
Lecture 10 - Risk and Insurance

14.03 Spring 2003

1 Risk Aversion and Insurance: Introduction
• To have a passably usable model of choice, we need to be able to say
something about how risk affects choice and well-being.

• What is risk? We’ll define it is as:

— “Uncertainty about possible ‘states of the world,”’ e.g., sick or healthy,
war or peace, rain or sun, etc.

• Why do we need a theory of risk? To understand:

— Insurance: Why people buy it. How it can even exist.

— Investment behavior: Why do stocks pay higher interest rates than
bank accounts?

— How people choose among ‘bundles’ that have uncertain payoffs:
Whether to fly on an airplane, whom to marry.

• More concretely, we need to understand the following:

1. People don’t want to play fair games. Fair game E(X) =Cost of
Entry= Pwin ·Win$ + Plose · Lose$.

2. Example, most people would not enter into a $1, 000 dollar heads/tails
fair coin flip.

3. Another : I offer you a gamble. We’ll flip a coin. If it’s heads, I’ll
give you $10 million dollars. If it’s tails, you owe me $9 million.

— Will you take it? It’s worth:

1

2
· 10− 1

2
· 9 = $0.5 million.

— What would you pay me to get out of this gamble (assuming you
were already committed to taking it)?

4. People won’t pay large amounts of money to play gambles with huge
upside potential. Example “St. Petersburg Paradox.”
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— Flip a coin. I’ll pay you in dollars 2n, where n is the number of
tosses until you get a head:

X1 = $2,X2 = $4,X3 = $8, ...Xn = 2
n.

— How much would you be willing to pay to play this game?
— How much should you be willing to pay?

E(X) =
1

2
2 +

1

4
4 +

1

8
8 + ...

1

2n
2n =∞.

— What is the variance of this gamble? V (X) =∞.
— No one would pay more than a few dollars to play this game.

• The fact that a gamble with positive expected monetary value has negative
‘utility value’ suggests something pervasive and important about human
behavior: As a general rule, uncertain prospects are worth less
in utility terms than certain ones, even when expected tangible
payoffs are the same.

• If this observation is correct, we need a way to incorporate risk prefer-
ence into our theory of choice since many (even most) economic decisions
involve uncertainty about states of the world:

— Prices change

— Income fluctuates

— Bad stuff happens

• We need to be able to say how people make choices when:

— Agents value outcomes (as we have modeled all along)

— Agents also have feelings/preferences about the riskiness of those
outcomes

• John von Neumann and Oskar Morgenstern suggested a model for under-
standing and systematically modeling risk preference in the mid-1940s:
Expected Utility Theory.

• We will begin with the Axioms of expected utility and then discuss their
interpretation and applications.

• Note that the Axioms of consumer theory continue to hold for preferences
over certain (opposite of uncertain) bundles of goods.

• Expected utility theory adds to this preferences over uncertain combi-
nations of bundles where uncertainty means that these bundles will be
available with known probabilities that are less than unity.

• Hence, EU theory is a superstructure that sits atop consumer theory.
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1.1 Three Simple Statistical Notions

1. Probability distribution:

Define states of the world 1, 2...n with probability of occurrence π1, π2...πn.
A valid probability distribution satisfies:

nP
i=1

πi = 1, or
Z ∞
−∞

f(s)∂x = 1 and f(x) ≥ 0 ∀ x.

2. Expected value or “expectation.”
Say each state i has payoff xi. Then

E(x) =
nP
i=1

πixi or E(x) =
Z ∞
−∞

xf(x)∂x.

Example: Expected value of a fair dice roll is E(x) =
P6

i=1 πii =
1
6 · 21 =

7
2 .

3. Variance (dispersion)
Gambles with the same expected value may have different dispersion.
We’ll measure dispersion with variance.

V (x) =
nP
i=1

πi (xi −E(x))2 or V (x) =
Z ∞
−∞

(x−E(x))2 f(x)∂x.

In dice example, V (x) =
Pn

i=1 πi
¡
i− 7

2

¢2
= 2.92.

Dispersion and risk are closely related notions. Holding constant the
expectation of X, more dispersion means that the outcome is “riskier” — it has
both more upside and more downside potential. Consider three gambles:

1. $0.50 for sure. V (L1) = 0.

2. Heads you receive $1.00, tails you receive 0.
V (L2) = 0.5(0− .5)2 + 0.5(1− .5)2 = 0.25

3. 4 independent flips of a coin, you receive $0.25 on each head.
V (L3) = 4 · (.5(0− .125)2 + .5(.25− .125)2) = 0.062 5

4. 100 independent flips of a coin, you receive $0.01 on each head.
V (L4) = 100 · (.5(.0− .005)2 + .5(.01− .005)2) = 0.002 5

All 4 of these “lotteries” have same mean, but they have different levels of
risk.

3



2 VNM Expected Utility Theory:

2.1 States of the world

• Think of the “States of the world” ranked from x0, x1...xN according to
their desirability.

• Normalize the lowest state:

u(x0) = 0. “Hell on earth.”

• Normalize the best state:

u(xN ) = 1. “Nirvana.”

• Now, for any state xn ask individual what “lottery” over x0, xn would be
equally desirable to getting xn for sure. Define these values as πn :

u(xn) = πnu(xN ) + (1− πn)u(x0) = πn1 + (1− πn) · 0 = πn.

• Hence πn is an index of the utility of xn for sure on a [0, 1] scale.

2.1.1 Axioms of expected utility

We will first lay out these axioms. I will next show that if a person behaves
according to these axioms, he or she will act if she is maximizing expected utility,
that is E(π).

Axiom 1 Preferences over uncertain outcomes (‘states of the world’) are: 1)
complete; 2) reflexive and transitive
Completeness — Can always state Xa Â Xb,Xb Â Xa,Xa˜Xb

Reflexive: Xa Â Xb ⇔ Xb ≺ Xa

Transitive: Xa Â Xb,Xb Â Xc ⇒ Xa Â Xc.

Axiom 2 Compound lotteries can be reduced to simple lotteries.

This axiom says the ‘frame’ or order of lotteries is unimportant. So consider
a two stage lottery is follows:

• Stage 1: Flip a coin heads, tails.

• Stage 2:
If it’s heads, flip again. Heads yields $1.00, tails yields $0.75.
If it’s tails, roll a dice with payoffs $0.10, $0.20, ...$0.60 corresponding to
outcomes 1− 6.

Now consider a single state lottery, where:
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• We spin a pointer on a wheel with 8 areas, 2 areas of 900 representing $1.00,
and $0.75, and 6 areas of 300 each, representing $0.10, $0.20, ...$0.60 each.

• This single stage lottery has the same payouts at the same odds as the
2−stage lottery.

• The ‘compound lottery’ exam says the consumer is indifferent between
these two.

Counterexamples?

Axiom 3 Continuity. Let x0 < xi < xN . For each outcome xi between x0 and
xN , the consumer can name a probability πi such that he is indifferent between
xi with certainty and playing a lottery where he receives xN with probability
πi and x0 with probability 1 − πi. Call this lottery exi. We say that xi is the
“certainty equivalent” of lottery exi because the consumer is indifferent between
xi with certainty and the lottery exi.
Axiom 4 Substitutability. The lottery exi can always be substituted for its cer-
tainty equivalent xi in any other lottery since the consumer is indifferent between
them. This is closely comparable to Axiom 2.

Axiom 5 Transitivity. Preferences over lotteries are transitive. (Previously we
said this about preferences over goods (consumer theory) and preferences over
states of the world (axiom 1)).

Axiom 6 Monotonicity. If two lotteries with the same alternatives differ only
in probabilities, then the lottery that gives the higher probability to obtain the
most preferred alternative is preferred. So

πxN + (1− π)x0 Â π0xN + (1− π0)x0 iff π > π0

• If preferences satisfy these 6 axioms, we can assign numbers u(xi) asso-
ciated with outcomes xi such that if we compare two lotteries L and L0

which offer probabilities (π1...πn) and (π01...π
0
n) of obtaining those out-

comes, then:

L Â L0 iff
nP
i=1

πiu(xi) >
nP
i=1

π0iu(xi).

• Rational individuals will choose among risky alternatives as if they are
maximizing the expected value of utility (rather than the expected value
of the lottery). I will offer a simple proof of this result below.

• Note that the restrictions that this set of axioms places on preferences
over lotteries. For preferences over consumption, we had said that utility
was only defined up to a monotonic transformation.

• For preferences over lotteries, they are now defined up to an affine trans-
formation, which is a much stronger (less palatable) assumption.

• (Affine transformation: a positive, linear transformation as in u2() = a+
bu1(), where b > 0.)

5



2.2 Proof of Expected Utility property

Preamble

• As above, assume there exists a best bundle xN and a worst bundle x0
and normalize u(x0) = 0, u(xN ) = 1.

• Define a bundle xi such that:

xi˜

½
Pr(xN ) = πi

Pr(x0) = 1− πi

¾
.

• We know that this πi exists by the continuity axiom.

• As per our definition of the utility index above:

u(xi) = πiu(xN ) + (1− πi)u(x0) = πi1 + (1− πi) · 0 = πi.

So, we can freely substitute u(xi) and πi.

Proof of Expected Utility property
Consider a lottery L of the form:

L =

½
Pr(x1) = z

Pr(x2) = 1− z

¾
.

What we want to show is that

U(L) = z · u(x1) + (1− z)u(x2).

In words, for someone with VNM Expected Utility preferences, the utility index
of this lottery is simply the expected utility of the lottery, that is the utility of
each bundle x1, x2 weighted by its prior probability.

1. By the substitutability axiom, the consumer will be indifferent between L
and the following compound lottery:

L˜

⎧⎪⎪⎨⎪⎪⎩
with probability z :

½
Pr(xN ) = π1
Pr(x0) = 1− π1

¾
with probability 1− z :

½
Pr(xN ) = π2
Pr(x0) = 1− π2

¾
⎫⎪⎪⎬⎪⎪⎭ , (1)

where π1, π2 are the utility indices for x1, x2. Note that the simple lot-
tery has been expanded to a 2-stage lottery, one of which occurs with
probability z and the other with probability 1− z.

2. By the “reduction of compound lotteries” axiom, we know that the con-
sumer is indifferent between the lottery above (1) and the following lottery:

L˜

⎧⎨⎩ Pr(xN ) = z · π1 + (1− z) · π2
Pr(x0) = z · (1− π1) + (1− z)(1− π2)

= 1− z · π1 − (1− z)π2

⎫⎬⎭ .
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3. By the definition of u(·), we can substitute π0s for u0s :

L˜

½
Pr(xN ) = z · u(x1) + (1− z) · u(x2)
Pr(x0) = 1− z · u(x1)− (1− z) · u(x2)

¾
. (2)

4. Since u(xN ) = 1, u(x0) = 0, and recalling from above that:

u(xn) = πnu(xN ) + (1− πn)u(x0) = πn1 + (1− πn) · 0

we can reduce expression 2 above to:

u(L) = [z · u(x1) + (1− z) · u(x2)]u(xN ) + [1− z · u(x1)− (1− z) · u(x2)]u(x0)
= [z · u(x1) + (1− z) · u(x2)] · 1 + [1− z · u(x1)− (1− z) · u(x2)] · 0
= z · u(x1) + (1− z) · u(x2).

In other words, the utility of facing lottery L is equal to a probability
weighted combination of the utilities from receiving the two bundles cor-
responding to the outcome of the lottery — the ‘expected utility.’

• So, the utility of facing a given lottery is the utility of each outcome
weighted by its probability:

u(L) =
nP
i=1

πiu(xi).

An expected utility maximizer would be indifferent between taking u(L)
for sure and the lottery on the right-hand side of this expression.
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2.2.1 Summary of Expected Utility property

• We’ve established that a person who has VNM EU preferences over lotter-
ies will act as if she is maximizing expected utility... a weighted average
of utilities of each state, weighted by their probabilities.

• If this model is correct (and there are many reasons to think it’s a useful
description, even if not entirely correct), then we don’t need to know
exactly how people feel about risk per se to make strong predictions about
how they will optimize over risky choices.

• To use this model, two ingredients needed:

1. First, a utility function that transforms bundles into an ordinal utility
ranking (now defined to an affine transformation).

2. Second, the VNM assumptions which make strong predictions about
the maximizing choices consumers will take when facing risky choices
(i.e., probabilistic outcomes) over bundles, which are of course ranked
by this utility function.

• Intuition check. Does this model mean that when facing a coin flip for
$1, 00 versus $0.00 :

u(L) = 0.5(1.00) + 0.5(0) = 0.50?

No. It means:

u(L) = 0.5u(1.00) + 0.5u(0) ≷ u(0.50),

where the sign of the inequality depends on the convexity or concavity of
the utility function, as explained below.
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3 Expected Utility Theory and Risk Aversion
• We started off to explain risk aversion and so far what we have done is lay
out an axiomatic theory of expected utility.

• Where does risk aversion come in?

• Consider the following three utility functions:

— u1(w) = w

10#1aU(w)

w

U(w) = w

1 2

U(1)

U(2)

— u2(w) = w2
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10#1b
U(w)

w

U(1)

U(2)

1 2

U(w) = w2

— u3(2) = w
1
2

U(w)

w

U(w) = w1/2

1 2

U(1)

U(2)

10#1c

10



• How do they differ with respect to risk preference?

• First notice that u1(1) = u2(1) = u3(1) = 1.

• Now consider the Certainty Equivalent for a lottery L that is a 50/50
gamble over $2 versus $0. The expected monetary value of this lottery is
$1.

• What is the expected utility value?

— u1(L) = .5 · u1(0) + .5 · u1(2) = 0 + .5 · 2 = 1
— u2(L) = .5 · u1(0) + .5 · u1(2) = 0 + .5 · 22 = 2
— u3(L) = .5 · u1(0) + .5 · u1(2) = 0 + .5 · 2.5 = .71

• What is the “Certainty Equivalent” of lottery L for these three utility
functions, i.e., the amount of money that the consumer be willing to accept
with certainty in exchange for facing the lottery?

1. CE1(L) = U−11 (1) = $1.00

2. CE2(L) = U−12 (2) = 2.5 = $1.41

3. CE3(L) = U−13 (0.71) = 0.712 = $0.50

• Hence, depending on the utility function, a person would pay $1, $1.41, or
$0.51 dollars to participate in this lottery.

• Notice that the expected value E(V alue) of this lottery is $1.00.

• But these three utility functions value it differently:

1. The person with U1 is risk neutral : CE = $1.00 = E(V alue)⇒ Risk
neutral

2. The person with U2 is risk loving : CE = $1.41 > E(V alue) ⇒ Risk
loving

3. The person with U3 is risk averse: CE = $0.50 < E(V alue) ⇒ Risk
averse

• What gives rise to these inequalities is the shape of the utility function.
Risk preference comes from the concavity/convexity of the utility function:

• Expected utility of wealth: E(U(w)) =
NP
i=1

πiU(wi)

• Utility of expected wealth: U(E(w)) = U

µ
NP
i=1

πiwi

¶
• Jensen’s inequality:

— E(U(w)) = U(E(w))⇒ Risk neutral
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— E(U(w)) > U(E(w))⇒ Risk loving

— E(U(w)) < U(E(w))⇒ Risk averse

• So, the core insight of expected utility theory is this:
For a risk averse agent, the expected utility of wealth is less than
the utility of expected wealth (given non-zero risk).

10-11#2

w-L w w+L

U(w-L)

U(E(w))

U(w+L)

E(U(w))

U(E(w)) > E(U(w))

• The reason this is so:
Wealth has diminishing marginal utility. Hence, losses cost more utility
than equivalent monetary gains provide.

• A risk averse person is therefore better off with a given amount of wealth
with certainty than the same amount of wealth in expectation but with
variance around this quantity.
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3.1 Optional: Measuring risk aversion

• Define
r(w) = −−u

00(w)

u0(w)
> 0.

• r(w) is the coefficient of absolute risk aversion (ARA). The greater the
curvature of U(), the more risk aversion is the agent.

• A person with constant ARA, i.e., r(w) = k, cares about absolute losses,
e.g., they will always pay $100 to avoid a $1, 000 fair bet, regardless of
their level of wealth.

• Q: Should wealthy be more risk averse or less risk averse over a given
($1, 000) gamble? Most people would say less.

• If so,
∂r(w)

∂w
< 0.

• This gives rise to the concept of relative risk aversion:

rr(w) = −w · −u
00(w)

u0(w)
.

• If rr(w) = k, a person will pay a constant share of wealth to avoid a
gamble over a given proportion of their income. Hence, as wealth rises,
they will pay less and less to avoid a gamble of a given size.

• You can see this because if rr(w) = k, then ∂r(w)̇
∂w < 0, which implies that

the willingness to pay for a given absolute gamble is declining in wealth.
In other words, absolute risk aversion is declining in wealth if relative risk
aversion is constant.
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3.2 Application: Risk aversion and insurance

• Consider insurance that is actuarially fair, meaning that the premium
is equal to expected claims: Premium = p · A where p is the expected
probability of a claim, and A is the amount of the claim in event of an
accident.

• How much insurance will a risk averse person buy?

• Consider the initial endowment at wealth w0, where L is the amount of
the Loss from an accident:

Pr(1− p) : U = U(wo),

Pr(p) : U = U(wo − L)

• If insured, the endowment is (incorporating the premium pA, the claim
paid A if a claim is made,and the loss L):

Pr(1− p) : U = U(wo − pA),

Pr(p) : U = U(wo − pA+A− L)

• Expected utility if uninsured is:

E(U |Uninsured) = (1− p)U(w0) + pU(wo − L).

• Hence, expected utility if insured is:

E(U |Insured) = (1− p)U(w0 − pA) + pU(wo − L+A− pA). (3)

• To solve for the optimal policy that the agent should purchase, differentiate
3 with respect to A:

∂U

∂A
= −p(1− p)U 0(w0 − pA) + p(1− p)U 0(wo − L+A− pA) = 0,

⇒ U 0(w0 − pA) = U 0(wo − L+A− pA),

⇒ A = L.

• Hence, a risk averse person will optimally buy full insurance if the insur-
ance is actuarially fair.

• You could also use this model to solve for how much a consumer would
be willing to pay for a given insurance policy. Since insurance increases
the consumer’s welfare, s/he would be willing to pay some positive price
in excess of the actuarially fair premium to defray risk.

• What is the intuition for this result?
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— The agent is trying to insure against changes in the marginal
utility of wealth holding constant the mean wealth.

— Why? Because the utility of average income is greater than
the average utility of income for a risk averse agent.

— The agent therefore wants to distribute wealth evenly across states
of the world, rather than concentrate wealth in one state.

• This is exactly analogous to convex indifference curves over consumption
bundles.

— Diminishing marginal rate of substitution across goods (which comes
from diminishing marginal utility of consumption) causes consumer’s
to want to diversify across goods rather than specialize in single
goods.

— Similarly, diminishing marginal utility of wealth causes consumers
to wish to diversify wealth across possible states of the world rather
than concentrate it in one state.

• Q: How would answer to the insurance problem change if the consumer
were risk loving?

• A: They would want to be at a corner solution where all risk is transferred
to the least probable state of the world, again holding constant expected
wealth.

• The more risk the merrier. Would buy “uninsurance.”

• OPTIONAL:

— For example, imagine the agent faced probability p of some event
occurring that induces loss L.

— Imagine the policy pays A = w0
p in the event of a loss and costs pA.

W (No Loss) = w0 − p

µ
w0
p

¶
= 0,

W (Loss) = w0 − L− p

µ
w0
p

¶
+

w0
p
=

w0
p
− L.

E(U) = (1− p)U(0) + pU

µ
w0
p
− L

¶
.

— For a risk loving agent, putting all of their eggs into the least likely
basket maximizes expected utility.
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3.3 Operation of insurance: State contingent commodities

• To see how risk preference generates demand for insurance, useful to think
of insurance as purchase of ‘state contingent commodity,’ a good that you
buy but only receive if a specific state of the world arises.

• Previously, we’ve drawn indifference maps across goods X,Y . Now we
will draw indifference maps across states of the world good, bad.

• Consumer can use their endowment (equivalent to budget set) to shift
wealth across states of the world via insurance, just like budget set can be
used to shift consumption across goods X,Y .

• Example: Two states of world, good and bad.

wg = 120

wb = 40

Pr(good) = P = 0.75

Pr(bad) = (1− P ) = 0.25

E(w) = 0.75(120) + .25(40) = 100

E(u(w)) < u(E(w)) if agent is risk averse.

• See FIGURE.
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10-11#3

45 degree line

E

120

40

133.3 Wgood

Wbad

slope = - pg/pb

Set of actuarially fair trade

• Think insurance as a state contingent claim: you are buying a claim on
$1.00 that you can only make if the relevant state arises.

• This insurance is purchased before the state of the world is known.

• Let’s say that this agent can buy actuarially fair insurance. What will it
sell for?

• If you want $1.00 in Good state, this will sell of $0.75 prior to the state
being revealed.

• If you want $1.00 in Bad state, this will sell for $0.25 prior to the state
being revealed.

• So the price ratio is
Xg

Xb
=

P

(1− P )
= 3.

• Hence, the set of fair trades among these states can be viewed as a ‘budget
set’ and the slope of which is − Pg

(1−Pg) .

• Now we need indifference curves.
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• Recall that the utility of this lottery (the endowment) is:

u(L) = Pu(wg) + (1− P )u(wb).

• Along an indifference curve

dU = 0 = Pu0(wg)∂wg + (1− P )u0(wb)∂wb,

∂wb

∂wg
= − Pu0(wg)

(1− P )u0(wb)
< 0.

• Provided that u() concave, these indifference curves are bowed towards
the origin in probability space. Can readily be proven that indifference
curves are convex to origin by taking second derivatives. But intuition is
straightforward.

— Flat indifference curves would indicate risk neutrality — because for
risk neutral agents, expected utility is linear in expected wealth.

— Convex indifference curves mean that you must be compensated to
bear risk.

— i.e., if I gave you $133.33 in good state and 0 in bad state, you are
strictly worse off than getting $100 in each state, even though your
expected wealth is

E(w) = 0.75 · 133.33 + 0.25 · 0 = 100.

— So, I would need to give you more than $133.33 in the good state to
compensate for this risk.

— Bearing risk is psychically costly — must be compensated.

• Therefore there are potential utility improvements from reducing risk.

• In the figure, u0 → u1 is the gain from shedding risk.

• Notice from the Figure that along the 450 line, wg = wb.

• But if wg = wb, this implies that

dwb

dwg
= − Pu0(wg)

(1− P )u0(wb)
=

P

(1− P )
.

• Hence, the indifference curve will be tangent to the budget set at exactly
the point where wealth is equated across states.

• This is a very strong restriction that is imposed by the expected utility
property:
The slope of the indifference curves in expected utility space
must be tangent to the odds ratio.
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4 The Market for Insurance
Now consider how the market for insurance operates. If everyone is risk averse
(and it’s safe to say they are), how can insurance exist at all? Who would sell
it? That’s what we discuss next. There are actually three distinct mechanisms
by which insurance can operate: risk pooling, risk spreading and risk transfer.

4.1 Risk pooling

Risk pooling is the main mechanism underlying most private insurance mar-
kets. It’s operation depends on the Law of Large Numbers. Relying on this
mechanism, it defrays risk, which is to say that it makes it disappear.

Definition 7 Law of large numbers: In repeated, independent trials with the
same probability p of success in each trial, the chance that the percentage of
successes differs from the probability p by more than a fixed positive amount
e > 0 converges to zero as number of trials n goes to infinity for every positive
e.

• For example, for any number of tosses n of a fair coin, the expected frac-
tion of heads H is E(H) = 0.5n

n = 0.5. But the variance around this

expectation (equal to p(1−p)
n ) is declining in the number of tosses:

V (1) = 0.25

V (2) = 0.125

V (10) = 0.025

V (1, 000) = 0.00025

• We cannot predict the share of heads in one coin toss with any preci-
sion, but we can predict the share of heads in 10, 000 coin tosses with
considerable confidence. It will be vanishingly close to 0.5.

• Therefore, by pooling many independent risks, insurance companies can
treat uncertain outcomes as almost known.

• So, “risk pooling” is a mechanism for providing insurance. It defrays the
risk across independent events by exploiting the law of large numbers —
makes risk effectively disappear.

• Example: Each year, there is a 1/250 chance that my house will burn
down. But if it does, I lose the entire $250, 000 house. The expected cost
of a fire in my house each year is therefore about $1, 000.

• Given my risk aversion, it is costly in expected utility terms for me to
bear this risk (i.e., much more costly than simply reducing my wealth by
$1, 000).

19



• But if 100, 000 owners of $250, 000 homes all kick $1, 000 into the pool,
this pool will collect $100 million.

• In expectation, 400 of us will have our houses burn down
¡
100,000
250 = 400

¢
.

• The pool will therefore pay out approximately 250, 000·400 = $100million
and approximately break even.

• Everyone who participated in this pool was better off to be relieved of the
risk.

• Obviously, there is still some variance around this 400, but the law of large
numbers says this variance gets vanishingly small if the pool is large and
the risks are independent.

• In particular:

V (FractionLost) =
PLoss(1− PLoss)

100, 000

0.004(1− 0.004)
100000

= 3. 984× 10−8

SD(FractionLost) =
p
3. 984× 10−8 = 0.0002

• Using the fact that the binomial distribution is approximately normally
distributed when n is large, this implies that:

Pr[FractionLost ∈ 0.004± 1.96 · 0.0002] = 0.95

• So, there is a 95% chance that there will be somewhere between 361 and
439 losses, yielding a cost per policy holder in 95% of cases of $924.50 to
$1, 075.50.

• Most of the risk is defrayed is this pool of 100, 000 policies.

• And as n→∞, this risk is entirely vanishes.

• So, risk pooling generates a pure Pareto improvement (assuming we com-
mit before we know whose house will burn down).

4.2 Risk spreading

• Question: when does this ‘pooling’ mechanism above not work? When
risks are not independent:

— Earthquake

— Flood

— Epidemic

• When a catastrophic even is likely to affect many people simultaneously,
it’s (to some extent) non-diversifiable.
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• This is why many catastrophes such as floods, nuclear war, etc., are specif-
ically not covered by insurance policies.

• But does this mean there is no way to insure?

• Actually, we can still ‘spread’ risk providing that there are some people
likely to be unaffected.

• The basic idea here is that because of the concavity of the (risk averse)
utility function, taking a little bit of money away from everyone incurs
lower social costs than taking a lot of money from a few people.

• Many risks cannot be covered by insurance companies, but the government
can intercede by transferring money among parties. Many examples:

— Victims compensation fund for World Trade Center.

— Medicaid and other types of catastrophic health insurance.

— All kinds of disaster relief.

• Many of these insurance ‘policies’ are not even written until the disaster
occurs, so there was no market. But the government can still spread the
risk to increase social welfare.

• Question: is this a Pareto improvement? No, because we must take from
some to give to others.

4.3 Risk transfer

• Third idea: if utility cost of risk is declining in wealth (constant absolute
risk aversion for example implies declining relative risk aversion), this
means that less wealthy people could pay more wealthy people to bear this
risk and both parties would be better off.

• Example: Lloyds of London used to perform this role:

— Took on large, idiosyncratic risks: satellite launches, oil tanker trans-
port, the Titanic.

— These risks are not diversifiable in any meaningful sense.

— But companies and individuals would be willing to pay a great deal
to defray them.

— Lloyds pooled the wealth of British nobility and gentry (‘names’)
to create a super-rich agent that in aggregate was much more risk
tolerant than even the largest company.

— For over a century, this idea generated large, steady inflows of cash
for the ‘names’ that underwrote the Lloyds’ policies.

— Then they took on asbestos liability...
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4.4 Insurance markets: Conclusion

• Insurance markets are potentially an incredibly beneficial financial/economic
institution that can make people better off at low or even zero (in the case
of the Law of Large Numbers) aggregate cost.

• We’ll discuss in detail later this semester why insurance markets do not as
perfectly in practice as they might in theory (though still work in general
and create enormous social valuable).

22


