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ABSTRACT

The overarching goal of this work is to develop a control algorithm that will allow an
active prosthetic ankle to emulate its biological equivalent. The current convention for
below-knee amputees is to use passive ankles. Previous work exists in active ankles
under state machine control and active prosthetic elbows under electromygraphic (EMG)
based control. In this paper, an investigation of methods for collecting EMG and ankle
angle data are reviewed and a preliminary correlation of the two is developed.
Experimental hardware has been designed to facilitate the simultaneous measurement of
ankle angle and EMG. Its design and functional requirements are reviewed. Ankle angle
is assumed to be linear in EMG, and a correlation is developed and evaluated from
collected data. A comparison is made between self-varified data (where one set of data is
used to develop a correlation and also to verify it) and naive data (where one set of data is
used to develop a correlation and another is used to verify it). Noise and inaccuracies in
the model resulted in correlations that could predict ankle angle at best with a 0.972
correlation coefficient. With naive data, linearity, as measured by the correlation
coefficient fell, but not as significantly as RMS, indicating a relative shift in sensitivity of
EMG channels. A lack of repeatability in predicted angle indicates an inaccuracy in the
model used or too great a degree of noise. A single position can be produced on multiple
instances by significantly different EMG signals indicating an incompleteness of the
model or poorly understood factors regarding noise and EMG sensitivity drift.

Thesis Supervisor: Hugh Herr
Title: Assistant Professor of Media Arts and Sciences
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INTRODUCTION

A long-term goal of this research is to develop a control algorithm that will allow

an active prosthetic ankle to emulate its biological equivalent. Specifically, the system

will measure the body's own control signals to determine desired ankle position and

force. The immediate goal is to investigate and characterize the relationship between the

muscles' electrical potential as measured by electromyography and the associated ankle

position in biological human legs. Once an algorithm is developed based on the

biological data, one can use it to mimic the body's interpretation of muscle control

signals with a prosthetic.

The current convention for below-knee amputees is to use passive prostheses,

whose dynamics are not governed by any sort of active control. As these devices are

purely passive, users are not able to add energy in the heel-rise and toe-off phases, as do

humans with biological legs. Such prostheses result in a gait significantly different from

that of biological legs and are inefficient for the user in terms of metabolic costs.

The alternative to a passive ankle is an active prosthesis, which allows the

addition of energy during the stride. The implementation used in this research is to drive

the ankle joint with an electric motor. One developed control method for active

prostheses is State Machine control, where the controller determines a desired ankle

position or force from expected orders of states and the recent history of position,

orientation and force profiles. While such methods have proven effective, they do not

allow the same dynamic behavior as a biological ankle. And while State Machine control
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has proven to be a robust control scheme, it is a tool whose behavior has been designed to

fit the interpreted user's desires, but is not under the user's control.

In a biological human leg, the motion of the ankle during walking is controlled in

part, by a series of muscles that span the ankle. For below-knee amputees, the truncation

of the limb occurs between the ends of these muscles, resulting in portions of truncated

muscles remaining in the residual limb. As there is no longer an ankle joint for these

muscles to control, the muscles are not actively used by the amputee and incur a

significant amount of atrophy. However, normal biological pathways still control these

truncated muscles allowing their activation level to be monitored by EMG sensors.

Over the past several decades, electromyographic signals have been investigated

for use in prosthesis control. Reading EMG allows the controller to interpret the user's

desires directly from the user's muscles signal, allowing the controller much more

immediate access to the user's intentions. Prior implementations have resulted in limited

success and high rates of user rejection. However, this work has largely been in the

context of prosthetic elbows, which have dramatically different and more precise

requirements than ankles, suggesting the possibility of prosthetic ankles as a suitable

application of EMG based control.
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THEORY

Muscles are made up of many individual bundles of muscle fibers. Multiple sets

of these bundles are functionally grouped into motor units, which are controlled by a

single alpha-motorneuron. Muscle commands arrive at the muscle via an action potential.

When the alpha-motorneuron fires, the fibers of the muscle motor unit controlled by the

neuron contract. Control of the level of contraction in the muscle is governed by the

frequency of action potentials and number of motor units activated.' EMG senses muscle

activation level by 'taping' into the human muscle signal pathway. An EMG electrode

placed on the surface of the skin measures action potentials assumed to be proportional to

the action potential in the muscle. Through this, one is able to determine muscle

activation levels.2

There are two types of electrodes commonly used for electromyography, surface

electrodes and fine wire electrodes. Surface electrodes are firmly held against the skin by

the pressure of an elastic bandage, while fine wire electrodes are embedded into the

muscle with a syringe. Fine wire electrodes measure electrical potential from a single

muscle fiber while surface electrodes measure data across the while muscle belly. Fine

wire electrodes offer a better signal to noise ratio than surface electrodes because they are

much closer to the muscle than to sources of noise. However, the process of inserting fine

wire electrodes is somewhat painful and carries a risk of infection of the site. For these

reasons, a surface electrode deemed more appropriate for the prosthetic ankle.

l Per Brodal, The Central Nervous System, Oxford University Press (2003)
2 Hogan, N, (1976) A review of the methods of processing EMG for use as a proportional control signal.
Biomedical Engineering, 83
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EXPERIMENTAL METHODS

The immediate goal of this work is to characterize the relationship between ankle

position and EMG, so that an algorithm may be developed to determine desired ankle

position from EMG. EMG is most simply correlated with muscle activation, and can be

associated with both force and position. When ankle position is fixed, the force exerted

by relevant muscles is approximately proportional to the activation of the muscle and

EMG. When the external force on the ankle is zero, the ankle's displacement from the

rest position is approximately proportional to the EMG of contracting muscles. The

nature of this relationship is complex, but explicitly assumed to be approximately linear.

When both force is nonzero and position is not fixed, both force and displacement

influence EMG obscuring the relationship. Thus the influences of position and force are

evaluated independently.

Human muscles have mechanical characteristics such that they can be

approximately modeled as springs. Thus, the force required to extend them is

approximately proportional to the quasi-static displacement from a rest position.

Additionally, the ankle joint has a rest position about which angular displacements are

approximately proportional to net muscle activation. Thus, the net torque required to

displace the ankle is approximately proportional to displacement from the rest position.

Assuming the influence of gravity and any torques from the jig are small compared to

that of muscles, the position of the ankle should be approximately correlated to muscle

activation.
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In this experiment, EMG and ankle displacement will be measured while the

ankle exerts zero external force in order to decouple the relationships of these two

quantities. The subject kept his ankle as still as possible, so the assumption of a static

relation between ankle angle and EMG is valid. Because it is difficult to hold one's ankle

precisely stationary, we will consider only angle data whose range remains within a 0.3

degree threshold.

For each trial, the subject first moves his ankle from one extreme to the other to

be sure to register the index, which assures that the angle measurement locations of one

trial match those of another. The subject will then hold his ankle still for approximately

four seconds at a series of different ankle positions in order to collect quasi-static data.

Data of ankle position and EMG will be simultaneously recorded. Post-collection, the

data of constant position will be extracted and used to determine a correlation between

EMG and ankle angle.
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APPARATUS - Experimental Hardware Design

Figure 1. A solid model of the ankle jig

In order to collect EMG and ankle angle data, it was necessary to design and build

an ankle jig. The jig has a plate that attaches to the calf of the user and a pedal for the

foot. The calf plate is fixed at one of several positions while the foot pedal rotates about

an axis lined up with the axis of the ankle. Because the human ankle is a rolling joint, the

axis of rotation actually moves with ankle angle. However, this joint is nearly

approximated by a rotary joint, as verified by users' experience of minimal slipping in the

jig. The jig is supported by a stand that has four vertical struts holding two coaxial shafts.

Two separate shafts were used so that the ankle axis could be coaxial with the shaft axes

while the ankle rests between the two sets of supports. Each side of the pedal and each

side of the calf plate is supported by one shaft or the other. A first test prototype was

created by cutting thin acrylic parts on a lasercutter in order to check sizes and motions.

After several dimensions were adjusted, a second functional version was cut. Individual
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parts were assembled with screws after drilling and taping the parts. An image of the jig

in use is shown in figure 2.

Figure 2. The laser cut acrylic jig designed to collect ankle position data.

For the jig to serve its purpose optimally, there are several functional

requirements it must meet. The jig must not obstruct ankle motion and measure ankle

angle as it travels through its full range of motion. This will allow the collection of data

from the widest possible range of angles and allow exploration of the EMG - ankle angle

relationship at the extremes where it is expected to break down.

Additionally, the pedal must exert zero torque on the ankle. For quasi-static use,

this means that the center of mass of the pedal and supports must lie on their axis of

rotation. This is only true for the quasi-static case as the pedal has a moment of inertia,

which would affect kinetic motions. The center of mass of the pedal unit can be found by

allowing the unit to come to rest under only the force of gravity. At this point the center

of mass is directly below the axis of rotation. A measurement can be made to determine

the angle of the part so that a cantilevered beam extending in the opposite direction may

be added to support a mass. With an experimentally determined appropriate mass, gravity
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will exert zero torque on the pedal in any position. This was not actually implemented in

this version of the jig, but is suggested for future iterations.

Finally, the jig must be inexpensive, quick to manufacture and precise. Because of

the relatively short timeline of this work, it is necessary to minimize the time required to

produce the jig. Because of the need to align assembled parts and shafts in bearings a

reasonable degree of precision is required. Laser cutting acrylic fit these requirements

and because of its availability was chosen as the method of manufacture. There were

several significant drawbacks of this choice. Acrylic is a rather brittle material, and

assembled parts must be fine tuned for a precise fit. Otherwise, if they are too loose parts

may move relative to one another or if they are too tight strains are likely to break one of

the parts. A further drawback of laser cutting is that the width of the laser beam varies

with height resulting in a slight angle in every cut. When assembled parts are mated on

cut surfaces, as is often the case, one must be sure to square up the sides of the part,

especially in parts that contain two parallel bearings.

Data was collected with MATLAB Simulink running on a PC104 computer. The

PC 104 read encoder data through a digital encoder card. Multiple surface EMG sensors

run from the user to a Motion System Lab 'Backpack A to D Unit', through a Motion

System Lab MA300DTU 'Desktop Unit' to the PC104's A to D board. The EMG signal

is converted from analog to digital and back to analog by the Motion System Lab system

to prevent signal degradation.
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Figure 3. Three surface EMG sensors were placed on the major antagonist muscles of the

ankle.

Three sensors were used to detect EMG of muscles controlling the ankle, the

tibialis anterior, the medial gastrocnemius and the lateral gastrocnemius. Sensors are

oriented parallel to the muscle fibers so that the electrodes are in line with the expected

direction of impulses. The location and orientation of the electrode was found to have

significant influence on noise and signal strength. It was expected that hairs between the

sensor and the skin would degrade the signal, but removal of hairs was found to not have

a noticeable effect.

US Digital HEDS encoders were used to measure ankle angle. These quadrature

encoders have a resolution of 2000 positions per revolution. HEDS encoders have a
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separate reader and disk, which must be accurately aligned. Using the laser cutter to

create encoder mounting holes was an easy way to obtain the necessary precision.

EXPERIMENTAL ANALYSIS

Both encoder and EMG data require significant processing before it can be used

to develop a reasonable correlation. Data processing was done post-collection in

MATLAB.

The HEDs encoders used in the jig are indexed. When data collection begins the

encoder assigns the initial position the value zero independent of its location relative to

the index. Then, whenever the index is registered the count is reset to zero. As a result,

unless the encoder began right on the index, the encoder value will jump to zero the first

time the index is registered. If the encoder is properly adjusted and is not 'skipping' ticks,

the value should continuously pass through zero at subsequent index registrations, but not

jump as it did the first time. Encoder, EMG and time data from before the index

registration is unwanted because the encoder data will be shifted, thus it is thrown away.

Next, the EMG data undergoes some processing. Muscle activation shows up in

EMG in both the amplitude and frequency of the pulses. Because EMG measures series

of zero-summing pulses, if low pass filtered EMG signals will tend to zero, independent

of activation. To obtain activation data from EMG, the EMG data is full wave rectified

by taking its absolute value.
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Because EMG sensors are reading very small electrical signals any noise that is

present tends to be large in comparison. Additionally, because the signal is simply

electric potential, many sources of electrical potential are present from 60 Hz AC noise to

other biological sources to signals picked up on the antenna-like electrode wire. While

the frequency of all noise is not obvious upon inspection, there is clearly a component at

a frequency much greater than motion of ankle and actual control signals. Thus the signal

is passed through a low pass filter to attenuate high frequency noise. Two approaches

were considered in attempts to attenuate high frequency noise, low pass filters and time

averaging. A simple first order low pass filter and a Butterworth filter were considered, as

was averaging a fixed size window of contiguous data points. According to Hogan's

work with EMG signal conditioning, a time averaging method yields a 50 percent better

signal to noise ratio than either of the low pass filters.3 Thus, a time averaging method

was employed.

Encoder data is evaluated in order to find segments of constant angular position.

Only data at constant position meets the desired zero external torque constraint, so

encoder data is broken into small two tenth second segments which are logged in an

encoder-flat index if variation in position is less than 0.3 degrees. The encoder-flat index

is called an index because values in it refer to positions in the encoder data array. It is not

to be confused with the zero position index on the encoder disc itself. Segments of EMG,

encoder and time data that meet the constant position constraint are saved while those

that do not are discarded.

3 Hogan, N, (1976) A review of the methods of processing EMG for use as a proportional control signal.
Biomedical Engineering, 81-86
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Finally, a correlation between EMG and ankle angle is developed and used to

predict ankle angle from EMG. It is assumed that for a quasi-static ankle angle the

relationship between ankle position and EMG is,

Oeq =B.A (1)

where eq* is a m x 1 vector of unknown ankle position values. B is an m x n+l matrix

holding m samples from each of n EMG channels and the last column is all ones. A is an

n+l x 1 vector containing n slope values and the rest position.

Oeq Oeq = B A (2)

By comparing 0eq to Oeq* one can evaluate the accuracy of the assumed relationship.

Using the Moore Penrose pseudo inverse, A can be solved.

A = (B T .B)-' BT .eq (3)

The vector A is found using the Moore Penrose pseudo inverse, as demonstrated in

equation 3 anjd used in equation 1 to solve for a predicted ankle angle.
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RESULTS & DISCUSSION
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Figure 4. (top) Raw, indexed, and flat encoder data. (middle) Raw EMG data. (bottom) Filtered and flat
EMG data. Note that 'flat EMG' data does not necessarily obey any 'flat' constraints; it is EMG data
corresponding to encoder data the obeys the quasi static angle constraint. Trial 5. No cocontraction.

As a preliminary evaluation of the EMG to ankle angle correlation, predicted data

is compared to measured data which was used to determine the correlation. Using a

single set of data to create the correlation and verify it will result in the closest result

from the correlation as can be expected. The alternative is to use 'naYve data.' In this

case, measured ankle position is compared to ankle position as predicted from EMG and

a correlation derived from a different data set.
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Cocontraction is where a set of antagonist muscles are both contracting, however,

as they oppose each other, their shared force cancel one another and result in zero net

force. When flexing like a 'muscle man' to show the size of one's bicep, one is

cocontracting the bicep and tricep. R is the correlation coefficient, indicating the linearity

of the dataset. RMS is the root mean square.

For each trial shown the first plot is a comparison of measured ankle angle and

predicted angle calculated from measured EMG. The second is a comparison the two

ankle angles as a function of time.

Trial 5. Self-varified. No cocontraction.
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Figure 5. No cocontraction. Measured encoder position vs. predicted encoder position.

R=.972,
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Figure 6. No cocontraction. Actual flat ankle position and predicted ankle position as a

function of time. RMS=5.12

For self-verified data, predicted and measured angle data generally follow the

expected trend, achieving correlation coefficients of .972 for non-cocontraction data and

.943 for cocontraction data. However, naive data fared much worse with correlation

coefficients of .870 and .930. Further, correlation coefficient only addresses the linearity

of the data. A better measure of the quality of predicted angle is the root mean square

(RMS) of the difference between measured ankle angle and predicted ankle angle. While

the RMS for self-verified non-cocontraction and cocontraction data were 5.12 degrees

and 7.83 degrees respectively, for naive data they were 53.05 degrees and 23.81 degrees.

For self-verified data the difference between cocontraction and non-cocontraction

is subtle, with the correlation for cocontraction data slightly worse than that of non-

cocontraction. Figure 5 shows that often predicted position fell within a tighter band for a

given measured position than with non-cocontraction data. Note the predicted positions
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for encoder values from 5 to 10 degrees in figure 7. This may be caused by nonlinearities

between EMG and contraction at higher activations. It is unlikely, however, that this

deviation from measured data is caused by something like noise as predicted position

values fell into such a tight range.

Trial 4. Self-verified. Cocontraction.

An
tUV

30

· 20
(U
o 10

CS

.o 00
· -10
.o

-20

-30

-40
-40 -20 0 20 40

Encoder Position (degrees)

Figure 7. Cocontraction. Measured encoder position vs. predicted encoder position.

R=.943
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Figure 8. Cocontraction. Actual flat ankle position and predicted ankle position as a

function of time. RMS=7.83

Of naYve data, cocontraction produced a better prediction than did non-cocontraction.

However, naYve data seems to be fundamentally much worse. Perhaps some of the EMG

sensors were shifted between the two trials. As the sensor signal strength was shown to

be very sensitive to sensor location, such a physical shift of the sensor would alter the

magnitude of EMG signal and thus also alter predicted angle values.
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Trial 5 trained on trial 11. NaYve. No cocontraction.
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Trial 4 trained on trial 8. Naive. Cocontraction
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Figure 11. Cocontraction. NaYve data. R=.930
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Figure 12. Cocontraction. Naive data. RMS=23.81
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Alternatively, the differences between the na'ive cocontraction and non-

contraction may not have to do with cocontraction at all. The cocontraction trials 4 and 8

occurred in closer temporal proximity than did the non-cocontraction trials 5 and 11.

Perhaps a slow drift is constantly occurring making greater variations more likely when

more time has passed between the collection of correlation data and its use. Such a theory

could be validated or disproved by recording time delays between trials used to create a

correlation and a naive data set with which the correlation is used.

While such influences as slow EMG sensitivity drifts are possibilities for causes

of error or noise, what is certain is that there is some factor which influences EMG that

we are not considering. If the ankle goes to a certain position and later returns to the same

position, the body is interpreting two sets of biological signals with an identical result.

Experimental trials, however, have shown that two identical ankle positions can be

produced by significantly different sets of EMG. This difference may be caused by an

addition of external sources of noise to the biological signal or actual different biological

signals, which the body interprets as the same position. Either way, to produce a model

capable of better interpreting EMG one must find ways of further reducing noise or better

understand what factors affect how the body interprets biological electrical signals.
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CONCLUSION

While Hogan and others had limited success using EMG for the control of a

prosthetic elbow, the functional requirements for an ankle are significantly different and

leave the potential for greater success with ankle prostheses. Arms are involved in a

diverse set of dexterous tasks that require a high level of precision. On the contrary,

ankles are involved in variations of one single type of motion, that of walking. Although

there are variations of ankle torque and angle profiles at different speeds of walking, it

would be possible to use EMG inputs to determine a desired gait profile and at what point

the user is the gait cycle, but use this information only to choose from a known set of safe

ankle motions.

Somewhat similar to this idea is Hogan's concept of threshold control.4 In order to

avoid both jittering due to low frequency noise and time lag due to filtering, Hogan

suggests a nonlinear control scheme. In this case small variations from the rest EMG are

ignored all together and the joint is actuated only when EMG surpass a given threshold.

This scheme is proposed in the context of an elbow for which precise motion is integral

to the usability of the prosthesis. However such concepts like thresholding could be

applied to the motion of ankles allowing them to retain the more biologically inspired

approach while avoiding the pitfalls of dealing with such a noisy input. However, while

such systems may provide greater usability, they are straying from the initial goal of

creating a system capable of accurate mimicry of the biological human equivalent.

4 Hogan, N, (1976) A review of the methods of processing EMG for use as a proportional control signal.
Biomedical Engineering, 85
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Biological human control systems have a major advantage over prosthetic

systems. That is, biological systems are closed loop because sensory systems pass

information about the location of the ankle back to the brain. However, the prosthetic

does not have a means for communicating any information back to the controller or user.

This fundamental difference between the two systems is part of what makes designing a

successful controller difficult.

While building a successful correlation between EMG and ankle position is a

fundamental challenge in the large-scale goal of using EMG to control an active

prosthesis, there are also other challenges. All data collected for this work was from a

subject with healthy biological legs. While truncated muscles are present in the residual

limbs of amputees, these muscles have not only been truncated but are not actively used

and are subject to atrophy. Such considerations were not involved in the preliminary level

development of this work, but will be come relevant as work continues.

Finally, for future work, I suggest the investigation of nonlinear correlations.

Filtered EMG data seems to have a somewhat linear relationship with position while the

muscle is in contraction, but a constant relationship when it is being extended. This is

somewhat intuitive as muscles can only exert tensile forces. Employing a higher order

correlation would allow an approximation to this observed nonlinearity.
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APPENDIX

MATLAB data processing script

%nofn- 3;
%Rofnr ];
chunk = 1000;
%for n = 1.001:1.000:19001

% disp(['n ' ,nurn2str(n) ])

i;n must be CDD
n = 3001;
%close
close
close
close
- cl ear
load LouisData501_11

%encoderdata= encoderdata(1:150000);
%EMGdata=EMGdata(1:150000,:);
%Time=Time(1:150000);

figure (2)
subplot (3,1,1)
hold on
plot (Time, encoderdata(:,2),'b:')

subplot (3,1,2)
hold on
plot(Time,EMGdata (:,1))
legend('Raw')
axis([0 60 -2 2])
xlabel('Time (Seconds)')
ylabel('EMG (Volts)')

%4, 5, 8 11 are ok trials

f find the ..ndex

encoderindexedat=0;
for i=l:length(encoderdata)-1

if abs(encoderdata(i+l,2)-encoderdata(i,2))>1
encoderindexedat=i+l;
end

end

':cuit off data before index and
.Smake encoderdata one channel/get rid of encoder 1.
dataindex = length(encoderdata);
encoderdata=encoderdata(encoderindexedat:dataindex,2);
EMGdata=EMGdata(encoderindexedat:dataindex,:);
Time = Time(encoderindexedat:dataindex);

figure (2)
subplot(3,1,1)
plot (Time, encoderdata,'-k')

%EMGdata=EMGcdata(8000:end, :);
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Ti.m.e=Ti.me (8000: end);
%encoderdata=encoderdata (8000 :end,: );

%%figure (3)
%%subplot (3, 1, )

%%plot (EMGdata(:,l))

%;rectify
EMGrectified=abs(EMGdata);

%ti..me averaging
'% :i n=5000;
EMGcumsum=cumsum(EMGrectified);
%EMGcmsumshifted=EMGcasum (n: end,:);
%EMGcumsm=ur-EMGclmsi ( 1: end-n+l,: :);
%;EI.MGT'A= (E;MGc umsumshi fted-:EMGcumsum) /n;

N = length(EMGrectified);
windowLength = n;
halfLength = (windowLength-1)/2;
typadded - [zeros(il,windowLength), y, zeros(1l,windowLength)];
%tpadded - [-windowLength::-l, t, t(N)+l:l:t (N)+windowLength];
%Npad = length(ypadded);
EMGcumsum = cumsum(EMGrectified);
EMGforwardshift = [EMGcumsum', zeros(3, windowLength)]';
EMGbackwardshift = [zeros(3, windowLength), EMGcumsum']';
EMGwindowed = ( EMGforwardshift - EMGbackwardshift );

% get average without accounting for padded ends
EMGTA = EMGwindowed(halfLength+l:N+halfLength,:)/windowLength;
% get average at edges
for i = l:halfLength + 1

EMGTA(i,:) = EMGwindowed(halfLength+i,:)/(halfLength + i);
end
for i = l:halfLength

EMGTA(N-halfLength+i,:) = sum(EMGrectified(N-
halfLength+i:N,:))/(halfLength-i+l);
end

%E:MGTA. = E:MGw.inavg;
%encoderd.ataTA=encoderdata (n: end);

%TimeTA = Time(n:end);

%-hold on
%plot(Time, EMGrectified(:,l.), 'r')
%plot (Time,EMGTA(:, 1) )

'I% figure (3)
%%subplot (3, 1]..,2)
%%plot EMGTA(:,1))
'shold on
%% slbplot ( 3,1., 3 )
%%plot (encocdierdata}

%create index of flat portions
%chunk=3000; %size of data chunk that must be within delta 'jiggle'
jiggle=.3; %degrees.
flatindex= [];
for i=l:chunk:length(encoderdata)-chunk

if range(encoderdata(i:i+chunk))<jiggle
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flatindex=[flatindex; i];
end

end

%concatinate flats in encoderdata.
encoderdataflat= [];
EMGflat= [];
Timeflat = [];
for i= 1 : length(flatindex)

slice=encoderdata(flatindex(i):flatindex(i)+chunk);
encoderdataflat=[encoderdataflat;slice];
slice=EMGTA(flatindex(i):flatindex(i)+chunk,:);
EMGflat= [EMGflat;slice];
slice = Time(flatindex(i):flatindex(i)+chunk);
Timeflat = [Timeflat;slice];

end

93: B ~ $I <<, !5 s~s;'e SL ;'b <;< 55 $; i; ; SL j55 ;6Lj% sA9: % 0- 8 %Es5 ;S I 8'; j % S s% <;% $ % % '.6.;

%EMGflat= [EMGfl.at;EMGf.lat2];
%encoderdataflat= [erncoderdataflat; encoderdataflat2];
%Timef at= [Timeflat;Timeflat2];

figure (2)
subplot(3,1,1)
plot (Timeflat, encoderdataflat,'k.')
legend('Raw', 'Indexed', 'Flat')
xlabel('Time (Seconds)')
ylabel('Angle (Degrees)')

subplot(3,1,3)
hold on.
plot (Time,EMGdata (:, 1)
spot (Tirne, EGwindowed(l:length (Time) , 1)./2239, '-k')
plot(Time, EMGTA(:,l),'r')
plot(Timeflat,EMGflat(:,l),'k.')
%plot([0:60],zeros(61),'k')
legend('Filtered','Flat')
xlabel('Time (Seconds)')
ylabel('EMG (Volts)')
axis([0 60 0 .3])

%temp check time average code
.%figure (6)
,"i s bplot (2,:]1, )

s% subp.ot (2,:1, 2)
.%plot encoderdataflat)

%normalize again so 2 and. 3 are norm.a.l.i.zed also.
EMGflat(:,1)=EMGflat(:,l)/max(EMGTA(:,l));
EMGflat(:,2)=EMGflat(:,2)/max(EMGTA(:,2));
EMGflat(:,3)=EMGflat(:,3)/max(EMGTA(:,3));

%Sfi.nd coori. l. ati.on
A=[EMGflat,ones(length(EMGflat),1)];

answer=inv (A"*A)*A' *encoderdatafla.;

'i%plot (encoderdataflat, ' r- ' )
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ang= -40:1:40;

%Rfigure (2)
%isubplot (3,1, 1)

)51splot (encoderdataflat, EMGfl..at(:,l, '.'!
p.ot ang, ang/answer(1!)-answer(4)/answer(l))

%%subp ot 3,1,2)
%gpl.ot (encoderdataflat, EMGfl.at(:,2),'.')
%plot(ang, ang/answer(2)-answer(4)/answer(2))

V%%subpot (3,1,3)
%%pl]ot (enccderdatafl.at, EMGflat (:,3j,'.')
%pl.ot(ang, ang/answer(3)-answer(4)/answer(3))%, : %., 3, %j % % % % % j, % % % % % % % % '% % % % % %. % % % % % % .% C% % %

%use corri..ation to predict angl.e from EMG with another set of data.'4%~~~~~S5~~ % % % S % %% s % % % % %

anglepredicted= EMGflat*answer(l:3) + answer(4)*ones(length(EMGflat),l);

figure (5)
hold on
plot(Timeflat,anglepredicted,'b-')
plot (Timeflat, encoderdataflat,'b.')
axis([0 60 -70 50])
legend( 'Predicted Position', 'Actual Position')
xlabel('Time (Seconds)')
ylabel('Angle (Degrees)')

figure (1)
hold on
plot (encoderdataflat, anglepredicted,'b.')
axis ([-40,40, -40,40])
plot([-40,40], [-40,40])
xlabel('Encoder Position (degrees)')
ylabel('Predicted Position (degrees)')

%%figure (7)
%%plot (encoderdataflat, angepredicted, '.')

rms= (sum((anglepredicted-encoderdataflat) . ^2)/length (anglepredicted)) .^. 5

R=corrcoef(encoderdataflat,anglepredicted);
.nofn= [nofn, n ];

%Rofn=[Ro Rofn, R(2,1) ];
ie nd
'plot (nofn, ofn, '.')

.o s .o -% .

:EMGf at2=EM(G;f at;
%eer..coderdataflat2=encoderda tafla t;
%Tirnefiat 2=Ti.me flat;
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