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Outline

• Lifecycle cost
• Operating cost
• Development cost
• Manufacturing cost
• Revenue
• Valuation techniques
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Lifecycle Cost

Lifecycle :
Design - Manufacture - Operation - Disposal

Lifecycle cost :
Total cost of program over lifecycle

85% of Total LCC is locked in by the end of 
preliminary design.
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Lifecycle Cost

0

20

40

60

80

100

65%

C
on

ce
pt

ua
l

de
si

gn

Pr
el

im
in

ar
y 

de
si

gn
, 

sy
st

em
 in

te
gr

at
io

n

D
et

ai
le

d 
de

si
gn

M
an

uf
ac

tu
ri

ng
an

d 
ac

qu
is

iti
on

O
pe

ra
tio

n
an

d 
su

pp
or

t

D
is

po
sa

l

Time

Im
pa

ct
 o

n 
LC

C
 (%

)

85%

95%

(From Roskam, Figure 2.3)



9/19/2002 16.885 AEROSPACE COMPUTATIONAL DESIGN LABORATORY

Operating Cost

Airplane Related Operating Cost
(AROC)

Passenger Related Operating Cost
(PROC)

Cargo Related Operating Cost
(CROC)

Systems Related Operating Cost
(SROC)

AROC
70%

PROC
18%

CROC
2%

SROC
10%
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Airplane Related Operating 
Costs

CASH AIRPLANE RELATED
OPERATING COSTS:

Crew
Fuel

Maintenance
Landing

Ground Handling
GPE Depreciation
GPE Maintenance

Control & Communications

CAROC

60%40%

Capital
Costs

CAPITAL COSTS:
Financing
Insurance

Depreciation

CAROC is only 60% - ownership costs are significant!
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CAROC Breakdown per Trip

Landing 6%

Ground
Handling

7%

Control
& Comm

9%

Other
3%

Fuel
20%

Crew
40%

Maintenance
15%

Fuel is roughly 20% of 
60% of 70% of Total 
Operating Cost
i.e. 8%

typical data for a large commercial jet
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Non-Recurring Cost
Cost incurred one time only:
Engineering

- airframe design/analysis
- configuration control
- systems engineering

Tooling
- design of tools and fixtures
- fabrication of tools and fixtures

Other
- development support
- flight testing
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Recurring Cost
Cost incurred per unit:
Labor

- fabrication
- assembly
- integration

Material to manufacture
- raw material
- purchased outside production
- purchased equipment

Production support
- QA
- production tooling support
- engineering support
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Learning Curve
As more units are made, the recurring cost per 
unit decreases.

This is the learning curve effect.

e.g. Fabrication is done more quickly, less 
material is wasted.

n
x xYY 0

Yx = number of hours to produce unit x
n = log b/log 2
b = learning curve factor (~80-100%)
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Learning Curve
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Elements of a Cost Model

Non-Recurring
Cost

Recurring
Cost

COST
MODEL
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Typical Cost Modeling
1. Take empirical data from past programs.
2. Perform regression to get variation with 
selected parameters, e.g. cost vs. weight.
3. Apply “judgment factors” for your case. 
e.g. configuration factors, complexity 
factors, composite factors.
There is widespread belief that aircraft 
manufacturers do not know what it actually 
costs to turn out their current products.
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Cost Modeling
• Aircraft is broken down into modules

– Inner wing, outer wing, …
– Modules are classified by type

• Wing, Empennage, Fuselage, …

• Cost per pound specified for each module type
– Calibrated from existing cost models
– Modified by other factors

• Learning effects
• Commonality effects

• Assembly & Integration:  a separate “module”
• 2 cost categories:  development & manufacturing

Production run:  a collection of modules
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Cost Modeling

Plane

Centerbody Landing
Gear

Propulsion Systems Final
Assembly

Payloads

Winglet Outer
Wing

Inner
Wing

Wing

…

WeightIdentifier RC per 
pound

Subparts
per pound

Area

Labor Material & 
Equipment

Support

At this level, the 
degree of detail can 
range from e.g. “wing” 
to “rivet”.

NRC per 
pound

Tooling Engineering Other

NRC time 
distribution
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Development Cost Data
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Boeing data for large commercial jet
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Development Cost Model
• Cashflow profiles based on beta curve:

• Typical development time ~6 years
• Learning effects captured – span, cost
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Development Cost Model

Wing
20%

Empennage
9%

Fuselage
37%

Landing Gear
1%

Installed Engines
8%

Systems
17%

Payloads
8%

Representative non-recurring cost breakdown by parts for 
large commercial jet (from Markish).
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Development Cost Data
For your reference: $/lb assembled from public domain 
weight and total cost estimates plus representative NRC 
breakdown by aircraft part (see Markish).

Engineering ME
Tool

Design Tool Fab Support Totals

40.0% 10.0% 10.5% 34.8% 4.7% 100.0%

Wing $7,093 $1,773 $1,862 $6,171 $833 $17,731

Empennage $20,862 $5,216 $5,476 $18,150 $2,451 $52,156

Fuselage $12,837 $3,209 $3,370 $11,169 $1,508 $32,093

Landing Gear $999 $250 $262 $869 $117 $2,499

Installed Engines $3,477 $869 $913 $3,025 $408 $8,691

Systems $13,723 $3,431 $3,602 $11,939 $1,612 $34,307

Payloads $4,305 $1,076 $1,130 $3,746 $506 $10,763
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Manufacturing Cost Model
• Aircraft built modules required
• Modules database

– Records quantities, marginal costs
– Apply learning curve effect by module, not by aircraft

Labor Materials Support
85% 95% 95%

time
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Manufacturing Cost Model

Representative recurring cost breakdown by parts for large 
commercial jet (from Markish).

Wing
27%

Empennage
10%

Fuselage
28%

Landing Gear
3%

Installed Engines
9%

Systems
6%

Payloads
11%

Final Assembly
6%
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Manufacturing Cost Data
For your reference: $/lb values assembled from public 
domain weight and total cost estimates plus representative 
RC breakdown by aircraft part (see Markish).

Labor Materials Other Total

Wing $609 $204 $88 $900

Empennage $1,614 $484 $233 $2,331

Fuselage $679 $190 $98 $967

Landing Gear $107 $98 $16 $221

Installed Engines $248 $91 $36 $374

Systems $315 $91 $46 $452

Payloads $405 $100 $59 $564

Final Assembly $58 $4 $3 $65
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NASA Cost Models
Online cost models available at 

http://www.jsc.nasa.gov/bu2/airframe.html

e.g. Airframe Cost Model 
- simple model for estimating the development and 

production costs of aircraft airframes
- based on military jet data
- correlation with empty weight, max. speed, number of 

flight test vehicles, and production quantity
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Revenue Model
Revenue model must predict market price 
and demand quantity.
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Aircraft Pricing

Personal aircraft
Business jets?

Military aircraft

Cost-Based Pricing Market-Based Pricing

Cost + Profit = Price
Performance
Operating Cost
Competition
Passenger Appeal

Commercial transport

Market
Value

Source: Schaufele
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Commercial Aircraft Pricing

• Total Airplane Related 
Operating Costs are fairly 
constant.

• Aircraft price must 
balance CAROC.

COST/WEIGHT
TRADE-OFF

CAROC

PRICE
(Capital costs)

To
ta

l A
R

O
C
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Business Jet Empirical Data
Figure A7 in Roskam:

AMP1989 = log-1{0.6570 + 1.4133 log WTO}

AMP1989 is predicted airplane market price in 1989 
dollars
Take-off weight: 10,000 lb < WTO < 60,000 lb

BUT Gulfstream GIV and 737 BJ versions do not fit 
the linear trend.
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Commercial Jet Empirical 
Data

Figure A9 in Roskam:

AMP1989 = log-1{3.3191+ 0.8043 log WTO}

AMP1989 is predicted airplane market price in 1989 
dollars
Take-off weight: 60,000 lb < WTO < 1,000,000 lb
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Military Aircraft Empirical 
Data

Figure A10 in Roskam:

AMP1989 = log-1{2.3341+ 1.0586 log WTO}

AMP1989 is predicted airplane market price in 1989 
dollars
Take-off weight: 2,500 lb < WTO < 1,000,000 lb
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Revenue Model: Price
• Assumption:  market price based on

1. Range
2. Payload
3. Cash Airplane-Related Operating Cost (CAROC)

• Regression model:

• Note that speed does not appear. No significant 
statistical relationship between price and speed 
was found in available data.

)()()( 21 CAROCfRangekSeatskP
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Revenue Model: Price
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Revenue Model: Price
Wide bodies:
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Revenue Model: Quantity
• Demand forecasts

– 3 sources:  Airbus; Boeing; Airline Monitor
– Expected deliveries over 20 years
– Arranged by airplane seat category

• Given a new aircraft design:
– Assign to a 

seat category
– Assume a 

market share
– Demand forecast 

20-year production 
potential
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Revenue Model: Dynamics
• Expected aircraft deliveries:  forecasted
• Actual deliveries:  unpredictable
• Observe historical trends:  growth rate, volatility
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Valuation Techniques
The top 5 investor questions:
• How much will I need to invest?

• How much will I get back?

• When will I get my money back?

• How much is this going to cost me?

• How are you handling risk & uncertainty?

Investment Criteria
• Net present value
• Payback
• Discounted payback
• Internal rate of return
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Net Present Value (NPV)
• Measure of present value of various cash flows in different 

periods in the future
• Cash flow in any given period discounted by the value of a 

dollar today at that point in the future
– “Time is money”
– A dollar tomorrow is worth less today since if properly 

invested, a dollar today would be worth more tomorrow
• Rate at which future cash flows are discounted is 

determined by the “discount rate” or “hurdle rate”
– Discount rate is equal to the amount of interest the 

investor could earn in a  single time period (usually a 
year) if s/he were to invest in a “safer” investment
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Calculating NPV

• Forecast the cash flows of the project over Its 
economic life
– Treat investments as negative cash flow

• Determine the appropriate opportunity cost of capital 
(i.e. determine the discount rate r)

• Use opportunity cost of capital to discount the future 
cash flow of the project

• Sum the discounted cash flows to get the net present 
value (NPV)

NPV C0
C1

1 r
C2

1 r
2

CT

1 r
T
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NPV example

Period Discount Factor Cash Flow Present Value

0 1 -150,000 -150,000

1 0.935 -100,000 -93,500

2 0.873 +300000 +261,000

Discount rate = 7% NPV = $18,400
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Discount Rate

• One of the problems with NPV: what discount rate 
should we use?

• The discount rate is often used to reflect the risk 
associated with a project:

the riskier the project, use a higher discount rate 
• Typical discount rates for commercial aircraft programs: 

12-20%
• The higher the discount rate, the more it does not 

matter what you do in the future...
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Payback Period

• How long it takes before entire initial investment is 
recovered through revenue

• Insensitive to time value of money, i.e. no discounting
• Gives equal weight to cash flows before cut-off date & no 

weight to cash flows after cut-off date
• Cannot distinguish between projects with different NPV
• Difficult to decide on appropriate cut-off date
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Discounted payback

• Payback criterion modified to account for the time 
value of money
– Cash flows before cut-off date are discounted

• Surmounts objection that equal weight is given to all 
flows before cut-off date

• Cash flows after cut-off date still not given any weight
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Internal rate of return (IRR)

• Investment criterion is “rate of return must be greater 
than the opportunity cost of capital”

• Internal rate of return is equal to the discount rate for 
which the NPV is equal to zero

• IRR solution is not unique
– Multiple rates of return for same project

• IRR doesn’t always correlate with NPV
– NPV does not always decrease as discount rate 

increases

NPV C0
C1

1 IRR
C2

1 IRR
2

CT

1 IRR
T 0
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Decision Tree Analysis

• NPV analysis with different future scenarios

• Weighted by probability of event occurring
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Dynamic Programming
• A way of including uncertainty and flexibility in the 

program valuation
• Key features:

• Certain aspects of the system may be uncertain, e.g. the 
demand quantity for a given aircraft = UNCERTAINTY

• In reality, the decision-maker (aircraft manufacturer) has 
the ability to make decisions in real-time according to 
how the uncertainty evolves = FLEXIBILITY
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Dynamic Programming: 
Problem Formulation

• The firm:
– Portfolio of designs
– Sequential development phases
– Decision making

• The market:
– Sale price is steady
– Quantity demanded is unpredictable
– Units built = units demanded

• Problem objective:
– Which aircraft to design?
– Which aircraft to produce?
– When?
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Dynamic Programming: 
Problem Elements

1. State variables st
2. Control variables ut
3. Randomness

4. Profit function

5. Dynamics

• Solution:

• Solve iteratively.
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Dynamic Programming: 
Operating Modes
How to model decision making?
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Example:  BWB
• Blended-Wing-Body (BWB):

– Proposed new jet transport 
concept

• 250-seat, long range
• Part of a larger family sharing 

common centerbody bays, 
wings, ...

Image taken from NASA's web 
site: http://www.nasa.gov.
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Example:  BWB Simulation 
Run
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Example:  BWB Importance 
of Flexibility
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At baseline of 28 aircraft, DP value is $2.26B versus NPV 
value of $325M
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