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Abstract 

This thesis develops phonon-polariton based THz spectroscopy and uses this tech- 
nique to make the first THz frequency dielectric measurements of a relaxor ferro- 
electric crystal, in particular KT~.982Nb0.01803 (KTN 1.8). THz spectroscopy has 
emerged as an important probe for a wide variety of systems with the development of 
pulsed THz radiation sources and time-domain detection methods. Four factors mo- 
tivate the use of phonon-polaritons generated in an ionic crystal (typically LiNb03 
or LiTa03) via impulsive stimulated Raman scattering as a THz source for spec- 
troscopy: (1) the versatility of phonon-polariton waveform shaping and detection, (2) 
the ability to use the ionic crystal as a compact, integrated spectroscopic platform, 
(3) the high THz refractive index of the host material facilitates coupling of THz ra- 
diation into high-dielectric samples, and (4) the potential to generate large amplitude 
polariton fields for nonlinear THz spectroscopy. Here we demonstrate both reflection 
and transmission implementations of THz spectrometers based on grating interfer- 
ometric measurement of the phase and amplitude of a phonon-polariton waveform 
before and after interaction with a sample. A simple implementation of free space 
THz spectroscopy with conventional detection is also performed as a comparison to 
the polariton spectroscopy measurements. For the investigation of high-dielectric ma- 
terials, both reflection and transmission polariton spectroscopy offer clear advantages 
over free space methods. 

Polariton spectroscopy is used to measure the refractive index of KTN 1.8 in 
the ~50-250 GHz range from 4300 K as the index varies between -10 and 35. At 
low temperatures, the Nb ions in our sample induce dynamically fluctuating polar 
nano-regions (PNRs) that dominate the dielectric response at low at low frequencies 

(< Hz). Our results differed from low frequency measurements in two ways: 
a significantly smaller, but still ionic, dielectric response and Curie-Weiss soft mode 
behavior. Together with ISRS transient grating measurements of the KTN soft mode 
in the low temperature disordered state, we attribute this behavior to soft mode 



mediated fast N b intersite hopping separated from slower PNR dynamics. 

Thesis Supervisor: Keith A. Nelson 
Title: Professor 
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Chapter 1 

Introduction 

The development of pulsed free space THz radiation sources and time-domain detec- 

tion methods have driven an active and growing interest in THz spectroscopy and 

imaging [I]. These techniques use THz fields that go through free space before and 

after interaction with a sample and cover the - 0.1 - 10 THz frequency range. THz 

spectroscopy has been applied to a wide array of systems as a probe of intramolecular 

modes of vibration, torsions and rotations in molecules, and phonons is solids. This 

thesis demonstrates an alternate approach to that of conventional free space THz 

methods, enabling compact spectrometer systems and the study of high-dielectric 

materials. Our approach uses phonon-polaritons waveforms in ionic crystals as a 

source of THz frequency electric fields. 

Phonon-polaritons are lattice vibrational waves that couple to electromagnetic 

radiation. Through this coupling, coherent collections of polaritons form propagating 

waveforms that travel at light like speeds. In LiTaOs and LiNb03 crystals, these 

polaritons have THz frequencies and we use them as a source of THz radiation for 

dielectric spectroscopy. Because the polariton waveforms are coupled to a crystal, we 

can observe their propagation in ways not possible with free space radiation. Much 

effort in the Nelson Lab [2-61 has been directed towards generating, manipulating, 

controlling and detecting these lattice vibrational waves. This thesis extends this 

work by performing the first quantitative spectroscopic measurements with phonon- 

polariton waves and developing phonon-polarit on spectroscopy into practical tool 



for performing dielectric spectroscopy at THz frequencies. Several implementations 

of compact polariton spectrometers are presented and spectroscopic measurements 

are made from both reflected and transmitted polariton waveforms. This thesis also 

connects to free space THz spectroscopy methods by including some simple free space 

THz measurements for comparison to the polariton spectroscopy results. 

The unique advantages of polarit on spectroscopy are leveraged to investigate the 

relaxor ferroelectric KT~.ssaNbo.ouOa (KTN 1.8) which, unlike normal ferroelectric 

crystals does not form a true ferroelectric phase with long-range ordering of dipole 

moments in each unit cell. At low temperature, it is well known [7] that KTN forms 

polar nanoregions (PNRs) around the Nb ion impurities. These fluctuating dipoles 

provide an enormous dipole response to low frequency (< lo-' Hz) electric fields, 

resulting in a huge dielectric constant (E' > 100,000). The experiments presented 

here constitute the first "THz" frequency (50-250 GHz) dielectric measurements on 

a relaxor ferroelectric. The measurements preform a direct test of the suggestion 

by Toulouse [8] that the complex dynamics of some relaxor ferroelectrics could be 

separable into fast, phonon assisted hopping of central ions (Nb in this case) and 

slower PNR relaxation. Impulsive stimulated Raman scattering measurements of the 

KTN soft optic phonon mode were also conducted to examine the coupling of this 

mode to the fast central ion hopping dynamics. 

Chapter 2 introduces several topics: the femtosecond laser system used for the 

majority of experiments presented in this thesis, the sample-in-vapor cyrostat used 

for the low temperature spectroscopic studies on the relaxor ferroelectric KTN, a 

description of the free space THz spectroscopy experiment that is used for comparison 

to the polariton spectroscopy data, the transient grating measurements that are used 

to investigate the soft mode of KTN, and the "Deathstar" optical pulse shaper that 

used to excite multicycle THz waveforms. 

Next, chapter 3 provides a brief overview of THz spectroscopy and an introduction 

to phonon-polaritons. It discusses the generat ion of phonon-polaritons through impul- 

sive stimulated Raman scattering and phonon-polariton propagation and detection. 

This introduction provides the necessary background to understand phonon-polar iton 



based THz spectroscopy. Chapter 4 explains the basic principles of polariton spec- 

troscopy, introduces three configurations of compact THz spectrometers, and explains 

the methods necessary to extract spectroscopic data from polariton waveform mea- 

surement s . 

The other main topic of this thesis is the investigation of the model relaxor fer- 

roelectric, dilute KTal-,Nb,Oa (KTN) . Chapter 5 provides a general introduction 

to ferroelectrics and highlights the features most relevant to relaxor ferroelectrics. 

Finally, chapter 6 presents the first quantitative measurements made using the po- 

lariton spectroscopy developed in this thesis and the first THz measurement of a 

high-dielectric material, KTN. The KTN refractive index is determined in the -50- 

250 GHz range from 4-300 K are made. These results are supplemented with ISRS 

transient grating measurements of the KTN soft mode to provide new insights into 

the dynamics of Nb ion impurities and relaxor ferroelectrics generally. Chapter 7 pro- 

vides a summary of the work presented in this thesis and discusses future directions 

of research. 





Chapter 2 

Experimental 

2.1 RegA Laser System 

The experiments performed in this thesis, with the exception of the free space THz 

measurements discussed in section 2.5, were performed with a Coherent RegA laser 

system. The system consists of an 18W Coherent Verdi diode laser that pumps 

both a Coherent Mira-900 femtosecond oscillator and Coherent RegA-9000 amplifier. 

Typical parameters for the laser system are given in table 2.1. 

Table 2.1: Typical Parameters of the Coherent RegA laser system 

The Verdi pump laser replaced an unstable and unreliable Coherent Innova 400 

20W Argon ion pump laser that had power and pointing stability problems. Most 

of the polariton spectroscopy measurements presented in this thesis were made when 

the system was pumped with the argon ion pump laser, and the total power of the 

amplified system was typically only 700-800mW and noticeably less stable than with 

the solid state pump. All of the transient grating measurements were performed with 

the Verdi pumped system. There has been one other significant alteration to the laser 

Verdi 

Mira 

RegA 

Bandwidth 
- 

12 nm 

9 nm 

Duration 
- 

140 fs 

250 fs 

ML Power 
- 

500 mW 

1W 

CW Power 

16.5 W 

900 mW 

1.8W 

Rep Rate 
- 

76MHz 

250KHz 



system. The grating in the RegA pulse compressor was damaged and was replaced 

with a Spectrogon US Inc. blazed diffraction grating, part PC 2200 30 x 30 x 10 mm, 

optimized for 800 nm with >90% efficiency. 

2.2 Janis STVP-100 Cryostat 

The Janis cryostat STVP-100 (Serial No. 8570) was critical to the temperature 

dependent experiments in this thesis. The cryostat works equally well with either 

liquid nitrogen or liquid helium cryogens, although most of the experiments presented 

here used liquid helium. The cryostat is a "sample in vapor" model, which was useful 

in guaranteeing that all of the crystals in the polariton spectroscopy measurements 

were at the desired temperature. Because the sample is not in vacuum, as it would be 

in a cold finger cryostat, there is an additional convenience in that the sample can be 

easily manipulated at all times, i.e. replaced while the cryostat is chilled, due to the 

positive pressure in the sample chamber. In this cryostat the sample has a vertical 

translation range of 2 inches and can be rotated a full 360". This type of cryostat 

has a vacuum jacket to insulate the cryogenic chamber. Our cryostat was custom- 

designed to enlarge the cryogenic chamber, depicted in figure 2-1, beyond that of the 

standard STVP-100 models. This was done to allow a greater angle (23") for crossed 

laser pulses as well as to accommodate larger samples. The distances between the 

windows, and the window thicknesses, are shown in figure 2-1. These distances are 

useful for estimating the time delay between THz echo pulses that sometimes arrive 

after reflect ion at the cryostat windows. 

The inner windows, between the vacuum jacket and the cryogenic material, have 

special indium seals so that stress induced by the temperature change is minimized. 

This is important for depolarization experiments where strain in the quartz windows 

can induce birefringence. Consequently, however, these windows do not seal well and 

can leak slightly upon going from low to high temperature so that the vacuum jacket 

must be reevacuated. Although it is not necessary, in practice it is often convenient 

to evacuate continuously the vacuum jacket with a diffusion pump. Never do this 
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Figure 2-1 : Dimensions of the STVP-100 cryostat sample chamber. 

perature controller which controls a 50 Ohm vaporizing heater at the bottom of the 

with mechanical rotatory pump however, cryo-pumping in the sample chamber 

pull oil of the rotatory pump and into the vacuum system. ! 

The temperature of the cryostat is controlled though a Lakeshore model 332 

cryostat where the cryogen enters the chamber. There are two diodes, one by the 

will 

I 

.;em- 

heater and one at the end of the rod that mounts the sample. It is important to use 

the diode by the vaporizer for temperature control and the diode by the sample as 

the estimation of the sample temperature. The electronic temperature control is only 

a fine adjustment; the most important control of the temperature occurs on the man- 

ual flow control valve of the cryogen transfer line. This valve ranges from completely 

open to completely closed in about 5 full turns. The cryostat operates optimally with 

this valve less than half a turn away from fully closed. 

2.3 Aerotech Air Bearing Stage 

As part of my thesis work, I interfaced the Aerotech air-bearing stage, model ABL 

2000, used as delay line in the Deathstar acoustic measurements [9,10] to a computer. 

The Aerotech stage is controlled by an Aerotech Soloist controller, and power is sup- 

plied through a Aerotech stepdown transformer module. The stage offers 1.2 m of 

travel, 1 pm resolution, and velocities of 400 mm/s. The stage is a continuous ve- 



locity type, which means that it moves from one position to another with continuous 

velocity motion (or a trapezoidal velocity profile). The acceleration to and from this 

velocity is quick and can be ignored for data collection purposes. This type of motion 

is unusual for femtosecond time domain spectroscopy, where the position of the stage 

must be synchronized with the data collection, and stepper motor translation stages 

are more often used. However the air-bearing stage is well suited for motion over 

relatively large distances. The Aerotech stage is used with a Stanford Research Sys- 

tems lockin amplifier (LIA), model SRS810, for data acquisition. A LIA necessarily 

averages a signal over a time interval, and as such the signal the LIA measures is 

an average over the delay position of the continuous velocity Aerotech stage. The 

labview software that controls the stage allows the user to set the time constant of 

the LIA and resolution of the stage. Then the velocity of the stage is determined such 

that the stage moves the distance of one resolution increment in "i7' time constants, 

where i = 1 was found to be the best tradeoff between resolution and data collection 

rate. A minimum velocity of 100 pm/s and minimum travel distance of 100 pm are 

enforced as the stage does not perform consistently below these values. 

Our Soloist controller was purchased with the "plus" option package that included 

the PSO (position synchronized output) feature. This feature is linked to the stage 

position encoder and sends a programmable TTL signal when the encoder travels a 

programmable number of 1 pm steps. The TTL signal is sent to a National Instru- 

ments data acquisition (DAQ) card. This card synchronizes the acquisition of the 

analogue output signal of the digital LIA and stage position. Although the LIA can 

be triggered directly and has an internal buffer to store triggered data, it can only 

store triggered data at an acquisition rate of less than 1024 Hz. This is to slow too 

store the digital LIA data directly, and for this reason the analog output of the LIA, 

which provides the LIA signal at rate of 102 KHz, is used. 



2.4 ISRS Transient Grating Experiment 

Laser induced dynamic grating or four-wave mixing spectroscopy is a powerful time- 

resolved optical technique that is widely used to study a broad range of phenomena, 

including molecular and lattice vibration, bulk and surface acoustic waves, and relax- 

ation and transport processes [ l l ,  121. In this technique, two interfering laser beams 

are crossed in a sample to produce a spatially periodic material excitation that is 

monitored through the diffraction of a third (probe) beam. All transient grating 

measurements were conducted using diffractive optics [4,13,14] as described below. 

The use of diffractive optics simplifies the use of a fourth beam as a local oscillator 

(or reference beam) to optical heterodyne the probe beam for improved detection, 

yielding a signal intensity Is on the diode of: 

where IR and ID are the reference and diffracted signal intensities, respectively, and 6 

is the phase difference between these optical fields. If the excitation field is modulated 

with a chopping wheel, then the first two terms in equation 2.1 are constant, and their 

contribution to the signal can be filtered with lockin amplifier detection. By its nature 

the diffracted signal is weak, so it is easy to experimentally set conditions such that 

IR >> ID, SO that Is oc 6. 
Crossed femtosecond pulses were used to excite Raman active modes in LiTa03, 

LiNb03 and the relaxor ferroelectric KTal-,NbXO3 (KTN) via impulsive stimulated 

Raman scattering (ISRS). The theory of ISRS will be introduced in section 3.2. This 

section introduces the experimental apparatus for the generation and detection of laser 

induced transient gratings. The experiments presented here follow a major advance 

in this technique by Rogers et. al. [13], in which the A1 diffraction orders from 

transmissive diffraction gratings were used as the two beams for crossed excitation 

pulses and &1 diffraction orders of second laser beam were used for the probe and 

local oscillator beams. This approach has three significant advantages. First, the 

two pairs of crossing beams traverse common path optics, and are interferometrically 



stable. Secondly, when a beamsplitter is used to make two fs pulses for crossed 

excitation the area of overlap is smaller than the spatial size of pulse due to the short 

pulse duration, in what is known as the "pancake effect". This limits the number of 

interference fringes, N ,  to roughly, N N 2rc/X, where r is the pulse duration, X is 

the central wavelength. In contrast, the diffraction gratings tilt the wavefront of the 

interfering pulses such that they interfere over roughly their entire spatial region [15]. 

The third benefit, for the case where the pump and probe interact with gratings of 

the same period, the condition for Bragg reflection is automatically satisfied, and the 

diffracted beam is automatically collinear with the reference beam. 

The transient grating experimental methods used in this thesis are outlined be- 

low. For a more comprehensive discussion of the experimental details and theory of 

transient grating ISRS measurements consult [4,14,16-181. The basic transient grat- 

ing experiment apparatus is presented in figure 2-2. The pump and probe beams are 

diffracted off of separate gratings (of the same grating period) and a cylindrical (typi- 

cally 15 cm) lens (CL1) collimates the diffracted orders. The distance fi between CL1 

and the phase mask is the most critical parameter of the alignment. This distance 

is optimized by placing a retroreflector at the focal plane of CL1, and the distance 

between the phase mask and CL1 is adjusted by translating the phase mask until the 

light reflected from the retroreflector is recombined by the phase mask. In the tran- 

sient grating experiment all diffraction orders (including the zeroth) except for the 

f 1 orders are spatially blocked near the Fourier plane of CLl between fi and f2. The 

f 1 diffraction orders (four beams) for both the pump and probe beam are crossed in 

the sample by a spherical lens of focal length f2,  typically 15cm. The relative sizes 

of the excitation and probe (and local oscillator) regions are set by controlling the 

spatial sizes of the pump and probe beams on the corresponding diffraction gratings. 

The heterodyne configuration is illustrated, but the homodyne signal can be easily 

obtained by blocking the local oscillator field, and this is often done during alignment. 

The relative phase of the laser induced grating signal and the reference field can 

be set by relative translation of the pump and probe diffraction gratings. The local 

oscillator can be attenuated by a special ND filter that has some exposed substrate 
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Figure 2-2: Transient grating experimental apparatus. fi and fi are typically 15 
cm. The spatial filtering of the higher diffraction orders and the attenuation of the 
reference field is not shown. 



glass. The local oscillator passes through ND filter and the probe beam passes through 

the glass substrate. This is necessary to keep the probe and local oscillator temporally 

overlapped. In general, the strongest local oscillator that does not induce a non-linear 

interaction in the sample or saturation of the detector should be used. The power of 

the probe beam is set before the phase mask splits it into a probe and local oscillator 

through diffraction. For probe beam and local oscillator power level of ~ 3 5  mW or 

less, attenuation of the local oscillator was not needed. 

The size of the pump and probe beams before the phase masks are set to ensure 

that the pump grating is larger in height than the probe. This ensures that the 

transient grating has a defined wavevector given by: 

where q is the wavevector of the material response and kl and k2 are the wavevector 

of the two excitation pulses. For dispersive vibrational excitations, such as phonon- 

polariton modes, the vibrational wavevector depends on orientation of the sample [12], 

and q is only approximately given by f (kl - kz). The wavevector q can be calculated 

from the optical parameters of the experiment. The wavelength of the grating formed 

by imaging the binary phase mask into the transparent sample is given by, 

where fl  is the focal length of the the collimating CLl lens and f2 is the focal length 

of S l  which focuses the beams into the sample, X is the center wavelength of the 

pump light, and A. is the phase mask period (twice the phase mask number), and the 

wavevector q = 2x/A. As will be elaborated further in chapter 3, phonon-polaritons 

that are excited with a grating patter of wavevector q have a small forward wavevector 

component, so q defines the lateral component q, of the phonon polariton wavevector, 

separate from the small forward component. The phonon polariton wavelength is 

given by, 



Where Bt is the angle of forward propagation of the polariton. 

The binary phase masks used in these experiments are custom made by Digital 

Optics Corporation, Charlotte NC. The diffraction efficiency is optimized for a par- 

ticular wavelength by controlling the etch depth of the phase mask pattern. These 

experiments use gratings optimized for 800 nm light. The masks are also numbered 

such that the mask number equals half of the grating period. Figure 2-3 shows the 

available mask patterns. 
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Etch Depth = hl(2n-2) 

diffraction angle, 8 = hl(2 mask#) 
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Figure 2-3: Phase mask patterns used in the transient grating and polariton spec- 
troscopy measurements. Adapted from Crimmins [3]. 
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Typical data for the transient grating ISRS experiments are presented in figure 

2-4. The experiment shown is for 5%MgO:LiNb03 at room temperature (295 K), 

but in a cryostat. The grating excites a phonon-polariton response that has a a well 

defined wavevector magnitude of 1090 em-'. The data were collected using a lockin 

amplifier with a time constant of 30 ms, and the total data acquisition time was ~3 

minutes. 

- l O ! . , . , . , . , . , . I  
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Figure 2-4: Transient grating ISRS experiment in 5%MgO:LiNb03 at  295 K excites a 
phonon-polariton response with a wavevector magnitude of 1090 cm-' and a frequency 
of 2.1 1 THz. This is typical data for high temperature (>70K) in 5%MgO:LiNb03. 

At low temperatures, optical experiments on LiNb03 and LiTa03 are more difficult 

because reversible photorefractive damage occurs, which strongly scatters light [19]. 

This has important implications for our polariton spectroscopy measurements, and is 

discussed more fully in section 4.2.2. MgO doped LiNb03 is substantially more resis- 

tant to photorefractive damage than LiNb03 or LiTa03, and an experiment identical 

to figure 2-4 is presented in figure 2-5 at a temperature of 8K. As expected, the damp- 

ing of the polariton mode is significantly reduced, and the frequency of the polariton 

mode changes slightly. The signal to noise ratio of the data is diminished relative 

to that of the high temperature measurement; this is due to the photorefractive ef- 
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Figure 2-5: Transient grating ISRS experiment in 5%MgO:LiNb03 at 8 K excites a 
phonon-polariton response with a wavevector magnitude of 1090 cm-' and a frequency 
of 2.23 THz. Reversible photorefractive damage degrades the signal quality relative 
to figure 2-4 by scattering the optical pump light, but less damping in the LiNb03 at 
low temperature generates a longer polariton pulse train. 

fects and becomes progressively worse with exposure to the optical excitation pulses. 

For example it was only possible to take this scan over several minutes before pump 

scatter overwhelmed the reference field. Sum frequency chopping of both the pump 

and probe was also used to minimize the effects of the scattered pump light. This 

data scan would not have been possible in undoped LiNb03 or LiTa03 due to the 

photorefractive effects. 

2.5 Free Space THz Spectroscopy 

A simple implementation of conventional THz spectroscopy was performed to provide 

a comparison to the phonon-polariton spectroscopy measurements pioneered in chap- 

ter 4. In this context, we use "conventional" THz spectroscopy to mean the use of 

any of a variety of THz sources, including photoconductive antennas or electro-optic 

crystals such as zinc telluride or LiNb03, where THz radiation propagates through 



free space, and gold parabolic mirrors are used to collimate and focus the THz radi- 

ation into a sample and then into a detector (usually a electrooptic detection crystal 

or a photoconductive antenna). These techniques are well established [I] and such 

THz spectroscopy set-ups are published [20]. 
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Figure 2-6: Free space THz spectrometer experimental apparatus. Phonon-polaritons 
are generated in LiNb03 and coupled to free space. The THz radiation induces 
birefringence in an optical probe in the ZnTe crystal. Figure prepared by Ka-Lo Yeh. 

Our implementation of free space THz spectroscopy is only a small part of the 

work presented in this thesis, and while it is sensitive (signal-to-noise - it is not 

state of the art. Our free space THz spectroscopy experimental set-up is presented in 

figure 2-6. An amplified femtosecond laser system (Odin Quantronix) that produced 3 

mJ, 60 fs pulses centered at 800 nm with 1 KHz repetition rate were used to generate 

phonon-polaritons in a LiNb03 crystal. The crystal was cut to more effectively couple 

THz radiation to free space. The THz radiation is collimated and focused through 

the sample by pair of parabolic gold mirrors (f= 19.5 cm). A second set of parabolic 

gold mirrors (f= 19.5 cm) is used to focus the THz radiation into a 500 pm ZnTe 

detection crystal ([I101 cut, INGCRYS Laser Systems Ltd, UK). The ZnTe crystal 



was coated with indium-tin oxide (ITO) which serves as an anti-reflection coating. 

The THz radiation modulates the optical index of refraction of ZnTe via the Pockel's 

effect [21,22], and this modulation is measured with a circularly polarized probe 

beam. A Wollaston prism is used to split the probe beam to two photodiodes, and 

the difference signal is measured with a lockin amplifier. 

A mask of ~1 by 2 mm is used at the focus of parabolic gold mirror that focuses 

the THz into the sample to ensure that the spot size of the THz radiation field is 

smaller than the sample and that all of the THz radiation goes through the sample. 

This mask does not significantly reduce the transmitted THz. 

2.6 "Deathstar" Optical Pulse Shaper 

The "Deathstar" is an ultrafast optical pulse shaper which generates tunable optical 

pulse trains with frequencies between 1-1000 GHz [9,10]. At 1 GHz, this corresponds 

to 1 ns delay between pulses, which is well beyond the temporal window of conven- 

tional femtosecond pulse shapers. The Deathstar pulse shaper was designed to access 

these lower frequencies for acoustic measurements, and in this thesis we use it to 

generate multicycle polarit on waveforms that are discussed in section 4.7. Figure 2-7 

shows the Deat hstar apparatus. 
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Figure 2-7: The Deathstar optical pulse shaper. Figure prepared by Jaime Choi. 



A single laser pulse is introduced to the system of retro-reflectors in the pulse 

shaper, where it completes seven round trips around the Deathstar cavity. Each time 

the pulse passes the custom-designed variable reflector (part Ds4), part of the pulse is 

transmitted. The reflection coefficients of the different parts of the variable reflector 

are designed so that that temporal envelope of energies of the seven pulses leaving the 

pulse shaper is roughly Gaussian. The details of the variable reflector are discussed 

in the thesis of Dr. Jaime Choi [9]. The system of mirrors following the pulse shaper 

cavity compensates for the ~ 2 0  cm round trips that each successive pulse traverses, 

to temporally re-overlap the pulses when the delay line is at its zero position. 

By adjusting the position of the delay line in figure 2-7 to enlarge the pulse shaper 

cavity, the temporal separation between successive pulses is increased evenly. When 

the delay line is at its maximum extension, the pulses are separated by 500 ps, re- 

sulting in a 2 GHz pulse train, and this limit could easily be lowered through use of 

a longer delay line. The upper frequency limit of the pulse shaper is roughly 2 THz, 

and is constrained here by the laser pulse duration. 

The Deathstar pulse shaper was used to generate multicycle polariton radiation, 

but was not optimized for this purpose. In particular, two features contributed to 

poor polariton generation and detection. First, the RegA pulses, when cylindrically 

focused, are below the damage threshold of the LiTaOs crystal; using the Deathstar 

to divide this pulse into a seven pulse train provided only weak polariton generation 

for each pulse. To compensate for this, the pump excitation was not focused cylin- 

drically, but to a spot of comparable size to the probe. This allowed for more intense 

polariton excitation, but the polaritons radiated conically away from the round ex- 

citation spot, and could not be effectively detected far from the generation location. 

Finally, the nonzero angles between the excitation pulses resulted in successive po- 

lariton wavefronts with small angles between them, further degrading the multicycle 

polariton wave and creating wavefront matching issues with the polariton probe field. 





Chapter 3 

Phonon-polaritons as a THz Source 

Work by Dan Grischkowsky [23], David Auston, and Martin Nuss [24,25] led to 

the development of broadband pulsed THz radiation sources utilizing femtosecond 

lasers. These advancements allowed the development of femtosecond-based sources 

of coherent far-infrared radiation and represented a significant technological advance- 

ment over competing THz sources. Earlier THz sources consisted of arc lamps with 

bolometric detection and Fourier Transform IR spectrometers that contained spe- 

cial far IR optics. Both of these are inherently continuous wave techniques that 

measure intensity and, subject to noise from thermal background radiation, are sig- 

nificantly less sensitive then the time gated techniques. Another important class 

of THz sources are synchrotron radiation and free electron lasers, but availability 

and expense limit their scope. Moreover, even though they are pulsed time domain 

sources, their pulse widths are rather long (3-10 ps) compared to the newer femtosec- 

ond based sources [l]. The THz, or far-infrared spectral region, usually considered 

to be 0.1-10 THz (A = 3 - 0.03 mm o 3.3 - 330 cm-I), is intermediate between 

electronic sources that can operate out into the many gigahertz regime and optical 

sources that can operate down to approximately the mid-infrared region. To date, 

THZ sources based on femtosecond-laser excitation have been applied to a wide range 

of problems of chemical interest in both the gas and condensed phase. A compre- 

hensive review is given by Schmuttenmaer and coworkers [I]. In comparison to more 

traditional IR spectroscopy which investigates intermolecular vibration, THz spec- 



troscopy probes lower frequency motion, such as intramolecular modes of vibration, 

torsions and rotations in molecules, and phonons is solids. 

The ability of THz radiation to penetrate plastics, paper, and textiles has led to 

a strong interest in THz technologies. THz spectroscopy has been used to nonin- 

vasively detect the chemical explosive C-4 in postal envelopes [26]. THz spectral 

identification, much like conventional IR spectroscopy, has gathered much interest 

from pharmaceutical companies, especially after THz was used to distinguish the 

pure enantiomers L- D- analine from its racemic mixture [27]. THz spectroscopy 

has been performed on molecules within flames [28], something that would never be 

possible with a CW detector because of the intensity of the thermal background. 

In the condensed phase, both polar and non-polar liquids [29] have been studied as 

well biological applications like marker-free monitoring of DNA binding [30]. THz 

imaging has been performed on integrated chips [31], and even three-dimensional 

topographic imaging [32] has been demonstrated. THz sources have also been pro- 

posed for applications in coherent control [33], signal processing 1341, nonlinear THz 

spectroscopy [35-381, and quant um computation [39]. 

This thesis develops a new approach to THz spectroscopy that utilizes phonon- 

polaritons as a time domain THz radiation source. Phonon-polaritons are coupled 

lattice vibrational and electromagnetic modes of an ionic crystal that travel at light 

like speeds. Phonon-polaritons generated in the ionic crystals LiTa03 and LiNb03 

provide an attractive platform for THz spectroscopy, because of flexibility in gener- 

ation and detection and the ability to integrate a THz source into a unified device. 

A discussion of the advantages of phonon-polaritons will be presented in chapter 4 

in the context our implementation of phonon-polariton spectroscopy. This chapter 

will introduce the basic theory of polaritons. Section 3.1 will introduce the basic 

principles and properties of polarit ons. Next, Sect ion 3.2 will introduce impulsive 

stimulated Raman scattering (ISRS) and its application to polariton modes. Finally 

Section 3.3 will introduce the basic principles of generation and detection. 



3.1 Introduction to Phonon-Polaritons 

Phonon-polaritons are coupled lattice vibrational and electromagnetic modes of an 

ionic crystal that propagate at light-like speeds with frequencies typically in the 0.1- 

5 THz range. A phonon-polariton is a is a fundamental quantized physical excitation 

consisting of a phonon-photon transverse wave field. Chapter 4 will demonstrate 

the use of localized macroscopic coherent superpositions of these excitations as a 

means for performing THz spectroscopy. Following the presentation of Vaughan [6], 

a brief theoretical description of phonon-polaritons is given below. For a more detailed 

analysis, the following references are useful [4,16,40-431. 

The ionic crystals that we use for phonon-polariton generation are LiTa03 and 

LiNb03. The essential character of a phonon-polariton mode stems from the coupling 

between transverse optic phonon modes and a macroscopic polarization. A simple 

mathematical model for this coupling is described by the following set of coupled 

differential equations. 

Q(t) is the normal coordinate of the transverse optical phonon mode with fre- 

quency w ~ o ,  I? is a phenomenological damping constant, E(t)  is electric field, P( t )  is 

polarization, and ~ ( t )  and ~ ( t )  represent the first and second temporal derivatives 

of Q(t), respectively. In general, multiple modes may couple to E(t) ,  but here we will 

use a single oscillator model and will show later on that this is justified for LiTa03 

and LiNb03. The constants b12, bzl, and b22 will be discussed below. P(t) ,  E (t), Q(t), 

etc. have been expressed as scalar quantities, which is sufficient for the present anal- 

ysis. In physical terms, equation 3.1 describes a damped harmonic oscillator with an 

additional term b12E(t) governing the coupling of the polar vibrational displacements 

to an electric field. This coupling gives polaritons macroscopic correlation lengths 

and leads to dispersion in phonon-polarit on propagat ion. Equation 3.2 describes the 



dielectric response of the coupled system as the sum of two terms, where the first term 

describes the polarization response due to the phonon mode (essentially dipole times 

ionic displacement) and where the second term describes the polarization response 

of the crystal due to all other effects. Using equations 3.1 and 3.2 and the consti- 

tut ive relation for the electric polarization P(t)  we will now determine the relative 

permittivity of the coupled system. 

The constitutive relation for electric polarization in SI units is 

where €0 is the permittivity of free-space, xe(w) is the dielectric susceptibility, and 

E, (w) is the relative permittivity. Inserting trial plane-wave solutions of the form 

Q(t) = JQ(t)l exp[i(kx - wt)] and E(t)  = IE(t)l exp[i(kx - wt)] into equation 3.1 

yields an expression for Q in terms of frequency. 

Substitution of equation 3.4 into equation 3.2 yields an expression for the polarization 

in terms of electric field which may then be equated to equation 3.3, giving 

Equation 3.5 may now be used to solve for &,(w): 

Equation 3.6 contains two terms: the first term is nonresonant, describing the sys- 

tem at optical frequencies far above w ~ o ,  and the second describes the system near 

resonance and leads to phonon-polariton dispersion. 

The constants b12, b21, and bz2 will now be connected to physical quantities by 

considering limiting cases for the relative permittivity. When w + oo, the resonant 



term in equation 3.6 vanishes, leaving 

Similarly, when w -, 0, we are left with 

From the above equations, the constants b12, b 2 ~ ,  and b22 are determined to be 

where EO and E, are defined as asE, G &,(GO) and EO = ~ ~ ( 0 ) .  NOW, we may rewrite 

equation 3.6 as: 

Equation 3.10 was derived assuming only one oscillator mode. The crystals we use 

for polariton generation, LiNb03 and LiTa03, have CsV lattice symmetry with four Al 

symmetry IR and Raman active modes that could be excited under our experimental 

conditions. There is an independent equation of the form of equation 3.10 for each 

of them. Table 3.1 shows the relevant parameters for each of the modes. For both 

LiNb03 and LiTa03 the lowest order mode has the largest oscillator strength, and 

this is the dominant mode observed. Additionally, the highest frequency modes have 

frequencies that are too high to be driven impulsively by our experimental laser pulses 

(250 fs duration). This justifies the use of only the single phonon mode. Each of the 

four modes also has its own dispersion curve. Figure 3-1 shows the dispersion curve 

for the dominant (lowest) A1 mode of LiTa03. Two branches of solutions are obtained 

from the dispersion relation, an upper branch and a lower branch. An important and 

well-known property of LiTa03 and LiNb03 is that phonon-polaritons exhibit a large 



Table 3.1: Al symmetry transverse optical phonon modes in LiNb03 and LiTa03 
obtained from ref. 144,451. S is the coupling strength between the lattice vibration 
and the electromagnetic radiation. 

dispersion resulting from the coupling between the polar transverse optic phonon 

mode and transverse electromagnetic radiation. This coupling also creates a splitting 

in the allowed frequencies of transverse optic phonon mode polariton propagation is 

forbidden. In the low wavevector limit, the upper branch of TO phonons asymptoti- 

cally approaches the longitudinal optic phonon frequency WLO. In the optical regime, 

the dispersive properties of materials are often described in terms of a wavelength (or 

frequency) dependent index of refraction. Here, instead, the dispersion is customarily 

presented in terms of the dispersion relation w(k). Using E,(w) = n ( ~ ) ~  = c2k2/w2, 

where n is refractive index, and assuming no damping, we obtain: 

As section 3.2 will show, only frequencies well below the w ~ o  of LiTa03 and 

LiNb03 can be accessed within the bandwidth our femtosecond excitation pulses. 

This limits us to the the lower branch of the dispersion curve, and then only in the 

range of approximately 0.2-1 THz. In this region, the dispersion is approximately 

linear and the phonon-polaritons are considered to be primarily light-like. This is the 

useful regime for polariton spectroscopy. 



Figure 3-1: Simulated phonon-polariton dispersion curve for LiTa03. The solid lines 
indicate the upper and lower polariton branches. The dashed lines describe the dis- 
persion of uncoupled optical radiation. The band gap describes the region where 
phonon-polariton propagation is forbidden. The lower branch at low wavevector is 
the region of interest for our experiments. 

3.2 Impulsive Stimulated Raman Scattering 

The phonon-polaritons that we utilize for polarit on spectroscopy are generated via im- 

pulsive stimulated Raman scattering (ISRS) by irradiating either LiTa03 or LiNb03 

with a short (<250 fs) laser pulse. Here we present ISRS in the general case of a 

single vibrational mode and then we extend it to the phonon-polariton modes, which 

because of their coupled nature behave differently than ordinary vibrational modes. 

A basic physical picture of ISRS is that a femtosecond optical excitation pulse, 

with frequencies too high to drive a lattice vibration resonantly, instead drives the 

lattice vibrational modes indirectly though nonlinear coupling to the electrons. The 

electrons drive the lattice at much lower resonance frequencies (THz in our case) via 

difference frequency mixing among frequency components within the bandwidth of the 

pulse. A convenient mathematical description of ISRS in the time domain is given 

in terms of a damped and driven harmonic oscillator, described by the differential 

equation below. 



Q is the normal mode coordinate of a generic vibrational mode with resonant fre- 

quency wo, a damping term governed by I?, and a driving term F(t) .  Here, the driving 

term is due to an optical laser excitation pulse. In the "impulsive" limit, where an 

excitation pulse is much shorter than the period of the mode being excited, the force 

exerted by the laser excitation pulse is proportional to the product of the differential 

polarizability ( a ~ . / a Q ) ~  and the intensity of the excitation pulse Iexc(t) [46,47], 

If we consider the solution of equation 3.12 when the input laser pulse is taken to 

be a delta-like pulse that arrives at time t = 0, the impulse response function of the 

oscillator, G(t), may be determined to be 

~ ( t )  rn @(t) exp (- :) sin(J-t) 

where 8 ( t )  is the Heaviside step-function given by: 

The Heaviside step-function is necessary such that G(t) obeys causality and is zero 

for negative times. When an input pulse I ( t )  of short but finite duration is used, Q(t) 

may be determined by convolving the input pulse with G(t), such that 

From equations 3.16 and 3.14, the expected response for a single underdamped vi- 

brational mode is therefore a exponentially damped sinusoid. For multiple oscillators 

the total signal is given by the sum of the individual oscillators. 



The range of vibrational frequencies accessible by the input laser pulse is a simple 

function of the duration of Iem(t), -3 THz for our pulse duration of -250 fs. We will 

describe the duration of our pulse as Gaussian, Iezc(t) - 1,ex~(-AR~t~/4),  where 

A n  is the full-width half maximum of the laser pulse spectral intensity (which is 

inversely proportional to the pulse duration and where we have omitted the high- 

frequency intensity oscillations that do not contribute to the response). The range 

of available frequencies can then be determined by substituting equation 3.14 into 

equation 3.12, to yield: 

To excite a vibrational mode in an approximately "impulsive" manner, the duration of 

the excitation laser pulse must be shorter than half of an oscillation period. From the 

inverse relationship between bandwidth and pulse duration, this necessarily implies 

that the pulse must have both the pump and Stokes frequency in stimulated scatter- 

ing. This requirement can be seen in equation 3.17, where w/AR must be sufficiently 

small for normal mode amplitude Q(w) to be nonzero. This connects with the time 

and frequency domain descriptions of stimulated Raman scattering. Unlike conven- 

tional stimulated Raman scattering, where the pump and Stokes beams each consist 

of a single frequency, for ISRS, there is a continuum of pump and Stokes frequency 

pairs contained within the bandwidth of the laser pulse, all of which contribute to 

the response of the sample. 

3.3 Generation and Detection of Phonon-Polaritons 

3.3.1 Phonon-Polariton Generation 

In the case of phonon-polariton modes, equation 3.1 can be modified to include the 

driving term F(t) , giving 



which together with equation 3.2, describes the excitation of phonon-polariton modes. 

Unlike the general case where the motion of a given oscillator is essentially inde 

pendent of the motion of other oscillators that are many unit cells away, phonon- 

polaritons show strong dispersion at long wavelengths due to long-range interactions 

among oscillators. This is caused by the coupling of oscillators through the electric 

field E ( t ) .  Because of this collective behavior, the observed frequency of phonon- 

polaritons generated via ISRS is a function of the phonon-polariton wavevector, as 

seen in figure 3-1. 

Another difference between phonon-polariton modes and ordinary vibrational modes 

is that phonon-polaritons, which are light-like in the experiments reported here, prop- 

agate rapidly across macroscopic distances in the host crystal. The group velocity, 

given by aw/ak, is a significant fraction of the speed of light in vacuum, as is evident 

in figure 3-1. In LiTa03 and LiNb03, it is approximately 116 the speed of light in 

vacuum (n = 6). As a consequence of this propagation speed, when polaritons are 

generated inside LiTa03 and LiNb03 vis ISRS, they propagate in a mostly perpen- 

dicular direction to the excitation pulse with a small forward component. The angle 

at which the phonon-polaritons propagate is a simple geometric function of the group 

velocity of the excitation pulse, vex, and the phase velocity of the phonon-polariton, 

v,l. If the excitation pulse arrives at normal incidence, then relative to the front 

surface the the polariton waveform propagates at an angle Of,  given by, 

of = arcsin (%) . 
Vexc 

A useful analogy is that phonon-polaritons resemble the wave left behind a boat 

that travels quickly across a pond, as seen in figure 3-2. In LiTa03 Of(w) is approx- 

imately 20°, and its frequency dependence is negligible for our purposes. A large 

THz frequency refractive index contrast between LiTa03 and air leads to a critical 

angle for total internal reflection of phonon-polaritons of only-10". This implies that 

the generated polariton waveform does not exit the crystal to air. Figure 3-3 shows 

a generated polariton waveform undergoing total internal reflection as it propagates 
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Figure 3-2: Phonon-polariton generation and detection with a short femtosecond 
excitation pulse. 

between the back and front of the crystal while moving primarily to the right in 

the figure. The forward angle and critical angles for LiNb03 are similar to those of 

LiTa03. 

poh rf on 
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Figure 3-3: Schematic illustration of a propagating polariton waveform generated 
with a femtosecond excitation pulse. The right propagating polariton waveform is 
emphasized to show that although the primary direction of propagation is lateral, 
the polariton waveform undergo tot a1 internal reflection as it propagates between the 
front and back surfaces. 

Phonon-Polariton Waveforms 

This section relates the polariton waveform to the spatial profile of the optical exci- 

tation beam. In one dimension it can be shown analytically that, in the impulsive 

plane wave excitation limit, the observed THz waveform E (x, t )  resembles the spatial 

derivative of the excitation beam profile I,, (x) [48,49]. 



where c is the speed of light in vacuum and n is the THz frequency index of refraction 

which is nearly constant at frequencies well below the phonon resonance. Note that 

the f is necessary as there are two identical polariton waveforms are excited that 

propagate in nearly opposite directions. Figure 3-4 shows an excitation condition 

Figure 3-4: The excitation pulse is focused to a line. This launches a phonon-polariton 
plane wave generated throughout the volume of the crystal. The right propagating 
polariton waveform is not shown. 

commonly used in our polariton spectrometer implementation, a cylindrically focused 

excitation pulse with a gaussian spatial profile that is focused to a line in along the x 

dimension. The intensity in the z dimension can be taken as approximately constant. 

Equation 3.20 then shows that the spatial derivative of the gaussian excitation profile 

gives a single-cycle polariton plane wave that occupies the entire height of the crystal 

and is non-divergent. For our typical focal parameters this results in a spatial width 

of ~ 7 0  pm and temporal a width on the order ~1 ps peak-to-peak in the time domain. 

In practice the height of the line excitation is on the order of the generation crystal 

and often slightly larger. Because of this, and since the polariton waveform is probed 

typically only at a small spot at a z position nominally midway between the top and 

bottom of the crystal, the gaussian profile of the excitation pulse in the z dimension 

can be ignored and the polariton wave packets can be thought of as plain waves. 

The direction of propagation of the two polariton waveforms (the right propagating 

polariton waveform is not shown in figure 3-4) is in the x direction with a small y 

component, given by the forward angle. Equation 3.20 can be extended for spatial 

variation in the y dimension, and an equivalent 1D equation for the y dimension can 



be written. Then the temporal profile of the polariton is given by the sum of Ex 

and E,. For example, a gaussian beam focused to a spot generates a single cycle 

polariton waveform that radiates out in a conical direction with a cone angle given 

by the forward angle. 

3.3.3 Phonon-Polariton Detection 

Phonon-polaritons may be detected in a variety of ways, but most of them rely upon 

the Pockel's effect [21,22] in which an electric field modulates the index of refraction 

of a material. For the experiments reported here in the uniaxial crystals LiTa03 and 

LiNb03, the phonon-polaritons and laser excitation pulse are polarized parallel to 

the optic axis of the crystal (z direction), which in figure 3-3 points out of the page 

and in figure 3-4 points in the vertical (z direction). Analysis of the electro-optic 

tensor for LiTa03 and LiNb03 [2 1,221 yields the following equations for the ordinary 

(no(E,)) and extraordinary (n,(E,)) indices of refraction at optical wavelengths in 

the presence of a THz electric field E, polarized along the extraordinary crystal axis, 

where rl3 and 7-33 are the relevant electro-optic tensor elements, and n, and no are the 

extraordinary and ordinary refractive indices in the absence of an applied field (see 

table 3.2). Many schemes can be used to detect these refractive index variations, but 

Table 3.2: Constants for modulation of the index of refraction due to phonon- 
polaritons from reference [22]. Units for rl3 and 7-33 are pm/V. 

we will focus on interferometric detection. The phase shift induced by the polaritons 

5 5 



in the optical probe polarized along the extraordinary axis is given by: 

here w is the probe frequency and L is the interaction (wavefront) length. In our 

experiments, the electric field amplitude Em is small and the phase shift results in 

linear changes in signal. The measured phase shift is an integral over the phase shifts 

encountered by the probe pulse as it passes through the crystal, therefore to obtain 

quantitative measurements of the polariton amplitude it is necessary for the probe 

to measure the same phase point of the polariton field as it probes along the entire 

wave front of the polariton. In the analogy of a phonon-polariton wave resembling 

the wake left behind a boat traveling across a lake, the above condition is equivalent 

to requiring that the probe pulse act like a second boat that "surfs" along the first 

boat's wake always at a fixed point of the oscillation cycle. This occurs automatically 

if the pump and probe beams both enter the crystal at the same angle, and have 

the same spectral content (implicitly the same group velocities). This is the most 

common condition for our experiments. If the pump or probe beam are of different 

wavelengths (for example, if the probe beams have been frequency-doubled from 800 

to 400 nm), then the group velocity of the probe is no longer matched to the projection 

of the phonon-polariton phase velocity along the direction of the probe. This may be 

compensated for by having the pump and probe beams enter the crystal at different 

angles determined by the difference in group velocities. 



Chapter 4 

Development of Phonon-polarit on 

Based THz Spectroscopy 

This chapter will demonstrate three configurations of simple, compact THz spectrom- 

eters based on measurement of phonon-polariton wavepacket propagation before and 

after interaction with a sample. Section 4.1 will motivate the use of phonon polaritons 

as a platform for THz spectroscopy. Next, section 4.2 will introduce the basic princi- 

ples of phonon-polariton spectroscopy and section 4.3 will then show how the complex 

index of refraction can be extracted from measurement of the phase and amplitude 

of the polariton wavepacket. Section 4.4 will present some selected measurements 

obtained from the three spectrometer configurations. Then sections 4.5 and 4.6 will 

present some experiments that utilize free space THz radiation with traditional de- 

tection methods and a comparison to phonon-polariton based spectroscopy. Next 

section 4.7 will demonstrate simple pulse shaping techniques to generate multicycle 

polarit on wavepacket s. Finally, section 4.8 will summarize the polarit on spectroscopy 

experiments and discuss future direction and experiments. 

4.1 Motivation of Phonon-Polaritons as a THz Source 

There has been a long standing effort in the Nelson group to develop optical pulse 

shaping techniques [50-581 to generate [59-611 ,visualize [2,62,63] and control [64,65] 



polariton lattice vibrational waves. Much of the early work was motivated by the de- 

sire to transfer more of the excitation energy to the polariton excitations by spreading 

out the laser excitation pulse over space and time. Although the conversion efficiencies 

of LiTa03 and LiNb03 are quite high compared to other ferroelectric crystals, only 

about of the energy in a simple 800 nm excitation pulse is typically converted 

into polaritons. Moreover, even moderate focusing of the excitation beam can cause 

irreversible damage in these crystals through ablation. For our purposes here, we will 

divide pulse shaping into two classes. The first is simple spatial pulse shaping where a 

static mask is imaged into a sample. This type of shaping has proven extremely useful 

for its simplicity and robustness. Multicycle polariton waveforms have been gener- 

ated by imaging binary phase mask patters into LiTa03 and LiNbOJ [14]. A second 

important example of this approach is echelon based phonon-polariton amplification, 

where an echelon temporally delays different spatial slices of an excitation pulse so 

those slices amplify a propagating polariton pulse by constructive interference with 

polaritons generated at different spatial positions. Because the echelon is made of 

glass (a stack of optical quality glass slabs), it can shape the full power of the optical 

excitation pulse (typically upto 4 mJ), which is substantially more laser energy than 

the programable pulse shaping method described subsequently can withstand. For 

this reason, the glass echelon is preferable for intense polariton generation, and such 

an echelon with a laser excitation pulse of 1.5 mJ has been used to generate polariton 

fields of greater than 50 kV/cm 161. 

Our second class of pulse shaping techniques are dynamical techniques where 

the waveform generated can be programmably changed by a computer. The Nelson 

group developed an optical pulse shaper based on a Hamamatsu 2D liquid crystal 

spatial light modulator and applied it to the generation and manipulation of polari- 

tons [54,55]. These efforts have shown remarkable success and have demonstrated 

versatile programmable spatiotemporal control over phonon-polaritons with the use 

of all optical pulse shaping techniques [65-671. These techniques compare favorably 

to other THz pulse shaping methods which have utilized either temporal-only shaped 

femtosecond excitation waveforms [68-711 to excite THz radiation in traditional THz 



media (GaAS, ZnTe, GaSe) or specially fabricated materials or devices [72-741, with 

limited results in terms of the complexity and fidelity of the THz waveforms gener- 

ated. The ability to completely control THz waveforms in both time and space offers 

many possible advantages, including multiplexing of THz waveforms into and out of 

patterned materials as well as generating and crossing multiple THz pulses in bulk 

crystals. 

In addition to the pulse shaping work, there has been a parallel effort in the Nelson 

group to develop an integrated solid-state platform for polariton (THz) signal gener- 

ation and guidance [4,34,75]. Femtosecond laser machining has been used to build 

waveguide and optical device structures in LiTa03 and LiNb03 crystals. Channels, 

on the order of 100 pm wide, are created by removing crystaline material through 

femtosecond laser ablation. Many simple structures have been demonstrated, includ- 

ing a reflective focusing element, a 90" waveguide turn and a diffraction grating. A 

more complex optical apparatus has also been demonstrated, a structure consisting 

of splitting and recombining elements that can be used as a THz Mach-Zehnder in- 

terferometer [76] for spectroscopy. These struct ures permit integrated THz signal 

generation, propagation through waveguide-based devices, and readout within a sin- 

gle compact solid-state platform. A second example of complex optical device, a 

resonantor structure, was built and used to amplify multicycle polariton waveforms 

in the 50 to 250 GHz range [77]. To complement this work, finite difference time 

domain (FDTD) simulations on a 24 processor Beowolf cluster were performed [4,78] 

to understand the propagation of complex polariton waveforms in these patterned 

materials. 

Although there are multiple applications of this work such as signal processing 

and investigation of nonlinear lattice potentials [79], much of the work as been di- 

rected towards developing a platform for THz spectroscopy. This thesis presents the 

first quantitative measurements of the dielectric properties of samples other than the 

generation crystals using phonon polaritons. 



4.2 Phonon-Polariton Based THz Spectroscopy 

4.2.1 Principles 

The use of phonon-polaritons generated in an ionic crystal through impulsive stim- 

ulated Raman scattering (ISRS) as a source for THz spectroscopy suggests itself 

because of the versatility of polariton waveform shaping and detection. To empha- 

size a few concepts that were developed in chapter 3, phonon-polaritons are lattice 

waves of an ionic crystal that propagate at light-like speed. When a line focus is 

used, two symmetric polariton planewaves are launched in opposite lateral directions 

that are nominally perpendicular (with a small forward component) to the incident 

excitation beam. For a single femtosecond excitation pulse, the polariton waveform 

profile is determined by the spatial derivative of the optical excitation beam profile, 

so cylindrically focused gaussian pulses yield single-cycle polariton plane waveforms. 

This chapter will present three configurations of the spectrometer apparatus, 

namely a single generation crystal, reflection mode, and transmission mode. In the 

single cryst a1 configuration, the material parameters of the generat ion crystal are 

measured. It is necessary to know these parameters accurately because polariton 

propagation in these crystals must be accounted for in the other spectrometer con- 

figurations. Figure 4 1 shows the transmission configuration, with the generat ion 

and detection crystal cut to compensate for the forward angle. In all three spectro- 

scopic implementations, a polariton wavepacket induces a modulation in the crystal's 

refractive index that is detected through the use of a compact, grating-based inter- 

ferometer. The polariton waveform is measured before and after interaction with the 

sample, permitting measurement of the phase and amplitude of the polariton electric 

field on both sides of the sample. 

Figure 4-1 depicts one version of our spectrometer apparatus but illustrates many 

of the basic concepts associated with polariton spectroscopy. From a top view, it 

shows the polariton wavepacket propagating from the region of generation in the 

ionic crystal on the right, to the crystal edge where the polariton partially reflects 

and partially couples THz radiation into the sample. After that, THz radiation prop- 
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Figure 4-1: Top view - Schematic illustration of polariton-based transmission THz 
spectroscopy cell. The pump beam is focused to a line, and the polaritons are gener- 
ated throughout the depth of the cell. The LiTa03 crystals are cut to compensate for 
the forward polariton wavevector component. The pump excitation also generates a 
right propagating polariton waveform that is not involved in the experiment and is 
not shown. 

agates through the sample, couples into the second crystal as a polariton waveform, 

and then propagates through the second crystal where it is detected. Measurement of 

the transmitted and reflected polaritons allows determination of the complex dielec- 

tric constant. The generation crystals are cut such that polariton transmission occurs 

at approximately normal angles, compensating for the forward wavevector component 

of the polariton waveform. Note that many variations of the arrangement shown in 

figure 4-1 are possible. For example, if the dielectric contrast between LiTaOs and the 

sample is not too great (such that total internal reflection does not occur at modest 

angles of incidence), then compensation for the forward wavevector component may 

not be necessary. A purely reflection-mode arrangement, in which polaritons are gen- 

erated and detected in the same LiTa03 crystal, is also possible. The THz radiation 

that is transmitted through the sample may be coupled into free space rather than a 

second LiTa03 crystal, and more conventional THz detection methods may be used, 

and this is done in the free space THz measurements presented. This thesis will use 

the term polarit on spectroscopy to refer to situations in which phonon-polaritons are 

not coupled into free space. 

Another transmission version of our spectrometer will be used to demonstrate 

some additional features. The example illustrated in figure 4-2 shows the raw data 



from a transmission cell with "uncut" crystals, that is, crystals that are not cut at an 

angle that compensates for the forward propagation angle. Because the crystals are 

uncut, the reflections from the sample can be observed since the reflected beam retains 

the correct forward angle for the probe to measure a constant phase of its wavefront. 

The time at which a peak is observed depends on the distances A, B, and C in figure 4- 
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Figure 4-2: Side view THz transmission cell. The LiTaOs crystals are not cut to 
compensate for the forward propagation angle of the polariton waveform, and as 
such, polariton reflections are observed. The raw data shows the propagation of the 
left propagating polariton waveform. The labels R and L on the peaks in the raw 
data refer to interferometric measurements at the right and left probe arms and the 
arrows show the direction of polariton propagation. In chronological order, the first 
peak is the polariton waveform arriving at the right probe arm, the second peak is 
the refection from the pump side of the sample measured at the right probe arm, 
the third peak is propagation through the sample arriving at the left probe arm, the 
forth peak is reflection from the far side of the sample at the right probe arm, and 
the fifth peak is the polariton after two reflections arriving at the probe arm. Peak 
identification can be aided by translating the cell with respect pump and probe beams 
to see how the peak positions change. 

2. Those distances are chosen experimentally so that only one polariton field interacts 

with one probe arm at a time. Peak identification can be complicated for time series 



where many peaks arise from both transmission and reflection, but identification can 

be greatly simplified by translating the spectrometer cell with respect to the pump 

and probe beams. This effectively changes distance A in Figure 4 2 ,  which changes 

the times at which the reflected THz waves are measured. The transit times of 

transmitted THz waves do not depend only on the distances B and C and are not 

affected by changes to the A distance. If pulse identification still proves difficult, the 

separation between the probe arms, C, can also be easily change by modifying the 

grating interferometer. The coupled nature of the polariton allows for the polariton to 

be probed in a direction transverse to the direction of propagation. It can be probed at 

any point in the propagation path and, from superposition, it can be detected without 

altering the polarit on. These traits are unique feature of Polarit on spectroscopy. 

Figure 4-3 demonstrates quantitatively how the frequency range of the spectrom- 

eter can be adjusted by changing the spat size of the pump beam in the horizontal 

direction ("xl' in figure 3-4). The temporal shape of the THz pulse is related to the 

spatial derivative of the optical excitation profile. The focal parameters and polariton 

bandwidths shown in Figure 4-3 are typical. Many experiments in this thesis explore 

temperature dependent features and were performed in a cryostat. This limited the 

minimum focal lengths and consequently the single cycle pulse excitations were lim- 

ited to sub-THz frequencies. Higher frequencies can be generated using temporal 

pulse shaping or by crossing excitation pulses into the sample, as demonstrated in 

section 4.7. 
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Figure 4-3: In LiTa03, a line excitation is focused along the horizontal dimension with 
a cylindrical lens with a focal length of 30cm (red) and 20cm (blue). The polariton 
pulse shape is related to the spatial derivative of excitation profile. A tighter focus 
results in a shorter pulse in the time domain and a correspondingly larger bandwidth. 

Crystals 

This section outlines the ionic crystals used for generation and detection; their impor- 

tant properties and the geometries used for THz Spectroscopy. The crystals typically 

used are stoichiometric LiTa03 and LiNb03, or congruent MgO doped LiNb03, all 

of which are x-cut so the optic axis is vertical, and are approximately 1 to 2 mm 

thick in the direction of excitation pulse propagation. These ferroelectric crystals are 

chosen for their large elect ro-opt ics coefficient and nonlinear optical properties, as 

well as their commercial availability. The crystal structure is tetragonal and has C3V 

symmetry. Although most of the experiments in this thesis were performed using 

LiTa03 as a generation and detection material, LiNbOs or MgO:LiNb03 have much 

stronger responses and are preferable. It is known that at low temperatures (<70 K) 

reversible photorefractive damage occurs in these materials from charge liberation 

and trapping effects [19], and this is observed in our experiments as increased scat- 

tering of the optical pump and probe light. MgO doped LiNb03 has a significantly 

higher photorefract ive damage threshold. In the transmission experiments the crys- 

tals are often cut to compensate for the forward angle. In this case, each arm of the 

interferometer goes through a separate crystal. To ensure that both crystals are cut 

at the same angle and have the same thickness, they are obtained by cutting a single 
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Figure 44:  Comparison of detected polariton intensity in LiTa03 and 3% 
MgO:LiNb03. Both the generation and detection efficiencies are stronger in LiNb03. 

larger crystal. Cutting was performed at the MIT Crystal Grown Shared Experimen- 

tal Facility using a South Bay Technology 810 Wire Saw. The cut surfaces were then 

polished using 300 nm grit diamond paste with the cut crystal mounted in a special 

jig to ensure the the polishing did not change the angle of the cut. 

Figure 4-5 shows a cut crystal recombined and compared to an identical uncut 

crystal using the same alignment. A -5% loss is observed in the area of the transmit- 

ted peak. The polaritons have much longer wavelengths (-1500 pm in air, -250 pm 

in LiTa03, at 100 GHz) than optical light and are much less sensitive to surface 

roughness. Although the THz index contrast between LiTa03 and air is large, so 

that a wave at normal incidence would ordinarily undergo a 50% reflection, the gap 

between the two crystal when the are in pressed physical contact is far smaller than 

the THz wavelengths so the coupling between crystals is almost 100%. 

Section 4.3 will show that compensating for the forward angle is critical to ex- 

tracting the proper value for the dielectric constant. This may be done numerically 

for the single crystal and reflection measurements, but can only be partially done for 
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Figure 4-5: Comparison of uncut LiTa03 was to a cut LiTa03 crystal that has been 
physically pressed together. A 5% transmission loss was calculated from comparing 
the excitation peak to the transmitted peak. 

the transmission experiment. Section 4.4.1 will show that the polariton group veloc- 

ity in the generation crystal has a significant temperature dependence. This changes 

the angle of the forward component by a couple of degrees as the temperature is 

varied from 300 to 4 K. The angle of the forward component is given in chapter 3 

and restated here, 

where u,,, is the group velocity of the 800nm excitation pulse, and uwl is the phase 

velocity of the polariton waveform. 

4.2.3 Phonon-Polariton Detection 

A polarit on waveform propagating through a crystal interacts with the cryst a1 lattice 

and modulates the local index of refraction via the Pockel's effect, as is discussed 

in section 3.3.3. LiTa03 and LiNb03 were chosen for their strong coupling, which 

generates intense polariton fields, but this also necessarily implies strong coupling 

between the polariton field and the optical probe. The polariton waveforms are easily 



detected through a variety of techniques that utilize the Pockel's effect. Polaritons are 

macroscopic propagating excitations, they can be imaged in real space, and a sequence 

of images displayed sequentially exhibits that motion as a movie. The polaritons also 

diffract light through refractive index modulation, and in particular for many-cycle 

waveforms with a well defined wavevector, such as those that will be displayed in 

section 4.7, diffraction can be a convenient probe. Birefringence and polariton field 

induced second harmonic generation are additional methods that may be used for 

detection. 

The experiments in this chapter utilize an interferometric approach for detection. 

A compact grating-based, dual probe arm interferometer [13,80] is used to measure the 

propagating polariton waveform at two different spatial locations. The interferometer 

uses transmissive gratings (i.e. the binary phase mask patterns introduced in sect ion 

2.4) and common lenses for generation, imaging, and recombination of the dual probe 

arms. The use of all common path optics provides excellent phase stability without 

the need for an active feedback loop. One advantage of polariton spectroscopy is that 

the polariton field can be measured non-invasively at any point in its propagation 

path. The detection positions are chosen by selecting the separation between the 

interferometer arms and translating the compact polariton apparatus with respect to 

the pump and probe beams. Figure 4 6  illustrates the grating interferometer with 

LiTaO3 Sample n 

Figure 4-6: The dual arm interferometer measures the THz pulse before and after 
interaction with the sample. 

a transmission spectrometer cell. The f 1 orders of diffraction are collimated and 
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focused through the spectrometer cell by the first lens. A second lens recombines 

the two probe arms by focusing them into the transmissive grating where the +1 

order of "Probe 1" diffracts collinearly with the -1 order of "Probe 2". The relative 

phase shift of these two diffracted probe beams provides our measured signal. The 

separation between the probe arms are selected by choosing the grating spacing of 

the phase masks. The phase masks were introduced in the discussion of the transient 

grating experiment in section 2.4. The gratings are available in periods of 4 to 200 pm, 

which corresponds in our setup to probe arm separations of 72 to 1.4 mm respectively. 

Typically a grating period of 120 pm is used to create a probe arm separation of -2.4 

mm. This is calculated from the first order diffraction angle, Od, 

where X is the wavelength of the diffracted light and AG is the period of the diffraction 

grating. The separation of the probe beams, d, shown in Figure 4-6 is from simple 

geometry by, 

where f is the focal distance. A focal distance of 18 cm is used to ensure that the 

Ralleigh range of the probe focus is longer than the crystal thickness. The distances 

between the two probe arms and the excitation beam was measured by imaging onto 

a CCD camera. 

There are two critical points that were introduced 3.3.3, and that need to be 

emphasized here. First, the optical refractive index modulation due to the presence 

of the polariton is proportional to the strength of the THz field, E,, and is restated 

here, 

Second, the phase shift is proportional to both the change in the refractive index and 
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the length of interaction with the altered refractive index. A polariton waveform is 

a macroscopic coherent waveform, and for quantitative results, the probe beam must 

interact with the same portion of the waveform at different spatial positions in the 

crystal. This condition is guaranteed by using 800nm light for both the excitation 

and probe pulses, and having the pulses enter the crystal at normal incidence. 

Finally, we derive the measured signal in the interferometric measurement. Both 

probe arms are imaged with at the same angle with the same optics onto second 

grating, consequently the portions of the two probe beams that are diffracted in the 

collinear direction have the same intensity. Define the amount diffracted from each 

probe are as Epl and Ep2 where 1 Epl 1 = I Ep2 / = Eo/2. The intensity of the signal 

at the photodiode detector is given below, 

where A+ = +pl - +p2 is the phase difference between the two probe beams, and 

is the relative phase shift from the two diffraction gratings and any difference in 

the crystal samples. Equation 4.4 shows that for the case of a polariton waveform 

propagating through the path of Probe 1 with an interaction length L, 

and for the case of a polariton in path of Probe 2 there is an equal phase shift only 

of opposite sign, 
n3r E wL 

= 33 PP , 

2c 

Experimentally, the phase of the second diffraction grating can modulated through 

multiples of 27r by translation, and the second diffraction grating is used to set the 

constant phase, $0, to 7r/2. This is where the interferometry is most sensitive and, 

in the limit of small polariton fields, linearly related to the phase shift. Consider 

the case of the polariton waveform in Probe 1. Using the trigonometric relation 



cos(8 + r/2) = - sin 8, equation 4.6 becomes, 

( [ n:r332y") I K E: 1 - sin - 

In our experiments the polariton field is small, and the intensity at the detector can 

be approximated using the small angle approximation, 

In these experiments we utilize dual frequency chopping, where the pump is chopped 

at fi and the probe is chopped at f2, and a lockin amplifier is used to measure 

signal at the sum frequency, fi i- f2. This is necessary as the probe has a constant 

background on the detector, and chopping only the pump causes the scattered pump 

light to overwhelm the signal. The AC component of the signal is given by 

For the alternate case where the polariton waveform is in Probe 2, the phase shift 

has the opposite sign and consequently so does equation 4.11. 

4.3 Dielectric Function from THz Spectroscopy 

This section explains the method of data extraction for each of the three spectroscopic 

configurations and for free space techniques. The goal is to extract n and K by 

selecting and comparing two pulses from the time series data scan. 

Often in the literature, there are different but equivalent preferences for describing 

dielectric properties of a material. The wave propagation constants n and K, the com- 

plex dielectric const ant E ,  and complex dielectric susceptibility X ,  are all equivalent 

ways of describing the dielectric properties of a material. For purposes of polariton 

spectroscopy, the wave propagation constants, i.e. the refractive index n and the ex- 

tinction coefficient K,  seem natural. Although we will use K it is sometimes convenient 



to use a related quantity, a, the absorption coefficient. They are related by 

n is preferred since, unlike a ,  it is unitless and it has no inherent frequency depen- 

dence. 

In connecting our results to the ferroelectrics community however, the complex 

dielectric constant E = E' + z ~ "  will be preferred. In a dielectric material n and n are 

related to  the dielectric constant by [41], 

and often n << n, so E' = n2. The dielectric constant is related the dielectric suscep- 

tibility in SI units is given by, 

In an isotropic or cubic medium equation 4.15 is scalar, which for our purposes is 

sufficient. Finally we note that although the dielectric susceptibility and the dielectric 

constant are unitless, by convention X ~ I  = 4qccs7  but ESI = EGCS [dl]. 

4.3.1 Method of Data Extraction 

This section explains the method of data extraction. All configurations of our phonon- 

polariton spectrometer measure the phase and amplitude of the polariton electric 

field before and after interaction with a sample. From these two measurements the 

frequency dependent refractive index, n ,  and the extinction coefficient, n, at THz 

frequencies can be obtained by inverting a frequency domain transfer function, T, 

that governs the propagation of the polarit on wavepacket. 



where w is the angular frequency, di is the distance traveled by the polariton wavepacket 

in a given material, and i counts the number of materials that interact with the po- 

lariton wavepacket. For simplicity and to emphasize its frequency dornain nature, 

the transfer function will be written T(w) and the dependence on ni ki, and d will 

be implicit. In our implementation of phonon-polariton spectroscopy, the sample will 

have the only unknown pair of n and k.  Values for n and k for the generation and 

detection crystals will be predetermined from separate experiments. 

One advantage of phonon polariton spectroscopy is that a reference scan is not 

needed; instead, a polariton waveform is measured before and after interaction with 

a sample. Spectrometer parameters such as the distance between the probe arms are 

chosen so that the interacting polariton fields do not overlap in time. Data analysis 

begins by selecting the region of pulse 1 to create a data vector that represents the 

measured THz field at one of the probe arms, El (t), in the time domain. The edges of 

E l ( t )  are set to decay exponentially to zero and the length of El@) is zero padded for 

fast Fourier transform. Then a second independent data vector E2(t) is created using 

the same procedure. In practice, most of the work presented in this section will be in 

the "broadband region" where a single cycle polariton wavepacket several picoseconds 

long will be excited, and these pulses are easily windowed. The time between when 

the polariton has its first probe interaction and its second probe interaction can range 

from lops to 250 ps, and is only limited by range of the probe delay stage and the 

losses to the polariton wavepacket during propagation. In practice data are often 

collected only in the temporal regions of the pulses, so data collection can be quite 

fast, typically on the order of 10 minutes. The data scans are typically conditioned 

by baseline subtraction and data smoothing in the time domain, with either a 5 or 

10 point moving average depending on the resolution of the time step. 

Let us examine the simplest case of propagation in a single medium as an example. 

In this case, as is well known, the transfer function relating the pulses is given by 

[76,8117 

T ( w )  = exp I 



and solving for T ( w )  in terms of experimentally measured quantities gives, 

This relates our measurements to an analytic expression for n and n. The transfer 

function must be inverted however, and in all but the simplest cases this cannot be 

done analytically without approximation. However since the calculation of T ( w )  from 

n and n is trivial, the problem lends itself to calculating the T ( w )  for a range n and 

n and comparing this to the experimental T ( w )  with a minimization search [49,82]. 

Equation 4.17 is suggestive, if we consider T ( w )  in polar form and examine the 

log of the magnitude and the argument of T we see that, 

nwd 
( T ( w ) )  = c 

Equations 4.19 and 4.20 are linear functions of n and n respectively. Clearly equations 

4.19 and 4.20 can be rearranged to give analytic expressions for n and k, but this 

form of these equations also motivates a parabolic error function, 6, of the form 

where 

where T ( w )  is an analytic expression transfer function used in Eqs. 4.19 and 4.20 

and Tmeas (w ) = E2 ( w )  /El ( w )  is the experiment ally measured transfer function. In 

this simple case the error function is parabolic with a well defined minimum at n and 

n. For more complex transfer functions, such as those that include transmission and 

reflection coefficients or propagation in different media, the error function is still well 



described by a parabola with a global minimum at nmrnPle and nsample 

The arg(Trneas(w)) (i.e. the phase ) requires further discussion. To convert the set 

of complex numbers that comprise TmeaS(w) from rectangular to polar coordinates the 

phase angle is constrained to lie between -7r and +n. The phase of the propagated 

polariton waveform is not constrained and has a physical meaning. It is the number 

of cycles the polariton field has oscillated during its propagation. To transform the 

experiment a1 value of the phase to the physical quantity, the appropriate integer 

multiple of 27r for each point must be added. This multiple is chosen by unwrapping 

the phase of Tmeas (w) where the Fourier amplitudes of E 1 (w) and E2(w) are maximal. 

Unwrapping the data vector adds multiples of 27r to prevent adjacent points in the 

data vector from differing by more than 2n. If the refractive index of the material 

does not have a strong frequency dependence over the range of unwrapped frequencies, 

then the unwrapped phase is linear and defines a line. From equation 4.20, as w -+ 0, 

it is clear that the phase also goes to zero. This is the final constraint: the unwrapped 

phase is shifted by a single multiple of 27r for all of the unwrapped points so that the 

y-intercept of the line is as close to zero as possible. The unwrapping procedure is 

then expanded, and the unwrapped points are shifted by a multiple of 2n to minimize 

the distance to the line. 

Two further issues must be accounted for to obtain a quantitative data extraction. 

First, the amplitude of the time domain pulses must be scaled by a factor to account 

for the extent of the polariton that the probe pulse measures, this is the distance L 

in equations. 4.7 and 4.8. Although the pump generates polaritons throughout the 

entire depth of the crystal, the polariton field at the back of the crystal is immediately 

reflected. The probe beam does not measure a constant phase slice of the reflected 

beam, and for this reason, the contribution of the integrated intensity of reflected 

polariton beam to the probe is negligible. The amount of polariton field reflected, and 

therefore invisible to the probe, depends on the length of propagation. Second, the 

distance the polariton waveform propagates must be determined. These two issues 

depend on the specific geometries of the spectrometer cell, and will be presented 

independently for each case. The Matlab programs used for data extraction are given 



in Appendix A. 

4.3.2 Single Crystal Spectrometer 

The single crystal spectrometer apparatus provides the simplest case of data extrac- 

tion because the polariton waveform is generated and detected in the same crystal. 

It is also the most important case because it is used determine n and tc for the gen- 

eration and detection crystals that are used in all of the other cases. Although the 

transfer function for propagation in a simple medium was presented in section 4.3.1, 

it is not sufficient in this case. This is because the distance the polariton waveform 

travels is a function of the forward angle and therefore implicitly a function n. The 

transfer function instead is given by, 

[-z(n - y)wd(n) 
T(w) = exp I 

where d(n) emphasizes the distance dependence on n. It is possible to  separate the 

phase and magnitude of T(w) analytically, but its simpler to to solve it iteratively 

until the values of n and tc stop changing. 

Figure 4-7 shows that the distance the polariton travels is given by, 

where prpr is the distance between the two probe arms. The scale factors shown in 

Figure 4 7  illustrate the amount of polariton field that the probe integrates over (i.e. 

the interaction length L) and can be described from simple geometry, 

Scale E l  = txtal-pupr* tan(Of) (4.26) 

Scale E2 = txtal - (prpr + pupr) * tan(Of). (4.27) 

Each of the scaling factors should have an additional cos(Of) factor to represent the 

true width of the polariton beam, but since only the ratio of the two scaled pulses 
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Figure 4-7: Top view of single crystal spectroscopy cell illustrating the portions of the 
generated polariton wavefront that probe 1 and probe 2 coherently integrate. Scale 
El  and Scale E2 are used to normalize the measured polariton pulses. "pupr" is the 
distance between the pump and probe beams. "prpr" is the distance between the 
probe beams. "txtal" is the thickness of the crystal. 

is used in the analysis this factor of often ignored. The distances used in the scale 

factors are measured by imaging the focal plane to a CCD camera. The image on 

the CCD is calibrated by translating the spectrometer apparatus a known distance 

with a micrometer stage. Although both n and f i  are extracted from this analysis, at 

low temperatures the absorption in LiTa03 and LiNb03 is too small to be accurately 

resolved with this technique. This indicates that the absorption at low temperatures 

is too weak to have a significant influence on our measurements. 

Reflect ion Spectrometer 

In the reflection configuration, the generated polariton waveform reflects off the sam- 

ple at an angle of incidence equal to the forward angle. It is therefore critical to know 

this angle well, and this requires knowledge of the refractive index of the generat ion 

crystal. The depth of the generation crystal is also chosen to be smaller than the 

sample, so that all of the generated polariton waveform reflects off of the sample. 

Although in principle, rc of the sample and generation crystal bath affect the phase of 



the reflected light, this phase shift is significantly smaller than what can be measured 

with our spectrometer. Only the angle dependent index of refraction will be used in 

the reflection coefficient. 

where n, refers to the sample, and n refers to the generation crystal. In the reflec- 
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Figure 4-8: Top view of reflection spectroscopy cell illustrating the portions of the 
right and left generated polarit on wavefronts that probe 1 coherently integrates. Scale 
E l  and Scale E2 are used to normalize measured polariton wavepackets. 

tion case, the same polariton wavepacket is not measured in both cases. Figure 4 8  

shows that instead, the right propagating polariton waveform is compared to the left 

propagating polariton waveform that reflects off the sample to determine El and E2. 

It should be stressed that these polariton wavepackets are equivalent for symmetric 

excitation pulse profiles and normal incidence. The relative distance that the two 

polariton wavepackets travel is given by the equation below, 



and the transfer function is given by, 

where n, n refers to the generation (and detection) medium. The scale factors shown 

in Figure 4-7 are given by, 

Scale El  = txtal-pupr* tan(Of) (4.31) 

Scale E2 = txtal - (pusa + pupr) * tan(Of) . (4.32) 

The right propagating polariton waveform is measured to obtain El but it also often 

measured at the second probe arm as well. In this manner, the single crystal mea- 

surement of the generation crystal can be combined with the reflection measurement 

and both can be done simultaneously. 

4.3.4 Transmission Spectrometer with Cut Crystals 

The transmission configuration is shown in Figure 4-9. The right propagating po- 

lariton waveform is generated by the pump beam and then measured at the first 

probe arm. At the sample interface, the polariton waveform is partially reflected 

and partially couples THz radiation into the sample. At the second interface the 

THz radiation is partially reflected and partially coupled into the detect ion cryst a1 

where a polariton wavepacket is regenerated. The angle of incidence is approximated 

as normal for both interfaces, although the forward component (hence the angle of 

incidence) changes with temperature. Two transmission coefficients are needed, one 

for each interface, 



From Figure 4-9, the distance traveled in generation and detection crystals from 

the first probe to the second probe is given by, 

d=-- pupr tsam. 
~048,) 

Figure 49: LiTa03 is cut at and angle of 20" and a clamp is used to hold the 
crystals together. Scale E l  and Scale E2 are used to normalize the measured polariton 
wavepacket signals. 

The distances pupr, prpr in Figure 4-9 are measured by imaging the focal plane 

of the pump on the CCD. The thickness of the crystals and the sample are measured 

with calipers prior to the experiment. The transfer function for this experiment is, 

T(w) = tl ltf exp I 
where n,n refer to the generationldetection medium and n,, n, refer to the sample. 

The scale factors shown in Figure 4-9 are given by, 

Scale E l  = txtal - pupr * tan(Of) 

Scale E2 = txtal + offset - (pusa + pupr) * tan(8 ,). 

Measurement of the crystal offset is performed in several ways: it is calculated from 

geometry, measured with a ruler, and it is measured as a delay in an autocorrelation 



experiment. The first two methods have proved to be somewhat inaccurate, and 

the autocorrelation method has proved to be too impractical to be used routinely.In 

this experiment it is also difficult to obtain values for K s .  Uncertainty in the offset 

measurement adds significant error to the scale factor for E2 and in general this 

prevents an accurate determination of K ,  . Suggestions for improved transmission 

measurements are offered subsequently. 

4.3.5 Spectroscopy with Free Space THz Radiation 

The data extraction for the free space THz experiments introduced in section 2.5 is 

similar in approach to our polariton spectroscopy. The first major difference is that 

two scans are needed, one in which sample is present and one in which it is absent to 

serve as a reference. One of the main advantages of free space THz spectroscopy is 

that there are no geometrical factors that add uncertainty to the data analysis, only 

the sample thickness is needed. The polariton peaks are selected from the two scans 

and windows in a manner identical to that of the polaritons. The transfer function for 

propagation in the sample and reflection at normal incidence for the two air-sample 

interfaces is give below, 

[ ( n  - 1; - ~ ) w d  
T ( w )  = exp I 

Equations 4.39 can be solved analytically for n and tc so no fitting procedure is re- 

quired, although the phase of T(w) must be unwrapped in the same manner discussed 

in Section 4.3.1. 

4.4 Demonstration on LiTa03 and LiNb03 

This section will present some illustrative examples of polariton spectroscopy. The 

polariton spectroscopy results on the relaxor ferroelectric KTN will be primarily saved 

for chapter 6 so that they can be discussed proper detail. 



4.4.1 Temperature Dependence 

The temperature dependence of LiTa03 and LiNb03 plays a crucial role in the polari- 

ton experiments, as it changes the forward angle by several degrees and this signifi- 

cantly affects the extraction of quantitative results. Figure 4-10 show the temperature 

dependence of LiTa03 and provides a good example of typical polariton spectroscopy 

data. The raw data shows much qualitative information. The area of the transmitted 

(right) peak provides information about absorption of the material and the time of 

flight gives an estimation of the refractive index. The peak area changes substantially 

as the temperature is decreased, and it visibly approaches the area of the generated 

peak at low temperatures. The shape of the polariton waveform also changes slightly 

but this is due more to the quality of the scans. Additionally, the phase of the peak 

is flipped by 180" as is expected from detection at the second probe arm. It should 

be emphasized that the area of the peak is only a qualitative measure of absorption 

and can be misleading, as the second probe arm measures a smaller polariton beam 

width, and therefore overestimates the amount of absorption. Variation in the time 

of flight is not as obvious in the raw data, although the polariton waveform clearly 

arrives earlier at lower temperatures. A faster polarit on velocity (shorter time delay) 

results in a larger forward angle. This larger forward angle means that the polariton 

traveled a greater distance, and therefore the time delay underestimates the polari- 

ton group velocity and overestimates the index of refraction. The refractive index for 

two separate experimental trials on LiTa03 is shown in figure 4-11, and this level of 

agreement between values is typical. 

Values for the extinction coefficient K are much more difficult to determine because 

uncertainties in scaling factors cause errors on the order of the absorption. Although 

it is unfortunate that experiment has trouble measuring the small values of K, the 

fact K is small in these crystals makes them better suited for polariton spectroscopy. 

Nominally K was determined to be ~ 0 . 0 1  in LiTaOs from 250 K to 300 K. This value 

was used in the reflection and transmission experiments, and for lower temperatures 

K was approximated as zero, which is consistent with the literature [4,44,45]. 
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Figure 410: Polariton spectroscopy of LiTaOs as a function of temperature. See 
figure 4-2 for spectrometer geometry. The transmitted peaks (right) show a strong 
temperature dependent absorption. And while not as apparent in the raw data, the 
variation in time delay of the transmitted peak is also significant. 



Figure 411: Temperature dependent refractive index for LiTaOs performed in two 
separate experimental trials. The value of the refractive index is independent of 
frequency in the measured range of 50-250 GHz. 

Anisot ropy 

In our polariton spectroscopy experiments, the generated polaritons are polarized 

along the optic axis of the crystal. Figure 412  shows a transmission experiment with 

cut crystals where the sample is LiTaOs (LT), but with different orientations of the 

optic axis (out of the plane, and in the plan of the page) in the two cases. A line is 

drawn as an aid to the eye to show the polaritons delay through the ordinary axis of 

LiTa03. 
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Figure 4-12: THz spectroscopy of different orientations of the optic axis of LiTa03. 
Plot (a) shows the polariton polarization parallel to the optic axis of the LiTa03 
sample. Plot (b) shows the polariton polarization perpendicular to the optic axis of 
the LiTa03 sample. A slight increase in the time of flight is observed. 



Horizontal Polarization of the Excitation and Probe 

The lowest frequency Al symmetry mode in the ferroelectric crystals LiTa03 and 

LiNb03 (C3V symmetry) is the dominant mode excited in polariton generation. The 

strongest polariton generation occurs when the excitation pulse is polarized parallel 

to the optic axis. For our cuts of crystals, in the lab frame this corresponds to a ver- 

tical polarization. It is also possible to excite the Al mode using an excitation pulse 

polarized perpendicular to the optic axis. Figure 4-13 shows polariton waveforms gen- 
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Figure 413: Measurement of a polariton pulse in LiTa03 with excitation and probe 
polarized parallel to the optic axis, (HH) in the lab frame. This generation and 
detection is much weaker than our normal (W) excitation. 

erated and measured with a horizontally polarized excitation pulse and probe pulse. 

The generated polariton waveform is substantially weaker because of the smaller Ra- 

man tensor component, and the phase shift in the probe beam is proportional to 

the smaller (factor ~ 3 )  electrooptic coefficient ria discussed in section 3.3.3. This 

example verifies that our understanding of the generation and detection efficiencies 

in the excitation crystals, and demonstrates the feasibility of pumping and probing 

with different polarizations as a means separating scattered pump light from probe 

signal. 



Polariton Coupling to Free Space 

Although free space THz spectroscopy was described in the context of other generation 

materials, polaritons can be readily coupled into free space and used as a source of 

THz radiation. Figure 4- 14 illustrates the polariton radiation being coupled to free 

space. The reflected pulse from the tilted edge is not visible because it is no longer 

propagating at the correct angle for the probe to see a constant phase of polariton 

waveform. The lower plot of the uncut crystal in contrast shows multiple reflections. 

THz radiation generated in this manner is less divergent than other sources, which 
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Figure 4-14: Demonstration of polariton coupling to free space. The cut crystal 
couples -53% of its energy to free space THz radiation. The polariton waveform in 
the uncut crystal undergoes total internal reflection. The reflection is not seen in the 
cut crystal because the probe does not intersect the polariton waveform at the proper 
angle to see a constant phase slice. 

are usually generated with a tightly focused beam. The use of polaritons as source of 

free space THz radiation connects the extensive polariton pulse shaping work to free 

space THz fields. Figure 4-15 demonstrates that a generated polariton can emit THz 

radiation at the crystal interface and that polariton can be recoupled into a second 

crystal for detection. The spacing of the two crystals is lrnm in the lower scan and 2 

mm in the upper scan. An enlargement of the transmitted peak is shown, the single 



cycle polariton is converted to a multicycle pulse sequence by etalon effects. The 

increased separation between the etalon pulses is clearly evident in the enlargement. 

To accommodate the increased spacing between two crystals the distance between the 
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Figure 415: Top view: A polariton waveform generated in LiTa03 is used as a THz 
radiation emitter and recoupled into a second LiTaOs crystal where it is measured. 
The spacing, A, is 1 mm in the lower scan and 2 mm in the upper scan. 

two probe arms was easily adjusted by changing the phase mask used in the grating 

interferometer. Note that the crystal positions are not optimized in the x direction so 

that the amplitude of the polaritons is not quantitative, i.e. not all of the polariton 

beam is necessarily entering the detection crystal. 

4.5 Free Space THz Spectroscopy 

A free space THz spectroscopy setup employing phonon-polariton generation meth- 

ods, coupling to free space, and traditional detection methods is presented in section 

2.5. Here we present a few results using free space THz spectroscopy as a comparison 

to polariton spectroscopy. Figure 4- 16 shows the refractive index of 5%MgO: LiNb03 

as a function of temperature. Several features stand out. First, the sensitivity of 

the technique captures the slight frequency dependence of the refractive index, and 

the spectral range is much larger than in the polariton measurements, covering -0.2- 

1.2 THz. Figure 4-17 shows the extinction coefficient and the temperature trend that 
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Figure 4-16: The refractive index of 5%MgO:LiNb03 measured with free space THz 
spectroscopy. 

is generally expected. The strong temperature tails from 0.2 to -0.4 THz and -1.15 

to 1.2 THz are not real, the spectral amplitude in these frequency ranges is too small 

for an accurate determination of K .  The spectral amplitudes of the data and reference 

pulses have oscillations from THz resonances of water vapor. These modulations are 

actually quite strong as the path length of the THz radiation is long, -1.5 m, and 

the absorption due to water is significant. The modulations however are present in 

both the reference and data scans and are partially canceled when the ratio of the 

amplitudes is taken in the data extraction. This normalization is not perfect however, 

and it is a cause of bumps and oscillations in the free space spectra, which should be 

smooth monotonic curves. In particular the crossing of K at 300 K and 250 K is the 

result of error in the experiment and is a good estimate of the uncertainty of the K 

values. 

Although the reference scan was also taken in the cryostat, it was performed 

at room temperature without purging of the atmosphere. The path length that 

the reference beam was exposed to water vapor where the data scan was not is the 
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Figure 4-17: The extinction coefficient, K ,  of 5%MgO:LiNb03 measured with free 
space THz spectroscopy. 

length of the inner chamber of the cryostat , 2.8 inches. The relative exposure of the 

reference pulse to water from this small path length is enough to create distortions 

in the spectrum. These resonances are identified in Figure 4-18 and are labeled from 

the literature values [83]. This figure demonstrates potential sensitivity of the free 

space detection methods. 



Figure 4-18: THz water resonances in measured with free space THz spectroscopy. 
The reference was taken in the cryostat with atmospheric water vapor present, while 
the low temperature measurement on 5%MgO:LiNbOs was dry. Assignments from 
Grischkowsky [83]. 



4.6 Comparison of Polariton based THz Spectroscopy 

Free Space THz Spectroscopy 

THz spectroscopy has been a field of active development. Free space techniques 

have been developed since the late 1980's and are now employed routinely by many 

groups. As Section 4.5 shows, the free space techniques based on ZnTe detection are 

also significantly more sensitive than the current polariton detection techniques. Of 

course, THz frequency phonon-polariton waveforms can also be coupled to free space 

and then measured by ZnTe. The sensitivity of the free space techniques enables the 

superior determination of K ,  which is at present a more complicated measurement than 

with polariton spectroscopy. The bandwidth of the broadband free space techniques 

is larger than that of polariton based spectroscopy [I], even with tighter focusing 

of the polariton excitation pulse. This bandwidth can be extended to several THz 

by experimentally removing water vapor from the THz paths. Typically, for our 

polariton spectroscopy measurements the spectral range is between 50 and 250 GHz 

while for the free space experiments the spectral range is between 200 to 1100 GHz 

because of tighter focusing into the LiNb03 crystal. 

Polariton spectroscopy has some unique advantages to the free space methods 

however. A major motivation for the development of polariton spectroscopy was to 

investigate high dielectric materials like the relaxor ferroelectric KTN. By generating 

the polariton in a dielectric material (n N 5-6), the dielectric contrast to the sample is 

significantly reduced. As will be discussed in chapter 6, the refractive index of KTN 

varies from 10 to 35 as the temperature is changed. Figure 4-19 compares our polari- 

ton transmission and reflection spectroscopies with our free space measurements. 

There are a couple of points to highlight. First, to within the experimental er- 

ror, the extracted values do agree. The values of refractive index for the polariton 

measurements have uncertainties from extraction, i.e. variation of the extracted value 

around the maximum of the Fourier amplitude, of typically f 0.05. In most cases, the 

uncertainty of extraction is not the most important source of error, and systematic 

error from the geometrical factors used in extracting the data give a more realistic 
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Figure 4-19: Comparison of P P  polariton spectroscopy with free space methods in 
KTN. Polarit on transmission spectroscopy is able to transmit more THz radiation 
through the KTN sample at lower temperatures where the dielectric constant be- 
gins to diverge. Free space measurement could not be continued below 150 K while 
polariton transmission measurements were performed at all temperatures down to 
80 K. Polariton reflection measurements were performed down to 4 K. The results of 
measurements at  lower temperatures are reported subsequently. 



value for the uncertainty at 0.5 for the reflection and 1 for the transmission experi- 

ments. The second point is that polarit on transmission spectroscopy transmits THz 

radiation through the sample at temperatures down to 80 K before the polariton 

signal was lost. In contrast free space THz spectroscopy could only be performed to 

150 K before the transmitted pulse was too weak to detect. Reflection measurements 

that cover the entire temperature range down to 5 K will be presented in chapter 6. 

These high values for the refractive index translate to high reflectivity at the 

LiTa03 -KTN interface and even higher reflectivity at the air-KTN interface. Fig- 

ure 4-20 translates these refractive index values to corresponding values of the reflec- 

tion coefficient, r,, for free space THz radiation at normal and 45" incident angles 

and polaritons from LiTa03. 

Figure 4-20: The reflection amplitude coefficients determined from our experimentally 
measured values of the refractive index for KTN utilizing polariton spectroscopy. 
The values were converted to equivalent values of what a free space reflection THz 
spectroscopy method would yield for air KTN interface at 45" and normal incidence. 

The greater range of the reflection coefficients shows that the reflection measure- 

ments with polaritons are inherently more sensitive than free space measurements, 

although of course, the sensitivity of the of the detection matters too. The superior 



sensitivity of the free space transmission measurements was demonstrated in section 

4.5, but a free space reflect ion measurement has additional difficulties. In part icu- 

lar the reference scan is problematic. The reflection loss associated with a reference 

mirror must be accounted for and the reference and sample reflection must be inde- 

pendently aligned. In contrast , the reflection measurements in polariton spectroscopy 

are the easiest, since no crystal cutting is required, the dielectric constant of the gen- 

eration and detection material can be measured at the same time, two not three 

crystal have to be mounted in contact, and the geometrical factors can be more accu- 

rately determined. For reflection from high-dielectric materials, polariton reflection 

spectroscopy offers clear advantages. 

In addition the to generat ion and detection components, free space met hods em- 

ploy parabolic gold mirrors to collimate and focus the THz radiation. These mirrors 

are common, commercially available, and reasonably easy to align. They offer the 

experimental advantage of significantly more control in aligning beams and adjusting 

beam size. These tasks are much more challenging when applied to polaritons. Many 

research groups have contributed to free space techniques such that there exists a well 

established body of methodology that is robust. In contrast, manipulating polaritons 

in a crystal is more difficult, but the avoidance of THz optics offers some potential 

benefits, especially from an industrial perspective. First, an integrated polariton plat- 

form machined for specific applications would have fewer parts, potentially less need 

for alignment, and can be significantly more compact. Our current spectrometers are 

on the order of 5x2x2mm and can easily fit inside a typical cryostat. To a certain 

extent, using parabolic gold mirrors to focus the THz radiation will always preclude 

miniaturization, and a 2Ox20cm footprint for focusing elements of a free space THz 

spectrometer would be considered compact. 



4.7 Multicycle Phonon-Polariton Waveform Gen- 

eration 

Section 4.1 introduced optical pulse shaping as a method of creating polariton wave- 

forms. This section presents two simple forms of pulse shaping for generation of mul- 

ticycle "narrowband" polariton waveforms with well defined frequencies and wavevec- 

tors. This contrasts with the single cycle polariton pulses that have been discussed 

previously. 

Deathstar Temporal Pulse Shaping 

The "Deathstar" introduced in Section 2.6 converts an optical pulse into sequence of 

7 uniformly temporally spaced pulses with a gaussian intensity envelope. Figure 4- 

21 shows the use of deathstar, introduced in section 2.6, to generate a multicycle 

waveform with a 400 GHz frequency. 
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Figure 421:  An optical temporal only pulse shaper was used to generate a 7 cycle 
pulse train to excite a 400 GHz polariton excitation that was detected with the 
standard dual arm interferometer. The rapid decay of the waveform from one probe 
arm to the second is an artifact of the excitation and detection used. 



The polariton waveform is detected with grating interferometer. The waveform 

appears to rapidly damp, but this is an artifact of the experimental limitations of laser 

power. The Deathstar pulse shaping cavity is lossy, and since the ISRS generation 

process is third order, the electric field amplitude of each of the pulses of the optical 

pulse sequence is substantially smaller than in the broadband measurements. As a 

consequence, the seven cycle pulse train could not be focused to a tall line. The 

focus in the vertical dimension was similar to the focus of the width, and polariton 

waveform radiated conically away from the pump region. This led to lower signal at 

the second probe arm. Nevertheless, this experiment shows that temporal only pulse 

shaping can generate multicycle polariton waveforms. Under appropriate conditions 

(more energy per pulse) reliable narrowband polarization spectroscopy measurements 

could be conducted. 

4.7.2 Transient Grating Phonon-Polariton Excitation 

A more common method of pulse shaping is to image binary phase masks into the 

generation crystals, in a similar manner to the transient grating experiments to be 

discussed in Section 2.4. Unlike all of the other polariton measurements discussed 

in this section, diffraction from the multicycle polariton waveform was used instead 

of interferometry. A fourth beam was also used as a local oscillator for heterodyned 

detection. 

Figure 4-22 shows a polariton waveform with a 1 THz frequency. The first probe 

measurement is with the probe completely overlapped with the pump. Because of this 

the polariton response suddenly appears at time zero. The sinal is maximum because 

of complete overlap, then the envelope of the detected signal slowly decays as the 

polariton waveform propagates out of the probe region. The second probe shows 

the polariton waveform propagating into and out of the probe region, revealing a 

gaussian envelope. This and other measurements indicate that narrowband polariton 

spectroscopy can also be conducted in this manner. 
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Figure 4-22: A grating is imaged into a LiNbOs crystal exciting a narrow band po- 
lariton waveform with a l THz frequency. The black plot shows the probe overlapped 
with the excitation pulse and the polariton propagating away from the probing re- 
gion. The red plot shows polariton propagating into and out of the second probe 
region. The modulation amplitude of the black plot is much larger because it is mea- 
suring both the right and left propagating polariton field and measuring the polariton 
throughout the entire depth of the crystal. 



4.8 Conclusions and Future Directions 

Three configurations of compact THz spectrometers based on grating interferometric 

detection of phonon polaritons waveforms have been demonstrated. The method for 

data extraction for each of the configurations was presented and several important 

examples of polariton spectroscopy were shown. For comparison, some free space 

THz spectroscopy was introduced and compared to polariton spectroscopy of the 

relaxor ferroelectric KTN and the relative advantages and disadvantages of polariton 

spectroscopy under different conditions were highlighted. The utility of polariton 

spectroscopy for high-dielectric samples is clear. 

The most promising avenue of polarit on spectroscopy is the reflection configura- 

tion. Although the grating interferometer is useful, the dual probe arms are unneeded 

in the reflection measurement. A single probe arm based on birefringence and dual 

detection similar to the free space techniques could dramatically improve the sensi- 

tivity of the polariton detection. There are several reasons to be optimistic about this 

approach. First, difference detection is sensitive and noise from power fluctuations in 

the laser is eliminated. Secondly, it removes the need for dual frequency chopping, 

which is necessary for for the interferometric measurements but limits the amount of 

signal that reaches the detector. One issue that was not fully addressed was the ex- 

perimental difficulty of separating scattered pump light from the dual arm interferom- 

eter. Polariton detection requires the pump and probe beams to enter the generation 

crystal at normal incidence. This means that the second lens of the interferometer 

focuses the pump beam onto the diffraction grating where it diffractslscatters light 

collinearly with the interferometrically recombined probe beams. The pump can be 

spatially blocked before the second lens, but with the cryostat in the experimental 

set-up it was not always possible to fully block the pump beam. Dual frequency 

chopping was used to successfully suppress the stray pump light, but dual frequency 

chopping also limits laser pulses that contribute to the signal. 

Another import ant direction are efforts to design cell geometries that minimize 

the impact of the forward component of polariton waveform propagation. One simple 



approach is to cut a crystal so that the optical excitation beam enter cut portion 

of the crystal at normal incidence but at an angle relative to  the front face of the 

crystal. For the proper choice of angle, the excitation beam will generate a polariton 

waveform that propagates parallel to the front crystal face. Eliminating the forward 

component simplifies the transmission experiment by reducing the uncertainties of the 

geometrical factors. This will improve the determination of n but will be particularly 

helpful in extracting K .  

Polariton spectroscopy also offers potential as a platform for compact, integrated 

THz spectroscopy. The pulse shaping methods show much promise for generating 

intense polaritons for non-linear polariton or THz spectroscopies. Laser machining 

can also be used to make integrated sample holders, particularly for liquids and glass 

forming liquids [84] where sample cells are fabrication are complicated by the need 

to make multiple path lengths. Interfacing of a polariton-based THz spectrometer to 

microfluidic systems also would be possible. 





Chapter 5 

Introduction to Ferroelectrics 

This chapter will provide a brief overview of ferroelectric crystals, and also motivate 

their study by showing their broad range of properties and technical applications. 

Section 5.1 will provide a brief background and introduction to  ferroelectrics as well 

as introduce some basic terminology. Next, section 5.2 will present some selected 

applications of ferroelectrics to demonstrate their technological importance. The 

third section, 5.3, will introduce the concepts of the ferroelectric transition, with 

an emphasis on features that differ between traditional ferroelectrics and relaxors. 

Finally, section 5.4 will include a discussion of relaxor ferroelectrics providing the 

background necessary to underst and the spectroscopic studies of the relaxor ferro- 

electric KTa0.982Nb0.01803 (KTN 1.8) presented in chapter 6. 

Ferroelectrics: Background and Terminology 

A ferroelectric material has a spontaneous dipole moment that can be reversed by the 

application of an applied electric field. In a microscopic sense, this means that the 

microscopic structure has two or more states of equivalent energy that have associated 

permanent dipole moments in different orientations. The application of a sufficiently 

strong external field with the proper polarization will change the direction of the 

spontaneous dipole movement by converting the material from one state to another. 

Another important characteristic of a ferroelectric is a transition temperature, the 



Curie temperature Tc, above which the material is paraelectric and does not have a 

spontaneous macroscopic polarization. 

In a practical sense ferroelectrics are of theoretical and technical interest because 

they often have unusually high and unusually temperature dependent values for the 

dielectric constant, exhibit strong piezoelectric and electrostrictive effects, strong py- 

roelectric effects, and have useful electreoptical and nonlinear optical properties, in 

particular optical frequency doubling. In a more fundamental physical sense, they are 

interesting because all of these unusual, and technologically useful, properties arise 

from the delicate balance of two strong and opposing forces, long-range Coulomb 

forces (which favor the ferroelectric state) and short-range repulsions (which favor 

the non-polar phase). This balancing leads to the strong sensitivity of ferroelectrics 

to the details of chemistry, defects, electrical boundary conditions, pressure, and tem- 

perature. Differences in hybridization and covalency of the chemical bonds has also 

been shown to play an important role in ferroelectricity [85]. The sensitivity of fer- 

roelectrics to these many factors has contributed to the difficulty in development of 

a first principles theoretical understanding of ferroelectrics. Much progress has been 

made on traditional ferroelectrics however, by applying modern first principle band 

structure calculations and through advances in density functional theory (DFT) cal- 

culations [86]. Now theoretical efforts are turning increasingly to more complicated 

ferroelectric materials (871, of which relaxers, defined below, are perhaps the most 

important. 

To begin our discussion of ferroelectrics, we define some useful terminology. One 

of the most important properties of a ferroelectric is its large macroscopic polarization 

and associated dielectric constant; these two quantities are related by [41], 

In an isotropic or cubic medium Equation 5.1 reduces to a scalar equation, which is 

sufficient for our purposes since at all times we will only concerned with single tensor 

components. €0 is the permittivity of free space, E is the macroscopic polarization, 



P is the dipole moment per unit volume, and X, is the dielectric susceptibility. By 

convention Xsr = 4qCGS,  but E S ~  = ~ c c s .  

Figure 5-1: Structure of an AB03 perovskite in the cubic paralectric phase. The A 
cations site is on the corners of the cube, the B cation is situated at the center, and 
Oxygen on the face centers. 

An important class of ferroelectrics are AB03 perovskites whose simple chemical 

and crystallographic structures have contributed significantly to the understanding of 

ferroelectric and antiferroelectric phenomena since the discovery of BaTi03 by Wul 

and Goldman in 1946 1881. This thesis will focus on the AB03 perovskites, for both 

conventional ferroelectrics and for relaxors. Two examples of AB03 ferroelectrics of 

special interest are LiTa03 and LiNb03, which serve as transducers in our imple- 

mentation of phonon-polaritons spectroscopy, but these materials have a somewhat 

more complicated crystal structure. Mixtures of different AB03 perovskites can have 

dramatically different properties from either pure material, and some mixtures can 

display relaxor behavior. Our KTN sample is a based on two perovskite structures, 

KTa03 which does not have a ferroelectric phase transition and KNb03 which is a 

typical soft mode ferroelectric. From soft mode theory KTa03 is expected to have 

a ferroelectric transition around several Kelvin, but quantum fluctuations intervene 

to frustrate this ferroelectric phase and KTa03 is often refereed to as an incipient 



ferroelectric or a quantum paraelectric. The sensitivity of ferroelectrics to chemical 

composition is shown in Table 5.1, which shows the Curie temperatures for our four 

ferroelectrics discussed so far. 

Table 5.1: Values of the ferroelectric transition temperature Tc [88] for four chemi- 
cal analog AB03 ferroelectrics that are of particular interest in this thesis. KTa03 
and KNb03 are simple cubic perovskites in the paraelectric state while LiTa03 and 
LiNb03 have a more complicated structures. Note that changes in chemical compo- 
sitions can cause substantial changes in ferroelectric behavior. KTa03 is an incipient 
ferroelectric which low temperature ferroelectric transition is frustrated by quantum 
fluctuations. 

material 

Tc [K] 

As the temperature of a ferroelectric is decreased below a transition temperature, 

Tc, the spontaneous polarization increases in magnitude, usually following a mean- 

field power law temperature dependence P oc (T, - T) ' I2 ,  and t he coercive field needed 

to change the polarization moment of the ferroelectric increases correspondingly. if 

electrical breakdown occurs from the applied field before the macroscopic polariza- 

tion of the crystal changes, then the ferroelectric crystal is said to be pyroelectric. 

Even before the pyroelectric state is reached, ferroelectrics often also have sizeable 

pyroelectric coefficients, which relate the macroscopic polarization of the crystal to 

temperature. 

When a crystal is in the ferroelectric state, it is also necessarily piezoelectric. The 

piezoelectric effect relates mechanical stress to an electric field. 

P=Zd+eoE and e = Z s + E d  

LiTa03 

938 

where P is the polarization, Z is elastic stress, d is the piezoelectric strain constant, 

E is the electric field, x is the dielectric susceptibility, e  is the elastic strain and, and 

s is the elastic compliance constant, 

LiNb03 

1483 

KTa03 
- 

KNb03 

708 



The piezoelectric strain constants are a third rank tensor, given in contracted notation 

where i - x,  y, x and k = xx, yy, xx, yx xx, xy. So if an electric field is applied 

to a piezoelectric it will become strained, and similarly if the piezoelectric is stressed 

it will undergo a change in polarization. Only non-centrosymmetric materials will 

display the piezoelectric effect, as it is first order in the electric field. All materials 

will display the electrostrictive effect however, which is the second order coupling of 

strain to to an electric field. Ferroelectrics, and relaxors in particular, also have large 

electrostrictive responses. Ferroelectric crystals are a subset of pyroelectric crystals, 

which are a subset of piezoelectric crystals. 

Ferroelectric displacements are not the only type of structural rearrangements 

that can take place in a dielectric material. An antiferroelectric deformat ion occurs 

when neighboring lines of ions pair up and the unit cell of the crystal doubles. Several 

types of structural deformations are illustrated in figure 5.1. The AB03 perovskite 

structures will often display all of these deformat ions with little energy difference 

between them. The above discussion has focused on properties of the bulk crystal, 

however it should be acknowledged that domain size effects, interfaces, and thin films, 

all play important roles in ferroelectric applications and current research. 
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Figure 5-2: Schematic representation of a pair of unit cells undergoing several fun- 
damental types of structural phase transitions from a centrosymmetric prototype. 
Adapted from Lines and Glass [88]. 

5.2 Applications of Ferroelectrics 

Ferroelectrics are an immensely important class of materials. This section will mo- 

tivate interest in ferroelectrics, and relaxors in particular, by briefly outlining some 

applications for each type of distinctive ferroelectric material property: dielectric 

const ant, piezoelectric, pyroelectric, and electro-opt ic properties [89,90]. 

Ferroelectrics serve in a wide range of dielectric applications as capacitors. Not 

only do they have extremely large dielectric constants (lo4-lo5 is common), but that 

response is often uniform (non dispersive) over a wide frequency range. Capacitance 

is nominally proportional to the dielectric constant, and ferroelectric capacitors are 

especially important in multilayer thin films, which are used in, among other ap- 

plications, computer memory. Although they are mostly used for their capacitive 

properties (DRAM), some types of computer memory exploit ferroelectrics directly 



for memory storage. For example, Fujitsu has commercially produced ferroelectric 

random access memory (FeRAM or FRAM) based on the relaxor lead zirconate ti- 

tanate PZT since 1998. The dominant non-volatile writeable erasable memory form 

is FLASH, a MOSFET based technology [91] but, in its current form, FRAM offers 

significant advantages to it. FRAM has faster write times ( x  100) and read-write cy- 

cle endurance ( x 1000) [92] although it has a significant disadvantage in expense [91]. 

This disadvantage is not inherent however, as FLASH is inherently a complicated 

many layer structure, this limits expected costs savings and storage densities, FRAM 

has fewer structural layers and could therefore be potentially mass produced at  lower 

cost with higher storage densities. FRAM is currently used in a variety of applica- 

tions ranging from RFID, automotive telematics and air bags, remote digital metering 

systems, office equipment such as copiers and printers, and televisions [92]. Several 

radiation hardened FRAMs have been developed for specific space missions [92]. 

Piezoelectric and electrostrictive responses in poled and unpoled ferroelectric and 

relaxor ferroelect ric composit ions are of importance in transducers for interconvert ing 

electrical and mechanical responses. For actuation the strong electrostrictive coupling 

of relaxors can be exploited for very high precision position control, and is often 

preferred because having little or no spontaneous polarization causes electrostrictors 

to have little or no hysteretic loss even at high frequencies (100 KHz) of operation. 

Although as a second order effect the electrostrictive response is quite small 

to % strain) in most materials [89], relaxors such as lead magnesium niobate - 

lead titanate (PMN-PT) can show strains (lo-' % strain) comparable to those based 

on piezoelectric effect and are found in many commercial systems [93]. Ferroelectric 

crystals are also used widely in SONAR hydrophone applications, and have been since 

World War 11. 

Pyroelectric systems rely upon the strong temperature sensitivity of the electric 

polarization for bolometric detection of long wavelength infra-red radiation. Simple 

point detectors are widely used in domestic and industrial applications. There is 

also a strong demand for pyroelectric imaging systems for use in night vision and 

t hermal-medical diagnostics [89]. 



Electrwoptic applications are also common because of high quadratic and linear 

electro-optic coefficients that occur in ferroelectrics. LiTa03 and LiNb03 are used 

heavily in the telecommunications industry for frequency doubling, in acoustic wave 

modulators, switches, guided wave structures and photo refractive devices [89]. This 

has a special consequence for our phonon-polariton spectroscopy as this demand has 

created a supply of high quality crystal manufactures and suppliers. 

5.3 Basic Concepts 

This section introduces the basic concepts and terminology of the ferroelectric transi- 

tion and is guided heavily by an introduction to ferroelectrics by Kittel [41] and one 

of the canonical works on ferroelectrics by Lines and Glass [88]. 

5.3.1 Classification of Ferroelectric Crystals 

The ferroelectric transition can be thought of in terms of two limiting cases: displacive 

and order-disorder. To illustrate these two cases in terms of our perovskite structure, 

consider KNb03 as an example. In the paraelectric phase it has eight equivalent sites 

in the [ I l l ]  directions. The Nb cation moves between these sites with an average posi- 

tion at the center of the crystal. In a displacive picture, this is as an oscillation around 

a non-polar site. At the ferroelectric transition the center of this oscillation moves to 

a polar site offset from the center of the crystal. In the order-disorder picture, the Nb 

cation is moving between eight equivalent potential wells in an activated process, and 

after the ferroelectric transition motion is limited to an ordered subset of these wells. 

In the case of KNb03 and often other perovskites there are actually three transitions, 

as the Nb is restricted from 8 sites (cubic) to 4 (tetragonal) to 2 (orthorhombic) to 

1 (rhombohedral) as illustrated in figure 5.3.1. It has been established by Dougherty 

et. al. [16] that KNb03 has predominately displacive character. 

It is common to consider the character of the ferroelectric transition in terms of its 

lowest frequency optical phonon mode [94], which is necessarily the transverse optic 

(TO) mode. The Nb motion dominates this low frequency TO phonon mode and is 



used in our discussion as a proxy for the soft mode. This mode is called "soft" because 

its frequency decreases dramatically as each of the three ferroelectric transitions are 

approached. In a displacive transition, the the Nb motion is part of a true a phonon 

mode, implying that there is vibrational dynamics. In the order-disorder picture the 

soft mode near the transition becomes diffusive, and is it not a true phonon mode 

but is a large amplitude correlated hopping motion between the wells of the order 

disorder system. Many ferroelectrics have soft modes that fall within these extremes. 

High Temperature 
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Ferroelectric 
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Ferroelectric Ferroelectric 

Figure 5-3: Schematic illustration of B cation occupation sites within the framework 
of the eight site model for an AB03 perovskite. Adapted from Dougherty 1171. 

Another fundamental concept is the thermodynamic order of the transition under 

the phenomenological Devonshire-Landau description of the ferroelectric transition. 

A first order phase transition is defined by a discontinuous change of the saturization 

polarization at the transition temperature. In contrast, the polarization of the second 

order transition goes continuously to zero at the transition temperature. 

Curie- Weiss Law 

In the soft-mode description of structural phase transitions, at each phase transition, 

the frequency of the soft mode decreases as the transition temperature is approached 



from above or below. In a mean field picture, the soft mode has the following tem- 

perature dependence 1951, 

where Tc is the curie temperature for a second order transition. From the Lyddane- 

Sachs-Teller relation [41] for one optic mode; 

The high frequency dielectric constant, ~ ( m ) ,  and w ~ o  are approximately temper- 

at ure independent, which suggest s that the low frequency dielectric const ant ~ ( 0 )  

extrapolates to a singularity. This is the Curie-Weiss Law, 

where C is the Curie Constant and Tc is the curie temperature. Physically the diver- 

gence can be expected and understood from the idea that as the soft mode frequency 

goes to zero, the crystal becomes unstable and an small applied field can cause a 

enormous change in the polarization of the crystal. Equation 5.1 shows that this 

situation implies a large dielectric constant. Relaxors have large dielectric constants, 

but do not show Curie-Weiss behavior near their dielectric maxima. 

5.4 Relaxor Ferroelectrics 

Relaxor ferroelectric behavior is characterized by a broad frequency dependent peak 

in the real part of the temperature dependant dielectric constant. Relaxor ferro- 

electrics are perhaps the most important class of ferroelectrics, for example La doped 

Pb(Zrl-,,TiX)O3 (PLZT) , Pb(Znl13Nb213)03-PbTi03 (PZN-PT) and Pb(Mg113Nb2/3)03- 

PbTi03 (PMN-PT) are some of the most common high performance actuators [93] 

and as previously mentioned PLZT is used in both conventional DRAM and FRAM 

applications. 



Relaxor behavior in ferroelectric materials has been observed and studied most ex- 

tensively in disordered AB03 perovskites and has been an important topic of current 

research. This discussion follows a review by Samara [7] on the relaxation properties 

of compositionally disordered AB03 perovskites. Random lattice disorder produced 

by chemical substitution in AB03 perovskites can lead to  the formation of dipolar 

impurities and defects that have a profound influence on the static and dynamic 

properties of these materials that are prototypical soft ferroelectric mode systems. In 

these highly polarizable host lattices, dipolar entities form polar nanoregions (PNRs) 

whose size and orientations fluctuate dynamically with the average size given by the 

dipolar correlation length, r,. These PNR's exhibit dielectric relaxation in an ap- 

plied AC electric field. This is precisely the condition in our KTN sample, where 

KTa03 serves as the highly polarizable host, and Nb acts as the dipolar impurity. 

In the very dilute limit (<O.l% Nb in the case of KTN) each domain behaves as a 

non-interacting dipolar entity with a single relaxation time. At higher concentrations 

of disorder, however, the domains can interact leading to more complex relaxational 

behavior. This behavior is observed in our KTN sample for low frequency dielectric 

spectroscopy (<I0 MHz). Among the manifestations of such behavior is the forma- 

tion of a glass-like relaxor state, or even an ordered FE state for a sufficiently high 

concentration of impurities. 

Figure 5.4 summarizes the main differences between conventional ferroelectrics 

and relaxors. The polarization (P) versus applied field (E) hysteresis loop (Figure 

5.4a) is the signature of the low temperature ferroelectric phase. The large remnant 

polarization, PR, is a manifestation of the cooperative nature of the ferroelectric 

phenomenon. In contrast, the relaxor exhibits a so-called slim loop, with only a 

small PR value. For sufficiently high electric fields the PNRs of the relaxor can be 

oriented with the field leading to large polarization; however, on removing the field 

most of these domains re-acquire their random orientations resulting in a small PR. 

The small, but non-zero PR is evidence for the presence of some degree of cooperative 

freezing of dipolar (or PNR) orientations. 

The next major difference is that both the saturation and remnant polarizations 



of a ferroelectric decrease as the temperature is increased towards the ferroelectric 

transition, and vanish at a distinct temperature (Tc). The vanishing of saturization 

polarization (Ps) and remnant polarization (PR) at Tc is continuous for a second- 

order phase transition (Figure 5.4 (b)) and discontinuous for a first-order transition. 

In traditional ferroelectrics no polar domains exist above Tc. In contrast, the field- 

induced polarization of a relaxor decreases smoothly through the dynamic transition 

(or relaxational condition, wr = 1, where w is the ac field frequency and 7- is a 

relaxation time) temperature Tf (as defined roughly from dielectric spectra) and 

retains finite values to rather high temperatures due to the fact that nano-size polar 

domains persist to well above T f ,  as demonstrated through Raman, x-ray and neutron 

scattering experiments [96-991. These PNR play a critical role in the behavior of 

relaxors, and their formation will be discussed in detail for our KTN 1.8 system 

in Chapter 6. The temperature at which the PNRs begin to form is the Burns 

temperature, TB. 

The third major difference, the one that was first discovered experimentally and 

often categorizes a material as a relaxor, is the behavior of the dielectric response. 

In a ferroelectric, the real part of the dielectric constant, el, exhibits a sharp, narrow 

peak at Tc (Figure 5.4(c)). For a single crystal the peak is very sharp and the width 

at half max is 1020 K. The FE response is frequency independent to several hundred 

KHz. By contrast a relaxor exhibits a very broad el(T) peak and strong frequency 

dispersion in the temperature of the peak maximum, Tf and in the magnitude of e' 

below Tf .  The temperature dependence of e' of a ferroelectric obeys a Curie-Weiss 

law, e' = C/(T  - To), above Tc as shown by the linear I/&' versus T response in 

Figure 5.4(c). By contrast E'(T) of a relaxor exhibits strong deviation from this law 

for temperatures up to the Burns temperature and the disappearance of the polar 

nanodomains. It is only at high temperatures that a linear I/&' versus T response is 

obtained. 



Normal Ferroelctric Relaxors 

Figure 5-4: Overview of differences between normal ferroelectrics and relaxors. 
Adapted from Samara [7]. 
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Chapter 6 

Spectroscopic Studies of Nb 

Dynamics in KTN 

Relaxor ferroelectrics are an important and complex class of materials. Extensive 

experimental and theoretical efforts have been directed toward understanding their 

basic physics, and although much much progress has been made, fundamental ques- 

tions remain [7,99,100]. This thesis examines a model class of relaxers, dilute Nb 

substituted KTal-,NbXO3 (KTN), and provides new insights into the dynamics of the 

Nb impurities. It is well known that the Nb ions displace off center and act as dipole 

impurities in the polarizable KTa03 host. At low temperatures and low concentra- 

tions the Nb ions induce dynamically fluctuating polar nano-regions (PNRs), and it 

has been proposed by Toulouse [8,101] that the dynamics of the Nb ions and the PNR 

occur on separable time scales, a fast time scale associated with soft mode assisted 

hopping of the Nb ions and a slower reorientation of the PNRs. This motivates our 

two main experiments, high frequency dielectric spectroscopy and ISRS measurement 

of the KTN soft mode frequency. Phonon-polariton spectroscopy is used to make the 

first dielectric measurements in the ~ 5 0 - 2 5 0  GHz range on KTN, and our results 

indicate significant differences from low frequency (< 10-7Hz) dynamics that we at- 

tribute to  Nb motion separated from the PNR dynamics. The lowest transverse optic 

phonon mode (the soft mode) is also measured through ISRS and related to the Nb 

dynamics. 



Section 6.1 introduces KTN and motivates it as a model system for understanding 

relaxor behavior. Next, sections 6.3 and 6.4 introduce the polariton spectroscopy 

results and the ISRS soft mode experiments. Then, section 6.5 demonstrates some free 

space THz spectroscopy results at high temperatures. Finally sect ion 6.6 summarizes 

our results and discusses future directions for experiments. 

6.1 Introduction to KTN 

The AB03 perovskite relaxors are the most studied and technologically important 

class of relaxors [loo]. They are based on three main parent compounds, PbNb03, 

PbTi03, and KTa03, that are all prototypical soft mode systems whose dielectric 

properties and phase transitions are well understood in terms of a displacive soft 

mode. As disorder is introduced into the parent compounds with chemical impurities, 

they begin to display relaxor behavior, characterized by a diffuse frequency dependant 

dielectric maximum, and local ordering via the formation of the polar nano-regions 

(PNRs) . The chemical nature of the disorder that induces the relaxor behavior can be 

introduced in a variety ways: (1) in PbMg1/3Nb1/303 (PMN), the substituents, Nb5+ 

and Mg2+ on the B cation site, have differences in valences, ionic radii (0.64 Avs. 

0.72 A) and electronegativities (1.6 vs 1.2 Pauling scale); (2) in the La-substituted 

PbZrl-,Ti,O3 (PLZT) relaxors, high concentrat ions (but still random distributions) 

of Pb2+ vacancies are created by substitution of La3+ for pb2+ (one vacancy for 

every two La3+) at the A site, producing the relaxor behavior; and (3) in KTa03 the 

substitution of ~ b ~ +  for ~ a ~ +  (B site) and Li+ and K+ (A site) leads to dipolar defects 

at low concentrations [loo]. Although it is clear that the chemical interactions are 

import ant for relaxor behavior, the variety of AB03 relaxors suggests that structure 

plays an important role as well. The KTa03 parent compound has some advantages as 

a model system for studying relaxor behavior, and in particular the effect of structure 

on relaxor behavior. The advantages consist of the similarity of cation substituents, 

the small amount of substitution needed to induce relaxor behavior, and the relative 

simplicity of host. KTa03 is one of the few ternary perovskites that does not have a 



ferroelectric phase transition, and it is also well understood by soft mode theory. It 

is also notable that the substituted KTa03 relaxors constitute one of the few known 

classes of non-lead based relaxors [102]. The dilute impurities in soft mode crystals 

also are connected more easily to existing first principles models [103,104]. For these 

reasons the substituted KTa03 compounds have been extensively studied [7,8,105], 

by Raman [96,99,106,107], hyper Raman [108], x-ray [97,98], neutron [109], dielectric 

[107,110], and NMR [8,111] spectroscopies. 

The phase composition diagram of KTal-,03 (KTN) is well known. From 0.1 < 

x < 1, on cooling KTN undergoes structural phase transitions from paraelectric cubic 

to FE tetragonal to FE orthorhombic to FE rhombohedra1 just like pure KNb03 

discussed in chapter 5. For 0.04 < x < 1, the situation is less clear. There is some 

evidence for three transitions while other evidence indicates a single phase transition 

to a ferroelectric state. In the dilute limit (x < 0.04) evidence now strongly indicates 

that there is no structural phase transition and no long range ferroelectric order [97]. 

This was not immediately clear however [103,112,113], for two main reasons. First, 

dilute KTN displays only slight frequency dependence in its low frequency dielectric 

spectra (an early defining characteristic of a relaxor). Second, in the literature [99, 

1081, and in our own data presented in section 6.4, the maximum of the dielectric 

spectra is connected with a change in the average local symmetry [96] which was 

suggestive of a structural transition. It was not until pressure experiments that 

readily induced frequency dispersion were reported by Samara in 1984 [I101 that 

dilute KTN was understood to be a relaxor. Relaxor behavior has subsequently been 

well established by demonstration of the existence of PNR7s under normal pressure. 

Work by Toulouse [8] has estimated that these regions form in dilute KTN -25-30 K 

above the the maximum of the dielectric spectra T*. This temperature is the Burns 

temperature, TB. This discovery of relaxor behavior in KTN motivated much interest 

in the location of the substituted Nb ions, which because of their similar size to Ta5+ 

(r N 0.72 A for both) were often assumed to occupy the center of the perovskite 

until X-ray absorbtion fine structure (XAFS) experiments by Hanske-Petit pierre [98] 

showed that in KTN 9% Nb ions are displaced by 0.15 Ato the eight symmetrical 



[I1 11 off center positions, while the Ta ions stayed on center in the temperature range 

studied (well above TB). This work also showed that both of these positions did not 

seem to change with composition or with the ferroelectric transition temperature(T,) 

that occurred at this concentration. Moreover, it also showed that there is Nb related 

disorder above and below this transition. The off center displacement of the Nb ions 

is easily rationalized because in this position they can simultaneously bond to three 

0 ions, and that KNb03 has this bonding in its ferroelectric phase while KTa03 dose 

not have a ferroelectric transition. These experiments imply that the Nb displacement 

is due to short range cooperative effects and not long range ferroelectric ordering. 

We can now describe an intuitive picture of KTN and the PNR dynamics. The 

offset Nb ions have a polar soft mode vibration about an offset position. The triply 

degenerate soft mode has a vibrational coordinate in the direction of the hopping 

between equivalent sites, and in this manner the soft mode assists the Nb ion. At 

high temperatures, the Nb ions hop rapidly among the eight sites and are on average 

on center. The neighboring Ta ions are not polarized (i.e. not correlated to the 

Nb ions). As the temperature begins to cool, PNRs begin forming around Nb ions 

(or clusters of Nb ions, since they are randomly distributed) and Ta ions begin to 

move off center (in contrast to higher temperature where they remain on center). 

This should occur around N 60K for our particular KTN sample. These PNRs are 

dynamical in size and follow the correlated motion of the Nb ions in the cluster. As 

the temperature is lowered further, the average correlation length r, of these PNRs 

continues to grow. This is depicted schematically in figure 6-1. 

Figure 6-1: Schematic drawing of PNR formation. At high temperature the corre- 
lation length r, is on the order of one lattice constant. At lower temperatures the 
dipole induces a polarization in several unit cells around it forming a PNR. Adapted 
from Samara [7]. 



The correlation length is determined by the polarizability of the host KTa03 

crystal which is inversely proportional to the KTa03 host soft mode frequency. For 

low frequencies Hz at which the PNRs can respond) the correlation length is 

also related to the index of refraction (n = @), 

ws is the soft mode of the host lattice, and r, is the correlation length. The large 

dielectric constant of dilute KTN can be intuitively understood from the behavior of 

these PNRs. They are essentially a large dipole moments dynamically fluctuating in 

size and orientation. The fluctuations in orientation are believed to follow the Nb ions 

as they hop between equivalent sites. A small applied field can align the fluctuating 

PNRs and induce a large change in the polarization, yielding a large dielectric con- 

stant (60,000 to 100,000 measured in KTN) [105]. There are two competing effects as 

the temperature is lowered. The dipole moment (- r,) increases, but the PNRs (and 

the Nb motion) begins to "freeze" as the off center Nb and Ta ions are restricted 

from 8 to 4 to 2 and finally 1 site within the unit cell, as occurs in KNb03 in its 

sequence of phase transitions. The set of allowed sites in a PNR defines its polar 

orientation and, in this dilute limit, the polar orientation of different PNRs are ran- 

domly distributed. The soft mode assisted hopping of the Nb ions between allowed 

sites (at a given temperature) is an activated process, and it has been modeled with 

the Arhenius equation or more commonly, to account approximately for the dipolar 

interactions, with a Vogel-Fulcher expression 171, 

- 1 

k(T - To) 

where T is the average relaxation time, vo is an at tempt frequency, Ea is an activation 

energy, and To is a reference temperature. For KTN, Ea/k has been measured to  

be -70 K (50 cm-') [114]. This a relatively low activation barrier, which leads Nb 

ions to reorient very rapidly among allowed sites and to  strongly couple via the soft 

phonon mode, which they can follow adiabatically [105]. 



Eventually as the temperature is lowered far enough the PNRs eventually freeze 

into what is commonly described as a dipole glass. When the PNR (or Nb ions) begins 

to freeze, the polarization realignment begins to rapidly decrease with temperature 

and consequently so does E'. Therefore T*, which marks the onset of freezing, is also 

associated with the maximum of the E'(T), and for this reason is loosely defined as 

a dynamical transition temperature, or more properly as a relaxation condition. A 

freezing temperature Tf < T*, can be defined from the dielectric spectra by dramatic 

drop in the dielectric constant. 

The frequency dependence of dielectric constant stems from the distribution of 

dipole sizes, but strain effects seem to play an important role too, particularly in the 

case of KTN and KLT. The Nb offset of KTN is small compared to the offset of the 

Li in KLT. Toulouse [I051 has argued that in some relaxors, like KLT, the relaxation 

of the electric dipole moments associated with offset Li atom is strongly coupled to 

the relaxation of their associated strain field induced by this displacement, and this 

coupling leads to a large frequency dispersion. In other relaxors, such in our KTN 

sample, the coupling between the Nb and the lattice through strain is weak and this 

allows the Nb relaxation to occur at higher frequencies decoupled from the lower 

frequency lattice. 

To summarize, it is clear that the Nb ions, their displacements and dynamics, 

play an important role in the relaxor behavior of KTN. The microscopic picture is 

complicated, and in spite of many investigations, the origin of the Nb off center 

shifts and the Nb dynamics in KTN are still not well understood [B]. To emphasize 

several important points however, (1) It has been well established that PNR exist and 

dominate the dielectric spectrum at low frequency, and (2) the soft mode plays an 

import ant role in the Nb dynamics. This thesis uses phonon-polarit on spectroscopy 

to probe the Nb dynamics at high frequency (50-250 GHz) where it appears the Nb 

contribution can be separated from the PNR dynamics, in contrast to low frequency 

dielectric measurements both the Nb and the PNR contribute simultaneously and 

cannot be separated. Secondly, we present optical ISRS measurements to measure 

the temperature dependence of the soft mode in KTN at multiple wavevectors. 



The K T ~ , o ~ ~ ~ N ~ ~ . ~ ~ ~ ~ ~  (KTN 1.8) sample used in the following experiments is 

sample number 32b provided Prof. Jean Toulouse of Lehigh University. Physically 

its dimensions are 5.0 x 2.5 x 1 mm, and the large face is the [loo] orientation. 

The sample was prepared on 17-9-87 with a composition of Nb = 0.018, and will 

subsequently be refereed to as KTN 1.8. For this concentration, the mean Nb-Nb 

distance is 3.8 unit cells. It has been well established that for KTN 1.8 there is no 

structural phase transition and no long range macroscopic ferroelectric order at low 

temperatures. 

6.2 Phonon-Polariton Spectroscopy of KTN 

Phonon polariton spectroscopy was used to measure the real part of the dielectric 

constant, E' (or equivalently n) from 300 to 4 K at a frequency of ~50-250 GHz. 

To our knowledge, these are the first measurements performed on KTN (or any re- 

laxor) in this frequency range. The entire range was covered with polariton reflection 

spectroscopy. Transmission polariton and free space THz spectroscopy proved more 

difficult because of the dielectric contrast and strong absorption of the sample and 

were limited to temperatures above 80 and 150 K respectively. One of the main 

motivations of phonon-polariton spectroscopy was to investigate these types of high 

dielectric materials. The dielectric spectroscopy results are shown in figure 6-2. This 

is the culmination of extensive experimental efforts in developing our implementation 

of polariton spectroscopy and a more through discussion of the raw data of these 

experiments is warranted. Figure 6-3 shows unprocessed polariton transmission spec- 

troscopy results for a cut three crystal geometry. Several features of the transmission 

data stand out. At 150 K the polariton signal that is measured in the second crystal 

has been appreciably delayed by the change in refractive index of KTN. The peak is 

well defined, which stands in stark contrast to our free space transmission THz spec- 

troscopy measurements where the transmitted peak was barely detectable at 150 K. 

The cut crystals used in the transmission measurements were optimized for room 

temperature experiments, and at lower temperatures the polariton waveform does 
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Figure 6-2: The temperature dependence of KTN's index of refraction at ~ 5 0  to 250 
GHz measured with free space THz spectroscopy, two trials of phonon-polariton reflec- 
tion spectroscopy, and phonon-polariton transmission spectroscopy with cut crystals. 

not strike the sample at normal incidence. Nevertheless, weak polariton propagation 

is observed down to 80 K where figure 6-2 shows that the refractive index of KTN 

1.8 begins to dramatically rise. 
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Figure 6-3: Unprocessed data from polariton transmission measurements of KTN 1.8. 
At 150 K the time of flight of the transmitted peak E2 significantly increased due to 
the refractive index change of KTN. 



The bandwidth of the transmitted polariton waveform pulse varies with tempera- 

ture, but at room temperature it is similar to the bandwidth of a reflected polariton 

waveform. Figure 6-4 shows the power spectrum for a polariton waveform before and 

after it has reflected from KTN 1.8 at room temperature. The bandwidth of the 

reflected polariton is does not differ significantly as a function of temperature, even 

when reflection at the KTN interface at its maximum. The spectral amplitude of E2 

is an important determinant of the data extraction at a given frequency, however the 

high frequency side of the spectra generally produces better extracted values for the 

n and, when relevant, tc too. 

Figure 6-4: Power spectra of a polariton waveform generated with cylindrical lens 
(f = 20 cm) before and after reflection from KTN 1.8 at 300 K. 

Figure 6-5 presents unprocessed data from polariton reflection spectroscopy mea- 

surements of KTN 1.8 as a function of temperature. A blue box is used to highlight 

the reflected polariton waveform. The reflected polariton waveform clearly increases 

in area as the temperature is lowered to 30K, and this change in area forms the basis 

of the determination of KTN dielectric properties through reflection measurements. A 

pink box is used to signify the polariton waveform that propagated leftward through 
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Figure 6-5: Unprocessed data from polariton reflection spectroscopy measurements 
of KTN 1.8. A schematic of the relative positions of the pump and probe beams 
is shown at the bottom of the figure. The blue region designates the the reflected 
polariton signal. The pink region designates the left propagating polariton passing 
through the left probe arm and can be used to determine the temperature dependent 
dielectric properties of the LiTa03 crystal. 



the LiTaOa crystal away from the sample. This waveform can be used to measure the 

temperature dependent dielectric constant of the generation crystal, as in the single 

crystal experiment detailed in section 4.3.2. A fourth pulse is present in the time 

series. This is a reflection from the end of the crystal and does not provide any useful 

information. 

6.3 Discussion of KTN Polariton Spectroscopy 

The dielectric spectroscopy measurements show a maximum, T*, in n of approxi- 

mately ~ 3 0  K. This is consistent with lower frequency dielectric measurements. It 

is instructive to compare our high frequency results to some low frequency measure- 

ments on KTN 2.0 by Samara [110], as is done in figure 6-6. KTN shows negligible 
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Figure 6-6: Refractive index measured with polariton transmission and reflection 
spectroscopies (~50-250 GHz) on KTN 1.8, presented alongside dielectric spec- 
troscopy at lower frequencies by Samara on KTN 2.0 [110]. 

low frequency dispersion at ambient pressure, so data from loZ, lo4, and lo6 Hz 

plots are indistinguishable. The most striking feature of the comparison is the dra- 

matic difference in amplitude. Clearly, relaxation processes that occur on the slower 



timescales are not occurring at GHz frequencies. It will be subsequently argued that 

these relaxation processes are related to the PNRs and that our measurements reveal 

distinct Nb dynamics. 

The maximum value of the refractive index, -35, over our bandwidth is too high 

to be significantly electronic. It must contain an ionic contribution and the polar- 

ization due to motions of niobium ions is a likely candidate. Three features of our 

experiments suggest this. First, the Curie-Weiss dependence of the dielectric con- 

stant, presented in figure 6-7, strongly suggests that it is measuring the contribution 

of the soft mode to the index. Secondly, the maximum of n(T') occurs at a slightly 

slower temperature than T* at low frequency which hints that the freezing dynam- 

ics differ from those of the PNRs. Finally, at 250 GHz, the polariton frequency is 

approaching the soft mode frequency, but is below it, and this IR active mode can 

be driven at this frequency. The most compelling evidence that the high frequency 

Curie Weiss Law 
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Figure 6-7: Curie-Weiss plot of I/&' for all polariton spectroscopy data. A linear 
regression was fit to the high temperature data (150-300 K) and appears to describe 
all of the dielectric data above Tf at ~ 3 0  K. 

dielectric spectroscopy is measuring the Nb dynamics is the linear dependence (above 

Tf )  of the Curie-Weiss plot shown in figure 6-7. A fit of the high temperature data 



(150-300 K) was performed and plotted against the entire dielectric data set. These 

temperatures are well above the temperatures that the PNRs form and where low 

frequency dielectric measurements also have a Curie-Weiss dependence. This linear 

dependence suggests that the experiment is measuring the contribution from the soft 

mode to E', with the associated contribution from the niobium ions hopping between 

allowed sites. The fast hopping motion of the niobium will easily follow the soft mode 

and should contribute to the index down to the freezing temperature. In contrast, it 

is a well known property of relaxors that the PNRs cause deviations from the Curie- 

Weiss law, and in particular the plot of I/&' vs T based on dielectric measurements 

at  lower frequencies extrapolates to a temperature above T*. In fact deviation of 

Curie-Weiss behavior at low temperatures, but above Tf, is often used as evidence 

for the formation of the PNRs. The estimate of the Curie constant of 34,800 also 

seems reasonable (although quite large for most materials), and is similar to the Curie 

Constant of -65,000 derived from low frequency dielectric measurements on a KTN 

1.2 sample [115]. While the linear dependence of the Curie-Weiss plot is physically 

meaningful, the extrapolation below Tf to Tc suggests what would have occurred if 

the condensation of the PNRs had not intervened. 

The second observation is that the maximum of n(T*) in our high frequency data 

occurs at slightly lower temperature than at lower frequencies in a sample of KTN 

2.0. This may be because higher concentrations of KTN have higher T* values, but 

when evaluated in conjunction with the Curie-Weiss behavior it may suggest that the 

Nb dynamics "freeze" separately for the PNRs. T* usually corresponds to the lowest 

frequency point of the soft optic mode and in conventional ferroelectrics it marks 

the transition. In KTN 1.8, there is no ferroelectric transition and the maximum 

in relaxors does not mark a phase transition but only corresponds to  the relaxation 

condition, W T = ~ ,  where w is the attempt frequency (believed to be the soft mode 

frequency in KTN) and T is the average relaxation time. In KTN at  higher Nb 

concentrations, a sharp drop becomes visible on the low temperature side of the 

dielectric peak. This is where "freezing" occurs, denoted Tf . Several experiments 

indicate that most dynamics stops below this temperature, most notably the fast 



niobium dynamics, yet without long range ferroelectric order being established [B]. 

Our maximum T* is closer to this Nb freezing Tf , and therefore suggests that we 

are measuring the Nb dynamics. It is not clear that at our Nb concentration the Nb 

dynamics stop (i.e. the Nb ions are restricted to one site) at T* and the magnitude 

of the low temperature tail of the refractive index seem to indicate that Nb dynamics 

continue at lower temperatures. By 20 K, however, the soft mode is well defined, 

indicating that the Nb ions have become more localized. 

6.4 ISRS Measurement of the KTN Soft Mode 

ISRS measurement using the transient grating geometry described in section 2.4 was 

used to examine the temperature and wavevector dependence of the transverse optic 

soft mode in KTN. The frequency of the soft mode was found to be wavevector 

independent at 10 and 20 K. The wavevector dependence at 10 K is presented in figure 

6-9. This strongly supports the literature picture that in KTN 1.8 there is no long 
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Figure 6-8: Wavevector dependence of the KTN 1.8 soft mode at 10 K, where the 
magnitude of the wavevector ranged from 840 to 3500 cm-'. 

range ferroelectric order, as this would be expected to lead to phonon-polariton modes 
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and wavevector dispersion (as in the case of LiTaOs and LiNbOs) in the transverse 

optic phonon mode. Measurement of the temperature dependence of the soft mode 

Figure 6-9: Transient grating ISRS measurement of the KTN 1.8 soft mode as a 
function temperature. The magnitude of the excitation wavevector is 3500 cm-' . 

was possible over a limited temperature range. The temperature dependence of the 

soft mode is presented in figure 6-9. Above the dynamical freezing temperature, 

T*, the soft mode was not observed. It is observed at low temperatures despite 

the overall cubic symmetry of the sample (in which the mode is Raman inactive) 

because of local symmetry breaking associated with the PNRs. As the temperature 

is increased from 10 K to through T*, the damping of the soft mode increases and 

the multiple oscillations disappear. At higher temperatures than T*, the absence of 

the soft mode in our studies is attributed to insufficient symmetry breaking in the 

PNRs at temperatures well away from T* and strong damping near T*. The soft 

mode response in figure 6-9 was fitted to a damped sinusoid, and at 10 K the soft 

mode frequency was determined to be 980 GHz with a damping rate of 1020 GHz. 

Attempts to fit the response at higher temperatures were unsuccessful, although at 

20 K the soft mode frequency was determined to be 870 GHz but a reliable damping 



rate could not be extracted. 

Physically the soft mode damping rate can be thought of as a result of in- 

creased coupling to the Nb hopping as the soft mode frequency approaches the hop- 

ping rate. This results in the soft mode changing from underdamped (oscillatory) 

to overdamped. This change was suggested in Raman measurements of the soft 

mode [96,106], but the measurement is far more difficult in the frequency domain 

where broad Raman lines overlap with the central peak. This is very similar to what 

is observed in inelastic neutron scattering: the soft mode measured at small wavevec- 

tors disappears from the spectrum [115]. The disappearance of the short wavevector 

soft mode from the spectrum coincides with the beginning of freezing (condensation) 

of the PNRs. 

In an optical alignment similar to our polarit on spectroscopy measurements, an 

optical pump beam was focused to a line over one arm of the dual arm grating based 

interferometer in KTN 1.8. This interferometer measures the same response as the 

transient grating experiment, only instead of having a well defined wavevector, a 

spread of wavevectors is measured. The soft mode behavior observed was similar to 

that seen in the transient grating experiments and is presented in figure 6-10. 

The pump probe overlap shown in figure 6-10 was also varied from complete 

overlap to a small amount of overlap. There was no evidence for propagating polariton 

modes; again this is consistent with KTN 1.8 having no long range ferroelectric order. 
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Figure 6-10: Temperature dependence of soft mode in KTN 1.8 measured interfero- 
metrically. As the temperature goes from 10 to 40 K the soft mode oscillation (blue 
arrows) change from underdamped to overdamped, until it disappears completely by 
40 K. 

6.5 Free Space THz Spectroscopy of KTN 

Free space THz transmission spectroscopy measurements on KTN 1.8 were performed 

to serve as a comparison to the polariton spectroscopy measurements. The free space 

measurements permitted better frequency extraction over a wider frequency range 

(0.4 to 2.0 THz) and allowed for the determination of the extinction coefficient, but 

were only possible at relatively high temperatures. Figure 6-11 presents unprocessed 

times series for a reference and a transmission measurement of KTN 1.8 at 300 K. 

The THz waveform that propagates through the sample is substantially reduced 

by a factor of N 50. This is in sharp contrast to the polariton measurements where the 

polaritons before and after transmission are of similar size. For our temperature range 

of interest, 300 K should provide the highest quality free space transmission signal, 

as reflection, and presumably absorption, losses are greater at lower temperatures. 

Figure 6-12 shows the relative spectral bandwidths for the reference and trans- 
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Figure 6-11: Unprocessed times series of THz transmission spectroscopy of KTN 1.8 
at  300 K and a reference. The blue boxes represent the windowed portion of the time 
series used for data extraction. The y-axes are to the same scale. 
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Figure 6-12: Bandwidth of the reference THz field and a THz field transmitted 
through KTN 1.8 at 300 K. 



mitted THz fields. The overall loss of spectral amplitude and especially increased 

loss of spectral amplitude at higher frequencies stand out. The increased loss at high 

frequencies is suggestive of soft mode mediated Nb dynamics. However, Rytz [I141 

estimates Nb jump frequency at 300 K to be -7250 GHz. Further phonon-polariton 

based measurements over a wide temperature and frequency range should clarify the 

dynamics and their underpinnings. 
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Figure 6-13: THz free space measurement of the index of refraction of KTN 1.8. 
Below 150 K no transmitted signal could be detected. 

The results free space THz transmission spectroscopy are presented in figures 

6-13 and 6-14. Unfortunately, it was not possible to obtain transmission data at 

temperatures below 150 K. This would actually be a quite interesting measurement 

as the ISRS measurements of the soft mode frequency near the transition indicate 

that the frequency should fall within the free space THz bandwidth. This implies that 

it may be possible to see frequency dependence in the THz spectrum as the Nb is 

unable to move between off center sites at the higher THz frequencies. The extinction 

coefficients, tc were also obtained from the free space measurements. They show strong 

absorption that appears to increases with temperature. K could not be extracted over 
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Figure 6-14: THz free space measurement of the extinction coefficient K, of KTN 1.8. 
Below 150 K, no transmitted signal could be detected. 

the same range the refractive index, and in particular is more senstive to spectral 

amplitude. The overlap and crossing of temperatures in the 300-200 K range show 

the relative accuracy of the THz data and not any real phenomena. In particular, for 

200, 175, and 150 K the strong temperature frequency dependant features show that 

noise is beginning to dominate the signal as the transmitted polariton field becomes 

increasingly smaller. 

6.6 Conclusions and Future Directions 

Phonon-polariton spectroscopy was used to measure the high frequency dielectric 

spectrum of KTN 1.8. This is a first of kind measurement of the dielectric spectrum 

near the soft mode frequency of KTN. The linear dependence of the Curie-Weiss plot 

down to TI strongly indicates that the dielectric spectrum is measuring the Nb and 

soft mode dynamics separately from PNR dynamics. This assertion is supported by 

the lower value of T* which is closer to the expected freezing temperature of the Nb 

ions. This picture is consistent with g3Nb NMR results on KTN 15 (T, ~ ; r  135 K 



and z 115 K) which shows that near the ferroelectric transitions, the flipping of the 

non-cubic domains occurs on time scales separable from those of Nb ion intersite 

hopping [8]. It should noted that the NMR measurements are not directly measuring 

the polar dynamics of the PNR and Nb ions, but only the environment of the 93Nb 

ions. Therefore inferring dynamics from the NMR measurements becomes signifi- 

cantly more challenging in the case of dilute KTN. Our dielectric spectra measure 

polar dynamics of the Nb ions and PNR directly without limitations due to concen- 

tration. 

The soft mode experiments are also interesting, and show that THz spectroscopy 

should be able to span the soft mode frequency near the dynamical transition Tf. 

This should give a strong frequency dependent response as the polar lattice dynamics 

become unable to respond to the higher frequency THz radiation. As the frequency 

of the far-IR probe radiation is increased past the minimum soft mode frequency, 

the maximum of the dielectric spectrum should shift to the temperature where the 

soft mode and probe frequencies match. Thus extending the frequency range of the 

dielectric spectroscopy of KTN 1.8 would provide important confirmation that the 

high frequency dynamics are Nb motion along the soft mode and would provide an 

estimate of the soft mode properties at  higher temperatures. 

Another interesting experiment would be to use our phonon-polariton spectroscopy 

to investigate another KTa03 based relaxor, dilute K1_,LixTa03 (KLT). KLT is also 

a relatively simple relaxor with randomly distributed Li ions in the A site which form 

PNR in the polarizable KTa03 lattice much like KTN. The relaxation is believed to be 

more complex though, with two relaxation processes that occur on similar timescales, 

one which couples to the local strain field and one that does not [105]. Furthermore 

the activation barrier for the Li ion is ~ 1 0 0 0  K [I161 which is an order of magnitude 

larger than that of Nb in KTN. This implies that the local distortion and strain field 

associated with the Li ion is much stronger than with Nb. It is therefore believed 

that the Li ion jump frequency is smaller than the soft mode frequency, and therefore 

our current implementation of polariton spectroscopy could span the frequency range 

where the fastest ionic polar motion occurs. 



Methods are currently under development in the Nelson group to excite and probe 

polaritons with no forward wavevector component relative to the front and back crys- 

tals faces in LiTa03 and LiNb03. If these efforts are successful, considerable simplifi- 

cations of phonon-polariton based THz spectroscopy may be possible. In particular, 

they could reduce the need for cut crystals and permit a substantial improvement for 

transmission mode spectroscopy which could enable the extraction of both n and 6. 



Chapter 7 

Summary and Future Directions 

Three configurations of compact THz spectrometers based on grating interferometric 

detect ion of phonon polaritons waveforms have been demonstrated. The met hods 

for accurately analyzing spectroscopic data from the measured polariton waveforms 

for each of the three configurations were presented, and several important examples 

of polariton spectroscopy were shown over a variety of temperatures. Multicycle 

polariton waveforms were demonstrated with crossed pulse excitation and temporal 

pulse shaping. Simple free space THz spectroscopy experiments were conducted, and 

the relative advantages and disadvantages of polariton spectroscopy under different 

conditions was highlighted. For the investigation of high-dielectric materials, both 

reflection and transmission polariton spectroscopy offer clear advantages over free 

space methods, as the large refractive index of LiNb03 and LiTa03 (n - 6) at THz 

frequencies minimizes the dielectric contrast. 

In the short term, the reflect ion spectroscopy configuration offers the most promise. 

The need to measure the polariton waveform at  only one spatial location allows for 

a more thorough testing of various detection schemes. The most obvious candidate 

for a more sensitive detection scheme would be the use of polariton induced birefrin- 

gence. More far-reaching directions can be grouped into two broad categories, pulse 

shaping and cell fabrication. Much effort has been directed toward optical pulse shap- 

ing techniques [50-581 which can generate a wide variety of polariton waveforms and 

this work can be extended in a spectroscopic direction. This offers many possibilities 



for generating large amplitude polariton waveforms, for addressing of selected spec- 

troscopic structures, and directing and manipulating polariton waveforms through 

shaping of the optical excitation pulse. Cell fabrication covers a variety of direc- 

tions, the two most important of which are cell designs that minimize the impact of 

the forward polariton wavevector component and laser machining of submillimeter 

integrated spectroscopic structures, including those that might be microfluidically 

compatible. 

Phonon-polariton based THz spectroscopy was used to make the first THz f r e  

quency dielectric measurements of a relaxor ferroelectric crystal. The refractive in- 

dex of KT~,982Nbo.olsOa (KTN 1.8) is determined in the -50-250 GHz range from 

4-300 K. At low temperatures, the Nb ions in our sample induce dynamically fluc- 

tuating polar nano-regions (PNRs) that dominate the dielectric response at low fre- 

quencies (< Hz). Our results differed from low frequency measurements in two 

ways: a significantly smaller dielectric response was observed, and the response obeys 

a Curie-Weiss temperature dependence which reflects properties of the soft mode. 

ISRS transient grating measurements of the KTN soft mode in the low temperature 

disordered state show that the mode softens to sub-THz frequencies near the dielec- 

tric maximum. The soft mode frequency serves as an upper limit to the Nb dynamics, 

and therefore implies that our polariton spectroscopy measurements are probing the 

fastest structural dynamics in KTN. We attribute our GHz frequency dielectric re- 

sponse to soft mode mediated fast Nb intersite hopping, distinct from slower PNR 

dynamics. 

The results of our new dielectric measurements at ~50-250 GHz suggest several 

interesting further experiments. Foremost is to span the soft mode frequency with 

dielectric spectroscopy. This should be possible with narrowband polariton or free 

space spectroscopy techniques. Currently the dielectric maximum is associated with 

the minimum of the soft mode frequency because our dielectric probe frequency is 

below the minimum soft mode frequency. For narrowband THz measurements that 

span the soft mode frequency, there should be maximum values of n ( w )  at various 

temperatures at which the soft mode frequency reaches the THz frequency. This 



will permit determination of the soft mode frequency where it is heavily damped 

and at temperatures where the KTN soft mode is not Raman active and cannot be 

observed directly in ISRS measurements. The magnitudes of the maximum n ( w )  

values should reveal the extent of soft mode induced Nb hopping at  these frequencies 

and temperatures. 

Phonon-polariton spectroscopy of many other relaxor ferroelectrics will provide 

import ant new insights. For example, another KTa03 based relaxor, dilute K1-,Li,Ta03 

(KLT) is also a relatively simple relaxor with randomly distributed Li ions in the A 

site. This relaxor forms PNRs in the polarizable KTa03 lattice much like KTN. The 

relaxation is believed to be more complex though, with two relaxation processes that 

occur on similar timescales, one of which couples to the local strain field and one 

which does not [105]. For our purposes, the two main differences between KTN and 

KLT are that the Li ion, which falls into a far deeper local potential minima than 

the Nb ions in KTN, is not believed to follow the soft mode frequency and the soft 

mode frequency at its minimum is expected to be lower. This is due to  stronger cou- 

pling to local strain fields that hinder the faster dynamics. These two features should 

be readily probed with our polariton spectroscopy experiments. More generally, the 

complex chemically induced dynamics in different families of relaxor materials can be 

revealed through this class of measurements. 





Appendix A 

Extraction Programs 

A. 1 Transmission Single Crystal 

0001 % PP transmission spectroscopy single crystal  
0002 
0003 % Define Conventions 
0004 % complex(n) = n-ik 
0005 X epsilon8 = n"2-k-2 
0006 % epsilon" = 2n*k 
0007 % all frequencies are i n  THz 
0008 % a l l  distances are i n  ua 
0009 % all veloci t ies  are i n  um/ps 
0010 
0011 %######W############W#8#:##W~##~##########JcB#######a### 
0012 %##w##Mw####-###n####M~M###ww#############ww 
0013 % Clear all variables $ workspace 
0014 c lear  a l l  
0015 addpath ( ' E:  a at a\matlabf mctions ' ; 
0016 homepath = pwd; 
0017 
0018 X Define constants 
0019 c = 300; 
0020 nLiTa03-800 = 2.1578; 
0021 
0022 % Data F i l e s  
0023 datapath = I € :  \Data\' ; 
0024 
0025 % Experimental Paremeters 
0026 f orwardangle = as in  (nLiTaO3800/n-LT) ; 
0027 pr-pr = 0; %urn distance between prabe arms 
0028 pu-pr = 0; %tun distance betueen p u p  and c loses t  probe 
0029 pusample = 0; %urn distance between pump and sample 
0030 T s  = 0; Xum Thickness of the smple 
0031 



0032 % intial guess 
0033 init ialguess = [nLT , kLT] ; % En kappa] 
0034 
0035 % Process Data File 
0036 t = processfile(:,l); %time vector in ps 
0037 dt = abs(t (2)-t (1)) ; %time increment in ps 

0038 dl = processf ile ( : ,2) ; %signal. in arbitraty units 
0039 nopraw = length(t); %nap in data time vector 
0040 
0041 % Geometrical Factors fur cell alignment from system parameters 
0042 d-s = pr-pr/cos (f orward-angle) ; %Sample Path leagth 
0043 ddl = T-s - pu-pr*tan(f orward-angle) ; XProbe Scaling factor pulse 1 
0044 dd2 = T-s - (pr-pr+pu-pr) *tan (f orward-angle) ; %Probe factor pulse 2 
0045 
0046 % Smooth Time Domain Data and subtract baseline 
0047 windowsize = 10; 
0048 dl-smooth = filter(ones(l,windowSize)/windowSize,l,dl); 
0049 dl=dl-smooth; 
0050 baseline = mean(dl(20 : 80) ) ; 
0051 dl=dl-baseline; 
0052 
0053 % Set figure parameters 
0054 figc = 0; %fig counter 
0055 
0056 % Select Peaks El & E2 from data, 
0057 figc = figc+l; 
0058 figure (f igc) ; 
0059 s e t ( f i g c , ' p o s i t i ~ ~ , ~ N r t m b ~ T i t 3 . e ' , ~ ' , 8 e 1 c t  Data') 
0060 txt = 'click on left then right bound for El'; 
0061 subplot (2,1,1) ; plot (t ,dl) ;xlim( [min(t), max(t)] ) ; 

0062 subplot (2,1,2) ; plot (t ,dl) ;xlim( [min(t) , max(t)] ) ; 

0063 % Select Data 
0064 r1 = ginput (2) ; 
0065 idxkeepl = find(rl(1,l) < t & t < rl(2,l)); 
0066 El = zeros (1 ,nopiraw) ; 
0067 El (idxkeepl) = dl (idxkeepl) ; 
0068 El (1 : idxkeepl (I) -1) = ~1 (idxkeepl(1) ) *exp(- .03* (idxkeepl(1) -1 : -1 : 1) ) ; 
0069 El (idxkeepl (end) +1: end) =... 

0070 El (idxkeepl (end) ) *exp(- .03* (I : 1 : length(E1) -idxkeepl (end) 1) ; 
0071 subplot (2,1, I) ; plot (t ,EI) ; ylabel('dataJ) ; 
0072 % Select Reference 
0073 subplot (2,1,2) ; plot (t ,dl) ;xlim([min(t) , max(t)] ) ; 
0074 txt = 'click on left then right bound for E2'; 
0075 title(txt1; 
0076 r2 = ginput (2) ; 
0077 idxkeep2 = f ind(r2(1,1) < t & t < r2(2,1)) ; 

0078 E2 = zeros (I ,nopxaw) ; 
0079 E2 (idxkeep2) = dl (idxkeep2) ; 
0080 E2(1:idxkeep2(1)-1) = ~2(idxkee~2(1))*exp(-.O3*(idxkeep2(1)-1:-1:1)); 
0081 E2 (idxkeep2 (end) +1: end) =,, 
0082 ~2 (idxkeep2 (end) ) *exp (- .03* (1 : 1 : length(~2) -idxkeep2 (end) ; 

0083 E2 = -E2*ddl/dd2; %Scale $ negate peak 2 by the geometrical factors, 
0084 subplot (2,1,2) ; plot (t , E2) ; 
0085 set(figc,'NumbarTitle','off','N~','Selected ~efereace~,'Positioa',pos2); 



0086 close (f igc) 
0087 f igure(f igc) ;  set(1,~position','NumberTitle','off','Na,Selectd Data2) 
0088 plot(t,El+E2); title('Ei+E2') 
0089 
0090 % Pad Data far FFT 
0091 nop = 2-12; % nop for padded vector 
0092 ny-ind = 1 + nop/2; % index of nyquist f r eq  
0093 El (nopzaw+l : nop) = zeros (1, nop-nopxaw) ; % El padded 
0094 E2(nopraw+l:nop) = zeros(1,nop-nopraw); X E2 padded 
0095 t = t(l):dt:(dt*(nop-1)-abs(t(1))); X padded time vector 
0096 
0097 % Create Frequency vector f o r  FFT's 
0098 nuzea l  = (O:(nop-l))./(dt*nop); % Postive f r eq  vector 
0099 n u 3  f t = nuzea l  ; % Total f r eq  vector, +/- frequencies 
0 100 n u 3  f t (ny-ind+l : nop) = -f l i p l r  (nu3 f t (2 : nyind-1) ) ; 
0101 nu idx  = find(0 <= n u r e a l  & n u l e a l  < nu-plothigh); 1 idx ' s  of f r eq  
0102 nu = nu~eal(nu- idx)  ; % Freq of interest 
0103 om = nu*2*pi; % Angular f req  of in t e ras t  
0104 % idx's f o r  unwrapping phase 
0105 nu-unwrap-idx = find(nu-unwraplow < nu & nu < nu-unwraphigh); 
0106 % idx's for extrapolating phase 
0107 nu-extrap-idx = find(nu-extraplow < nu & nu < nu-extraphigh) ; 
0108 % Calculate FFT1s & Power Spectrum6 
0109 E l n u  = f f t  (El) ; 
OllOE2nu = f f t ( E 2 ) ;  
0111 El-power = abs(E1nu) ; 
01 12 E2-power = abs (E2nu) ; 
0113 [El-powermax, El-powerm-idx] = max(E1-power) ; 
0 114 [E2-poweraax, ~2-power_max-idx] = max (E2-power) ; 
0115 
0116 X Plat  Power Spectrmn 
0117 f i g c  = f igc+l ;  
01 18 figure (f igc) 
0119 s e t  (f igc,  'position', 'Iumbx'iYtle', 'off ' , 'Name' o r  Spectrtxus') 
0120 subplot ( l , l ,  1) 
0121 t i t l e  ('Power Spect-t ') ; xlabel ( 'Freq [THz] '1 ; ylabel ( ' 5 ipa l  [arb] '1 ; 
0122 plot  (nu, El-power (nu-idx) ,nu, E2-power (nuidx) ) ; legend( 'El' , 'E2I ) ; 
0123 
0124 % Calculate experimental t ransfer  function; 
0125 Tmeasnu = ~ 2 n u  (nu-idx) . /Elnu (nu-idx) ; 
0 126 
0127 % Unwrap Phase of transfer function; 
0128 angle-Tmeasnu = zeros (1, nu idx  (end) ) ; 
0129 angle-Tmeasnu (nu-unwrapidx) = unwrap (angle (Tsleasnu (nu-unwrapidx) ) ) ; 
0130 coef = polyf it (nu(nu,extrap,idx) , angle-Tmeasnu(nu-extrapidx) ,2) ; 
0131 angle-Tmeasnu = abs (angle-Taeasnu - 2*pi*round (coef (3) / (2*pi) ) ) ; 
0132 % Use extrapolation t o  correct phase at low frequencias 
0133 angle-~measnu(1:nu-unwrap-idx(1)-1) = ... 
0134 abs (polyval(coef ,nu(l  :nu-unwrap-idx(l) -1) )-2*pi*round(coef (3) / (2*pi) 1) ; 
0135 X Check y-intercept of unwrapped phase 
0136 coef -corrected = polyf it (nu(nu-unwrap-idx) , angle-Tmeasnu(nu-unwrap-idx) ,2) ; 
0137 yint  = coef -corrected(3) 
0138 % Hagnitued of Transfer Function 
0139 amp-Tsleasnu = log(abs (Tmeasnu) ) ; 







0012 % all frequencies rue in THz 
0013 X all distances are in um 
0014 % all velocities are in m/ps 
0015 
0016 % # # # # W # # t l # # & # H # # # M # # W M # # # M ~ ~ # # # # # # # n # # W # i t : M  
0017 %###l##H###M########W#####tS########W##W################W#### 
0018 % Clem all variables & workspace 
0019 clear all 
0020 homepath = pwd; 
0021 
0022 % Define constants 
0023 c = 300; %um/ps 
0024 nLiTa03-800 = 2.1578; %2.4; 
0025 
0026 forward-angle = asin(n-LiTa03-800/n_LT) ; 
0027 pr-pr = 0; Xum distance between probe arms 
0028 pu-pr = 0; %um distance between pump and closest probe 
0029 pu-sample = 0; %um distance between pump and sample 
0030 T-s = 0; %um Thickness of the sample 
0031 
0032 X intial guess 
0033 initialguess = C12,. 51 ; %[a kappa] 
0034 
0035 % Name output and input files 
0036 processf ile = load(strcat (datapath,day, '\' ,day, -' ,time, '-a.dat3)) ; 
0037 writefile = strcat(strcat(homepath,'\',',day,'_',time,'processed.da~'~~; 
0038 
0039 % Process Data File 
0040 t = processfile(:,l); %time vector in ps 
0041 dt = abs (t (2) -t (1) ) ; Xtime increment in ps 
0042 dl = processf ile ( : ,2) ; %signal in arbitraty units 
0043 nopraw = length(t) ; b o p  in data time vector 
0044 
0045 % Geometrical Factors for cell alignment from system parameters 
0046 d-s = (pu-sample+pu-pr) /cos (f orward-angle) ; %Sample Path length 
0047 ddl = T-s - pu-pr*tan(forward-angle); %Probe Scaling factor pulse I 
0048 dd2 = T-s - (pu-sample+pu-pr) *tan (f orward-angle) ; %Probe factor pulse 2 
0049 
0050 % Smooth Time Domain Data and subtract baseline 
0051 windowsize = 10; 
0052 dl-smooth = filter (ones (1, windowsize) /windowSize , 1 , dl) ; 
0053 dl = dl-smooth; 
0054 baseline = mean(d1(20:80)); 
0055 dl = dl-baseline; 
0056 
0057 X Set figure parmeters 
0058 figc = 0; %fig counter 
0059 
0060 X Select Peaks El lk E2 from data, 
0061 figc = figc+l; 
0062 figure (f igc) ; 
0063 set (f igc, 'poaitionp , 'Name', 'Select Data') 
0064 txt = 'click on left then right baund for Elp; 
0065 subplot (2,1,1) ; plot (t ,dl) ;xlim( [min(t), max(t)l) ; 



0066 subplot (2,i, 2) ; plot (t ,dl) ; xlim( [min(t), max(t)l) ; 
0067 % Select Data 
0068 r1 = ginput (2) ; 
0069 i d x k e e p l = f i n d ( r l ( l , l ) < t &  t<rl(2,1)); 
0070 El = zeros (1 ,nopraw) ; 
0071 El (idxkeepl) = dl (idxkeepl) ; 
0072 El(l:idxkeepl(l)-1) = ~l(idxkeepl(l))*exp(-.03*(idxkeepl(l)-1:-1:l)); 
0073 El (idxkeepl (end) +1: end) = A 

0074 El (idxkeepi (end) ) *exp (-. 03* (I : 1 : length(E1) -idxkeepl (end) ) ; 
0075 subplot (2,1,1) ; plot (t ,El) ; ylabel('dataS) ; 
0076 % Select Reference 
0077 subplot (2,1,2) ; plot (t ,dl) ; ylabel ( 'E2 ' ) ; xlabel ( 'time (ps) ' ) ; 
0078 txt = 'click on left then right bound for E2'; 
0079 title(txt) ; 
0080 r2 = ginput (2) ; 
0081 i d x k e e p 2 = f i n d ( r 2 ( 1 , 1 ) < t &  t<r2(2,1)); 
0082 E2 = zeros (1 ,nopraw) ; 
0083 E2 (idxkeep2) = dl (idxkeep2) ; 
0084 E2(1:idxkeep2(1)-1)=E2(idxkeep2(1))*exp(-.03*(idxkeep2(1)-1:-1:1)); 
0085 E2 (idxkeep2 (end) +1: end) = E2 (idxkeep2 (end) I... 
0086 *exp (- .03* (1 : 1 : length (E2) -idxkeep2 (end) ) ; 
0087 E2 = E2*ddi/dd2; #Scale peak 2 by the geometrical factors 
0088 subplot (2,1,2) ; plot (t , E2) ; ylabel ( 'Reference * ) ; 
0089 set (f igc, 'NameJ, 'Selected Reference' , 'Position' ,pos2) ; 
0090 close (f igc) 
0091 figure(figc1; set(l,'position',,*NumberTitle','off','Nane','Selected Data') 
0092 plot(t,El+E2); title('El+U') 
0093 
0094 % Pad Data far Fm 
0095 nop = 2-12; % nop for padded vector 
0096 nyind = 1 + nop/2; % index of nyquist freq 
0097 ~l(nopraw+l:nop) = zeros(1,nop-nopxaw); X El padded 
0098 E2 (nopraw+l : nop) = zeros ( 1, nop-nopxaw) ; # E 2  padded 
0099 t = t (1) : dt : (dt* (nop-1)-abs (t (1) 1) ; X padded time vector 
0100 
0101 ?! Create Frequency vector for FFT's 
0102 nuxeal = (O:(nop-l))./(dt*nop); X Postive freq vector 
0103 nu3 ft = nureal; % Total freq vector, +/- frequencies 
0104 nufft(ny-ind+l:nop) = -fliplr(nufft(2:ny-ind-1)); 
0105 nu-idx = find(0 <= nureal & nureal < n~plothigh); % idx's of freq 
0106 nu = nuxeal(nu-idx) ; % Freq of interest 
0107 om = nu*2*pi; # Angular freq of interest 
0108 % idx's for unwrapping phase 
0109 nu-unwrap-idx = find(nu-unwraplow < nu & nu < nu-unwraphigh) ; 
0110 % idx's for extrapolating pbase 
0111 nu-extrap-idx = find(nu-extraplow < nu & nu <' nu-extraphigh) ; 
0112 
0113 X Calculate FFTjs & Power Spectrums 
0114 Elnu = f ft (El) ; 
0115 E2nu = fft(E2) ; 
0116 El-power = abs(E1nu) ; 
0 117 E2-power = abs (E2nu) ; 
01 18 [El-poweraax, El-powermax-idx] = max (El-power) ; 
01 19 [E2_poweraax, E2-poweraax-idx] = max (E2-power) ; 



0120 
0121 % Plot Power Spectrum 
0122 figc = figc+l; 
0123 figure (f igc) 
0124 set(figc,~positi~n','NmberTitle~,~off',~Ne~,Power SpectrumsJ) 
0125 subplot (l,l, 1) 
0126 title(sPover Spectrumst ') ; xlabel( 'Freq [THz] ' ) ; ylabel( 'Signal [arb] ) ) ; 
0127 plot (nu, El-power (nu-idx) ,nu, ~2-power (nu-idx) ) ; legend( 'El , ) ; 
0128 
0129 % Calculate experimental transfer function; 
0130 Tmeasnu = E2nu (nu-idx) . /Elnu (nu-idx) ; 
0131 
0132 % Unwrap Phase of transfer function; 
0133 angle-Tmeasnu = zeros (nu-idx(end) ) ; 
0134 angle-Tmeasnu (nu-unwrap-idx) = unwrap (angle (Tloeasnu (nu-unwrap-idx) ) ) ; 
0135 coef = polyf it (nu(nu-extrap-idx) ,angle-~measnu(nu-extrapidx) , 2) ; 
0136 angle-Tmeasnu = abs (angle-Tmeasnu - 2*pi*round(coef (3) / (2*pi) ) ) ; 
0137 % Use extrapolation to correct phase at low frequencies 
0138 angle-Tmeasnu(1:nu-unwrap-idx(1)- = ... 
0139 abs (polyval (coef ,nu(l :nu-unwrap-idx(1) -1) ) -2*pi*round(coef (3) / (2*pi) 1) ; 
0140 % Check y-intercept of unwrapped phase 
0 141 coef -corrected = polyf it (nu (nu-unwrapidx) , angle-Tmeasnu (nu-unwrap-idx) ,2) ; 
0142 yint = coef-corrected(3) 
0143 % Magnitude of transfer function 
0144 amp-Tmeasnu = log(abs(Tmeasnu)) ; 
0 145 
0146 % Prepare diagnostic vectors 
0147 angle-T-calcnu = zeros (1 ,nu-idx(end) ) ; 
0148 EF-value = zeros ( 1, nu-idx (end) ) ; 
0149 
0150 % Prepare constants for reflection coefficient 
0151 COS = cos (f orward-angle) ; 
0152 SIN2 = (sin(f orward-angle) 1-2; 
0153 n1 = nLT-2; 
0154 
0155 % Fit at max spectral amplitude to determin intial guess paramter 
0156 clear('xJ) 
0157 ii=E1-powernax-idx; 
0158 w = nu(ii)*2*pi; 
0159 ang = angle-Tloeasnu(ii) ; 
0160 amp = amp-Tloeasnu(ii); 
0161 angle-Tneasured = angle-Tmeasau(E1-powermax-idx) ; 
0 162 ampmeasured = amp-Tmeasnu (El-powermaxidx) ; 
0163 Error-Func = O (x) (log (abs (exp (-kLT*w . *d-s/c) *... 
0164 ( (COS-sqrt ( (xa2/nl)  SIN^) ) / (COS+sqrt ( ( x ^ n  S I N  ) ) ) - amp) . -2; 
0165 options = optimset(1MaxItex1,200,J~unEvals~,400~; 
0166 [nk, EF-value(ii) ,exitflag,output] = 

0167 f minsearch (Errorhc , initialguess (1) , options) ; 
0168 EF-iter(ii) = getf ield(output , 'iteratione') ; 
0169 EF-count(ii) = getfield(output, 'funcCount'); 
0170 initialguess(1) = nk(1) ; 
0171 %Clear the first few values of nextr 
0172 for ii=1:4 
0173 nextr (ii) = initialguess (1) : 



0174 end 
0175 tic 
0176 Fit f r e q  middle to high 
0177 r ii = 5:nu_idx(end) ; 
0178 clear('x3) 
0179 w = nu(ii)*2*pi; 
0180 ang=angle-T~easnu(ii); 
0181 amp=amp-Tneasnu(ii); 
0182 ErrorTunc = Q (x) (log (abs (exp (-k-LT*w . *d-s/c) * 
0183 ( (COS-sqrt ( (x^2/n1)  SIN^) ) / (COS+sqrt ( ( x ^  S I N  ) ) ) ) - amp) . -2; 
0184 [nk,EF-value( i i ) ,ex i t f lag ,output]  = 
0 185 fminsearch(ErrorSunc, initialguess(l), options); 
0186 EFiter (ii) = getf ield(output , 'iterations' ) ; 
0187 EF-count(ii) = getfield(output, 'funcCount'); 
0188 nextr(ii) = nk(1); 
0189 end 
0190 clear( 'ii') 
0191 f ittingloop-time = toc 
0192 
0193 % Mean t std of n over region of phase extrap 
0194 avgn = mean(nextr(nu-extrap-idx)) ; 
0195 stdn = std(nextr (nu-extrap-idx) ) ; 
0196 [avgn,stdnl 
0197 
0198 % Plot and select n 
0199 figc = figc+l; 
0200 figure (f igc) 
0201 set(figc,'positi~n','NumberTitle','off~,~Nam~','Index of ~efraction') 
0202 plot (nu, nextr ,nu, nmormal) ; legend( 'aextr', 'n normal incid') ; ylim( [O 401 ; 

0203 title (txt) ; 
0204 txt = 'click on left then right bound for n'; 
0205 n_good=ginput (2) ; 
0206 idxm-good = f ind(n_good(l, 1) < nu & nu < n-good(2,l)) ; 

0207 
0208 % Plot Minimation iterations 
0209 figc = figc+l; 
0210 figure (f igc) 
0211 set(figc,JpositionJ,'~mberTitleJ,J~ffJ,JN~e',~Diagnostic~~ 
0212 plot (nu, EF-iter, nu, EF-count) ; legend('# of itar' , '# of func eval') ; 
0213 title('Function Mimization DiagnosticJ) ; xlabel ('\nu [THz] '1 ; 

Transmission Spectroscopy Cut Crystal 

0001 % PP Transmission spectroscopy Cut Crystals 
0002 
0003 % Define Conventions 
0004 % complex(n1 = n-ik 
0005 % epsilon3 = n"2-k'2 
0006 % epsilon" = 2n*k 
0007 % all frequencies are in THz 
0008 % all distances are in urn 



0009 % all velocities are in urnips 
0010 %#####################t####W##W###~######W#### 
0011 %################################################ 
0012 % Clear all variables t workspace 
0013 clear all 
0014 homepath = pwd; 
0015 
0016 X Define constants 
0017 c = 300; 
0018 nLiTa03-800 = 2.1578; 
0019 
0020 % intial guess 
0021 initialguess = C16, .51; % [n kappa] 
0022 
0023 % Process Data File 
0024 t = processf ile( : , 1) ; %tima vector in ps 
0025 dt = abs (t (2) -t (I) ) ; %time increment in ps 
0026 dl = processf ile( : ,2) ; %signal in arbitraty units 
0027 nopxaw = length(t) ; 7 9 0 ~  in data time vector 
0028 
0029 % Experimental Paremeters 
0030 forward-angle = asin(nLiTa03-800/nLT) ; 
0031 pr-pr = 0; %um distance between probe arms 
0032 pu-pr = 0; %um distance between pump and closest probe 
0033 pu-sample = 0; %um distance between pump and sample 
0034 T s  = 0; %um thickness of xtals 
0035 xtal-dis = 0; %um offset of detection crystal 
0036 
0037 % Geometrical Factors for cell alignment from system parameters 
0038 d s  = 1080; %thickness Sample 
0039 d-LT = ( (pr-pr/cos (f orward-angle) ) -T-s) ; %propagation distance LT 
0040 dd1 = T-s - pu-pr*tan(forward,angle); %scale factor El 
0041 dd2 = T-s - (pr-pr + pu-pr) *tan (f orward-angle) +xtaLdis ; %s cal factor E2 
0042 
0043 % Smooth Time Domain Data and subtract baseline 
0044 windowSize = 10; 
0045 dl-smooth = filter(ones(1,windowSize)/windowSize,l,d1~; 
0046 dl = dl-smooth; 
0047 baseline = mean(dl(20 : 80) ) ; 
0048 dl = dl-baseline ; 
0049 
0050 % Select Peaks El bt E2 from data, 
0051 figc = figc+l; 
0052 figure (f igc) ; 
0053 set(figc,'NumbexTitle','off~,'Name','Select Data') 
0054 txt = 'click on left then right bound for El'; 
0055 subplot (2,1,1) ; plot (t ,dl) ;xlim( [min(t), max(t)] ) ; 
0056 ylabel( 'El ) ; xlabel( ' t h e  (pa) ' ) ; 
0057 subplot (2,1,2) ; plot (t ,dl) ;xlim( [min(t) , max(t)]) ; 
0058 ylabel ( ' E2 ' ) ; xlabel ( ' time (ps) ' ) ; 
0059 % Select Data 
0060 r1 = ginput (2) ; 
0061 idxkeepl = find(rl(1,l) < t & t < rl(2,l)); 
0062 El = zeros (1 ,nopraw) ; 



0063 El(idxkeep1) = dl(idxkeep1) ; 
0064 ~l(l:idxkeepl(l)-1) = ~1(idxkeepl(l))*exp(-.03*(idxkeep1(1)-1:-1:1)); 
0065 ~l(idxkeepl(end)+l:end) = ~l(idxkeepl(end))*... 
0066 exp (-. 03* (1 : 1 : length(E1) -idxkeepl (end) ) ) ; 
0067 subplot (2,1,1) ; plot (t ,El) ; ylabel( 'dataJ ) ; 
0068 % Select Reference 
0069 subplot(2,1,2); plot(t,dl);xlim(Cmin(t), max(t)l); 
0070 ylabel ('E2' ) ; xlabel ( time (pa) ') ; 
0071 txt = 'click on left then right bound for MI; 
0072 title(txt1; 
0073 r2 = ginput (2) ; 
0074 idxkeep2 = f ind(r2(1,1) < t & t < r2(2, I)) ; 

0075 E2 = zeros (1 ,nopraw) ; 
0076 EZ(idxkeep2) = dl(idxkeep2); 
0077 ~2(1: idxkeep2(1)-I) = ~2(idxkeep2(1) )*exp(-. 03*(idxkeep2(1)-1: -1: I)) ; 
0078 ~2 (idxkeep2 (end) +1: end) = E2 (idxkeep2 (end) ) *... 
0079 exp (- .03* (1 : 1 : length (~2) -idxkeep2 (end) ) ) ; 
0080 E2 = -E2*ddl/dd2; %Scale E2 and flip 
0081 subplot (2,l ,2) ; plot (t ,E2) ; ylabel('Raference' ) ; xlabel ('time (ps) '1 ; 
0082 xlim([min(t), max(t)l); 
0083 set(figc, 'NmberTitle' , 'off ' , 'NameJ, ySelected ReferenceJ, 'PositionJ ,pos2) ; 
0084 close (f igc) 
0085 figure (f igc) ; set (1, 'NumberTitle' , 'off ' , 'Name' , 'Selected Data') 
0086 plot (t , El+E2) ; title ( 'Ei*E2 ) 
0087 
0088 % Pad Data for F'FT 
0089 nop = 2-14; X nop for padded vector 
0090 ny-ind = 1 + nop/2; % index of nyquist freq 
0091 El (nopraw+l : nop) = zeros ( 1, nop-nopraw) ; % El padded 
0092 E2(nopraw+l:nop) = zeros(1,nop-nopraw); % E2 padded 
0093 t = t (1) : dt : (dt* (nop-1) -abs (t (1) ) ) ; % padded time vector 
0094 
0095 % Create Frequency vector for FFTJs 
0096 nureal = (0 : (nop-I) ) . / (dt*nop) ; Postive f xeq vector 
0097 nuf f t = nureal ; X Total freq vector, +/- f req 
0098 nu3 f t (ny-ind+1: nop) = -f liplr (nu3 f t (2 : nyind-1) ) ; 
0099 nuidx = f ind(0 <= nureal & nuireal < nu-plot high) ; % idxJs of f req 
0100 nu = nureal(nu-idx) ; % Freq of interest 
0101 om = nu*2*pi; % Angular frsq of interest 
0102 % idxJ s for unwrappi~g ph;ise 
0103 nu-unwrap-idx = find(nu,unwraplow < nu & nu < nu-unwrap-high); 
0104 % idx's for extrapolating phase 
0105 nu-extrap-idx = find(nu-extraplow < nu & nu < nu-extraphigh) ; 
0106 
0107 % Calculate FFl"s & Power Spectrums 
0108 Elnu = fft (El) ; 
0109 E2nu = fft (E2) ; 
Oil0 El-power = abs (Elnu) ; 
0 11 I E2-power = abs (E2nu) ; 
01 12 [El-powernax , ~1-powernax-idxl = max (~1-power) ; 
01 13 [E2_powernax, ~2-powernax-idx] = max (E2-power) ; 
0114 
0115 % Calculate experimental transfer fun( on; 
0116 Tneasnu = E2nu(nuidx) . /Elnu(nuidx) ; 



0117 
0118 % Unwrap Phase of transfer function; 
0119 angle-Tneasnu = zeros(1,nu-idx(end)) ; 
0120 angle-Trmeasnu(nu-unwrap-idx) = unwrap (angle (~rmeasnu(nu-unwrap-idx) ) ) ; 
0121 coef = polyf it (nu(nu-extrap-idx) , angle-Trmeasnu(nu-extrap-idx) ,2) ; 
0122 angle-Tmeasnu = abs (angle-Tmeasnu - 2*pi*round(coef (3) / (2*pi) ) ) ; 
0123 % Use extrapolation to correct phase at low frequencies 
0124 angle-Trmeasnu(1:nu-unwrap-idx(1)-I) =... 

0125 abs (polyval (coef ,nu(l: nu-unwrap-idx(1) -1) -2*pi*round(coef (3) / (2*pi) 1) ; 
0126 % Checl atercept € unwrapped phase 
0127 coef -corrected = polyf it (nu (nu-unwrap-idx) , angle-Trmeasnubumnq-idx) ,2) ; 
0128 yint = coef-corrected(3) 
0129 % Magnitusd Transfer Function 
0130 amp-Trmeasnu = log(abs (Trmeasnu)) ; 
0131 
0132 t 7' m a  spectral amplitude to dete-'- '-"- 1 guess paramter 
0133 clear( ) 
0134 ii=E1-powerrmaxidx; 
0135 w = omcii); 
0136 ang = angle-Trmeasnu(ii) ; 
0137 amp = amp-Tneasnu(ii) ; 
0138 ampLT = ampLTnu(ii) ; 
0139 angLT = angLTnu(ii); 
0140 ErrorIunc = Q (x) (log( (4x (1) *n-LT) / ( (x (1) +n-LT) -2) *.. 
0141 ampLT*exp(-x(2)*w. *ds/c) )- amp). "2+(ang~~+( (~(1). *w. *d-s) . /c)-ang) . -2; 
0142 options = optimset ( 

- 
- ,200, 'Ma: 3mEvals' ,400) ; 

0143 [nk, EF-value (ii) ,exit1 lag, output] =fminsearchrorc, initialguess, options) ; 
0144 EFiter(ii1 = getfield(output, 'iterations'); 
0145 EF,count(ii) = getfield(output, 'fuacCount'); 
0146 initialguess(1) = nk(1) ; 
0147 initialguess (2) = nk(2) ; 
0148 %I !ar the first few val 
0149 f ii=1:4 
0150 nextr (ii) = initialguess (1) ; 
0151 kextr (ii) = initialguess (2) ; 
0152 end 
0153 tic 
0154 % Fit freq middle to high 
0155 for ii = 5:nu_idx(end); 
0156 clear('x') 
0157 w = nu(ii)*2*pi; 
0158 ang = angle-Tmeasnu(ii); 
0159 amp = amp-Trmeasnu(ii); 
0160 Error-Func = @(XI (log( (4x(l) *nLT)/ ((x(l)+n_LT)̂2) *ampLT*exp(-x(2) *w. *ds/c) I... 
0161 - amp) . ̂2+ (angLT+ ( (x(l> . *w. *ds) . /c) -ang) . -2; 
0162 [nk, EF-value (ii) , exitf lag, output] = f minsearch(Ekror_Func , initialguess, options) ; 
0163 EFAter(ii) = getfield(output, 'iterations'); 
0164 EF-count(ii) = getfield(output, JXuncCaunt'); 
0165 nextr(ii) = nk(1) ; 
0166 kextr(ii) = nk(2) ; 
0167 end 
0168 clear( ' 
0169 f ittingloop-time = toc 
0170 



0171 % Calculation of 
0172 real-eps = nextr."2-kextr."2; 
0173 imag-eps = 2*nextr.*kextr; 
0174 
0175 % Plot and select n 
0176 figc = figc+l; 
0177 figure (f igc) 
0178 set(figc,'NumberTitleJ,'off','Name~,'Index of Refraction') 
0179 plot (nu, nextr ,nu, nanal) ; 
0180 legend('nextr', 'nanal') ;ylim( [lo 251) ; 
0181 title(txt1; 
0182 txt = 'click on left then right bound for n'; 
0183 n_good=ginput (2) ; 
0184 idxm-good = f ind(n_good(l, 1) C nu & nu C n_good(2,1)) ; 

0185 nstd-sel = std(nextr (idxm_good)) ; 
0186 
0187 % Plat and select k 
0188 figure (f igc) 
0189 set(figc,'Number~itIe),'off','Name','kappa') 
0190 plot (nu, kextr ,nu, kanal) ; 
0191 legend('kextr','kand8); 
0192 title(txt1; 
0193 txt = 'click on left then right bound for n'; 
0 194 k-good=ginput (2) ; 
0195 idxkgood = find(k-good(1,l) C nu & nu C k_good(2,1)) ; 

0196 kstd-sel = std(nextr (idxm-good)) ; 
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