
Overview of Matlab Curve Fitting Toolbox 

Junior Lab Technical Staff 
MIT Department of Physics


Advanced Experimental Physics I & II


This quick-start guide contains instructions on how to use Matlab on Athena to fit data sets 
you have obtained in Junior Lab experiments. No prior knowledge of Matlab is necessary and only 
minimal familiarity with Athena is assumed. 

1. WHY MATLAB? 

Curve fitting is one of the most common analytical 
tasks you will perform during Junior Lab. There exist 
many commercially available software packages for data 
manipulation, analysis and presentation. Some com­
mon programs you may have used before include Matlab, 
Mathematica, Origin, LabVIEW and Excel. 

These products vary widely in their ease of use, their 
power, and their level of technical support and documen­
tation. In order to ensure some level of uniformity and 
common understanding of the underlying techniques and 
methods implemented in a specific package, we have de­
cided to standardize on the use of Matlab. This standard­
ization has the additional benefit that Matlab is available 
on Athena and therefore ubiquitous at MIT. You will 
find that it is also a very common tool used through-
out Academia and Industry so it is a package well worth 
learning. 

Athena has recently added a Curve Fitting Toolbox 
(cftool) to its Matlab libraries. This toolbox offers ex­
tensive fitting capability and is quite adequate for Ju­
nior Lab purposes. (For more information and com­
plete documentation on cftool, you can visit the Math-
works website: http://www.mathworks.com/access/ 
helpdesk/help/toolbox/curvefit/curvefit.shtml) 

This short guide is designed to get you started using 
Matlab and the Curve Fitting Toolbox and to suggest 
other places for further information. 

Syntax and practical issues notwithstanding, remem­
ber that the important thing is not which software pack-
age you use as is to develop a strong understanding of the 
underlying mathematics, detailed in many places, most 
notably the required Junior Lab text, see [1]. 

2. USING MATLAB SCRIPTS 

One very powerful and very easy way to using Matlab 
is to use scripts. Scripts are simply text files that con­
tain a series of Matlab commands. The entire process of 
fitting will require at least a handful of commands so it 
is useful to have them all in a single script. Once you 
have this script you can return to it later, repeat your 
fit, make modifications, etc. without having to retype all 
of the commands. 

If you plan to use Matlab scripts, it’s a good idea to 

create a ‘matlab’ directory in your home directory. You 
can do this by typing: 

% cd ~; mkdir matlab 

You should save any Matlab scripts that you write in this 
directory. You can use emacs (or any other text editor) 
to create and edit Matlab scripts. For example, to create 
a new script called myscript.m type: 

% emacs myscript.m & 

Notice the “.m” extension on the script. All Matlab 
scripts must end in “.m” in order to execute correctly. 

3. STARTING MATLAB ON ATHENA 

Using Matlab requires the following steps: 

1.	 From the Athena prompt, attach the Matlab locker 
(you can also add this to you .cshrc.mine file to have 
it automatically attached at login): 

% add matlab 

2. Open Matlab into a new window: 

% matlab & 

Once it has finished loading, it will present you with the 
Matlab prompt: >>. From this prompt you can execute 
an of the Matlab commands or run a Matlab script. To 
run a script, first make sure it ends in .m and resides in 
your matlab directory and then simply type the name at 
the prompt (without the .m): 

>> myscript 

4.	 USING THE JUNIOR LAB FITTING 
TEMPLATE SCRIPT 

To accommodate quick and easy fitting for Matlab be-
ginners, we have created a script that you can use as a 
template for fitting. This script is available on the Ju­
nior Lab homepage or you can copy it directly into you’re 
matlab directory by typing 

% cp /mit/8.13/matlab/fittemplate.m ~/matlab 



2 

The basic procedure for using this fitting script is out-
lined as follows: 

1. Open the script in Emacs. 

2. Modify the script such that it: 

(a)	 Loads data from your file into the vectors x 
and y 

(b) Assigns the appropriate errors 

(c)	 Contains the functional form that you want to 
fit 

(d)	 Uses the options needed for your fit (start­
ing point, upper and lower bounds, lin­
ear/nonlinear, etc.) 

(e)	 Plots figures with labels appropriate for your 
data 

3.	Save the file with a new name, keeping the .m ex-
tension 

4. Open Matlab and run the script 

5.	 Matlab will fit your data, output the information 
relevant to the fit, and plot (1) the fitted curve on 
top of the original data and (2) the residuals. 

This process will be outlined in detail below in a fit to a 
sample data set. 

4.1. Non-Linear Least Squares Example 

In developing this guide, we decided to use the 
Statistics Reference Dataset “Gauss3” available from 
the National Institute of Standards in Technology at 
http://www.itl.nist.gov/div898/strd/. This is an excel-
lent source of information regarding the testing of data 
analysis algorithms. 

The Gauss3 dataset was installed on Athena as part 
of the MATLAB Curve Fitting Package and lies in the 
default path. It consists of two poorly resolved Gaussian 
peaks on a decaying exponential background and must 
be fit using using a general (nonlinear) custom model. 
It furthermore has normally distributed zero-mean noise 
with a variance of 6.25. 

Here we step through the process of modifying the 
template script to fit this data. If you have not already 
done so, create a matlab directory and copy the template 
script into this directory (see above). 

1. Open the script in Emacs 

% emacs ~/matlab/fittemplate.m & 

2. Modify the script such that it: 

(a) Loads data from your file into the vectors x 
and y. 

Currently the script is set up to load a dummy file 
called ‘mydata.txt’. Change the load command such 
that it will load the gauss3 data set (no ‘.txt’ in this 
case): 

load gauss3; 

Then change the lines that assign values to the x and 
y vectors 

x=xpeak; 
y=ypeak; 

(This syntax has a different form than that in the tem­

plate because the gauss3 data set contains predefined 

vectors called xpeak and ypeak which we assign to the 

x and y vectors respectively.) 

(b) Assigns the appropriate errors 
Cftool requires that you specify the weights, wi, 

for doing a fit. The weights are simply given by 

wi = 1/σi 
2 . (1) 

In the case of gauss3, we have a constant variance of 
6.25 so we can assign the weights with the commands: 

sig=ones(size(x))*sqrt(6.25); 
wgts=1./sig.^2; 

which creates a weights vector of the same size as the 
vector x with a constant value of one over 6.25. 

Note: Since there are several different ways you 

could assign values to the error vector sig, the script 

includes several different assignment statements that 

cover a few cases. Once you have chosen one and mod­

ified it for the fit you are doing, you will need to com­

ment out the other lines that assign values to sigma. 

To comment something out, simply put a ‘%’ in front 

of it. Latex regards any thing following a ‘%’ as a com­

ment and does not interpret it. You’ll notice that the 

template is heavily commented to explain what the 

commands are doing. 

(c) Contains the functional form that you want to 
fit 

The script currently contains several functional 
forms which you might find useful (Linear, Gaussian, 
Exponential, and Lorentzian). Since we are trying to 
fit the sum of two Gaussian s and a decaying exponen­
tial we’ll need to create a custom equation for the fit. 
We can set up the fit model with the following syntax: 

model =	 fittype(’a*exp(-b*x)+a1*exp(-((x­
b1)/c1)^2)+a2*exp(-((x-b2)/c2)^2)’); 

Then be sure to comment out the other fitting mod­

els so that only one is read by Latex. In general, if 

you need to fit a function that does not appear in the 

script, comment out all the functions that do appear 

and create a new one with the function that you need. 

Be sure to use x as the independent variable. 

(d) Uses the options needed for your fit (start­
ing point, upper and lower bounds, lin­
ear/nonlinear, etc.) 

First you will need to decide if the fit you are 
doing is linear or nonlinear. (Keep in mind that 
just because you are fitting a nonlinear equation 
doesn’t mean that you are doing a nonlinear fit. 
The fit is only nonlinear if the coefficients that you 
are fitting for appear nonlinearly in the equation). 
If your fit is nonlinear, comment out the line that 
sets ‘Value’ to ‘LinearLeastSquares’. If your fit 



3 

is linear, comment out the line that sets ‘Value’ to The results of the fit are stored in ‘fresult’, 
‘NonlinearLeastSquares’. ‘gof’, and ‘output’: 

If you are performing a nonlinear fit, your fit is 
much more likely to be successful if you specify a rea- • fresult contains the coefficients for the fit 
sonable starting point and reasonable bounds. You with the confidence bounds. 
should be able to determine such parameters by look­
ing at a graph of your data. • gof contains quantities describing the good-

The variable ‘opts.StartPoint’ will contain a ness of the fit. 
vector with the starting values for your parameters. • output contains other information such as the 
They should be assigned in alphabetical order. For residuals and the Jacobian 
the gauss3 data set, we have the following parameters: 

opts.StartPoint=[100 100 40 0 100 150 20 20]; To access any of the quantities stored within 
these three variables, use notation of the form 

The variables opts.Lower and opts.Upper will con- ‘variable.quantity’. For example, you can get 
tain vectors with the lower and upper bounds of the the Jacobian which is stored in output by typing 
parameters respectively. These also need to be as-

signed in alphabetical order. If you decide to use these >> output.Jacobian 
variables, please be sure to uncomment them by re-

moving the % that is currently in front of them. If there are other quantities related to the fit 

(e) Plots figures with labels appropriate for your that you need to access, you can do so by simply 

data typing in the name of the variable at the Matlab 

Running the script will automatically generate 
command line. For a list of the variables currently 

plots for you. You’ll need to make sure these graphs in Matlab’s memory, use the command ‘whos’. 
display the data you want with the correct labels. 

Currently the script will generate one figure that Example plot of Junior Lab data and fit results
is split into two sections. The top section will contain 140 

the fitted curve plotted on top of your data points 
with errorbars. The bottom section will contain the 

120
residuals of your fit. 

The commands ‘title’, ‘xlabel’, and ‘ylabel’ 
100 

label the title, x axis and y-axis of the graph respec­

tively. Right now the script just gives them generic 
80 

titles. Make sure to modify these lines to give your 

graph meaningful labels with units. 60 

3.	Save the file with a new name, keeping the 
40 

.m extension.

Be sure to save it with a different filename so that


20 

the template script will be left intact for your next 
fitting adventure. 0 

χν−1
 = 199/241 = 0.83 

Probability ≥ 95% 

Model: y(x)=ae−bx + a
1
 e−((x−b

1
)
2
/c

1 

2
)+ a

2
 e−((x−b

2
)
2
/c

2 

T
1
= 111.6 ± 0.4 s 

T
2
 = 147.8 ± 0.4 s 

0 50 100 150 200 250 

4. Open Matlab and run the script. Time (s) 

If the script is saved in your matlab directory, you

should be able to run it simply by typing in the FIG. 1: This is an example of a basic figure for Junior


name at the Matlab prompt (without the the .m). Lab notebooks, presentations and written summaries. The 

You may need to change directories if the file is dataset consists of two poorly resolved gaussian peaks on an 
exponential background. The noise is gaussian distributed 

stored elsewhere. Matlab has the same directory with zero-mean and a variance of 6.25. You should 
navigation commands as Athena such as ‘ls’, check with your individual section instructor for 
‘cd’, ‘pwd’, etc. explicit instructions on how to prepare figures for 

your section. The best-fit parameters (at the 68.2% or 
5. Matlab will fit your data, output the infor- 1-σ confidence level) are: a=98.94±0.53, a1=100.7±0.8, 

mation relevant to the fit, and plot (1) the a2=73.71±1.21, b=0.01095±0.00012, b1=111.6±0.4, 
fitted curve on top of the original data and b2=147.8±0.4, c1=23.3±0.37, c2=19.67±0.38. 
(2) the residuals. 

The script is currently setup to output some use­
ful quantities that characterize your fit. These vari­
ables will be displayed in the Matlab window. They 5. UTILIZING MATLAB GRAPHS 

script causes these particular values to be output

because they are declared with no semi-colon. In The fitting template script is already configured to gen­

general, a semi-colon at the end of a Matlab com- erate graphs of your data, the fitted curve and the resid­

mand suppresses the output of the command. uals. However, as previously mentioned you will need to


C
ou

nt
s 



4 

customize the titles and axis labels so they are relavent 
and meaningful to your graph. In addition, you may also 
wish to annotate your graph with additional information. 
You can do this graphically with the tools provided in the 
graph window or by using the ‘text’ command within 
the script. To use the ‘text’ command you simply spec­
ify x and y coordinates and the string you wish to appear. 
The coordinates should be in the same units of the graph 
to which they refer. For example: 

text(18,5,’y(x) = ae^{-bx}+a_1e^{-((x-b_1)/ 
c_1)^2}+a_2e^{-((x-b_2)/c_2)^2}) 

would provide an appropriate label for the gauss3 graph 
in the lower left-hand corner. Notice also that Matlab 
can interpret latex formating to display Greek characters, 
superscripts, and subscripts. 

When you have your graphs just the way you want 
them (a completed graph might look like Figure 1) , you 
can output them for use in your lab notebooks, writ-
ten summaries, and oral presentations. If you simply 
want printouts of your graphs for your notebooks, select 
‘Print...’ from the ‘File’ menu and make sure the 
correct printer is specified. 

If you wish to output your graph as a postscript file 
for use in a written summary or oral presentation, select 
‘Export...’ from the ‘File’ menu and enter the file 
name you wish to use. You have a choice between many 
different file types for the export, but EPS (or EPS color 
if appropriate) will be the most convenient choice if you 
plan to use the graph in a latex document. 

6.	 GETTING STARTED WITH MATLAB AT 
MIT 

Throughout the year, and especially at the beginning 
of the academic year, Athena Minicourses on Matlab are 
offered, see 
web.mit.edu/afs/athena.mit.edu/astaff/ 

project/minidev/www/sched-year.html. 
If you can’t make one of these (or in addition), a very 

nice introduction to using Matlab on Athena is avail-
able at web.mit.edu/olh/Matlab/Matlab.html and has 
links to more extensive resources at MIT and elsewhere. 

Finally, talk to friends and classmates; many of them 
have a great deal of Matlab experience. 

[1]	 Bevington, P.R., and D.K. Robinson, Data Reduc­

tion and Error Analysis for the Physical Sciences, 3rd 
Ed.,WCB/McGraw-Hill, Boston, 2003 

[2]	 Levenberg, K., “A Method for the Solution of Certain 
Problems in Least Squares”, Quart. Appl. Math, Vol. 2, 
pp. 164-168, 1944 

[3]	 Marquardt, D., “An algorithm for Least Squares Esti­
mation of Nonlinear Parameters”, SIAM J. Appl. Math, 
Vol. 11, pp. 431-441, 1963 

[4]	 Branch, M.A., T.F. Coleman, and Y. Li, “A Subspace, 
Interior, and Conjugate Gradient Method for Large-Scale 
Bound-Constrained Minimization Problems”, SIAM 
Journal on Scientific Computing, Vol. 21, Number 1, pp. 
1-23, 1999 

APPENDIX: TECHNICAL NOTES 

1.	 Cftool has several fitting algorithms at its dis­
posal. The most powerful fitting technique is the 
“Trust-Region” discussed in [4] which is the de-
fault non-linear method. It permits the use of 
lower and upper bounds around the initial guesses 
for the fitting parameters. The second method 
“Levenberg-Marquardt” is the one discussed in [1] 
and originally presented in [2, 3]. This method, 
is only slightly less powerful in that it cannot ac­
cept bounds on the fit parameters (though it does 
require good initial guesses). Try typing: 

>> help fitoptions 

to learn more about other fit options that you can 
select. 

2. Strictly speaking, the confidence bounds for fitted√ 
coefficients are given by: C = b ± t S where b are 
the coefficients of the fit, t is the inverse of the Stu­
dent’s t cumulative distribution function (see Bev­
ington, Appendix C.6 for more details on the origin 
and significance of the Student t distribution or try 
‘help tinv’ from inside Matlab), and S is a vec­
tor of the diagonal elements of the covariance ma­
trix of the coefficient estimates, (XT X)−1s2 . Here 
s2 = χ2 

ν−1
. Refer to “Linear Least Squares” from 

Matlab’s online documentation or Reference [1] for 
more information about X and X T . 

3.	 The Matlab toolbox returns a goodness-of-fit statis­
tic called SSE (Sum of Squares due to Error). This 
is simply the χ2 statistic used frequently by physi­
cists and in Bevington. The other necessary statis­
tics is DFE (Degrees of Freedom) and is equal to 
the number of data points minus the number of fit­
ted coefficients. In Junior Lab, we are most often 
interested in the reduced chi-square (χ2 

ν−1
) which 

is simply given by the χ2 divided by the DFE. 


