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ABSTRACT

The Non-Intrusive Load Monitor (NILM) is a device that utilizes voltage and
current measurements to determine the operating schedule of all of the major loads on an
electrical service. Additionally, the NILM can use its electrical measurements to
diagnose impending failures in the mechanical systems that are actuated by the electric
loads. Ongoing NILM research conducted at Massachusetts Institute of Technology's
Laboratory for Electromagnetic and Electronic Systems (LEES) is exploring the
application of NILM technology in shipboard environments. For the current shipboard
applications, diagnostic software development is in progress. To aid in that process,
research was done to understand the dynamics of a shipboard cycling system.

This thesis presents an in-depth examination of the development of diagnostic
indicators for a shipboard vacuum assisted waste disposal system. Measurements and
experimentation were conducted onboard USCGC SENECA (WMEC-906), a 270-foot
Coast Guard Cutter. In order to better understand the system dynamics, a computer based
model was developed to simulate the system. The intent of creating an in-depth model
was to develop diagnostic methods that are applicable to any shipboard cycling systems.

First, a base model is designed followed by the exploration of a realistic model
that includes variation commonly found in the system. Thirdly, a diagnostics section
explores methods to detect increased pump operation and distinguish between high
system usage and the presence of a leak. Lastly, a basic cost analysis is done on the
sewage system to show the benefits of installing a NILM.

Thesis Advisor: Steven B. Leeb
Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Reader: Timothy J. McCoy
Title: Associate Professor of Naval Construction and Engineering

Thesis Reader: Henry S. Marcus
Title: Professor of Marine Systems
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1 Introduction

1.1 NILM Definition

The Non-Intrusive Load Monitor (NILM) is a device that utilizes electrical

voltage and current to determine the operating schedule of major loads. The non-

intrusive aspect of the device is its minimal impact on an existing system. Simple wire

connections are used to monitor the voltage and a current transducer is used to measure

the aggregate current. These raw measurements are analyzed by the installed software to

calculate the real and reactive power which in turn can be used to perform diagnostics on

the electrical system.

Non-intrusive load monitoring research has been conducted at Massachusetts

Institute of Technology's Laboratory for Electromagnetic and Electronic Systems (LEES)

over the past two decades. The NILM has been previously used in residential,

commercial and automotive environments [1] [2] [3]. The research presented in this thesis

is for the application of NILM technology in shipboard environments. Previous research

has shown the NILM to have potential in this environment and warrants further research

and development.

For the current shipboard applications of NILM, the transient event detection and

diagnostics software has yet to be fully written. To aid in the development of the NILM

software, research is necessary to understand dynamics of the shipboard system. The

research presented in this thesis is an in-depth examination of the development of

diagnostic indicators and leak detection methods for a shipboard cycling system. In order

to better understand the system dynamics, a computer based model is developed to

simulate the system and better test the diagnostic methods. The goal of exploring the

model development step-by-step is to make this method applicable to any shipboard

cycling system. A basic cost analysis of the advantage of using a NILM is also done for

a specific system onboard the test ship.
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1.2 Motivation for Research

Electrical components have been onboard ships since the 1800s. Since the first

application, the population of electrical components onboard has only increased. The

development of the computer and modem microelectronics has greatly increased the

demand for electrical generation and has also increased the complexity of the systems.

Today, electrical components are integral in every system onboard a ship. Electrical

systems have become the single-most important system on any ship. In the near future,

electricity will likely become the primary source for propulsion power as well as provide

the propulsive force in advanced weapons systems.

Electrical components are not only stand-alone, such as a gun control system, but

are also components of mechanical systems, such as a pump in a seawater cooling

system. Since all systems require some amount of attention, the users of ship systems

must be able to determine the status or condition of a system at any time. Traditionally,

the monitoring has been done with watchstanders taking logs and with dedicated sensors

whose outputs are input into a larger monitoring circuit. These sensors are often intrusive

in that they must break system integrity to monitor such characteristics as pressure or

temperature. Large systems can have many sensors which require complex monitoring

circuits. A typical engine room onboard a modem Navy warship can have hundreds to

thousands of sensors. Nearly all the sensors monitor only one system parameter and

often have redundant sensors in the same system to improve monitoring reliability. As

more automated engine rooms are designed for new warships, the number of sensors has

the potential to increase nearly two orders of magnitude [8]. With the increase in sensors

comes an increased amount of wiring, complexity, weight, and cost. Shipboard NILM

installations have the potential to avert those increases and reduce shipbuilding costs.

Although current and voltage are currently monitored on some systems, it's

usually done to check for overcurrent and over/undervoltage conditions. The NILM uses

only these two inputs to perform its analyses and is connected at a single point. A

majority of mechanical systems have electrical components whose operation not only

depends on the component itself, but also the mechanical system to which it is attached.

The NILM concept applied to shipboard systems uses only electrical power to determine

the health of an electro-mechanical system. Single-point monitoring of the electrical

12



power has the potential of informing the user of the overall health of a system and

reducing the need for extra sensors and monitors.

1.3 Objective and Outline of Thesis

The research presented in this thesis is a continuation of research conducted by

LCDR Jack S. Ramsey, Jr., USN [6] and by LT Thomas W. DeNucci, USCG [7]. In

LCDR Ramsey's thesis, the feasibility of using NILM was tested on multiple shipboard

systems onboard three different ships. His results were positive and he concluded that

the NILM could be used successfully in the shipboard engineering environment. LT

DeNucci's thesis explored diagnostic indicators for shipboard cycling systems, diagnostic

indicators of a pump-motor coupling failure, analyses of fluid system blockages, and

analyses of NILM applications on a reverse osmosis system. LT DeNucci's results were

also very promising and he concluded that NILM could be used to diagnose pathological

equipment failures.

The purpose of this thesis is to further explore and develop the diagnostic

indicators for a shipboard cycling system. An in-depth analysis of the cycling system is

presented and a realistic model is created to accurately simulate the cycling system.

Although the research presented is for one specific cycling system onboard one ship, the

methods used are intended to applicable to any cycling system on any ship. Chapter Two

discusses some NILM and cycling system basics and describes the test platform. Chapter

Three discusses the development of a simulation model for an ideal cycling system.

Chapter Four enhances that model by adding realistic dynamics into the simulation.

Chapter Five discusses the diagnostic indicators for the cycling system. Chapter Six

presents a basic cost analysis of a situation where no monitoring was done on the cycling

system, and Chapter Seven presents recommendations, future work and conclusions.
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2 Basic Premises and Test Platform Description

2.1 NILM Basics
A line diagram of a NILM system hooked to a three phase electrical system is

shown in Figure 2-1. The NILM concept is based on the observation that the transient

behavior of an electrical load is influenced by the task that the load performs [4]. As a

result, different loads possess unique and repeatedly observable transient profiles which

can serve as "fingerprints" associated with each load. One example of this difference is a

comparison of the turn-on transients associated with an incandescent lamp and an

induction motor as shown in Figure 2-2. The physical task of heating a cold lamp

filament is unique from the acceleration of a rotor [4]. The NILM was developed to

detect the operation of individual loads using transient patterns observed in the short-time

estimates of the spectral content of the aggregate current drawn by a collection of loads

[4][5].

Power Panel
or Generator

Voltage
Measurements

Current
Measurements

Data Acquisition Module

Preprocessor

Event Detector

Diagnostics Module

NILM

Status Reports

Figure 2-1: Line diagram of Non-Intrusive Load Monitor in a three phase electrical system.
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Figure 2-2: Spectral envelopes recorded during the start of an incandescent lamp and an induction
motor, respectively [101.

As shown in Figure 2-1, the NILM system uses single point voltage and current

measurements to estimate real and reactive power. The NILM does not interfere with the

load(s) downstream of the measurement point. A NILM setup consists of a Pentium class

PC, a data acquisition card, a keyboard and monitor for user interface, a NEMA-style box

to house the sensing boards and a power supply board, and the associated wiring to

connect the NILM to the sensors and to the power supply.

The voltage sensing connection, external to the NEMA box, is a wired connection

from the ship's power panel to the voltage sensing board inside the NILM setup. Current

sensing is done using a commercial off-the-shelf (COTS) current transducer placed

around each of the phases leading to the load(s) fed by that power supply. Although

Figure 2-1 shows connection to all three phases of voltage and current, only two phase

voltages and one phase current in an ungrounded three phase system are required for
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NILM operation. A more detailed description of the components and how they are

connected is available in reference [6].

In order to accurately monitor short electrical transients, a relatively high (8 kHz)

voltage and current sampling rate is used to capture data and the resulting power

envelope data rate is 120 Hz[4][5]. Spectral envelope coefficients, defined in equations

(1.1) and (1.2), contain time local information about the frequency content of x(t). The

spectral envelope equations are Fourier-series analysis equations evaluated over a moving

window of length T where m is an integer and o is the base frequency. In a steady-state

AC power system like that onboard a ship, the spectral envelope coefficients have a

useful physical interpretation as real power, reactive power, and harmonic contents when

x(t) is the measured current and the sine and cosine terms are synchronized with the

voltage [9].

a. (t) = x(r) sin(m cor)dr (1.1)

b, (t) fx(r) cos(mcwr)dr (1.2)

For the applications used in this thesis, only the real power was utilized. Figure

2-3 shows the actual stator current, which is input to the NILM, and the real power,

which is a NILM output, for a start of a vacuum pump motor. Overlaid on the lower plot

is a "fingerprint" template that has been successfully matched to the pump start transient

and thus can be used to identify the start in a transient event detector.
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Figure 2-3: Stator current (upper plot) and real power (lower plot) during the start of a vacuum
pump motor. Overlaid atop the spectral envelope is a template that has been successfully matched to
the observed transient pattern [101].

At this current time and stage of NILM development, the transient event detector

and diagnostics module are not fully developed, so the files are sent directly into data

storage. The LINUX-based software included in the NILM can easily be updated to

include transient event detection and diagnostic software. Research done in this thesis

aids in the further development of NILM software and is intended for immediate

implementation.

2.2 Cycling System Basics

Cycling systems are usually comprised of a capacitive element, a method of

"recharging" the system and paths of energy release. As shown in Figure 2-4, the typical

cycling system seen onboard a ship contains a tank, pumps to recharge the tank and

piping with valves leading to other systems which draw fluid from the tank. Examples of

18



such systems include pressurized air systems and potable water systems where the pumps

provide the air or water to a tank and the rest of the system draws from the tank through

system usage valves.

Pressure

System
Usage Tank Pumps
Valves

Figure 2-4: Basic components of a typical cycling system.

Another cycling system which works on the same principle but is slightly

different is a vacuum assisted drainage collection system. The pumps draw a vacuum on

the tank and the rest of the system feeds into the tank. Essentially, the arrows and flow

paths are reverse of what is shown in Figure 2-4. In this case, the vacuum pressure is

stored by the tank and used by the rest of the system.

The next chapter will investigate the operation and characteristics of a base model

of one such system. The model system is based on an actual system found onboard a

U.S. Coast Guard cutter. Understanding the underlying dynamics of the system is

important to understand how to model the system and develop diagnostic indicators. The

fourth chapter will investigate the real system dynamics and how variance in parameters

affects the results found from the base model situation.
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2.3 USCGC SENECA Sewage System

The ability to conduct tests and collect data on an active duty ship platform is

essential to the success of the shipboard NILM project. The U.S. Coast Guard Cutter

Seneca (WMEC-906) is the sixth of thirteen Famous Class medium endurance cutters.

The ship's primary missions are to assert effective Search and Rescue (SAR) and

Maritime Law Enforcement (MLE) in domestic or foreign waters. The ship has a length

of 270 feet and displaces 1850 tons [11]. Figure 2-5 shows a recent picture of USCGC

Seneca [11].

Figure 2-5: USCGC Seneca (WMEC-906) and installed vacuum pumps.

The system being studied and modeled is a vacuum assisted sewage collection

system. The tank and pumps are located in an auxiliary machinery space onboard the

ship. The system receives the drains from eighteen vacuum toilets, two urinal lift valves,

one urinal non-lift valve and one galley garbage grinder. A 360 gallon collection tank

stands upright with two 1.5 HP vacuum pumps connected to the top of the tank via piping

and two check valves that function to retain the system vacuum pressure when the pumps

are deenergized. The toilets, urinals and garbage disposer are zoned throughout the ship

and lead into the top of the tank through isolation valves. A separate tank discharge

system with two 2.0 HP pumps automatically drains the collection tank based on tank

level [15]. Figure 2-5 contains a photo of the vacuum pumps and the holding tank and

Figure 2-6 shows a basic system schematic.
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(18) Vacuum
Toilets

(3) Urinals

(1) Garbage Grinder

Sewage
Collection
Tank

Vacuum Pumps

To seal
tank

Discharge Pumps

To holding
tank

Figure 2-6: USCGC SENECA sewage system basic schematic.

The vacuum pumps operate to maintain vacuum in the system. When the system

pressure drops to 14 in-Hg, one vacuum pump energizes. Consecutive starts alternate

between pumps to equalize the wear. If the pressure drops to 12 in-Hg, the second

vacuum pump starts to assist the already running pump. The pump(s) de-energize when

the tank pressure reaches 18 in-Hg [15]. Figure 2-7 shows the relationship between the

vacuum pump power and the system pressure. The pressure data and pump run data was

taken simultaneously during a leak period and aligned chronologically for comparison.

Note that actual setpoints in the system are approximately 0.5 in-Hg lower than described

in the tech manual. The smaller "down-steps" in middle of the traces correspond to usage

events such as toilet flushes.
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Figure 2-7: Seneca sewage system pressure trace (upper plot) and vacuum pump power (lower plot)
chronologically aligned. The pressure decreases are caused by a system leak (the gradual decrease)
and by toilet flushes (the step decreases).

The discharge pumps energize, alternating on consecutive starts, when the water

and waste level in the tank reaches 33% of its full capacity (120 gallons) and de-energize

when the level is 5% (18 gallons). Water and waste is pumped from the vacuum system

to an atmospherically pressured holding tank for later discharge overboard or to a

collection system on the pier. Table 2-1 lists the system setpoints, pump capacities, and

system loads [15].

Table 2-1: USCGC Seneca sewage system parameters and loads[15I.

Parameter Value
High Vacuum (Po) 18 in-Hg
Low Vacuum (P10w)-- 1 pump starts 14 in-Hg
Lower Vacuum (Piower)--2 pumps start 12 in-Hg

Vacuum Pump Capacity (each) 23 cfm @16 in-Hg
Discharge Pump Capacity (each) 30 gpm
Holding tank capacity 360 gallons
System capacity (approx.) 600 gallons

System Loads
(18) Vacuum Toilet Assemblies ~0.375 gal per flush
(3) Vacuum Urinal Assemblies ~0.25 gal per flush
(1) Garbage Grinder Kit ~0.83 gal per use
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The NILM was installed in the control panel for the vacuum and discharge pumps

by Ramsey in 2003 [6]. Two phases of the 440 volt electrical power in the pump

controller are measured and the current is measured on the third phase. Both the vacuum

pumps and discharge pumps use the same power supply so their input voltages are the

same. The current transducer was installed to measure the current passing to the four

pumps collectively. That is, if both vacuum pumps were energized and one of the

discharge pumps energized, the current sensed would be the sum of the currents to the

three individual loads. A typical power plot showing both a vacuum pump and the

discharge pump is show in Figure 2-8.
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Figure 2-8: Normal power traces for vacuum and discharge pumps.

Of primary interest to the author were the effects of increased system usage and

system leaks on the frequency of vacuum pump runs and how each of the system

characteristics affected the dynamics of the entire system. The goal of the research was

to be able to determine the normal operating conditions of the systems and to be able to

diagnose the presence of a leak in the system. Since the frequency of vacuum pump runs

is the directly related to the usage of the system and the presence of any vacuum leaks,
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the focus of the research was time between vacuum pump runs. The discharge pump runs

were largely ignored in the data analysis, but mention of their importance will be

discussed later with respect to creating a diagnostic indicator.

Data collected by the NILM was analyzed using MATLAB scripts to detect the

times between the securing of one vacuum pump and the start of the next vacuum pump.

The collected times between pump runs were then binned in a histogram with equal bin

sizes in order to give a display of the system usage. Figure 2-9 below shows a typical

histogram of the times between pump runs for an underway period of five days.
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Figure 2-9: Typical histogram of times between vacuum pump runs for seven day underway period
(plot data from August 2005).
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3 Base Model System Characteristics and Simulation

3.1 Base Model System Assumptions

Since underway experimentation time onboard the Coast Guard cutter was

limited, a computer based model was needed in order to better understand the system

characteristics and to produce data for development of a diagnostic indicator. In order to

develop the model, each factor that influenced the system needed to be explored and

understood. The remaining portions of this chapter will discuss the formation of a base

model with no parameter variation and predictable results.

A system usage event is caused by the crew flushing a toilet, flushing a urinal, or

using the garbage disposer. Discussions with the crew revealed that the garbage disposer

is not operated very often, so the flushing events are the primary influences on the

system. An "event" was defined as one flush of a toilet or urinal. The crew flushing

behavior was investigated by DeNucci and most closely resembles a naturally occurring

Poisson process [7]. For a Poisson process, the time between the kth event and the (k- )th

event can denoted by a random variable Tk, is alternately referred to as the kh inter-

arrival time and is distributed according to the following probability density function

(PDF) [14].

fT, = e (3.1)

Given this hypothesis, the crew usage rate, k, has a direct effect on the measured

times between pump runs. More flushes results in more vacuum loss and thus an

increased frequency of pumps runs to recharge the vacuum tank.

Another vacuum pressure reduction factor is the size of a system usage event.

The amount of vacuum lost during one flush of a toilet or urinal also directly effects the

times between pump runs. Larger flush drops result in more pump runs in a given period

of time.

A third factor that affects the times between pump runs is the presence of a

vacuum leak in the system. For obvious reasons, a larger leak rate results in increased

pump run frequency.
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To simplify the system and study the effects of each one of the above factors,

assumptions had to be made. For the bose model system, the following assumptions were

made:

" Every flush instantaneously removes the same amount of vacuum from the
sewage system

" The leak rate is constant regardless of the system pressure

* Flushes occur according to a Poisson process and at a constant rate, k

Reasons for these simplifications will be explained in the following sections. The next

chapter will explore deviation from these assumptions and the effects on the data

received.

The controlling parameter in the simulation is pressure. Similarly to the real

system, the pressure determines when the pumps are running and when they shut off.

The vacuum pressure in the system is measured in in-Hg where the "high" vacuum

pressure is actually the lowest absolute pressure. To avoid confusion, the simulation and

the following discussions are done entirely in in-Hg hence the term "pressure" is

synonymous with "vacuum pressure."

3.2 Basic Model Formulation

There are two loss mechanisms that will reduce the system pressure. A flush, or a

system usage event, will reduce the pressure by a discrete amount and a leak in the

system will reduce the pressure as a function of time. Given these two loss mechanisms a

basic, linear approximation of pressure can be written as

P = PO - N(AP ) -t aleak . (3.2)

The variable Pt is the system pressure at time t, Po is the high pressure set point when the

pumps turn off, N is the number of flushes which have occurred up to time t, APf is the

amount of vacuum removed by a single flush, and Uleak is the rate at which the leak

reduces pressure.
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The effects of each loss mechanism can be investigated by setting the other to

zero. First, to examine the effects of flushing, the leak rate a1eak is set to zero, so equation

(3.2) becomes

P, = PO - N(AP). (3.3)

The first assumption introduced in section 3.1 is required in order to make this the

base model. Variation in the flush size would eliminate the discreteness of the pressure

values and complicates the evaluation. Later evaluation in the next chapter shows how

flush size variation affects the results. Figure 3-1 shows the possible pressures at any

time t. The t=O point corresponds to the time at which the vacuum pumps de-energized

upon reaching the high pressure setpoint. The range between Po and P10, depends on the

system setpoints and APf depends on the characteristics of the toilet or urinal being

flushed.

Po

Po-zLPf

9 Po-2zPf

Po-3IPf

Po-4APf-Plow

t (min)

Figure 3-1: Base model pressure with no leak. Each line represents the possible system pressures.

In a base model system with no leaks, the pressure reached after a pump operation

would discretely decrease in even steps until the pressure in the system was at or below

the low pressure setpoint and the pumps would reenergize to raise system pressure again.
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It can be seen in the Figure 3-1 and derived from equation (3.3) that the number of

flushes, Nmax, required to reach the low pressure setpoint is

Nm = O -pil"'l (3.4)
AP,.

where [ is the ceiling function. Since it is impossible to have fractions of flushes, the

ceiling function is used. It is important to note that with no leak in the system, Nmax- 1

flushes can occur without the pumps energizing.

To further develop the base model, the effect of a leak can be included and the

second assumption from section 3.1 is enforced. From (3.2), it can be seen that the leak

linearly decreases the pressures as time progresses with the effects of the number of

flushes and size of flushes remaining the same. The size of the leak is assumed to remain

constant regardless of system pressure so that the slope of the line remains linear. The

effect of system pressure dependent leak rates is discussed in Chapter 4. The result of the

base model with a constant leak rate and unique flush sizes is shown in Figure 3-2.

Po

Po-LPf

9 Po-2APt

& Po-3APf

-- - ------ - Plow
Po-4LPf

t3 t2 ti to

t (min)

Figure 3-2: Base model pressures with system leak. Each line represents possible system pressures.
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Given that a pump will energize when the pressure has dropped to the low

pressure setpoint, the expected times between pump runs can be determined. The times

at which P,0 w is reached can be derived from equation (3.2) by setting Pt equal to Pi0, and

mathematically written as:

PN - N( AP ) - Plow (.5t\J = (3.5)
aleak

where tN is the expected times for a pump to energize given N flushes. This is

demonstrated graphically in Figure 3-2 for varying numbers of flushes. Note that to is the

longest time and tN is the shortest. If no flushes had occurred (N=O), the only effect on

the system would be the pressure drop due to the leak and the expected time between

pump runs would be to. Likewise, if Nmax-I flushes had occurred, then the expected time

between runs would be tNmax-I-

For large leaks, the effect is a steeper slope of pressure lines and vice versa for a

small leak. This intuitively makes sense with the no flush scenario. For a large leak, the

time until a pump starts will be less than that for a small leak because the leak takes less

time to deplete the vacuum in the system.

The pressure at time t and ultimately the time between pump runs is largely

determined by how often the system is used, or, in other words, how often a drop in

pressure occurs due to a flush. Previous research has examined how the crew behavior

can modeled as a Poisson process [7]. Poisson processes require time homogeneity,

meaning that the probability of k arrivals is the same for all time intervals of the same

length, and they require independence, meaning that the number of arrivals in one time

period is independent of the history of arrivals outside that time interval [12]. Both of

these requirements are assumed for the base model and are included in the third base

model assumption in section 3.1.

An observation was made by DeNucci that the inter-arrival times between flushes

were exponentially distributed and thus led to an Erlang distribution of times between

pump runs. The Erlang PDF is mathematically represented as

frk (k,A, t) = , (3.6)
(k -1)!
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where X is the system usage rate (in flushes/hour), k corresponds to the kth arrival, and t

is the time elapsed (in hours) since the de-energization of the vacuum pumps.

The time at which the vacuum pumps de-energize after "recharging" the system is

essentially a renewal event. This means that the pressure reduction process is restarted

each time and the past system history does not affect the current pressures. A Poisson

process depends on a renewal event to restart each process. The real system is slightly

different in the fact that a flush might have occurred a few seconds prior to the pumps

deenergizing, and the next flush might occur a few seconds after the pumps de-energize.

A true renewal event means that the flush that occurred prior to the pumps deenergizing

would not matter and time would "reset" to zero when the pumps shut off. This problem

of the real system not having a true renewal event will be discussed in the next chapter,

however for the base model examined here, it is assumed that each pump shut off is true

renewal event and thus the Poisson process starts over at t=O each time.

An Erlang probability density function arises when examining the inter-arrival

times (times between flushes). Written out, the Erlang PDF translates to the probability

that the kth arrival will fall between times t and t+At and is equal to the probability that k-

1 arrivals have occurred in [O,t) multiplied by the probability that one more arrival will

occur in time At. Observing Figure 3-2, it can be seen that for a value of k, the above

probability relation is correct and appropriately applies to the cycling system. If time tk is

reached without the pump running, then the chance that a pump will run before tk-I

depends on the probability that k-I flushes have already occurred and the probability that

a flush will occur before tk I.

3.3 Building the Base Model Simulator

Now that the effects of the base system characteristics are known, a model can be

built to simulate that system. A model was built using MATLAB and Simulink. The

foundation of the model is equation (3.2) where a discrete time simulation was developed

using the linear relationships. A "prep" file, include in Appendix B, was created to

develop a list of times at which flushes would occur using the MATLAB coding

techniques introduced by DeNucci [7]. The times for the "prep" file are dependent on k

and the length of time simulation.
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The model uses a summing function to analyze the pressure at each time step. An

adequate time step used was one second. Each simulation second, the model sums the

negative effect of a leak (=leak-rate * timestep), the negative effect of a flush (if one

had occurred in the last second) and the positive effect of a pump or pair of pumps

running (-pump-rate * time_step) on the system pressure. A logic routine that observes

current pressure and determines how many pumps should be running is used to determine

the "pump rate" used.

The output of the model is a vector with time in one row and a series of zeros and

ones in the other row. A "0" indicates that no pumps are running and a "1" indicates that

one or two pumps are running. The vector is sent to a "post" routine, included in

Appendix B, that measures the time between pump runs and displays the results in a

histogram. Outputs of this base model simulation are shown in Figure 3-3 below for

varying levels of X and for varying leak rates.
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Figure 3-3: Comparison of simulation results for various usage rates and leak rates.

As can be seen in the upper plots of Figure 3-3, the k value greatly affects the

shape of the curve. A larger k value means that the crew is using the system more often,

so the mean time between runs should decrease and the total number of runs in a given
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time period should increase. Another factor that affects the shape but is not as obvious is

the size of the flush. The amount of vacuum removed by one flush, APf, as seen in Figure

3-1 determines how many flushes are required to reach Po, and energize the vacuum

pump. This flush size ultimately detennines the "k" value in equation (3.6). To

demonstrate this fact, consider the following setpoints input into the simulation.

Table 3-1: Simulation inputs based on Seneca setpoints.

Parameter Value
Elapsed time 1 week
Leak rate 0 in-Hg/hour
x 30 flushes/hour
Po 18 in-Hg

Plow 14 in-Hg
Piower 12 in-Hg

For the first demonstration, a flush size of 1.2 in-Hg/flush will be used. From

equation (3.4), Nmax = 4 meaning that four flushes are required before the vacuum pumps

energize. Based on the previous discussion of the Erlang PDF and on Figure 3-1, if Nmax-

1 flushes have occurred, Pi0, will never be reached if there is no leak in the system. It

must be assumed that Nmax flushes have occurred and thus k=Nmax for the Erlang PDF.

Figure 3-4 below shows the results with an Erlang PDF of order four (k=4, X=30

flushes/hour) overlaid on the histogram.
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Figure 3-4: One week simulation with no leak, X=30 and Erlang of order 4 overlaid.

Running the simulation again with a flush size of 0.9 in-Hg/flush. This time,

Nmax= 5 and the results are plotted in Figure 3-5 on the same scale as the previous plot in

order to see the shape differences.
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Figure 3-5: One week simulation with no leak, X = 30 and Erlang of order 5 overlaid.

The phenomenon demonstrated in the lower plots of Figure 3-3 and which arises

in the presence of a leak in the base model can be explained in a similar manner as the

above. The height and the location of the "spikes" in the plots can be predicted given the

size of the flushes, the high and low pressure setpoints, and the leak rate.

Using Figure 3-2 for a visual reference, it can be seen how the Erlang PDF relates

to a resultant plot of times between pump runs. Based on the Figure 3-2, at time

progresses from t = 0 minutes up until t3, there are four flushes required to start the pump.

From t3 to t2 , there are three flushes required; from t2 to tI, there are two flushes required;

from t1 to to, there is one flush required; and at to, the pump is guaranteed to start without

any flushes occurring. For each time period, as with the case of no leak, the order of the

Erlang associated with that time period corresponds to the number of flushes required to

start the vacuum pump. Thus, the orders of the Erlang would go from four to one

respectively as each ti is passed. As the order of the Erlang changes, there exists a

discontinuity and is manifested as a "spike" in the histogram.
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To demonstrate this idea, suppose that a 6 in-Hg/hour leak exists in the same

system where the flush size is 1.1 in-Hg/flush. The calculated ti's are included in Table

3-2 and Figure 3-6 shows the histogram of times between pump runs with the

corresponding Erlang PDF's overlaid. Note that the spikes are located at the calculated

ti's that are within the range of the data. This is expected since the ti's indicate when a

pump will energize.

Table 3-2: Calculated "spike" times for a 6 in-Hg/hr leak and flush size of 1.1 in-Hg/flush.

t time (min)
to 40
ti 29
t2 18
t3 7

250

200- ------ -------- ------------------ -200

4--1

U 100-

50

0
0 5 10 15 20 25

Time between pumpruns (min)
Figure 3-6: One week of simulated data with 6 in-Hg/hour leak showing change in Erlang order.

The spike height can be predicted based on this model as well. Once normalized

by dividing by the total number of runs, the histogram shape still represents a PDF, so the

integral under the entire shape is equal to 1. Since the Erlang orders change at the spike

locations, the height of the spike must make up for the difference between the integrals of
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the Erlang curves up to that point. This corresponds to the differences between the

cumulative distribution functions at the ti's. For a more detailed description see ref [14].

Equation (3.7) is a word expression showing the spike height as a function of cumulative

distribution functions (cdfx = Erlang cumulative distribution function for k=x) and Figure

3-7 shows the concept pictorially [14].

heighti = cdf1 - cdfi+i for i=1,2,... Nmax (3.7)
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Figure 3-7: Expected spike heights calculated from Erlang cumulative distribution function for
spikes located at various times. Taken from ref [141 (n=Erlang order).

Thus, usingfer(kA,t) from equation (3.6) and the definition of the cumulative

distribution function, the relation in equation (3.8) can be used to determine the expected

height of the ith spike located at time ti. The result must be multiplied by the

normalization factor in order to plot it on the same plot as the rest of the histogram.

height, =f (f,,r(,2,t)-fe,(i+1,,t))dt for i=1,2,...,Nmax
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4 Real System Modeling

4.1 Real System Characteristics

Formation of a basic model, as done in Chapter Three, is necessary to understand

the underlying characteristics of the cycling system. The basic relationships must be

understood before real world influences can be inserted into the model.

There are two primary sources of variation for the sewage system onboard the

Seneca. First, variations in the system exist due to physics and due to mechanical aspects

of the system components. Second, there is human variation in the system usage.

In order to more accurately reflect the real system, modifications had to be made

to the base model simulation. The following are the modifications made and their effects

will be further explored.

* The setpoints in the Seneca sewage system are not as described in the system
manual

* The system is not perfectly sealed and has some small persistent leak in all
conditions.

* The leak rate is not always constant. As the vacuum drops in the system, the
leak rate lessens.

* The pressure drop per flush is not constant. Not only does the system pressure
affect the drop, but each toilet or urinal has a different flush time which causes
variation.

. The usage rate, X, is not constant

The first four modifications are the result of system variation and settings. The

last modification is required due to the human aspect.

The pressure setpoints were not exactly the same as the factory settings, or as

described in the system manual. The three pressure setpoints were originally set at 12, 14

and 18 in-Hg for the lower pressure second pump start, low pressure pump start and high

pressure pump shut off respectively [15]. Using a separate pressure gauge, the setpoints

were measured at 12.5, 13.5 and 17.5 in-Hg. Although these numbers do not vary greatly

from the base model system, they are necessary to accurately model the system.

The system is not perfectly sealed and has a small persistent leak during all

conditions. Although this leak can be accounted for in the leak added to the model, a
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small constant leak rate was added to the model. The persistent leak was set to zero for

the following demonstrations in order to not obscure the results.

To demonstrate the effects of each of the above variances, the random number

generators in Matlab and in the Simulink model were seeded to a constant value. This

allowed for a direct comparison of a histogram with no variation and a histogram with

variation. Figure 4-1 below shows the histogram for a one week simulation with the

realistic pressure setpoints, X = 30 flushes/hour, APf = 1.1 in-Hg/flush and maximum leak

rate = 6 in-Hg/hour. Note the locations of the spikes are at 7 min and 18 min. Although

the spike height at 18 min is low, there is evidence of a spike in that location.
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Figure 4-1: One week simulation baseline with 6 in-Hg/hour leak.

4.2 Leak Rate Variation

The next variation arises from the fact that any leak rate is not constant, since the

rate depends on the differential pressure between the system and the atmosphere. In

order to include this effect in the simulation, a model of the system pressure was needed.

The pressure in the system was modeled according to the first order differential equation
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-= -cP, (4.1)
dt

whose solution is

P(t) = Poe-'". (4.2)

where Po is the initial system pressure. The c value depends on the leak size and can be

approximated using equation (4.1) at t=O by

dP(O)

dt Maxleakrate (4.3)

P(O) PO

where Maxleakrate is the highest leak rate obtained when a leak is inserted into the

system while the system pressure is at the high pressure setpoint.

In the time domain, if a leak were installed and the vacuum pumps did not

recharge the system, the pressure would drop off rapidly at first, and as the pressure

differential lessened, so would the rate at which the pressure changed. The simulation

was modified to account for this and Figure 4-2 shows the simulated system pressure in a

case where the vacuum pumps did not energize to raise the pressure and Figure 4-3

shows the simulated pressure trace for normal operation of the sewage system. The

results in Figure 4-3 can be compared to the actual pressure traces in Figure 2-7.
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Figure 4-2: Simulated system pressure over time given that the vacuum pumps to not energize to
raise pressure.

39



I I I I I I I I

17 -

9 16 I

~15-

S14-

13-

0 2 4 6 8 10 12 14 16 18 20
Time (min)

Figure 4-3: Simulated pressure trace in normal operating range of vacuum system.

Based on the model, given the high and low pressure setpoints in the Seneca

system, the leak rate at the low pressure setpoint should be approximately 77% (=13.5 in-

Hg/17.5 in-Hg) of the Maxleakrate. To confirm the model, gas flow meters were

installed in the sewage system. A smaller 150 SCCM flow meter and a larger 100 SCFH

flow meter both showed that the variation in flow did depend on the pressure in the

system with the air flow at the lowest pressure approximately 75-78 % of the air flow at

the highest pressure thus showing that the pressure model is adequate.

The maximum leak rate was the only leak rate used in the base model whereas the

simulation adjusts the leak rate according to equation (4.1). The effect on the spike times

can be shown in Figure 4-4. The lower leak rates translate to a lesser slope on the

pressure lines and the spike times shift to the right as shown. The amount of the time

shift is dependent on how much the leak rate changes. The leak rate is now a range of

leak rates dependent on system pressure, so the slope change and subsequent spike time

shift is a distribution vice a singular number. Instead of a tall narrow spike at one time,

the resultant distribution of spike times manifests itself in a wider, shorter spike centered

on a new time. The center of the spike distribution can be estimated using the expected

value of the leak rates. Since the leak rate model is linear and the system pressures are all

equally likely, the expected value of the leak rate is simply the average of the leak rates.

For the Seneca system where the leak rate ranges from 77% to 100% of the maximum

leak rate, the expected value is thus 88.5% of the maximum leak rate. Note that the

amount of the spike time shift is not the same for all the times. The spike associated with

to moves the farthest whereas the spike associated with tNmax-1 moves the least.
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Figure 4-4: Effect of varying leak rates on spike times.

The predicted spike locations are included in Table 3-2. Using the expected value

of the leak rate to be 88.5% of the max leak rate and Figure 4-4, the new times can be

calculated and are included in Table 4-1. These times are the expected center of the new

spikes with a small distribution of the spike on either side. The resulting histogram using

the same random number "seeds" as the baseline in Figure 4-1 is shown in Figure 4-5

with an ideal Erlang fitted curve overlaid.

Table 4-1: Expected spike times with variable leak

ti time (min)
to 45.2
tl 32.8
t2 20.33
t3 7.9
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Figure 4-5: One week simulation with leak rate variation

As predicted, the spike shifts to the right and decreases in height due to the

distribution of leak rates. The location of the spike again lines up with the calculated ti's.

The effect of a varying leak rate that is a function of system pressure is thus shown to

have a "smoothing" effect on the histogram of time between pump runs.

4.3 Flush size variation

The next variation that is considered is the variation in the size of the flush or any

system usage event. Since no two toilets or urinals are exactly the same, the flush size

cannot be assumed constant as is done in the base model. Also, the duration of a usage

event is not instantaneous as was assumed in the base model.

The system pressure also affects the size of a usage event because the changes in

differential pressure between the system and the atmosphere cause the flush sizes to vary.
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This effect was not singled out and simulated but assumed to be taken into consideration

with the distribution of flush sizes around a mean size.

To verify the pressure drop associated with a system usage event, a pressure

sensor was installed in the system and data recorded alongside the usual NILM data. An

example of the pressure trace with an installed leak and the vacuum pump power

associated with the pump runs is shown above in Figure 2-7.

The results of testing showed that there were predominantly two usage event

sizes, approximately 0.80 in-Hg/flush and 1.30 in-Hg/flush with a small amount of

variation around each of those levels and those flushes typically last approximately two

seconds. The duration of the usage event was not analyzed separately but was included

in the Simulink model in order to better model the real system.

To begin the analysis, it was assumed that there was only one flush size with a

distribution around that flush size. The effect of variation in the size of a usage event is

demonstrated below in Figure 4-6. For each N value, the variation creates a distribution

of possible pressures. For the ti's, the result is a distribution of times on either side of the

base model ti. Again, this distribution manifests itself as a wider, shorter spike on the

histogram. The resulting histogram for the baseline case with a flush size uniformly

distributed between 1.0 and 1.2 in-Hg/flush is shown in Figure 4-7, again with the base

model Erlang distributions overlaid. Any previous variations examined were removed in

order to show the singular effect of flush size variation.
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Figure 4-7: One week simulation with usage event size variation.
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As predicted, the spike height decreased and created a distribution about the

expected ti. Next, consideration was given for two predominant sizes of usage events.

The change on Figure 4-6 would be that there would be two different APf's which would

result in twice as many t, values. The resulting histogram would have multiple spike

locations with a distribution around each ti similar to what is seen in Figure 4-7.

4.4 System Usage Rate Variation

The variation that has a tremendous effect on the time between pump runs is the

rate of usage on the system. Variation onboard a ship, either at sea or inport, is very

difficult to quantify. The base model simulation used the same k for all times of the day.

Ideally, a continuously varying usage rate could be determined and used in the

model, but determining the precise rate would be very difficult. Analysis of the data

from Seneca indicated that there tended to be three distinct time periods during the day

which had different usage rates. The times corresponded well to the work day either at

sea or inport. Three eight hour time segments were chosen ranging from 0600 to 1400

("work hours"), 1400 to 2200 ("evening") and 2200 to 0600 ("nighttime"). The usage

rates were lowest during the nighttime time while a majority of the crew sleeps. The

work hours and evening time frames appear to have similar usage rates, although the

evening is usually slightly higher. This is expected since the crew usually has more free

time in the evening and is not consumed with on-watch activities and don't have time to

use the restrooms.

The usage rate for each eight hour time period is essentially the time weighted

average of the usage rates during that time. Since k is a function of time, the system

usage process is referred to as a non-homogeneous Poisson process. The nonlinear time

transformation shown in equation (4.4) can reduce the problem to a homogeneous

Poisson process [13]. Although unable to determine the exact X(t) throughout each time

period, it was possible to estimate the usage rates based on the number of pump runs in

the period and the average sizes of the flushes.

A = A(s)ds (4.4)
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It is important to note that although the pressure is "reset" by the vacuum pumps,

the flushing is independent of the pumping. This means that the pumps deenergizing

when the pressure reaches Po is not a true renewal event as is ideal for a Poisson process.

Even though a flush can occur a few seconds before the vacuum pump secures, the base

model considers t = 0 when the pump secures. This means that the time to the first flush

after a pump securing in the base model is exponentially distributed from t=0 even

though it should be distributed from the last flush. In reality, and in the Simulink model,

the flush times are completely independent of the pump cycles and thus the measured

time between pump stops and pump starts is reflected in the time between pump runs

histograms.

Using three different values of X (20, 34, 36 for the nighttime, work hours and

evening respectively -with a mean of 30 as was used for the all-day rate in the base

model) in the baseline model results in the histogram shown in Figure 4-8. It can be seen

that the lower X=20 value tends to "fill out" the right side of the distribution as evidenced

by the taller spike at 18 minutes and the appearance of times greater than 20 minutes.

The two other higher X values tend to "fill out" the left side of the distribution as

evidenced by the slightly taller bins in the 1-3 minute range.
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Figure 4-8: One week simulation with three different lambda values.
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Not only does the lambda vary throughout the day, but it also varies from day to

day. The activities of the crew, the missions being performed, the food served, and the

overall health of the crew tend to vary the lambda values from day to day. The model

was altered to account for this variation and is included in the "prep" file when

determining the flush times.

4.5 Compilation of Variation in All Factors

So far each of the characteristics of the system that can have variation has been

analyzed individually. In reality, they all can vary together and change the shape of the

histogram. Table 4-2 below lists the allowed variation of each parameter and Figure 4-9

shows the compilation of all the effects of all the variations on the histogram of times

between pump runs.

Table 4-2: Parameter variation allowed in the simulation model.

Parameter Variation Input into Simulation
Leak Rate Variation linearly dependent on system pressure
APf Flush sizes uniformly distributed between at 0.6-0.72 and 1.0-1.2.
x nighttime = 20 flushes/hour

work hours = 34 flushes/hour
evening = 36 flushes/hour
Note: each allowed to vary 20% during the 8 hour period

As witnessed in Figure 4-9, the smoothing effect of all the variation makes the

presence of a leak not as obvious as in Figure 4-1. Diagnosis of the leak thus becomes

more complicated and determination of the leak size is even more difficult. Chapter Five

investigates the possible diagnostic indicators and the best method of determining the size

of leak in the system.
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Figure 4-9: One week simulation with compilation of parameter variations.

4.6 Simulation Results

Putting all the variations and adjustments into the model, it can now be tested

against actual data. The figures below show comparisons of actual Seneca data and

simulated data for the same time periods. The two predominant flush sizes were

simulated to match what was seen on the ship as well as the duration of usage events.

Variation as discussed in the previous sections was incorporated and adjusted to match

real variation as closely as possible. The mean daily usage rate for used in the simulation

was 30 flushes per hour for underway simulations. The comparisons are of a system with

no leak, a system with a 12 in-Hg/hour leak and a system with failure of the check valves

between the tank and vacuum pumps.
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Figure 4-10: Comparison of Seneca underway data and simulated underway data for a seven day

period with no leak. Seneca total number of runs = 1297, simulated total runs = 1288.
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Figure 4-11: Comparison of Seneca data and simulated data for a five day period with 12 in-Hg/hr
leak. Seneca total number of runs = 1102, simulated total runs = 1100.
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Figure 4-12: Comparison of Seneca data and simulated data for a three day period with check valve

failure. Seneca total number of runs = 1476, simulated total runs = 1463.
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As can be seen by the histograms, the simulated data varies slightly from the

Seneca data. The simulated distributions are slightly narrower, but the numbers of runs

are very near to each other as well as the mean times between runs. The amount of

variation, especially in usage rates, onboard the ship is difficult to simulate, but the

Simulink and Matlab model adequately replicate the times between pump runs onboard

the ship.
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5 Diagnostic Indicator

Diagnostic software for this vacuum assisted system must be able to determine its

overall health. The primary concern is the presence of a leak in the system because a leak

that is not caught and fixed can cause excessive wear on the vacuum pumps and wastes

electrical energy. Leak detection is difficult, however, as an elevated usage rate from

such instances as a sick crew or the addition of a large group of people onboard can also

cause a change in the histogram. The goal of the diagnostic method is to determine if the

usage of the system has changed and if that change was caused by a leak.

When comparing leak versus no leak data, either from the ship or from

simulation, there are a number of indicators of change. Although a visual inspection of

the histogram of times between pump runs is one way to determine the presence of a

leak, the most convenient diagnostic tool is one that performs the detection process

automatically without any human intervention.

5.1 Possible Diagnostic Methods

There were several quantitative methods used to analyze the results, both from the

ship and from simulation. Each of the methods has its own strengths and weaknesses,

and these are explored in the following sections.

Since changes in system operation are reflected in how often the pumps operate,

the first proposed method analyzes the mean time between runs and the total number of

runs over a given period. Another diagnostic method is the detection of discontinuities in

the histogram. A third method involves trending the parameters of a curve fitted to the

histogram data. Lastly, an analysis of the time each pump is energized is presented.

5.1.1 Mean Shift Test and Total Number of Pump Runs Test

The mean time between pump runs and the total number of pump runs are fairly

strong indicators of a change in the system, but they do not discern between high usage

and the presence of a leak. Table 5-1 below contains sample mean times between pump

runs and the total number of runs for various conditions, both actual and simulated. Note
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the decrease in mean times and the increase in number or runs in the case of a leak and in

the case of increased usage.

Table 5-1: Samples of means and total number or pumps runs.

Seneca Underway Data Mean time (min) Three day total
No leak - August 2005 6.71 555
No leak - December 2005 7.08 519
12 in-Hg/hr leak - November 2005 5.39 682
12 in-Hg/hr leak - January 2006 5.28 687

Simulation Data
No leak (runl) 6.74 554
No leak (run 2) 6.72 555
12 in-Hg/hr leak (run 1) 5.29 674
12 in-Hg/hr leak (run 2) 5.33 668
10 flush/hour increase (run 1) 5.29 675
10 flush/hour increase(run 2) 5.15 692

Although the mean shift test does not give any indication of what is causing the

change in system behavior, it is a definite indication of some change in system operation.

Perhaps a better indicator of system operation change is the total number of runs. Just

like the mean time between runs, though, the total number of runs cannot discriminate

between leaks and increased usage rates. The total number of runs can be used as an

initial indicator, but another test must be used to determine if a leak exists in the system

or if the usage rates have increased.

5.1.2 Discontinuity Detection Test

One distinct difference between leaks and usage rate changes is that leaks,

especially large ones, distort the expected histogram. The result is the formation of

spikes and sharp edges. A way to find such discontinuities is to use a median filter on the

binned times. A median filter finds the median value of the data on either side of the

current bin along with the data in that bin. For example, a median filter with a window

size of seven examines the three bins on either side of the current bin along with the

center bin to find a filtered value [21]. In equation form, for a filter of size (2*N+l)

applied to bin data, y(ti), the median filtered value for each time, yfit(ti), can be expressed

as
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yi, (ti) =median[y(tiN) I'' **IAi- A0 Ai+1~ ...'' Yi+N)]. (5.1)

When applied to a histogram of time between pump run data, the result is a

smoothing of the bin counts. For instance, any abrupt changes in bin counts from a spike

would be filtered out. Figure 5-1 shows a sample histogram for three days of underway,

no leak Seneca data overlaid with the same data median filtered using a window size of

seven. As can be seen, the thick line is more "smooth" and the large differences between

bins are filtered out.
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Figure 5-1: Histogram
data (window size = 7).

for three days of underway, no leak Seneca data overlaid with median filtered

5.1.2.1 Base Model System Application

The median filter works very well with the base model. The lack of variation

produces sharp spikes and large discontinuities that are easily captured using a median

filter. An example of a data set with the median filtered results plotted over the data is

shown in leftmost plot of Figure 5-2. By subtracting the filtered data from the original

data, the presence of spike becomes evident and easily detected using a simple threshold
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method. The rightmost plot of Figure 5-2 shows this result for the data plotted on the

left. . Note the large values on the rightmost plot that correspond to the location of the

large spikes on the left plot.
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Figure 5-2: Median filtering example on base model data. The left plot shows the histogram with the
median filtered data overlaid and the right plot shows the difference between the original data and
the median filtered data.

5.1.2.2 Real System Application

Using the same technique on real data is not as useful. Due to the variance in the

shipboard system and in the usage rates, a large spike does not always exist as seen in the

base model case. Figure 5-3 below shows median filtered data for five days of data with

no leaks and Figure 5-4 shows the same comparison on five days of data with an installed

leak. Note that the magnitude of the differences in the right plots is nearly the same in

both cases. The maximum difference ranges between 10 and 20 whereas it was over 200

for the base model case. This problem prevents us from being able to use discontinuity

detection to find small leaks.
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Figure 5-3: Median filtering example on five days of Seneca data with no leak. The left plot shows
the histogram with the median filtered data overlaid and the right plot shows the difference between
the original data and the median filtered data.
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Figure 5-4: Median filtering example on five days of Seneca data with leak. The left plot shows the
histogram with the median filtered data overlaid and the right plot shows the difference between the
original data and the median filtered data.

Discontinuity detection is still a useful tool, especially when usage drops

significantly or if there is a massive leak. For a massive leak in the system while

underway or inport, as seen when the check valves located between the pressure tank and

the vacuum pumps fail, the times between pump runs abruptly end after the first few bins.

Figure 5-5 shows five days of Seneca data with check valve failure. Note that the median

filter easily identifies the sharp difference between the second and third bins.
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Figure 5-5: Median filtering example on five days of Seneca data with check valve failure. The left
plot shows the histogram with the median filtered data overlaid and the right plot shows the
difference between the original data and the median filtered data.

For inport data where the number of flushes and subsequent pumps runs is less,

the presence of a large leak manifests itself in an abrupt end to the histogram. The sharp

end roughly represents the time required for the system pressure to drop from the high

pressure setpoint to the low pressure setpoint without any flushes occurring. If, for

instance, the leak is approximately 40 in-Hg/hr, then the approximate time required for

the system pressure to drop from the high pressure to low pressure setpoints would be six

minutes. Therefore, an abrupt end to the histogram would be expected at approximately

six minutes. Figure 5-6 shows inport data with a large leak and the median filtered

difference.
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Figure 5-6: Median filtering example on three days of inport Seneca data with large leak. The left
plot shows the histogram with the median filtered data overlaid and the right plot shows the
difference between the original data and the median filtered data.
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5.1.3 Parameter Estimation and Trending

5.1.3.1 Gamma ProbabilitU Density Function

Given the analysis results of the base model cycling system, one natural

diagnostic method is to determine how closely the observed data fits to an Erlang PDF.

Programs such as Matlab or Mathcad can do this easily and both were used. Recall from

Chapter Four, however, that a real cycling system behaves slightly differently than the

base model system described in Chapter Three. As a result, measured data will never

truly follow an Erlang distribution. Based on numerous field observations, it was

determined that a reasonable model for the actual distribution is the gamma PDF. This

distribution is commonly encountered in reliability studies that aim to solve the similar

problem of determining the distribution of times between equipment failures [23]. The

gamma distribution is given by the equation:

Ak k*-i e-2'

fg arn(k, A,t) = (5.2)
F(k)

where the gamma function, F(k), is defined as [22]

F(k)= xk-I ex dx. (5.3)
0

Note that if k is a positive integer,

F(k) = (k - 1)!, (5.4)

and fgamma(k,X,t) thus reduces to the Erlang PDF presented in equation (3.6). This ability

to describe the base model system behavior makes the gamma PDF intuitively pleasing.

In order to use the gamma model as a diagnostic tool, one must do more than

simply estimate the parameters of the expected distribution. In particular, it is necessary

to consider some sort of goodness-of-fit test or parameter trending that can indicate if the

behavior of the system is beginning to deviate from its expected patterns. The remainder

of this section contains brief discussions of the numerical methods used to estimate the

parameters of the model in equation (5.2). Also included is a description of two

diagnostic methods that rely on the results of this estimation.

5.1.3.2 Non-Linear Least-Squares

One method for estimating the values of k and k is to use non-linear least-squares,

which selects parameter values that minimize the objective function
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g(k, A) = (o- E)2 ' (55)
bins

where 0 is the observed bin count and E is the expected, or calculated, bin count [23].

Computer tools can easily and quickly perform least-squares fits using a method such as

that of Levenberg and Marquardt [24].

Although least-squares curve fitting is a powerful analysis tool, it is not

necessarily the best method to use when estimating the parameters of a density function.

As expressed in the objective function in equation (5.5), least-squares requires that all of

the measured data be placed into histogram bins. This procedure can be problematic, as

any bins with few entries will fail to satisfy the requirements of Gaussian statistics, which

is necessary when using the least-squares method [23]. As a result, other more general

methods were considered and used, but for completeness, least-squares is considered in

section 5.1.4.

5.1.3.3 Maximum Likelihood Estimation Method

Another estimation technique considered in this thesis is the use of maximum

likelihood estimators (MLE). In this approach, the data is not binned; rather, the model

parameters are estimated using the individual time measurements.

Given the model f(x; 0) and n observations of the random variable X, the

likelihood function of a random sample is defined as

n

L(x;0) = f(xi;0), (5.6)
i=1

where 0 is the set of parameters that describe the underlying model. When the model is

the gamma PDF, 0 includes the parameters k and X.

As shown in [22], the maximum likelihood method estimates the parameters 0 by

maximizing the likelihood function. When estimating the parameters of the gamma

distribution, it is more convenient to perform the equivalent operation of maximizing the

log of the likelihood function.

For the gamma distribution, the maximum likelihood equations are [22]:

-- k
x= - A(5.7)
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ln(!) + I(k) = ln(G) (5.8)

where G is the geometric mean of the sample x and T(k) is the digamma function [22].

These two can be combined into

ln(k) - P(k) = ln( ) (5.9)
G

Solving equation (5.9) using Matlab or Mathcad and using (5.7) to find the other

parameter, the MLE method can produce estimates for k and X. More results and

comparisons of the different methods are present in section 5.1.4 below. Reference [22]

contains much more detail on the theory and derivations involved for MLE

5.1.3.4 Method of Moments

The method of moments is a widely used and convenient technique for estimating

model parameters. The method is based on the observation that if two distributions have

a certain number of moments in common, they will "look alike." It can be assumed then

that the set of moments of all orders uniquely determines the distribution[22]. In this

method, the first m sample moments are equated to the corresponding population

moments for the given measurement model. For many distributions, the population

moments are a function of the parameter vector 0, thus m parameter components are

determined from m simultaneous equations [22]. This method can be applied to the

gamma distribution.

Using the first and second moments for the gamma distribution and solving the

two moment equations simultaneously, the following relationships can be used to

determine k and X [22]:

k = mean (5.10)
variance

A= mean 
(5.11)

var iance

A comparison can be made for a curve fitted to Seneca data using the three

different parameter estimating techniques. Using Matlab or Mathcad to perform a least

squares fit, the fitted gamma PDF has the following parameters: k=2.887 and X=0.423.

Using the method of moments, the parameter values were k=2.879 and ),=0.431 and MLE

calculations showed k=2.566 and k=0.384. Figure 5-7 shows the resultant distributions
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plotted over a week of Seneca data. Although each method clearly produces reasonable

results, each has its own strengths and weaknesses. From an optimality standpoint, the

maximum likelihood method is the most reliable estimation tool to apply in this case. As

stated previously, least-squares can produce poor estimates when there are bins that

contain few entries, and there clearly are in this case. Further, the method of moments

can be shown to produce biased parameter estimates [23]. Regardless, the computational

simplicity of the method of moments makes it an attractive approach. As shown in

section 5.1.4, the results obtained using the MLE method and the method of moments are

quite similar.
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Figure 5-7: Fitted Gamma distributions overlaid on Seneca data.
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5.1.3.5 Goodness-of-fit Test

In order to make use of the parameter estimates obtained using the methods

described above, a procedure must be developed to test how well the actual data fits the

expected model. One simple analytic technique is to use the chi-squared (x2) goodness-

of-fit test. Essentially, this procedure tests how well the binned data fit to the expected,

normalized density function. In classical applications of the chi-squared test, two

hypotheses are formed. One of these hypotheses, the "null hypothesis," states that the

expected distribution correctly describes the measured data. The other hypothesis, the

"alternate hypothesis," states that the data is not described by the current model. To

determine which hypothesis is correct, we calculate the error between the expected

distribution and the actual values. To quantify this error, we use the chi-square statistic,

which is defined as

2 M __ iE,)2
X = (5.12)

1 Ei
where Mis the total number of bins and 0 and E denote the observed and measured

values of the frequency distribution in ith bin, respectively [20]. Note that the chi-square

statistic is a random variable that is distributed according to the chi-square PDF.

Essentially, this variable provides some indication of whether or not one can reasonably

claim that the deviation between the actual data and the expected result is due to random

chance. If the chi-square value becomes very large, it becomes increasingly less likely

that the deviations are due to chance. Typically, one will choose a maximum allowed

value for chi-square, and state that any chi-square values above that threshold correspond

to data sets that do not fit the expected model. This procedure is illustrated graphically

in Figure 5-8. A typical threshold is shown. Clearly, any values above that threshold

should occur very infrequently if the model is true [20].

61



P

X2
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When using the chi-squared test, it is necessary to determine an expected, or

"baseline," distribution. In this case, several possibilities were considered. One choice

was to evaluate the gamma PDF using the parameters obtained during the estimation step.

Additionally, we considered a "stationary" baseline using parameters obtained during a

period when the system was known to have no leaks. We also compared data to what

would be expected given the parameters obtained from data recorded several days prior

to the current analysis period.

To demonstrate the use of a goodness-of-fit test a set of simulated data was

generated for a 24 day period. During the first 10 days, no leak was present in the

system. For the subsequent seven days, a leak was in place. Over the final seven days of

the simulation, the leak was removed. At the end of each day, a diagnostic analysis was

performed. For each analysis, least-squares was used to estimate k and X for the

histogram formed from the last three days of data; thus, each "analysis period" contains

seventy-two hours of data. Figure 5-9 shows the results of several different chi-squared

tests performed on the simulated data. Each of the chi-squared tests used a different

baseline. The 'same day' baseline was a gamma PDF using the k and X calculated for the

current seventy-two hour period. The 'previous day' baseline used the k and X value

from the previous analysis period, and the 'previous days (no overlap)' baseline used the

parameter values from three days prior (no overlap of data used to determine the two sets

of parameters). Finally, the 'stationary baseline' used parameters from a period when the

system was known to have no leaks.
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Figure 5-9: Various chi-squared analysis methods on three weeks of simulated data.

As can bee seen by the results, the chi-squared test against a stationary baseline is

the best indicator of a leak. It has a distinct rise and fall corresponding to the times

immediately following the introduction and removal of a leak in the system. The

formation of a good stationary baseline is an issue, though, as there are regular

fluctuations in system usage. Seneca data from August 2005 and from December 2005

demonstrates this point well. A week long sample taken from August (1297 total pump

runs) has k=2.887 and X=0.423 whereas a week long sample from December (1152 total

pump runs) has k=2.94 and X=0.3942. There was no leak in the system during both

periods. If the August baseline is used, the chi-squared value on the week in August is

59.585 while the chi-squared value on the week in December is 103.487. Reversing the

process and using the December baseline, the chi-squared value on the week in August is

105.28 1while the week in December is 64.181. The disparity between the resultant chi-

squared values means that using one single baseline isn't going to be accurate and robust

enough for all underway periods. Moreover, if system usage rises or falls significantly

during any period, this method would clearly fail.

Based on the field observations made onboard Seneca and on knowledge of

operations at sea, determining a robust baseline that would work in all situations and

underway periods is not possible, thus the chi-squared method of determining the

presence of a leak is not the best primary method of determining the health of the cycling
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system. Other unreliability problems found with the chi-squared goodness-of-fit tests

applied to Seneca data further showed that the test was not robust enough for

implementation. During periods with leaks installed in the system, the resultant x2 values

could be very low depending on how long the leak had been in the system. For instance,

the results of some chi-squared tests performed on a system with a leak that had been

present for five to seven days could not be distinguished from the results of tests

performed on a system with no leaks.

5.1.4 Parameter Trending

With median filter and chi-squared analyses lacking enough robustness to be

reliable in all situations, another method of determining system health is needed. Using

both the estimated parameters values and the total number of runs, a fairly simple method

exists that can detect a change in system status and determine if the change is due to a

leak or to an increase in system usage.

In the case of increased system usage or in the presence of a leak, over a finite

period of time the number of runs will increase and the mean time between pump runs

will decrease. The distribution of times will narrow and shift to the left. When this

occurs, the k and X values associated with a fitted curve also change. Figure 5-10 and

Figure 5-11 show the k and X values for one week simulated leaks from 0 to 100 in-

Hg/hour with X=30 flushes/hour and the same for 10 to 100 flushes/hour on a system with

no leak.
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For both increased leak rates and for the increased usage rates, the total number of

pump runs rose. The maximum number of runs achieved at 100 in-Hg/hr was 2774 and

2744 runs occurred when the usage rate was 100 flushes/hour. By analyzing the changes

in the parameters, it can be seen that the k value remains relatively constant during

increased usage periods but increases proportionally to the size of the leak. The X value

increases in both cases, but not as rapidly in the increased usage case. Using the fact that

the k value is indicative of a leak in the system, parameter trending can be performed on

simulated and real data.

5.1.4.1 Simulated Data

Simulated data was used first to test this method. Figure 5-12 and Figure 5-13

below show the k and lambda values for the scenario described in Table 5-2. Each

analysis period contains seventy-two hours of simulated data and each subsequent period

contains forty-eight hours of overlap with the previous analysis period. The plots show

the k and X values calculated using the previously discussed methods.

Table 5-2: Parameter trending data arrangement scheme for simulated data for inserted leak and
increased usage rates.

Analysis Period(s) Inserted Leak(Figure 5-12) Increased Usage (Figure 5-13)
1-14 No leak X=30

15 48 hours: no leak 48 hours: X = 30
24 hours: 12 in-Hg/hour 24 hours: X= 40

16 24 hours: no leak 24 hours: X= 30
48 hours: 12 in-Hg/hour 48 hours: k =40

17-19 12 in-Hg/hour X = 40
20 48 hours: 12 in-Hg/hour 48 hours: k = 40

24 hours: no leak 24 hours: X = 30
21 24 hours: 12 in-Hg/hour 24 hours: X = 40

48 hours: no leak 48 hours: X.=30
22-27 No leak 2= 30

28 48 hours: no leak 48 hours: k= 30
24 hours: 12 in-Hg/hour 24 hours: 2 = 40

29 24 hours: no leak 24 hours: 2 =30
48 hours: 12 in-Hg/hour 48 hours: 2. 40

30-32 12 in-Hg/hour k = 40

66



Anomaly Anomaly
inserted removed

5

4.5

4 -

3.5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 2021 22 23 24 25 26 27 2829 30 31 32

Analysis Periods

-+- Fitted -A- Method of moments

Anomaly
inserted

1.2 -

1 t1

- -

Li HF

VLE

re
omaly
moved

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Analysis Periods

--- Filted Mthod of mornents

Figure 5-12: Trended k and X values for simulated data containing two periods with a 12 in-Hg/hour
leak present.

67

6

5 5

Anomaly
inserted

0.9
'0 0.8
E

0.7
0.6

0.5

Anomaly
inserted

I I~

1iLE

T

cc



Anomaly Anomaly Anomaly
inserted removed inserted

5.5

5

4.5

3.5
1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Analysis Periods

-- Fitted - - Mhod of moments WLE

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

Anomaly
inserted

Anomaly
removed

Anomaly
F inserted

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Analysis Periods
R---- Fitted -a-- Method of morrents IVLE

Figure 5-13: Trended k and X values for simulated data containing two periods of elevated usage
(increase of 10 flushes/hour).

As demonstrated by the plots, the k and X values both increase in the presence of a

leak. The k value rises to a value over 5.0 and the lambda value increases to over 1.0.

On the other hand, when the increased usage occurs, the k value does not increase and the

X still rises. The increase in the X value is less for the increased usage rate but is still

evident.

A strong initial indicator for both of the above situations is the total number of

runs in each seventy-two hour period. Figure 5-14 below shows the total number of runs

for the above cases. Note that the increased usage rate results in a larger number of total

runs.
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Figure 5-14: The total number of pump runs for the simulated cases.

5.1.4.2 Seneca Data

The parameter trending method was also tested on several sets of real data. Table

5-3 lists the conditions observed during a series of 30, 3-day analysis periods. The results

of this test are shown in Figure 5-15 and Figure 5-16. Similar to the simulated data, both

k and X increased after the insertion of the leak. Additionally, note that the k value is not

affected by the change in usage that occurs between point six and point eight.

Table 5-3: Parameter trending data arrangement scheme for Seneca data for an inserted leak.

Analysis Period(s) Inserted Leak(Figure 5-16)
1-14 No leak

15 48 hours: no leak
24 hours: 12 in-Hg/hour

16 24hours: no leak
48 hours: 12 in-Hg/hour

17-19 12 in-Hg/hour
20 48 hours: 12 in-Hg/hour

24 hours: no leak
21 24 hours: 12 in-Hg/hour

48 hours: no leak
22-27 No leak

28 48 hours: no leak
24 hours: 12 in-Hg/hour

29 24 hours: no leak
48 hours: 12 in-Hg/hour

30 12 in-Hg/hour
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The method was also tested during a period in which a massive leak occurred due

to a check valve failure. The massive leak starts at analysis point seven and is removed at
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point eleven. A smaller, 12 in-Hg/hour leak was inserted at the end of analysis period

nineteen. As can be see in Figure 5-17, the fitted k and X values rapidly and greatly rise

after the leak is inserted. The method of moments and MLE break down immediately

after the introduction and removal where the calculated k value drops to nearly zero. It

remains near zero while the analysis periods contain a mixture of data from both the

major leak and from the no leak condition. Once the analysis period contains data from

only the no leak or the major leak condition, the method of moments calculations then

result in k and X values that are similar to the fitted values.
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Figure 5-17: Trended k and X values for Seneca data with check valve failure.

5.1.5 Load Time Analysis

The previous analyses have all looked at the time between pump runs. The length

of time that the pumps run on each cycle can also be examined. Figure 5-18 below shows

the loaded run times for three days of underway Seneca data with no leak and three days

with a 12 in-Hg/hour leak inserted. The mean run time with no leak in the system was

1.0048 minutes while the mean loaded time with the leak inserted was 0.8664 minutes.

This seems counterintuitive but it is expected. For the no leak condition, the low pressure

setpoint and subsequent pump start is more often caused by a flush event. When the

flush occurs, the system pressure drops below the low pressure setpoint, thus the pump

must operate long enough to not only raise the pressure from the low pressure setpoint to

the high pressure setpoint, but also long enough to initially raise the pressure from the

final pressure after the flush up to the low pressure setpoint. With the leak installed,

more often the low pressure setpoint is reached merely by the reduction of pressure from
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the leak, thus the pump, once energized, only has to raise the pressure from the low

pressure setpoint to the high pressure setpoint.

No Leak 12 in-Hg/hr Leak
120 120

10 - - -100 - _- - - - -

80----- - -- 10 - -- ----- -
60 --- I I-- -I --- 60 ---

20 ----- -- - 20 - - - - -T -----

80 2 -0 --
~ 0 It 6 01

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3
Time (min) Time (min)

Figure 5-18: Loaded run times for Seneca vacuum pumps with no leak condition (left) and 12 in-

Hg/hour leak condition (right).

5.1.6 Inport Data Considerations

The previous discussions have been using k values of thirty or more, which is

representative of underway usage rates. Since the crew has no option except to use the

facilities onboard the ship while underway, it is expected that at sea usage rates would be

greater than inport rates. When the ship is in home port, approximately eighty-five

percent of the crew goes home at night and, although onboard the ship for a typical work

day, the crew tends to not use the restrooms as often as they would at sea.

A detection method used inport has to discriminate between an elevated usage

rate and a leak, just as at sea; however an elevated usage rate is not likely to occur for all

twenty-four hours during the day. Due to the fact that usage is both low and rather

sporadic, the Poisson model has not been found to be an accurate model for inport

behavior. As a result, parameter estimation techniques cannot be applied in this case.

Since the Seneca is more accessible for experimentation during inport periods,

numerous leak rates and experiments have been performed. Using the same seventy-two

hour data grouping period, a typical histogram of times between pump runs is shown in

Figure 5-19 along with histograms from periods with installed leaks in the system and a

period during check valve failure.
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In order to install a leak, an air flow meter was installed in the system and was

adjusted as necessary to get the desired leak rate. Two of the plots of Figure 5-19 show

the histograms for seventy-two hour, inport periods with 30 SCFH and 50 SCFH installed

leaks. Table 5-4 shows the number of runs and mean times between pump runs for the

four different conditions: no leak, 30 SCFH, 50 SCFH, and during check valve failure.

As evidenced by the times and numbers, a leak is easy to detect.

Table 5-4: Total number of runs and mean times between pump runs for Seneca inport periods.

Leak Rate Number of pump runs Mean time between runs
None 295 13.652 minutes

30 SCFH 467 8.283 minutes
50SCFH 575 6.59 minutes

Check Valve Failure 1498 1.51 minutes
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For an increased number of pump runs, the best scheme to determine if a leak

exists is to examine the nighttime data (Figure 5-20). Because of the unique situation

where the usage rate during the nighttime is extremely low, any leak will manifest itself

in a more narrow distribution, and the bin time associated with the right edge of the

distribution will correspond to the time it takes for the system pressure to drop from the

high pressure setpoint to the low pressure setpoint without any flushes occurring. For

instance, if the rightmost bin is located at ten minutes, then the approximate leak rate is

24 in-Hg/hour because the system pressure
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Figure 5-20: Inport nighttime Seneca data for no
valve failure.

leak, 30 SCFH leak, 50 SCFH leak, and check

Based on the longest time reached during the nighttime period, a 30 SCFH leak

corresponds to a 17 in-Hg/hour leak rate, a 50 SCFH corresponds to a 25 in-Hg/hour leak

rate, and the check valve failure condition corresponds to greater than 130 in-Hg/hour

leak rate.

Anecdotally, one inport measurement period taken after the ship was inport for a

couple of months revealed a very large leak. The crew did not have any idea that a leak
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was in the system since no alarms or other warnings existed to alert them to the problem.

The histograms of times taken over a seventy-two hour periods are included in Figure

5-19 and Figure 5-20. The leak rate associated with the histogram was approximately

135 in-Hg/hour.

The author alerted the crew to the leak and along with a few members of the crew

discovered the two check valves at the suction of the vacuum pumps to be faulty. The

check valves are meant to shut after the vacuum pump de-energizes and maintain the

vacuum in the system. Disassembly of the valves revealed pitted faces and loose

components. The valves were beyond repair and had to be replaced. After replacement,

the histogram showed a great improvement. The figures below show the condition of the

valve and internals as it was disassembled.

Figure 5-21: Photos of failed check valves: as opened (upper left), pitted valve face (upper right),

rubber valve face with uneven wear marks (lower left), and pitted face of second valve (lower right).
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5.2 Diagnostic Method and Status Reports

Using the methods above, two diagnostic schemes were developed. One scheme

is used for inport conditions and one for underway conditions. In both cases, there is a

"one-day" indicator designed to detect a massive leak and a" three-day" indicator to

detect small to medium leaks where the "one-day" indicator utilizes the previous twenty-

four hours of data and the "three-day," the previous seventy-two.

Detecting the transition between inport and underway is not an easy task to

perform automatically. If there are no leaks in the system, the number of runs per day, or

a change in the number of runs per day, can be a good indication the ships status.

However, if a leak arises during an inport period, the increased number of runs from the

leak can falsely lead the NILM to assume that the ship has gotten underway. For the

initial software development, a report of the current system status will require an "At sea

or inport?" input from the user. The "inport" calculations and the "at sea" calculations

will run simultaneously at all times with two status reports will always be available.

Selection of the ships status by the user will produce the report applicable to the ships

condition.

5.2.1 Inport Diagnostic Method

The "one day" indicator for the inport periods will monitor both the total number

of runs per twenty-four hour period and the results of a median filter test. If the total

number of runs were to increase by more than 200 and if the maximum difference

between the binned data and the median filtered data was over 150, then the status report

would indicate the presence of a major leak. Figure 5-22 shows a representative status

report that was generated within twenty-four hours after the introduction of a leak while

the Seneca was inport.
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Figure 5-22: Inport status report twenty-four hours after check valve failure.

The "three-day" indicator for the inport periods will consist of three checks. First,

the median of the times associated with the five bins that have the longest time between

runs would be monitored. If that median time is less than twenty minutes, a leak is likely.

Second, an edge detection scheme would also evaluate the histogram data to detect any

sharp edges in the histogram. Lastly, the total number of runs would be monitored and

compared to the average over the previous three analysis periods. An increase over the

average of seventy-five runs is a strong indicator of a system change. If two out of the

three "three-day" tests indicate the presence of a leak, the user will be alerted on the

status report. Figure 5-23 shows a representative status report produced within seventy-

two hours after introducing a 17 in-Hg/hour leak into the system.
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Figure 5-23: Inport status report seventy-two hours after insertion of 17 in-Hg/hour leak.

5.2.2 Underway Diagnostic Method

Similar to the inport diagnostic method, the number of pump runs per day is

monitored for increases over 200 and a median filter test is used to detect any abnormal

discontinuities. Together, these "one day" tests can give an indication of a major leak

such as that from a check valve failure. Using Seneca underway data, the status report

shown in Figure 5-24 was generated within twenty-four hours after the valve failure.
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Figure 5-24: Underway status report twenty-four hours after check valve failure.

For the "three-day" tests, the k value is trended and monitored for levels over

4.25, a level which has previously shown to be an indication of a leak. If the k value

increases over that threshold, then the number of runs is compared to an average of the

last three totals, and if the total number of pump runs has increased over seventy-five

runs, then the medium leak status is changed to "Yes." An edge detection routine is

performed on the underway data as well to find large discontinuities. Underway Seneca

data was used to demonstrate the test and Figure 5-25 shows the status report generated

within seventy-two hours after the introduction of a 12 in-Hg/hour leak.
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Figure 5-25: Underway status report seventy-two hours after introduction of 12 in-Hg/hour leak.
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6 Cost Analysis for Monitoring of Seneca Sewage System

6.1 Motivation

Since space and weight are key considerations in any ship design, any equipment

placed onboard has to have a purpose and a function necessary for the operation of the

ship systems. As discussed previously, a NILM installed onboard a ship is intended to

replace sensors within an engine room and without. Monitoring multiple pieces of

equipment with one sensor vice multiple sensors is absolutely necessary to reduce the

number of sensors on ship systems. The NILM is ideally suited to do just that with the

capability to perform diagnostics not only on just the electrical equipment but also on the

mechanical aspects of the systems.

Of equal importance to space and weight is cost. There are many facets of cost

estimation and cost benefit analysis. The analysis presented below is not intended to be a

detailed analysis, but a basic demonstration of the potential value that a NILM can add to

a system. The specific cases used as examples are anecdotal cases onboard USCGC

Seneca. Some precise costs are not publicly available, are very difficult to obtain, or are

constantly changing, so the numbers used are best estimate speculations based on the

information available.

Although the NILM monitoring the sewage system onboard Seneca currently only

monitors four pumps (two vacuum and two discharge), the potential benefits of using a

NILM to monitor multiple systems is also explored.

Medium leaks were inserted during testing and large leaks occurred during check

valve failures. One check valve occurred at sea during October 2003 and November

2003 and the second occurred inport during February 2006. During both occurrences, the

engineering crew did not immediately know of any problems associated with the sewage

system because of the lack of monitoring on the system.
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6.2 Power Calculations

Figure 2-8 shows a typical power trace for a vacuum pump. As can be seen by

the scale of the plot, the approximate power level of the vacuum pump is slightly less

than 2 kW. By examining the power plots during various underway and inport times, an

average power level can be calculated. An averaged power level takes into account the

large initial power spike and the slight undershoot as the power steadies out during a

normal operation. The two vacuum pumps actually have slightly different power

signatures, with one pump power average approximately 1.8 kW and the other near 1.7

kW. The pumps alternate on subsequent pump runs, so an overall average power level

takes into account the variation between pumps.

The power was examined for four different situations onboard the Seneca and the

calculations are included in Table 6-1. The first column shows a no leak condition

inport. A smooth 300 minute sample uninterrupted by a discharge pump run or any other

anomaly was examined. Over the 300 minutes, the number of pump runs, the total time

the pumps were de-energized, and the total energy used (in kW-min) were obtained from

the data. The time energized was the difference of 300 minutes and the time de-

energized. Taking the total energy used divided by the total time energized gave the

average vacuum pump power. The same calculations and examinations were done for

three other conditions: a no leak condition at sea, a check valve failure inport, and a

check valve failure at sea.

Table 6-1: Average pump power level calculations.

No Leak/Inport Check Valve Failure No Leak/At Sea Check Valve Failure
(11/11/2005) Inport (02/14/2006) (08/18/2005) At Sea (10/31/2003)

Sample time: (min) 300 300 300 300
Total number of pump
runs: 21 103 44 336
Total time pumps de-
energized: (min) 280.895 167.784 259.678 182.448
Total time pumps
energized: (min) 19.105 132.216 40.322 117.552
Total energy used: (kW-
min) 32.238 241.118 71.420 219.217
Average pump power level
(kW) 1.687 1.824 1.771 1.865

The average power level is 1.79 kW for these conditions. To demonstrate the

amount of excess energy expended during a check valve failure condition, a simple
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calculation can be done to show what happens over thirty days of undetected valve

failure. By examining the inport data over extended periods of time (at least three days

for each), an average amount of "up time" or time that a pump was energized (in

min/day) was calculated for each of the four conditions above. By multiplying the "up

time" per day by thirty days and by the average power level for each pump, a total energy

expenditure was calculated. Table 6-2 shows the results. If inport, the kW-hrs are

supplied by shore power, so the approximate cost of one kW-hr is used [17]. If at sea, the

kW-hrs are supplied via the diesel generators, so the approximate electrical plant

efficiency, the average specific fuel consumption (sfc) of the diesel and the cost of a

gallon of fuel [18] are used to determine the cost of the extra energy expended. The two

resulting numbers are examples of the excess costs over normal usage costs that could

result from a month of a major undetected system leak. Ignoring the wear and tear on the

pumps during the excessive operations, the excess cost of a month-long undetected leak

can approach $100.

Table 6-2: Excess energy costs associated with a 30-day undetected check valve failure condition.

No Leak Check Valve No Leak Check Valve
Result No Failure At Sea Failure

lnot norIt e At Sea

Avg. time pumps running (min/day) 101.330 647.150 206.250 689.610

Energy expended in 30 days (kW-hr) 90.690 579.199 184.594 617.201
Excess energy over no leak (kW-hr) 488.509 1 432.607

Cost per kW-hr ($/kW-hr) 0.143 0.211

Cost of excess energy expended ($) 1 69.86 91.29

Anecdotally, it is not unreasonable for such a large leak to go unnoticed for a

month. In the most recent check valve failure case, the leak went undetected by the crew

for four weeks before analysis of NILM data showed that a major leak was in the system.

6.3 Cost-Benefit Analysis

In order to assess the value of a NILM installed in the system such as the sewage

system, a long term assessment was done. By examining the costs associated with two

different sewage system "lifetimes," the benefit of a NILM can be shown. Seneca was

commissioned in 1987 and is expected to be decommissioned in 2025, so a fictional ship

built in 2006 would be decommissioned thirty-eight years later in 2044.
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One of the "lifetime" comparisons is for a sewage system with a NILM installed

on it. The following assumptions were made about this system:

* The one NILM installed monitors only the sewage system and no other systems.

* The PC based computer has to be refreshed every five years, but the NILM
hardware lasts fifteen years before it needs to be replaced.

* Every sewage system leak is detected by the NILM and the crew rapidly finds
and fixes the problem.

* The vacuum pump and motor last the lifetime of the ship without need of
replacement.

* The cost of shore power, fuel and replacement computer parts follow average
inflation rates.

" The initial purchase and installation of the sewage system is not included in the
lifetime costs.

The other "lifetime" comparison is for a sewage system without a NILM installed.

The assumptions associated with this system are:

* A major leak occurs once every two years because of check valve failures
(based on recent Seneca occurrences).

* A medium sized leak occurs every other year (opposite to the check valve
failure years).

" Each of the leaks goes unnoticed for thirty days and is fixed upon discovery.

* The vacuum pumps and motors must be replaced after thirty years because of
wear from the excessive starts associated with the leaks.

. The cost of shore power, fuel and replacement parts follow average inflation
rates.

* The initial purchase and installation of the sewage system are not included in the
lifetime costs.

Table 6-3 lists the assumptions used in the calculations for the two different

lifetimes. The amount of time spent inport and at sea is based on the U.S. Coast Guard

LANTAREA target operational schedule. The average amount of time the pumps run per

day for the various situations is based on Seneca data. A month of non-detection was

assumed for each of the leaks and the average pump power level calculated above was

assumed for all the scenarios. Efficiency of the electric plant and the specific fuel

consumption of the diesel generators are typical values and not based on Seneca

equipment. The energy prices are based on the current rates for the Seneca and the
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computer and NILM costs are all approximate costs. Lastly, the cost of a new vacuum

pump was obtained from the U.S. Coast Guard repair parts supply system.

Table 6-3: Inputs used in cost-benefit model to determine lifetime costs of shipboard sewage system.

0.5 Percentage of time spent inport
0.5 Percentage of time spent at sea

101.33 Average time pumps run per day inport with no leak (min/day)
206.25 Average time pumps run per day at sea with no leak (min/day)
145.9 Average time pumps run per day inport with medium leak (min/day)
226.7 Average time pumps run per day at sea with medium leak (min/day)

647.15 Average time pumps run per day inport with check valve failure (min/day)
689.61 Average time pumps run per day at sea with check valve failure (min/day)

0.08 Fraction of year that a medium leak occurs
0.08 Fraction of year that a check valve failure occurs
1.76 Average power level of pumps (kW)
0.95 Efficiency of the electrical plant
0.29 Specific fuel consumption of diesel generator (kg/kW-hr)

1 Number of systems monitored by the NILM

2.25 Cost of 1 gallon of DFM (2006$)
0.146 Cost of 1 kW-hr inport (2006$)
1000 Cost of one new NILM unit (2006$)
300 Cost of PC upgrade/rebuild (2006$)
700 Cost of NILM hardware upgrade/rebuild(2006$)

11318 Cost of one new vacuum pump (2006$)
0.03 Average inflation rate
0.05 Average discount rate

The most expensive component of a NILM system as it is currently assembled is

the PCI data acquisition card. Current costs for the card are on the order of $600 [19].

The card is necessary but the NILM only uses a fraction of the capability of the card. A

new data acquisition card has been specifically designed for NILM applications [14].

Although the exact cost of the new card is not available, estimates place it at less than

$100 per card. Assuming that the new card is used instead of the current PCI card, the

cost of a new NILM unit and the NILM upgrade can be reduced by $500 each.

Another potential cost saving situation is when the NILM monitors more than one

system. Assuming that the same NILM monitors two systems, the cost of the install is

spread to both systems, thus the cost associated specifically with the sewage system is cut

in half.

These costs savings measures each result in new "lifetime" costs. Table 6-4

below shows a comparison of the results.
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Table 6-4: Discounted lifetime costs for shipboard sewage system with and without NILM installed.

NILM configuration with NILM without NILM
One system monitored, current data acq. card $11,735 $22,218
One system monitored, new data acq. card $10,580 $22,218
Two systems monitored, current data acq. card $10,048 $22,218
Two systems monitored, new data acq. card $9,470 $22,218
Three systems monitored, current data acq. card $9,486 $22,218
Three systems monitored, new data acq. card $9,101 $22,218

The largest single cost during the lifetime of the sewage system without a NILM

installed is the replacement cost of the vacuum pumps. Supposing that the pumps were to

last the lifetime of the ship and would not need to be replaced, the lifetime costs without a

NILM drops to $9,505. By comparison to the numbers in Table 6-4, it can be seen that

there are still cost savings associated with installing a NILM if at least two systems are

monitored using the new data acquisition card or at least three systems are monitored

using the current data acquisition card.

6.4 Conclusions

The above calculations show that there are potential cost benefits to using a

NILM on the sewage system. Although the assumptions made are not guaranteed to be

accurate for an actual sewage system over the next thirty-eight years, the results are

promising. A tool, such as a NILM, that can avert wasting energy has great potential in

saving money throughout the lifetime of the ship.

86



7 Future Work and Conclusion

7.1 System Modeling

The Simulink and Matlab model introduced in this thesis performs well to

simulate the operation of the sewage system onboard USCGC Seneca. The methodology

used to create the model should be applicable to any system, thus the current model

should be easily modifiable in order to replicate results from similar systems. Possible

candidates for other systems to study are sewage systems onboard other Coast Guard

Cutters, potable water systems, pressurized air systems and any other pressurized systems

that use electrically driven pumps to "recharge" the system.

7.2 Diagnostic Indicator Testing

The method developed and outputs provided by the diagnostic scheme introduced

need in-service testing. The reliability and robustness of the diagnostics are based on the

data collected over the last few years and analyzed after-the-fact. The diagnostic

methods need to be applied and tested in real-time situations. A diagnostics module

needs to be programmed immediately and installed onboard Seneca.

Diagnostic indicators from other components or systems not specifically

discussed above could be useful if included in the diagnostics module. One such

indicator would be the discharge pumps, introduced in section 2.3 above, that are also

monitored by the current NILM installation onboard Seneca. The pumps operate

approximately 1-2 times per day while underway. With increased system usage rates the

discharge pumps would operate more often while a leak in the system would have no

effect on the discharge pumps operating schedule. For any system onboard the ship,

there are likely diagnostic indicators that can be deemed from interactions with other

systems. Although it is an objective to keep the NILM as autonomous as possible, more

input from other sources, including other NILMs, could be used if required to increase

the robustness and reliability of some diagnostics indicators.
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An extended period of testing, both at sea and inport, with feedback from the crew

who monitor the system and receive the system status reports from the NILM, is required

to conclude the theory-to-practice evolution of the NILM system.

Future potential NILM applications can possibly replace numerous sensors.

NILM installations on shipboard systems that already contain pressure sensors,

excessive-run indicators, etc. are necessary to further the NILM project. Testing NILM

against legacy system monitors has the potential to show the usefulness of a single-point

diagnostic tool.

7.3 Cost Considerations

Further development and testing of less expensive NILM components should

continue. The cost savings associated with replacing the current data acquisition card

with a less expensive design are great. A more economical current transducer design

would also reduce the lifetime costs associated with a NILM installation.

A more detailed cost analysis needs to be performed. Mass production and

competition between suppliers was not considered for the analysis done in this thesis.

More in-depth calculations should be performed in order to better predict the lifetime

costs of an actual NILM installation.

7.4 NILM Equipment

A custom designed and built data system which integrates the data acquisition,

hard drive, and processing capabilities into one unit would be ideal. Not only would an

integrated system possibly ease costs, but it would also save space onboard the ship. The

current setups with full-sized PCs that are not watertight or very shock resistant should be

replaced with more durable and compact units. Future applications will require smaller

units with equal capacity to perform data collection, storage and analysis.

Research of NILM applications monitoring multiple systems is needed

immediately. A natural progression from this point would be to use the sewage system

NILM to monitor another system as well. Multi-tasking applications are vital to the

success of the NILM project.
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7.5 Conclusion

The Non-Intrusive Load Monitor installed in shipboard systems shows great

promise for future applicability. The single-point connections required for a NILM and

the capability to monitor multiple systems are ideal for the shipboard environment. A

NILM can provide inputs to other systems if needed and can provide indications of

normal or abnormal system operations. The diagnostic capabilities of a NILM can rival

those of legacy installed monitoring devices.

Used alone or in conjunction with other systems, the NILM will be an important

shipboard tool in the near future.
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Embedded Functions:

1. Matlab function to vary leak rate.

function y = fcn(Po,leakmax, press)

% From the linear relation based on dP/dt = -k*P
leakmod = leakmax/Po*press;

% Output
y = leakmod;

2. Matlab function to determine times of flushes and sizes of flushes.

function [stopout,y] = fcn(stopin,counterin,flushtime, Po, Plow,nextdrop, press,clockin)
% This block places a flush into the system
% The code compares the sim time with the times generated in the
% sewage-model-revlprep.m file and inserts a flush where dictated by the T and U
% vectors.

counterin1 = double(counterin);

% To account for predominance of two flush sizes. If 1 00*clock in is even, the first
% factor is used and the other is used if it is odd.
if rem(ceil(100*clockin),2) == 0

nextdropfactor = 1;
else

nextdropfactor = 0.75;
end

% To account for flushes occuring over multiple time steps.
if flushtime == 1

y=nextdrop*nextdropfactor;
stopout=counterinl;

elseif stopin -= -1
y=nextdrop*nextdropfactor;
stopout=stopin;
if counterin1 == stopin

y=0;
stopout=-1;

end
else

y=0;
stopout=-1;

end
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3. Matlab function for determining pump rate and number of pumps running.

function [numpmp,yl,y2,y3] = fcn(numpmpl,Po,Plow,Plower,u)
% This block determines the output of the pumps, if any

% Definition of pumping rates
pumpirate = 4.5; %in-Hg/min
pump2rate = 4.7; %in-Hg/min

% These are the pumping rates
yl = u;
y2 = u + pumplrate/60;
y3 = u + (pumplrate+pump2rate)/60;

% Check to see if the pumps should be turned off or how many should be on
if u >= Po

numpmp = 0;
elseif u <= Plow && u > Plower

if numpmpl == 0
numpmp = 1;

else
numpmp = numpmpl;

end
elseif u <= Plower

if numpmpl ~= 2
numpmp = 2;

else
numpmp = numpmpl;

end
else

numpmp = numpmpl;
end
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Appendix B: Matlab Code

1. Matlab "prep" routine for Simulink simulation.

%This m-file is the prep routine for setting up to run the
%sewage-modelrev1 Simulink model.

clear;
% First get the required inputs
T=input('What is the simulation time you intend to run (in minutes)?');
lambda w=input('What is the lambda value for the workday (in flushes/hour)?');
lambda e=input('What is the lambda value for the evening (in flushes/hour)?');
lambda n=input('What is the lambda value for the night (in flushes/hour)?');
perc-var=input('What is the percent variation for the lambda values (in %)?');
perc-var=percvar/i 00;
filename = 'test';%input('What is the file name to save this run under?','s');

% Now set it up to run for a third of the time with each lambda
flush times=[;];
t = 0;
rand('state',sum(1 00*clock));%97531
while t <= T/3

t = t - 60*(log(rand) / lambda-w/(1+perc-var*rand(1))/(1-perc-var*rand(1)));
flushtimes=[flush-times,[t;1]];

end
while t > T/3 && t <= 2*T/3

t = t - 60*(log(rand) / lambda e/(1+perc-var*rand(1))/(1-perc-var*rand(1)));
flushtimes=[flush-times,[t;1]];

end
while t > 2*T/3 && t <= T

t = t - 60*(log(rand) / lambdan/(1+perc-var*rand(1))/(1-perc-var*rand(1)));
flushtimes=[flush-times,[t;1]];

end
save('flushtimes'); %for use if want to compare different timesteps

% Now account for any errors that will occur if the flush times are too
% close together
timestep= 1/60;
j=2;
count=O;
while j <= length(flush times)-1

if flush__times(1,j)-flush times(1,j-1) < timestep;
flush times(1,j) = flush times(1,j)+timestep;
count = count +1;

end
if flush_ times(1,j+1)-flush times(1,j) < 0

flush times(1,j+1)=flush-times(1,j+1) + timestep;
end
j=j+1;

end
numberoftimesmoved=count

%Now put this in a format that Simulink can understand and use
i=2;
times=[];
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while i <= 2*length(flushjtimes)
times(:,i-1) = flush times(:,i/2);
times(:,i) = [(flush times(1,i/2)+timestep);0];
i=i+2;

end

T = times(1,:)';
U = times(2,:)';

totalnumberofflushes = length(times)/2 - 1

% Now run the simulation and plot the results
sim('sewage model_rev3');
sewagemodel-post1

2. Matlab "post" routine for Simulink simulation

% This will read "timesforruns" and create the histogram
load('timesforruns. mat');

timeson = U;
timesoff= U;
timediff = ];
Inth = length(timesforruns(1,:));

% First find where the 1's and O's change. 1 means pump on. 0 means off.
for i = 2:Inth

if timesforruns(2,i-1) == 0 && timesforruns(2,i) == 1
timeson = [timeson,timesforruns(1,i)];

elseif timesforruns(2,i-1) == 1 && timesforruns(2,i) == 0
timesoff = [timesoff, timesforruns(1,i)];

end
end

if length(timeson) == length(timesoff)
timediff = [timeson(1) timeson(2:end)-timesoff(1:end- 1)];

else
timediff = [timeson(1) timeson(2:end)-timesoff(1:end)];

end

%First, pullout the outliers and count them
j=1;
outliercount = 0;
In timediff = length(timediff);
while j <= Intimediff

if timediff(j)>= 25
timediff(j)=[];
outliercount = outliercount+1;
Intimediff = length(timediff);

else
j=j+1;

end
end
outliercount

% Now do the histogram
[N,X] = hist(timediff,[0.25:0.5:25]);
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N2 = medfiltl(N,7);
figure(1); cif;
bar(X,N);
hold on;
grid on;
xlabel('Time (min)');
ylabel('Counts');
set(gca,'FontName','Times','FontSize', 14);
xl = get(gca,'XLabel');
yl = get(gca,'YLabel');
set(xl,'FontSize', 1 8,'FontName','Times');
set(yl,'FontSize', 1 8,'FontName','Times');
%plot(X, N2,'r','Linewidth',2);
hold off;

totalnumberofruns = sum(N)

gfit = gamfit(timediff);
k = gfit(1)
lambda = 1/gfit(2)
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