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ABSTRACT

Block copolymers have proven to be a unique materials platform for easily fabricated large-area photonic
crystals. While the basic concept of block copolymer based photonic band gap materials has been well
demonstrated, little work has been achieved yet in terms of realizing optically active devices using these materials.
In this thesis, the utilization of block copolymer photonic crystals for creating self-assembled active optical
elements has been experimentally explored with a special emphasis on optically driven lasing and stimulus
responsive tunable reflectors. In pursuing these primary objectives, control of thin film microdomain orientation
and novel three-dimensional (3D) optical characterization of block copolymer photonic crystals have been also
achieved, both of which can greatly help optimize the properties of block copolymer photonic crystals.

First, a laser cavity using block copolymer based one-dimensional (1D) photonic crystals has been
demonstrated. Optically pumped surface-emitting lasing has been obtained using a dye-doped polymers as the
organic gain medium and the self-assembled block copolymer as the spectral-band selective distributed Bragg
reflector feedback element. We also developed a novel organic/inorganic hybrid photonic crystal containing a dye-
doped defect layer for defect-mode photonic bandgap lasing. Low threshold lasing has been demonstrated at a
single defect-mode wavelength of the 1D photonic bandgap structure resulting from the inhibited density of states
of photons within the stop band and the enhanced rates of spontaneous emission at the localized resonant defect
mode.

Second, stimulus responsive tunable self-assembled reflectors based on 1D block copolymer photonic
crystals have been studied. Three external stimuli such as solvent, temperature, and compressive mechanical strain
have been employed to modulate microstructural and material properties of block copolymer photonic crystals,
resulting in effective tuning of the spectral characteristics of block copolymer photonic structures.

Finally, control of the microdomain orientation of 1D and 2D block copolymer photonic crystals has been
achieved over a large area via directional solidification of solvent. Moreover, an intriguing ordering behavior of
these ultrahigh molecular weight block copolymers has been revealed, which is dramatically different from that of
typical molecular weight block copolymers. These highly oriented thin film microdomain patterns have been

explored via 3D optical imaging using laser scanning confocal microscopy.
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Foreword

Motivation and Objective

Self-assembled block copolymer systems with an appropriate molecular weight
to produce a domain size comparable to the wavelength of light have attained increasing
attention as alternative building blocks to fabricate photonic crystals in the visible and
near-IR frequencies. 1D, 2D, and 3D photonic crystals have been successfully
demonstrated with various microdomain structures created through microphase
separation of block copolymers. The size and shape of periodic microstructures of block
copolymers can be readily tuned by controlling molecular parameters such as molecular
weight, relative composition, chain architecture, and persistence length, or by blending
with homopolymer or plasticizer. The versatility of block copolymer based photonic
crystals is further increased by incorporating inorganic nanoparticles, liquid crystalline
guest molecules (or using a liquid crystalline block) or selectively etching one of
microdomains with the possibility to backfill with high index materials. There are many
advantages for employing self-assembled block copolymers for photonic applications,
which include the ease of processing; the ability to include both inorganic and organic
materials within the block copolymer photonic crystal; and the fact that it is relatively
easy to manipulate block copolymer photonic structures via numerous external fields.

Over the past decade, block copolymers have proven to be a unique and versatile
materials platform for constructing large-area well-ordered photonic bandgap structures.
While the idea of using block copolymer based photonic band gap materials as passive

photonic structures has been well established, little work has been achieved yet for
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realizing active photonic devices using these materials. The objective of this research is
to create active photonic elements based on block copolymer photonic crystals,
including photonic microcavities for optically driven lasing and stimulus responsive
self-assembled reflectors for sensing and display applications. In pursuing these primary
objectives, novel processing and characterization methods for optimizing photonic

properties of block copolymer photonic crystals will be also explored.

Thesis Overview

This thesis is composed of seven chapters and one appendix. References are
provided at the end of each chapter.

Chapter 1 serves as an introduction to block copolymer based photonic crystals
and as a review on the pervious studies of these materials upon which this thesis work
has been built. The morphologies and optical properties of block copolymer based
photonic crystals and block copolymer—nanoparticle composites are discussed and 1D,
2D, and 3D photonic crystals from lamellar-, cylinder-, and double-gyroid-forming
diblock copolymers are illustrated. Nanocomposite photonic materials based on block
copolymers and inorganic nanocrystals provide an essential way to enhance the inherent
low dielectric contrast of neat block copolymers. Examples of switchable block
copolymer-based photonic materials using external stimuli such as thermal and
mechanical forces have been also demonstrated. The challenges in making block

copolymers more useful as photonic materials are discussed, including attaining large
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domain periodicities, attaining a high dielectric contrast, controlling the long-range
domain order, and purposefully introducing specific defects.

Chapter 2 provides information about materials and experimental methods used
in this research. Synthetic procedures and molecular characterizations of ultrahigh
molecular weight poly(styrene-b-isoprene) (PS-b-PI) diblock copolymers are presented.
Experimental techniques for microstructural characterization of the block copolymers
such as ultrasmall angle X-ray scattering (USAXS), transmission electron microscopy
(TEM), and laser scanning confocal microscopy (LSCM) are described. Finally, various
spectroscopic techniques for optical characterization of block copolymer photonic
crystals, organic laser dyes, and devices using these materials are summarized.

Chapter 3 describes results from our investigation of optically-pumped defect-
mode lasing with a dye-doped organic/inorganic hybrid 1D photonic crystal. This
defect-mode laser structure has been studied as a “model” system from which a basic
understanding of the main factors affecting optically pumped lasing with dye-doped
photonic crystals has been developed.

Chapter 4 explores a laser cavity enabled with block copolymer based photonic
crystal. Polymeric distributed Bragg reflectors (DBRs) were prepared through the self-
assembly of PS-b-PI lamellar diblock copolymer having a 1D photonic bandgap
matching with the fluorescent emission spectrum of a gain medium. Optically pumped
surface-emitting lasing is then demonstrated using the polymeric self-assembled DBR
as a spectral-band selective feedback element.

Chapter 5 presents stimulus responsive tunable self-assembled reflectors using a
lamellar block copolymer based photonic crystal. Three external stimuli, solvent,

temperature, and compressive mechanical strain, have been used to modulate
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microstructural and material properties of the PS-b-PI photonic block copolymer system,
resulting in effective tuning of the spectral response of the self-assembled reflectors.

Chapter 6 shows how we can achieve excellent control of thin film microdomain
orientation of lamellar- and cylinder-forming block copolymer photonic crystals over a
large area via directional solidification of a solvent. Moreover, an intriguing ordering
behavior of these ultrahigh molecular weight block copolymers, which is dramatically
different from that of typical molecular weight block copolymers, has been revealed by
3D optical imaging via laser scanning confocal microscopy.

Chapter 7 presents a summary of accomplishments of this thesis work and
suggests future research opportunities that can be continued based on the present work.

Appendix covers the results of the study into polyolefin based photonic bandgap
materials, in which random copolymerization of olefin monomers was employed to tune
the refractive index of each block and to suppress the crystallinity for optical

transparency of the polyolefin based photonic structures.
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Chapter 1.
Introduction to Block Copolymer based
Photonic Bandgap Materials

Block copolymers spontaneously phase separate to form interesting microdomains on the
length scale of the respective blocks. Various periodic microdomain structures of block
copolymers can be created by tailoring molecular parameters such as molecular weight,
composition, chain architecture, and the persistence lengths of constituent blocks. With
advances in synthetic capability to prepare ultrahigh molecular weight (> 500 kg/mol)
block copolymers having large domain sizes that can interact strongly with light of visible
wavelength, block copolymers have emerged as promising candidate materials for
constructing photonic crystals at optical and near infrared frequencies. In this chapter, we
will briefly review the recent progress in the development of photonic-bandgap materials
enabled with self-assembly of block copolymers, discussing the morphology and photonic
properties of various block copolymer based photonic materials and nanocomposite

additives.

Parts of this chapter were featured in: J. Yoon, W. Lee, E. L. Thomas MRS Bulletin 2005 721-726.
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1.1. Photonic Crystals

Since their first concept was independently proposed by Yablonovitch' and John® in
1987, photonic crystals have been of intense interest for researchers because of their unique
electromagnetic properties, particularly their ability to trap and guide the propagation of
light, thus promising many revolutionary applications in the fields of optical
communication and optoelectronics.” * Photonic crystals are defined as ordered structures
with a periodic variation of the dielectric constants.” The spatial periodicity and
dimensionality of the crystal determine the photonic bandgap, a range of frequencies in
which the propagation of electromagnetic waves is prohibited in certain crystallographic
directions.* 7 For example, if the spatial periodicity of refractive index is along one
direction, we call it a one-dimensional (1D) photonic crystal and a propagation of light
having a wave vector component parallel to this direction is significantly affected due to the
Bragg scattering at interfaces. Two- (2D) and three-dimensional (3D) photonic crystals are
defined in a similar manner as schematically shown in Figure 1.1. The size of respective
domains or the lattice constant of the photonic crystal is on the order of the wavelength of
relevant electromagnetic waves.

Experimentally, a variety of processing methods have been used to construct
photonic crystals operating at near-IR and optical frequencies. Lithographic methods based
upon semiconductor fabrication techniques using masks have been widely utilized to make
2D photonic crystals and even some 3D photonic crystals, although fabrication of 3D

photonic crystals by this approach requires many processing steps.®'® Holography or
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multiple-beam interference lithography holds much promise, especially for making 3D
photonic structures with much less effort than conventional lithographic tools.'"” '* Many

13,14 . e ]
7, ink deposition 5 and phase

unconventional schemes such as two-photon lithography
mask lithography'® have been also proposed to fabricate 3D photonic structures.

. ny: high index domain . n.: low index domain

+“—>

a: domain periodicity

1D Photonic Crystal 2D Photonic Crystal 3D Photonic Crystal

Figure 1.1: A schematic diagram of 1D, 2D, 3D periodic photonic crystals composed of high (blue)

and low (green) refractive index domains. This diagram was adopted from [5].

Besides these top-down lithographic approaches, bottom-up self-assembly methods
have also been actively pursued for making photonic-bandgap structures. Synthetic opals
made of spherical silica or polymeric colloidal particles have been extensively studied.'”'®
The closed-packed structures yield the face-centered cubic (FCC) structure or, after
infiltration by a second material and removal of the original spheres, the inverse FCC
structure.'® More recently, block copolymers have emerged as alternative platform material

for fabricating photonic crystals, because of their inherent flexibility in accessing a variety
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of 1D, 2D, and 3D periodic structures; their ability to incorporate a wide choice of
materials including the possibility of high-dielectric and optically active nanoparticle

additives; and their relatively straightforward, cost-effective processing methods.*

1.2. 1D, 2D, and 3D Block Copolymer Photonic Crystals

Photonic crystals will be an important part of future optical systems. For example, a
discrete region of different index or geometry that serves to break the symmetry inside the
photonic crystal can serve as an optical cavity, while a line defect can act as a waveguide
and a surface defect can act like a mirror. As these features are all on the size scale of the
wavelength of light, this affords both integration and miniaturization of optical devices.
Even the most basic photonic crystal, a 1D multilayer stack in which the dielectric constant
varies along only one direction, can act as a notch filter (a filter that can pass a narrow
wavelength range of incident light) by incorporating a single defect layer in the stack.
Multilayer devices are normally fabricated by various layer-by-layer approaches such as
vacuum deposition, sputtering, co-extrusion, or spin-coating methods. Another way to
produce 1D photonic crystals is by self-assembly of lamellar block copolymers.

Block copolymers, macromolecules comprising chemically distinct polymer chains
covalently connected to each other, self-assemble to create a variety of periodic
structures.”’ The self-assembly of block copolymers is driven by a competition between the

positive enthalpy of mixing of the respective block chains and the tendency for the
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polymers to desire a random coil configuration. When yV is larger than a certain value (e.g.,
10.5 for symmetric diblocks), where y is the Flory—Huggins interaction parameter between
blocks and N is the total degree of polymerization (equal to the total numbers of A
monomers and B monomers) of the block copolymer, microphase separation into well-
defined domain structures occurs on the length scale of the respective blocks. For example,
in the case of simple linear A—B diblock copolymers, the volume fraction f and YN
determine the four equilibrium morphologies: lamellae, double gyroid networks,
hexagonally packed cylinders, and body-centered cubic (BCC) spheres, as schematically
shown in Figure 1.2. The diversity of block copolymer microstructures in terms of
microdomain size and shape is greatly increased by changing the number of components,
the architecture, the persistence length (a measure of the local straightness of the polymer
chain) of the constituting chains, or by blending with additives (homopolymers, plasticizers,
etc.). For example, A-B-C terpolymers, in which three chemically different blocks are
either connected in a series via two junctions or connected to a single junction to form
miktoarm (“mixed arm” in Greek) star polymers, exhibit a range of more complex
morphologies compared with simple diblock copolymers.”> The wide range of
microstructures accessible from the self-assembly of block copolymers has made them
excellent candidate materials for numerous nanotechnological applications, including
photonic-bandgap materials.”* %

Block copolymers of typical molecular weight (~ 50 kg/mol) form microdomains on
a typical length scale (~ 20 nm) that is insufficient for optical applications. What is needed

in order to produce a bandgap at visible or near-IR wavelengths is to increase the average
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domain size to on the order of A/4n;, where #; is the index of refraction of the respective
block and A is the wavelength of light. For 600 nm visible (red) light, and for a typical
polymer index of 1.5, this calls for an individual block layer thickness of approximately
100 nm, requiring a block molecular weight of ~500 kg/mol and a total polymer molecular
weight of around 1,000 kg/mol. Such large domain spacings can also be accessed by
employing somewhat lower-molecular-weight copolymers (e.g., ~200 kg/mol per block)
and swelling the respective domains by blending with low-molecular-weight
homopolymers or nonvolatile plasticizers, or by employing rigid, rodlike polymers with a

large persistence length.

Nature of Spheres Cylinders Double gyroid Double diamond Lamellae
patterns (SPH) (3D) (CYL) (2D) (DG) (3D) (DD) (3D) (LAM) (1D)

Space group|  Im3m pémm la3d Pn3m pm

Blue
domains:
A block

Volume
fraction 0-21% 21-33% 33-37% 37-50%

of A block

Figure 1.2: A schematic diagram showing various bulk morphologies of linear diblock copolymer,
poly(A-b-B), as a function of volume fraction of A block (The double diamond bicontinuous
network structure does not occur for simple diblocks). This diagram was adopted from Dr. Banita

Dair.
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Figure 1.3: 1D, 2D, 3D photonic crystals from (a) lamellar (from [26]) (b) cylindrical (from [32])
and (c) double gyroid (from [36]) morphologies of PS-b-PI block copolymers, respectively. Figure
1.3(a) is a TEM image of an OsO, stained PS-b-PI diblock, Figure 1.3(b) is an AFM image of
cylindrical PS-b-PI diblock, Figure 1.3 (c) is a SEM image of ozone-etched double gyroid PS-b-PI
diblock.

The first example of a visible block copolymer photonic crystal was achieved by
using a symmetric poly(styrene-b-isoprene) (PS-b-PI) diblock copolymer with approximate
molecular weights of 200 kg/mol per block and forming a 60/20/20 ternary blend with the
respective homopolymer of each block.”* %° Indeed, the systematic blending of low-
molecular-weight homopolymers into the host block copolymer provides a way to open the
photonic bandgap (the so called “stop band”) across the entire visible wavelength range by
simply controlling the amount of blended homopolymers.”® More recently, block
copolymers based on readily available olefins were developed to construct self-assembled
photonic crystals of improved thermal stability and processability. Random
copolymerization of olefin monomers provided a route to tune the refractive index of each

block as well as to suppress the crystallinity for optical transparency. This work was in
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collaboration with Dr. Robert Mathers and Prof. Geoffrey Coates at Cornell University (see
appendix). Some examples of block copolymer based 1D, 2D, 3D photonic crystals are
depicted in Figure 1.3.

A convenient way to understand the optical properties of a photonic crystal is to
examine the dispersion relationship between the frequency ® and the direction of the wave
vector k of incident light. If we consider an infinite periodic medium, the o(k) relationship
can be derived from solutions to Maxwell’s equations and is displayed as a band dialgram.27
The dispersion relationship of a 1D photonic crystal has been also analytically derived by
Yeh et al.?® Figure 1.4 is an illustration of the band diagram for a multilayer system with
layer thicknesses and refractive indices illustrative of 1D photonic crystal of a lamellar-
forming PS-b-PI block copolymer, and provides information on sample reflectivity as a
function of incidence angle and polarization of the incident electromagnetic waves. >* *°
The areas between the first band (blue) and the second band (red) and above the third (red)
band on the diagram represent propagating modes, while the areas between the second and
the third band represent the nonpropagating evanescent modes. Light in this range of
wavelengths incident for the particular k;, vector (a projected k vector parallel to the
interface between two domains) is reflected by constructive interference from the set of
periodically spaced interfaces between the two types of domain. The plot also shows how
the center wavelength of the bandgap is shifted to a shorter wavelength (or a higher
frequency) as the incidence angle moves from normal (k;, = 0) toward grazing (light line).

Thus, a film appearing green when viewed at normal incidence appears blue when viewed

at an angle far off the normal.
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Figure 1.4: A band diagram (dimensionless frequency vs. dimensionless wavevector) using the
refractive indices of polystyrene (nps = 1.59) and polyisoprene (np; = 1.51) and the layer thicknesses
of a PS-b-PI block copolymer (dps = dp; = 100 nm). The transverse-electric (TE) polarization modes
are on the right side, and the left side is for the transverse-magnetic (TM) polarized light. The
numerical code was written by Dr. Martin Maldovan at MIT. (c: speed of light in a vacuum, a:

lamellar domain periodicity = dpstdp;)

A second way to understand the same sort of reflectance data for a finite photonic
crystal, which is more experimentally relevant, is to plot the magnitude of the reflectivity
(this depends on the dielectric contrast (gx/e1) and, importantly, on the number of periods in
the photonic crystal) as a function of polarization, wavelength, and incident angle of light
as shown in Figure 1.5. This type of calculation can be done using the transfer matrix
method>!, which also allows one to include finite material absorption in the calculation as

well as optical anisotropy.
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Figure 1.5: Reflectivity plot constructed by the transfer matrix method for a 20-period stack of
alternating PS (n = 1.59) and PI (n = 1.51) layers (glass substrate-(PS layer-PI layer)*-air), for TM
(left) and TE polarization (right), respectively. Each layer is assumed to be 100 nm thick. The color
represents the strength of the reflectivity at a particular polarization, frequency, and angle of

incidence of incident light.

Two-dimensionally periodic block copolymer photonic crystals have been also
demonstrated using self-assembly. In this case, a cylinder-forming PS-b-PI diblock
copolymer was roll-cast to realize a long-range-ordered 2D periodic photonic crystal
structure.”® The bandgap exists in the plane of the domain periodicity; thus, light

propagating perpendicular to the cylinder axis is reflected. The small dielectric contrast
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(~1.1) in the PS/PI material produced only a partial photonic bandgap. In order to achieve a
complete bandgap for both transverse-electric (TE) and transverse-magnetic (TM)
polarizations in the hexagonal cylinder structure, a minimum dielectric contrast of 7.2:1 is
necessary. This illustrates the challenge to somehow access a much higher dielectric
contrast than is inherent to polymeric systems.

A three-dimensionally periodic photonic crystal with a complete photonic bandgap
in the optical or near-IR frequencies has been one of the main challenges for researchers
since the inception of the field in 1987. Yablonovitch first proposed that a FCC
arrangement of dielectric cubes would provide the sought-after complete bandgap.*®
Researchers attempted to create such a FCC photonic crystal structure using close-packed
spheres, but the bandgap occurs at a relatively low volume fraction of dielectric, so
infiltration of a high dielectric material about a template of FCC packed spheres, followed
by etching to create an air lattice of spheres in a high dielectric was done.'® Unfortunately,
the FCC structure does not have a complete bandgap between low-order bands, and the
complete gap opens up between the eighth and ninth bands only at a relatively large
dielectric contrast of nearly 9:1.>* Since then, researchers have sought alternative structures
that would provide a robust gap at a lower dielectric contrast that could also be readily
fabricated. Inferestingly, the current champion photonic-crystal structure is that of an
interconnected diamond network first discovered by the Iowa State University group in
1991.%° The 19 vol % diamond dielectric network displays a complete bandgap between the

second and third bands at the record low dielectric contrast of 3.6:1 (note: attaining an
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index contrast of 1.9:1 in a diamond network structure is not out of the question for
polymer:air structures).

Block polymers can provide many possible intricate 3D structures through
microphase separation. The first 3D block copolymer photonic crystal having a partial
photonic bandgap was based on the bicontinuous double gyroid cubic morphology.>® Here a
PS-b-PI block copolymer with total molecular weight of 750 kg/mol provided domain sizes
sufficient to interact with visible light.>® The double gyroid morphology was further treated
with UV and ozone to degrade the polyisoprene phase, leaving the polystyrene double
gyroid network with increased refractive-index contrast (polystyrene versus air, 1.6:1, see
Figure 1.3(c)).*®

However, it turns out that the double gyroid network structure does not possess a
complete gap, no matter how high the dielectric contrast. This makes clear the need to
perform simulations of potential structures to explore for robust bandgaps prior to
undertaking extensive experiments. The Thomas group at MIT have used numerical
calculations employing the plane wave method> to examine a host of network structures
having various cubic symmetries.”” What is done is to systematically explore the range of
volume fractions and dielectric contrasts for a given structure to see if it displays a
complete gap and then to construct a “gap map”—that is, a plot of the width of the
complete gap (the difference in frequency of the lowest frequency of the upper band and
the highest frequency of the lower band versus dielectric contrast at a fixed volume
fraction). Of particular concern is finding the structure and the volume fraction of the

structure at which a complete gap first opens at the lowest possible dielectric contrast. This
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volume fraction will give the widest gap for a given dielectric contrast. It is noteworthy that
neither the double gyroid nor the double diamond structures exhibit complete bandgaps,
while both of the corresponding single network structures do, with the single diamond
network as the current champion complete gap structure. The single gyroid morphology is
also a quite favorable photonic crystal structure—a complete photonic bandgap opens at a

index contrast of 2.3:1.%7

1.3. Nanocomposite Block Copolymer Photonic Materials

Given the inherently low refractive index contrast (ny/n;) in block copolymer-based
photonic crystals (typically on the order of 1.1:1 for polymer:polymer structures and 1.5:1
for polymer:air structures) it is essential to enhance the index contrast in order to produce a
more robust (or even complete) photonic bandgap. One method that has been successfully
demonstrated is to selectively sequester high-refractive-index inorganic nanocrystals into
the microdomains of a block copolymer to form an inorganic/organic microstructured
nanocomposite photonic structure. For example, CdSe particles with trioctyl phosphine
oxide (TOPO) surface ligands (CdSe refractive index, ~2.7) were successfully sequestered
into the poly(vinyl pyridine) domains in a poly(styrene-b-isoprene-b-vinyl pyridine) block
terpolymer.?* 2 In order to target the high-index nanoparticles to the higher-index block
domains, one needs to tailor the nanocrystal surface to have compatibilizing groups

(typically oligomeric homopolymers) similar to the host block domains. Thus, amine- or
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thiol-terminated polystyrene was used to compatibilize CdSe nanocrystals into PS-b-PI
block copolymers by ligand-exchange reactions. Since the electronic bandgap of
semiconductor nanocrystals is inversely proportional to the size of the nanocrystals, the
absorption band of nanocrystals is shifted to a shorter wavelength than in bulk materials,
making the nanocrystals effectively transparent in the optical regime.

Metallic nanoparticles are also of interest for their extremely high dielectric
constants. The optical response of block copolymer/metallodielectric nanocrystal photonic
structures can be dramatically influenced by the spatial distribution of metallodieleptric
nanocrystals because of the dipolar coupling between closely spaced metal particles. For
example, a metallodielectric photonic structure based on poly(styrene-b-
ethylene/propylene) diblock copolymer and gold nanocrystals was coassembled using gold
nanocrystals with a size well below the scattering limit.*® ** The gold particles were
surface-grafted with different chemical groups, such as thiol-terminated oligomeric
polystyrene or thiol-terminated alkanes, to target a given type of microdomain in the block
copolymer template. Two distinct spatial distributions of gold nanocrystals were observed:
(1) interfacial segregation between the two block domains, or (2) preferential uniform
distribution within one type of domain. These morphologies were dependent on the surface
chemistry and size of the ligands attached to the particles.”” The confinement of the
nanocrystals to the narrow interface between domains results in a high local particle
concentration and therefore a small average distance between particles, leading to different

optical properties of the respective nanocomposite structures.*’
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Thermodynamic prediction of block copolymer—nanoparticle phase diagrams is thus
of importance in designing nanocomposites for applications. Balazs’ group has combined
density functional theory and self-consistent field theory to simulate the behavior of
nanoparticles of diameter d in block copolymer domains of period L. They showed that the
interfacial segregation of nanoparticles with neutral ligands (i.e., % = 0) occurs for small
particles (d/L < 0.2), whereas for d/L ~ 0.3, the particles locate in the center of the domain*"
42 which was in reasonable agreement with experiments as well.”>*® There are a host of
parameters to explore concerning the localization of particles within block copolymer
microdomains. These include the particle size and shape, ligand size and chemistry, and the
size and shape of the particular host microdomain.** Information about the solubility limits
of various particles in block copolymers is the key in understanding the attainable limits to
the effective dielectric constant via blending. Clearly, there is much still to be done to
control the hierarchical structures in block copolymer—nanoparticle assemblies that can

enhance nanocomposite photonic properties.

1.4. Switchable BCP Photonics

Block copolymer-based photonic-bandgap materials that can be readily tuned or
switched by applying various external fields can provide a route to fabricate multifunctional

and optically responsive photonic structures. There is a host of ways to induce changes of
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optical properties via alteration of the periodicity, symmetry, or dielectric constants of the
material.

Thermally tunable block copolymer-based photonic-bandgap materials have been
constructed by incorporating guest liquid-crystalline molecules into one domain of Aost
block copolymers by hydrogen-bonding interaction to form a hierarchical photonic
structure. Either the effective refractive index*® or the lattice spacing® of liquid-crystal-
containing domains could be changed as the temperature of the materials was changed,
leading to the tailoring of the position and strength of the photonic stop band of the system.

Another way to alter the microdomain spacing in a block copolymer is to apply
mechanical force. Elastomeric block copolymer photonic crystals have been prepared by
blending with a nonvolatile plasticizer to form a block copolymer gel. The local
deformation of the photonic gel’s microstructure yields a tunable photonic bandgap with
applied tensile strains.*

Recently, chemically, thermally, mechanically responsive self-assembled reflectors
based on PS-b-PI block copolymer solution have been nicely demonstrated and will be

presented in Chapter 5 of this thesis.

1.5. Challenges, Advantages, and Applications

In order to maximize the usefulness of self-assembled block copolymer platforms,

one has to address three major challenges: attaining large domain spacings, achieving high
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dielectric contrast, and controlling long-range microdomain order. The occurrence of
randomly located defects that accompany the self-assembly process must be avoided. In
this regard, there have been numerous efforts to establish a single-crystal-like microdomain
structure, employing various external fields such as mechanical flow fields, electric fields,
temperature gradients, directional solidification, and surface interactions to obtain
purposefully long-range domain order during the self-assembly process. However, the very
high molecular weight block copolymers that are typical of photonic crystals presents the
problem that the order—disorder transition is unattainable via temperature, so that solvents
must be used to process the materials into their final structures, restricting the applicability
of some of these techniques.

Advantages for employing self-assembled block copolymers as visible wavelength
photonic materials include the ease of processing (e.g. conformal coating on essentially any
substrate); the ability to incorporate both inorganic (e.g. quantum dots) and organic
additives (e.g. laser dyes, liquid crystals, homopolymers, and plasticizers, etc.) within the
block copolymer microdomains; and the relatively easy manipulation of block copolymer
microstructures via various external fields such as mechanical force, temperature, and
electric fields, etc.

As mentioned in the introduction, attainment of well-ordered photonic crystals is
only a necessary requirement. Actual useful optical devices need controlled defects to
localize and guide light. One interesting application is the use of the self-assembled block
copolymer photonic crystal to define a microcavity for modifying the spontaneous emission

of optically active materials, ultimately leading to an optically pumped, all-organic, self-
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assembled laser. Clearly, 1D self-assembled photonic crystals from lamellar-forming block
copolymers can act as a Bragg reflector. Two different types of laser structures can then be
envisioned: (1) a distributed-feedback band-edge laser and (2) a defect-mode microcavity
laser. For the distributed-feedback structure, a gain medium such as an organic laser dye is
dispersed throughout the layered block copolymer structure. In the defect-mode approach, a
layer of precise dimension containing the gain medium is employed as the microcavity,
sandwiched by outside block copolymer Bragg reflectors. In both cases, controlling the
microdomain orientation of the block copolymer lamellae is the key to obtaining the high
quality factor (a ratio of the energy stored in resonant cavity to the energy lost per cycle)
that is essential to enable lasing. This block copolymer enabled lasing device is one of main
themes of this thesis work. Optically driven lasing using self-assembled distributed Bragg
reflectors formed from a 1D block copolymer photonic crystal will be described in Chapter

4,
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Chapter 2.
Materials and Experimental Methods

In this chapter, information on materials and experimental methods used in this research are
provided. Synthetic procedures and molecular characterizations of ultrahigh molecular
weight poly(styrene-b-isoprene) (PS-b-PI) block copolymers are presented in the first
section. The second section summarizes experimental techniques for microstructural
characterization of the block copolymers such as ultrasmall angle X-ray scattering
(USAXS), transmission electron microscopy (TEM), and laser scanning confocal
microscopy (LSCM). Finally, various spectroscopic techniques for optical characterization
of photonic block copolymers, organic laser dyes, and devices using these materials are

described.
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2.1. High Molecular Weight Block Copolymers

High molecular weight lamellar-forming PS-b-PI diblock copolymers are the main
materials used in this thesis and were prepared via living anionic polymerization technique
by sequential addition of monomers. Dr. Wonmok Lee made an equal contribution in
preparing the lamellar block copolymer samples. Dr. Peter DeRege provided the cylinder-
forming PS-b-PI block copolymer sample for directional solidification and confocal
microscopy study (in Chapter 6).

Since its discovery by Szwarc in 1956', living anionic polymerization has been
extensively used for the synthesis of model polymer systems with well-controlled
molecular weight, molecular weight distribution, composition, and chain architectures.
While a high vacuum technique® has been the most widely used method for living anionic
polymerization due to its excellent control of impurities such as oxygen and water, some
disadvantages such as time-consuming and laborious glass-blowing, and difficulty to
accurately measure the quantity of monomer for desired molecular weight and composition
have made researchers implement an alternative approach using an inert atmosphere
technique.’ In the case of the inert atmosphere technique, a slight overpressure of N, or Ar
is used to maintain a dry and oxygen-free condition, and the preparation and the actual
polymerization run are relatively easier and faster than the high vacuum technique with
comparable control of molecular weight and molecular weight distribution. In this thesis, a
modified version of the inert atmosphere technique was employed to synthesize high

molecular weight (500-1000 kg/mol) lamellar-forming PS-b-PI diblock copolymers using a
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glove box (Innovative Technology) equipped with catalyst system for removing organic
vapor, oxygen (0O,) and moisture (H,O). All of these impurities can interfere with the
polymerization reaction to terminate the living anions and thus must be minimized in order
to achieve well-controlled molecular weight and molecular weight distribution. The proper
control of impurities is especially crucial for the synthesis of ultrahigh molecular weight
samples where the amount of initiator is extremely small. In the following sections we
summarize the experimental procedures for the synthesis of ultrahigh molecular weight
block copolymers including glassware preparation, purification of monomers/solvents,
polymerization reaction by sequential addition, and molecular characterization for
determining molecular weight and composition. More thorough and extensive information

about living anionic polymerization techniques can be obtained from the literature.*”

2.1.1. Purification of glassware, syringes, and needles

All pre-cleaned glassware such as flasks and distillation adapters was repeatedly
rinsed with deionized water, tetrahydrofuran (THF), and isopropanol. The rinsed and dried
glassware was then baked in a furnace (Thermolyne 30400 in Prof. Yoel Fink’s group at
MIT) at 500 °C for 2-3 hours to relax residual stresses. This annealing process was
followed by additional baking at 570 °C for 2 hours to remove any remaining organic
contaminants on the surface. Before purification or polymerization steps, the baked
glassware was connected to a vacuum manifold and thoroughly flame-baked under vacuum
to minimize any residual water adsorbed to the glass surface. Gastight syringes and metal

needles were also cleaned and baked before use.
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2.1.2. Purification of solvents

A mixture of benzene and cyclohexane (4:1, v/v) was used as solvent for
polymerization. Benzene (Aldrich, 99+%) was stirred over concentrated sulfuric acid
(100mL/L) for a week to remove impurities such as thiophenes and substituted phenyl
compounds followed by a repeated wash with an aqueous solution of NaOH (or NaHCOs)
and deionized water. After the neutralization step, benzene was dried with finely grounded
CaH, for 24 h and filtered. Cyclohexane (anhydrous, 99.5%) was stirred over CaH, for 24 h
and filtered. The mixture of benzene and cyclohexane (4:1, v/v) was then transferred to the
purification flask and degassed by one or two freeze-pump-thaw cycles. Before vacuum
distillation, it was once more purified with n-butyllithium (#-BuLi, Aldrich: 1.6M in hexane,
5 mL per 1L of solvent) and styrene (Aldrich 99%, 4 mL per 1L of solvent) until the orange
color of the living polystyryl anions persisted, which indicates the purity of the solvent
mixture. The vacuum distilled solvent was then isolated and stored in the N, atmosphere

inside the glove box.

2.1.3. Purification of monomers

Styrene (Aldrich, 99%) was first dried over CaH, for 24 h and is degassed and
vacuum distilled. The dried styrene monomer was then purified with dibutyl magnesium
(DBM, Aldrich: 1.0 M in heptane, [styrene]:[DBM solution] = 20:1) for 4 ~ 5 hours at
room temperature before vacuum distillation until a persistent bright yellow-green color
was observed. Isoprene (Aldrich, 99%) was also dried over CaH, (Aldrich, 90-95%) for 24

h and was degassed and vacuum distilled. It was then purified with #»-BuLi at 0 °C for 1~ 2
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h. It is very important to maintain the temperature of the purifying solution of isoprene and
n-BuLi at or below 0 °C to avoid a runaway polymerization. The vacuum distilled
monomers were then isolated and stored under vacuum in the N, atmosphere inside the

glove box refrigerator maintained at -30 °C.

2.1.4. Polymerization and molecular characterization

Reactor purification and polymerization steps were conducted under N, atmosphere
inside the glove box. A round bottom flask (1000 mL) with a Teflon stir bar was washed
with sec-BuLi (Aldrich: 1.3M in cyclohexane) to remove any remaining impurities and
rinsed two or three times with the purified mixed solvent. The purified mixed solvent
(benzene: cyclohexane = 4:1, v/v) and styrene monomer were then transferred into the
reactor using a gastight syringe filled with activated basic alumina (For activation, alumina
was baked at 500 °C for 24 h and slowly cooled.). An initiator solution was prepared by
diluting sec-BuLi (Aldrich: 1.3M in cyclohexane) to ~ 0.02 mM with the mixed solvent.
The active initiator concentration was determined using the Gilman double titration
method.* When the temperature of the reactor was stabilized at 40 °C, polymerization was
initiated by adding the initiator solution through the gas tight syringe and the solution
developed a bright yellow color. After 6 h with stirring, the isoprene was then added
through the gas tight syringe with activated alumina and the pale green color of
isopropyllithium anions developed. The solution was stirred for additional 48 h before
termination. The reaction was terminated with 1.0 mL of deoxygenated methanol. The

polymer was precipitated and washed with methanol containing 2,6-di-tert-butyl-4-
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methylphenol (BHT, 0.1 wt% to methanol) as an antioxidant and dried under vacuum at

room temperature.

The molecular weights (M, and My,) and polydispersity indices (My/M,) have been

determined by a Hewlett-Packard Series 1100 size exclusion chromatograph (SEC). THF

was eluted from the SEC columns (3 PLgel S5um) at 1.0 mL/min. The molecular weights

(M, and My,) were obtained relative to a polystyrene calibration curve. The compositions of

the block copolymers were determined by nuclear magnetic resonance ('H NMR, 300

MHz) using CDCl; as a solvent based on the ratio of integrated intensities of aromatic

protons to vinylic protons.” Volume fractions were then calculated based on known

densities of PS (1.04 g/cm3) and PI (0.913 g/cm3).6 Table 2.1 summarizes the sample

information of the block copolymers used in this thesis.

Total M,
Sample M, (PS) | M,®PI) PS PS
(PS-b-PI) PDI
ID. (g/mol) (g/mol) wt % vol %
(g/mol)
LY0423 840,000 480,000 | 360,000 1.08 57 54
LY0421 650,000 360,000 | 290,000 1.09 55 52
LY0401 590,000 320,000 | 270,000 1.09 54 51
PDR 091 1,100,000 240,000 | 860,000 1.05 22 20

Table 2.1: Molecular characteristics of the four photonic PS-b-PI block copolymers used in this

thesis.
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2.2. Microstructural Characterization

2.2.1. Solution casting

The first step for microstructural characterization of high molecular weight block
copolymers is to form dry films by a solution casting process. Solutions of block copolymer
samples in toluene were made at a concentration of ~ 50 mg/mL at room temperature. In
order to protect samples from degradation in solution, the antioxidant (BHT) was added to
the solution at a concentration of 0.1 wt % relative to the solvent. Sample solutions were
covered by aluminum foil to prevent UV exposure from room light during the stirring or
the solvent evaporation process. Stirring was minimized and conducted at a very low speed
to avoid mechanical degradation. After a complete solubilization of polymers, the solution
was transferred into a crucible (VWR, 10 mm diameter) for the evaporation of solvent. To
obtain a thermodynamically near-equilibrium morphology and to minimize defect
formation during the solution casting process, a very slow evaporation condition was
applied, in which the evaporation of a solvent was carried out in a solvent-saturated
atmosphere with a gentle flux of air, requiring two to four weeks for sample drying. After
the first evaporation step, samples were further dried in vacuum at room temperature for 24
h to remove any residual solvent. Subsequently, thermally annealing was conducted at

120 °C under vacuum for 3-5 days, producing films with a final thickness of ~ 0.1-0.3 mm.

2.2.2. Cryomicrotomy, staining, and transmission electron microscopy (TEM)

Ultrathin sections (50-100 nm thickness) from annealed block copolymer samples
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were obtained by cryomicrotomy using a Reichert-Jung Ultracut FC4E at -90 °C (for knife)
and at -100 °C (for specimen). Carbon was thermal-evaporated onto the microtomed thin
sections mounted on copper grids with carbon thicknesses of ~ 100 A to enhance sample’s
electrical and thermal conductivity, and to provide beam damage protection in TEM. The
samples were then stained in a vapor of OsOj4 for 2-3 h to improve mass thickness contrast,
which preferentially binds to the PI block containing double bonds. TEM micrographs were
obtained using JEOL 200CX and JEOL 2000FX transmission electron microscopes

operating at 120-200 kV.

2.2.3. Laser scanning confocal microscopy (LSCM)

The directionally solidified PS-b-PI samples (in chapter 6) were analyzed by
reflection-mode LSCM (Leica TCS SPII, located in the laboratory of Prof. Timothy Swager
of MIT) using a 488 nm probe laser beam without further sample treatment. Since the PS-b-
PI block copolymer does not contain any fluorophore, the light signal results from
reflection off the PS-PI interface. Signals of the probe light were scanned for every LSCM

image through an oil-immersion objective lens (Leica, HCX PL APO 63X/1.40-0.60).

2.2.4. Ultrasmall angle X-ray scattering (USAXS)

Since the periodicities of the photonic block copolymers are too large for
conventional small angle X-ray scattering (SAXS), we employed ultrasmall angle X-ray
scattering (USAXS) to obtain microstructural information. USAXS measurements of cast

and annealed block copolymer films have been conducted at beamline X10A at Brookhaven

53



National Laboratory with 8 keV radiation (wavelength A = 0.1548 nm). A Bonse-Hart
camera setup’ was employed with single bounce Ge-111 monochromator and analyzer
crystals. The slit collimated incident beam intensity was about 5 x 10° cts/s and the beam
size was 0.6 x 0.8 mm? (V-H). Data were collected by a scintillation detector (Bicron)
which was swept through an arc to collect a linear data set of intensity versus angular
position. All data were acquired at room temperature and used without additional

corrections.

2.3. Optical Characterization

2.3.1. Reflectivity measurement

The experimental reflectivity spectrum was measured using a microscope
spectrometer, which is composed of an optical microscope (Zeiss Axioskop), a portable
spectrometer (Stellarnet Inc. EPP2000) equipped with a charge-coupled-device (CCD)
detector and a holographic grating, and a tungsten halogen lamp as the illumination source.
Reflected light from the sample on the specimen stage is collected by an objective lens
(Carl Zeiss, Neo-Fluora 10X, N.A. = 0.3) and focused to an optical fiber through a custom-
made fiber-optic-adaptor having a collection lens (f=1.2), which is connected to the
spectrometer. By adjusting an aperture between a light source and an objective lens, the
probed sample area could be effectively adjusted. Due to the numerical aperture of the

objective lens (N.A. = 0.3), the reflectivity spectrum is not from purely normal incidence
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light but represents a convolution of multiple reflectivity spectra over the incidence angles
of 0° to ~17.5°.

The procedures for measuring a reflectivity spectrum using this equipment are
summarized as follows: First, the tungsten lamp was turned on at ~ 12 V and warmed up for
10 min. A silver coated metallic mirror was placed under the objective lens and the light
was focused onto its surface. This reflectivity spectrum was saved as 100 % reference.
Then the incident light was blocked by closing the light path in the microscope and the
corresponding spectrum was saved as 0% reference. After completion of the normalization
steps, sample spectra were taken. Each spectrum was typically obtained with an integration

time of 500-1000 ms and averaged with 5-20 measurements.

2.3.2. Absorption and emission measurements

The photophysical properties of organic laser dyes are sensitively affected by matrix
materials when they are incorporated as dopants. The absorption and emission spectra of a
gain medium studied in this thesis were measured from thin solid films of a dye-doped
polymer. Organic laser dyes (DCM or Bis-MSB from Exciton) and polymethylmethacrylate
(PMMA from Aldrich, My,: 15000 g/mol) were dissolved in a solvent (spectroscopic grade)
such as toluene or THF, in which the dye concentration to the polymer matrix was 0.1-0.5
wt %. The dye-polymer solution (~ 10 wt %) was then simple-cast onto a glass slide to
make a smooth film (thickness ~ 100 um). The absorption spectrum was obtained on a
Hewlett-Packard 8453 diode array UV-VIS spectrophotometer using a bare glass slide as a

blank reference. The emission spectrum was measured either by a SPEX Fluorolog-72
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spectrofluorometer (model FL112, 450 W xenon lamp) or by a laboratory setup of a pump
laser and a fiber-optic spectrometer, which was also used for measuring optically pumped

lasing as described in the following section.

2.3.3. Lasing measurements

Frequency-doubled or tripled Q-switched Nd:YAG pulse lasers (Continuum NY 61,
A = 532 nm, pulse width = 5 ns, repetition rate = 50 Hz in the laboratory of Prof. Moungi
Bawendi of MIT; Continuum NY 60B, A = 532 nm/355 nm, pulse width = 10 ns, repetition
rate = 20 Hz) were used as pump light source. The pump laser beam was focused onto the
sample with a lens of 20 cm focal length and 5 cm diameter at an incidence angle of 30° ~
40° (from the normal), giving a beam diameter at the sample of about 300 um as
schematically shown in Figure 2.1. Lasing occurred in both the forward and backward
directions and the backward emitted light was collected and focused onto a fiber-optic
spectrometer (Ocean Optics USB 2000 or HR 2000). The average power of the excitation
pulses was controlled with a neutral density (ND) filter or by adjusting the input voltage of

the pump laser power supply.
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Figure 2.1: A schematic of the experimental setup for measuring emission and lasing spectra.
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Chapter 3.

Defect-Mode Mirror-less Lasing in a Dye-
doped Organic/Inorganic Hybrid 1D Photonic
Crystal

In this chapter we present the results from our investigation of defect-mode photonic band
gap lasing with an organic/inorganic hybrid 1D photonic crystal containing a dye-doped
defect layer. This defect-mode laser structure has been studied as a “model” system from
which a basic understanding of the main factors affecting optically pumped lasing with dye-
doped photonic crystals has been developed. The multilayer laser structure consists of
alternating layers of titania (TiO,) nanoparticles and polymethylmethacrylate (PMMA) with
an active emission layer of an organic dye dispersed in PMMA. Low threshold lasing has
been demonstrated at a single defect-mode wavelength of the 1D photonic bandgap
structure resulting from the inhibited density of states of photons and the enhanced rates of

spontaneous emission at the localized resonant defect mode within the photonic stop band.

The work on synthesis of titania nanoparticles and fabrication of multilayer structures was a collaboration
with Dr. Wonmok Lee and the lasing measurements were assisted by Dr. Jean-Michel Caruge and Dr. Steven
Kooi. Parts of this chapter were featured in: J. Yoon, W. Lee, J-M. Caruge, S. Kooi, M. Bawendi, E. L.
Thomas Applied Physics Letters 2006, 88, 0912021-0921023.
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3.1. Introduction

Among the many unique properties of photonic crystals, control of spontaneous
emission by means of modification of the photon density of states has been of special
interest since the performance of various optoelectronic devices such as lasers,' light
emitting diodes,’ or solar cells’ is often limited by spontaneous emission. It has been shown
theoretically4’ > as well as experimentally™”’ that when the transition frequency of the gain
material confined within a photonic crystal is matched with the frequency range of the
photonic bandgap, the spontaneous emission is rigorously inhibited by the low density of
states in the gap. As the depletion of the excited state by spontaneous emission within the
gap is decreased, spontaneous emission is enhanced at the band edges or at defect modes
purposefully introduced into the bandgap. This can lead to low-threshold or even threshold-
less lasing. In this regard, there have been considerable efforts to fabricate photonic

9

bandgap laser devices either as distributed feedback lasingg’ operating at band-edge

frequencies or as defect-mode lasing'® "

operating at localized defect-mode frequencies
within the gap. In particular, due to the relative simplicity of fabrication, 1D photonic
crystal laser devices have been extensively studied.'® #1® For example, Kopp et al.
demonstrated photonic band-edge lasing from a 1D photonic crystal of dye-doped
cholesteric liquid crystal.]2 More recently, Ozaki et al. showed electrically tunable defect-
mode lasing in a 1D photonic crystal of alternating TiO,/SiO, multilayers using a

conducting polymer as a gain medium and a nematic liquid crystal as an electrically tunable

defect layer.'® In the present study, a novel organic/inorganic hybrid 1D photonic crystal
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with organic laser dyes as a gain medium has been developed to demonstrate low threshold

defect-mode lasing.

3.2. Results and Discussion

We employed inorganic titania (TiO,) nanoparticles and polymethylmethacrylate
(PMMA) as high and low index dielectric materials for constructing a distributed Bragg
reflector (DBR) having a 1D photonic bandgap. TiO, nanoparticles were prepared
following the synthetic scheme reported by Sanchez et al.'’. The nanocrystalline TiO;
particles were composed of the anatase phase (experimental refractive index ~ 1.78 at 500
nm) with an average diameter of 4 nm as characterized by X-ray diffraction (XRD) (Rigaku
High Resolution 250 mm Diffractometer), spectroscopic ellipsometry (M2000, J. A.
Woollam Co., Inc) and transmission electron microscopy(TEM) (JEOL 2000FX, 200kV).
Figure 3.1 and 3.2 show a bright field TEM micrograph and a powder X-ray diffractogram
of the TiO, nanoparti