
14.03 Fall 2000 Problem Set 7 Solutions 

Theory: 

1.	 If used cars sell for $1,000 and non-defective cars have a value of $6,000, then all cars in the 
used market must be defective. Hence the value of a defective car is $1,000. Since 
consumers are risk neutral, the price of a new car is equal to the expected value of a new car: 
$4000 = $6000(1-d)+$1000(d) � d = 2/5. 

2.	 If the wage is less than 50, no one will apply for the job. If the wage ̨ [50,200), the 
composition of the applicant pool is (1G, 0E, 0S), and the expected utility increment due to 
TA quality is 0. If the wage ̨ [200,400), the composition of the applicant pool is ( ½ G, ½ E, 
0S), and the expected utility increment is ½ (0) + ½ (5) = 2.5. If the wage is greater than or 
equal to 400, the composition of the applicant pool is ( 1/3 G, 1/3 E, 1/3 S), and the expected 
utility increment is 1/3 (0) + 1/3 (5) + 1/3 (7) = 4. 

A.	 Since increases in the price of classes decrease student utility, the breakeven constraint will 
bind, which means the per student price MIT charges for a class will equal the wage divided 
by 100. If W0 is initial wealth and the wage is w, expected student utility is 
(W0 - w /100) Pr(G | w) + (W0 + 5 - w /100) Pr(E | w) + (W0 + 7 - w /100) Pr(S | w) 
= W0 - (w /100) + E(Q | w) 
Where E(Q|w) is the expected utility increment due to TA quality. Hence the problem 
reduces to choosing w to maximize E(Q|w) – w/100. Furthermore, the only wages that we 
need to consider are 50, 200, and 400, since any other wages increase the cost of the class 
without increasing the expected quality of the TA. 

w E(Q|w) w/100 E(Q|w) – w/100 
50 0 0.5 -0.5 
200 2.5 2 0.5 
400 4 4 0 

So MIT should offer a wage of $200 and the price should be $2. The composition of the 
applicant pool at this wage is ( ½ G, ½ E, 0S). 

B.	 The best applicant pool that MIT can get is ( 1/3 G, 1/3 E, 1/3 S), which requires a wage of 
$400 and a price of $4. 

C.	 If MIT can distinguish G TAs from the other two types, the Gs can be eliminated from the 
applicant pool. This means that when w = 200 the pool is ( 0G, 1 E, 0S) and E(Q|200) = 5, 
and when w = 400 the pool is ( 0G, ½ E, ½ S) and E(Q|400) = 6. The new values of E(Q|w) – 
w/100 are 3 (for w = 200) and 2 (for w = 400). Although MIT should continue to offer a 
wage of $200, the expected utility for each student increases by an amount equivalent to 
$2.50 (= 3 – 0.5). Thus MIT should be willing to pay $250 per course for the right to use this 
test. 



The advanced test can distinguish all three types. This means that when w = 400, the pool is 
(0G, 0E, 1S) and E(Q|400) = 7. The new value of E(Q|w) – w/100 for w = 400 is 3, which is 
the same as the maximum value attainable with the basic test. Hence the advanced test 
provides no additional value. 

D.	 If MIT requires TAs to have a degree, TAs will decide whether to go to school based on the 
following considerations: If a G does not go to school she gets $50 this semester and $50 
next semester, while if she does go to school she gets nothing this semester and next semester 
she gets w with probability 0.1 and $50 with probability 0.9. Since there is no discounting, 
G’s go to school iff 0.1w + 0.9(50) ‡ 100 � w ‡ 550. Similarly, E’s go to school iff 0.9w + 

0.1(200) ‡ 400 � w ‡ 422 2
9 , and S’s go to school iff w ‡ 800. 

So if MIT requires a degree and offers w = 422 2 
9 , the applicant pool is ( 0G, 1E, 0S), and 

E(Q|w) – w/100 = 5 - 4 29 = 7
9 . Now note that it could never be optimal for MIT to offer a 

higher wage. At w = 550 the expected utility increment is lower (since now there are some 
G’s in the applicant pool) while the price is higher. At w = 800 the expected utility 
increment minus the price is necessarily less than 7

9 , since the price is 8 and the expected 

utility increment never exceeds 7. Hence if MIT decides to require a degree, it should offer 
w = 422 2

9 . To determine whether it is optimal to require a degree we need to compare 7
9 

to the maximum value of E(Q|w) – w/100 attained in part A, which is ½. Hence MIT should 
require TAs to have a degree, it should offer a wage of $422.22, and the resulting applicant 
pool will all be Excellent TAs. 

Nicholson 10.3 

Stag Hare 
Stag 2,2 0,1 
Hare 1,0 1,1 

a.	 As you can see from the best responses (which are underlined in the table above), the pure 
strategy NE are (Stag, Stag) and (Hare, Hare). There is also a mixed strategy NE, which we 
find by using the indifference property. If one player plays Stag with probability p and Hare 
with probability (1-p), the other player’s payoffs are 2p for Stag and 1 for Hare. Hence the 
mixed strategy NE has each player playing each strategy with probability ½. 

b.	 If one player plays Stag with probability p, it is optimal for the other player to play Hare if 
p £  ½, and Stag if p ‡  ½. If p = ½, any strategy is optimal for the other player. 

c. If there are n players who play Stag with probability pi, it is optimal for player B to play Stag 
if � pi ‡ ½. If pi = p j = p"i „ j „ B , this reduces to p n-1 ‡  ½. Cooperation is less 

i „ B 

likely in the sense that the threshold value of p that is required for Stag to be optimal is 
higher. 



Nicholson 10.6 

A 
B 

Give B a 
dollar 

Don’t give 
B money 

A loses a dollar, 
B gains a dollar 

Set off bomb 

A and B die 

Don’t set 
off bomb 

No change to 
status quo 

B’s threat to set off the bomb is not subgame perfect if B prefers the status quo to dying. Since 
A then has no reason to give B any money, it is in B’s interest to convince A that B is crazy. 

Nicholson 10.7 

Child moves first and chooses r to maximize U A (YA (r) + L) .

Parent moves second and chooses L to maximize U B (YB - L) + lU A (YA + L) .

YA '(r) > 0,YB ' (r ) < 0,l > 0


The first order condition for the parent’s maximization problem is

- U B '(YB (r) - L(r )) + lU A (YA (r) + L(r)) = 0  (note that L is a function of r).


Since the child moves first, the child will take into account the effect of r on the parent’s

subsequent choice of L. The child’s maximization problem is

max r U A (YA (r ) + L(r)) , and the first order condition is (YA '(r) + L'(r))U A ' (�) = 0.

Thus the child will choose r such that YA '(r) + L' (r ) = 0. 

To figure out what L'(r) is, we need to go back to the parent’s FOC. Differentiate with respect to 
r to get - (YB '(r) - L '(r))U B ' '(�) + l(YA '(r) + L'(r))U A ' '(�) = 0.  Since the second term is zero by 
the child’s FOC, this implies that L'(r) YB '(r).=  Hence the child will choose r such that 
YA '(r) + YB '(r ) = 0 , which is exactly the FOC for the problem max r YA (r ) + YB (r ). 



Nicholson 10.8 

Chicken Not C 
Chicken 2,2 1,3 
Not C 3,1 0,0 

a.	 There are three NE in this game. The pure strategy NE are (NC,C) and (C,NC). The mixed 
strategy NE is for each player to mix with probability ½. 

b.	 The threat to not chicken out is not credible. If the other player did not chicken out, you 
would be better off playing chicken and getting payoff 1 than not chickening out and getting 
payoff 0. 

c.	 If one player could credibly commit to not chickening out, he could guarantee himself a 
payoff of 3, which is the highest payoff available. Hence such a commitment would be 
desirable. 

Nicholson 10.9 

L M R 
U 5,5 2,6 0,7 
M 6,2 3,3 0,0 
D 7,0 0,0 1,1 

a. The pure strategy NE are (M,M) and (D,R). 

b.	 If the game is played twice, any strategy profile that results in any combination of the static 
NE being played at each stage is a SPE. If there is no discounting, there is also an SPE in 
which (U,L) is played in the first stage and (M,M) is played in the second stage. The strategy 
profile that supports this SPE is as follows: play (U,L) in the first period. If (U,L) is played 
in the first period, play (M,M) in the second period, otherwise play (D,R). Since both (M,M) 
and (D,R) are NE of the last period subgame, we only need to check that neither player has a 
profitable deviation in the first period. By deviating in period 1, a player can get 7 instead of 
5, but by doing so she will get 1 instead of 3 in the last period. Hence as long as there is no 
discounting this deviation is not profitable. 

c.	 To support (U,L) in the infinitely repeated game, consider the following strategy profile: 
Begin by playing (U,L), and continue playing (U,L) as long as it is the only strategy profile 
that has been played in the past. If anything else is played, play (D,R) forever. (We could 
also use (M,M) as the punishment phase, but since the payoffs at (D,R) are lower, using 
(D,R) allows us to support cooperation for a wider range of discount factors.) 

Since the punishment phase is a NE of the stage game, to check whether this is an SPE that 
supports (U,L), we only need to check that the benefit from deviating in the cooperation 
phase does not exceed the cost of deviating. The optimal deviation from (U,L) gives a payoff 
of 7, and since the payoff to each player at (U,L) is 5, the benefit from deviating is 2. The 



cost of deviating is that starting in the next period you get 1 forever instead of 5 forever. If 
the discount factor is d, this cost is 4d/(1-d). The benefit from deviating will not exceed the 
cost if 2 £ 4d /(1 - d ) � d ‡ 1/ 3. 

Hence (U,L) is sustainable if the discount factor is at least 1/3. 

Nicholson 10.10 

First-price sealed-bid auction, with ties decided by coin flip. Player A’s valuation = $600, player 
B’s valuation = $500, and valuations are common knowledge. 

a.	 There are three categories of strategies: bidding more than your valuation, bidding your 
valuation, and bidding less than your valuation. If you bid more than your valuation, your 
payoff is negative if you win and zero if you lose. If you bid your valuation, your payoff is 
zero no matter what your opponent does. If you bid less than your valuation, your payoff is 
positive if you win and zero if you lose. Hence bidding greater than or equal to your 
valuation is weakly dominated by bidding less than your valuation. The dominance is weak 
because bidding less than your valuation gives you the same payoff as bidding greater than or 
equal to your valuation if your opponent’s bid is high enough. 

b.	 Whether or not a NE exists in this game depends on the nature of the players’ strategy sets. 
If there is a minimum bidding increment (e.g., all bids must be integer multiples of 1 cent or 
1 dollar), then a NE exists. But if there is not a minimum bidding increment, then no NE 
exists. 

To keep the strategy space of reasonable size, let’s assume that players must bid in multiples 
of $25. Then the relevant portion of the game looks like this: 

$475 $500 $525 $550 $575 $600 $625 
$475 62.5,12.5 0,0 0,-25 0,-50 0,-75 0,-100 0,-125 
$500 100,0 50,0 0,-25 0,-50 0,-75 0,-100 0,-125 
$525 75,0 75,0 37.5,-12.5 0,-50 0,-75 0,-100 0,-125 
$550 50,0 50,0 50,0 25,-25 0,-75 0,-100 0,-125 
$575 25,0 25,0 25,0 25,0 12.5,-37.5 0,-100 0,-125 
$600 0,0 0,0 0,0 0,0 0,0 0,-50 0,-125 
$625 -25,0 -25,0 -25,0 -25,0 -25,0 -25,0 -12.5,-62.5 

The NE is not unique. For this bid increment, there are 4 NE: ($500,$475), ($525,$500), 
($550,$525), and ($575,$550). A similar line of reasoning would show that if players bid in 
multiples of $1, there would be 100 NE: ($(500+n),$(500+n-1)) for n = 0 to 99. 

A few things to notice about this problem: 
1)	 In all of the NE except one, player B is playing a weakly dominated strategy. Hence this 

example shows that weakly dominated strategies, unlike strictly dominated strategies, can 
be played with positive probability in a NE. 



2)	 To see why no equilibrium exists when there is not a minimum bidding increment, 
consider what A’s best response is if B bids $500. If A bids $500, her payoff is $50. By 
bidding a small amount e>0 more than $500, she can increase her payoff to $(100-e). 
However, this is not a best response, because bidding e/2 more than $500 would strictly 
increase her payoff to $(100-e/2). Since this is true for any e>0, A’s best response does 
not exist and there is no equilibrium. If the object went to A with probability 1 in the 
event of a tie the existence problem would be solved, because then A’s best response to a 
bid of $500 would be to bid $500. 

c.	 If each player does not know the other’s valuation, then this becomes a game of incomplete 
information. The equilibrium will depend on the beliefs each player has about the other 
player’s valuation. 

Application: Tyler, Murnane, and Willett (TMW) study 

1.	 Here’s the basic experimental design you might have suggested that makes use of all of the 
elements in the question. 

Using the AFQT test, you identify, for example, 1,000 people of approximately equal ability, 
none of whom has graduated from high school. 

You track their earnings for one or two years. 

You then grant 500 of them a GED (‘treatment group’) and forbid the other 500 (‘control 
group’) from obtaining a GED (remember, you’re the czar). 

You then track their earnings for another one or two years. 

You perform a difference-in-differences analysis to determine whether the treatment group 
had greater earnings gains over these two years than did the control group. 

If the treatment group did gain more, this indicates that the GED does function as a labor 
market signal. We know this because both the treatment and control groups have 
approximately identical ability. And of course assigning a GED did not increase the human 
capital of the treatment group. So it must be the case that the greater earnings gains of the 
treatment group are due to the signaling value of the GED. 

If you find no earnings difference for treatments versus controls, however, this would 
indicate that the GED has little or no signaling value. 

2.	 The necessary conditions for a separating equilibrium are that the net benefits of GED 
acquisition are negative for low-productivity dropouts and positive for high-productivity 
dropouts. The key equations are W(GED) – C(GED|low productivity) < W(no GED) and 
W(GED) – C(GED|high productivity)>W(no GED). 



The answer to the second part of the question is yes, a signaling equilibrium could still exist 
even if the GED is free, pleasant, and requires no preparation. The important key condition 
is that the GED is more psychically costly for low ability people to pass than for high ability 
people to pass. In the limiting case where the GED measures innate ability exclusively, the 
psychic cost for low ability people would be in some sense infinite (i.e., they could never 
pass). Hence, what really matters is that on some dimension of cost, high ability people find 
it ‘cheaper’ to obtain a GED than do low ability people. 

3.	 No, the TMW study does not demonstrate that the human capital model is incorrect, because 
it studies the effect of a GED on wages holding human capital (as measured by the test score) 
constant. 

4.	  If the Department of Education grants a GED to all high school dropouts, then the GED no 
longer signals productivity. All dropouts will have a GED and will be paid according to the 
productivity of the average dropout, which is necessarily less than the productivity of high-
productivity dropouts. Hence this policy will not raise the earnings of dropouts by $1,500. 


