Problem 1: Brushless Machine Note that we can write Magnetization as a Fourier Series:

\[M(\theta) = \sum_{n=1}^{\infty} M_n \sin np\theta \]

where the harmonic components are:

\[M_n = \frac{B_r}{\mu_0} \frac{4}{n\pi} \sin n \frac{\theta_{me}}{2} \sin n \frac{\pi}{2} \]

To get the remanent flux density \(B_r \), note that the energy product is \(W = \frac{B_r^2}{\mu_0} \), or

\[B_r = \sqrt{4 \times 42 \times 10^6} = 12,961 \text{ gauss} = 1.2961 \text{T} \]

Then the Fourier series for flux density at the rotor surface is

\[B_s = \sum_n B_n \sin p\theta \]

where

\[B_n = \mu_0 M_n k_{gn} \]

and the expression for the ‘gap factor’ is a straightforward extrapolation of what is in the notes:

\[k_{gn} = \frac{1}{1 - \left(\frac{R_k}{R_s} \right)^2np} \left[\frac{np}{np + 1} \left(\frac{R_t}{R_s} \right)^{np+1} - \left(\frac{R_k}{R_s} \right)^{np+1} \right] + \frac{np}{np - 1} \left(\frac{R_t}{R_s} \right)^{np+1} \left[1 - \left(\frac{R_k}{R_s} \right)^{np-1} \right] \]

Voltage is (to within a fixed sign), using VLB:

\[V_n = 2R\ell\Omega k_{ln} k_{pn} B_n \]

and the winding factors are the well known pitch and breadth factors. Details of the calculations are in the attached script. The results are shown in Figure 1, which shows the magnetization reconstructed from the Fourier Series (in this case, I have taken the series out to 35th space harmonic: your answer may have fewer or more terms). Figure 2 shows the magnetic flux density at the surface of the stator bore and Figure 3 shows the induced voltage.

The harmonic amplitudes of the first five interesting harmonics are:
Figure 1: Magnetization reconstructed from Fourier Series

6.685 Problem Set 9, Problem 1
Harmonic Number 1
Gap Factor = 0.6817 Magnetization = 1.272e+06
Pitch Factor = 0.9659 Breadth Factor = 0.9659
Frequency = 1885 Flux Component = 1.09
Voltage Component = 368

Harmonic Number 3
Gap Factor = 0.6684 Magnetization = 3.105e+05
Pitch Factor = 0.7071 Breadth Factor = 0.7071
Frequency = 5655 Flux Component = 0.2608
Voltage Component = 47.19

Harmonic Number 5
Gap Factor = 0.6437 Magnetization = 6.818e+04
Pitch Factor = 0.2588 Breadth Factor = 0.2588
Frequency = 9425 Flux Component = 0.05515
Voltage Component = 1.337

Harmonic Number 7
Gap Factor = 0.6102 Magnetization = -4.87e+04
Pitch Factor = -0.2588 Breadth Factor = -0.2588
Frequency = 1.319e+04 Flux Component = -0.03734
Voltage Component = -0.9054

Harmonic Number 9
Gap Factor = 0.5712 Magnetization = -1.035e+05
Pitch Factor = -0.7071 Breadth Factor = -0.7071
Frequency = 1.696e+04 Flux Component = -0.07428
Voltage Component = -13.44
Operating Details:
Internal Voltage = 377.2 Terminal Voltage = 389.5
Terminal Current = 29.54 Output Power = 1.672e+04
Reactance = 2.555 Resistance = 0.1652
Efficiency = 0.9872 Power Factor = 0.981
Air-Gap L = 0.001175 Slot L = 0.000181

Problem 2: More Brushless Machines To get the useful current capability of this machine we first need to estimate slot area. This is done by, first, computing tooth width:

\[w_t = \frac{2\pi (R + h_d)}{6\text{pm}} - w_{st} \]

where \(w_{st} \) is the 'slot top' width. Slot bottom width is then:

\[w_{sb} = \frac{2\pi (R + h_d + h_s)}{6\text{pm}} - w_t \]

Slot area is just

\[A_s = h_s \frac{w_{st} + w_{sb}}{2} \]

Total armature ampere-turns per phase is:

\[NI = J_{apm} A_s \]

Internal flux per turn (fundamental) is:

\[\Phi = \frac{2R_s \ell B_{s1} k_{p1} k_{b1}}{p} \]
Problem 9.1

and since this is a round rotor machine, torque rating is:

\[T_e = \frac{3}{2}pNI\Phi \]

The two components of inductance are air gap, for which we use the fundamental:

\[L_{ag} = \frac{3 \pi \mu_0 R\ell N_s^2 k_p^2 k_k^2}{2 \pi} \frac{2}{p^2 (g + h_m)} \]

and slot leakage:

\[L_{st} = \mathcal{P}_{\text{slot}} 2\ell_p N_e^2 (4N_{\text{self}} + N_{\text{mut}}) \]

where the number of slots per pole per phase with both coil halves in the same slot is

\[N_{\text{self}} = m - N_{sp} \]

and the number of slots per pole per phase with coil halves in slots with other phases is:

\[N_{\text{mut}} = 2N_{sp} \]

and of course slot permeance per unit length is:

\[\mathcal{P}_{\text{slot}} = \mu_0 \left(\frac{h_d}{w_d} + \frac{1}{3} \frac{h_s}{w_{st}} \right) \]

To find winding resistance we need, first, area for each wire. This is:

\[A_w = \frac{\lambda_a A_s}{2N_e} \]
where \(\lambda_s \) is the winding space factor. We also need the length of each wire, which is

\[
\ell_w = 2N_a (\ell + \ell_e)
\]

The length of the end winding is taken as half the circumference of a circle: \(\ell_e = \pi C \) where the diameter of that circle is the distance along a cylinder at the midplane of the slot and over the coil throw:

\[
C = \frac{5 \pi}{6} \frac{p}{\rho} \left(R_s + h_d + \frac{1}{2} h_s \right)
\]

Then winding resistance is

\[
R_a = \frac{\ell_w}{\sigma A_w}
\]

To get short circuit current we take fundamental voltage which is just:

\[
E_a = \omega N_a \Phi
\]

and divide that by impedance of the stator:

\[
Z_s = j\omega (L_{ag} + Ls\ell) + R_a
\]

The short circuit current is shown in Figure 4

![Short Circuit Current Graph](image.png)

Figure 4: Short Circuit Current

The other elements of rating are contained in the Matlab screen output:

Operating Details:
- Internal Voltage = 360.8
- Terminal Voltage = 372.3
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal Current</td>
<td>29.54</td>
<td>Output Power</td>
<td>1.599×10^4</td>
</tr>
<tr>
<td>Reactance</td>
<td>2.367</td>
<td>Resistance</td>
<td>0.1652</td>
</tr>
<tr>
<td>Efficiency</td>
<td>0.9867</td>
<td>Power Factor</td>
<td>0.9822</td>
</tr>
<tr>
<td>Air-Gap L</td>
<td>0.001075</td>
<td>Slot L</td>
<td>0.000181</td>
</tr>
</tbody>
</table>
% Solution to 6.685 Problem Set 9, Problems 1 and 2
% voltage generated by a surface mount machine
% dimensions, etc
R = .04; % rotor radius
L = .12; % active length
g = .001; % air-gap
hm = .0025; % magnet height
p = 2; % 4 poles
m = 2; % = 24/(4*3) Slots/pole/phase
Na = 40; % turns/phase
hd = .001; % slot depression height
wd = .001; % slot depression width
wst = .005; % slot top width
hs = .015; % slot height
thme = 5*pi/6; % 150 degrees, electrical
Br = 1.3; % moderately good stuff: 42 MG-Oe
alf = pi*5/6; % this is a 5/6 pitch winding
gama = 2*pi/(4*m); % slot electrical angle
Ri = R - hm; % inner radius
Rs = R + g; % outer radius (for magnetic problem)
N = 9000; % RPM
omm = (2*pi/60)*N; % electrical speed
u = omm*R; % surface speed
om = p*omm;
muzero = pi*4e-7;
n = 1:2:35; % interesting harmonics
np = p.*n; % another interesting vector

% kg is the magnetic gap factor
kg1 = 1 ./ (1 - (Ri/Rs).^ (2.*np));
kkg2 = ((np ./ (np + 1)).* ((R/Rs).^ (np+1) - (Ri/Rs).^ (np+1)));
kkg3 = ((np ./ (np - 1)).* ((R/Rs).^ (np+1)));
kkg4 = (1 - (Ri/R) .^ (np-1));
kkg = kg1 .* (kkg2 + kkg3 .* kkg4);

Mn = (Br/muzero) .* ((4/pi) ./ n) .* sin(n .* thme/2) .* sin(n .* pi/2); % field harmonics
Bn = muzero .* Mn .* kkg; % flux density
kp = sin(n .* pi/2) .* sin(n .* alf/2); % pitch factor
kb = sin(n .* m*gama/2) ./ (m .* sin(n .* gama/2)); % breadth factor
V = 2*L*u*Na .* Bn .* kp .* kb; % voltage harmonics

fprintf('6.685 Problem Set 9, Problem 1\n')
for i = 1:5
 fprintf('Harmonic Number %5.0f
',n(i));
 fprintf('Gap Factor = %12.4g Magnetization = %12.4g\n', kg(i), Mn(i));
 fprintf('Pitch Factor = %12.4g Breadth Factor = %12.4g\n', kp(i), kb(i));
 fprintf('Frequency = %12.4g Flux Component = %12.4g\n', n(i)*om, Bn(i));
 fprintf('Voltage Component = %12.4g\n', V(i));
end

omt = 0:pi/50:4*pi;
v = zeros(size(omt));
B = zeros(size(omt));
M = zeros(size(omt));
for i = 1:length(n),
 M = M+Mn(i).* sin(n(i).* omt);
 v = v+V(i).* sin(n(i).* omt);
 B = B+Bn(i).* sin(n(i).* omt);
end

figure(1)
plot(omt, M)
title('Problem 9.1 magnetization')
ylabel('A/M')
xlabel('Omega t')

figure(2)
plot(omt, B)
title('Problem 9.1')
ylabel('Flux Density')
xlabel('Angle')

figure(3)
plot(omt, v)
title('Problem 9.1')
ylabel('Volts')
xlabel('Omega t')

% now machine rating:
Ja = sqrt(2)*2e6; % peak slot current density
% need to calculate a few details of slot geometry
wt = 2*pi*(Rs+hd)/(6*p*m) - wst; % this is tooth width
wsb = 2*pi*(Rs+hd+hs)/(6*p*m) - wt; % slot bottom width
As = hs*.5*(wst+wsb); % this is area of each slot
NI = Ja*p*m*As; % this is ampere-turns/phase (peak as Ja is peak)
I = NI/Na; % and this is now peak current
Phi = 2*Rs*L*Bn(1)*kp(1)*kb(1)/p; % this is internal flux per turn (peak)
Torque = 1.5*p*NI*Phi; % that makes this torque rating
Lag = (6/pi)*(muzero*Rs*L*Na^2*kb(1)^2*kp(1)^2)/(p^2*(g+hm)); % air-gap inductance
Pslot = muzero*(hd/wd+hs/(3*wst)); % slot permeance
% what is below is non generalizable
N_c = 1; % slots with both coils the same
N_s = 1; % slots short pitched
Nc = 5; % turns in each coil
Lslot = Pslot*2*L*p*Nc^2*(4*N_c+2*N_s); % this is slot leakage impedance
% now to get resistance
lama = .25; % winding space factor
Aw = As*lama/(2*Nc); % this is area per wire
C = (pi/p)*(Rs+hd+hs/2)*5/6; % circumferential path at each end
le = pi*C; % average length of an end turn
lw = 2*(L+le)*Na; % this is length of wire
sig = 6e7; % assume copper wire
Ra = lw/(Aw*sig); % this is winding resistance
Nrot = 0:10:12000; % here is a speed span
omrot = (2*p*pi/60).* Nrot;
Z = j*(Lag+Lslot).* omrot + Ra; % stator impedance
Is = omrot .* Na*Phi ./ Z; % short circuit current

figure(4)
plot(Nrot, abs(Is))
title('Problem 9.2')
ylabel('Short Circuit Current (Peak A)')
xlabel('Speed, RPM')

% now look at ideal operation
Ea = om*Na*Phi; % back voltage at rated speed
Xt = om*(Lag+Lslot);
Zt = j*Xt + Ra;
V = Ea+Zt*I; % terminal voltage (current at zero angle
Pm = 1.5*Ea*I;
VA = 1.5*V*I;
Pin = real(VA);
Qin = imag(VA);
eff = Pm/Pin;
pf = Pin/abs(VA);

fprintf(' Operating Details:\n')
fprintf('Internal Voltage = %.12.4g, Terminal Voltage = %.12.4g\n', Ea, abs(V));
fprintf('Terminal Current = %.12.4g, Output Power = %.12.4g\n', I, Pm);
fprintf('Reactance = %.12.4g, Resistance = %.12.4g\n', Xt, Ra);
fprintf('Efficiency = %.12.4g, Power Factor = %.12.4g\n', eff, pf);
fprintf('Air-Gap L = %.12.4g, Slot L = %.12.4g\n', Lag, Lslot);