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Abstract 

Nanofluids, which are fluids containing suspension of nanometer-sized particles, have been 

reported to possess substantially higher thermal conductivity than their respective base fluids. 

This thesis reports on an experimental study of the effect of base fluid, particle size, particle 

volume concentration, and sonicating technique on the thermal conductivity enhancement of 

nanofluids. Thermal conductivity measurements for several combinations of nanocrystalline 

materials and base fluids were conducted with the transient hotwire technique. Results show 

that the thermal conductivity enhancement of nanofluids increases with particle volume 

concentration, with higher thermal conductivity enhancement observed for ethylene glycol 

than deionized water base fluids. However, most of the enhancement observed can be 

explained based on classical Maxwell-Gamett effective medium theory. Although ethylene 

glycol containing gold nanoparticles produces significantly higher enhancement in thermal 

conductivity over those predicted by the Maxwell-Garnett theory, Fourier transform analysis 

indicates that the anomalous enhancement in thermal conductivity observed with the gold- 

ethylene glycol nanofluids is due to the presence of water. Furthermore, results show that 

higher enhancement in thermal conductivity can be obtained by sonicating the aluminum 



oxide-deionized water nanofluids with a more powerful sonicating tool prior to thermal 

conductivity measurement. This leaves room for future exploration in the effect of particle 

size and distribution on heat transfer in nanofluids. 
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Chapter 1: Introduction 

1.1 Background 

Thermal conductivity of heat transfer fluids plays a vital role in the development of 

high performance heat-exchange devices. Conventional fluids such as water and ethylene 

glycol are unable to meet the ever increasing demand for cooling in high energy applications 

such as automobile engines, lasers, and electronic chips due to their low thermal conductivity. 

Driven by industrial needs of high performance cooling, nanofluids which are suspensions of 

nanometer-sized particles in conventional fluids are currently being developed [I-51 This new 

class of fluids has garnered much interest from both academia and industry due to their 

enhanced thermal conductivity [6-71. 

Numerous studies on the heat transfer properties of particle-liquid mixtures have been 

conducted in the past decades [8-101. However, these early studies were limited to 

suspensions of millimeter- or micrometer-sized particles. The inherent problems with these 

relatively large particles are that the particles can quickly settle out of the solution, clog 

microchannels of small devices, and abrade surfaces due to the higher inertia of these 

particles. With the recent advances in nanocrystalline materials processing, these problems 

can be eliminated by reducing the size of suspended particles in a liquid to the nanoscale. 



1.2 Experimental Investigation of Nanofluids 

Since the emergence of nanotechnology and nanoscience, several processing methods 

have been developed to manufacture nanoparticles for scientific research and engineering 

applications [l l-131. The most common is inert gas condensation method [7]. In this method, 

a precursor material is first vaporized in a vacuum chamber. As the vaporized precursor 

material is brought in contact with an inert gas, it condenses into nanoparticles which then 

deposit on a cooled surface. Gleiter et al. showed that the resulting particle size distribution is 

determined by the evaporation rate of the precursor material, the inert gas pressure, and the 

evaporation temperature [14]. Currently, the inert gas condensation method is able to produce 

nanoparticles in large quantities [7]. 

Nanoparticles dispersed in a liquid tend to agglomerate and settle out of the solution 

after a certain period of time. Evidence shows that nanoparticles can be stabilized against 

agglomeration through either electrostatic repulsion or steric stabilization [3, 151. 

Electrostatic repulsion results from the formation of an electrical double layer around the 

nanoparticles through the absorption of cations or anions in a liquid. The strength of this 

repulsive force is characterized by the zeta potential and is highly dependent on the pH of the 

liquid. Steric st~abilization, on the other hand, results from absorption of surfactant groups 

around nanoparticles. The surfactant groups wrap around the nanoparticles with their chain 

structures to prevent the nanoparticles from further agglomeration towards bulk clusters. The 

capability to stabilize nanoparticle suspension allows further laboratory studies of thermal 

properties of nanofluids. 



Numerous experimental investigations have been conducted to examine the effect of 

nanoparticle suspension in a base fluid on the effective thermal conductivity. Early 

experimental studies on the thermal conductivity of nanofluids focused on the colloidal 

suspension of oxide nanoparticles. Masuda et al. reported a 30% enhancement in thermal 

conductivity after adding -4.3 vol. % of 13 nm aluminum oxide particles in water [I]. Zhou 

and Wang et al. found that the thermal conductivity of water can be increased by -17% with 

the addition of only -0.4 vol. % of 50 nm copper oxide particles [16]. Other research groups 

have demonstrated promising results from dispersion of metallic nanoparticles such as copper 

and gold. Eastman et al. observed a -40% enhancement in thermal conductivity with 

ethylene glycol containing -0.3 vol. % of 10 nm copper particles [6]. Pate1 et al. reported 

-7% enhancement when 0.01 1 vol. % of gold nanoparticles were dispersed in toluene [17]. 

These results show enhancement in thermal conductivity significantly above that predicted by 

the effective medium theories. 

1.3 Theoretical Investigation of Nanofluids 

Theoretical modeling of heat transfer properties of particle suspension in a medium 

began in the late nineteenth century when Maxwell's theoretical work was first proposed [18]. 

In his work, Maxwell developed a model to predict the effective thermal conductivity of 

composites containing dispersion of spherical particles. The radii of the particles were 

assumed to be small compared to the inter-particle distances so that interference among 

particles can be avoided. This assumption is valid when the volume fraction of particles is 

limited to a small amount. Maxwell's model showed that thermal conductivity of a base 



medium can be enhanced by adding spherical particles of high thermal conductivity, and the 

effective thermal conductivity of particle-base medium composite increases with increased 

particle volume fraction [18]. Although Maxwell's model may provide a good approximation 

for large particle suspensions, it cannot explain the thermal transport phenomena in 

nanometer-sized particle suspensions because it did not include the boundary thermal 

resistance. 

Heat transfer in a nanofluid can be modeled as heat flow through a solid-liquid 

composite system. It has been recognized that in a composite system, the temperature drop 

across the interface between materials may be appreciable [19]. This temperature difference 

is attributed to the existence of a boundary thermal resistance, which is due to imperfect 

contact (mechanically or chemically) between dissimilar materials and a mismatch in the 

coefficient of thermal expansion [20]. Boundary thermal resistance is smaller at a solid-liquid 

interface than at a solid-solid interface due to better contact between liquid and solid. A 

simple parameter to characterize the importance of the boundary thermal resistance in a solid- 

liquid mixture is thermal resistance thickness defined as the width of the liquid layer over 

which there exists the same temperature drop as that across the solid-liquid interface [21]. 

The thermal resistance thickness of a liquid containing large size particles is small, but as the 

dimension of the particles approaches the nanoscale, this thickness can become comparable to 

the particle size and inter-particle distance. In this case, the boundary thermal resistance can 

no longer be neglected in theoretical models of heat transfer in a solid-liquid mixture. 

Experimental work conducted by Hatta and Power [22-231 on the thermal diffusivity 

of fiber-reinforced glass ceramic and sodium borosilicate glass matrix containing dispersion 

of spherical nickel indicated that the effective thermal conductivity of composites can be 



affected by the boundary thermal resistance at the interface between the matrix and the 

dispersed fibers or particles. In view of the significance of boundary thermal resistance in a 

composite system, Hasselman and Johnson modified Maxwell's theory to include the effect of 

boundary thermal resistance and particle size [20]. The resulting form of effective thermal 

conductivity of a particle-liquid mixture is given by: 

k d  - kp(1 + 2 a )  + 2km + 2 4  [kp ( l  - a ) -  km] - -  
km k p ( l +  2 a ) +  2km - 4 [ k p ( l -  a ) -  k,] (1.1) 

where k, and k, are the thermal conductivity of liquid and particle respectively, 4 is the 

particle volume fraction, and a = 2Rbkm/d where Rb is the boundary thermal resistance and d 

is the particle diameter. In the absence of boundary thermal resistance, Rb = 0, Eq. (1.1) 

reduces to Maxwell's model [18]. 

Several mechanisms that may contribute to the enhanced thermal conductivity of 

nanofluids have been proposed by the nanofluid research community. These include liquid 

layering at liquid-particle interface, Brownian motion of nanoparticles, and nanoparticle 

clustering. However, none of these mechanisms have adequately explained the anomalous 

enhancement in nanofluid thermal conductivity [24-261. Hence, the principal objective of this 

thesis is to explore the mechanisms of heat transfer enhancement in nanofluids through 

experimental investigations. 

This thesis is organized as follows. Chapter 2 discusses the experimental method and 

technique used to determine thermal conductivity of nanofluids. Chapter 3 describes 

manufacturers' specification of the nanofluid samples (i.e. particle size, particle volume 

concentration.. .etc) under current investigation, as well as how the samples were prepared 



before thermal conductivity measurements. Results of thermal conductivity enhancement of 

nanofluids over their respective base fluids were discussed in Chapter 4. Chapter 5 

summarizes the research and discusses future work of nanofluids study. 



Chapter 2: Experimental Method and Technique 

2.1 Determination of Liquid Thermal Conductivity 

Two experimental methods are commonly used for determining the thermal 

conductivity of liquids: the steady-state method and the transient hotwire method. The 

steady-state method typically involves applying a heat flux to create a steady-state 

temperature difference across a liquid layer, whereas the transient hotwire approach involves 

generating a temperature variation of a metallic wire suspended in a liquid. 

Wang and Xu et al. used a steady-state parallel-plate method, originally designed by 

Challoner and Powell [27], to measure the thermal conductivity of aluminum oxide and 

copper oxide dispersion in water, vacuum pump fluid, engine oil, and ethylene glycol [28]. A 

schematic of the experimental apparatus is shown in Figure 2.1. The liquid sample is located 

in the volume between two parallel round copper plates separated by three glass spacers of 

known thickness and thermal conductivity. The upper copper plate is surrounded by an 

aluminum cell. Thermocouples are used to measure temperatures of the bottom surface of the 

upper copper plate and the top surface of the lower copper plate. During the experiment, 

heater 1, embedded on the top copper plate, generates a heat flux from the upper copper plate 

through the liquid sample to the lower copper plate. Heaters 2 and 3 are used to equalize 

temperature of the aluminum cell to that of the upper copper plate. The temperature of the 

lower copper plate is maintained uniform by heater 4. With the known heat flux and 

temperature difference across the region between the two parallel copper plates, the effective 

thermal conductivity of the liquid-glass composite can be calculated from one-dimensional 

heat conduction equation: 



where q is the power of Heater 1, Lg is the thickness of the glass spacer, A is the area of the 

top copper plate orthogonal to the direction of heat flow, and AT is the temperature 

difference between the two copper plates. The thermal conductivity of the liquid can then be 

obtained from the effective thermal conductivity of liquid-glass composite using the following 

relation 

kcA  - kgAg 
k, = 

A - A ,  

where kc is the thermal conductivity of the liquid-glass composite, k, is the thermal 

conductivity of the glass spacer, and A, is the area of the glass spacer normal to the direction 

of heat flow. Calibration experiments showed that the absolute error for the thermal 

conductivity of deionized (DI) water and ethylene glycol obtained with this steady-state 

parallel-plate method is less than k 3% [28]. In applying this method for the determination of 

liquid thermal conductivity, one must pay special attention to the temperature difference 

between the inside wall of aluminum cell and the upper copper plate. The existence of this 

temperature difference results in natural convection and radiation losses from the top copper 

plate, which reduce the amount of heat flux between the two copper plates. 



Heattt 2 
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of heat 
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Figure 2.1 Experimental Apparatus for Steady-State Parallel-Plate Method [28] 

Transient hotwire method, on the other hand, is currently the most commonly used 

method for determining the thermal conductivity of fluids [29-301. It is called transient in the 

sense that the electric power is applied abruptly to a thin metallic wire surrounded by a fluid. 

The applied electric power results in joule heating and the subsequent temperature rise of the 

wire. This temperature variation of the wire as a function of time is strongly dependent on the 

heat transfer properties of the surrounding fluid, and it can be used to determine the thermal 

conductivity of a fluid. The most advantageous feature of the transient hotwire method is that 

it can experimentally eliminate error caused by natural convection [29]. Despite its high 

degree of accuracy, transient hotwire method cannot be used to measure the thermal 

conductivity of an electrically conducting fluid since significant leakage of electrical current 

can occur from the metallic wire to the surrounding fluid. However, this limitation can be 

overcome by using a metallic wire coated with a thin electrical insulation layer. 



As opposed to the steady-state method which may takes hours for the system to reach 

steady-state, the duration of the transient hotwire method lasts only a few seconds. Also, 

elimination of natural convection and radiation losses with the transient hotwire method 

greatly simplifies experimental procedures. Hence, current experiment uses transient hotwire 

approach to measure liquid thermal conductivity. 

2.2 Transient Hotwire Method 

There are several assumptions made in the transient hotwire method. First, the wire is 

infinitely long and is surrounded by an infinite medium whose thermal conductivity is to be 

measured. Secondly, the wire is a perfect thermal conductor (i.e. infinite thermal 

conductivity) so that the temperature distribution within the wire can be treated as uniform. 

Finally, the wire loses heat radially through conduction alone to the surrounding medium. 

There are three regions of conduction heat transfer from the wire to the surrounding 

fluid. Region 1 is the bare metallic wire, region 2 is the electrical insulation layer, and region 

3 is the surrounding fluid (see Figure 2.2). The governing Fourier equation in the cylindrical 

coordinates in each of these three regions is: 

for O S r l r ,  

for 5 5 r 5 ro 

for r, i r 



where rl is the radius of metallic wire, ro is the overall radius of coated wire, K is the thermal 

diffusivity, h is the thermal conductivity, and q is the heat generation per unit length of wire. 

Liquid 



Since there is no current passing through region 2 and 3 (see Figure 2.2), these two regions do 

not have the heat generation term in their corresponding Fourier equations (see Eq. (2.4) and 

Eq. (2.5)). The imposed initial and boundary conditions for this conduction problem are: 

AT, =AT2 =ATJ = O  

AT, = AT2 

Nagasaka et al. has derived an analytical expression for the solution of temperature 

distribution in region 1 using the previously stated initial and boundary conditions [29]. Since 

the transient hotwire method assumes that the wire has uniform temperature, an integral 

average along the radial coordinates is applied to the solution of temperature distribution 

AT, (r, t ) .  The resulting form of AT, (t) is given by: 



where A, B , and C are constant terms involving the geometry of wire, the thermal diffusivity 

of region l , 2 ,  and 3, and the thermal conductivity of region 2 and 3. 

1 
If - (B In t + C) is much less than the constant term A, which is the case for a wire with 

t 

diameter in the microscale, there exists a linear relationship between @ and time in 

logarithmic scale: 

dAT, 
The slope of the line - is given by - , and therefore, the thermal conductivity of a 

d lnt 4x2 

fluid can be determined from 

&=A - 
4x ldE1 dln t  

2.3 Experimental Apparatus and Measurement Technique 

Figure 2.3 shows the schematic of an electrical circuit for measuring the thermal 

conductivity of fluids. The change of hotwire temperature is measured by a Wheatstone 

bridge. Two arms of the bridge consist of two precision resistors. Each precision resistor has 

a resistance value of 40.13 kC2 and a temperature coefficient of resistance of 5 ppd~. The 

other two arms of the bridge consist of the hotwire cell and a 100 C2 potentiometer with the 

temperature coefficient of resistance of 20 p p d ~ .  The voltage imbalance across the bridge 

as a function time is recorded by a data acquisition system. 



Constant 

Precision Resistor 

Vout 

Figure 2.3 Schematic of Electrical Circuit 

The hotwire cell contains an Isonel-coated platinum wire suspended horizontally in a 

fluid (see Figure 2.4). The wire is approximately 15 cm long and was soldered to 

copperlbrass electrodes at both ends. The wire core diameter is 25 pm and the insulation 

layer has a thickness of 1.5 pm. To eliminate leakage of electrical current from the electrodes 

to the surrounding fluid, three layers of electrically insulating epoxy were applied to the 

surface of electrodes. 



CopperlBrass 
Electrode 

fluid to be measured 

Coated platinum wire (25 pm core 
diameter) 

2.4 Schematic of Hotwire Cell 

Figure 2.5 shows a photograph of the transient hotwire apparatus. To measure 

thermal conductivity, a fluid was first placed into the hotwire cell. Then, the potentiometer 

was adjusted until the voltage imbalance across the bridge was reduced to -10 pV. After the 

bridge was initially balanced, the resistances of the hotwire cell and potentiometer were 

measured with a Digital Multimeters (DMM's) using four-wire method. Then, a constant 

current of 75 mA was applied to the bridge, and the voltage imbalance across the bridge in the 

range of 1 mV was recorded as a function of time. The duration of data acquisition was 2 

seconds. Finally, signal analysis was performed to convert the bridge output signal to the 

thermal conductivity of a fluid (see Section 2.4). 



Potentiometer I 

u 
Figure 2.5 Transient Hotwire Apparatus 

2.4 Signal Analysis for the Transient Hotwire Experiment 

Wheatstone bridge is commonly used for high-accuracy resistance measurement. The 

output from the bridge is often directly connected to a high-impedance device such as an 

electronic voltmeter to determine the magnitude of bridge imbalance. Figure 2.6 shows a 

schematic for the Wheatstone bridge circuit used in the current transient hotwire experiment. 

R1 and R2 are the precision resistors with the same resistance value, R3 is a 100 R 

potentiometer, Rw is the resistance of the hotwire, and Rp is the parasitic resistance associated 

with the hotwire cell. A constant current is applied to the bridge to produce voltage output 

due to bridge imbalance. 



Constant 
Current 
Source Meter f i~ 

A Vout 

b Y 

Wheatstone Bridge Circuit 

Figure 2.6 Wheatstone Bridge Circuit 

From Figure 2.6, it can be seen that the bridge output is the difference between the voltage at 

point A and point B. 

Using the voltage divider relation, V,,can be written as 

Let Rw + R, = R4 and substitute into Eq. (2.17) 



Apply Kirchoff's current law at point C, and it gives 

Eq. (2.19) can be rearranged to give 

Substitute Eq. (2.20) into Eq. (2.18) 

- . [ R1,4R1 - R2R3 
- I T  -- 

(R ,  +. R, + R, + R,) I 
+ Rp ) R, - R2 R3 

R, + R, + R, + R,) 

If Rw changes by AR,, 



Assume the bridge is initially balanced, then V,, = 0, and let R, = R, = R  

I (R ,  + R, - R,)R +ARwR 
=3 AVOtlt = I T  ( 2R  + R , + R ,  + A R , + R , )  1 
Eq. (2.2 1 )  can be rearranged to give 

The change of hotwire temperature can be obtained from AR, and the temperature coefficient 
of resistance of hotwire a, and it gives 

ARw AT, = -- 
Rw (a) 



2.5 System Calibration 

The coated platinum wire needed to be calibrated to obtain its temperature coefficient 

of resistance (TCR) defined as the change of resistance of a material per degree change of 

temperature. The calibration was done by measuring the resistance of the coated platinum 

wire when the wire was immersed in water at different temperatures. The wire resistance 

versus temperature is plotted in Figure 2.7. Results show that TCR of the coated platinum 

dR 
wire, which is - divided by the resistance of the wire at room temperature (-25 OC), is 

dT 

0.003359 a I( K). The published value of TCR for platinum wire, however, is 0.0039 

29.6 
10 12 14 16 18 20 

Temperature (OC ) 

Figure 2.7 Hotwire Temperature Coefficient of Resistance Calibration 
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To establish the reliability of thermal conductivity measurement, calibration 

experiments were performed for DI water and ethylene glycol at room temperature (-25 OC) .  

Figure 2.8 plots the change of temperature of the coated platinum wire as a function of time 

for both DI water and ethylene glycol. As seen in Figure 2.8, the change of wire temperature 

in both liquids increases with time in logarithmic scale. The change of wire temperature in 

the case of ethylene glycol is higher than that of DI water, and this is attributed to the fact that 

ethylene glycol has a lower thermal conductivity. Although Figure 2.8 shows AT vs. 

ln(time) in a full time scale, the slope of the curve is only obtained fkom the data range 

between 0.1 and 1 second. This is because at short time scale, internal heat conduction inside 

the wire is dominating, and data cannot be used, whereas at long time scale, convection sets in 

and cause the slope of AT vs. ln(time) curve to diverge from linearity (see Figure 2.8). 

Tim (seconds) 

Figure 2.8 Calibration Data for DI Water and Ethylene Glycol at Room Temperature 



From the slope of AT vs. ln(time), the thermal conductivity of DI water and ethylene glycol 

can be calculated using Eq. (2.15), and the results are compared with the literature values (see 

Table 2.1). Table 2.1 shows that at room temperature, the measured thermal conductivity of 

both liquids is lower than the literature values by less than 2%. The uncertainty shown in the 

measured thermal conductivity was obtained from the standard deviation of eight data points. 

Table 2.1 Measured Thermal Conductivity vs. Literature Values 

Fluid 

Deionized Water 
(-25 OC) 

(-25 'C)  

Measured Thermal 
Conductivity (W/mK) 

0.599 f 0.002 (f lo) 

0.248 f 0.00 1 (f  lo) 

Literature Value 
(W/mK) 

0.608 

0.252 

Error (%) 

1.5 

1.6 



2.6 The Effect of Thermophoresis and Electrophoresis on Transient Hotwire 
Measurement 

As an electrical current is applied to the hotwire, a temperature gradient and an electric 

field are generated in the vicinity of hotwire. Hence, thermophoresis and electrophoresis may 

have a considerable impact on the thermal conductivity measurement of a nanofluid using 

transient hotwire technique [32-331. Thermophoresis is the force exerted on particles due to 

the presence of a temperature gradient. It is a result of force imbalance associated with 

molecular collision from the colder and hotter regions. Electrophoresis, on the other hand, is 

the force exerted on the charged particles under the influence of an electric field. It has been 

known that particles are charged when they are suspended in a liquid. These charges can be 

obtained either from the absorption of ions in a liquid or from the ionization of chemical 

groups in the surface of particles. 

To study the effect of therrnophoresis and electrophoresis on the thermal conductivity 

measurement, heating power and hotwire diameter were varied to produce different 

temperature gradient and strength of electric field in the vicinity of the hotwire. The 

nanofluid used for the thermophoresis and electrophoresis experiments is alumina in ethylene 

glycol with particle diameter of 35 nm and particle volume concentration of 5%. The results 

are shown in Figure 2.9 and Figure 2.10. As illustrated in these two figures, the thermal 

conductivity enhancement is independent on heating power and hotwire geometry. This 

indicates that the effect of thermophoresis and electrophoresis on heat transfer characteristic 

in a nanofluid cannot be observed experimentally. 
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Figure 2.9 The Effect of Heating Power on the Thermal Conductivity Enhancement 
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2.7 Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR) 

It is of interest to confirm that the composition of a fluid sample is consistent with the 

manufacturer's claim. This can be done by using Fourier Transform Infrared Spectroscopy 

(FTIR), which is an analytical technique for material analysis. FTIR can be used to identify 

types of chemical bonds or functional groups in an unknown solid, liquid, or gas. One 

application of FTIR involves detecting contaminants or dissolved species in liquids. 

Attenuated total reflection (ATR) is a recently developed FTIR sampling technique. 

ATR technique allows analysis of a solid or liquid sample with little or no sample preparation. 

The sample is simply placed in contact with the top face of an ATR crystal, which is often 

referred to as an internal reflection element. ATR technique works well with samples that are 

either too thick or too absorbing for standard transmission analysis. 

To obtain ATR spectra of a liquid sample, a droplet of liquid is placed in direct contact 

with an ATR crystal of high refractive index. Then, an infrared beam is directed into the 

crystal at a certain angle such that total internal reflection occurs along the interface between 

the crystal and the sample (see Figure 2.11). The infrared beam reflects from this interface 

and creates an evanescent wave that extends orthogonally beyond the crystal into the sample. 

Typically, the evanescent wave penetrates into the sample in the order of a few microns. As 

some of its energy is absorbed by the sample at certain absorption frequencies, the evanescent 

wave becomes attenuated. This attenuated evanescent wave is then passed back to the 

infrared beam, which leaves the crystal and enters a detector in the FTIR spectrometer. 
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Figure 2.11 Single Reflection ATR System 



Chapter 3: Sample Description and Preparation 

3.1 Sample Description 

The nanofluids under current investigation can be divided into two groups, which are 

DI water- and ethylene glycol-based nanofluids. Both groups consist of suspension of 

aluminum oxide and gold nanoparticles (see Table 3.1 and Table 3.2). The particle size 

shown in these two tables refers to the size of the particles prior to their dispersion in the base 

fluids. To enhance colloidal stability, commercially available surfactants such as pyridine and 

sodium dodecylbenzenesulfonate are used in some nanofluid samples. Pyridine is a clear 

liquid, whereas sodium dodecylbenzenesulfonate is solid and is soluble in most solvents. All 

nanofluid samples were prepared by a two-step method, in which the nanoparticles were 

produced first, followed by dispersion of nanoparticles in the base fluids. 

Table 3.1 DI Water-Based Nanofluids 

Suspended 
Particles 

Aluminum 
Oxide 

Gold 

Gold 

Particle Size 

47 nm 

5, 15, and 
30 nm 

15 nm 

Particle Volume 
Concentration(as 

received from 
manufacturer) 

-8% 

-0.27% 

-0.27% 

Surfactant 

without 
Surfactant 
without 

Surfactant 

Pyridine 

Manufacturer 

Nanophase 
Technologies 

Meliorum 
Technology 
Meliorum 

Technology 



Table 3.2 Ethylene Glycol-Based Nanofluids 
I I  Particle Volume 

Suspended 
Particles 

*NaDBS - sodium dodecylbenzenesulfonate 

Aluminum 
Oxide 

Gold 

Gold 

3.2 Sample Preparation 

Particle Size 

3.2.1 Sonication 

Particles in nanofluids tend to agglomerate to form clusters, which will eventually 

become unstable and settle out of the solutions. Some energy is required to break clusters into 

smaller constituents. In this experiment, two techniques were employed to break nanoparticle 

clusters in nanofluids. The first technique, also the primary technique used in this experiment, 

involved immersing the nanofluid samples in an ultrasonic cleaner capable of generating 

ultrasonic pulses of 70 W at 42 kHz (see Figure 3.1). Before conducting thermal conductivity 

measurements, nanofluid samples were sonicated in the ultrasonic cleaner for -4 hours. 

35 nm 

5, 15, and 
30 nm 

15 nm 

Concentration(as 
received from 
manufacturer) 

-5% 

-0.3% 

-0.3% 

Surfactant Manufacturer 

NaDBS* 

without 
surfactant 

Pyridine 

Meliorum 
Technology 
Meliorum 

Technology 
Meliorum 

Technology 



Figure 3.1 Ultrasonic Cleaner Setup 

The second technique of separating aggregates into smaller constituents involved 

using an ultrasonic probe, which is able to generate a power output of 750 W at 20 kHz. The 

probe was immersed -5 cm into a nanofluid sample, and was operated on pulsed mode (i.e. 

the probe was turned on for 2 seconds, followed by 1 second of inactivity) to provide mixing 

by repeatedly allowing the sample to settle back under the probe after each burst (see Figure 

3.2). The ultrasonic probe was programmed to continue sonicating the sample until -16000 J 

of ultrasonic energy was delivered to the sample. 



Figure 3.2 Ultrasonic Probe Setup 

3.2.2 Diluting Procedure 

A diluting procedure was followed to dilute a nanofluid to a lower particle 

concentration. First of all, a nanofluid sample was sonicated in an ultrasonic cleaner. After 

sonication, the sample was shaken rigorously to ensure that colloidal particles were uniformly 

distributed in the solution. Then, the amount of nanofluid required for dilution is withdrawn 

by a pipette. Finally, the diluting solvent was added to the withdrawn nanofluid to dilute the 

original sample to the particle volume concentration of interest. The diluting solvents used 

are ethylene glycol and DI Water, and their properties are shown in Table 3.3 and Table 3.4. 



Table 3.3 Properties of Ethylene Glycol 

Table 3.4 Pro~erties of DI Water 

Solvent 

Ethylene 
Glycol 

Acidity 

27 ppm 

Solvent 

DI 

- PPm 

Chloride 

<1 ppm 

water Reagent ppb ppb P P ~  I P P ~  I P P ~  I pa-s 
I I I I Company I 

Grade 

Iron 

' loo 

Si02 

< 3  

A 

Organic 
Carbon 

< l o o  

Water 

2 10 ppm 

Specific 
Gravity 
at 25 C 

1.1 13 

Phosphate 

< 1 

Nitrate 

< 0.2 

Sulfate 

< 1 

( @ 

25 oC) 

0.01 663 Pa-s 

Manufacturer 

Mallinckrodt 
Chemicals 

Viscosity 
(@ 25 OC) 

9.04 xIO-4 

Manufacturer 

Ricca 
Chemical 



4.0 RESULTS AND DISCUSSION 

This chapter discusses the thermal conductivity enhancement of nanofluids over those of the 

base fluids alone. The nanofluid samples were sonicated in an ultrasonic cleaner before 

thermal conductivity measurements. The results obtained from DI water-based nanofluids are 

presented first,, followed by the discussion of ethylene glycol-based nanofluids. Finally, the 

effect of using a different sonicating technique (e.g. sonicating probe) on the thermal 

conductivity enhancement of nanofluids is discussed. 

4.1 Thermal Conductivity Enhancement of DI Water-Based Nanofluids 

Figure 4.1 shows the dependence of thermal conductivity enhancement on the particle 

volume fraction for aluminum oxide-DI water nanofluids. The thermal conductivity 

enhancement is calculated from the following formula: 

where is the thermal conductivity of a nanofluid and k , ,  is the thermal conductivity 

of the base fluid 

Predictions based on Maxwell-Garnett model with and without boundary thermal resistance 

are also shown to compare the experimental results with the model. Results show that the 

thermal conductivity enhancement increases with the volume fraction of aluminum oxide 

nanoparticles (see Figure 4.1). The trend in the absolute value of thermal conductivity 

enhancement follows from those normalized by the thermal conductivity of base fluids (see 



Figure 4.l(a) and (b)). As seen in Figure 4.l(a), the highest thermal conductivity 

enhancement observed in the current experiment is 16% at a particle volume fraction of -8%. 

Also, results show that at a given particle volume fraction, the difference in the thermal 

conductivity enhancement between the current data and the data obtained from Lee is within 

2%. This is expected because both the current sample and Lee's sample are comparable in 

particle size, and both samples were prepared by a two-step method. Comparing the 

experiments to the model, Figure 4.l(a) shows that the current data agrees well with the 

Maxwell-Gamett model with the boundary thermal resistance, whereas the data obtained from 

Lee fall between the Maxwell-Gamett model with and without the boundary thermal 

resistance [2]. Cahill and co-worker measured boundary thermal resistance between platinum 

nanoparticles (10 nm in diameter) and water to be 7.7 x Km2w-l [34], which is used as an 

approximation for the boundary thermal resistance between aluminum oxide nanoparticles (47 

nm) and water in the current sample due to the similarity in particle size. 
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Figure 4.2 shows the thermal conductivity enhancement of gold-DI water nanofluids 

with particle diameter of 5, 15, and 30 nm. Each sample has the same particle volume 

concentration of -0.27%. As illustrated in Figure 4.2, no thermal conductivity enhancement 

is observed for samples both with and without surfactant. This result can be attributed to the 

low particle concentrations in these samples. Low particle concentration results in long inter- 

particle distance and large regions of particle-free liquid with high thermal resistance [7]. The 

observed thermal conductivity enhancement for all the samples follows from the Maxwell- 

Garnett predictions (see Figure 4.2). 
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Figure 4.2 Thermal Conductivity Enhancement of Gold-DI Water Nanofluids 

4.2 Thermal Conductivity Enhancement of Ethylene Glycol-Based Nanofluids 



The relationship between the thermal conductivity enhancement and the particle 

volume fraction for aluminum oxide-ethylene glycol nanofluids is depicted in Figure 4.3. As 

shown in this figure, the thermal conductivity enhancement increases linearly with particle 

volume fraction. The trend in the absolute value of thermal conductivity enhancement 

follows from those normalized by the thermal conductivity of base fluids (see Figure 4.3(a) 

and (b)). Figure 4.3(a) shows that thermal conductivity of the current sample can be enhanced 

by -15% at particle volume fraction of -5%. At the same particle volume fraction, dispersion 

of aluminum oxide in DI water results in only -9% enhancement in thermal conductivity (see 

Figure 4.1 (a)). This indicates that aluminum oxide nanoparticles are more effective in 

improving the thermal transport property when they are dispersed in ethylene glycol than in 

DI water. As illustrated in Figure 4.3(a), the current data fall along the Maxwell-Garnett 

prediction without the boundary thermal resistance. 

By comparing results obtained from different research groups, Figure 4.3(a) shows 

that at relatively low particle volume fraction, the current data agrees well with the data 

obtained from Lee and Eastman [ 2 , 6 ] .  However, the observed thermal conductivity 

enhancement among different groups diverges at relatively high particle volume fraction. It 

has been found that rapid clustering of nanoparticles occurs at high particle concentration, and 

the thermal conductivity enhancement of nanofluids is directly related to the clustering of 

nanoparticles [35]. Thus, the difference in the size and structure of agglomerates among 

different nanofluid samples can possibly explain the divergence of experimental data at 

relatively high particle concentration. 
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Figure 4.4 shows the thermal conductivity enhancement for the gold-ethylene glycol 

nanofluids with different particle diameters. These nanofluid samples contain the same 

volume fraction of gold nanoparticles (-0.3%). As shown in Figure 4.4, for the samples 

without surfactant the thermal conductivity enhancement is relatively constant at -6% at 

particle diameter of 5, 15, and 30 nm. This indicates that the enhancement in thermal 

conductivity is not dependent on the size of the gold nanoparticles prior to their dispersion in 

ethylene glycol. For the sample with surfactant, the observed thermal conductivity 

enhancement is -12%, which is higher than those without surfactant by nearly a factor of two. 

Calculations based on Maxwell-Garnett model show a less than - 1 % enhancement in thermal 

conductivity. Later material analysis of these gold-ethylene glycol nanofluids by ATR-FTIR 

technique suggests that the observed analomous enhancement can be due to the presence of 

water (see Section 4.4). 
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4.3 Thermal Conductivity Enhancement of Gold-Ethylene Glycol Nanofluids 

In view of the significant thermal conductivity enhancement observed with the gold- 

ethylene glycol nanofluids, a systematic dilution was performed to study its behavior at lower 
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particle concentration. Figure 4.5 plots the dependence of thermal conductivity enhancement 

on the particle volume concentration for the sample with particle diameter of 15 nrn and with 

- 

- 

surfactant. Similar plot for the sample with particle diameter of 30 nm and without surfactant 

are shown in Figure 4.6. These two figures indicate that the thermal conductivity 

enhancement for both gold nanofluid samples decreases linearly as the nanofluids were 

diluted to lower particle concentration. Even at the lowest particle concentration, the 

observed thermal conductivity enhancement is higher than Maxwell-Garnett prediction by a 

significant amount. 
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As discussed in Section 3.2, the thermal conductivity enhancement is higher when the 

gold nanoparticles are dispersed in ethylene glycol than in DI water. Hence, it is of interest to 

see the enhancement in thermal conductivity when the gold nanoparticles are dispersed in 

ethylene glycol and water mixture. The resulting nanofluid mixture of gold, DI water and 

ethylene glycol was prepared by adding DI water into a gold-ethylene glycol nanofluid 

sample with particle diameter of 5 nm and particle volume concentration of -0.3%. As more 

water was added to the nanofluid mixture, the particle volume concentration decreases as a 

consequence (see Figure 4.7). 

The effect of DI water volume concentration on the thermal conductivity of the 

nanofluid mixture is shown in Figure 4.8. This figure also shows the thermal conductivity of 

DI water and ethylene glycol mixture as a function of DI water volume concentration, which 

is used as a baseline thermal conductivity with which the thermal conductivity of the 

nanofluid mixture is compared. As seen in Figure 4.8, at a given volume concentration of DI 

water, the thermal conductivity of the nanofluid mixture is higher than that of DI water and 

ethylene glycol mixture. This is attributable to the presence of gold nanoparticles in the 

nanofluid mixture. 

Figure 4.9 plots the thermal conductivity enhancement of the nanofluid mixture over 

the baseline thermal conductivity as a function of DI water volume concentration in the 

nanofluid mixture. This figure shows that between 0 and 35 vol. % of DI water in the 

nanofluid mixture, the thermal conductivity enhancement increases with the increased DI 

water volume concentration even though the gold particle volume concentration decreases due 

to the addition of water (see Figure 4.9). This suggests that in this regime, the relative 

proportion of ethylene glycol and DI water in the nanofluid mixture has more significant 



effect on the thermal conductivity enhancement than the gold particle concentration. The 

decreasing trend after the maximum enhancement in thermal conductivity at DI water volume 

concentration of -35% can be possibly due to the fact that as the concentration of gold 

nanoparticle drops below a critical point, the thermal conductivity enhancement starts to fall 

with increasing DI water volume concentration. The observed thermal conductivity 

enhancement of the nanofluid mixture is significantly higher than that predicted by the 

Maxwell-Garnett theory (see Figure 4.9). 
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Figure 4.7 Gold Particle Volume Concentration as a Function of DI Water Volume 
Concentration in the Mixture 
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4.4 ATR-FT1.R Analysis of the Gold-Ethylene Glycol Nanofluid 

It was assumed that the anomalous enhancement in thermal conductivity observed 

from the gold-ethylene glycol nanofluids may be attributable to the presence of water. This 

assumption was made based on the following reasons. First, viscosity measurements by 

Professor McKinley's Group on the gold-ethylene glycol nanofluids showed reducing 

viscosity with the increased particle volume fraction. Also, data indicates that thermal 

conductivity of ethylene glycol increases as ethylene glycol is exposed to atmosphere for 

extended period of time (see Table 4. I), which is possibly due to water absorption. Finally, 

details of manufacturing processes for the nanofluid samples are unclear. Hence, ATR-FTIR 

analysis was performed on the gold-ethylene glycol nanofluid sample with particle diameter 

of 30 nm and without surfactant to see whether there is presence of water in the sample. 

Figure 4.10 shows the ATR absorption spectra for the gold nanofluid sample plotted 

against those for ethylene glycol and DI water. The peaks observed at the wavenumber of 

-3750 cm-' are due to the background noise collected by the ATR crystal. As seen in Figure 

4.10, spectrum of the nanofluid sample generally follows from ethylene glycol. However, as 

opposed to total transmittance shown in the spectrum of ethylene glycol at - 1650 cm-l, a 

small absorption (shown as a small bump) is shown in the spectrum of the nanofluid sample at 

the same wavenumber. A comparison between spectra of the nanofluid sample and DI water 

suggests that this bump may indicate the presence of small amount water in the nanofluid 

sample. 



Table 4.1 The Effect of Atmospheric Exposure on the Thermal Conductivity of Ethylene 
Glvcol 

To estimate the amount of water in the nanofluid sample, ATR spectra were collected 

for ethylene glycol and DI water mixtures with different water volume concentrations, and the 

results were plotted against the spectrum of the gold nanofluid sample (see Figure 4.11). A 

zoom-in of the absorption peaks at - 1650 cm-' was inserted as an inset of Figure 4.1 1. As 

shown in Figure 4.1 1, the absorption peak of ethylene and water mixture at -1650 cm" rises 

with the increased water volume concentration. The height and area of this peak at -1650cm-' 

for the mixture with water volume concentration of -6.7% are similar to those for the gold 

nanofluid sample (see inset of Figure 4.1 1). This suggests that the gold nanofluid sample 

may contain -6.7 vol. % of water, which caused the observed anomalous enhancement in 

thermal conductivity. 
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Enhancement (%) 

0 

0.247 

0 

12 

0.252 

2.0 

33 

0.257 

4.0 



Gold in Ethylene Glycol 

3000 2000 1 000 
Wavenumbers (cm-I) 

Figure 4.10 ATR Absorption Spectra for Gold in Ethylene Glycol Nanofluid, Ethylene 
Glycol, and DI Water. The peaks at -3750 em-' are due to the noises collected by the 
ATR crystal. 
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Figure 4.11 ATR Absorption Spectra for Gold in Ethylene Glycol Nanofluid, and 
Mixtures of Ethylene Glycol and DI Water. A zoom-in of the absorption peaks at -1650 
em'' is shown as an inset. The spectra are color-coded. Blue: gold-ethylene glycol 
nanofluid; Black: 3.3 vol. % DI water in ethylene-glycol; Green: 6.7 vol. % DI water in 
ethylene glycol; Red: 10 vol. % DI water in ethylene glycol 



4.5 The Effect of Different Sonicating Techniques on the Thermal Conductivity 
Enhancement of Nanofluids 

Thermal conductivity enhancement as a function of particle volume fraction for the 

aluminum oxide-DI water nanofluid (47 nm) was obtained after sonicating the sample by an 

ultrasonic probe, and the results were plotted against those obtained after sonicating in an 

ultrasonic cleaner (see Figure 4.12). The total amount of energy delivered to the sample was 

held constant at - 16000 J for both sonicating techniques, but the rate at which this ultrasonic 

energy delivered was much faster with the sonicating probe (750 Jls) than with the ultrasonic 

cleaner (70 Jls). As shown in Figure 4.12, at the same particle volume fraction, the observed 

thermal conductivity enhancement is higher with the sonicating probe technique than with the 

ultrasonic cleaner technique. The difference in thermal conductivity enhancement between 

different sonicating techniques increases with the increased particle volume fraction, and is as 

large as -10% at particle volume fraction of -8%. This trend is possibly attributable to the 

rapid particle clustering at high volume fraction, so a more powerful sonicating tool is 

required to break large agglomerates into smaller constituents. 

Figure 4.12 also shows that the thermal conductivity enhancement obtained with the 

sonicating probe technique falls along the Maxwell-Garnett model without the boundary 

thermal resistance. According to the Maxwell-Garnett model, the thermal conductivity 

enhancement of a particle-liquid mixture decreases with decreased particle size due to larger 

contribution of boundary thermal resistance in the overall resistance to heat flow. However, 

an opposite trend is seen in the experimental results, as the observed thermal conductivity 

enhancement increases with a decrease in particle size. The discrepancy between the model 

and the experiment suggests that there exist other heat transfer mechanisms beyond those 

considered in the model [18,20]. 
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Figure 4.12 The Effect of Different Sonicating Techniques on the Thermal Conductivity 
Enhancement of Aluminum Oxide in DI Water Nanofluid. 
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Chapter 5: Conclusion and Future Work 

Transient hotwire technique was used to measure the thermal conductivity of DI 

water- and ethylene glycol-based nanofluids containing dispersion of aluminum oxide and 

gold nanoparticles. Results show that nanofluids, except for the ones with gold nanoparticles 

in DI water, exhibit higher thermal conductivity than their respective base fluids, and the 

thermal conductivity enhancement increases with the increased volume concentration of 

nanoparticles. Comparing the results of DI water-based nanofluids with those of ethylene 

glycol-based nanofluids, it can be seen that the thermal conductivity enhancement is higher 

when the nanoparticles are dispersed in ethylene glycol than in DI water. 

The current sample of aluminum oxide in DI water exhibits an enhancement in 

thermal conductivity by - 16% at the particle volume fraction of -8%. For the aluminum 

oxide-ethylene glycol sample, - 15% enhancement in thermal conductivity is observed at 

particle volume fraction of -5%. The observed thermal conductivity enhancement of these 

aluminum oxide nanofluid samples is comparable to the Maxwell-Gamett approximations. 

The enhancement in thermal conductivity for nanofluids containing gold nanoparticles 

is found to be strongly dependent on the base fluid. For the gold in DI water nanofluids, no 

thermal conductivity enhancement is observed. However, dispersion of gold nanoparticles in 

ethylene glycol without the use of surfactant shows -6% enhancement in thermal conductivity 

at particle volume concentration of only -0.3%. This thermal conductivity enhancement is 

found to be independent with the size of the gold nanoparticles prior to their dispersion in 

ethylene glycol. At the same volume concentration of gold nanoparticles in ethylene glycol 

(-0.3%), results show that the thermal conductivity enhancement can be raised to -12% with 

the aid of surfactant (Pyridine). However, calculation based on Maxwell-Gamett model 



predicts a thermal conductivity enhancement of only less than -1 % for these gold-ethylene 

glycol nanofluids. ATR-FTIR analysis suggests that this large discrepancy between the model 

and the experiment may be attributable to the presence of water in the gold-ethylene glycol 

nanofluids. 

Investigation of the effect of different sonicating techniques on the thermal 

conductivity enhancement of aluminum oxide-DI water nanofluid indicates that the 

enhancement in thermal conductivity is dependent on the strength of the sonicating tool. As 

compared to the ultrasonic cleaner (70W), the use of a more powerful sonicating probe 

(750W) results in a higher thermal conductivity enhancement. The beneficial effect of using 

sonicating probe on the thermal conductivity enhancement of aluminum oxide-DI water 

nanofluid is more pronounced at high particle volume fraction. At particle volume fraction of 

-8%, the enhancement in thermal conductivity is -26% with the use of a sonicating probe, 

whereas only - 16% enhancement in thermal conductivity was observed after sonicating the 

sample in an ultrasonic cleaner. 

The thermal conductivity data obtained from different sonicating techniques is very 

interesting, and further systematic studies are needed to understand the discrepancy in thermal 

conductivity enhancement between different sonicating techniques. One approach is to 

investigate the agglomerated size and structure of nanoparticles in nanofluids. Traditional 

characterization technique such as transmission electron microscopy (TEM) cannot image the 

nanoparticles in suspension. Hence, a new experimental technique needs to be developed to 

in-situ characterize the size and distribution of aggregates in nanofluids. 
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