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Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic 

~crystals. While the basic concept of block copolymer based photonic band gap materials has been well 

~demonstrated, little work has been achieved yet in terms of realizing optically active devices using these materials. 

:[n this thesis, the utilization of block copolymer photonic crystals for creating self-assembled active optical 

lelements has been experimentally explored with a special emphasis on optically driven lasing and stimulus 

:responsive tunable reflectors. In pursuing these primary objectives, control of thin film microdomain orientation 

,and novel three-dimensional (3D) optical characterization of block copolymer photonic crystals have been also 

,acheved, both of which can greatly help optimize the properties of block copolymer photonic crystals. 

First, a laser cavity using block copolymer based one-dimensional (ID) photonic crystals has been 

'demonstrated. Optically pumped surface-emitting lasing has been obtained using a dye-doped polymers as the 

,organic gain medium and the self-assembled block copolymer as the spectral-band selective distributed Bragg 

reflector feedback element. We also developed a novel organiclinorganic hybrid photonic crystal containing a dye- 

'doped defect layer for defect-mode photonic bandgap lasing. Low threshold lasing has been demonstrated at a 

single defect-mode wavelength of the 1D photonic bandgap structure resulting from the inhibited density of states 

,of photons within the stop band and the enhanced rates of spontaneous emission at the localized resonant defect 

mode. 

Second, stimulus responsive tunable self-assembled reflectors based on 1D block copolymer photonic 

crystals have been studied. Three external stimuli such as solvent, temperature, and compressive mechanical strain 

have been employed to modulate microstructural and material properties of block copolymer photonic crystals, 

resulting in effective tuning of the spectral characteristics of block copolymer photonic structures. 

Finally, control of the microdomain orientation of 1D and 2D block copolymer photonic crystals has been 

achieved over a large area via directional solidification of solvent. Moreover, an intriguing ordering behavior of 

these ultrahigh molecular weight block copolymers has been revealed, which is dramatically different from that of 

typical molecular weight block copolymers. These highly oriented thin film microdomain patterns have been 

explored via 3D optical imaging using laser scanning confocal microscopy. 
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Title: Morris Cohen Professor of Materials Science and Engineering 
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Foreword 

Motivation and Objective 

Self-assembled block copolymer systems with an appropriate molecular weight 

to produce a domain size comparable to the wavelength of light have attained increasing 

attention as alternative building blocks to fabricate photonic crystals in the visible and 

near-IR frequencies. ID, 2D, and 3D photonic crystals have been successfully 

demonstrated with various microdomain structures created through microphase 

separation of block copolymers. The size and shape of periodic microstructures of block 

copolymers can be readily tuned by controlling molecular parameters such as molecular 

weight, relative composition, chain architecture, and persistence length, or by blending 

with homopolymer or plasticizer. The versatility of block copolymer based photonic 

crystals is further increased by incorporating inorganic nanoparticles, liquid crystalline 

guest molecules (or using a liquid crystalline block) or selectively etching one of 

microdomains with the possibility to backfill with high index materials. There are many 

advantages for employing self-assembled block copolymers for photonic applications, 

which include the ease of processing; the ability to include both inorganic and organic 

materials within the block copolymer photonic crystal; and the fact that it is relatively 

easy to manipulate block copolymer photonic structures via numerous external fields. 

Over the past decade, block copolymers have proven to be a unique and versatile 

materials platform for constructing large-area well-ordered photonic bandgap structures. 

While the idea of using block copolymer based photonic band gap materials as passive 

photonic structures has been well established, little work has been achieved yet for 



realizing active photonic devices using these materials. The objective of this research is 

to create active photonic elements based on block copolymer photonic crystals, 

including photonic microcavities for optically driven lasing and stimulus responsive 

self-assembled reflectors for sensing and display applications. In pursuing these primary 

objectives, novel processing and characterization methods for optimizing photonic 

properties of block copolymer photonic crystals will be also explored. 

Thesis Overview 

This thesis is composed of seven chapters and one appendix. References are 

provided at the end of each chapter. 

Chapter 1 serves as an introduction to block copolymer based photonic crystals 

and as a review on the pervious studies of these materials upon which this thesis work 

has been built. The morphologies and optical properties of block copolymer based 

photonic crystals and block copolymer-nanoparticle composites are discussed and ID, 

2D, and 3D photonic crystals from lamellar-, cylinder-, and double-gyroid-forming 

diblock copolymers are illustrated. Nanocomposite photonic materials based on block 

copolymers and inorganic nanocrystals provide an essential way to enhance the inherent 

low dielectric contrast of neat block copolymers. Examples of switchable block 

copolymer-based photonic materials using external stimuli such as thermal and 

mechanical forces have been also demonstrated. The challenges in making block 

copolymers more useful as photonic materials are discussed, including attaining large 



domain periodicities, attaining a high dielectric contrast, controlling the long-range 

domain order, and purposefully introducing specific defects. 

Chapter 2 provides information about materials and experimental methods used 

in this research. Synthetic procedures and molecular characterizations of ultrahigh 

molecular weight poly(styrene-b-isoprene) (PS-b-PI) diblock copolymers are presented. 

Experimental techniques for microstructural characterization of the block copolymers 

such as ultrasmall angle X-ray scattering (USAXS), transmission electron microscopy 

(TEM), and laser scanning confocal microscopy (LSCM) are described. Finally, various 

spectroscopic techniques for optical characterization of block copolymer photonic 

crystals, organic laser dyes, and devices using these materials are summarized. 

Chapter 3 describes results from our investigation of optically-pumped defect- 

mode lasing with a dye-doped organiclinorganic hybrid 1D photonic crystal. This 

defect-mode laser structure has been studied as a "model" system from which a basic 

understanding of the main factors affecting optically pumped lasing with dye-doped 

photonic crystals has been developed. 

Chapter 4 explores a laser cavity enabled with block copolymer based photonic 

crystal. Polymeric distributed Bragg reflectors (DBRs) were prepared through the self- 

assembly of PS-b-PI lamellar diblock copolymer having a 1D photonic bandgap 

matching with the fluorescent emission spectrum of a gain medium. Optically pumped 

surface-emitting lasing is then demonstrated using the polymeric self-assembled DBR 

as a spectral-band selective feedback element. 

Chapter 5 presents stimulus responsive tunable self-assembled reflectors using a 

lamellar block copolymer based photonic crystal. Three external stimuli, solvent, 

temperature, and compressive mechanical strain, have been used to modulate 



microstructural and material properties of the PS-b-PI photonic block copolymer system, 

resulting in effective tuning of the spectral response of the self-assembled reflectors. 

Chapter 6 shows how we can achieve excellent control of thin film microdomain 

orientation of lamellar- and cylinder-forming block copolymer photonic crystals over a 

large area via directional solidification of a solvent. Moreover, an intriguing ordering 

behavior of these ultrahigh molecular weight block copolymers, which is dramatically 

different from that of typical molecular weight block copolymers, has been revealed by 

3D optical imaging via laser scanning confocal microscopy. 

Chapter 7 presents a summary of accomplishments of this thesis work and 

suggests future research opportunities that can be continued based on the present work. 

Appendix covers the results of the study into polyolefin based photonic bandgap 

materials, in which random copolymerization of olefin monomers was employed to tune 

the refractive index of each block and to suppress the crystallinity for optical 

transparency of the polyolefin based photonic structures. 



Chapter 1. 

Introduction to Block Copolymer based 

Photonic Bandgap Materials 

Block copolymers spontaneously phase separate to form interesting microdomains on the 

length scale of the respective blocks. Various periodic microdomain structures of block 

copolymers can be created by tailoring molecular parameters such as molecular weight, 

composition, chain architecture, and the persistence lengths of constituent blocks. With 

advances in synthetic capability to prepare ultrahigh molecular weight (> 500 kglmol) 

block copolymers having large domain sizes that can interact strongly with light of visible 

wavelength, block copolymers have emerged as promising candidate materials for 

constructing photonic crystals at optical and near infrared frequencies. In this chapter, we 

will briefly review the recent progress in the development of photonic-bandgap materials 

enabled with self-assembly of block copolymers, discussing the morphology and photonic 

properties of various block copolymer based photonic materials and nanocomposite 

additives. 

Parts of this chapter were featured in: J. Yoon, W. Lee, E. L. Thomas MRS Bulletin 2005 721-726. 



1.1. Photonic Crystals 

Since their first concept was independently proposed by ~ablonovitch' and ~ohn* in 

1987, photonic crystals have been of intense interest for researchers because of their unique 

electromagnetic properties, particularly their ability to trap and guide the propagation of 

light, thus promising many revolutionary applications in the fields of optical 

communication and ~~toelectronics.~' Photonic crystals are defined as ordered structures 

with a periodic variation of the dielectric constants.' The spatial periodicity and 

dimensionality of the crystal determine the photonic bandgap, a range of fkequencies in 

which the propagation of electromagnetic waves is prohibited in certain crystallographic 

directions!' ' For example, if the spatial periodicity of refkactive index is along one 

direction, we call it a one-dimensional (ID) photonic crystal and a propagation of light 

having a wave vector component parallel to this direction is significantly affected due to the 

Bragg scattering at interfaces. Two- (2D) and three-dimensional (3D) photonic crystals are 

defined in a similar manner as schematically shown in Figure 1.1. The size of respective 

domains or the lattice constant of the photonic crystal is on the order of the wavelength of 

relevant electromagnetic waves. 

Experimentally, a variety of processing methods have been used to construct 

photonic crystals operating at near-IR and optical fkequencies. Lithographic methods based 

upon semiconductor fabrication techniques using masks have been widely utilized to make 

2D photonic crystals and even some 3D photonic crystals, although fabrication of 3D 

photonic crystals by this approach requires many processing ~ t e ~ s . ~ - ' ~  Holography or 



multiple-beam interference lithography holds much promise, especially for making 3D 

photonic structures with much less effort than conventional lithographic tools."' l2 Many 

unconventional schemes such as two-photon lithography13' 14, ink deposition", and phase 

mask lithography16 have been also proposed to fabricate 3D photonic structures. 

n ~ :  high index domain n ~ :  low index domain 

a: domain periodicity 

1 D Photonic Crystal 2D Photonic Crystal 3D Photonic Crystal 

Figure 1.1: A schematic diagram of ID, 2D, 3D periodic photonic crystals composed of high (blue) 

and low (green) refractive index domains. This diagram was adopted from [5 ] .  

Besides these top-down lithographic approaches, bottom-up self-assembly methods 

have also been actively pursued for making photonic-bandgap structures. Synthetic opals 

made of spherical silica or polymeric colloidal particles have been extensively studied. 17'18 

The closed-packed structures yield the face-centered cubic (FCC) structure or, after 

infiltration by a second material and removal of the original spheres, the inverse FCC 

struct~re.'~ More recently, block copolymers have emerged as alternative platform material 

for fabricating photonic crystals, because of their inherent flexibility in accessing a variety 



of ID, 2D, and 3D periodic structures; their ability to incorporate a wide choice of 

materials including the possibility of high-dielectric and optically active nanoparticle 

additives; and their relatively straightforward, cost-effective processing methods.*' 

1.2. ID, 2D, and 3D Block Copolymer Photonic Crystals 

Photonic crystals will be an important part of future optical systems. For example, a 

discrete region of different index or geometry that serves to break the symmetry inside the 

photonic crystal can serve as an optical cavity, while a line defect can act as a waveguide 

and a surface defect can act like a mirror. As these features are all on the size scale of the 

wavelength of light, this affords both integration and miniaturization of optical devices. 

Even the most basic photonic crystal, a 1D multilayer stack in which the dielectric constant 

varies along only one direction, can act as a notch filter (a filter that can pass a narrow 

wavelength range of incident light) by incorporating a single defect layer in the stack. 

Multilayer devices are normally fabricated by various layer-by-layer approaches such as 

vacuum deposition, sputtering, co-extrusion, or spin-coating methods. Another way to 

produce 1D photonic crystals is by self-assembly of lamellar block copolymers. 

Block copolymers, macromolecules comprising chemically distinct polymer chains 

covalently connected to each other, self-assemble to create a variety of periodic 

str~ctures.~' The self-assembly of block copolymers is driven by a competition between the 

positive enthalpy of mixing of the respective block chains and the tendency for the 



polymers to desire a random coil configuration. When XN is larger than a certain value (e.g., 

10.5 for symmetric diblocks), where x is the Flory-Huggins interaction parameter between 

blocks and N is the total degree of polymerization (equal to the total numbers of A 

monomers and B monomers) of the block copolymer, microphase separation into well- 

defined domain structures occurs on the length scale of the respective blocks. For example, 

in the case of simple linear A-B diblock copolymers, the volume fraction f and XN 

determine the four equilibrium morphologies: lamellae, double gyroid networks, 

hexagonally packed cylinders, and body-centered cubic (BCC) spheres, as schematically 

shown in Figure 1.2. The diversity of block copolymer microstructures in terms of 

microdomain size and shape is greatly increased by changing the number of components, 

the architecture, the persistence length (a measure of the local straightness of the polymer 

chain) of the constituting chains, or by blending with additives (homopolymers, plasticizers, 

etc.). For example, A-B-C terpolymers, in which three chemically different blocks are 

either connected in a series via two junctions or connected to a single junction to form 

miktoarm ("mixed arm" in Greek) star polymers, exhibit a range of more complex 

morphologies compared with simple diblock copolymers.22 The wide range of 

microstructures accessible from the self-assembly of block copolymers has made them 

excellent candidate materials for numerous nanotechnological applications, including 

photonic-bandgap materials. 20,23 

Block copolymers of typical molecular weight (- 50 kglmol) form microdomains on 

a typical length scale (- 20 nrn) that is insufficient for optical applications. What is needed 

in order to produce a bandgap at visible or near-IR wavelengths is to increase the average 



domain size to on the order of W4ni, where ni is the index of refraction of the respective 

block and h is the wavelength of light. For 600 nm visible (red) light, and for a typical 

polymer index of 1.5, this calls for an individual block layer thickness of approximately 

100 nm, requiring a block molecular weight of -500 kglmol and a total polymer molecular 

weight of around 1,000 kg/mol. Such large domain spacings can also be accessed by 

employing somewhat lower-molecular-weight copolymers (e.g., -200 kg/mol per block) 

and swelling the respective domains by blending with low-molecular-weight 

homopolymers or nonvolatile plasticizers, or by employing rigid, rodlike polymers with a 

large persistence length. 

Figure 1.2: .A schematic diagram showing various bulk morphologies of linear diblock copolymer, 

poly(A-b-B), as a hc t ion  of volume fraction of A block (The double diamond bicontinuous 

network structure does not occur for simple diblocks). This diagram was adopted from Dr. Banita 

Dair . 
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Figure 1.3: ID, 2D, 3D photonic crystals from (a) lamellar (from [26]) (b) cylindrical (from [32]) 

and (c) double gyroid (from [36]) morphologies of PS-b-PI block copolymers, respectively. Figure 

1.3(a) is a TEM image of an Os04 stained PS-b-PI diblock, Figure 1.3(b) is an AFM image of 

cylindrical PS-bPI diblock, Figure 1.3 (c) is a SEM image of ozone-etched double gyroid PS-b-PI 

diblock. 

The first example of a visible block copolymer photonic crystal was achieved by 

using a symmetric poly(styrene-b-isoprene) (PS-b-PI) diblock copolymer with approximate 

molecular weights of 200 kglmol per block and forming a 60120120 ternary blend with the 

respective homopolymer of each block. 24, 25 Indeed, the systematic blending of low- 

molecular-weight homopolymers into the host block copolymer provides a way to open the 

photonic bandgap (the so called "stop band") across the entire visible wavelength range by 

simply controlling the amount of blended h ~ m o ~ o l y m e r s . ~ ~  More recently, block 

copolymers based on readily available olefins were developed to construct self-assembled 

photonic crystals of improved thermal stability and processability. Random 

copolymerization of olefm monomers provided a route to tune the refractive index of each 

block as well as to suppress the crystallinity for optical transparency. This work was in 



collaboration with Dr. Robert Mathers and Prof. Geoffrey Coates at Cornell University (see 

appendix). Some examples of block copolymer based ID, 2D, 3D photonic crystals are 

depicted in Figure 1.3. 

A convenient way to understand the optical properties of a photonic crystal is to 

examine the dispersion relationship between the frequency o and the direction of the wave 

vector k of incident light. If we consider an infinite periodic medium, the w(k) relationship 

can be derived from solutions to Maxwell's equations and is displayed as a band diagram.27 

The dispersion relationship of a 1D photonic crystal has been also analytically derived by 

Yeh et a1.28 Figure 1.4 is an illustration of the band diagram for a multilayer system with 

layer thicknesses and refractive indices illustrative of 1D photonic crystal of a lamellar- 

forming PS-b-PI block copolymer, and provides information on sample reflectivity as a 

function of incidence angle and polarization of the incident electromagnetic waves. 29, 30 

The areas between the first band (blue) and the second band (red) and above the third (red) 

band on the diagram represent propagating modes, while the areas between the second and 

the third band represent the nonpropagating evanescent modes. Light in this range of 

wavelengths incident for the particular kll vector (a projected k vector parallel to the 

interface between two domains) is reflected by constructive interference from the set of 

periodically spaced interfaces between the two types of domain. The plot also shows how 

the center wavelength of the bandgap is shifted to a shorter wavelength (or a higher 

frequency) as the incidence angle moves from normal (kll = 0)  toward grazing (light line). 

Thus, a film appearing green when viewed at normal incidence appears blue when viewed 

at an angle far off the normal. 



Figure 1.4: A band diagram (dimensionless frequency vs. dimensionless wavevector) using the 

refractive indices of polystyrene (rips = 1.59) and polyisoprene (npI = 1.5 1) and the layer thicknesses 

of a PS-b-PI block copolymer (dps = dpI = 100 nm). The transverseelectric (TE) polarization modes 

are on the right side, and the left side is for the transverse-magnetic (TM) polarized light. The 

numerical code was written by Dr. Martin Maldovan at MIT. (c: speed of light in a vacuum, a: 

lamellar domain periodicity = dPS+dPI) 

A second way to understand the same sort of reflectance data for afinite photonic 

crystal, which is more experimentally relevant, is to plot the magnitude of the reflectivity 

(this depends on the dielectric contrast (E~ /E~ )  and, importantly, on the number of periods in 

the photonic crystal) as a h c t i o n  of polarization, wavelength, and incident angle of light 

as shown in Figure 1.5. This type of calculation can be done using the transfer matrix 

method3', which also allows one to include finite material absorption in the calculation as 

well as optical anisotropy. 



Incidence Angle (deg.) 

Figure 1.5: Reflectivity plot constructed by the transfer matrix method for a 20-period stack of 

alternating PS (n = 1.59) and PI (n = 1.5 1) layers (glass substrate-(PS layer-PI layer)20-air), for TM 

(left) and TE polarization (right), respectively. Each layer is assumed to be 100 nrn thick. The color 

represents the strength of the reflectivity at a particular polarization, frequency, and angle of 

incidence of incident light. 

Two-dimensionally periodic block copolymer photonic crystals have been also 

demonstrated using self-assembly. In this case, a cylinder-forming PS-b-PI diblock 

copolymer was roll-cast to realize a long-range-ordered 2D periodic photonic crystal 

structure.32 The bandgap exists in the plane of the domain periodicity; thus, light 

propagating perpendicular to the cylinder axis is reflected. The small dielectric contrast 



(-1.1) in the PSIPI material produced only a partial photonic bandgap. In order to achieve a 

complete bandgap for both transverse-electric (TE) and transverse-magnetic (TM) 

polarizations in the hexagonal cylinder structure, a minimum dielectric contrast of 7.2: 1 is 

necessary. This illustrates the challenge to somehow access a much higher dielectric 

contrast than is inherent to polymeric systems. 

A three-dimensionally periodic photonic crystal with a complete photonic bandgap 

in the optical or near-IR frequencies has been one of the main challenges for researchers 

since the inception of the field in 1987. Yablonovitch first proposed that a FCC 

arrangement of dielectric cubes would provide the sought-after complete bandgap.33 

Researchers attempted to create such a FCC photonic crystal structure using close-packed 

spheres, but the bandgap occurs at a relatively low volume fraction of dielectric, so 

infiltration of a high dielectric material about a template of FCC packed spheres, followed 

by etching to create an air lattice of spheres in a high dielectric was done.19 Unfortunately, 

the FCC structure does not have a complete bandgap between low-order bands, and the 

complete gap opens up between the eighth and ninth bands only at a relatively large 

dielectric contrast of nearly 9: 1 .34 Since then, researchers have sought alternative structures 

that would provide a robust gap at a lower dielectric contrast that could also be readily 

fabricated. Interestingly, the current champion photonic-crystal structure is that of an 

interconnected diamond network first discovered by the Iowa State University group in 

1991 .35 The 19 vol % diamond dielectric network displays a complete bandgap between the 

second and third bands at the record low dielectric contrast of 3.6:l (note: attaining an 



index contrast of 1.9: 1 in a diamond network structure is not out of the question for 

po1ymer:air structures). 

Block polymers can provide many possible intricate 3D structures through 

microphase separation. The first 3D block copolymer photonic crystal having a partial 

photonic bandgap was based on the bicontinuous double gyroid cubic morphology.36 Here a 

PS-b-PI block copolymer with total molecular weight of 750 kglmol provided domain sizes 

sufficient to interact with visible light.36 The double gyroid morphology was fiuther treated 

with W and ozone to degrade the polyisoprene phase, leaving the polystyrene double 

gyroid network with increased refractive-index contrast (polystyrene versus air, 1.6: 1, see 

Figure 1 . 3 ( ~ ) ) . ~ ~  

However, it turns out that the double gyroid network structure does not possess a 

complete gap, no matter how high the dielectric contrast. This makes clear the need to 

perform simulations of potential structures to explore for robust bandgaps prior to 

undertaking extensive experiments. The Thomas group at MIT have used numerical 

calculations employing the plane wave method34 to examine a host of network structures 

having various cubic symmetries.37 What is done is to systematically explore the range of 

volume fractions and dielectric contrasts for a given structure to see if it displays a 

complete gap and then to construct a "gap map9'-that is, a plot of the width of the 

complete gap (the difference in frequency of the lowest frequency of the upper band and 

the highest frequency of the lower band versus dielectric contrast at a fixed volume 

fraction). Of particular concern is finding the structure and the volume fraction of the 

structure at which a complete gap first opens at the lowest possible dielectric contrast. This 



volume fraction will give the widest gap for a given dielectric contrast. It is noteworthy that 

neither the double gyroid nor the double diamond structures exhibit complete bandgaps, 

while both of the corresponding single network structures do, with the single diamond 

network as the current champion complete gap structure. The single gyroid morphology is 

also a quite favorable photonic crystal structure-a complete photonic bandgap opens at a 

index contrast of 2.3: 1 .37 

1.3. Nanocomposite Block Copolymer Photonic Materials 

Given the inherently low refractive index contrast (n21nl) in block copolymer-based 

photonic crystals (typically on the order of 1.1 : 1 for po1ymer:polymer structures and 1.5 : 1 

for po1ymer:air structures) it is essential to enhance the index contrast in order to produce a 

more robust (or even complete) photonic bandgap. One method that has been successllly 

demonstrated is to selectively sequester high-refractive-index inorganic nanocrystals into 

the microdomains of a block copolymer to form an inorganiclorganic microstructured 

nanocomposite photonic structure. For example, CdSe particles with trioctyl phosphine 

oxide (TOPO) surface ligands (CdSe refractive index, -2.7) were successllly sequestered 

into the poly(viny1 pyridine) domains in a poly(styrene-b-isoprene-b-vinyl pyridine) block 

terpolymer.24~ 29 In order to target the high-index nanoparticles to the higher-index block 

domains, one needs to tailor the nanocrystal surface to have compatibilizing groups 

(typically oligomeric homopolymers) similar to the host block domains. Thus, mine- or 



thiol-terminated polystyrene was used to compatibilize CdSe nanocrystals into PS-b-PI 

block copolymers by ligand-exchange reactions. Since the electronic bandgap of 

semiconductor nanocrystals is inversely proportional to the size of the nanocrystals, the 

absorption band of nanocrystals is shifted to a shorter wavelength than in bulk materials, 

making the nanocrystals effectively transparent in the optical regime. 

Metallic nanoparticles are also of interest for their extremely high dielectric 

constants. The optical response of block copolyrner/metallodielectric nanocrystal photonic 

structures can be dramatically influenced by the spatial distribution of metallodielectric 

nanocrystals because of the dipolar coupling between closely spaced metal particles. For 

example, a metallodielectric photonic structure based on poly(styrene-b- 

ethylenelpropylene) diblock copolymer and gold nanocrystals was coassembled using gold 

nanocrystals with a size well below the scattering limit.38' 39 The gold particles were 

surface-grafted with different chemical groups, such as thiol-terminated oligomeric 

polystyrene or thiol-terminated alkanes, to target a given type of microdomain in the block 

copolymer template. Two distinct spatial distributions of gold nanocrystals were observed: 

(1) interfacial segregation between the two block domains, or (2) preferential uniform 

distribution within one type of domain. These morphologies were dependent on the surface 

chemistry and size of the ligands attached to the particles.40 The confinement of the 

nanocrystals to the narrow interface between domains results in a high local particle 

concentration and therefore a small average distance between particles, leading to different 

optical properties of the respective nanocomposite structures.40 



Thermodynamic prediction of block copolymer-nanoparticle phase diagrams is thus 

of importance in designing nanocomposites for applications. Balazs' group has combined 

density hctional theory and self-consistent field theory to simulate the behavior of 

nanoparticles of diameter d in block copolymer domains of period L. They showed that the 

interfacial segregation of nanoparticles with neutral ligands (i.e., x = 0) occurs for small 

particles (dlL < 0.2)' whereas for dlL - 0.3, the particles locate in the center of the domain4'. 

39,43 
42, which was in reasonable agreement with experiments as well. There are a host of 

parameters to explore concerning the localization of particles within block copolymer 

microdomains. These include the particle size and shape, ligand size and chemistry, and the 

size and shape of the particular host micr0domain.4~ Information about the solubility limits 

of various particles in block copolymers is the key in understanding the attainable limits to 

the effective dielectric constant via blending. Clearly, there is much still to be done to 

control the hierarchical structures in block copolymer-nanoparticle assemblies that can 

enhance nanocomposite photonic properties. 

1.4. Switchable BCP Photonics 

Block copolymer-based photonic-bandgap materials that can be readily tuned or 

switched by applying various external fields can provide a route to fabricate multifunctional 

and optically responsive photonic structures. There is a host of ways to induce changes of 



optical properties via alteration of the periodicity, symmetry, or dielectric constants of the 

material. 

Thermally tunable block copolymer-based photonic-bandgap materials have been 

constructed by incorporating guest liquid-crystalline molecules into one domain of host 

block copolymers by hydrogen-bonding interaction to form a hierarchical photonic 

structure. Either the effective refractive index45 or the lattice spacing46 of liquid-crystal- 

containing domains could be changed as the temperature of the materials was changed, 

leading to the tailoring of the position and strength of the photonic stop band of the system. 

Another way to alter the microdomain spacing in a block copolymer is to apply 

mechanical force. Elastomeric block copolymer photonic crystals have been prepared by 

blending with a nonvolatile plasticizer to form a block copolymer gel. The local 

deformation of the photonic gel's microstructure yields a tunable photonic bandgap with 

applied tensile strains.30 

Recently, chemically, thermally, mechanically responsive self-assembled reflectors 

based on PS-b-PI block copolymer solution have been nicely demonstrated and will be 

presented in Chapter 5 of this thesis. 

1.5. Challenges, Advantages, and Applications 

In order to maximize the usefdness of self-assembled block copolymer platforms, 

one has to address three major challenges: attaining large domain spacings, achieving high 



dielectric contrast, and controlling long-range microdomain order. The occurrence of 

randomly located defects that accompany the self-assembly process must be avoided. In 

this regard, there have been numerous efforts to establish a single-crystal-like microdomain 

structure, employing various extemal fields such as mechanical flow fields, electric fields, 

temperature gradients, directional solidification, and surface interactions to obtain 

purposefully long-range domain order during the self-assembly process. However, the very 

high molecular weight block copolymers that are typical of photonic crystals presents the 

problem that the order4isorder transition is unattainable via temperature, so that solvents 

must be used to process the materials into their final structures, restricting the applicability 

of some of these techniques. 

Advantages for employing self-assembled block copolymers as visible wavelength 

photonic materials include the ease of processing (e.g. conformal coating on essentially any 

substrate); the ability to incorporate both inorganic (e.g. quantum dots) and organic 

additives (e.g. laser dyes, liquid crystals, homopolymers, and plasticizers, etc.) within the 

block copolymer microdomains; and the relatively easy manipulation of block copolymer 

microstructures via various extemal fields such as mechanical force, temperature, and 

electric fields, etc. 

As mentioned in the introduction, attainment of well-ordered photonic crystals is 

only a necessary requirement. Actual useful optical devices need controlled defects to 

localize and guide light. One interesting application is the use of the self-assembled block 

copolymer photonic crystal to define a microcavity for modifying the spontaneous emission 

of optically active materials, ultimately leading to an optically pumped, all-organic, self- 



assembled laser. Clearly, 1D self-assembled photonic crystals from lamellar-forming block 

copolymers can act as a Bragg reflector. Two different types of laser structures can then be 

envisioned: (1) a distributed-feedback band-edge laser and (2) a defect-mode microcavity 

laser. For the distributed-feedback structure, a gain medium such as an organic laser dye is 

dispersed throughout the layered block copolymer structure. In the defect-mode approach, a 

layer of precise dimension containing the gain medium is employed as the microcavity, 

sandwiched by outside block copolymer Bragg reflectors. In both cases, controlling the 

microdomain orientation of the block copolymer larnellae is the key to obtaining the high 

quality factor (a ratio of the energy stored in resonant cavity to the energy lost per cycle) 

that is essential to enable lasing. This block copolymer enabled lasing device is one of main 

themes of this thesis work. Optically driven lasing using self-assembled distributed Bragg 

reflectors formed from a 1D block copolymer photonic crystal will be described in Chapter 

4. 
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Chapter 2. 

Materials and Experimental Methods 

In this chapter, information on materials and experimental methods used in this research are 

provided. Synthetic procedures and molecular characterizations of ultrahigh molecular 

weight poly(styrene-b-isoprene) (PS-b-PI) block copolymers are presented in the first 

section. The second section summarizes experimental techniques for microstructural 

characterization of the block copolymers such as ultrasmall angle X-ray scattering 

(USAXS), transmission electron microscopy (TEM), and laser scanning confocal 

microscopy (LSCM). Finally, various spectroscopic techniques for optical characterization 

of photonic block copolymers, organic laser dyes, and devices using these materials are 

described. 



2.1. High Molecular Weight Block Copolymers 

High molecular weight lamellar-forming PS-b-PI diblock copolymers are the main 

materials used in this thesis and were prepared via living anionic polymerization technique 

by sequential addition of monomers. Dr. Wonmok Lee made an equal contribution in 

preparing the lamellar block copolymer samples. Dr. Peter DeRege provided the cylinder- 

forming PS-b-PI block copolymer sample for directional solidification and confocal 

microscopy study (in Chapter 6). 

Since its discovery by Szwarc in 1956l, living anionic polymerization has been 

extensively used for the synthesis of model polymer systems with well-controlled 

molecular weight, molecular weight distribution, composition, and chain architectures. 

While a high vacuum technique2 has been the most widely used method for living anionic 

polymerization due to its excellent control of impurities such as oxygen and water, some 

disadvantages such as time-consuming and laborious glass-blowing, and difficulty to 

accurately measure the quantity of monomer for desired molecular weight and composition 

have made researchers implement an alternative approach using an inert atmosphere 

technique.3 In the case of the inert atmosphere technique, a slight overpressure of Nz or Ar 

is used to maintain a dry and oxygen-free condition, and the preparation and the actual 

polymerization run are relatively easier and faster than the high vacuum technique with 

comparable control of molecular weight and molecular weight distribution. In this thesis, a 

modified version of the inert atmosphere technique was employed to synthesize high 

molecular weight (500- 1000 kg/mol) lamellar-forming PS-b-PI diblock copolymers using a 



glove box (Innovative Technology) equipped with catalyst system for removing organic 

vapor, oxygen (02) and moisture (H20). All of these impurities can interfere with the 

polymerization reaction to terminate the living anions and thus must be minimized in order 

to achieve well-controlled molecular weight and molecular weight distribution. The proper 

control of impurities is especially crucial for the synthesis of ultrahigh molecular weight 

samples where the amount of initiator is extremely small. In the following sections we 

summarize the experimental procedures for the synthesis of ultrahigh molecular weight 

block copolymers including glassware preparation, purification of monomers/solvents, 

polymerization reaction by sequential addition, and molecular characterization for 

determining molecular weight and composition. More thorough and extensive information 

about living anionic polymerization techniques can be obtained from the literat~re.~? 

2.1 .I. Purification of glassware, syringes, and needles 

All pre-cleaned glassware such as flasks and distillation adapters was repeatedly 

rinsed with deionized water, tetrahydrofuran (THF), and isopropanol. The rinsed and dried 

glassware was then baked in a furnace (Thermolyne 30400 in Prof. Yoel Fink's group at 

MIT) at 500 "C for 2-3 hours to relax residual stresses. This annealing process was 

followed by additional baking at 570 "C for 2 hours to remove any remaining organic 

contaminants on the surface. Before purification or polymerization steps, the baked 

glassware was connected to a vacuum manifold and thoroughly flame-baked under vacuum 

to minimize any residual water adsorbed to the glass surface. Gastight syringes and metal 

needles were also cleaned and baked before use. 



2.1.2. Purification of solvents 

A mixture of benzene and cyclohexane (4:1, vlv) was used as solvent for 

polymerization. Benzene (Aldrich, 99+%) was stirred over concentrated sulfuric acid 

(100mLlL) for a week to remove impurities such as thiophenes and substituted phenyl 

compounds followed by a repeated wash with an aqueous solution of NaOH (or NaHCO,) 

and deionized water. After the neutralization step, benzene was dried with finely grounded 

CaH2 for 24 h and filtered. Cyclohexane (anhydrous, 99.5%) was stirred over CaH2 for 24 h 

and filtered. The mixture of benzene and cyclohexane (4: 1, vlv) was then transferred to the 

purification flask and degassed by one or two freeze-pump-thaw cycles. Before vacuum 

distillation, it was once more purified with n-butyllithium (n-BuLi, Aldrich: 1.6M in hexane, 

5 mL per 1L of solvent) and styrene (Aldrich 99%, 4 mL per 1L of solvent) until the orange 

color of the living polystyryl anions persisted, which indicates the purity of the solvent 

mixture. The vacuum distilled solvent was then isolated and stored in the N2 atmosphere 

inside the glove box. 

2.1.3. Purification of monomers 

Styrene (Aldrich, 99%) was first dried over CaH2 for 24 h and is degassed and 

vacuum distilled. The dried styrene monomer was then purified with dibutyl magnesium 

(DBM, Aldrich: 1.0 M in heptane, [styrene]:[DBM solution] = 20:l) for 4 - 5 hours at 

room temperature before vacuum distillation until a persistent bright yellow-green color 

was observed. Isoprene (Aldrich, 99%) was also dried over CaH2 (Aldrich, 90-95%) for 24 

h and was degassed and vacuum distilled. It was then purified with n-BuLi at 0 OC for 1- 2 



h. It is very important to maintain the temperature of the purifying solution of isoprene and 

n-BuLi at or below 0 OC to avoid a runaway polymerization. The vacuum distilled 

monomers were then isolated and stored under vacuum in the N2 atmosphere inside the 

glove box refigerator maintained at -30 OC. 

2.1.4. Polymerization and molecular characterization 

Reactor purification and polymerization steps were conducted under N2 atmosphere 

inside the glove box. A round bottom flask (1000 mL) with a Teflon stir bar was washed 

with see-BuLi (Aldrich: 1.3M in cyclohexane) to remove any remaining impurities and 

rinsed two or three times with the purified mixed solvent. The purified mixed solvent 

(benzene: cyclohexane = 4:1, vlv) and styrene monomer were then transferred into the 

reactor using a gastight syringe filled with activated basic alumina (For activation, alumina 

was baked at 500 OC for 24 h and slowly cooled.). An initiator solution was prepared by 

diluting sec-BuLi (Aldrich: 1.3M in cyclohexane) to - 0.02 mM with the mixed solvent. 

The active initiator concentration was determined using the Gilman double titration 

m e t h ~ d . ~  When the temperature of the reactor was stabilized at 40 OC, polymerization was 

initiated by adding the initiator solution through the gas tight syringe and the solution 

developed a bright yellow color. After 6 h with stirring, the isoprene was then added 

through the gas tight syringe with activated alumina and the pale green color of 

isopropyllithium anions developed. The solution was stirred for additional 48 h before 

termination. The reaction was terminated with 1.0 mL of deoxygenated methanol. The 

polymer was precipitated and washed with methanol containing 2,6-di-tert-butyl-4- 



methylphenol (BHT, 0.1 wt% to methanol) as an antioxidant and dried under vacuum at 

room temperature. 

The molecular weights (M, and Mw) and polydispersity indices (Mw/Mn) have been 

determined by a Hewlett-Packard Series 1100 size exclusion chromatograph (SEC). THF 

was eluted fi-om the SEC columns (3 PLgel 5pm) at 1.0 mL/min. The molecular weights 

(M, and Mw) were obtained relative to a polystyrene calibration curve. The compositions of 

the block copolymers were determined by nuclear magnetic resonance ('H NMR, 300 

MHz) using CDC13 as a solvent based on the ratio of integrated intensities of aromatic 

protons to vinylic protons.5 Volume fractions were then calculated based on known 

densities of PS (1.04 g/cm3) and PI (0.913 g/cm3)! Table 2.1 summarizes the sample 

information of the block copolymers used in this thesis. 

Table 2.1: Molecular characteristics of the four photonic PS-b-PI block copolymers used in this 

thesis. 

LY0423 

LY042 1 

LY040 1 

PDR 091 

840,000 

650,000 

590,000 

1,100,000 

480,000 

360,000 

320,000 

240,000 

360,000 

290,000 

270,000 

860,000 

1.08 

1.09 

1.09 

1.05 

57 

55 

54 

22 

54 

52 

5 1 

20 



2.2. Microstructural Characterization 

2.2.1. Solution casting 

The first step for microstructural characterization of high molecular weight block 

copolymers is to form dry films by a solution casting process. Solutions of block copolymer 

samples in toluene were made at a concentration of - 50 mg/mL at room temperature. In 

order to protect samples fiom degradation in solution, the antioxidant (BHT) was added to 

the solution at a concentration of 0.1 wt % relative to the solvent. Sample solutions were 

covered by aluminum foil to prevent UV exposure from room light during the stirring or 

the solvent evaporation process. Stirring was minimized and conducted at a very low speed 

to avoid mechanical degradation. Afier a complete solubilization of polymers, the solution 

was transferred into a crucible (VWR, 10 mm diameter) for the evaporation of solvent. To 

obtain a thermodynamically near-equilibrium morphology and to minimize defect 

formation during the solution casting process, a very slow evaporation condition was 

applied, in which the evaporation of a solvent was carried out in a solvent-saturated 

atmosphere with a gentle flux of air, requiring two to four weeks for sample drying. After 

the first evaporation step, samples were further dried in vacuum at room temperature for 24 

h to remove any residual solvent. Subsequently, thermally annealing was conducted at 

120 "C under vacuum for 3-5 days, producing films with a final thickness of - 0.1-0.3 mm. 

2.2.2. Cryomicrotomy, staining, and transmission electron microscopy (TEM) 

Ultrathin sections (50-100 nm thickness) from annealed block copolymer samples 



were obtained by cryomicrotomy using a Reichert-Jung Ultracut FC4E at -90 OC (for knife) 

and at -100 OC (for specimen). Carbon was thermal-evaporated onto the microtomed thin 

sections mounted on copper grids with carbon thicknesses of - 100 A to enhance sample's 

electrical and thermal conductivity, and to provide beam damage protection in TEM. The 

samples were then stained in a vapor of Os04 for 2-3 h to improve mass thickness contrast, 

which preferentially binds to the PI block containing double bonds. TEM micrographs were 

obtained using JEOL 200CX and JEOL 2000FX transmission electron microscopes 

operating at 120-200 kV. 

2.2.3. Laser scanning confocal microscopy (LSCM) 

The directionally solidified PS-b-PI samples (in chapter 6) were analyzed by 

reflection-mode LSCM (Leica TCS SPII, located in the laboratory of Prof. Timothy Swager 

of MIT) using a 488 nm probe laser beam without further sample treatment. Since the PS-b- 

PI block copolymer does not contain any fluorophore, the light signal results from 

reflection off the PS-PI interface. Signals of the probe light were scanned for every LSCM 

image through an oil-immersion objective lens (Leica, HCX PL APO 63Xl1.40-0.60). 

2.2.4. Ultrasmall angle X-ray scattering (USAXS) 

Since the periodicities of the photonic block copolymers are too large for 

conventional small angle X-ray scattering (SAXS), we employed ultrasmall angle X-ray 

scattering (USAXS) to obtain microstructural information. USAXS measurements of cast 

and annealed block copolymer films have been conducted at beamline Xl  OA at Brookhaven 



National Laboratory with 8 keV radiation (wavelength h = 0.1548 nrn). A Bonse-Hart 

camera setup7 was employed with single bounce Ge-111 monochromator and analyzer 

crystals. The slit collimated incident beam intensity was about 5 x lo9 ctsls and the beam 

size was 0.6 x 0.8 mm2 (V-H). Data were collected by a scintillation detector (Bicron) 

which was swept through an arc to collect a linear data set of intensity versus angular 

position. All data were acquired at room temperature and used without additional 

corrections. 

2.3. Optical Characterization 

2.3.1. Reflectivity measurement 

The experimental reflectivity spectrum was measured using a microscope 

spectrometer, which is composed of an optical microscope (Zeiss Axioskop), a portable 

spectrometer (Stellamet Inc. EPP2000) equipped with a charge-coupled-device (CCD) 

detector and a holographic grating, and a tungsten halogen lamp as the illumination source. 

Reflected light from the sample on the specimen stage is collected by an objective lens 

(Carl Zeiss, Neo-Fluora lox,  N.A. = 0.3) and focused to an optical fiber through a custom- 

made fiber-optic-adaptor having a collection lens (f=1.2), which is connected to the 

spectrometer. By adjusting an aperture between a light source and an objective lens, the 

probed sample area could be effectively adjusted. Due to the numerical aperture of the 

objective lens (N.A. = 0.3), the reflectivity spectrum is not from purely normal incidence 



light but represents a convolution of multiple reflectivity spectra over the incidence angles 

of 0" to -17.5'. 

The procedures for measuring a reflectivity spectrum using this equipment are 

summarized as follows: First, the tungsten lamp was turned on at - 12 V and warmed up for 

10 min. A silver coated metallic mirror was placed under the objective lens and the light 

was focused onto its surface. This reflectivity spectrum was saved as 100 % reference. 

Then the incident light was blocked by closing the light path in the microscope and the 

corresponding spectrum was saved as 0% reference. After completion of the normalization 

steps, sample spectra were taken. Each spectrum was typically obtained with an integration 

time of 500-1000 ms and averaged with 5-20 measurements. 

2.3.2. Absorption and emission measurements 

The photophysical properties of organic laser dyes are sensitively affected by matrix 

materials when they are incorporated as dopants. The absorption and emission spectra of a 

gain medium studied in this thesis were measured from thin solid films of a dye-doped 

polymer. Organic laser dyes (DCM or Bis-MSB from Exciton) and polymethylmethacrylate 

(PMMA from Aldrich, Mw: 15000 glmol) were dissolved in a solvent (spectroscopic grade) 

such as toluene or THF, in which the dye concentration to the polymer matrix was 0.1-0.5 

wt %. The dye-polymer solution (- 10 wt %) was then simple-cast onto a glass slide to 

make a smooth film (thickness - 100 pm). The absorption spectrum was obtained on a 

Hewlett-Packard 8453 diode array UV-VIS spectrophotometer using a bare glass slide as a 

blank reference. The emission spectrum was measured either by a SPEX Fluorolog-l-:! 



spectrofluorometer (model FL112, 450 W xenon lamp) or by a laboratory setup of a pump 

laser and a fiber-optic spectrometer, which was also used for measuring optically pumped 

lasing as described in the following section. 

2.3.3. Lasing measurements 

Frequency-doubled or tripled Q-switched Nd:YAG pulse lasers (Continuum NY 61, 

h = 532 nm, pulse width = 5 ns, repetition rate = 50 Hz in the laboratory of Prof. Moungi 

Bawendi of MIT; Continuum NY 60B, h = 532 nrn1355 nm, pulse width = 10 ns, repetition 

rate = 20 Hz) were used as pump light source. The pump laser beam was focused onto the 

sample with a lens of 20 cm focal length and 5 cm diameter at an incidence angle of 30" - 
40" (from the normal), giving a beam diameter at the sample of about 300 pm as 

schematically shown in Figure 2.1. Lasing occurred in both the forward and backward 

directions and the backward emitted light was collected and focused onto a fiber-optic 

spectrometer (Ocean Optics USB 2000 or HR 2000). The average power of the excitation 

pulses was controlled with a neutral density (ND) filter or by adjusting the input voltage of 

the pump laser power supply. 



Q-switched Nd:YAG pulse laser 
532 nml355 nm 

L' Lens 
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Sample 
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Figure 2.1: A schematic of the experimental setup for measuring emission and lasing spectra. 
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Chapter 3. 

Defect-Mode Mirror-less Lasing in a Dye- 

doped OrganicIInorganic Hybrid 1D Photonic 

Crystal 

In this chapter we present the results Erom our investigation of defect-mode photonic band 

gap lasing with an organiclinorganic hybrid 1D photonic crystal containing a dye-doped 

defect layer. This defect-mode laser structure has been studied as a "model" system Erom 

which a basic understanding of the main factors affecting optically pumped lasing with dye- 

doped photonic crystals has been developed. The multilayer laser structure consists of 

alternating layers of titania (TiOz) nanoparticles and polymethylmethacrylate (PMMA) with 

an active emission layer of an organic dye dispersed in PMMA. Low threshold lasing has 

been demonstrated at a single defect-mode wavelength of the 1D photonic bandgap 

structure resulting fiom the inhibited density of states of photons and the enhanced rates of 

spontaneous emission at the localized resonant defect mode within the photonic stop band. 

The work on synthesis of titania nanoparticles and fabrication of multilayer structures was a collaboration 

with Dr. Wonrnok Lee and the lasing measurements were assisted by Dr. Jean-Michel Caruge and Dr. Steven 

Kooi. Parts of this chapter were featured in: J. Yoon, W. Lee, J-M. Caruge, S. Kooi, M. Bawendi, E. L. 

Thomas Applied Physics Letters 2006,88,09 1202 1-092 1023. 



3.1. Introduction 

Among the many unique properties of photonic crystals, control of spontaneous 

emission by means of modification of the photon density of states has been of special 

interest since the performance of various optoelectronic devices such as lasers,' light 

emitting diodes; or solar cells3 is often limited by spontaneous emission. It has been shown 

theoretically4' as well as experimentally6~ ' that when the transition frequency of the gain 

material confined within a photonic crystal is matched with the frequency range of the 

photonic bandgap, the spontaneous emission is rigorously inhibited by the low density of 

states in the gap. As the depletion of the excited state by spontaneous emission within the 

gap is decreased, spontaneous emission is enhanced at the band edges or at defect modes 

purposefully introduced into the bandgap. This can lead to low-threshold or even threshold- 

less lasing. In this regard, there have been considerable efforts to fabricate photonic 

bandgap laser devices either as distributed feedback lasing8, operating at band-edge 

10, 11 frequencies or as defect-mode lasing operating at localized defect-mode frequencies 

within the gap. In particular, due to the relative simplicity of fabrication, 1D photonic 

crystal laser devices have been extensively studied. 10, 12-16 For example, Kopp et al. 

demonstrated photonic band-edge lasing from a 1D photonic crystal of dye-doped 

cholesteric liquid crystal.12 More recently, Ozaki et al. showed electrically tunable defect- 

mode lasing in a 1D photonic crystal of alternating TiO2ISiO2 multilayers using a 

conducting polymer as a gain medium and a nematic liquid crystal as an electrically tunable 

defect layer.'' In the present study, a novel organiclinorganic hybrid 1D photonic crystal 



with organic laser dyes as a gain medium has been developed to demonstrate low threshold 

defect-mode lasing. 

3.2. Results and Discussion 

We employed inorganic titania (Ti02) nanoparticles and pol ymethylmethacrylate 

(PMMA) as high and low index dielectric materials for constructing a distributed Bragg 

reflector (DBR) having a 1D photonic bandgap. TiOz nanoparticles were prepared 

following the synthetic scheme reported by Sanchez et al.". The nanocrystalline Ti02 

particles were composed of the anatase phase (experimental refractive index - 1.78 at 500 

nm) with an average diameter of 4 nm as characterized by X-ray difiaction (XRD) (Rigaku 

High Resolution 250 mm Difiactometer), spectroscopic ellipsometry (M2000, J. A. 

Woollam Co., Inc) and transmission electron microscopy(TEM) (JEOL 2000FX, 200kV). 

Figure 3.1 and 3.2 show a bright field TEM micrograph and a powder X-ray difiactogram 

of the Ti02 nanoparticles, respectively. Due to the organic surface capping group of 

acetylacetone (AcAc), the Ti02 particles were readily dissolved in a polar organic solvent 

such as butanol. The nanoparticles formed a thin film with excellent optical transparency, 

with a surface roughness in the order of a few nanometers. PMMA (Aldrich, Mw: 15,000 

gimole) was used as received and dissolved in toluene. As a defect layer containing a gain 

medium, the laser dye, 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H- 

pyran (DCM, Exciton), was dissolved in toluene at a concentration of 0.5 wt % with respect 



to PMMA matrix. In order to fabricate the defect-mode 1D PBG laser structure, solutions of 

Ti02 (in butanol), PMMA (in toluene) and DCMIPMMA (in toluene) were sequentially 

spin-coated. 

Figure 3.1: Bright-field TEM micrograph of surface-protected titania (TiOz) nanoparticles on 

carbon film, in which well-dispersed and monodisperse nanoparticles having an average diameter of 

about 4 nm are evident. 
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Figure 3.2: Powder XRD spectrum of surface-protected titania (TiO*) nanoparticles, in which the 

reflection peaks are well matched with those of anatase phase titania. 

Wavelength (nm) 

Figure 33: Linear absorption and photoluminescence spectra of DCM (0.5 wt %, 400 nm 

excitation) in PMMA. The molecular structure of DCM is shown in the inset. The FWHM of the PL 

spectrum is about 75 nrn and the peak of the spontaneous emission occurs at 582 nrn. 



We designed the defect-mode laser structure built around the photophysical 

properties of the gain medium. The absorption spectrum was obtained on a Hewlett- 

Packard 8453 diode array spectrophotometer while the emission spectrum (excitation at 

400 nm) was measured by a SPEX Fluorolog-t.2 spectrofluorometer. Figure 3.3 shows the 

linear absorption and emission spectra of the thin film of DCM (0.5 wt %) in PMMA. The 

peak wavelengths of absorption and emission are around 466 nm and 582 nm, respectively. 

The defect-mode PBG structure fabricated by a sequential spin-coating process, glass- 

(PMMA-T~o*)' 5 - ( ~ ~ ~ / P ~ ~ ~ ) - ( ~ i 0 2 - ~ ~ ~ ~ ) 1 5 - a i r ,  consists of 6 1 alternating layers of 

Ti02, PMMA, and a central defect layer containing DCM in PMMA as schematically 

shown in Figure 3.4. The average refractive indices of Ti02, PMMA, and DCM in PMMA 

over the visible wavelength regime (400-700 nm) were individually measured by 

spectroscopic ellipsometry. The thicknesses of the corresponding layers were then 

determined from the calculation of reflectance spectra using the transfer matrix method 

(TMM)~*, such that defect mode of the 1-D photonic crystal was located at the peak 

wavelength of the gain medium emission in order to optimize the lasing probability. 

The number of defect modes and their locations can be readily controlled by 

changing either the thickness or the refractive index of the defect layer. Figure 3.5 shows 

the calculated reflectivity spectrum of the defect-mode 1-D photonic crystal at normal 

incidence, in which the arrows indicate the defect-modes inside the stop band. The high 

frequency defect-mode is purposefully located at 582 nm, coincident with the peak 

wavelength of emission of the DCM dye in the PMMA. Figure 3.6 is the corresponding 

photon density of states, which is normalized with respect to the density of states in vacuum. 



The experimental reflectivity spectrum in Figure 3.7 was measured using an optical 

microscope (Zeiss Axioscop) equipped with a fiber-optic spectrometer (Stellarnet 

EPP2000) with a silver-coated metallic mirror as a 100% reference. Due to the numerical 

aperture of the objective lens (Mag. = lox, N.A. =0.3), the spectrum in Figure 3.7 is not a 

pure normal incidence reflectance but represents a convolution of multiple reflectance 

spectra over the incidence angles of 0' to -17.5'. 

PMMA (n = 1.49) 

TiOz (n = 1.85) 

DCM (0.5%) in PMMA 8 

Figure 3.4: Schematic of dye-doped defect-mode 1D photonic crystal, g l a s s - ( ~ ~ ~ ~ - ~ i ~ 2 ) 1 5 -  
@CM/PMMA)-(T~O~-PMMA) ''-air. 
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Figure 3.5: TMM calculated reflectivity spectrum of the defect-mode 1D photonic crystal, glass- 

(PMMA-T~~~)'~-@CM/PMMA)-(T~O~-P~)~~-~~ at normal incidence. Arrows indicate the 

localized defect-modes created by the PMMA defect layer. 
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Figure 3.7: Measured reflectivity spectrum of the fabricated defect-mode 1D photonic crystal at 

near normal incidence using a reflection-mode optical microscope connected to a fiber-optic 

spectrometer, in which the spectrum represents a convolution of multiple reflectivity spectra over 

the incidence angles of 0' to -17.5' due to the numerical aperture of the objective lens (10X N.A. = 

0.3). Experimental features indicative of the two defect modes are shown. 

The lasing experiment was performed at room temperature with the setup shown in 

Figure 2.1 (in Chapter 2). The defect mode laser structure was optically pumped with 

frequency-doubled pulses of a Q-switched .Nd:YAG laser (Continuum NY 61, h = 532 nm, 

pulse width = 5 ns, repetition rate = 50 Hz). The pump laser beam was focused onto the 

sample with a lens of 20 cm focal length and 5 cm diameter with an incidence angle of 40" 

(from the normal), giving a beam diameter at the sample of about 300 pm. Lasing occurred 

in both the forward and backward directions and the backward emitted light was collected 



and focused onto a fiber-optic spectrometer (Ocean Optics USB 2000). The average power 

of the excitation pulses was controlled with a neutral density (ND) filter. 

Lasing 

0 
0 

8 

Figure 3.8: Photograph of the 582 nm lasing from the defect-mode 1-D photonic crystal. A highly 

directional lasing in the backward direction was observed on a white background. 

Figure 3.8 shows a photograph of the red lasing beam on a white background, in which a 

highly directional emission parallel to the surface normal of the sample clearly indicates the 

lasing action as the pump power was increased above a lasing threshold. The corresponding 



emission spectrum is shown in Figure 3.9, where strong single-mode lasing was observed at 

the expected defect-mode wavelength of 582 nm. The two small peaks in addition to the 

lasing line correspond to the excitation beam (532 nm) and the spontaneous emission at the 

lower frequency defect mode (at - 620 nm, and for the pump power, the emission is below 

the lasing threshold). In order to confirm lasing, the usual pump power dependence of the 

emission intensity at the 582 nm lasing wavelength was obtained as shown in Figure 3.10 

(red data points). In our experimental conditions, the lasing threshold was measured to be - 
17 m ~ l c m ~  (12 pJ1pulse on the area of 300 pm diameter). The expected spectral narrowing 

of the emission above the lasing threshold was also observed. The FWHM of the emission 

line at the lasing wavelength decreased from 2.1 nm to 1.0 nm as shown in Figure 3.11 

(blue data points), which is limited by the spectral resolution of our experimental setup. The 

small FWHM (2.1 nm) before the lasing threshold in Figure 3.11 is due to the narrow width 

of the defect mode within the bandgap. The spectral narrowing above the lasing threshold is 

more significant if the FWHM of the lasing is compared with the FWHM of the 

spontaneous emission from a medium without any periodic structure, which is about 75 nm 

as shown in Figure 3.3. 
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Figure 3.9: The lasing spectrum obtained at a pump power of 1 mW, above the lasing threshold. 

The two small peaks beside the lasing line at 582 nm correspond to the excitation light (532 nm) 

and to the low frequency defect mode (at 620 nm, below its lasing threshold for this pump power). 
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Figure 3.10: Emission intensity and line-width (the h l l  width at half maximum, FWHM) at the 

lasing wavelength (582 nm) as a function of pump power. The behavior of the intensity and the 

FWHM clearly demonstrate a threshold for lasing around 0.6 mW pump power (12 pJ pulse energy). 
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The defect-mode low threshold lasing action results from the modification of the 

density of states and the enhanced spontaneous emission due to the placement of the gain 

medium within a 1-D PBG structure. According to Fermi's golden rule, the rate of 

spontaneous emission at a frequency o is proportional to the density of states at that 

frequency, p(o).l9 Therefore if the gain medium is within a photonic bandgap structure, the 

spontaneous emission rate at a particular wavelength can be enhanced or suppressed by a 

factor proportional to p(o). We analytically calculated via the TMM the density of states 

for the defect-mode finite 1-D photonic bandgap structure shown in Figure 3.4. A 

normalized plot of p(o) with respect to the density of states in vacuum (llc, c: speed of 

light in vacuum) is displayed in Figure 3.6.20 The density of states has very low values 

within the photonic bandgap, except at the localized defect modes, where the rate of 

spontaneous emission is enhanced by a large factor. As the gain for the localized defect 

modes is greatly increased with the increased spontaneous emission rate, low threshold 

lasing can be accomplished if the gain threshold is reached. 

3.3 Conclusion 

In summary, we have designed and fabricated a novel organiclinorganic hybrid 1-D 

photonic crystal containing a dye doped defect layer and demonstrated low threshold 

defect-mode lasing. TiOz nanoparticles and PMMA were employed as high and low index 

materials with the organic laser dye, DCM, as the gain medium. Low threshold lasing was 



induced at a localized defect-mode wavelength resulting from the suppressed density of 

states of photons within the photonic bandgap and the enhanced rates of spontaneous 

emission at the localized resonant defect mode. 
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Chapter 4. 

Optically Pumped Surface-Emitting Lasing 

using Self-Assembled Distributed Bragg 

Reflectors from 1D Block Copolymer Photonic 

Crystal 

In this chapter, we demonstrate a thin film organic laser cavity using a block copolymer 

based one-dimensional (ID) photonic crystal. Polymeric distributed Bragg reflectors 

(DBRs) were prepared through the self-assembly of a lamellar poly(styrene-b-isoprene) 

(PS-b-PI) diblock copolymer having a 1D photonic stop band overlapping with the 

fluorescence spectrum of a gain medium. Optically pumped surface-emitting lasing was 

obtained using polymethylmethacrylate (PMMA) doped with 1,4-di-(2- 

methylstyry1)benzene (Bis-MSB) as an organic gain medium and the polymeric self- 

assembled DBR as a spectral-band selective feedback element. 

Dr. Wonrnok Lee contributed to this work in the synthesis of high molecular weight block copolymers. Parts 

of this chapter will appear in: J. Yoon, W. Lee, E. L. Thomas Nano Letters (submitted) 



4.1. Introduction 

Over the past years, block copolymers have been considered as a unique materials 

platform for fabricating large-area well-ordered photonic bandgap structures. * Block 

copolymers microphase separate into periodic microdomains on the length scale of the 

blocks driven by a competition between a tendency to reduce the interfacial free energy and 

to increase the conformational entropy of the constituting polymer chains.29 With an 

appropriate microdomain size (di) that is large enough to interact with visible light (di - 
h/4ni, ni is the refractive index of the respective microdomain, h is wavelength of light in 

vacuum), block copolymers can create periodic dielectric structures having a photonic stop 

band in the optical frequency range. Various block copolymer systems, such as lamellar, 

cylindrical, and double gyroid diblock ~ o ~ o l y m e r s , ~ ~ '  blends of diblock copolymer with 

homopolymers or plasticizers,89 and block copolymer nanocomposites doped with 

inorganic nanoparticles, or liquid  crystal^,^^-'^ were successfully used to prepare ID, 2D, 

and 3D visible wavelength photonic crystals (see the more detailed review in Chapter 1). 

While the basic concept of self-assembled block copolymer based photonic bandgap 

materials as passive photonic structures has been well demonstrated, little work has been 

done in terms of realizing active photonic devices using these materials. Though the 

performance of block copolymer based photonic structures is somewhat limited by the 

relatively low dielectric contrast and intrinsic defect formation during self-assembly, these 

materials could be employed where precision performance is not required since they offer 

many advantages such as a range of easily accessible periodic structures, light weight, 



mechanical flexibility and low cost processing over a large area. One potential application 

of such self-assembled polymeric photonic crystals is to use them as a resonator in a 

photonic microcavity to provide spectrally-selective feedback for lasing.13-l5 Here we 

illustrate that thin films of a high molecular weight lamellar-forming poly(styrene-b- 

isoprene) (PS-b-PI) block copolymer, can be utilized to produce self-assembled distributed 

Bragg reflectors which can act as a narrow spectral-band selective element for defining a 

photonic microcavity. Optically pumped surface-emitting lasing has been demonstrated 

with fluorescent organic laser dyes in a polymer matrix as a gain medium deposited 

between block copolymer based Bragg reflectors. 

4.2. Results and Discussion 

The high molecular weight photonic PS-b-PI block copolymer was synthesized via 

anionic polymerization with sequential addition of styrene and isoprene monomer in 

cyclohexane/benzene mixed solvent.16 The molecular weight and composition of the block 

copolymer are 5 . 9 0 ~ 1 0 ~  glmol (PDI: 1.09), 54/46 (PSIPI, wtlwt) as measured by gel 

permeation chromatography (GPC) and nuclear magnetic resonance (NMR) analysis. 

Figure 4.1 shows a bright field transmission electron microscopy (TEM) micrograph from 

the cryomicrotomed sample of the PS-b-PI block copolymer exhibiting the 1D periodic 

lamellar morphology, in which the dark regions correspond to the PI domains preferentially 

stained with osmium tetroxide @so4) and the bright regions correspond to the PS domains. 





The resulting 1D periodic dielectric structure selectively reflects light of a range of 

fkequencies due to a constructive interference at the set of interfaces between high (PS, n = 

1.59) and low (PI, n = 1.5 1) refractive index domains. Figure 4.2 shows the experimentally 

measured reflectivity spectrum of the self-assembled distributed Bragg reflector at near 

normal incidence of light, in which the peak reflectivity occurs at 410 nm and the width of 

the stop band (the 111 width of half maximum: FWHM) is about 14 nm. 
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Figure 4.2: Experimental reflectivity spectrum of the fabricated block copolymer based distributed 

Bragg reflector at near normal incidence using a reflection-mode optical microscope connected to a 

fiber-optic spectrometer. The inset shows a calculated reflectivity spectrum using the transfer matrix 

method at a normal incidence for a finite 1D periodic structure, assuming 300 layers of PS (76 nm, 

n = 1.59) and PI domains (64 nm, n =1.51). 

v 
L a x  = 100 - 

410 nm 
8 0 -  

w 

FWHM = 60 - .- 
I 

CI 

- 

350 400 450 500 550 600 

Wavelength (nm) 

- 

1 I I I 



This reflectivity spectrum was obtained using an optical microscope (Zeiss 

Axioscop) equipped with a fiber-optic spectrometer (Stellamet EPP2000) using a silver- 

coated metallic mirror as a 100 % reference. Due to the numerical aperture of the objective 

lens (Carl Zeiss, Neo-Fluora lox,  N.A. = 0.3), the spectrum is not from a pure normal 

incidence reflectance but represents a convolution of multiple reflectance spectra over the 

incidence angles of 0" to -17.5'. The inset in Figure 4.2 shows a calculated reflectivity 

spectrum at a normal incidence of light by transfer matrix method17 for a finite 1D periodic 

structure assuming 300 layers of PS (76 nm, n = 1.59) and PI domains (64 nm, n =1.5 I), for 

which the FWHM is 18 nm and the bandgap center is located at 435 nm. The relatively 

narrow experimental reflectivity band (FWHM - 14 nrn) of the sample suggests that the 

effective dielectric contrast between PS and PI domains is reduced due to the effect of some 

retained solvent (cumene: n - 1.49). The narrow band-width also indicates that the parallel 

alignment of the lamellar microdomain orientation is quite good due to the influence of the 

substrate. Given the measured peak wavelength position (410 nrn) and the width (FWHM: 

14 nm) of the reflectivity band, we can estimate the solvent concentration approximately 10 

wt % by assuming a parallel orientation of lamellae, a uniform distribution of solvent in PS 

and PI domains (i.e. neutral solvent), and a constant ratio of PS and PI domain thicknesses 

(i.e. dPS/dPI = 76164 as obtained from TEM). The spectral response of this block copolymer 

based distributed Bragg reflector can be readily tuned by simply controlling the solvent 

concentration in the block copolymer solution, which can affect the spacings and the 

effective refractive indices of the respective microdomains (see the more detailed treatment 

of this solvatochromic effect in Chapter 5). 



For the gain medium, an organic chromophore, (1,4-di-(2-methy1styryl)benzene 

(Bis-MSB, Exciton), was dissolved in PMMA at a concentration of 0.1 wt % (to PMMA) 

using tetrahydrofuran (THF) as the solvent. Figure 4.3 is the photoluminescence spectrum 

from a solid film (thickness - 1 mm) of Bis-MSB in PMMA cast on a glass substrate 

excited by a 355 nm pulse, in which the peak fluorescence occurs at 425 nm and the 

FWHM is 41 nm. The inset in Figure 4.3 shows the absorption spectrum fiom the same 

sample obtained on a Hewlett-Packard 8453 diode array spectrophotometer, where the 

absorption maximum is around 350 nm. 
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F'igure 4.3: Photoluminescence (PL) spectrum from a solid film of Bis-MSB (0.1 wt %, 355 nm 

excitation) in PMMA. The FWHM of the PL spectrum is about 75 nm. The inset shows the 

absorption spectrum from the same sample, where the absorption maximum is located at around 

350 nm. 



A thin film organic laser cavity was fabricated by sandwiching the gain medium 

between two block copolymer based reflectors as schematically shown in Figure 4.4. First, 

the self-assembled reflectors were prepared from the solvent containing PS-b-PI cast 

between a microscope slide glass and a cover glass. After measuring the reflectivity data 

from the reflectors, the gain medium of PMMA/Bis-MSB in THF was then incorporated 

between the two reflectors with a thickness of about 300 p.m using a spacer. 

BCPDBR 

PS: - 72 nm 
PI: - 61 nm 

Bis-MSB 

In PMMA 
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- Figure 4.4: Schematic of the block copolymer based laser cavity, comprised of a gain medium, Bis- 

. . ' MSB and PMMA, enclosed between two block copolymer based distributed Bragg reflectors. The 

thicknesses of PS and PI domains are estimated values at 10 .wt % s o b t  concentration based on 
q .  . 

. , . . the peak position and FWHM of the reflectivity spectrum. 
. . 



Gain length = L 

Figure 4.5: A model laser cavity composed of a gain medium (length L) and two dielectric mirrors 

having reflectivity values of R1 (z = 0) and R2 (Z = L). The blue arrow represents the power of the 

oscillating radiation. 

Figure 4.5 shows a model laser cavity composed of a gain medium of the length L 

enclosed between two dielectric minors having reflectivity values of R1 (at z = 0) and R2 (at 

z = L) for a simple cavity analysis. As the spontaneous emission fiom the gain medium 

oscillates between two mirrors along the axis of the cavity, there exist both amplification 

(due to the gain) and attenuation (due to the absorption and the loss at mirrors) in the 

intensity of the oscillating radiation. Therefore, the power of the oscillating radiation, P(z), 

can be expressed as 

where P(0) is the power of the radiation at z = 0, G is the gain coefficient of the gain 



medium, a is the absorption coefficient of the gain medium. The steady-state oscillation 

condition then requires that the net gain must be the same as the net losses or the power of 

the radiation must be maintained constant on each round trip. Equation 4.2 shows a steady- 

state lasing condition for the cavity in Figure 4.5, where Gth is the threshold gain coefficient 

of the gain medium. ' 

The approximate threshold gain coefficient for lasing (neglecting absorption, a = 0) is then 

written in Equation 4.3. 

On the basis of above-described simple order-of-magnitude cavity analysis with the known 

gain length (L = 300 pm) and experimentally measured reflectivity of the block copolymer 

distributed Bragg reflector (R1 = R2 - 0.48), we can estimate the threshold gain coefficient 

required for lasing, which is about 24.5 cm-'. Although the exact optical gain coefficient of 

the gain medium (Bis-MSB in PMMA) in our laser system was not measured in this study, 

this estimated threshold gain coefficient is in a reasonable range which can be achieved 

with typical organic dyes. 19,20 

The experimental setup for the lasing experiment conducted at room temperature is 

shown in Figure 2.1 (see Chapter 2). A fkequency-tripled output of a Q-switched Nd:YAG 



laser (Continuum NY 60B, h = 335 nm, pulse width = 10 ns, repetition rate = 20 Hz) was 

used as an excitation source. The pump laser beam was focused onto the sample with a 2.5 

cm diameter lens of 20 cm focal length and at an incidence angle of 30" from the normal to 

the sample surface, giving a beam diameter at the sample of about 300 pm. As the average 

power of the excitation pulse increases above the lasing threshold, a well-defined lasing 

beam was vertically emitted from the surface of the sample in both the forward and 

backward directions and the backward emitted light was collected using a fiber-optic 

spectrometer (Ocean Optics HR 2000). A set of neutral density filters were used to control 

the average power of the excitation pulses. 

Pump light 
(355 nm) 

Figure 4.6: Photograph of the 410 nm lasing fiom the block copolymer based laser structure. A 

highly directional lasing output in the backward direction was observed on a white background. 



Figure 4.6 shows a highly directional stimulated emission fiom the sample surface at a 

pump power greater than the lasing threshold, which is clear evidence for lasing. The 

corresponding emission spectra were recorded at various excitation pump powers as shown 

in Figure 4.7. Above the lasing threshold, sharp single-mode lasing occurs at around 410 

nm with a significant spectral narrowing (FWHM - 1.0 nrn). In order to fbrther confirm 

lasing activity, the pump power dependence of the emission intensity at the lasing 

wavelength was obtained as shown in the inset of Figure. 4.7. Under the experimental 

conditions of this study, the lasing threshold was around 280 m ~ / c m ~  (0.2 mJ/pulse on the 

area of 300 pm diameter). Figure 4.8 shows a lasing spectrum with the same gain medium 

(Bis-MSB in PMMA) but obtained from a cavity sandwiched between an aluminum-coated 

mirror and a glass slide using the same pump configuration in Figure 2.1. In this 

arrangement the metallic mirror and the glass slide do not provide any spectrally-selective 

feedback. The lasing thus occurs at 425 nrn where the dye emission is maximum (Figure 

4.3) and the FWHM is 4 nm. This result further confirms that the narrow spectral 

selectivity of the lasing output obtained fiom the block copolymer laser cavity results fiom 

the selective feedback of block copolymer based distributed Bragg reflectors. 
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Figure 4.7: The emission spectra obtained at various pump powers. The FWHM of the lasing peak 

is 1 nm. Inset shows the emission intensity at the lasing wavelength (410 nm) as a hct ion of pump 

power, which clearly shows a threshold for lasing at around 4 mW pump power (0.2 mJ pulse 

energy) * 
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Figure 4.8: Lasing spectrum fiom a solid film of Bis-MSB (0.1 wt %) in PMMA sandwiched 

between an aluminum-coated mirror and a glass slide pumped by 355 nm pulse laser, where the 

lasing peak occurs at 425 nm and the FWHM is 4 nm. The inset shows a schematic of the sample. 



4.3. Conclusion 

In summary, we have utilized thin films of a high molecular weight PS-b-PI block 

copolymer as a narrow spectral-band selective feedback element for constructing a laser 

cavity. With fluorescent organic laser dyes in a PMMA polymer matrix as a gain medium, 

optically pumped surface-emitting lasing action has been demonstrated. This block 

copolymer based photonic structure opens the possibility for creating all-organic, flexible, 

and self-assembled laser devices with fast and low-cost processing. Further studies 

regarding stimulus responsive tunable block copolymer photonic crystals with various 

parameters such as solvent (solvatochromic), temperature (thermochromic), mechanical 

strain (mechanochromic), and electric field (electrochromic) are currently under 

investigation and their applications for lasing, sensing, and display are quite promising (see 

Chapter 5 for more details). 
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Chapter 5. 

Chemically, Thermally, and Mechanically 

Responsive Tunable Self-Assembled Reflectors 

Based on Block Copolymer Photonic Crystals 

In this chapter, we present three types of stimulus responsive tunable self-assembled 

reflectors based on block copolymer one-dimensional (ID) photonic crystals. Three 

external stimuli: (1) solvent, (2) temperature, and (3) compressive mechanical strain were 

used to modulate the microstructural and material properties including the domain 

thickness, the domain orientation, and the effective refractive indices of the respective 

microdomains, resulting in effective tuning of the spectral response of block copolymer 

photonic structures. 

The work on solvatochromism was in collaboration with Dr. Wonmok Lee and Dr. Hyunjung Lee. 



5.1. Introduction 

Over the past two decades, interest in the possibility of next generation 

optoelectronic devices has motivated considerable research efforts into photonic 

In particular, switchable or tunable photonic bandgap materials have been highly sought 

after due to their potential to create numerous applications such as variable-wavelength 

lasers, sensor platforms, switchable color filters, and reflective color display 

The dispersion relation (o(k)) of a photonic crystal can be tuned by tailoring a combination 

of the two characteristic parameters, namely the thicknesses and the refractive indices of 

the respective domains. A host of materials systems and numerous external fields have been 

employed to fabricate tunable photonic crystals. Various one- (ID), two- (2D), three- 

dimensional (3D) photonic bandgap structures doped with nematic liquid crystals (LCs) 

have been extensively investigated as electro-optic or thermo-optic tunable optical elements, 

where the refi-active index of the LC-containing domains is modulated as the optic-axis 

orientation of the LC mesogens varies with electric fields or as the phase of LC mesogens 

changes with temperature, leading to a tunability of the band gap or of localized defect- 

modes? Another interesting strategy is to use photonic crystals based on elastomeric 

(rubber or gels) materials, where the lattice dimension can change in response to various 

applied mechanical, chemical (e.g. pH or ionic strength), or thermal fields, resulting in a 

reversible shift in spectral responses. 6-8, 12-14 

Recently, block copolymers have attracted increasing attention as a versatile 

material platform for creating photonic crystals, due in large part to a range of accessible 



periodic structures and a possibility to accommodate various optically activelpassive guest 

molecules to engineer desired functionalities. l5 Block copolymer based photonic structures 

also offer novel routes to tune the photonic band gap by manipulating microstructural and 

material properties. Indeed, block copolymer based photonic crystals provide a much larger 

range of tunability compared to inorganic based photonic crystals. One previous method of 

altering the peak reflectivity of 1D lamellar stack involved swelling block copolymers with 

homopolymers, where the microdomain size or the stop band of the blends depends on the 

amount of added homopolymers.16 The idea of using a nanocomposite composed of block 

copolymers and surface-functionalized inorganic nanoparticles offered another way to tune 

and enhance photonic properties of block copolymer based photonic materials.'" l8 Block 

copolymers having LC-containing block have been also demonstrated as thermally tunable 

photonic bandgap structures either by changing the domain spacing andlor the refractive 

index of the LC-containing domains with thermal fields. 10,19 

In this chapter, we illustrate three types of stimulus responsive self-assembled 

reflectors based on block copolymer one-dimensional (ID) photonic crystal gels, in which a 

dynamic control of microstructural and material properties are achieved through the 

application of solvent, thermal, and mechanical fields. 

5.2. Results and Discussion 

For better understanding of the experimental optical responses of the 1D block 



copolymer reflectors in this study, we first examine the effect upon its photonic bandgap 

properties of the characteristic parameters such as the lattice constant, lattice orientation, 

and effective refractive indices of the respective domains of a model finite 1D photonic 

crystal. We characterize the center wavelength (Amx), the width (Ao), and the magnitude 

(R-) of the photonic stop band. The reflectivity spectra of the model photonic bandgap 

structure has been computed using a transfer matrix method (TMM)~'. The model 1D 

photonic crystal is composed of N layers of alternating high (nH) and low (nL) refractive 

domains having domain thicknesses of dH and dL as schematically presented in Figure 5.1. 

2N layers 

Glass substrate 

- 
z 

TE polarization (E I1 z) 

Figure 5.1: A schematic of a model 1D photonic crystal, air-(high index layer-low index layer)N- 

glass substrate, with incident electromagnetic wave of a transverse-electric (TE) polarization (the 

electric field vector (E) is perpendicular to the plane of incidence or parallel to the z-axis (z)). 



The spectral position of photonic band gap scales with the lattice constantO2l As the 

lattice constant becomes larger, the wavelength of electromagnetic waves that satisfy the 

Bragg condition also increases due to the increased optical thickness (n x d, n: refractive 

index, d: domain thickness). This results in a shift of the bandgap toward longer 

wavelengths. The lattice constant also affects the width of the bandgap. If the respective 

refractive indices and layer numbers are held constant, the bandgap width (Aw) increases 

with increasing lattice constant. Figure 5.2 shows normal incidence reflectivity spectra 

obtained from TMM calculations of 1D photonic crystals having a range of domain 

periodicity (L = dH + dL, dH = dL) with the constant refractive indices (nH = 1.59, n~ = 1.5 1) 

and fixed total number of layers (2N = 50). As the domain periodicity increases from 120 

nm to 280 nm, both the bandgap center wavelength (k) and the bandgap width (FWHM) 

also increase. However, the magnitude of the reflectivity remains constant. 

120 160 200 240 280 
Domain periodicity (nm) 

300 400 500 600 700 800 900 1000 

Wavelength (nm) 

Figure 5.2: Reflectivity spectra of model 1D photonic crystals at normal incidence as a hction of 

the domain periodicity (L = dH + dL, dH = dL), assuming constant rehctive indices (nH = 1.59, n~ = 

1.5 1) and fixed total number of layers (2N = 50). The peak reflectivity wavelength at each domain 

periodicity is shown in the inset. 



The refractive index also affects the spectral characteristics of photonic crystals. As 

the refractive indices of respective domains increase, the reflectivity spectrum shifts to a 

longer wavelength range due to the increased optical thickness. The refractive index 

contrast (nH/nL) is also important. In particular, the bandgap width (Am) varies with the 

refractive index contrast quite sensitively. As the refractive index contrast increases, the 

bandgap width also increases. Figure 5.3 shows reflectivity spectra of a model 1D photonic 

crystal (see Figure 5.1) at normal incidence as a hnction of a refractive index contrast 

(nH/nL), assuming constant domain thicknesses (dH = dL = 100 nm) and a fixed number of 

layers (2N = 20). As the refractive index contrast increases from 1.5/1.4 to 1.511.0, the 

bandgap width (FWHM) increases from 58 nm to 148 nm. The blue-shift of the peak 

reflectivity wavelength (h,,) with increased refractive index contrast results from the 

decreased optical thickness of the low index layers. The strength of bandgap is also affected 

by the index contrast. Equation 5.1 is the analytical solution of peak reflectivity (R) of 

quarter-wave stacks (nHdH = nLdL = ho/4, Lo: center wavelength of the bandgap) having 2N 

alternating layers at normal incidence and is graphically presented in Figure 5.4.20 With 

constant domain thicknesses and a fixed total number of layers, the reflectivity increases 

with the index contrast, which is also clearly shown in Figure 5.3. 
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Figure 5.3: Reflectivity spectra at normal incidence of a model 1D photonic crystal (Figure 5.1) as 

a hc t ion  of the refractive index contrast (nH/nL), assuming constant domain thicknesses (dH = dL = 

100 nm) and a fixed total number of layers (2N =20). 
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Figure 5.4: Peak reflectivity of quarter-wave multilayer stacks (see the inset) at normal incidence as 

a function of rehctive index contrast (nH/nL) and a total number of layers (2N) fiom Equation 5.1. 

(dH = &j4nH, dL = w4nL, ki: incident wave vector, 14: reflected wave vector, k: transmitted wave 

vector). 



The effect of domain orientation is equivalent to the effect of the direction of the 

incident light. Given a certain direction (k) of the incident electromagnetic waves, the 

variation of domain orientation has the same effect as the variation of incidence angle with 

a fixed domain orientation as schematically shown in Figure 5.5. Figure 5.6 shows 

calculated reflectivity maps of the dielectric multilayer structure, where the reflectivity 

strength is displayed as a function of incidence angle, wavelength, and polarization of 

incident electromagnetic waves for (a) low refiactive index contrast (nHlnL = 1.5911.5 1 - 
1.05) and (b) high refiactive index contrast (nH/nL = 2.2711.5 1 - 1 SO), assuming quarter- 

wave layer thicknesses of 500 nrn and total 30 layers (2N = 30). As the incidence angle 

increases fiom normal incidence (8 = 0") to grazing angle (8 = 90°), the reflectivity peak 

moves to a lower wavelength range (blue-shift). However, if the refractive index contrast is 

sufficiently large (nH/nL > - IS), there exists a wavelength range where the reflectivity is 

independent of the incidence angle, or ornnidire~tional.~~ 

Figure 5.5: Schematic of 1D photonic crystals having different domain orientations with respect to 

a certain direction of incident light (ki), (a) 0 = 0°, (b) 0 > 0". 
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Figure 5.6: Reflectivity map computed by TMM for a 15-period (2N = 30) stack of alternating high 

and low index layers for (a) low refkactive index contrast (nHlnL = 1.5911.5 1) and @) high refractive 

index contrast (nH/nL = 2.2711.5 1) for TE (right) and TM (left) polarizations, assuming quarter-wave 

layer thicknesses of 500 nm and total 30 layers. The color represents the strength of the reflectivity 

at a particular frequency, a polarization, and an angle of incidence. The omnidirectional reflectivity 

band is shown for the high refractive index contrast 1D photonic crystal. 



Now we examine the tunability of self-assembled reflectors based on block 

copolymers. Three types of external stimuli, (1) solvent (solvatochromic), (2) temperature 

(thermochromic), and (3) compressive mechanical strain (mechanochromic), are applied for 

dynamic control of microstructural and material properties of block copolymer photonic 

crystals. 

A high molecular weight poly(styrene-b-isoprene) (PS-b-PI) block copolymer 

sample was synthesized via anionic polymerization with sequential addition of styrene and 

isoprene monomer in cyclohexane/benzene mixed solvent. The molecular weight and 

composition of the block copolymer was determined to be 8 . 4 0 ~ 1 0 ~  glmol (PDI: 1.08), 

57/43 (PSEI, wtlwt) by gel permeation chromatography (GPC) and nuclear magnetic 

resonance (NMR) analysis. Figure 5.7 is a bright field transmission electron microscopy 

(TEM) micrograph from the cryomicrotomed sample of the PS-b-PI block copolymer 

exhibiting the 1D periodic lamellar morphology, in which the dark regions correspond to 

the PI domains preferentially stained with osmium tetroxide (Os04) and the bright regions 

correspond to the PS domains. The domain periodicity from the TEM micrograph is 

approximately 200 nm (PS: 110 nrn, PI: 90 nm). Samples were fabricated by casting 

solutions of the lamellar-forming PS-b-PI block copolymer in a solvent (cumene for 

solvato-, thermochromic study, dioctyl phthate (DOP) for mechanochromic study) between 

two glass substrates. 

Figure 5.8 shows a time-sequence of pictures taken of a block copolymer based self- 

assembled reflector exhibiting a solvatochromism, i.e. the color of this material system 

changes as a function of solvent concentration which varies with time.22 As the 



concentration of block copolymers in the solution increases and reaches the order-to- 

disorder transition concentration ($ooc), the transparent block copolymer solution 

microphase separates to form 1D periodic dielectric multilayers. Since the domain spacing 

of the block copolymer is on the order of the wavelength of visible light, the multilayer 

structure from the confined block copolymer solution exhibits a visible wavelength partial 

photonic bandgap in the blue. As the solvent evaporation proceeds through the rim of the 

sample, i.e. in the radial direction, the concentration gradient (V$(r)), gives rise to 

concentric regions exhibiting different colors as shown in Figure 5.8. The blue reflective 

region is in the center and becomes smaller over time while the red or orange region at the 

edge grows larger as the solvent concentration decreases. 

Figure 5.7: Bright field TEM micrograph of cqmicrotomed PS-b-PI block copolymer, in which PI 

domains are preferentially stained with Os04. The domain periodicity fiom the TEM micrograph is 

approximately 200 nm (PS: 1 10 nm, PI: 90 nm). 



Figure 5.8: A series of pictures taken fiom confined block copolymer gel at different solvent 

evaporation times (e.g. 2:40 means 2 h 40 min). These pictures were taken by Felice Frankel at MIT. 

Figure 5.9 shows the corresponding reflectivity spectra taken from the sample in the early 

stage of solvent evaporation at various radial positions from the center to the edge using 

normal incidence light. Reflectivity spectra were taken using an optical microscope (Zeiss 

Axioscop) equipped with a fiber-optic spectrometer (Stellamet EPP2000) with a silver- 

coated metallic mirror as a 100% reference. Due to the effect of the numerical aperture of 

objective lens (lox, N.A. = nairsine = 0.3), the reflectivity spectrum is not a pure normal 



incidence spectrum but a convolution of multiple reflectivity spectra over the incidence 

angles of 0' to -17.5'. The measured reflectivity shows that the range of colors fiom this 

sample covers nearly the entire visible wavelength regime. As the concentration of the 

block copolymer increases, the reflectivity moves towards longer wavelength range (fiom 

blue (488 nm) to red (677 nm)) and the width of reflectivity band (the fill width at half 

maximum, FWHM) gets broader (fiom 11 nrn to 57 nm). 
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Figure 5.9: Reflectivity spectra taken in the early stage of solvent evaporation at various radial 

positions fiom the center to the edge with normal incident light using a microscope spectrometer. 

Note the continuous change in the peak wavelength with radial distance fiom the sample center. The 

sample in the photograph appears to the eye as having a large single color near the center, but the 

measured spectra show a significant variation of the actual color with radial position. 



The observed solvatochromic effect can be understood by considering the effect of 

the solvent on the microstructural and materials properties of block copolymer gels such as 

the domain spacing, the domain orientation, and the effective refractive index of the 

respective lamellar microdomains, all of which can sensitively affect the spectral 

characteristics of the system. Obviously, over the time the solvent concentration of the 

system is decreasing, leading to an increase in the refractive index contrast (nH/nL). Also 

solvents can induce changes in the respective layer spacings (dH and dL). Additionally, there 

may be a re-orientation of the lamellae upon solvent evaporation. First we examine the 

effect of re-orientation of the block copolymer lamellae with different solvent 

concentrations. As previously described, the lamellar domain orientation can contribute to 

the shift of the reflectivity band of 1D photonic crystal. But it is reasonable to assume that 

this lamellar re-orientation is not a dominant factor for explaining observed "rainbow" 

reflectivity spectra in the current system. This can be understood as follows. If the film 

thickness is not too large, the orientation of block copolymer lamellae confined between 

23,24 two flat substrates tends to be parallel to the surface. Especially near the center area of 

the sample (the blue reflective region) the solvent concentration is relatively higher than the 

edge and both the PS and PI chains have enough mobility at room temperature for the 

surface-directed organization. The well-ordered lamellar orientation is also supported by 

the narrow FWHM (- 11 nrn) of the reflectivity band observed near the center of the 

specimen. As the solvent concentration decreases toward the edge, the mobility of polymer 

chains decreases and therefore the effect of surface becomes weaker. At some critical 

concentration, the glass transition temperature of the PS block passes through room 



temperature and the microstructure of block copolymer becomes kinetically frozen. Poorer 

lamellar ordering with decreased solvent concentration partly explains why the FWHM of 

reflectivity band becomes larger from the center to the edge, in which the surface-induced 

uniformity of lamellar orientation is limited, due to the shorter time the system has to adopt 

the lamellae parallel to the substrate orientation. Moreover if there were any re-orientation 

of the lamellae from the parallel orientation, this would contribute to the blue-shift of 

bandgap instead of the observed red-shift of the measured reflectivity. Thus lamellar re- 

orientation is essentially ruled out as an explanation for the observed reflectivity spectra. 

We next consider the variation of the domain spacing and the effective domain 

refractive index in the presence of a solvent. The effect of a solvent on the lamellar domain 

spacing can be understood by considering the effective repulsive potential (or ~ , f f ,  the 

effective Flory-Huggins interaction parameter) between PS and PI blocks under different 

solvent concentrations. 

In a block copolymer solution with a nonselective neutral solvent, there exist two 

25,26 competing effects of the solvent on the lamellar microdomain formation. One obvious 

effect of the added solvent is to swell the microdomain and increase the domain spacing. 

On the other hand, the segregation strength (xeff) between PS and PI chains decreases with 

increasing solvent concentration due to a screening effect by solvent molecules and 

consequently the block copolymer chains can adopt more random-coil configurations, 

resulting in a decrease of the lamellar domain spacing. If this de-swelling effect due to the 

decreased segregation strength outweighs the swelling effect due to the added solvent, the 

resulting lamellar domain spacing can decrease with increasing solvent concentration and 



this corresponds to the observed blue-shift of reflectivity spectra with increasing solvent 

concentration in this study. In the same manner, as a solvent concentration decreases with 

evaporation, the segregation strength between blocks increases and the polymer chains get 

more extended to minimize mixing free energy of the unlike segments. If this effect 

prevails over the de-swelling effect due to decreased volume of solvent, the lamellar 

domain spacing can increase. This can explain why the reflectivity spectra red-shift from 

the center to the edge as the solvent concentration increases. 

The other important physical factor which can be affected by a solvent is the 

effective refractive indices of the respective domains. Both the refractive index of each 

domain and the refractive index contrast between high and low refractive domains are 

modulated by an added solvent. Figure 5.10 shows the effective refractive indices of PS and 

PI domains as a hnction of solvent concentration with three nonselective solvents of 

different refractive indices assuming a simple rule of mixing, i.e. ~ f f  = np-(1-ws)+ns-w,, 

where neff is the effective refractive index of a solvent-containing domain, np is the 

refractive index of polymer, n, is a refractive index of solvent, and w, is the weight fraction 

of solvent. 

Depending on the refractive index of a solvent, the effective refractive index of each 

domain changes differently. If the refractive index of a solvent is smaller than both PS and 

PI, which is the case (c) in Figure 5.10 as in the present study, the effective refractive 

indices of both PS and PI domains decrease. If the refractive index of a solvent is larger 

than both PS and PI (case (a) in Figure 5. lo), the effective refractive indices of both PS and 

PI domains increase. If the refractive index of a solvent is between PS and PI (case (b) in 



Figure 5. lo), the effective refractive index of PS domain decreases while that of PI domain 

increases. These different trends can be also illustrated by an average effective refractive 

index, which is defined as ig,, = (rtff, H + I ~ E ,  ~ ) / 2  . AS shown in Figure 5.1 1, the average 

effective refractive index can increase (n, > n~ > nL), decrease (n, < n~ < nH), or even be 

constant (n, = (nH+nL)/2) with increasing solvent concentration. 

(a) ns = 1.61 

Solvent concentration (wt %) 

Figure 5.10: Effective rehctive indices of PS (thick line) and PI (thin line) microdomains as a 

function of solvent concentration at various solvent rehctive indices, (a) n, = 1.61 > n~ > n ~ ,  (b) n~ 

> n, = 1.55 > nL, (c) n~ > n~ > n, = 1.49. Case (c) is relevant to the experiments on PS-b-PI with 

cumene (n = 1.49). 

The effective refractive index contrast decreases with solvent concentration 

regardless of the solvent refractive index as shown in Figure 5.10. In the case of a 



nonselective neutral solvent, the effective refiactive index contrast (bff is independent of 

a choice of solvent and represented by kff =(1 -+J(nH-nL). 

As a consequence of this solvent-induced refiactive index variation both the center 

wavelength and the width of the bandgap can change for the present system of a PS-b-PI 

diblock and cumene. As the rehctive indices of the respective domains decrease with 

increased cumene concentration, the optical thickness of each domain also decreases, 

leading to a peak narrowing and a blue shift of the bandgap center, which is in agreement 

with the experimental data. 

1.48 ! I I 1 . I I . I i 
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Figure 5.11: Average effective rekt ive  indices (n,Vg = (G~, H + ~ f f ,  ~.)/2) as a bction of solvent 

concentration at various solvent rehctive indices, (a) n, = 1.61 > n~ > nL, (b) n~ > n, = 1.55 > n ~ ,  

(c) n~ > n~ > n, = 1.49. Case (c) is relevant to the experiments on PS-b-PI with cumene (n = 1.49). 



Next we examine thermochromism, or the effect of temperature on bandgap 

characteristics, of a 1D photonic crystal fabricated from a block copolymer-solvent gel 

where the composition of the system is held approximately constant as the temperature is 

varied. For this experiment, the lamellar-forming PS-b-PI block copolymer in cumene was 

cast between two glass substrates and then sealed with a fast-curing epoxy to maintain a 

constant solvent concentration. Using a temperature-controllable hot stage (Linkam), the 

sample temperature was varied and the reflectivity spectra at normal incidence were 

measured at various temperatures on a fiber-optic spectrometer attached to a microscope. 

Figure 5.12 shows measured reflectivity spectra between 30 "C and 140 "C in 10 "C 

increments. The sample temperature was increased at a rate of 5 "Clmin and the reflectivity 

data were taken after the system reached thermal equilibrium (after - 10 minutes) and the 

reflectivity peak was stationary. As the temperature increases, the peak reflectivity shifts to 

shorter wavelengths from 5 10 nm (30 "C) to 450 nm (140 "C) while the width of reflectivity 

band remains almost unchanged (FWHM: - 12 nm). It was also observed that this 

thermochromic effect was reversible (data not included here). 

The temperature dependence of refractive indices of solvent (cumene) and the 

polymers (PS and PI) provides a partial explanation for the observed thermochromism of 

the block copolymer gel. The themally induced decrease in the density (p) of the solvent 

and the polymer (dpIdT < 0) results in the decrease of their respective refractive indices (n) 

with temperature, dn1dT < 0, which contributes to the decrease of the optical thickness of 

layers and therefore shifts the reflectivity band to a shorter wavelength range. A second 

important effect of temperature on the block copolymer gel is the change of lamellar 



domain spacing due to the change of the segregation strength between PS and PI blocks 

with increased temperature (this effect far outweighs thermal expansion). When the block 

copolymer concentration is constant, the lamellar spacing decreases with temperature due 

to the decreased segregation strength (X - 1/T, x is the Flory-Huggins interaction parameter 

between repeat units of block copolymers) and due to the resulting relaxation of the 

stretched chains, which also contributes to the blue-shift of reflectivity band with 

temperature. Hashirnoto and co-workers showed that the thermodynamically controlled 

lamellar domain periodicity (L) varies with absolute temperature (T) given by L - (I/T)'" 

for a nonselective solvent. 26,27 
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Figure 5.12: Measured reflectivity spectra of the block copolymer lamellar photonic gel at various 

temperatures between 30 "C and 140 "C. 



In order to examine the competition of these two effects on sample reflectivity, we 

calculated the shift of the reflectivity band due to the change of refi-active index, domain 

spacing and both of these two factors with temperature. Given the experimentally measured 

reflectivity spectrum at 30 OC, in which the peak reflectivity occurs at 510 nm with a 

FWHM of 12 nm, we first estimated an initial solvent concentration, domain thicknesses, 

and refractive indices. For this estimation, we modeled our system as a perfect 1D photonic 

crystal in TMM calculation and assumed refractive indices of PS and PI at 30 OC as 1.590 

and 1.510, a uniform lamellar orientation parallel to the glass substrates (a normal 

incidence of light), a constant ratio of PS and PI domain thicknesses (i.e. dpS/dpI = 1.110.9 

as observed in TEM for a dried sample), and total 400 layers. 

Table 5.1: Calculated normal incidence peak reflectivity wavelengths of a PS-b-PI photonic gel in a 

range of domain thicknesses with 10 wt % solvent concentration, assuming refractive indices of 

high and low index layers as 1.580 and 1.508, a fixed ratio of PS and PI domain thicknesses (dPS/dPI 

= 1.1/0.9), and total 400 layers. 



For example, at 10 wt % of solvent concentration, the refractive indices of PS and PI 

domains are calculated as 1.580 and 1 .SO8 if we apply a simple rule of mixing. With these 

effective refractive indices, we can determine domain thicknesses which give a reflectivity 

peak at 5 10 nm. Table 5.1 summarizes the peak reflectivity wavelengths for a range of 

domain thicknesses, from which the estimated lamellar spacings are 90.6 nrn for PS and 

74.1 nm for PI domain. In the similar manner, we can also estimate domain thicknesses at 

other solvent concentrations and FWHMs of the corresponding reflectivity spectra as 

summarized in Table 5.2. The initial solvent concentration was then determined as about 40 

wt % for which the FWHM of the calculated reflectivity band approximately matches with 

the FWHM of the experimentally measured reflectivity spectra. 

Table 5.2: Effective refractive indices and effective domain thicknesses of PS and PI domains at 

various solvent concentrations determined from TMM calculations, which give a peak wavelength 

of the corresponding reflectivity spectrum at 5 10 nm. 

Ws 

(wt%) 

10 

20 

30 

40 

50 

neff, PS 

1.580 

1.570 

1.560 

1.550 

1.541 

neff, PI 

1 .SO8 

1.506 

1.504 

1.502 

1 .SO1 

deff, PS 

(nm) 

90.6 

91 .O 

91.4 

91.8 

92.2 

deff, PI 

(nm) 

74.1 

74.5 

74.8 

75.1 

75.4 

FWHM (nm) 

16.3 

15.2 

14.9 

11.8 

11.1 



With the estimated refractive indices and domain thicknesses at 30 OC as an initial 

condition, we computed the shift of reflectivity band as a fbnction of temperature, due to 

the change of 1) refractive indices of solvent and polymer, 2) lamellar domain spacings, 

and 3) both refractive indices and domain spacings. First, we examined the effect of 

temperature-dependent refractive indices on the peak wavelength of reflectivity spectra. 

Given dn/dT of the solvent (- -5 .68~10-~ Kg' (toluene), assumed to be the same value for 

toluene and ~ u m e n e ) ~ ~  and of the polymer (- -1 .27~10-~ K-' (PS), assumed same values for 

both PS and  PI)^^, the effective refractive indices of respective domains were calculated at 

various temperatures between 30 OC and 140 "C. Further, assuming that the domain 

thicknesses are held constant as the estimated values at 30 OC (i.e. Gff, ps: 91.8 nm, den PI: 

75.1 nm), the corresponding reflectivity peak wavelengths as a function of temperature 

were obtained by TMM calculations as summarized in Table 5.3. Second, we investigated 

the effect of temperature-dependent lamellar thicknesses on the peak wavelength of 

reflectivity spectra. For this analysis, we adopted the scaling law by Hashimoto and co- 

workers, L - (IIT)"~, where L is the lamellar domain periodicity and T is absolute 

temperature.27 Using this scaling law and the estimated domain thicknesses at 30 OC, the 

respective domain thicknesses at various temperatures were calculated. Peak reflectivity 

wavelengths at various temperatures were then obtained by TMM calculations as 

summarized in Table 5.4, in which the refractive indices of respective domains were 

assumed constant as the estimated values at 30 "C (i.e. ~ f f ,  ps: 1 .550, ~ f f ,  PI: 1.502). Third, 

we considered the effects of both temperature-dependent refractive indices and 

temperature-dependent domain spacings. Using the values of the refractive indices and 



domain spacings at various temperatures in Table 5.3 and 5.4, peak reflectivity wavelengths 

were calculated as summarized in Table 5.5. 

Table 5.3: Effective refractive indices of PS and PI domains and peak reflectivity wavelengths at 

various temperatures obtained from TMM calculations, in which the domain spacings of the 

respective domains are held constant as the estimated values at 30 O C .  



Table 5.4: Effective domain spacings of PS and PI domains and peak reflectivity wavelengths at 

various temperatures obtained from TMM calculations, in which the refractive indices of respective 

domains are held constant as the estimated values at 30 O C .  



Table 5.5: Effective refi-active indices, effective domain thicknesses of PS and PI domains, and 

peak reflectivity wavelengths at various temperatures obtained from TMM calculations. 



Temperature (C) 

450 - 

Figure 5.13: Peak reflectivity wavelengths obtained fiom TMM calculations with temperature- 

dependent refractive indices (red data points), with temperature-dependent domain thicknesses (blue 

data points), and with both temperaturedependent refiactive indices and domain thicknesses at 

various temperatures. The observed peak reflectivity wavelengths (black data points) are also shown. 
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Figure 5.1 3 shows the calculated peak reflectivity wavelengths with temperature- 

dependent refiactive indices (red data points), temperature-dependent domain thicknesses 

(blue data points), both temperature-dependent refkactive indices and domain thicknesses 
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(green data points), and the observed peak reflectivity wavelength (black data points) as a 

function of temperature. As evidently shown in Figure 5.12, the change of refractive indices 

of polymer and solvent alone does not explain such a large shift of reflectivity band while 

the effect of domain thicknesses with temperature is dominant and produces the peak 

reflectivity positions close to the experimental values. If we consider both the effect of 

refractive indices and domain thicknesses, the match is excellent between experimental and 

theoretical peak reflectivity wavelengths at various temperatures. Therefore, the observed 

thermochromism from the self-assembled block copolymer reflector is a consequence of 

both the change of refractive indices and more importantly, the change of lamellar domain 

spacing induced by the variation of x(T). 

Finally, we investigated mechanocromism, or the effect of mechanical strain on 

reflectivity, of the block copolymer based photonic structure. For this study, an elastomeric 

gel has been prepared by blending the PS-b-PI block copolymer with a nonvolatile solvent, 

dioctyl phthalate (DOP, Aldrich) (- 50150 wt %), in order to lower the glass transition 

temperature of PS block and to make the sample a soft viscoelastic material at a room 

temperature. The mechanochromic gel was compressed between two glass substrates using 

spacers of various thickness and the normal incidence reflectivity has been measured by the 

microscope-spectrometer setup at different compressive strains. Figure 5.14 shows 

corresponding spectral measurements, a graph of measured peak reflectivity wavelength 

(blue data points) versus the compressed sample thickness. As the sample is compressed, 

the sample color changes from yellow-orange to green-blue as shown in the image insets in 

Figure 5.12. 
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Figure 5.14: Measured peak reflectivity wavelength (blue data points) versus sample thickness of 

mechanochromic block copolymer gel. The orange line is obtained fiom the TMM calculation. Inset 

shows photographs taken fiom the sample at different sample thicknesses. 

A simple explanation is the decrease of microdomain thickness due to the 

compression, which shifts the reflectivity band to shorter wavelengths. Given the initial 

reflectivity peak wavelength (640 nm) and the known solvent concentration (50%), we can 



estimate the initial domain thickness of the PS and PI domains, again assuming a quarter- 

wave stack, parallel domain orientation, and uniform solvent distribution. If we further 

assume the macroscopic strain is the same as the microscopic strain of domains (i.e. affine 

deformation), we can calculate the reflectivity peak as a function of compressed sample 

thickness as shown in Figure 5.14 (orange line). We see that the change of the experimental 

peak reflectivity wavelength is much smaller than the values expected from the TMM 

calculation. Another possible effect of compression is the change of domain orientation. 

This reorientation effect not only makes the initially tilted lamellar domains more parallel 

to the substrates upon compression, which contributes to the red-shift of the bandgap center, 

but also makes the effective strain of respective domains less than the expected value based 

on the assumption of afine deformation. By crosslinking the PI domains, we also can 

achieve reversibility of mechanochromic response of block copolymer photonic gels (data 

not include here). 

5.3. Conclusion 

In summary, stimulus responsive tunable self-assembled reflectors have been 

demonstrated using block copolymer based one-dimensional (ID) photonic crystals. 

Solvent, temperature, and compressive mechanical strain have been applied to modulate 

microstructural and material properties of block copolymer gels, resulting in effective 

tuning of the spectral response of the system. The decreased lamellar domain spacing (due 



to the decreased segregation strength between PS and PI blocks) and the decreased 

refractive index contrast with increasing solvent concentration resulted in a peak narrowing 

and a blue-shift of the photonic stop band of the solvatochromic reflector. The observed 

thermochromism from the self-assembled block copolymer reflector was induced by both 

the temperature-dependent refractive indices and more importantly, the temperature- 

dependent domain spacings with the variation of x(T) The mechanochromic effect of the 

block copolymer photonic gel can be understood by considering the variation of domain 

thickness and domain orientation under the applied compressive strain. These stimulus 

responsive tunable self-assembled reflectors can be potentially used for novel sensor and 

display applications. 
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Chapter 6. 

Highly Oriented Thin Film Microdomain 

Patterns of Ultrahigh Molecular Weight 

Photonic Block Copolymers via Directional 

Solidification of a Solvent 

In this chapter we present excellent control of thin film microdomain orientation of 

lamellar- and cylinder-forming ultrahigh molecular weight block copolymers (M, - lo6 

g/mol) over a large area via directional solidification of a crystallizable solvent. Moreover, 

we found an intriguing ordering behavior of the ultrahigh molecular weight block 

copolymers, which is dramatically different from that of typical molecular weight block 

copolymers (M, - 5x10~ g/mol), as revealed by 3D optical imaging via laser scanning 

confocal microscopy (LSCM). These highly oriented thin film microdomain patterns have a 

domain size on the order of wavelength of visible light and can potentially be used for 

creating useful thin film photonic structures. 

The LSCM investigation was in collaboration with Dr. Wonrnok Lee and parts of this chapter will appear in: J. 

Yoon, W. Lee, E. L. Thomas Advanced Materials (submitted). 



6.1. Introduction 

Self-assembly is rapidly emerging as a simple and effective method for creating 

large-area functional periodic structures in various nanote~hnolo~ies.~'~ In particular, block 

copolymers have been considered as a promising self-organizing material platform because 

of their tunability in shape, size, and physical/chemical properties of the domains, with the 

capability of hosting many types of nano-additives for desirable multifunctional 

composites.5 In order to fulfill the potential of these materials, it is necessary to control 

microdomain orientation and long-range translational order, as well as to prevent randomly 

occurring defects. Considerable research into developing well-ordered block copolymer 

nanostructures has been undertaken with the common strategy of using various external 

biases such as mechanical flow temperature gradient,'' electric fields," solvent 

13,14 annealing,12 and topological andlor chemical patterns during the self-assembly process. 

Directional solidification (DS) is a thin film process that can generate highly-ordered 

nanoscale patterns of block copolymers, in which the block copolymer solute rapidly 

solidifies from a mixture with a crystallizable organic solvent, as the organic solvent 

undergoes directional crystallization. A range of block copolymer systems having both 

cylindrical and lamellar microdomains with typical molecular weights of - 5x10~ dm01 

have been successfhlly organized in thin films with this fast ordering 

Recently, ultrahigh molecular weight (M, - 1 o6 dmol) block copolymers possessing 

a domain size comparable to the wavelength of visible light have received increasing 

attention as self-assembled photonic materials.'' One-, two-, and three-dimensional 



photonic crystals for visible frequencies have been successfully demonstrated using 

lamellar, cylindrical, and double gyroid morphologies of poly(styrene-b-isoprene) (PS-b- 

PI) block ~ o ~ o l y m e r s . ' ~ - ~ ~  While most of previous work on these photonic block 

copolymers has been limited to relatively thick samples with only modest control over 

microdomain order, numerous engineering applications such as thin film waveguides, 

reflectors, and microcavities for lasing can potentially be achieved from controlled 

nanostructured thin films of these materials, all of which depend critically on the overall 

order of the microdomains to meet desired hnctionalities. 

Here we demonstrate the excellent control of thin film microdomain patterns of 

lamellar- and cylinder-forming ultrahigh molecular weight block copolymers (- 20 times 

larger molecular weight than for previously studied block copolymers) over a large area via 

directional solidification of a solvent. The ordering behavior of these photonic block 

copolymers via the DS process is dramatically different from that of directionally solidified 

conventional molecular weight BCPs. Due to the relatively large domain sizes of ultrahigh 

molecular weight BCPs, laser scanning confocal microscopy (LSCM) could be used to 

optically characterize the lamellar and cylindrical thin film structures in 3D. 

6.2. Results and Discussion 

The ultrahigh molecular weight PS-b-PI diblock copolymers having lamellar and 

cylindrical morphologies were anionically synthesized by sequential addition of styrene and 



isoprene monomer in cyclohexanehenzene mixed solvent.22 Molecular weights and 

compositions of the block copolymers are 8 . 4 ~ 1  o5 dm01 (PDI: 1.08), 57/43 (PSIPI, wtlwt) 

for the lamellar-forming block copolymer (SILAM) and 1 . 1 5 ~  1 o6 dm01 (PDI: 1.05), 22/78 

(PSIPI, wtlwt) for the cylinder-forming block copolymer (SICYL) as determined by gel 

permeation chromatography (GPC) and nuclear magnetic resonance (NMR) analysis. In 

order to prepare highly oriented block copolymer samples in thin films, the directional 

solidification method with benzoic acid (BA) was applied as described in previous 

studies.15' l6 Once the sample cooled down to a room temperature, it was analyzed by 

reflection-mode LSCM (Leica TCS SPII) using a 488 nrn probe laser beam without further 

treatment. Since the PS-b-PI BCP does not contain any fluorophore, reflection signals of 

the probe light were scanned for every LSCM image through an oil-immersion objective 

lens (Leica, HCX PL APO 63Xl1.40-0.60). 

The directional solidification of block copolymers with BA resulted in orientational 

control of the self-assembled microdomains over a large area (- 100 x 100 p,m2), as shown 

in the reflection-mode LSCM micrographs. Figure 6.1 shows the highly oriented lamellar 

microdomains of SILAM with the lamellar microdomains oriented such that their 

intermaterial dividing surfaces (IMDSs) are approximately perpendicular to the fast-growth 

direction of the BA crystal (bBA, i.e. the crystallographic b-axis of BA crystal). Directional 

solidification of SIcvL also created well-ordered cylindrical microdomains in a thin film as 

shown in Figure 6.2, where the PS cylindrical domains are lying in the xy-plane and the 

cylinder axes are perpendicular to be*. The relative microdomain orientation with respect 

to the BA growth direction was determined from low magnification LSCM images, where 



the fast-growth direction of BA crystal was readily identified. For example, Figure 6.3 

shows a low magnification LSCM image of SIcvL in which a long and narrow region 

represents the highly ordered cylindrical domains aligned normal to the fast-growth 

direction of BA. 

-- 

I 
Figure 6.1: Reflection mode LSCM image (xy-scan) of PS-b-PI block copolymers showing highly- 

oriented lamellar microdomains in a thin film obtained from directional solidification process 

with benzoic acid (BA). Inter-material dividing surfaces (IMDSs) are principally aligned 

perpendicular to the fast growing direction of benzoic acid (the b-axis of BA crystal). The inset is a 

high magnification image of the edge-on lamellae, for which the lamellar periodicity (dLAM - 210 

nm) is shown. 



Figure 6.2: Reflection mode LSCM image (xy-scan) of PS-b-PI block copolymers showing highly- 

oriented cylindrical microdomains in a thin film obtained from directional solidification process 

with benzoic acid (BA). Inter-material dividing surfaces (IMDSs) are principally aligned 

perpendicular to the fast growing direction of benzoic acid (the b-axis of BA crystal) The inset is a 

high magnification image of the in-plane cylinders, for which the inter-cylinder spacing (&- 260 

nm) is shown. 

To M e r  explore the block copolymer thin film nanostructure, a series of LSCM 

xy-images were taken varying the z position (i.e. an image slice (focal plane) along the film 

thickness direction) to permit 3D image reconstruction. Figure 6.4 and 6.5 show the 3D 



LSCM representations of the SILM and SIcy~ thin films and corresponding schematics. 

Interestingly, the lamellar microdomains are tilted by about 60" to bgA as shown in Figure 

6.4. 3D imaging of the SICYL thin film revealed that it is composed of approximately four 

layers of hexagonally packed PS cylinders in the film thickness direction as shown in 

Figure 6.5. From the side view of SICYL thin film (yz-plane), the second and fourth layers of 

cylinders appear brighter since the first and third layers of cylinders are offset from the 

focal plane. The elongated shape of the cylindrical cross-section in the xz-plane can be 

attributed to the limited axial resolution of LSCM. 23, 24 The hexagonal packing of 

cylindrical domains in the xz-plane was also confirmed by xy-scans of the film in varying 

z-locations, which clearly shows alternating registration of cylindrical domains at different 

depths as shown in Figure 6.6. 

Figure 6.3: A low magnification LSCM image (xy-scan) of SICyL showing the relative orientation 

of cylindrical rnicrodomains with respect to the fast-growth direction of BA crystal. 



Figure 6.4: 3D reconstruction of reflection mode LSCM image of a highly-ordered lamellar PS-b- 

PI block copolymer in a thin film obtained from the DS process. 3D imaging revealed that lamellae 

were tilted by about 60" to the fast-growth direction of BA. Corresponding schematic with the 

direction of BA crystallization is also shown. 



Figure 6.5: 3D reconstruction of reflection mode LSCM image of a highly-ordered cylindrical PS- 

b-PI block copolymer in a thin film obtained from the DS process. 3D imaging revealed cylindrical 

microdomains were hexagonally packed in the xz-plane. Corresponding schematic with the 

direction of BA crystallization is also shown. 



Figure 6.6: Reflection-mode LSCM images (xy-scan) of PS-b-PI block copolymer ( S k )  taken 

every 220 nm along the z-axis on the same sample position. In each figure, three circled regions 

show the alternating registration of PS cylindrical domains (bright region) in PI matrix (dark region) 

along the z axis. 



An intriguing phenomenon in the DS process found in this study is the molecular 

weight dependence of the block copolymer microdomain orientation with respect to the 

fast-growth direction of BA. According to our previous studies using conventional 

molecular weight lamellar and cylindrical block copolymers (M, - 5x10~ glmol), the 

IMDSs are predominantly oriented parallel to bBA, that is, the lamellar normal was aligned 

perpendicular to bBA and the cylinder axis was aligned parallel to bBA . 5 y  l 6  However, with 

the present 20 times higher molecular weight block copolymers, the microdomain 

orientations change by about 90". 

In the DS process, the symmetry breaking external field inducing the microdomain 

orientation is a concentration gradient of the BCP molecules generated by a directional 

crystallization of the BA solvent. Figure 6.7 shows hypothetical schematic diagrams of the 

block copolymer concentration profiles during the DS process along the fast-growth 

direction (bBA) of BA for (a) high and (b) low molecular weight block copolymers, in 

which the y-axis is the concentration (4) of dissolved block copolymers and the x-axis is 

the spatial coordinate along bBA. Above the melting temperature of BA (Tm,BA - 123 O C ) ,  

the solution of block copolymers in BA is a homogeneous liquid and the dissolved block 

copolymer chains are in a disordered state below the order-disorder transition concentration 

( 4 0 ~ ~ ) .  When the temperature is dropped down below the Tm,BA, directional growth of BA 

crystals is initiated and simultaneously the block copolymer concentration in the remaining 

liquid increases with directional extraction of solvent along the fast-growth direction of the 

solvent crystal. As the directional crystallization of BA proceeds further, the block 

copolymer concentration also increases and eventually reaches the @oDc, at which 



microphase separation of the block copolymer domains is initiated. After the onset of 

microphase separation at the phase separation boundary, the block copolymer concentration 

continues to increase and reaches the value of pure block copolymer (@=1.0) as the 

remaining BA molecules diffise out of the polymer, and crystallize onto the essentially 

pure BA domains. 

The molecular weight dependent microdomain orientation in the DS process can be 

understood in terms of a combination of the following three physical factors: (i) the order- 

disorder transition concentration ($ow) (ii) the diffisivity of block copolymer molecules in 

solution and (ii) the solubility of PS and PI block with respect to BA. All of these factors 

have a strong molecular weight dependence and may play important roles during the course 

of microphase separation. Scaling laws for semi-dilute solutions suggest that the order- 

111.59 disorder transition of A-B diblock copolymer varies as: - (xN)- , where x is the 

Flory-Huggins interaction parameter, and N is the total degree of polymerization.253 26 Thus, 

@oooc scales as N ~ . ~ ~  at a fixed temperature. The order-disorder transitions for the present 

high molecular weight block copolymer systems therefore occur at much lower 

concentrations than that for the low molecular weight block copolymers due to the factor 20 

increase in the block copolymer molecular weight. As mentioned earlier, while a solvent 

(BA) crystallizes in the DS process, the directional extraction of the solvent generates a 

concentration gradient (i.e. d@/dx in Figure 6.7) along the solidification direction. Assuming 

that the growth velocity of BA crystals and the resulting concentration profile are the same 

for high and low molecular weight block copolymers, then the order-disorder concentration 

of high molecular weight block copolymer is reached much faster and the block copolymer 



microphase separation Eront (vertical line P in Figure 6.7(a)) is much closer to the BA 

crystallization front (vertical line a in Figure 6.7(a)) than for low molecular weight block 

copolymers (Figure 6.7(b)). 

Figure 6.7: Schematic diagrams showing the hypothetical concentration profiles of block 

copolymer (@BcBCP) along bBA, the fast-growth direction of benzoic acid (BA) crystal during the DS 

process for (a) high and (b) low molecular weight block copolymer samples. The dotted lines 

represent BA crystallization front (a) and block copolymer microphase separation front (P). The 

insets show respective schematics of corresponding microdomain orientations with respect to bBA 

induced during the DS process. 



The diffusion coefficient also strongly depends on the molecular weight. 

According to scaling laws for block copolymer solutions, the diffusion coeficient (D) of 

block copolymer in solution scales as (in semidilute regime with an athermal 

sol~ent)?~ and hence the high molecular weight block copolymers in the present study 

should have much lower diffision coefficient than the previously studied low molecular 

weight block copolymers. During microphase separation, the system will tend to minimize 

the interfacial free energy at the phase separation fi-ont. As the ordered block copolymer 

phase grows, the increment of interfacial free energy per unit growth is minimized if the 

interface between different phases grows perpendicular to the phase separation fiont. The 

previous results obtained fi-om the relatively low molecular weight block copolymers 

correspond to this case, in which the IMDSs are aligned perpendicular to the phase 

separation fi-ont (or parallel to bBA). On the other hand, if a block copolymer has 

sufliciently high molecular weight and thus has a rather low diffision coefficient, the 

microphase separation is essentially a diffusion-controlled process and the block copolymer 

molecules can not adopt the morphology of minimum interfacial energy due to kinetic 

limitations. The order-disorder transition which occurs relatively sooner as a result of the 

relatively lower value of the 4oDc in the high molecular weight case also contributes to this 

diffusion-controlled process for high molecular weight block copolymer samples. 

Another physical factor which may influence the ordering behavior in the DS 

process is the solubility of PS-b-PI block copolymer in BA. The PS monomeric repeat 

should have a higher solubility in BA than the PI unit due to the similar chemical structure 

between styrene and benzoic acid. In block copolymer solution, the solubility of each block 



strongly depends on its molecular weight and its solubility parameter with respect to a 

solvent. As the concentration of high molecular weight block copolymer increases with the 

crystallization of BA, the PI block, which has a poorer solubility in BA, reaches the 

solubility limit in BA faster than the PS block. If this is the case, we can envision that under 

the diffusion-controlled process for high molecular weight block copolymers, the PI block 

tends to phase separate first and PS block follows, which produces the ordered structures 

where the IMDSs are aligned perpendicular to the fast-growth direction of BA crystal. Such 

perpendicularly ordered IMDSs with respect to microphase growth direction were also 

previously observed in surface-induced microphase separation of a block copolymer melt in 

10, 28 a temperature gradient , and blends in a concentration gradient29, where the phase 

separation of one block is initiated due to the preferential wetting of the block to substrate 

and the microphase separation of the other block follows along the direction of the field 

gradient, resulting in the perpendicularly oriented domains. 

6.3. Conclusion 

In summary, highly oriented thin film microdomain patterns of ultrahigh molecular 

weight block copolymers having lamellar and cylindrical morphologies have been 

successllly created over a large area via directional solidification of a solvent. These 

interesting ordered textures of ultrahigh molecular weight block copolymers were 

characterized by means of 3D optical LSCM imaging. The dramatic difference in the 



microdomain orientation obtained fkom ultrahigh molecular weight block copolymers vs. 

low molecular weight block copolymers can be understood by diffusion- and solubility- 

controlled microphase separation of block copolymers in solution during the directional 

extraction of the crystallizable solvent. These ultrahigh molecular weight block copolymer 

patterns have a domain size comparable to visible wavelengths and can be potentially used 

for fabricating useful thin film photonic structures. 18,22 
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Chapter 7. 

Summary and Future Work 

In this chapter, the main accomplishments of the thesis will be summarized and a list of 

suggestions for future research directions will be presented. 



7.1. Thesis Summary 

The work presented in this thesis deals with structure-property relationships and 

applications of block copolymer enabled photonic bandgap materials. Over the past years, 

block copolymers have proven to be promising building blocks in the fields of photonic 

On the basis of this successll introduction as passive photonic platforms, we 

extended our interest of these materials towards realizing active photonic elements such as 

photonic microcavity for optically driven lasing and stimulus responsive self-assembled 

reflectors for sensing and display application. Three separate but related projects have been 

accomplished. 

In the first part of this thesis (chapters 3 and 4), we pursued thin film organic lasers 

using block copolymer based self-assembled Bragg reflectors in conjunction with organic 

chromophores. The study of a defect-mode laser structure described in chapter 3 provided a 

basic understanding of photonic microcavity for optically pumped lasing with an organic 

gain medium. Using Ti02 nanoparticles and PMMA as the high and low index materials 

with the organic laser dye (DCM), a novel organiclinorganic hybrid 1D photonic crystal 

containing a dye-doped defect layer was successfully demonstrated. With the aid of TMM 

calculations, a localized defect-mode having the highest photon density of states was 

purposefully matched with the location of the maximum peak wavelength of the 

spontaneous emission from the organic gain medium. Low threshold single-mode lasing 

was thus induced at the defect-mode frequency resulting from the suppressed density of 

states of photons within the photonic bandgap and the enhanced rates of spontaneous 



emission at the localized resonant defect mode. In chapter 4, we considered the fabrication 

of a photonic microcavity using a self-assembled block copolymer photonic crystal. Well- 

ordered thin film microstructures of a high molecular weight PS-b-PI block copolymer 

were obtained by confining the block copolymer solution between glass substrates. These 

self-assembled Bragg reflectors provided narrow spectral-band selective feedback for an 

organic gain thin film laser cavity. Above the lasing threshold, sharp single-mode surface- 

emitting lasing was successhlly demonstrated with a significant spectral narrowing of 

lasing emission. 

In the second part of this thesis (chapter S), we examined stimulus responsive 

tunable reflectors based on 1D block copolymer photonic crystals. Three types of external 

stimuli: (1) solvent (solvatochromic), (2) temperature (thermochromic), and (3) 

compressive mechanical strain (mechanochromic) were successllly employed to tailor the 

structural (a lattice constant) and material (effective refractive indices of respective layers) 

properties of lamellar block copolymer photonic crystals, resulting in effective tuning of 

their spectral characteristics. Using TMM calculations with a model finite 1D photonic 

crystal system, semi-quantitative explanations for how the peak reflectivity wavelength 

depends on the magnitude of the particular stimulus have been provided. 

In the third part of this thesis (Chpater 6), we explored control of the thin film 

microdomain orientation and a novel 3D optical characterization method for block 

copolymer photonic crystals. Using directional solidification (DS) of a crystallizable 

solvent, we successfblly created highly oriented thin film microdomain patterns of 1D and 

2D periodic block copolymer photonic crystals over a large area. Moreover, it was shown 



that the orientational behavior of these ultrahigh molecular weight photonic block 

copolymers (- 20 times larger molecular weight than for previously studied block 

copolymers) in the DS process is dramatically different from that of directionally solidified 

conventional molecular weight block copolymers. Due to the large domain sizes of the 

ultrahigh molecular weight block copolymers, laser scanning confocal microscopy (LSCM) 

could be successllly used to optically characterize the lamellar and cylindrical thin film 

structures in 3D space. 

7.2. Future Work 

Some of the issues covered in this thesis are worthy of further investigations. In this 

section, fitture research directions that can build upon the results of the present work will be 

presented. 

In the area of optically driven lasing with block copolymer photonic crystals 

explored in Chapter 4, one interesting work which can be continued is to develop a self- 

assembled distributed feedback (DFB) laser device, for which an organic chromophore is 

distributed throughout block copolymer lamellae, a feedback structure. Some key issues for 

this work include the optimization of block copolymer microstructure for achieving a 

higher reflectivity, and the choice of high-gain organic laser dyes such as Rhodamin 6G and 

Bis-MSB and a effective pump source. A preliminary experiment conducted with PS-b-PI 

(320kl270k) block copolymer containing Bis-MSB and cumene cast between glass 



substrates showed a quite promising result (this work is in collaboration with Dr. Songho 

Cho at MIT) as shown in Figure 7.1. The spectral characteristics of the self-assembled DBF 

structure can be further tuned by various external stimuli as described in Chapter 5. This 

block copolymer based DFB structure is expected to create self-assembled all-organic thin 

film laser device with dynamic lasing tunability via various external stimuli. 
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Figure 7.1: Emission spectra of the self-assembled distributed feedback (DFB) laser structure 

enabled with PS-b-PI (320kl270k) block copolymer and Bis-MSB. The inset shows the pump power 

dependence of emission intensity of the block copolymer based DFB structure. 

Another interesting idea which can be continued based on the work in Chapter 4 is 

to fabricate an electrically tunable, optically pumped all-organic laser. In this case, liquid 



crystal-containing moieties can be introduced into the block copolymer photonic structures 

as electro-active additives. One of readily available candidate electroactive materials would 

be side-chain liquid crystalline homopolymers or block copolymers, in which liquid 

crystalline mesogens are attached to the polymer backbone. Such side-chain liquid 

crystalline materials could be blended with high molecular weight block copolymers to 

form electro-optic nanocomposite photonic structures between ITO-coated polymeric 

substrates. The refractive index of the LC-containing domains would vary as the optic-axis 

orientation of the LC molecules respond to an applied electric field. A photonic microcavity 

is then fabricated with a organic gain medium either deposited between electrically 

responsive self-assembled reflectors or doped within block copolymer reflectors for DFB 

lasing. With an applied electric field, the optical feedback from the block copolymer 

reflectors varies and therefore the lasing wavelength can be expected to change, leading to 

electrically tunable, optically pumped all-organic laser devices on flexible substrates. 

In the area of stimulus responsive reflectors explored in Chapter 5, we believe there 

are still many issues that can be further investigated to improve the spectral properties of 

the system and elucidate the underlying structure-property relationships more clearly. In 

particular, it would be very helpful if any experimental methods can characterize the change 

of lamellar domain orientation and domain spacing in-situ (i.e. LSCM and polarization 

dependent studies). Additionally, kinetic studies of the stimulus responsive reflectors can be 

done more systematically, in particular, for the mechanochromic block copolymer gels, the 

time dependence of the reflectivity peak corresponds to stress relaxation via defect 

mediated alteration of the number of periods in the compressed stack. 



In the area of directional solidification of ultrahigh molecular weight block 

copolymers as explored in Chapter 7, more experimental work is necessary for a deeper 

understanding of the dramatically different ordering behavior with different molecular 

weight of block copolymers. Any experimental techniques that can monitor the growth of 

the microphase during the directional solidification process will be very desired for this 

study. 

As for the studies of ultrahigh molecular block copolymers, another interesting 

future research direction is to employ the laser scanning confocal microscopy (LSCM) 

technique to characterize various dynamic processes of block copolymers in real-space. In 

particular, it would be of special interest to study the dynamic processes of the order- 

disorder transition (ODT) (via both lyotropic and thermotropic transitions) and order-order 

transition (OOT) occurring in various block copolymer/terpolymer morphologies. Although 

the ordering kinetics of block copolymers have been extensively investigated over the past 

decade, the previously obtained experimental results on relatively modest molecular weight 

block copolymers mainly relied on the information in reciprocal space obtained from 

various scattering t e ~ h n i ~ u e s ~ - ~  and several ex-situ real-space analyses using transmission 

electron microscopy (TEM).~? lo These approaches, however, are limited to providing an 

average description of the overall process and can not follow the detailed changes in 

microdomain shape and alignment continuously in a specific area over time during the 

transformation process. In conventional time-resolved temperature drop experimental 

procedures, the temperature of the specimen is quenched from a temperature above ODT 

temperature, ToDT, to a temperature below ToDT and the evolution of morphology is 



monitored. Since the melt Toor or the  too^ of the ultrahigh molecular weight block 

copolymer would be inaccessibly high due to the very high xN, we would add nonvolatile 

neutral solvent (e.g. dioctylphthalate (DOP) for PS-b-PI) to reduce the transition 

temperatures to a temperature range well below the thermal degradation temperature of the 

block copolymers." The resulting ordered block copolymer gels can be confined between 

two glass substrates at various concentrations and thicknesses for LSCM studies. For 

temperature control of the block copolymer material, a conventional or custom-made 

microscope hot stage for LSCM could be used (e.g. thermoelectric heater). Complementary 

experiments using ultra small angle X-ray scattering (USAXS) can also be conducted to 

provide supporting information to LSCM studies. USAXS exposures however require times 

of more than 112 hour and average over the entire sample volume (- 0.25 mm3) and as 

previously mentioned can not distinguish the details of locally occurring morphological 

processes of block copolymers. The expected outcomes of this proposed study include a) 

first direct 3D visualization of the mechanisms in ordering process of block copolymers 

(e.g. nucleation and growth of a new phase at defects and (possible) epitaxial relations of 

the parent and daughter phases), b) identification of novel non-equilibrium phases during 

the ordering process, and c) elucidation of formation and evolution of grain boundaries and 

defects (size, shape, and orientation) during the ordering process, all of which have not 

been fully understood in previous studies using conventional characterization techniques. 

Such investigations are expected to enable a more comprehensive understanding of the self- 

assembly process of block copolymers. 
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Appendix. 

Polyolefin Based Photonic Bandgap Materials 

In this appendix, we present the results from our investigation of polyolefin based photonic 

bandgap materials. Block copolymers based on readily available olefins have been 

synthesized to construct self-assembled one-dimensional (ID) photonic crystals. Using 

living olefin polymerization via a bis(phen0xyimine) titanium dichlorideIMA0 catalyst 

system, optically transparent and high molecular weight polyolefin block copolymers have 

been prepared with a narrow molecular weight distribution. The resulting copolymers, 

poly[(MCP-co-VTM)-b-(E-co-N)] and poly[(E-co-P)-b-(E-co-N)], exhibited a 1D photonic 

bandgap with an excellent optical transparency. Random copolymerization of olefin 

monomers provided a route to tune the refractive index of each block as well as to suppress 

the crystallinity for optical transparency. Ternary blending of diblock copolymer with 

homopolymers further afforded a pathway to control the wavelength of the peak reflectivity 

of the polyolefin based photonic structures. 

This project was a collaboration with Dr. Robert Mathers and Prof. Geoffrey Coates at Cornell University, 

who had conducted the synthesis of polyolefin block copolymers used in this study. Parts of this chapter were 

featured in: J. Yoon, R. T. Mathers, G. W. Coates, E. L. Thomas Macromolecules 2006,39, 19 13-19 19. 



A.1. Introduction 

Polyolefins have been widely used in various applications due to their versatile 

thermal, mechanical, and optical properties determined by their composition, chain 

architecture and the tacticity.' Recent advances in catalyst systems for living olefin 

polymerization have made it possible to synthesize polyolefin-based block copolymers with 

precisely controlled molecular weight, molecular weight distribution and t a ~ t i c i t ~ . ~  For 

example, diblock copolymers of syndiotactic polypropylene-b-(ethylene-co-propylene) 

have been synthesized with a controlled molecular weight and a narrow molecular weight 

distribution (M,IM, - 1. I).' More recently, bis(phen0xyimine) titanium dichlorideIMA0 

catalysts were used for the polymerization of 1,5-hexadiene to give a random copolymer 

with 1,3-methylenecyclopentane (MCP) and 3-vinyltetramethylene (VTM) units.4 The 

VTM units in the copolymer have been shown to undergo a cross metathesis reaction with 

alkenes catalyzed by a ruthenium carbene for additional functionalization of the 

copolymer.5 

The work described here is motivated by our interest in preparing polyolefin based 

photonic bandgap materials, which are expected to have improved thermal stability and 

processability over more conventional diene-containing block copolymers such as poly(S- 

b-I). Here, we present the synthesis and morphological/optica1 characterization of lamellar- 

forming polyolefin block copolymers with highly controlled molecular weight and optical 

transparency, which can form self-assembled 1D photonic bandgap structures. 



A.2. Experimental 

A.2.1. Synthesis 

All air and moisture sensitive chemistry was carried out in a MBraun Labmaster dry 

box or using standard Schlenk line techniques. The solvents were dried on solvent columns 

containing molecular sieves, alumina and activated copper. Propylene (Matheson, Polymer 

Grade) was purified by a column of molecular sieves and alumina. Ethylene (Matheson, 

Polymer Grade) was used as received. Polymethylaluminoxane (Akzo Nobel, PMAO-IP, 

12.9 wt% A1 in toluene) was dried under vacuum at 60 "C overnight. The 

bis(salicylaldiminato)titanium complex was prepared as previously de~cribed.~ 

Synthesis of poly[(MCP-co-VTM)-b-(E-co-N)] diblock copolymer 

A 6 oz. Lab-Crest@ glass pressure reaction vessel (Andrews Glass) was charged 

with PMAO (0.19 g, [Al]/[Ti] = 600), toluene (1 25 mL) and 1,Shexadiene (1 0 mL). The 

reactor was equilibrated at 0 OC in an ice-bath and a catalyst solution [4 mg of 1 (Scheme 1) 

in 5 mL of toluene13 was injected by syringe. After 15 min, the reactor was evacuated to 

remove excess 1,Shexadiene for 5 min and backfilled with nitrogen. An aliquot (10 mL) 

was taken and quenched with acidic methanol. Subsequently, the norbornene (10 g in 10 

mL of toluene) was injected by syringe and ethylene was attached at 2 psi. After 29.25 h, 

acidic methanol (3 mL) was added by syringe to quench the polymerization. The reactor 

was then vented and the polymer precipitated in acidic methanol (700 mL). After stirring 

for several hours, the polymer was filtered, washed with methanol and dried under vacuum 



(recovered 2.14 g). 

Synthesis of poly[(E-co-P)-b-(E-co-N)] diblock copolymer 

A 6 oz. Lab-Crest@ glass pressure reaction vessel (Andrews Glass) was charged 

with PMAO (0.10 g, [Al]/[Ti] = 250) and toluene (120 mL). The reactor was weighed and 

placed in an ice-bath. The nitrogen atmosphere in the reactor was exchanged with 

propylene three times. Propylene (4.0 g) was condensed into the reactor for 30 min at 10 psi. 

The ethylene was attached at 12 psi. The catalyst solution (10 mg of 1 (Scheme 1) in 4 mL 

of toluene) was injected by syringe. After 10 min, the reactor was evacuated to remove 

ethylene and propylene for 2 min. The reactor was backfilled with nitrogen. An aliquot (10 

mL) was taken and quenched with acidic methanol. The norbomene (5 g in 10 mL of 

toluene) was injected by syringe. Ethylene was attached at 1.5 psi. After 21.5 h, acidic 

methanol (3 mL) was added to quench the polymerization. The reactor was vented and the 

polymer precipitated in acidic methanol (700 mL). After stirring for several hours, the 

polymer was filtered, washed with methanol and dried under vacuum (recovered 2.3 g). 

A.2.2. Characterization 

The 125 MHz 13c NMR data were acquired on a Varian Inova 500 spectrometer. 

The polymer samples were placed in a 5 mm NMR tube with 1,1,2,2-tetrachloroethane-d2 

and dissolved by heating. The data were acquired at 130 O C  using an inverse gated 

decoupling sequence with a 5 s relaxation delay. The NMR spectra were referenced to 

non-deuterated solvent shifts. The copolymer microstructure was calculated according to 



published procedures for poly(ethy1ene-co-propylene) copolymers,3' 6' ' and poly(ethy1ene- 

co-norbornene) copolymers.8y 

The molecular weights (M, and Mw) and polydispersity indices (Mw/Mn) were 

measured by a Waters Alliance GPCV 2000 size exclusion chromatograph (SEC). The 

SEC columns (4 Waters HT 6E and 1 Waters HT 2) were eluted at 1.0 mL/min with 1,2,4- 

trichlorobenzene containing 0.0 1 wt% di-tert-butylhydroxytoluene (BHT). The molecular 

weights (M, and Mw) and polydispersity indices (Mw/Mn) were measured relative to a 

polystyrene calibration curve at 140 "C. DSC analysis was performed on a TA Instruments 

QlOOO equipped with an autosampler and a liquid nitrogen cooling system. Typical DSC 

samples (2-3 mg) were prepared in crimped aluminum pans and heated under nitrogen at a 

rate of 10 "Clmin from -80 to +200 O C .  The reported DSC data was acquired from the 

second heating run and processed with the TA Q Series software. 

In order to measure the wavelength dependence of re fractive index (dispersion), 

ellipsometry was performed using a M2000 variable angle spectroscopic ellipsometer (J. A. 

Woollam Co., Inc.) with 70' incidence angle. Thin films for ellipsometry (thickness - 100 

nrn) of polyolefin random copolymers were prepared by spin casting the copolymer 

solution on a silicon wafer. Toluene was used as a solvent for all polyolefin copolymers. 

Thick films for reflectivity measurement and transmission electron microscopy (TEM) 

(thickness - 0.2-0.3 mm) of poly[(MCP-co-VTM)-b-(E-co-N)] and poly[(E-co-P)-b-(E-co- 

N)] were cast from a solution of the copolymer in toluene (- 4 wt%). To minimize defect 

formation during the solution casting process, a very slow evaporation condition was 

applied, where the evaporation of a solvent was conducted in a solvent-saturated 



atmosphere with a gentle flux of air, requiring two to three weeks for sample drying. The 

blends of poly[(E-co-P)-b-(E-co-N)] were prepared by mixing 80 wt% (60 wt%) of the host 

block copolymer with 10 wt% (20 wt%) of poly(E-co-P) (Mn=23.2k, PDI=1.11) and 10 

wt % (20 wt%) of poly(E-co-N) (Mn=23.8k, PDI=1.06) in toluene for 20 wt% (40 wt%) 

blend. All samples were further dried in vacuum at room temperature for 24 h and 

subsequently annealed at 120 OC for 3 to 10 days, producing films with a final thickness of 

about 0.2-0.3 mm. Ultrathin sections for TEM were obtained using Reicht-Jung Ultracut 

FC4E cryomicrotome. To provide mass thickness contrast between block copolymer 

microdomains, poly[(MCP-co-VTM)-b-(E-co-N)1 was stained with osmium tetroxide 

(Os04) while poly[(E-co-P)-b-(E-co-N)] and its blends were stained with ruthenium 

tetroxide (Ru04). TEM micrographs were obtained using JEOL 200CX and JEOL 2000FX 

microscopes operating at 200 kV. Measurement of film reflectivity spectra was conducted 

on a Cary 5E UV-VIS-NIR spectrophotometer (Varian Inc.) equipped with a diffuse 

reflectance accessory. The diffuse reflectance of Halon, a compressed polyfluorocarbon 

powder with reflectivity above 99% over the visible wavelengths, was used as a reference 

spectrum. USAXS measurements of the poly[(E-co-P)-b-(E-co-N)] diblock copolymer and 

its ternary blends were performed at beamline XlOA at Brookhaven National Laboratory 

with 8 keV radiation (wavelength h = 0.1548 nm). A Bonse-Hart camera setup1' was 

employed with single bounce Ge-111 monochromator and analyzer crystals. The slit 

collimated incident beam intensity was about 5 x lo9 ctsls and the beam size was 0.6 x 0.8 

mm2 (V-H). Data were collected by a scintillation detector (Bicron) which was swept 

through an arc to collect a linear data set of intensity versus angular position. All data were 



acquired at room temperature and used without additional corrections. 

A.3. Results and Discussion 

Polyolefins are often crystallizable and can exhibit a semicrystalline morphology 

due to the configurational regularities of the repeating units. As a result, spherulites 

containing chain folded lamellae form upon crystallization and can cause a strong scattering 

of visible light, making polyolefins less appropriate for optical applications compared with 

highly transparent non-crystalline polymers such as polymethylmethacrylate. The "random 

copolymer" approach employed in this study is an effective means to introduce 

configurational irregularities along the main chain of the copolymers, which inhibit 

crystallization and thus maintain optical transparency of the polyolefin block copolymers. 

In the design of "photonic" polyolefins, the following monomers were selected as building 

blocks for the synthesis of polyolefin block copolymers: ethylene (E), propylene (P), 

norbomene (N) and 1,5-hexadiene. Random copolymers of these monomers were 

synthesized with a living catalyst system to give a controlled molecular weight, a narrow 

molecular weight distribution, and an optical transparency, as summarized in Table 1. No 

melting transitions were observed in all the polyolefin random copolymers studied as 

determined by DSC. 



aData measured by 13c NMR, 130 OC, in 1,1,2,2-tetrachloroethane-d2. b ~ a t a  measured by GPC 

eluted with 1,2,4-trichlorobenzene at 140 OC relative to polystyrene standards, each value in 

parenthesis corresponds to PDI. 'Data measured by DSC (10 OClmin). d ~ a t a  at 500 nm, measured 

by spectroscopic ellipsometry. 'Data refer to the first polymer blocklentire diblock copolymer. f ~ a t a  

refer to the first polymer blocklsecond polymer block. gDomain periodicity of lamellae measured 

fiom TEM, i.e. dool=lA+lB. h ~ h e  ethylene content was not able to be obtained using "C NMR 

spectra since the 13c NMR peak for the poly[(MCP-co-VTM)] block was overlapped with the peak 

for the poly[(E-co-N)] block. The glass transition temperatures (Tg) of poly[(MCP-co-VTM)-b-(E- 

co-N)] can be used to estimate the ethylene content of the copolymer since the T, of (E-co-N) block 

sensitively depends on the ethylene content. Given that the glass transition temperature of (E-co-N) 

of poly[(MCP-co-VTM)-b-(E-co-N)] (entry 4 in Table 1, 73.1 "C) is similar to that of (E-co-N) of 

poly[(E-co-P)-b-(E-co-N)] (entry 5 in Table 1, 71.6 OC, ethylene content is 67%), 67% would be a 

reasonable estimate for the ethylene content of poly[(MCP-co-VTM)-b-(E-co-N)], although the 

effect of the other block (i.e. poly(MCP-co-VTM) or poly(E-co-P) needs to be considered for more 

precise estimation. 

Table A.1. Materials data for polyolefin copolymers 



A key intrinsic material property for determining a bandgap of photonic crystal is 

the respective refractive index of each domain of the crystal. In this study, two different 

approaches were employed to tailor the dielectric contrast of polyolefin-based photonic 

crystals. First, monomers of different refractive indices were copolymerized to form a 

random copolymer. Polyolefin random copolymers made of the above-mentioned 

monomers were then evaluated to determine an effective refractive index and how the 

various combinations of random copolymer blocks would influence the dielectric contrast. 

Figure A. 1 shows the wavelength dependence of the refractive index for various polyolefin 

random copolymers, as measured by spectroscopic ellipsometry over the visible 

wavelength range. Clearly the refractive index (=&'I2, where E is a dielectric constant of 

medium) can be readily tuned by simply varying the combination of different monomers. 

As shown in Figure A.l, in ethylene-containing random copolymers, poly(E-co-N) (n - 
1.52 @ 500 nm) exhibited higher refractive index than poly(E-co-P) (n - 1.47 @ 500 nm) 

at the same ethylene content (62%) due to the lower refractive index of polypropylene (n - 
1.47-1 .49)11 than polynorbomene (n - 1.52-1 .54).12 



1.50 - 
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Figure A.1: Refractive index as a function of wavelength for polyolefin random copolymm 

measured by a spectroscopic ellipsometry, (a) ply(E-co-v (entry 1 in Table I), @) poly(MCP-co- 

VTM) (entry 3), (c) poly(~-co-p) 2). 

Based on the evaluation of refradive index and thermal properties, two sets of 

polyolefin diblock copolymers, poly[MCP-co-VTM)-b-(E-co-N)] and poly[(E-co-P)-b-(E- 

co-N)], were synthesized by a sequential monomer addition. These block copolymer 

systems were soluble in toluene at room temperature and showed no detectable crystallinity 

by DSC. Table A.1 surnm~zes the detailed information of the synthesized block 

copolymers. TEM was perfarmed on thermally-annealed films of the copolymers after 



cryomicrotomy and staining. Figure A.2 shows a bright field TEM micrograph of a 

poly[(MCP-co-VTM)-b-(E-co-N)]. A lamellar morphology exhibiting a periodicity of about 

170 nm is clearly evident with alternating layers of poly(MCP-co-VTM) and poly(E-co-N). 

The dark regions correspond to poly(MCP-co-VTM) domains, in which VTM units 

containing the alkene group were preferentially stained with osmium tetroxide ( 0 ~ 0 ~ )  

while the bright regions correspond to the poly(E-co-N) domains. 

Figure A.2: Bright field TEM micrograph of cryomicrotomed section of the poly[(MCP-co-VTM)- 

b-(E-co-N)] block copolymer showing a lamellar morphology (domain periodicity - 170 nm). The 

dark regions (lMCP-co-VTM = 68 nm) correspond to poly(MCP-co-VTM) microdomains preferentially 

stained with osmium tetroxide (Os04) and the bright regions (lE-co-N = 102 nm) are poly(E-co-N) 

microdomains. 



A self-assembled block polymer having a lamellar morphology can form a 

multilayer stack of one-dimensionally periodic index of refraction or a 1D photonic crystal. 

In order to examine the optical properties of the self-assembled 1D photonic film, a 

reflectivity spectrum was obtained by a C A R .  spectrophotometer equipped with a diffusive 

reflectivity accessory. As shown in Figure A.3, the spectrum of poly[MCP-co-VTM)-b-(E- 

co-N)] copolymer film exhibited a reflectivity band resulting fi-om the effect of partial 1D 

photonic band gap, where the peak reflectivity was centered around 470 nm. A convenient 

way to understand the obtained reflectivity spectrum is to model the 1D block copolymer 

photonic structure with a stack of finite number of alternating layers, for which optical 

properties can be readily calculated by a transfer matrix method (TMM).'~' l4 Although the 

computational result with this simple model does not capture all the microstructural details 

of the block copolymer photonic structure such as the variation of domain size, domain 

orientation and randomly located defects, it can provide a usehl reference to correlate the 

obtained reflectivity spectrum with morphological properties of the block copolymer 

photonic structure. Figure A.4 shows a calculated "reflectivity map" of the corresponding 

model 1D multilayer (100 layers) stack of poly[MCP-co-VTM)-b-(E-co-N)1, in which the 

measured thicknesses (102 d 6 8  nrn) and refractive indices (1.5211.50) of the lamellar 

domains have been used for the calculation and the magnitude of the reflectivity was 

visualized using different colors as a function of the incidence angle (x-axis), the 

polarization (x-axis), and the wavelength (y-axis) of the incident light. The region of high 

reflectivity in Figure A.4, or a partial 1D photonic bandgap, results from a constructive 

interference of incident light at the set of 1D periodic interfaces between the high and low 



refractive domains. The bandgap of the 1D photonic crystal blue-shifts to a shorter 

wavelength as the incidence angle is increased from zero (normal incidence) to grazing 

angle. A reflectivity spectrum at a specific incidence angle and polarization can be extracted 

from a reflectivity map. For example, the inset in Figure A.4 shows a cross-section of the 

reflectivity map at normal incidence of light (i.e. incidence angle 8 = 0"). The calculated 

peak reflectivity wavelength at normal incidence is around 5 15 nm while the observed peak 

reflectivity wavelength is about 470 nm. It is also shown that the width (FWHM) of the 

measured reflectivity spectrum is much broader than that of the calculated reflectivity 

spectrum. These comparisons suggest that the lamellar domains of the current block 

copolymer system are not perfectly oriented along the normal incidence direction but have 

a distribution of different microdomain orientations. If we assume that the misorientation of 

lamellae is the dominant factor for the observed reflectivity, the average lamellar 

orientation (deviation fkom the normal incidence) can be estimated as 3g0, at which the 

peak reflectivity wavelength is 470 nm from the TMM calculation. Indeed, the self- 

assembled block copolymer microstructures tend to consist of multiple grains of various 

domain orientations. The measured reflectivity spectrum in Figure A.4 should be therefore 

interpreted as the superposed spectral response of many different grains having the 

distribution of domain thickness, domain orientation, and randomly located defects. In 

order to do more precise and quantitative modelling of the reflectivity spectrum, we would 

have to take into account all the above-mentioned microstructural details of the block 

copolymer photonic structure as well as the optical loss from absorption and scattering. 

To Wher  engineer the photonic properties of this poly[(MCP-co-VTM)-b-(E-co- 



N)] block copolymer, a post-polymerization reaction can be conducted to incorporate a 

fluorine-containing (low-index) moiety into the poly(MCP-co-VTM) block and thus to 

increase the dielectric contrast. The effect of fluorine-containing group on the microphase 

separation (increase of Flory-Huggins interaction parameter, X) and optical properties 

(increase of An by about a factor of 5x) of the block copolymer is currently under 

investigation. 

Wavelength (nm) 

Figure A 3  : Measured reflectivity spectrum of poly [(MCP-co-VTM)-b-(E-co-N)1 lamellar film by a 

CARY spectrophotometer equipped with a diffisive reflectivity accessory. The peak reflectivity 

wavelength is around 470 nrn. 
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Figure A.4: Calculated reflectivity map of a multilayer stack having the same layer thickness and 

refractive index as poly[(MCP-co-VTM)-b-(E-co-N)1 as a function of the incidence angle (x-axis), 

the polarization (x-axis), and the wavelength (y-axis) of the incident light, assuming the thickness of 

high (E-co-N)/low (MCP-co-VTM) index layer is 102 nm168 nm, the refractive index of highflow 

index layer is 1.5211.50, and a total number of 100 layers. The inset shows the reflectivity spectrum 

at normal incidence (incidence angle = 0") as a function of wavelength, in which the peak 

reflectivity wavelength is 5 15 nm. 



Another polyolefin diblock copolymer, poly[(E-co-P)-b-(E-co-N)], was synthesized 

using the same living catalyst system. Based on the refractive index and DSC 

measurements, poly[(E-co-P)-b-(E-co-N)1 is expected to have a larger dielectric contrast 

(An - 0.05) and be more thermally stable (containing no alkene group in the main chain) 

than poly[(MCP-co-VTM)-b-(E-co-N)]. In this block copolymer system, we M e r  

blended lower molecular weight homopolymers of each block, i.e. 10 wt % (20 wt %) of 

poly(E-CO-P) (M,: 23.2 kg/mol) and 10 wt % (20 ~t %) of poly(E-~o-N) (Mn: 23.8 kg/mol), 

with 80 wt % (60 wt %) of the host diblock copolymer, poly[(E-co-P)-b-(E-co-N)] (Mn: 2 12 

kg/mol 1 364 kg/mol), to swell the lamellar microdomains and to therefore tune the 

photonic bandgap of the block copolymer photonic crystal to a longer wavelength range. 

Figure A.5-7 show bright field TEM micrographs of the host poly[(E-co-P)-b-(E-co-N)] 

diblock copolymer and ternary blends of the diblock (80 wt %, 60 wt %) and each 

homopolymer (10 wt %, 20 wt %), in which the lamellar morphology, composed of dark 

(E-co-N) domains (stained with ruthenium tetroxide (Ru04)) and bright (E-co-P) domains, 

was clearly identified. As shown in Figure A.5-7, the domain periodicity was increased 

fiom 91 nm to 127 nm (20 wt % blend) and to 152 nm (40 wt % blend) as a result of 

swelling of microdomains with added homopolymers. 



Figure A.5: Bright field TEM micrograph of cryomicrotomed section of the poly[(E-co-P)-b-(E-co- 

N)], in which the domain periodicity is 91 nm (lE-co-N = 56 nm, ZE-co-P = 35 nm). The dark regions 

correspond to poly(E-co-N) microdomains preferentially stained with ruthenium tetroxide (Ru04) 

and the bright regions correspond to poly(E-co-P) microdomains. Small particle-like entities in the 

micrographs come from ruthenium tetroxide (staining agent) aggregations. 



Figure A.6: Bright field TEM micrograph of cryomicrotomed section of the poly[(E-co-P)-b-(E-co- 

N)] ternary blend containing 20 wt % (10110) homopolymers. The domain periodicity is 127 nm (k 
co-N = 79 nm, IE-co-P = 48 nm). 



Figure A.7: Bright field TEM micrograph of cryomicrotomed section of the poly[(E-co-P)-b-(E-co- 

N)] ternary blend containing 40 wt % (10110) homopolymers. The domain periodicity is 152 nm (ZE_ 

co-N = 88 nm, IE-co-P = 64 nm). 



The corresponding smeared 1D ultra small angle X-ray scattering (USAXS) data of 

the samples are presented in Figure A.8, where the shift in the first order peak of scattering 

vector (qool) to a lower value supports the increase of domain periodicity (dool) in the 

ternary blends observed in TEM. The domain periodicities obtained from USAXS are good 

agreement with those observed fiom TEM. In order to further confirm the samples have 

lamellar morphologies, tilting experiments in TEM, which can provide a clear difference 

between lamellar and cylindrical morphologies, have been conducted and no oblique or 

end-on views of cylindrical domains have been observed &om extensive investigation of 

many microtomed cross-sectioned samples. 

--.-- (a) host diblock -.- (b) 20 wt % blend -.- (c) 40 wt % blend 

Figure A.8: Smeared USAXS 1D line source data obtained from the polyolefin block copolymer 

films of (a) the poly[(E-co-P)-b-(E-co-N)1 and ternary blends of the diblock containing (b) 20 

wt % and (c) 40 wt % homopolyrners. The (001) peaks for all three samples correspond well to the 

lamellar periods measured from TEM micrographs. 
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Figure A.9: Measured reflectivity spectra of (a) the poly[(E-co-P)-b-(E-co-N)1 and ternary blends 

of the diblock containing (b) 20 wt % and (c) 40 wt % homopolymers by a C A W  

spectrophotometer equipped with a diffusive reflectivity accessory. The peak reflectivity 

wavelengths are (a) 268 nm (host diblock), (b) 335 nm (20 wt % blend), and (c) 448 nm (40 wt % 

blend), respectively. 

In Figure A.9, we show the reflectivity spectra of the host diblock and ternary blend 

samples measured by a CARY spectrophotometer equipped with a diffusive reflectivity 

accessory. The peak reflectivity wavelength for the host block copolymer sample occurs at 



268 nrn, and is red-shifted to 335 nm (20 wt %), and to 448 nrn (40 wt %) for the ternary 

blends as the optical thickness (domain refractive index x domain thickness) of the blended 

samples is increased by swelling with added homopolymers. 
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Figure A.lO: Calculated reflectivity maps (for TE polarization of incident light) of multilayer 

stacks having the same layer thickness and refractive index as (a) poly[(E-co-P)-b-(E-co-N)1, (b) 

20 wt%, and (c) 40 wtO! temary blend as a function of the incidence angle (x-axis) and the 

wavelength (y-axis) of incident light, assuming that the thickness of high (E-co-N)llow (E-co-P) 

index layers are (a) 56 n d 3 5  nrn, (b) 79 n d 4 8  nm, (c) 88 nm164 nm as obtained from TEM, the 

refractive index of highflow index layer is 1.5211.47 as obtained from ellipsometry, and a total 

number of 100 layers. 

For fiu-ther analysis of the measured reflectivity spectra, TMM calculations have 

been conducted based on measured domain thicknesses (from TEM) and refractive indices 

(fiom ellipsometry). Figure A. 10 shows the reflectivity map for corresponding model 1 -D 



multilayer (100 layer) stacks of the host diblock and ternary blends for TE polarization of 

incident light, in which the peak reflectivity wavelengths at normal incidence are shown to 

be 273 nm (host diblock), 382 nm (20 wt % blend), and 456 nm (40 wt % blend), 

respectively. The measured reflectivity spectra of the blend samples (Figure A.9) are in 

reasonable agreement with the calculated reflectivity map (Figure A.lO) in terms of the 

peak reflectivity wavelengths. As mentioned earlier, the lower values (blue-shift) of the 

measured peak reflectivity wavelength compared with calculated values at normal 

incidence of light result from the deviation of the average lamellar orientation from normal 

incidence. The broadness of the measured reflectivity spectra in Figure A.9 can be 

understood by considering the polygrained nature of the cast films containing lamellae of 

various domain orientations, domain thicknesses and randomly located defects. The 

assignment of lamellar morphologies is also supported by the obtained reflectivity spectra. 

Calculation of reflectivity for 2D photonic crystal of hexagonally packed cylinders having 

an equal periodicity to 1D lamellar structure predicts a peak reflectivity at much lower 

wavelength. l7 

A.4. Conclusion 

In conclusion, we have shown that self-assembled lamellar block copolymers based 

on readily available olefins can be employed to create 1 -D photonic structures in the visible 

wavelength range. With a suitable choice of a catalyst system for living olefin 



polymerization, polyolefin block copolymers having a large molecular weight have been 

prepared with a narrow molecular weight distribution. The resulting copolymers, 

poly[(MCP-co-VTM)-b-(E-co-N)] and poly[(E-co-P)-b-(E-co-N)], exhibited a partial 1 -D 

photonic bandgap with an excellent optical transparency. Random copolymerization of 

olefin monomers provided a means to tune the refractive index contrast and to suppress the 

crystallinity of the polyolefin block copolymers. Ternary blending of the diblock 

copolymers with homopolymers fhther afforded a pathway to control the accessible peak 

reflectivity wavelength of the polyolefin based photonic structures. Further studies for 

improvements over the current system including the effect of selective fluorination on the 

morphology and optical properties of polyolefin block copolymers are underway. 
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