A Sample Presentation Template Using the LATEXSlides environment.

MIT Department of Physics

Background and Context

• In 1902 ...

• Statement of the Problem

• First Measurements ...

• Fundamentals ...

Test 6" x 2" Figure Created in Xfig

Theory of χ^2 Fitting

- Summary of Key Physical Relationships -NO LONG DERIVATIONS!
- ullet Assume each data point is drawn from a Gaussian distribution, whose width is the uncertainty, σ_i
- Maximizing the probability of the dataset \Rightarrow Mimimizing χ^2

$$\chi^2 = \sum \left[\frac{y_i - f(x_i)}{\sigma_i} \right]^2$$

- Degrees of freedom (ν) = Number of data points Number of parameters
 - Reduced Chi-squared: $\chi^2_{\nu} = \chi^2/\nu$
 - $-\chi_{\nu}^2 >> 1 \rightarrow \mathsf{Bad} \mathsf{fit}$
 - $\chi^2_{\nu} <<$ 1 \rightarrow Probably overestimated errorbars on data

Experimental Apparatus

Sample 7" x 7" Figure Created in Xfig on Athena See file:/mit/sipb/share/xfig/html/index.html for the full Xfig Users Manual

Remember to use color with a purpose!!! Always preview your slides for clarity and readability.

Signal Processing and Analysis

Raw Data

Sample 7" x 7" Figure Created in Xfig on Athena See file:/mit/sipb/share/xfig/html/index.html for the full Xfig Users Manual

Remember to use color with a purpose!!! Always preview your slides for clarity and readability.

Results and Interpretation

- Give results as $x = (y.yy \pm \delta y)10^{zz}$ and compare to known values
- Nonlinear fit to: $y = A \exp(-t/\tau) + C$
- Counting experiment \rightarrow Poisson uncertainties $A=50.5\pm0.4,\ \tau=2.04\pm0.02\ \mu\text{s},$ $C=3.88\pm0.07,\ \chi^2_{\nu}=1.01$
- ullet Description and Analysis of Errors, show how δy is made up, discuss random and systematic contributions.

Conclusions

- Does the data support your conclusions?
- If not, why not (speculate!)