithm in both of these cases has the same policy solution regardless of w;. Figure 5-
13 shows that for Case 3 as w; increases, P, generally increases as well. P,; begins at
approximately 84% and continually increases until it approaches the P,; for Cases 1 and 2
at approximately 95%. Once w; > 0.7, we see that P, remains greater than 93%. almost if
not equaling the performance of Cases 1 and 2. We also notice the effect of the aberation in

policy solution at w; = 0.4 on P,;. as it decreases momentarily against the general trend.

Next, we consider a plot of the inventory remaining against varying levels of w; shown
in Figure 5-14. This plot shows that Cases 1 and 2 have an average remaining inventory
of approximately 3.5 interceptors. The policy solutions of Case 3 gradually become less
conservative as u'y increases and leave less interceptors in inventory. For this case. a w; = 0
corresponds to Jy =~ 6. and a wy ~ 1 corresponds to 3 =~ 5. Again, we notice the same

aberration at w; = 0.4 as the only point on the line where the slope is positive.
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Lastly, we examine the effect of w; on 1. A chart of this data is shown in Figure 5-15.
Based on the W measure of performance. Case 3 always outperforms the other cases. except
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Figure 5-15: W versus wy;

for w; = 1.0 where Ay = 0. which could be explained by random error in the simulation.
The W of Case 3 gradually increases as w; increases, but it does not increase as much as
W for Cases 1 and 2. This difference in W is greatest when w; = 0 and decreases gradually
until there is no significant difference at w; = 1.0. Based on W, as we increase wy, the

advantage of Case 3 over Cases 1 and 2 decreases.

5.3.2 Experiment 6

In Experiment 6 we vary P, and P, simultaneously to examine the effect on the perfor-
mance of Cases 2 and 3. It should be noted that in Case 1 Py, = Ppm = 1, so there is only
one data point for comparison. Table 5.9 shows a table of policy solutions for Cases 2 and

3 as Py, and P,,, are varied between values of 0.5 and 1.0. In this experiment the policy
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| Pun = Prm | Case 2 | Case 3 |

0.5 4:0.3.6.6 | 3:2.2.2.2
0.6 4:0.3,6.6 | 3:1.2,2.2
0.7 4:0.3.6.6 | 3:1.2.2.3
0.8 4:0.3.6.6 | 3:1.2.2.3
0.9 4:0.3.6.6 | 3:1.2.3.3
1.0 4:0.3.6.6 | 3:0.2.3.3

Table 5.9: Policy Solutions for Experiment 6

solution for Case 2 is always constant, as it does not account for varying Py, or P,,. In
other words Case 2 always assumes that Py, = P,,, = 1. and consequently takes the same
actions. In contrast. Case 3 does account for this imperfect kill assessment.

The values of Py, and P, affect the policy solutions in two different and independent
ways. Py, affects the number of interceptors used with none or few targets observed. P,,,,
affects the number of interceptors used when a higher number of targets are observed. With
lower values of Fj;,. the POMDP solver uses fewer interceptors in action 2 with observations
of many targets remaining. In a sense, it does not trust these observations and does not use
as many interceptors as seems appropriate. This occurs due to low P, which implies a larger
P,,;,. This means that we think we missed more targets than we actually missed. Therefore.
when many targets are observed remaining, there is a good chance some of those have been
hit. Table 5.9 shows that when P,, = P, = 0.5 and three targets are observed. the
PONMDP solver only uses two interceptors. Given this Py, and SSPK = 0.8. it is unlikely
that all targets were 1missed even if they were all observed missed. As P, improves. the
PONMDP solver gradually uses more interceptors with observations of two or three targets.
In a sense. it can trust the observations more.

While Py, affected the policy solution with larger observations, P,,,, affects the policy
solution when fewer targets are observed. With lower values of P,,,,, the POMDP solver
uses more interceptors in action 2 when observing zero targets remaining. This occurs due to
a low Pp,p,. which implies a higher P,,. This means that we think we hit more targets than
we actually did. When zero targets are observed remaining. there is a good chance some still

remain. In the scenario P, = P, = 0.5, the POMDP solver in Case 3 uses two interceptors
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when it observes zero targets remaining. As P, improves. the POMDP solver can trust its
observations more and gracdually uses fewer interceptors with observations of zero targets.
Finally. when P,,,, = 1. the POMDP solver uses zero interceptors for an observation of zero.
In summary, the two effects of Py, and P,,, produce the following result: as Py, and P,
increase, a) decreases and a3 and aj increase.

In addition to the two independent effects of Py, and I’,,,. we observe that as Py, and
P,.m both increase, action 2 goes from being completely independent of the observation to
being very dependent on the observation. The POMDP solver cannot trust the observations
when P, = P, = 0.5. so it always assigns two interceptors. However. when Py, = P, =
1.0, the POMDP solver assigns very differently depending on the observation.

While the policy solutions provide an idea of how the decisions are made. we also need
to examine how Py, and P, actually affect the performance of Cases 2 and 3. Figure 5-16

shows a plot of probability of no leakage versus P, and P,,,. This chart shows that most
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Figure 5-16: P,; versus Py, and P,
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of the time Case 2 outperforins Case 3 in terms of P,;. Case 1 provides one point. which is
an upper bound. that is only matched by Case 2 when Py, = P, = 1. This makes sense.
because when Py, = P, = 1. Case 1 and Case 2 are essentially the same. While Case 2
alwavs outperforis Case 3 except when Py, = P, = 0.7. it is important to note that Case
3 alwavs almost matches the P,; of Case 2. There is never a difference in P,; greater than
3%. and Case 3 values for P,; never fall below 93%..

We also examine a plot of Py, and P, versus inventory remaining in Figure 5-17. This
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Figure 5-17: 3, versus Py, and Py,

fizure shows that Case 3 always has a higher average inventory remaining than Cases 1 or
2. The difference between the remaining inventories of these cases does decrease as Py, and
P, increase. but it never falls below one interceptor. When Py, = Py, = 0.5, Az, > 3.
This is an important result, because the policy solutions of Case 3 provide P,; that almost
match those of Case 2 while saving between one and three extra interceptors.

Lastly. we analyze a plot of W versus P, and P, shown in Figure 5-18. This chart
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proves to be very similar to Figure 5-17. Case 3 always has a higher ¥~ than Cases 1 and 2.
and the difference between them. Ay . decreases as Py, and P,,,, decrease.

Overall. Experiment 6 showed that over various levels for Py, and P,,,. Case 3 almost
matches P, for Case 2 and always outperforms Cases 1 and 2 with respect to inventory

remaining and 7.

5.3.3 Experiment 7

Experiment 7 varies the number of initial interceptors in order to compare the performance
of all three cases. Table 5.10 shows the policy solutions for the three cases in this experiment.

Again. in this experiment. Cases 1 and 2 have the same policy solution based on the MMR

| Interceptors | Cases 1 and 2| Case 3 |
4 3:0.1.1,1 2:NA.1.1.1
5 3:0.2.2.2 3:1.1.1.1
6 3:0,3.3.3 3:1.1.1.1
7 3:0.3,4.4 3:1.1.2.2
8 3:0.3.5,5 3:1.2.2.3
9 3:0,3.6,6 3:1.2.2.3
10 4:0.3.6.6 3:1.2.2.3
11 5:0.3.6,6 3:1.2.2,3
12 6:0.3.6.6 3:1.2.2.3
13 6:0.3.7.7 3:1,2.2.3
14 6:0,3.8,8 3:1.2.2.3
15 6:0.3.8.9 3:1.2.2.3
16 6:0,3.8,10 3:1.2,2.3

Table 5.10: Policy Solutions for Experiment 7

algorithm. The policy solutions for all cases gradually use more interceptors as the inventory
increases. However, there are many differences between the policy solutions. The first major
difference between Cases 1 and 2 and Case 3 is that the POMDP solver in Case 3 always
assigns one interceptor for action 2 when the observation is zero targets. In contrast, the
MMR algorithm never assigns an interceptor when no targets are observed. Another differ-

ence between the cases is how each case uses its inventory. In Cases 1 and 2 the algorithm
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takes advantage of its inventory. assigning more interceptors as its inventory increases. The
POMDP solver for Case 3 is far more conservative. Regardless of its inventory, it never
assigns more than six interceptors in a single engagement. When (3, > 8 the policy solution
is always (3:1.2.2.3). In addition. for a small initial inventory of interceptors. Case 3 does
not always use all of its inventory, while Cases 1 and 2 always use their full inventory. In
fact with four initial interceptors. Case 3 only uses three interceptors, assigning a; = 2 and
ay = 1 regardless of the observation.

While the policy solutions provide some insight as to the sensitivity of each case to
changes in initial inventory, we also examine the sensitivity of the probability of no leakage,

remaining inventory, and W. Figure 5-19 depicts a chart of P,; versus interceptors. This
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Figure 5-19: P,; versus Gy

table shows that Case 1 is an upper bound on P,; that is almost reached by Case 2 for high
values of (J. In general, Case 2 also does better than Case 3. Except for 8y = 4 and Gy = 5,

the difference between Cases 2 and 3 is not too considerable. When [y > 8, the difference
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in P,; is never greater than 6%.

Next we consider a plot of interceptors versus inventory remaining in Figure 5-20. This

Inventary Remaining
o

3 5 7 9 " 13 15

Interceptars
Figure 5-20: 3> versus (3

chart shows that Case 3 almost always has more remaining inventory than Cases 1 and 2.
and Case 1 performs better than Case 2. This occurs because Case 3 typically has a much
more conservative policy solution. Although they have the same policy solutions. Case 1 has
nore remaining inventory than Case 2 because it sees observations of three and two targets
much more rarelv, as in Case 1, P, = 1.

We further explore the relationship of initial inventory to each case’s performance with a
plot of interceptors versus IV in Figure 5-21. In this figure, we observe that as in Figure 5-19,
Case 1 serves as an upper bound on W for the other two cases. The difference from that
plot is that Case 3 has a higher W than Case 2 after 3y > 7. Even when 4 < 3, < 7, the
difference in 11" between Cases 2 and 3 never exceeds 0.05.

Overall. this experiment showed that the performance of Case 3 is somewhat sensitive to
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changes in initial inventory. particularly with respect to P,;. While Case 3 outperforins the
other cases in terms of inventory remaining, it does not have P,; levels as high as Cases 1
or 2 for lower initial inventories of interceptors. In addition. 1 for Case 3 does not match

that of Case 2 for lower numbers of interceptors.

5.3.4 Experiment 8

In our final experiment. we vary the number of initial targets. py, between one and ten.
leaving all other factors at the baseline level. The policy solutions for this experiment are

shown in Table 5.11. The policy solutions in this table are not extremely different hetween

| Targets Cases 1 and 2 Case 3 ]
1 1:0.3 2:0.2
2 3:0.3.7 2:1.2.2
3 4:0.3.6.6 3:1.2.2.3
4 4:0.3.6.6,6 4:1.2,2.3.4
5 5:0.3.5.9.5,5 5:1.2.3.3.3.3
6 6:03.44444 6:1.2.2.2.2.2.2
7 7:0.3.3.3.3.3.3.3 7:1.1.1.1.1.1.1.2
8 8:0.2,2.2.2,2.2.2.2 &81.1.1.1.1.1.1.1.1
9 9:0,1.1.1.1,1,1.1,1.1 8:NA.1,1.1.1,1.1.1.1.1
10 10:0.0.0.0.0.0.0.0.0.0.0 | 9:NA.1.1.1,1.0.0.0.0.0.0

Table 5.11: Policy Solutions for Experiment 8

Cases 1 and 2 and Case 3. Except when py = 1. the second action given an observation of
zero targets for Case 3 is always a; = 1. In general, Case 3 is much more conservative in
terms of its second actions. Particularlv when pg > 5. the POMDP solver in Case 3 does
not always use as many interceptors in action 2 as targets observed. This occurs because
the reward function values remaining inventory, and it is still fairlv unlikely to miss half of
the targets given the baseline SSPA'.

The number of targets versus probability of no leakage is plotted in Figure 5-22. In this
figure. Case 1 always performs the best with respect to P,;. and Case 2 performs better than

Case 3. Case 3, however, almost matches the performance of Case 2 for pg < 5.

101



Pr{No Leak)

125

0.8 4

06 4

0.4

- Caze 1
— —Case 2
e — S Case 3
— T e _—E'"‘—H
L LTI T —
o . T
el T
—
~.. "
\\. \‘.
) \\‘\
\
,
"
k)
T T T i ! ’ : I
1 2 4 5 g 7 8 ° "
Targets

Figure 5-22: P, versus py

102



Again. we assess the effect of varying the number of targets with a chart of inventory

remaining in Figure 5-23. In this chart, as with most of the other experiments, Case 3

[4,] 23]
' L

'
L

Inventory Remaining

Figure 5-23: /35 versus py

generally has the greatest remaining inventory, with Case 2 having the least remaining
inventory. Also. similar to previous experiments. the difference between Cases 2 and 3

becomes greater as the number of targets increases.

Finally, we compare the three cases with the weighted combination of P,; and 3, in
Figure 5-24. This chart appears much like that of Figure 5-22. in which Case 1 performs the
best. However, with respect to W, Case 3 does better for pg < 5 and Case 2 does better for
po > 5. This chart, along with the other two from this experiinent show that Case 3 is very
sensitive to changes in the number of initial targets. Specifically, as py approaches /3. Case
3 becomes much less effective, and the MMR algorithm of Case 1 and 2 proves superior with

respect to P,;. 32, and 1.
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5.4 Chapter Summary

This chapter contains the results and analysis for all eight experiments. It begins with a
discussion of the baseline case. chosen as a possible real-world scenario. This baseline is the
starting point for all other experiments. The first three experiments varied factors that would
later be leld constant: algorithm. terminal reward function. and SSPK. We found that
all algorithins provide the same policy solution, but increinental pruning generally provides
the fastest and most stable algorithi. In Experiment 2 we found that the POMDP solver
is very sensitive to the terminal reward function, F(s). and we determined a setting for this
function that produces reasonable results. Experiment 3 showed that the performance of
each case is very dependent on SSPHK, however, Case 3 generallv performs as well if not
better than the other cases regardless of SSPK.

After conducting the initial experiments, we examined the way five factors affect both
Case 2 and Case 3. We ran Experiment 4 in a central composite design in order to test for
(uadratic termis and factor interactions. We set up three quadratic models on the differences
of P,;. #5. and W between Case 2 and Case 3. We found that all three models proved
significant. and that all three had significant quadratic terms and two-way interactions. This
tells us that there are complex relationships among the factors that affect the performance
difference between Cases 2 and 3.

Lastly, we ran four single-factor experiments to further analyze the effect on the perfor-
mance for each of the five factors in Experiment 4: wy;, Pyy. Pum, Bo, and pg. The overall
conclusions from these four experiments were generally the same. We found that Case 3
tvpically has lower P,; than the other two cases, but for most scenarios, this difference is
very small. Many times Case 3 is within 3% to 6% of Case 2 in terms of P,;. At the same
time. Case 3 typically conserves many more interceptors. This can be attributed to Case 3
always assigning an interceptor with an observation of no targets. These two facts lead to a
Case 3 W that is generally better than Case 2 and sometimes better than Case 1. Overall.
we found that using the POMDP solver in Case 3 provides policy solutions that achieve

almost equal P,; as in Case 2, but consistently have a greater inventory of interceptors re-
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maining. Using W as an overall metric, Case 3 generally does better than Case 2. These
experiments also showed that while Case 3 was somnewhat sensitive to all factors, it proved
most sensitive to /3 and py. The performance of this case was especially questionable as the

scenario approached /3 = pq.
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Chapter 6

Summary and Future Work

This chapter serves as a summary of the thesis and some final conclusions. It also provides a

description of possible future work expanding on this research or applying it to other areas.

6.1 Thesis Summary

The goal of this thesis is to address the issue of imperfect information received from sensors
in a ballistic missile single engagement and to investigate a method for making decisions
in light of this uncertainty. To our knowledge, this is the first work that addresses the
issue of imperfect kill assessment in the single engagement problem (consisting of a wave
of incoming targets and a set of interceptors). We deal with the imperfect information by
formulating the problem as a partially observable Markov decision process (POMDP). We
assess the performance of this formulation by comparing it to two other cases in a series of
experiments.

In Chapter 1 we outlined the motivating problem for this work: a Ground-based Mid-
course Defense (GMD) system. As this system grows and improves, uncertainty in sensor
reliability may be an issue. The single engagement problem is assumed to be a “shoot-
look-shoot™ scenario. After an initial shot of a set of interceptors at a set of targets. sensors

observe which targets were hit and which targets were missed before the second shot is taken.
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Imperfect information from these sensors could have serious affects on the decision of how

many interceptors to use in the second shot.

Chapter 2 focuses on the basis for our formulation. We discuss the use of dynamic
programming to optimize an objective over multiple decisions. We describe the class of
problems known as Markov decision processes (MDP), which are the basis for POMDPs.
We outline the components of MDPs and the decision cycle. Next. we expand on this set of
problems to describe the POMDP as an MDP in which the state of the system is not known
with certainty. We explain the use of the belief state as a sufficient statistic for the state.
Chapter 2 concludes with a description of the weapon-target assignment (WTA) problem.
While the WTA approach does not account for the imperfect kill assessment addressed in
this thesis, it does provide soine useful mathematical ideas about methods for interceptor

assignment.

In Chapter 3 we present three cases for comparison: perfect information from our
sensors (Case 1), imperfect information from sensors assumed perfect (Case 2). and imperfect
information from sensors that decisions account for (Case 3). We formulate the third case

as a POMDP.

Chapter 4 provides a description of the process used to solve and test the performance
of each of the three cases. We begin with a description of the maximum marginal return
(MMR) algorithm used to make interceptor assignments in Cases 1 and 2. From there we
discuss the POMDP solver and its solution algorithms used to make interceptor assignments
in Case 3. Next, we explain the solution process for a single experimental run. In this process,
a simulation for the single engagement uses either the MMR algorithm or the POMDP solver
to make interceptor assignments. This simulation over many trials estimates the performance
of each case. Chapter 4 continues with a description of the experimental design. We begin
with experiments to assess the effect of factors to be held constant in later experiments.
Next, we conduct statistical analysis on three models to determine how five different factors
impact the performance for Cases 2 and 3. Lastly, we conduct single-factor experiments on

these five factors to gain a more detailed understanding of how they affect performance.
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In Chapter 5 we present the results from the experiments described in Chapter 4. For
the initial experiments we find that the incremental pruning algorithm for solving POMDPs
is the fastest and most stable algorithm. We also find that the algorithin is verv sensitive to
the terminal reward function, and we find a setting that provides reasonable results. Lastly.
we show that all three cases are very sensitive to single-shot probability of kill (SSPK). but
(Clase 3 generally performs better when varying this factor. In Experiment 4 we find that
all three statistical models are significant. We find that not only all five factors. but at
times their quadratic effects and interactions. highly impact the response variables. For the
single-factor experiments we find that for mnost of the experiments, the POMDP approach of
Case 3 conserves more interceptors and still approaches the probability of no leakage of Case
2. Based on the overall performance metric, . we show that Case 3 typically outperforms
Case 2.

In conclusion. the purpose of this thesis was to investigate the impact of imperfect kill
assessment. We showed that assuming perfect information in a world where it is imperfect
may significantly decrease the performance of the system, leading to a much lower probability
of no leakage and wasted inventory. Our POMDP approach consistently conserved far more
interceptors and generally performed well in terms of probability of no leakage. At the very
least. this approach showed that using a single interceptor when no targets are observed can
improve the overall probability of no leakage significantly. This approach, however, was very
sensitive to the scenario. in particular the initial interceptors and initial targets. The policy
solutions produced by the POMDP solver were not always reasonable. It is unlikely that a
decision maker would use fewer interceptors than targets observed, unless that observation
were extremely unlikely. Overall. the POMDP approach proved a valuable tool for making

decisions under uncertainty in the single engagement problem.

6.2 Future Work

The work in this thesis on imperfect kill assessment could easily be expanded and continued

to handle a broader array of missile defense scenarios. We suggest the following areas of
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further research in the missile defense field:

e Our work assumed uniform reachability between targets and interceptors. In reality,
incoming missiles have varying degrees of reachability depending on target destination,
from where they are launched. and the location of the interceptors in relation to the

flight path. In particular. there are currently two different interceptor locations.

e Our work also assumed identical single-shot probabilities of kill, SSPK, for each target.
Targets may actually have different SSPKs based on each target-interceptor assign-

ment; that is, some targets may be more difficult to destroy than others.

e This work did not address the existence of decoy targets. In reality, it is possible that
some of the initial or observed targets are decoys and not actually warheads. This
discrimination between decoys and actual targets adds a new element of uncertainty

to the problem that was not formulated in this thesis.

e We also assumed that each target had an equal value. It is very reasonable that
not every incoming target has the same value, especially if they are headed towards
different locations. Certain cities or military installations have greater strategic value
than others based on their population or on other factors. Thus. the value of any

individual incoming missile might vary depending on its destination.

e This work also assumed that the initial state of the system is completely observable;
that is, the initial wave of targets is known with certainty. It is quite possible that this
may not be true. Future work could formulate a POMDP with a different initial belief

state.

e Our work only considered one wave of incoming targets. Cousidering multiple waves
of targets and modeling the state uncertainty in multiple waves would be a logical

extension of this research.

In addition to expanding this research in the context of the missile defense problem,

the work in this thesis could easily apply to a variety of other problems. The POMDP
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formulation as well as the techniques used to solve the POMDP wmay be applied to other
battle management problems. Specifically. problems involving allocating limited resources
in a limited time-frame under uncertainty with consequences for every action may closely
resemble the single engagement problem. These problems could be defense or non-defense

related.
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Appendix A

Glossary of Acronyms and Terms

action : decision made at each stage in a POMDP

alpha vector : vector with a value for each state corresponding to an action
ANOVA : Analysis of Variance

belief space : set of all possible belief states

belief state : probability distribution over all possible states

BMDS : Ballistic Missile Defense System

boost phase : first phase of nissile flight in which it is powered by engines
case : set of assumptions and realities for the single engagement problem
CCD : Central Composite Design

DSP : Defense Support Program

EKYV : Exoatmospheric Kill Vehicle

epoch : number of stages left in which actions can be taken
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experiment : test in which changes are made to input variables of a process in order to

observe the reasons for changes in the output variables [13]
factor : input variable that affects the outcome of the experiment
GMD : Ground-based Midcourse Defense
interceptor : defensive missile designed to destrov incoming offensive missiles

kill assessment : the conclusion by a sensor network of whether an incoining target was

destroyed
leakage : allowing a target to pass through defenses and strike its destination
MDP : Markov Decision Process

midcourse phase : second phase of missile flight in which it travels above the atmosphere

and releases warheads
MMR : Maximum Marginal Return
observation : perceived state of the system
policy solution : provides the optimal action at each stage for each possible state
POMDP : Partially Observable Markov Decision Process
response : output variable from an experiment
reward : consequence of an action
RV : Re-entry Vehicle
shot : one-time assignment of multiple interceptors to multiple targets
single engagement : shoot-look-shoot opportunity against one wave of incoming targets
SSPK : Single-shot Probability of Kill
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stage : partition of a dynamic programming problem in which action must be made
state : condition of the svstem

target : incoming offensive missile

terminal phase : third phase of missile flight in which warhead falls back into atmosphere
transition : system change from one state to another

UAV : unmanned aerial vehicle

USNORTHCOM : United States Northern Command

USSTRATCOM : United States Strategic Command

value function : piecewise linear combination of alpha vectors over a belief space

WTA : Weapon-Target Assigniment

115



THIS PAGE INTENTIONALLY LEFT BLANK

116



Appendix B

Notation

B.1 POMDP Formulation
s €8 : state

¢« € A : action

0 € O : observation

T(s.a.s') : transition model

O(s.0.a,s") : observation model
R(s.0.a.s") : intermediate reward model
F(s) : terminal reward model

b € w(s) : belief state

b(s) = p : probability of being in state s
| V(b) : POMDP value function

d : discount factor for finite horizon POMDPs
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B.2 Problem Implementation

Bo : number of initial interceptors

po : number of initial targets

@ : number of interceptors remaining in inventory

p : number of targets remaining

SSPHK : single-shot probability of kill

g1 : number of targets with most interceptors assigned to them

g» : number of targets with fewer interceptors assigned to them

n : number of interceptors assigned to each of the g; targets

PK; : overall probability of no leakage for each of the ¢, targets

PK, : overall probability of no leakage for each of the g, targets

PKg;y, : randomly generated number to compare to PK; or PK5 in simulation
h : number of hits from an assignment

P.m : probability of observing a miss given a miss actually occurred

Py, : probability of observing a hit given a miss actually occurred

Py, : probability of observing a hit given a hit actually occurred

P, : probability of observing a miss given a hit actually occurred

Py : randomly generated number to compare to Py, or Py, in simulation
m, : number of observed misses

h, : number of observed hits
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m, : number of actual misses

I, : number of actual hits

Ih : lower bound on observations

ub : upper bound on observations

wy ¢ intermediate reward weight

wrp, : terminal reward weight on inventory remaining

wr, : terminal reward weight on targets remaining

B : number of interceptors remaining in inventory during MMR assignment planning
I : total number of interceptors remaining in inventory for all simulation trials

L : total number of simulation trials that allowed target to leak through defenses

t : number of simulation trials

B.3 Experimental Design
o : distance from center points for axial runs
ny : number of factorial runs

n, : number of axial runs

n. : number of center points

B.4 Results

F,; : probability of no leakage

3

. interceptors remaining in inventory after second shot

(%]
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" . weighted combination of probability of no leakage and inventory remaining
Ap,, : difference in probabilities of no leakage between Case 2 and 3

Ag, : difference in inventory remaining between Case 2 and 3

Ay : difference in W between Case 2 and 3

€ : residual or error between predicted and actual response
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