
Simulation of Timed Input/Output Automata

by

Panayiotis P. Mavrommatis

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2006

c© Panayiotis P. Mavrommatis, MMVI. All rights reserved.

The author hereby grants to MIT permission to reproduce and distribute publicly
paper and electronic copies of this thesis document in whole or in part.

Author .
Department of Electrical Engineering and Computer Science

May 20, 2006

Certified by. .
Dilsun K. Kaynar

Post-doctoral Research Associate, Theory of Distributed Systems Group
Thesis Supervisor

Certified by. .
Nancy A. Lynch

NEC Professor of Software Science and Engineering
Thesis Supervisor

Accepted by .
Arthur C. Smith

Chairman, Department Committee on Graduate Students

2

Simulation of Timed Input/Output Automata

by

Panayiotis P. Mavrommatis

Submitted to the Department of Electrical Engineering and Computer Science
on May 20, 2006, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This Master of Engineering Thesis describes the design, implementation, and usage of the
TIOA Simulator. The TIOA Simulator, along with the other components of the TIOA
Toolset aims to provide a framework for developing dependable distributed systems. The
project is based on the Timed Input/Output Automaton framework, and supports TIOA, a
formal language for specifying timed I/O automata. Simulation of TIOA programs is useful
in the process of testing the proposed system over a specific set of executions. During
the execution the Simulator is able to test proposed invariants and validate a proposed
simulation relation between the system’s implementation and its specification. A step
correspondence between the steps of the implementation and the specification drives the
validation of the simulation relation. The identification and validation of the invariants
and the simulation relation constitutes the first step towards a formal verification of the
system’s correctness. The proposed step correspondence can be used in a formal proof to
show that the proposed relation is indeed a simulation relation.

Thesis Supervisor: Dilsun K. Kaynar
Title: Post-doctoral Research Associate, Theory of Distributed Systems Group

Thesis Supervisor: Nancy A. Lynch
Title: NEC Professor of Software Science and Engineering

3

4

Acknowledgments

I would like to thank Prof. Nancy Lynch for giving me the opportunity to work with the

Theory of Distributed Systems group and for the precious guidance throughout the past

three years.

I was first introduced to the design and implementation of the IOA project by Joshua A.

Tauber, with whom I worked at the final implementation stages of the IOA Code Generator.

I then worked with Chryssis Georgiou at the University of Cyprus on using the IOA Toolkit

to compile a number of distributed algorithms, an experience that introduced me to the

process of specifying and developing complex distributed systems using a formal language

such as IOA, as well as the issues involved in the simulation and compilation of such a

language.

The TIOA group was then formed, headed by Prof. Nancy Lynch and Prof. Alexander

Shvartsman, with the purpose of creating the TIOA Language and a set of supporting tools.

The design and implementation of the TIOA Simulator was a result of my collaboration

with Dilsun Kaynar and Fivos Constantinou and was based on the work of all the former

IOA members that contributed to the IOA Simulator.

Steve Garland provided valuable help with the design of the simulator-specific language

extensions, and provided the syntax and semantic checker. Hongping Lim contributed in

the development and testing of the connection of the checker with the various back-end

tools. Some of the first users of the TIOA Simulator that provided valuable feedback and

suggested improvements to the tool were Wenkai Tan and Marios Assiotis.

5

6

Sthn Ari�na

7

8

Contents

1 Introduction 15

1.1 Background . 15

1.2 Mathematical Framework . 17

1.2.1 Composition . 17

1.2.2 Abstraction . 17

1.2.3 Non-determinism . 18

1.3 The TIOA Language . 18

1.4 TIOA Tools . 21

1.5 Previous Work . 23

1.6 Organization of this Thesis . 23

2 Design 25

2.1 Restrictions on TIOA . 26

2.1.1 Evolve clauses . 26

2.1.2 Stopping conditions . 28

2.1.3 Existential, universal quantifiers . 30

2.1.4 Loops . 30

2.2 Non-determinism Resolution . 31

2.2.1 Scheduling transitions and trajectories 31

2.2.2 Explicit choose statement resolution 32

2.2.3 Step correspondences . 33

3 TIOA Simulation 35

3.1 Primitive Automaton Simulation . 35

3.1.1 Data type implementations . 35

9

3.1.2 NDR execution . 36

3.2 Composite Automaton Simulation . 39

3.2.1 Schedule block for the composition 40

3.2.2 Schedule block for the components 40

3.3 Paired Simulation . 42

4 Case Study: Failure Detection 43

4.1 Simulating Primitive Automata . 44

4.1.1 Periodic send . 44

4.1.2 Periodic send with failure . 45

4.1.3 Reliable channel with deadline guarantees 45

4.1.4 Failure detector . 46

4.2 Simulating Composite Automata . 49

4.2.1 Schedules in the components . 49

4.2.2 Schedule in the composition . 51

4.3 Paired Simulation . 55

4.3.1 Failure detection specification . 55

4.3.2 Failure detection implementation . 55

4.3.3 Forward simulation . 56

5 Discussion and Future Work 59

5.1 Discussion . 59

5.2 Future Work . 61

6 Conclusions 63

A Configuration 65

A.1 Loading Runtime Classes . 65

A.1.1 Command-line configuration file . 65

A.1.2 Default configuration file . 66

A.2 Command-line Options . 66

A.2.1 Formal parameters . 67

A.3 Graphical User Interface . 67

A.3.1 Checking specifications . 68

10

A.3.2 Simulation . 68

B TIOA Extensions 71

B.1 NDR Language . 71

11

12

List of Figures

1-1 An example TIOA program . 19

1-2 An example composite automaton. 21

2-1 Stopping Condition and Evolution of Trajectories 29

2-2 Example of an NDR schedule for the automaton PeriodicSend 32

2-3 Explicit choice statement resolution example 33

2-4 A forward simulation from TimedChannelSpec to TimedChannelImpl . . . 34

3-1 The program executed for each follow statement 37

3-2 Converting the stopping condition to a stopping condition failure predicate 38

4-1 Periodic Send with no failure . 44

4-2 Periodic Send with failure . 45

4-3 Reliable Channel with deadline guarantees 47

4-4 Timeout . 48

4-5 No Failure System . 50

4-6 Failure Detection System . 52

4-7 No Failure System with schedule in the composition 53

4-8 Failure Detection System with schedule in the composition 54

4-9 Failure Detection System Specification . 56

4-10 Failure Detection System Implementation 57

4-11 Failure Detection System Forward Simulation 58

5-1 An example “time-line” view of an execution 62

A-1 Sample runtime configuration file . 65

A-2 The TIOA GUI with syntax highlighting and the outline view 69

13

A-3 The TIOA GUI simulation configuration dialog 69

A-4 The TIOA GUI step-by-step simulation . 70

14

Chapter 1

Introduction

1.1 Background

Designing and implementing dependable distributed systems is a challenging problem. With

many mission-critical applications running in distributed environments, such as air traffic

control or road traffic management, that have correctness and fault-tolerance requirements,

and a range of distributed applications that may additionally require performance and

availability guarantees, the problem becomes significant. On the other hand, as the complexity

of such systems increases, providing these guarantees becomes harder.

To cope with these challenges, researchers have developed mathematical models that

provide frameworks in which formal specification as well as proofs of correctness can be

performed in a structured and effective manner. One of these frameworks is the Timed

Input/Output Automaton framework [7], in which the basic building blocks are state

machines with both discrete steps and continuous evolution of state. This framework has

evolved from the Input/Output Automaton model [8], in which only discrete steps are

allowed. The I/O Automaton model was used in a number of research papers and books

in order to specify and verify several distributed algorithms without timing guarantees.

The model has been supported by a formal language, IOA [5], and a number of software

tools that aim to check the IOA specifications for syntactic correctness, simulate IOA

executions [2, 9, 3, 15, 10], connect IOA to various theorem provers [1, 14], and compile IOA

to Java [11, 13], thereby providing a method to implement a provably correct distributed

system.

15

Recently, a formal language that supports the precise specification of Timed I/O Automata

has been developed [6]. The language, called TIOA, is a natural extension of IOA. In an

effort to provide a similar set of tools for TIOA as for IOA, some of the IOA tools have

been extended to support TIOA. The Syntax and Static Semantics Checker tool, the PVS

Theorem Prover Translator and the Simulator are the three main tools that were first

extended for this purpose. When used together, these tools can be used to design and

formally specify distributed systems in TIOA. The system can be specified with the help

of the TIOA Checker, tested and analyzed with the TIOA Simulator, and be verified using

the PVS theorem prover.

This Master’s Thesis describes the design, implementation, and usage of the TIOA

Simulator. The main purpose of the TIOA Simulator can be summarized as follows:

• Create and simulate specific “test-case” executions, which can provide feedback about

the model’s correctness and show potential pitfalls. Proposed invariants that can

be used in proofs of correctness (both safety and liveness) can be shown to hold

throughout these simulated executions.

• Test the interaction of the various system components by either creating specific

“test-case” executions among the components or by running all the components

independently. Once again, invariants can be shown to hold throughout such executions.

• Test proposed simulation relations, which form the basis for proofs of correctness,

especially when the system tested is proposed to implement another, “higher-level”

system. Frequently a high-level description of the system that models the requirements

and guarantees of the system is first specified, and a lower-level implementation

can then be verified by relating the two versions of the system using a simulation

relation. Similarly, simulation relations can be used to relate an optimized version of

an algorithm against a simpler, easier to verify but inefficient version of it.

16

1.2 Mathematical Framework

The essence of TIOA and its tools lies on the mathematical framework of the Timed

Input/Output Automaton Model [7]. We provide a brief and informal description of

the model here, and refer the reader to [7] for a complete and formal specification of

the model. A Timed I/O Automaton is a state machine that can modify its state both

instantaneously and continuously over time. Discrete transitions modify the automaton’s

state instantaneously, while trajectories specify how a set of the state variables evolves with

time. We call the state variables that vary with time time-dependent.

Actions are either internal or external; internal actions are not visible to the automaton’s

environment, while external ones are. External actions can be either output or input

ones; input actions model inputs to the system and are always enabled. Internal and

output actions may have preconditions that specify under what conditions of the state they

are enabled. The externally visible behavior of an automaton, its trace, is a sequence of

alternating external actions and time-passage steps over the set of empty variables (the only

information recorded in the these trajectories is the amount of time that passes).

1.2.1 Composition

A complex distributed system can be represented by composing automata that model

individual parts of the system. Under certain compatibility conditions, the various components

of the system can interact with shared actions. A typical client-server application, for

example, can be modeled by a composition of the client automaton, the server automaton,

and the channel automaton representing the network.

1.2.2 Abstraction

A common practice in reasoning about complex systems is to provide an abstract specification

of the system along with the concrete implementation. Two separate automata can be used

to specify both descriptions, and the concrete automaton can be shown to implement the

abstract one using the notion of simulation relations.

17

Simulation Relation: Given a concrete automaton A and an abstract automaton B, one

can show that A implements B if there exists a forward simulation from A to B, which is

defined as a relation R between the states of A and B such that

• Every start state x of A is related to some start state y of B (∀x.∃y.xRy)

• For each step (transition or trajectory) a in A, starting from state x and ending in

state x′, there is a sequence of steps b in B, starting with y where xRy and ending in

y′ such that

[trace(a) = trace(b)] ∧ x′Ry′

1.2.3 Non-determinism

The Timed I/O Automaton model includes several sources of non-determinism: At any

point in time, many transitions with many different possible parameter values may be

enabled, and many trajectories might be possible to follow for many different durations.

Moreover, explicit non-deterministic choices are allowed for parameters and statements.

1.3 The TIOA Language

The TIOA Language [6] is a formal language that can be used to specify Timed I/O

Automata. We provide a brief introduction to the language by means of an example here,

and refer the reader to the TIOA User Guide and Reference Manual [4] for a complete

specification of the language.

Figure 1-1 shows an example automaton in TIOA. The PeriodicSend automaton uses

the continuous variable clock as a timer to send a message every u time units. A send(m)

transition can occur if clock =u, and when it does, the timer is reset (clock :=0). The

trajectory definition traj specifies that clock evolves with the same rate as real time, and

that the trajectory’s execution must stop when it is time to send a new message. The types

used in this example have their regular meaning. The type AugmentedReal is an extension of

the type Real that also includes a value for positive infinity.

18

vocabulary Messages

types M enumeration [nil , m1]

automaton PeriodicSend(u: Real)

imports Messages

signature
output send(m: M)

states
clock: AugmentedReal := 0

transit ions
output send(m)

pre clock = u

e f f clock := 0

tra jector ies
trajdef traj

stop when clock = u

evolve d(clock) = 1

Figure 1-1: An example TIOA program

The basic module in the language is the automaton, which is specified by its signature

(discrete step declarations), states (state variables), transitions (discrete step definitions)

and trajectories. A number of built-in data types is provided and users can specify their

own data types and operators in vocabulary constructs. Tuples, enumerations and unions

can be specified, for example as in Figure 1-1. An automaton or another vocabulary can

import these definitions using an imports statement. The automaton’s states can be declared

and optionally initialized in the states block, as in Figure 1-1.

Actions and transitions

The actions are declared in the signature block, where their type (input, output or internal),

name and parameters (parameter name and type) are specified. In the transitions block the

transitions are defined, with the optional preconditions (pre) and effect block (eff) for each

transition. The precondition is simply a boolean predicate or a series of such separated by

a semicolon (;), while the eff block expects a TIOA program, i.e. a series of statements

separated by a semicolon. The following statements can be used:

• Assignments, of the form s :=expression, where s is a reference term to a state variable

or a local variable.

• Conditionals, of the form if pred then program, optionally followed by a series of

elseif pred then program and/or an else program.

19

• Loops, of the form for var:type in set do program od or

for var:type where pred do program od.

Trajectories

The continuous transformation of state is specified in the trajectories block. There can be

multiple trajectory definitions, and each one is of the following form:

trajdef traj_name

invariant inv_predicate %optional

stop when stop_predicate %optional

evolve ev_clause1; ev_clause2; ...

The name of the trajectory is given in traj_name, inv_predicate is a boolean predicate that

must hold throughout the execution of the trajectory, stop_predicate is a boolean predicate

indicating the condition that would cause the trajectory to stop: time cannot advance

beyond the point at which the stopping condition becomes true. The set of ev_clausei

includes differential and algebraic equations and inequalities describing the evolution of the

time-dependent variables in the automaton.

Invariants

Inside a TIOA specification one can specify boolean predicates that must hold throughout

the execution of an automaton. These can be specified in the form

invariant i_name of aut_name:

followed by a list of boolean predicates separated by a semicolon.

Composition

A composite automaton is specified by its components, which are given a name and a

parametrization of their formal parameters. Figure 1-2 shows an example of a composite

automaton, which consists of two Process automata and a Channel automaton.

Non-determinism

TIOA inherits the non-deterministic nature of the mathematical framework and includes

two fundamental sources of non-determinism:

20

automaton Composition

components C: Channel (1,2);

P1: Process (1);

P2: Process (2);

Figure 1-2: An example composite automaton.

1. The scheduling of transitions and trajectories: At any given point in the execution,

any number of transitions might be enabled with many (possibly infinite) possible

values for the transition parameters. Similarly, multiple trajectory definitions might

be allowed to be followed, for possibly infinitely many different durations.

2. The explicit non-deterministic choices involving choose statements, choose parameters

and choose expressions in initial assignments.

We refer the reader to [4] for a description of other elements of TIOA such as formal

parameters, local variables, ensuring clauses, where clauses, function declarations (let), the

const keyword, initially statements, choose statements, data type, and operator declarations.

1.4 TIOA Tools

The TIOA Toolkit contains the following tools that support TIOA:

• Syntax and Semantic Checker: The TIOA Checker can be used to check whether

the specification follows the TIOA syntax and static semantics,

• Simulator: The TIOA Simulator, for simulating the system’s execution and for

checking invariants and simulation relations, and

• Interface to the PVS Theorem Prover Tool: For verifying the model’s correctness

and other properties.

We describe below how a distributed system can be specified, implemented, and verified

using the TIOA tools. The system designer would:

1. Formally express the specification of the system. Using TIOA, the automata that

model the system, the abstract state and any invariants that must hold on the

the abstract state can be written. Safety properties can typically be expressed as

21

invariants, for example. The TIOA Checker can perform static syntax and semantics

analysis on the specification. It may also be desirable to simulate some executions of

the system at this level of abstraction. Simulation will provide a set of traces that

can help understand the specification and make any improvements, corrections, or

simplifications.

2. Provide an implementation for the system. Using TIOA, an actual implementation

for the system can be written and tested, in a similar way to the specification.

The implementation may involve invariants of its own. Testing the implementation

with the TIOA Simulator may reveal bugs, problems, improvements, or increase the

confidence about the correctness of the implementation.

3. Show that the implementation satisfies the specification. The framework provides the

notion of simulation relations for this purpose. The relation between the states of the

two automata can be specified in TIOA, along with a “step correspondence” to allow

the Simulator to check this relation over the executions the user provides.

4. After testing the system and the simulation relation over some user-specified executions,

an exhaustive testing may be desirable using model-checking techniques. A future

tool will either extend the TIOA Simulator to implement model-checking techniques

or translate the TIOA specifications to UPPAAL or another language that can be

model-checked, either fully if the program is finite-state or probabilistically.

5. In many occasions a full formal proof is desired. The framework itself provides

a number of techniques (such as simulation relations) that can be very helpful in

this task. Moreover, the TIOA to PVS Translator can translate TIOA to the PVS

Theorem Prover, a tool that facilitates mathematical proofs. The verification will end

up proving the simulation relation and the invariants that were specified and tested

in the simulation. The step correspondence that was specified in order to drive the

paired simulation will constitute the basis of the proof.

6. After verifying the system’s correctness to the degree desired, a possible future tool

would execute the system, for example by first translating the TIOA implementation

to a Java one. Such a tool could be an extension of the already existing IOA

Compiler [11], which compiles IOA to Java.

22

1.5 Previous Work

The TIOA Simulator evolved from the design and implementation of the IOA Simulator,

first designed and developed by Anna Chefter [2]. Antonio Ramirez’s work [9] extended

the Simulator to introduce the Non-Determinism Resolution language as well as paired

simulations and thus the ability to test simulation relations among two automata. Laura

Dean [3] enhanced the Simulator and introduced a connection to the Daikon invariant

detection tool. Ed Solovey’s M.Eng thesis [10] extended the tools to support simulation

of composite I/O Automata. Michael Tsai’s M.Eng thesis [13] introduced a common

methodology for simulating and generating Java code for IOA, and a way to allow users to

define their own data types.

1.6 Organization of this Thesis

Chapter 2 explains which restrictions and extensions to the TIOA language are necessary

to allow simulations, and describes these restrictions and extensions in detail. In Chapter 3

we discuss how simulation of primitive and composite automata is achieved, and how we

perform paired simulations between two related automata. We illustrate the restrictions

and extensions to TIOA as well as the output of the Simulator with the use of an extended

example (timeout-based failure detection) in Chapter 4. We discuss some of our design

decisions, as well as alternatives and future work in Chapter 5, and conclude in Chapter 6.

23

24

Chapter 2

Design

Apart from simply executing a set of automata, the TIOA Simulator can test proposed

invariants and validate a proposed simulation relation between a low-level “implementation”

automaton and the high-level “specification” one. The identification and validation of the

invariants and simulation relations constitutes the first and perhaps the most important step

towards a formal verification of the system’s correctness. The proposed step correspondence

that will drive the paired simulation constitutes the basis of a formal proof. Equally

important is the fact that the the simulator’s output, the trace of the execution can be

used to test some aspects of the system’s performance such as message complexity.

To accomplish the goals mentioned above, the TIOA Simulator provides the following

features:

• Execution of primitive automata,

• Execution of composite automata, and

• Paired execution of two related automata.

There are various issues related to the execution of TIOA, such as the implementation

of data types, the initialization of the state variables for the various automaton instances,

etc. These issues are not very hard to deal with, however. On the other hand, the non-

deterministic nature of the framework makes simulation of TIOA programs without any

modifications very hard. This is mainly because we are attempting to execute programs

written in a language that is primarily for specifying the behavior, using logical predicates

25

and non-determinism. Such features of the language, and in particular the following ones

are the hardest problems to solve automatically:

• Differential equations in evolve predicates, arbitrary stopping conditions, arbitrary

existential and universal quantifiers, and

• Non-determinism, either from the scheduling of transitions and trajectories or from

explicit choose statements.

Our solution to the above problems is to both restrict the language to a subset of the

language we can simulate and let the user resolve the non-determinism on a case-by-case

basis. In particular, we

• Restrict TIOA to a language that can be simulated, and

• Extend TIOA with syntax that can be used to resolve non-determinism.

In Sections 2.1 and 2.2 we elaborate on the TIOA restrictions and non-determinism

resolution language extensions respectively.

2.1 Restrictions on TIOA

The TIOA Simulator supports simulation of a subset of the TIOA language. We impose

some restrictions on the trajectory definitions, quantifiers, and for loops. In particular,

we restrict the form of evolve clauses and stopping conditions so that the simulator can

automatically compute the values of the time-dependent variables that are reached after

following a trajectory and detect any violation of the stopping conditions. We elaborate on

these restrictions below.

2.1.1 Evolve clauses

TIOA allows a large spectrum of ways to express the evolution of time-dependent variables,

such as arbitrary algebraic and differential equations. In a large class of the examples, time-

dependent variables are used to model real time or clocks moving at the same rate as real

time and possibly allowed to be reset. This observation, along with the fact that general

differential equations are not always easy to automatically solve, motivated our decision in

26

restricting the form of evolve clauses to only those of the form d(var)=val, where var is a

time-dependent variable and val is the rate of evolution, as explained in detail below:

Time-dependent variables

The variable var can only be a variable reference, or a combination of the “select” (variable.field)

or “get” (variable[index]) operators. In all cases, the variable referenced must be continuous

and of type Real or AugmentedReal.

var ::= lvalue

lvalue ::= variable |

("." <lvalue, operand>) |

("[]" <lvalue, operand+>)

As we discuss in Section 3-2, in order to follow a trajectory, the Simulator transforms

stopping conditions to assignments of the form var:=newval, and for reasons of simplicity

we require that var is also a valid l-value. Thus, the transformation to an assignment can

occur automatically.

Rate of evolution

The rate of evolution val can be a literal term, a variable reference term or an application

term that evaluates to a constant number. For example, the following evolve clauses are

valid Simulator evolve clauses:

evolve d(now) = 1

% now is a state variable of type AugmentedReal

evolve d(timer) = u

% timer is a state variable of type Real

% u is an automaton formal parameter of type Int

evolve d(clock) = rates[i]

% now is a state variable of type AugmentedReal

% rates[i] is a constant number.

27

2.1.2 Stopping conditions

Ideally any predicate could be used in a stopping condition and the Simulator would be able

to check that the stopping condition is not violated for any given amount of time. In general

this would require to solve the stopping condition and evolution equations and find the

earliest time where the stopping condition would hold. This would be the maximum point

in time up to which the trajectory can be executed. Figure 2-1(left) shows an example of

general evolution and stopping condition predicates. The solid line plots the time-dependent

variable x as a function of time as described by an evolve predicate, and the dashed line

plots x as a function of t as described in a stopping condition. The earliest (smallest t)

intersection of the two lines illustrates the maximum point in time up to which the trajectory

can be followed. In the general case, finding this point requires solving arbitrary equations

for which exact solution methods might not be known. We therefore restrict the form of

stopping conditions (in addition to the restriction of the evolve clauses):

Stopping conditions can be of the form var=constant.

Then, finding out the maximum point in time the trajectory can reach becomes easy, as

shown in Figure 2-1(right). In fact, it is sufficient for the Simulator to check if the stopping

conditions are violated at the end of a proposed (scheduled) time-passage event. We discuss

this further in section 3.1.2. We now discuss how this restriction is relaxed.

It is often desired that a combination of boolean predicates on other state variables is

also included in a stopping condition. Consider, for example a channel with time-bounded

delivery guarantees. When it has no messages to deliver, time can advance forever. As soon

as its queue becomes non-empty, time should not advance past the earliest deadline. Its

stopping condition might then be:

stop when queue 6= {} ∧ now = earliest(deadlines)

We can still check that stopping conditions of the above form hold since the extra

predicates do not involve time-dependent variables. Moreover, if the automaton has more

than one time-dependent variables, the stopping conditions should be allowed to check any

subset of them, such as:

28

Figure 2-1: Left: In the general case we must solve the evolution and stopping condition
equations to find the maximum point up to which the stopping condition is not violated
(tmax). Right: The TIOA Simulator restricts the evolution to a linear equation and the
stopping condition to a constant.

stop when clock1 = 5 ∨ clock2 = 39

However, we do not currently support directly comparing two time-dependent variables

in the stopping conditions such as stop when x =y + 1, since this might require solving

systems of equations. We formalize the restrictions on the stopping conditions in the

following paragraphs.

Restrictions (formal)

The predicates in the stopping conditions are restricted as follows: A stopping condition

can be a literal (true or false), a boolean variable reference term or an application term. If

the literal or the variable evaluates to true, the trajectory will not be followed; if it evaluates

to false the trajectory will be followed for any amount of time scheduled.

stopcondition ::= application:Bool | variable:Bool | literal:Bool

If the stopping condition is an application term, the following rules apply: Operands

involving continuous variables can appear only in an equals (=) operator and only with a

discrete operand to be compared with:

29

application ::= (operator, operand+) |

(’=’, <continuous_operand:Real, discrete_operand:constant:Real>) |

(’=’, <discrete_operand:constant:Real, continuous_operand:Real>)

operand ::= application | variable:discrete | literal

continuous_operand ::= lvalue:continuous

discrete_operand ::= (operator, <discrete_operand+>) | variable:discrete |

literal

2.1.3 Existential, universal quantifiers

No existential or universal quantifiers are allowed in the TIOA Simulator, unless the

quantified variables are of type enumeration. This is because testing these quantifiers would

require a way to enumerate all the possible values for a type, and there should only be a finite

number of them. The only type that provides this for us is therefore that of enumeration.

Another exception is the Nat type, for which, even though an infinite type, we provide

an enumeration for the first k natural numbers, where k is a certain finite constant. This

exception allows useful quantified statements such as ∀ n: Nat (n <len(queue) ⇒queue[n] =0).

The Simulator verifies quantifiers over natural numbers for the first k elements only, thus

the guarantees of correct simulation with quantifiers over naturals are conditioned on the

assumption that the value for k (which can be specified at runtime) is large enough to test

all the relevant natural numbers of the quantifier.

2.1.4 Loops

The simulator allows for loops only if they are specified over finite sets, as in the example

below.

% s : Set[Int]

% ok: Bool

for i: Int in s do

i f (i < 0) then ok := false f i

od

30

2.2 Non-determinism Resolution

As already indicated, TIOA inherits the non-deterministic nature of the mathematical

framework and includes various sources of non-determinism, including the scheduling of

transitions and trajectories and the explicit non-deterministic choices involving choose

statements, choose parameters and choose expressions in initial assignments. Moreover,

in order to be able to test simulation relations between two automata, we need a way of

providing the simulator with a step correspondence.

The TIOA Simulator provides a mechanism for resolving non-determinism by letting

the user explicitly specify which choice should be made at every point. This mechanism

is an extension to the TIOA Language called the Non-Determinism Resolution language

(NDR), and is derived from the NDR language used in IOA [3]. NDR can be used

to schedule transitions and trajectories, resolve choose statements and specify the step

correspondence for paired simulations. We provide an informal description of NDR in the

following subsections, and a formal one in Appendix B.1

2.2.1 Scheduling transitions and trajectories

For the scheduling of transitions and trajectories the user must explicitly provide an execution

schedule as an extension to an automaton. The schedule may contain its own state variables,

specified by a states block, in the same way that the states of an automaton are specified. In

a do ... od block, statements such as assignments, conditionals, while loops and statements

to execute transitions and trajectories can be specified to drive the automaton’s execution.

• Assignments and conditionals can be used as one would expect, with the exception

that an automaton’s state variables cannot be modified by the schedule block (and

thus cannot appear on the left-hand side of the assignment).

• Instead of the TIOA for loops, NDR allows while loops. A while loop’s program will

be executed as long as its predicate evaluates to true.

• To execute a transition, the fire statement can be used. The statement requires the

transition’s type (input, output or internal), name and parameter values, if any.

• To execute a trajectory, a follow statement can be used. The statement should specify

the trajectory’s name, and the amount of time the trajectory should be followed.

31

• If the schedule block is in a composite automaton, the component’s name should

precede the state variables, transition, and trajectory names whenever used.

Figure 2-2 shows an example usage of an NDR schedule block for the automaton

PeriodicSend in Figure 1-1 to resolve the scheduling of transitions and trajectories. In

this particular example, the trajectory traj will be followed for a duration of u time units,

and if the clock variable becomes equal to u (which should happen), the output transition

send will be fired with the message m1 as its parameter. This program is re-executed infinitely

since it appears in a while (true) loop.

vocabulary Messages

types M enumeration[nil , m1]

automaton PeriodicSend

imports Messages

signature
output send(m: M)

states
u: Real := 5,

clock: AugmentedReal := 0

transit ions
output send(m)

pre clock = u

e f f clock := 0

tra jector ies
trajdef traj

stop when clock = u

evolve d(clock) = 1

schedule do
while (true) do

follow traj duration u;

i f (clock = u) then f i r e output send(m1) f i
od

od

Figure 2-2: Example of an NDR schedule for the automaton PeriodicSend

2.2.2 Explicit choose statement resolution

Explicit choose statements can be resolved by providing a deterministic program similar to

the schedule block. The program is declared inside a det do ... od block, as in the example

of Figure 2-3.

The simulator executes the NDR programs in a choose block, until a yield statement

is encountered. Then the value of the yield statement is given to the variable making the

32

v := choose x where 0 ≤ x ≤ 10

det do
yield 3; yield 6; yield randomInt (0 ,10);

od;

Figure 2-3: Explicit choice statement resolution example

choice, in the above example, the variable v. If the block is executed again, the Simulator

resumes execution from after the previous yield, starting over from the beginning if there

are no statements left. In the example of Figure 2-3 therefore, the first time the block is

executed the value of 3 will be chosen, the second one 6, the third one a randomly generated

integer between 0 and 10 (or whatever the randomInt operator specifies), and so on.

2.2.3 Step correspondences

As already mentioned, the TIOA Simulator can be used to test simulation relations. For

this purpose, the TIOA Simulator allows the user to specify a candidate simulation relation

between two automata A and B, as well as a step correspondence that specifies:

• For each transition of the low-level automaton, the sequence of transitions that should

be executed in the high-level one, and

• For each trajectory of the low-level automaton, the sequence of trajectories and

internal transitions that should be executed in the high-level one.

Figure 2-4 shows an example of a simulation relation from an automaton TCSpec (Timed

Channel Specification) to an automaton TCImpl (Implementation) which implements the

specification using two queues. Messages are appended to the tail of the second queue and

delivered from the head of the first queue. An internal transfer transition moves messages

from the head of the second queue to the tail of the first.

Apart from the specifications of the two automata and the schedule block in the implementation

one, the simulation relation is specified with a step correspondence inside the proof block.

In this case the simulation relation is simply

TCSpec.queue = TCImpl.queue1 ‖ TCImpl.queue2

where ‖ is the operator for concatenation.

33

The step correspondence is also simple. External transitions and the trajectory are

mapped to themselves, and the internal transition maps to the empty sequence.

automaton TCSpec(b: Real)

where b ≥ 0

imports Timestamp

signature
input send(m: M)

output receive(m: M)

states
queue: Seq[TimedM] := {},

now: AugmentedReal := 0

transit ions
input send(m)

e f f queue := queue `
[m, now+b]

output receive(m)

pre head(queue). message = m

e f f queue := tail(queue)

tra jector ies
trajdef traj

stop when queue 6= {} ∧
now = head(queue). deadline

evolve d(now) = 1

automaton TCImpl(b: Real)

where b ≥ 0

imports Timestamp

signature
input send(m: M)

internal transfer(tm: TimedM)

output receive(m: M)

states
queue1: Seq[TimedM] := {},

queue2: Seq[TimedM] := {},

now: AugmentedReal := 0

transit ions
input send(m)

e f f queue2 := queue2 `
[m, now+b]

internal transfer(tm)

pre head(queue2) = tm

e f f queue2 := tail(queue2);

queue1 := queue1 ` tm

output receive(m)

pre head(queue1). message = m

e f f queue1 := tail(queue1)

tra jector ies
trajdef traj

stop when queue1 6= {} ∧
now = head(queue1). deadline

evolve d(now) = 1

forward simulation from TCImpl to TCSpec:

% The proposed simulation relation

TCSpec.queue = TCImpl.queue1 ‖ TCImpl.queue2

% The step correspondence

proof
for input send(m: M) do f i r e input send(m) od
for internal transfer(tm: TimedM) ignore
for output receive(m: M) do f i r e output receive(m) od
for trajectory traj duration x do follow traj duration x od

Figure 2-4: A forward simulation from TimedChannelSpec to TimedChannelImpl

34

Chapter 3

TIOA Simulation

In the previous chapter we have discussed the conditions and extensions to TIOA that are

necessary in order to allow simulation of Timed I/O Automata. This Chapter describes

how simulation of TIOA is actually achieved, with a focus on the features that are new to

TIOA, namely the time passage events. In particular, Sections 3.1, 3.2, and 3.3 discuss the

design of the primitive automaton simulator, the composite automaton simulator, and the

paired simulator respectively.

3.1 Primitive Automaton Simulation

The very first goal of the TIOA Simulator is to provide simulation of a single, primitive

automaton. This section describes the various implementation issues in performing such a

task, namely how the various TIOA data types are implemented, how the schedule block

and other NDR statements are executed, how a transition is “fired” and how a trajectory

is “followed”, with particular focus given on the latter task, which is one of the major

extensions we made to the IOA Simulator.

3.1.1 Data type implementations

The TIOA Simulator provides a large number of standard data types, ranging from Integer,

Real, String, to more complex data types such as Map, Array, Sequence, Queue, Stack,

Binary Search Tree, Enumeration, Union and Tuple. If the supplied data types are not

sufficient, TIOA provides syntax for specifying new data types and operators (vocabulary),

and the TIOA Simulator provides a way for the user to implement these data types in Java,

35

and instruct the Simulator to find these implementations. Instructing the Simulator to find

the data type implementations (what is called registration of data types) is exactly the same

as it is for the IOA Simulator and IOA Compiler, as described in [13].

3.1.2 NDR execution

The Simulator executes the schedule blocks such as those of Figure 2-2 as one would

expect, by going through the program and executing each statement. NDR conditionals,

assignments and loops are executed as one would expect.

Firing transitions

For fire statements, we assign the given values to the transition parameters, check the

preconditions of the transition, and if they hold execute the effect program of the transition.

If the precondition fails, we terminate the execution providing an error message to the user.

Following trajectories

For follow statements, we first compute the final values of the time-dependent variables at

the end of the trajectory based on the follow statement’s duration and the evolve clauses.

We then check that the stopping conditions will not be violated with these values and that

the invariants of the trajectory will hold with both the initial and the final values of the

time-dependent variables. If none of the stopping conditions and invariants are violated,

the final values are assigned to the time-dependent variables and execution resumes in the

schedule block; otherwise, we halt with an error.

Note that checking that the invariants hold only at the beginning and at the end of

the time-passage event does not guarantee that the invariant holds throughout the event.

In general, it is impossible to guarantee this unless we restrict the form of the invariants.

Instead, we allow arbitrary invariants and draw the user’s attention that the invariants are

tested only at the beginning and at the end of each time-passage event. For simple invariants

of the type varterm op valterm where varterm evaluates to a time-dependent variable, valterm

to a discrete variable and op is a comparison operator such as <, ≤, =, ≥, >, testing only

the beginning and the end of the event actually guarantees that the invariant holds.

36

We now describe the execution of trajectories in detail. Whenever a follow statement is

encountered in the execution of the schedule, the TIOA Simulator translates the trajectory

definition to a program, as shown in Figure 3-1. Then, this program is executed as a normal

TIOA program. Before advancing time (assigning the new values to the time-dependent

variables), we check that the invariant of the trajectory holds. If the invariant does not hold

then we halt the execution with an error message. Otherwise, we then compute the values

of the time-dependent variables after the time-passage event as we discuss below and assign

those values to the time-dependent variables. Finally, we evaluate the invariant once again

and the stopping conditions. If any of them fail, once again the execution of this trajectory

is an error.

i f (¬invariant) then error f i ;

var1 := newValue1;

var2 := newValue2;

% ... for all k time -dependent variables

vark := newValuek;

i f (¬invariant ∨ stopCondFails) then error f i ;

Figure 3-1: Pseudocode showing the program executed for each follow statement. The error

statement instructs the simulator to halt execution with an error message.

As Figure 3-1 shows, the translation of a follow statement to such a program involves

finding the values of the time-dependent variables at the end of the time-passage event (the

newValuei terms) given the variable, rate, and duration rate, and the stopCondFails predicate

given the stopping condition, the time-dependent variables and their rates.

Values of variables at the end of the trajectory

Given a time-dependent variable var, the rate at which the variable evolves rate and the

duration of the time passage event given in the follow statement, duration, we want to

compute the value that would result at the end of the time-passage event. Given that the

Simulator only allows evolve clauses of the form d(var)=val, the new value is given by the

formula:

var + (rate ∗ duration)

37

The stopping condition failure predicate

Given a stopping condition predicate from a trajectory’s definition, the set of the time-

dependent variables of the automaton and a mapping from these variables to the rate with

which they are evolving (from the evolve clause), we generate a predicate on the variables

of the stopping condition that is true if the stopping condition would be violated for given

values for the variables. Figure 3-2 specifies in pseudocode the convert procedure, which

given a stopping condition t returns a new predicate that is identical to t, with the exception

of var =value and value =var terms. In these cases, the = operator is converted to > if the

rate at which var grows is non-negative, and to < if the rate is negative.

convert(ApplicationTerm t, Set[Var] timeDependVars , Map[Var , Real] rates)

i f (t.operator.name = "=" ∧
both t.operands ∈ timeDependVars) then

error

e l s e i f (t.operator.name = "=" ∧
only 1 of t.operands ∈ timeDependVars) then

let var be the operand that ∈ timeDependVars ,

rate = rates[var],

value be the other operand :

return a new ApplicationTerm t ′ with:
t ′ .operands [0] = var

t ′ .operands [1] = value

t ′ .operator = ">" i f rate ≥ 0, "<" otherwise

else
let operand0 = convert(t.operands [0], timeDependVars , rates),

...

operandk = convert(t.operands[k], timeDependVars , rates) :

return a new ApplicationTerm t ′ with
t ′ .operator = t.operator ,

t ′ .operands = {operand0 , ... operandk}

Figure 3-2: Converting the stopping condition to a stopping condition failure predicate

38

3.2 Composite Automaton Simulation

Motivation

The ability to simulate a system that consists of more than one component is useful in the

process of evaluating the correctness, fault tolerance, and availability of a system. The TIOA

Simulator should therefore provide a way in which composite automata can be simulated.

One possibility is to require users to “expand” a composite automaton, either manually or by

using an automatic tool, so that the automaton becomes a primitive one that encapsulates

its components in its state. Joshua A. Tauber demonstrates an automatic tool for expanding

composite IOA automata[12, 11]; an extension of that tool could be used for this purpose,

for example. Simulation of this expanded automaton is possible by providing an NDR

schedule block for the automaton and using the primitive TIOA Simulator. On the other

hand, this process has some drawbacks. First, the ability to provide a schedule block for

every component independently is ruled out. As we discuss below, this option can be very

helpful. Second, even automatic expansion is sometimes hard to get right, and its semantics

for the combination of transitions with different where clauses are hard to specify and use.

Finally, fixing a bug in the expanded automaton would also require to manually trace the

bug back in the individual components and perform the change there as well. Overall, the

ability to simulate composite automata without requiring the user to expand the automata

first is very useful.

Scheduling

Similar to the IOA Simulator[10], the TIOA Simulator provides two alternative options to

simulate composite automata:

• Option 1: The user may provide a single schedule block for the composition, and no

schedule blocks for individual components. This option can be useful if it is easier to

reason about a system as a whole, or if a specific “test case” execution for system is

desirable.

• Option 2: The user can provide a schedule block for each individual component,

and no schedule block for the composition. This option can be useful if it is easier to

specify the schedules of the independent components rather than that of the whole

39

system. Moreover, the user might already have schedule blocks for components that

they have already written and tested during primitive simulation. Reusing these

schedules is therefore desirable. If this option is used, the simulator will give turns to

the components in a random, weighted random or deterministic way, thus this method

can be used to test the system over multiple “test case” executions.

3.2.1 Schedule block for the composition

This option allows the user to provide a single schedule block for the composition. The

simulator attempts to execute the schedule block similar to the execution of primitive

automaton schedule blocks. The framework specifies that if one component allows time

passage for a specific amount of time, then so must all other components of the system.

Thus, the NDR allows simultaneous follow statements in composite schedule blocks, as

shown below:

follow A.traj , B.traj , C.traj duration 10

Whenever a follow statement is encountered in the composition’s schedule block, the

simulator attempts to execute the trajectories (as with primitive simulation by checking for

any violations of the stopping conditions after the time passage or of the invariant before

and after the time passage).

3.2.2 Schedule block for the components

Another way to achieve simulation of a composite automaton is to specify a schedule block

for each individual component of the system, instead of the composition itself. The simulator

gives turns to the components (in either a random, weighted random or uniform way),

executing their schedules.

Connected actions

One important difference in this case is that connected actions (output and input actions

with the same name) among different components must be fired at the same time. Thus,

for every output action the Simulator is about to execute in one component, it looks for the

set of corresponding input actions in other components and fires them as well.

40

Scheduling inputs

Input actions are allowed to be scheduled, and the TIOA Simulator acts differently depending

on whether the action has a corresponding output one in another component. If it does not,

then the action is executed normally. If it does, then the input action is simply ignored,

because it will be executed automatically when the corresponding output action will be

scheduled.

Simultaneous time passage events

As with the previous option, we must ensure that all components follow their time-passage

events simultaneously. We achieve this by pausing the execution of components that reach

a follow statement and give turns to the other components, until all the components are

ready to follow a trajectory. We then follow all the trajectories together for the maximum

duration possible, and update the schedules accordingly. For components whose trajectories

were followed completely, we move on to the next statement in their schedule, and for the

rest we indicate the amount of time still left to follow. The algorithm is described in detail

below:

Composite simulation (schedules in the components) algorithm

For every component C of the system, we maintain two variables: trajectory-waiting, a flag,

indicating whether or not the component is ready to follow a trajectory, and duration, an

AugmentedReal, indicating the amount of time that must pass for the component to move

on to the next statement in its schedule block. The algorithm then executes as follows: For

each component C in the system, chosen either at random or in a round-robin way (as the

user may specify): Let s be the next statement in its schedule block. Then,

• If s is a conditional, loop, or assignment statement, execute s normally.

• If s is a fire statement, execute s normally and if the transition is an output one, fire

the corresponding input ones as well, and

• If s is a follow statement, then: Pause the execution of C; Indicate that C is in

a trajectory-waiting status with a duration left equal to the one indicated by the

statement’s duration keyword. Let NW be the set of all the system’s components

41

that are not in a trajectory-waiting status. If NW is not empty, this means that

there is at least one (other) component not waiting for a trajectory. We then exit

C’s execution and yield the turn to one of the components in NW . Otherwise, all

components are waiting for their trajectories. Then, let d be the maximum duration

that all components can follow without violating their stopping conditions, that is,

the minimum of all components’ duration variable. Follow the trajectories of all

components for d time units. Subtract d from all components’ duration variables. For

each component whose duration becomes 0, set trajectory-waiting to false and move

their program counter to the next statement.

3.3 Paired Simulation

The TIOA Simulator allows the user to specify a candidate simulation relation between two

automata A and B, as well as a step correspondence, of the form:

• For each transition a of the low-level automaton, execute a sequence of transitions of

the high-level one.

• For each trajectory t of the low-level automaton, execute a sequence of trajectories

and internal transitions of the high-level one.

The Simulator executes the automata together, checks that the simulation relation holds

and that the external behavior of the two automata is the same. A schedule block in

the low-level automaton drives the execution. For each transition and trajectory about

to be executed in the low-level automaton, the corresponding sequence of transitions and

trajectories is found (with the help of the step correspondence) and attempted to be executed

in the high-level automaton as well. The simulator verifies that the external behavior of the

two automata is the same, that the simulation relation holds initially and after every step

taken, and that the invariants of both automata are not violated initially and after every

step taken.

The TIOA Simulator currently supports paired simulations of primitive automata only.

However, it should be easy to extend this to support composite automata as well.

42

Chapter 4

Case Study: Failure Detection

We provide a simple example of a distributed system with timing guarantees that has been

specified, simulated, and proved correct using the TIOA tools. The example is the failure

detection system from [7]. The system consists of three components:

• A sending process (P) that sends a message every u1 time units and has the potential

of coming to a stopping failure,

• A channel (C) that delivers all its messages reliably within a time bound of b time

units, and

• A timeout process (T) that detects the failure of the sending process by timing out.

The timeout process indicates that a failure has occurred in P if u2 > u1+ b time has

passed since it last received a message from P.

In Section 4.1 we specify the primitive automata for the components of the system,

provide sample NDR schedule blocks for each component, and show the output of the

TIOA Simulator for these schedules. In Section 4.2 we specify the No Failure and Failure

Detection systems using a composition of the individual components, and illustrate the

two different options in simulation of composite automata: schedules in the components or

schedule in the composition. Simulator traces for both systems using both options are also

shown. In Section 4.3 we show a paired simulation between two primitive automata, the

hand-composed Failure Detection system’s implementation and the system’s specification.

The NDR schedule in the implementation system and the provided step correspondence

drive the paired simulation.

43

4.1 Simulating Primitive Automata

4.1.1 Periodic send

In Figure 4-1, the PeriodicSend automaton uses the continuous variable clock as a timer to

send a message every u time units. When a send(m) transition occurs, the timer is reset

and another send cannot occur until clock =u. Its trajectory traj must stop when it is time

to send a new message. The provided NDR schedule is a simple infinite loop that follows

traj for u time units and fires the output transition send with a message (m1). Simulation

of the PeriodicSend automaton with that schedule and the value 5 for the formal parameter

u1 results in the trace shown in Figure 4-1. The trace repeats itself every two steps. The

actual values for the formal parameters for this and subsequent automata are loaded from

a file with contents shown below (For the syntax of the formals file, see Appendix A.2.1

((u1 tioa.runtime.adt.RealSort 5)

(b tioa.runtime.adt.RealSort 2)

(u2 tioa.runtime.adt.RealSort 8))

vocabulary Messages

types M enumeration[nil , m1]

automaton PeriodicSend(u1: Real)

where u1 > 0

imports Messages

signature
output send(m: M)

states
clock: AugmentedReal := 0

transit ions
output send(m)

pre clock = u1

e f f clock := 0

tra jector ies
trajdef traj

stop when clock = u1

evolve d(clock) = 1

schedule do
while (true) do

follow traj duration u1;

f i r e output send(m1)

od
od

Automaton initialized

1: trajectory traj for 5.0 units

2: output transit ion send(m1)

3: trajectory traj for 5.0 units

4: output transit ion send(m1)

...

Figure 4-1: Periodic Send with no failure

44

4.1.2 Periodic send with failure

In Figure 4-2 the PeriodicSend2 automaton is specified, which is a modification of PeriodicSend

that allows for a stopping failure to occur. The failure is modeled with an input transition

(fail) which sets the failed flag. This disables the send transition and allows the traj

trajectory to be followed for an infinite amount of time. In our sample NDR scheduler, we

send two rounds of messages before failing. After failure we follow the trajectory for \infty

time units. The trace for this execution, using u1 = 5 is also shown in Figure 4-2.

vocabulary Messages

types M enumeration[nil , m1]

automaton PeriodicSend2(u1: Real)

where u1 > 0

imports Messages

signature
input fail

output send(m: M)

states
failed: Bool := false ,

clock: AugmentedReal := 0

transit ions
output send(m)

pre ¬failed ∧ clock = u1

e f f clock := 0

input fail

e f f failed:= true

tra jector ies
trajdef traj

stop when
¬failed ∧ u1 = clock

evolve
d(clock) = 1

schedule
states

count: Nat := 0,

n: Nat := 2

do
% Send n rounds of messages

while (count < n) do
follow traj duration u1;

f i r e output send(m1);

count := count + 1

od;
f i r e input fail;

follow traj duration \infty
od

Automaton initialized

1: trajectory traj for 5.0 units

2: output transit ion send(m1)

3: trajectory traj for 5.0 units

4: output transit ion send(m1)

5: input transit ion fail

6: trajectory traj for Infinity units

No more steps

No errors

Figure 4-2: Periodic Send with failure

4.1.3 Reliable channel with deadline guarantees

In Figure 4-3 we model a reliable channel that ensures delivery of its messages within b

time units of their receipt. We first specify the TimedM type that augments a message with

deadline. The channel enqueues messages it receives through the send input action in a

45

queue, and sets their deadline to now + b. Its trajectory may be followed for any amount of

time when the queue is empty, otherwise it should stop before or exactly at the time of the

first message’s deadline. Since all messages have the same maximum delay, the deadlines in

the queue are monotonically non-decreasing thus the first element in the queue always has

the earliest deadline.

In our sample scheduler, in every phase of the execution (every loop), we randomly

decide whether or not to send a message to the channel. Then, if the queue is empty we

follow the trajectory for some amount of time that is less than b (specifically, we chose b/2).

Otherwise, we follow the trajectory up to the point where the the first message’s deadline

would be met and deliver the message. Another possible schedule could deliver the message

earlier instead of waiting until its deadline. The schedule and a sample execution are shown

in Figure 4-3.

4.1.4 Failure detector

The final component of our system is the process that receives the messages and detects

any failures. The Timeout automaton of Figure 4-4 maintains a flag called suspected that

indicates whether or not the sending process is suspected to have failed. This becomes true

only when u2 time units have passed without receiving a message. Similar to PeriodicSend,

the clock variable is used as a timer that is reset every time a message is received. The

automaton’s trajectory may be followed for any time duration when the process is suspected,

but it should stop if the timer reaches u2, so that the timeout action can occur.

The provided schedule block randomly decides whether to receive a message in every

round. It then checks whether it has not received a message for the past u2 units, in which

case it fires a timeout action, otherwise it allows u2/2 time to pass before checking again.

If the sending process is already suspected of having failed, it allows an infinite amount of

time to pass. Every execution of this scheduler should result in different traces because of

the randomBool operator. We show one with u2 = 8 and where a message was not received

in rounds 1,2,5,6 and 7, and thus a timeout occurred in the seventh round.

46

vocabulary Messages

types M enumeration[nil , m1]

vocabulary Timestamp

imports Messages

types TimedM tuple [message: M, deadline: AugmentedReal]

vocabulary Random

operators randomBool: → Bool

automaton TimedChannel(b: Real)

where b ≥ 0

imports Timestamp , Random

signature
input send(m: M)

output receive(m: M)

states
queue: Seq[TimedM] := {},

now: AugmentedReal := 0

transit ions
input send(m)

e f f queue := queue `
[m, now+b]

output receive(m)

pre head(queue). message = m

e f f queue := tail(queue)

tra jector ies
trajdef traj

stop when queue 6= {} ∧
now = head(queue). deadline

evolve d(now) = 1

schedule do
while (true) do

i f randomBool = true then
f i r e input send(m1)

f i ;
i f queue = {} then

follow traj duration b/2

else
follow traj duration

head(queue). deadline - now;

f i r e output
receive(head(queue). message)

f i
od

od

Automaton initialized

1: trajectory traj for 1.0 unit

2: trajectory traj for 1.0 unit

3: trajectory traj for 1.0 unit

4: input transit ion send(m1)

5: trajectory traj for 2.0 units

6: output transit ion receive(m1)

7: trajectory traj for 1.0 unit

8: input transit ion send(m1)

9: trajectory traj for 2.0 units

10: output transit ion receive(m1)

...

Figure 4-3: Reliable Channel with deadline guarantees

47

vocabulary Messages

types M enumeration[nil , m1]

vocabulary Random

operators randomBool: → Bool

automaton Timeout(u2: Real)

where u2 > 0

imports Messages , Random

signature
input receive(m: M)

output timeout

states
suspected: Bool := false ,

clock: AugmentedReal := 0

transit ions
input receive(m)

e f f clock:=0;

suspected:= false

output timeout

pre ¬suspected ∧ clock = u2

e f f suspected := true

tra jector ies
trajdef traj

stop when
¬suspected ∧ clock = u2

evolve
d(clock) = 1

schedule
states done : Bool := false

do while (¬done) do
i f (¬suspected) then

i f randomBool then
f i r e input receive(m1)

f i ;
i f clock = u2 then

f i r e output timeout

else
follow traj duration u2/2

f i
e lse

follow traj duration \infty;
done := true

f i
od
od

Automaton initialized

1: trajectory traj for 4.0 units

2: trajectory traj for 4.0 units

3: input transit ion receive(m1)

4: trajectory traj for 4.0 units

5: input transit ion receive(m1)

6: trajectory traj for 4.0 units

7: trajectory traj for 4.0 units

8: output transit ion timeout

9: trajectory traj for Infinity units

No more steps

No errors

Figure 4-4: Timeout

48

4.2 Simulating Composite Automata

In the previous section we specified and tested all the components of the system independently.

Testing the system as a whole and the interactions of the components is not possible unless

we perform a composite simulation. In Section 4.2.1 we show the first option in simulating

a composite system, which is to include the schedules for the individual components and

not for the composition. Alternatively, we can test the system by providing a schedule in

the composition and not in the components, as we do in Section 4.2.2. For each option, we

test two systems: The No Failure system where the PeriodicSend process does not fail, and

the Failure Detection system in which the sending process fails.

4.2.1 Schedules in the components

No failure

In Figure 4-5 we provide a composition of one instance of PeriodicSend, TimedChannel and

Timeout automata. The file in which the system is specified also includes the specifications

and NDR schedule blocks of PeriodicSend, TimedChannel and Timeout shown in Figures 4-1,

4-3 and 4-4. The Composition automaton simply specifies one instance of each component

and provides values for their formal parameters.

Simulation of the system with u1 = 5, b = 2, u2 = 8 results in the trace shown in

Figure 4-5. After 5 time units, the component P sends a message. The input action send

of the C component is also fired at the same time. After 2 time units the channel delivers

the message to T, and 3 units later the process starts over again. The trajectories are some

times broken into 1-unit steps since the TimedChannel process follows its trajectory every b/2

units when its queue is empty.

Failure detection

The composite automaton of Figure 4-6 is identical to that of Figure 4-5 except from the

fact that it uses PeriodicSend2 which can fail. The file in which the system is specified

also includes the specifications and NDR schedule blocks of PeriodicSend2, TimedChannel and

Timeout shown in Figures 4-2, 4-3 and 4-4. The Composition automaton simply specifies one

instance of each component and provides values for their formal parameters.

Simulation of the system with u1 = 5, b = 2, u2 = 8 results in the trace shown in

49

% specifications and schedules of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition(u1, u2, b: Real) where (u1 + b) < u2

components
P: PeriodicSend(u1);

C: TimedChannel(b);

T: Timeout(u2);

Automaton initialized

1: trajectory T.traj , C.traj , P.traj for 1.0 unit

2: trajectory T.traj , C.traj , P.traj for 1.0 unit

3: trajectory T.traj , C.traj , P.traj for 1.0 unit

4: trajectory T.traj , C.traj , P.traj for 1.0 unit

5: trajectory T.traj , C.traj , P.traj for 1.0 unit

6: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

7: trajectory T.traj , C.traj , P.traj for 1.0 unit

8: trajectory T.traj , C.traj , P.traj for 1.0 unit

9: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

10: trajectory T.traj , C.traj , P.traj for 1.0 unit

11: trajectory T.traj , C.traj , P.traj for 1.0 unit

12: trajectory T.traj , C.traj , P.traj for 1.0 unit

13: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

14: trajectory T.traj , C.traj , P.traj for 2.0 units

15: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

...

Figure 4-5: No Failure System

50

Figure 4-6. After 5 time units, the component P sends a message through the channel.

After 2 time units the channel delivers the message to T. A message is sent once more, as

the schedule of PeriodicSend2 specifies, and at that point P fails (step 14). The message is

delivered and 8 (u2) time units after the delivery T times out. From then on, no actions

are enabled and the trajectories of the components are followed for an infinite amount of

time, broken into 1-unit steps. This break happens since the TimedChannel process follows

its trajectory every b/2 units when its queue is empty.

4.2.2 Schedule in the composition

An alternative to providing shadeless in the individual components is to write a schedule for

the composite automaton itself. We discuss the same examples (NoFailure and FailureDetection)

scheduled in this way.

No failure

The Composition automaton of Figure 4-7 is identical to that of Figure 4-5, but includes an

NDR schedule. The file also includes the specifications of PeriodicSend, TimedChannel and

Timeout, but without their schedule blocks.

The schedule we provide enters an infinite loop in which every u1 units P sends a message

that is delivered b units later, as the trace with u1 = 5, b = 2, u2 = 8 verifies.

Failure detection

The system of Figure 4-8 composes PeriodicSend2 with the channel and timeout processes,

and includes an NDR schedule in the composition. The file must also includes the specifications

(without the schedule blocks) of PeriodicSend2, TimedChannel and Timeout.

The schedule we provide specifies that P sends n = 2 messages before failing. After its

failure and the delivery of its last message, it is detected and a timeout action occurs. The

trace with u1 = 5, b = 2, u2 = 8 verifies this behavior.

51

% specifications and schedules of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition(u1, u2, b: Real) where (u1 + b) < u2

components
P: PeriodicSend2(u1);

C: TimedChannel(b);

T: Timeout(u2);

Automaton initialized

1: trajectory P.traj , T.traj , C.traj for 1.0 unit

2: trajectory P.traj , T.traj , C.traj for 1.0 unit

3: trajectory P.traj , T.traj , C.traj for 1.0 unit

4: trajectory P.traj , T.traj , C.traj for 1.0 unit

5: trajectory P.traj , T.traj , C.traj for 1.0 unit

6: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

7: trajectory P.traj , T.traj , C.traj for 1.0 unit

8: trajectory P.traj , T.traj , C.traj for 1.0 unit

9: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

10: trajectory P.traj , T.traj , C.traj for 1.0 unit

11: trajectory P.traj , T.traj , C.traj for 1.0 unit

12: trajectory P.traj , T.traj , C.traj for 1.0 unit

13: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

14: input transit ion P.fail

15: trajectory P.traj , T.traj , C.traj for 1.0 unit

16: trajectory P.traj , T.traj , C.traj for 1.0 unit

17: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

18: trajectory P.traj , T.traj , C.traj for 1.0 unit

19: trajectory P.traj , T.traj , C.traj for 1.0 unit

20: trajectory P.traj , T.traj , C.traj for 1.0 unit

21: trajectory P.traj , T.traj , C.traj for 1.0 unit

22: trajectory P.traj , T.traj , C.traj for 1.0 unit

23: trajectory P.traj , T.traj , C.traj for 1.0 unit

24: trajectory P.traj , T.traj , C.traj for 1.0 unit

25: trajectory P.traj , T.traj , C.traj for 1.0 unit

26: output transit ion T.timeout

27: trajectory P.traj , T.traj , C.traj for 1.0 unit

...

Figure 4-6: Failure Detection System

52

% specifications (without schedules) of PeriodicSend , TimedChannel and Timeout

% ...

automaton Composition(u1, u2, b: Real) where (u1 + b) < u2

components
P: PeriodicSend(u1);

C: TimedChannel(b);

T: Timeout(u2);

schedule do
follow P.traj , C.traj , T.traj duration u1;

while (true) do
f i r e output P.send(m1);

follow P.traj , C.traj , T.traj duration b;

f i r e output C.receive(m1);

follow P.traj , C.traj , T.traj duration (u1 -b);

od
od

Automaton initialized

1: trajectory P.traj , C.traj , T.traj for 5.0 units

2: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

3: trajectory P.traj , C.traj , T.traj for 2.0 units

4: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

5: trajectory P.traj , C.traj , T.traj for 3.0 units

6: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

7: trajectory P.traj , C.traj , T.traj for 2.0 units

8: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

...

Figure 4-7: No Failure System with schedule in the composition

53

% specifications (without schedules) of PeriodicSend2 , TimedChannel and Timeout

% ...

automaton Composition(u1, u2, b: Real) where (u1 + b) < u2

components
P: PeriodicSend2(u1);

C: TimedChannel(b);

T: Timeout(u2);

schedule
states

count: Nat := 0,

n: Nat :=2

do
follow P.traj , C.traj ,

T.traj duration u1;

% Send n messages before failing

while (count < n) do
f i r e output P.send(m1);

follow P.traj , C.traj , T.traj duration b;

f i r e output C.receive(m1);

follow P.traj , C.traj , T.traj duration (u1 -b);

count := count + 1

od;
% failure

f i r e input P.fail;

follow P.traj , C.traj , T.traj duration u2 - (u1-b);

% detection

f i r e output T.timeout;

follow P.traj , C.traj , T.traj duration \infty;
od

Automaton initialized

1: trajectory P.traj , C.traj , T.traj for 5.0 units

2: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

3: trajectory P.traj , C.traj , T.traj for 2.0 units

4: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

5: trajectory P.traj , C.traj , T.traj for 3.0 units

6: output transit ion P.send(m1), connected to:

input transit ion C.send(m1)

7: trajectory P.traj , C.traj , T.traj for 2.0 units

8: output transit ion C.receive(m1), connected to:

input transit ion T.receive(m1)

9: trajectory P.traj , C.traj , T.traj for 3.0 units

10: input transit ion P.fail

11: trajectory P.traj , C.traj , T.traj for 5.0 units

12: output transit ion T.timeout

13: trajectory P.traj , C.traj , T.traj for Infinity units

No more steps

No errors

Figure 4-8: Failure Detection System with schedule in the composition

54

4.3 Paired Simulation

Paired simulations enable testing of simulations relation which indicate the relationship

between the states of an implementation and a specification. If a simulation relation

is proved, the implementation system is then shown to satisfy the specifications and its

properties. Proving a simulation relation usually requires showing for each step of the

implementation starting from an implementation state that is related to a specification

state, which sequence of steps should be taken by the specification system to result in a

new state that is also related to the implementations’s new state.

Both the simulation relation and its proof steps are not always easy to come up with,

and are certainly very hard for a program to discover them automatically. They must

therefore be provided to the Paired Simulator. In the following subsections we show an

example of a system’s specification, implementation, and a simulation relation. The system

is the Failure Detection system which has already been implemented and simulated in the

previous sections.

4.3.1 Failure detection specification

In Figure 4-9 we provide an abstract specification of the failure detection system. The

system is specified as a single process that might fail and timeout. It keeps track of two

flags, suspected and failed that carry the same meaning as in the implementation system.

The last_timeout variable indicates the latest time a timeout transition should occur, and

now grows at the same rate as real time. When a failure occurs, we set fail to true and

last_timeout to now + u2 + b and when a timeout occurs we set last_timeout to \infty and

suspected to true. The trajectory must stop if a failure has occurred, a timeout has not

occurred and now has reached the last_timeout.

4.3.2 Failure detection implementation

Figure 4-10 provides the implementation of the Failure Detection system, in an “expanded”

composition form. This means that we have transformed our composition automation into

a primitive one by: (a) encapsulating the state of each component in the state of the

composition (b) merging transitions by conjunctions of the preconditions and composition

of the effect programs and by (c) merging the trajectory definitions by disjunctions of

55

automaton FDSpec(u1,u2,b:Real)

where (u1 + b) < u2

signature
internal fail

output timeout

states
last_timeout:

AugmentedReal := \infty ,
now : AugmentedReal := 0,

suspected: Bool := false ,

failed: Bool := false

transit ions
internal fail

pre ¬failed
e f f failed := true;

last_timeout :=
now + u2 + b

output timeout

pre failed ∧ ¬suspected
e f f suspected := true;

last_timeout := \infty

tra jector ies
trajdef traj

stop when
failed ∧
¬suspected ∧
now = last_timeout

evolve
d(now) = 1

invariant S of FDSpec:

now ≥ 0;

suspected ⇒ failed;

failed ∧ ¬suspected ⇔
\infty 6= last_timeout;

now ≥ 0 ⇒ now ≤ last_timeout;

(now + u2 + b) ≥ 0 ∧
\infty 6= last_timeout ⇒

last_timeout ≤ (now + u2 + b)

Figure 4-9: Failure Detection System Specification

the stopping conditions and compositions of the evolve classes. This step was necessary

because the current version of the TIOA simulator does not support paired simulations

among composite automata.

The implementation system is also accompanied by a schedule that will drive the

execution of both systems during the paired simulation. This is identical to the schedule in

Figure 4-8. The invariant of the specific implementation is also provided.

4.3.3 Forward simulation

The relation among the states and the step correspondence can now be specified and tested.

The relation itself is a set of predicates relating the states of the implementation and the

specification. The step correspondence is provided in a proof block (the name implies the

fact that an actual proof would specify these step correspondences as well). Providing the

implementation automation and schedule, specification automation and forward simulation

with the step correspondence as those of Figure 4-11 in a file allows us to perform a paired

simulation. A trace from the paired simulation with u1 = 5, b = 2, u2 = 8 is shown in

Fig 4-11.

56

vocabulary Composition

types M enumeration[nil , m1]

TimedM tuple [message: M, timestamp: AugmentedReal]

PeriodicSend2 tuple [failed: Bool , clock: AugmentedReal]

TimedChannel tuple [queue: Seq[TimedM], now: AugmentedReal]

Timeout tuple [suspected: Bool , clock: AugmentedReal]

automaton FDImpl(u1,u2,b:Real)

where (u1 + b) < u2

imports Composition

signature
internal fail

internal send(m: M)

internal receive(m: M)

output timeout

states
P: PeriodicSend2 := [false , 0],

C: TimedChannel := [{}, 0],

T: Timeout := [false , 0]

transit ions
internal send(m)

pre ¬P.failed ∧ P.clock = u1

e f f P.clock := 0;

C.queue :=
C.queue ` [m, C.now + b]

internal fail

e f f P.failed:= true

internal receive(m)

pre head(C.queue). message = m

e f f C.queue := tail(C.queue);

T.clock:=0;

T.suspected:= false

output timeout

pre ¬T.suspected ∧
T.clock = u2

e f f T.suspected := true

tra jector ies
trajdef traj

stop when
(C.queue 6= {} ∧
head(C.queue). timestamp =

C.now) ∨
(¬T.suspected ∧

T.clock = u2) ∨
(¬P.failed ∧ P.clock = u1)

evolve
d(P.clock) = 1;

d(C.now) = 1;

d(T.clock) = 1

schedule
states

count: Nat := 0,

n: Nat :=2

do
follow traj duration u1;

% Send n rounds of messages

while (count < n) do
f i r e internal send(m1);

follow traj duration b;

f i r e internal receive(m1);

follow traj duration (u1 -b);

count := count + 1

od;
% failure

f i r e internal fail;

follow traj duration u2 - (u1-b);

% detection

f i r e output timeout;

follow traj duration \infty
od

invariant I of FDImpl:

C.now ≥ 0;

C.now ≥ 0 ∧ C.queue 6= {} ⇒
C.now ≤

(head(C.queue)). timestamp;

(C.now + u2) ≥ 0 ∧ ¬T.suspected ⇒
T.clock 6= \infty ∧ T.clock ≤ u2;

(C.now + u1) ≥ 0 ∧ ¬P.failed ⇒
P.clock 6= \infty ∧ P.clock ≤ u1;

∀ n: Nat (n < len(C.queue) ⇒
C.queue[n]. timestamp ≤

(C.now + b));

b ≥ 0 ∧ ¬ P.failed ⇒
(i f C.queue 6= {}

then (head(C.queue)). timestamp <
(T.clock + (C.now + u2))

else (P.clock + b) <
(T.clock + (C.now + u2)));

T.suspected ⇒ P.failed

Figure 4-10: Failure Detection System Implementation

57

forward simulation from FDImpl to FDSpec:

% Simulation Relation

FDImpl.P.failed = FDSpec.failed;

FDImpl.T.suspected = FDSpec.suspected;

FDImpl.C.now = FDSpec.now;

(¬FDSpec.failed ⇒ FDSpec.last_timeout = \infty);
((FDSpec.failed ∧ FDImpl.C.queue 6= {}) ⇒
∀ k: Nat (k < len(FDImpl.C.queue) ⇒

FDSpec.last_timeout ≥ FDImpl.C.queue[k]. timestamp));

((FDSpec.failed ∧ FDImpl.C.queue = {}) ⇒
FDSpec.last_timeout ≥ FDImpl.T.clock)

% Step Correspondence

proof
for internal send(m: M) ignore
for internal receive(m: M) ignore
for internal fail do f i r e internal fail od
for output timeout do f i r e output timeout od
for trajectory traj duration x do follow traj duration x od

Automaton initialized

1: trajectory FDImpl.traj for 5.0 units

trajectory FDSpec.traj for 5.0 units

2: internal transit ion FDImpl.send(m1)

3: trajectory FDImpl.traj for 2.0 units

trajectory FDSpec.traj for 2.0 units

4: internal transit ion FDImpl.receive(m1)

5: trajectory FDImpl.traj for 3.0 units

trajectory FDSpec.traj for 3.0 units

6: internal transit ion FDImpl.send(m1)

7: trajectory FDImpl.traj for 2.0 units

trajectory FDSpec.traj for 2.0 units

8: internal transit ion FDImpl.receive(m1)

9: trajectory FDImpl.traj for 3.0 units

trajectory FDSpec.traj for 3.0 units

10: internal transit ion FDImpl.fail

internal transit ion FDSpec.fail

11: trajectory FDImpl.traj for 5.0 units

trajectory FDSpec.traj for 5.0 units

12: output transit ion FDImpl.timeout

output transit ion FDSpec.timeout

13: trajectory FDImpl.traj for Infinity units

trajectory FDSpec.traj for Infinity units

No more steps

No errors

Figure 4-11: Failure Detection System Forward Simulation

58

Chapter 5

Discussion and Future Work

We discuss in this chapter some of the alternative directions the TIOA Simulator might

have taken or could take in the future, as well as some suggestions on further improving

the tool in the future.

5.1 Discussion

Restrictions to evolve predicates The TIOA Simulator currently restricts the form

of evolve clauses to only simple differential equations of the form d(x) = constant. We

discuss in Section 2.1 that this was not a problem for the examples we came across. An

alternative solution, however, would be to allow the user to provide both the differential

equation and its general solution, which would allow the simulator to calculate the values

of the time-dependent variables. Further research is necessary, however, to make sure that

the simulator will still be able to check the stopping conditions as well.

Scheduling input actions The TIOA Simulator allows firing input actions within an

automaton’s schedule. It might not be clear why an automaton’s schedule is in control of its

inputs. One way to think of this is to imagine as if an external Environment automaton that

has the corresponding output actions exists, and a schedule in this Environment automaton

is firing these actions. Allowing input actions therefore provides an easier way for a user to

test their automata. A potential drawback of this decision is that the composite Simulator

ignores some input actions and does not ignore others. In particular, it ignores the scheduled

input actions that have corresponding output ones in other components of the system.

59

Another alternative could be to disallow firing input actions. This would result in simpler

semantics for composite simulations, since input actions are not allowed altogether. On the

other hand, this restriction will almost always require writing an Environment automaton

specifically for the purpose of providing inputs to the system.

IOA Simulator features that are not supported Some of the features of the IOA

Simulator are not part of the TIOA Simulator. We explain some of the reasons for each of

them below:

• Transition numbering (case identifiers). This feature allows simulating I/O

automata with multiple transition definitions for the same action. For the range

of examples we simulated this was not necessary, although it might become necessary

in the future. This should be an easy extension to the TIOA Simulator.

• The interface to the Daikon invariant detection system. The IOA Simulator

can optionally output information about the system as it is executed, to be fed into the

Daikon invariant detection system. We have not considered how information about

trajectory execution would be translated into Daikon input, so we did not expand this

tool.

• Smart fire. The IOA Simulator allows for a “smart fire” statement in a schedule,

which is simply the fire keyword for a special class of automata in which the actions

have no parameters. The IOA Simulator then finds the set of enabled actions and

fires one of them, chosen at random. The fact that most IOA (and TIOA) programs

in the literature have parametrized actions lead to the decision to not include this

feature, since it would not be used frequently.

60

5.2 Future Work

In this section we propose some of the important extensions to the TIOA Simulator that

have not been yet implemented and would ideally be implemented in the future.

Nested composition Limitations in both the TIOA Checker and Simulator’s implementation

do not currently allow “nested compositions”, i.e. simulation of a composite automaton

whose components are also composite. This is certainly a limitation since it disallows

multiple levels of composition, and a future extension to the Simulator should enable this

feature.

Paired simulation of composite automata As illustrated in the failure detection

example in Figure 4-10, paired simulation is currently restricted to primitive automata.

It should be easy to extend the TIOA Simulator to support paired simulations where at

least the implementation automaton is a composition of multiple automata.

Component referencing Declaring and using multiple components using an index is not

currently implemented. Even though the Simulator supports creating multiple instances

of an automaton, the user has to name each instance with a unique name and use that

name within the schedules. A useful extension would be to use the parameters used for

each instance as the reference names instead of the user-provided names. For example,

suppose we create n instances of an automaton P(i: Int), with the values 1...n for the

formal parameter i. A particular component could then be referenced within the composite

automaton’s schedule by means of its index, e.g. P(0). This would make schedules with

large numbers of instances of the same automaton cleaner and shorter.

Graphical user interface A plug-in for the Eclipse Integrated Development Environment

is under development. In the future, the prototype GUI of the TIOA Simulator (see

Appendix A.3) can be merged into this plug-in.

In addition, one could assess different ways of displaying the results of the simulation.

For example, an alternative way to displaying the execution trace is to display the actions

of each automaton in a “time-line”. The length of the time-line between two actions would

61

be representative of the time that has passed between them. That portion of the line could

also be labeled with the name of the trajectory that was followed. For composite automata,

multiple parallel time-lines could be used, one for each component. Connected (shared)

actions could be shown by drawing a link between the output action and the corresponding

input ones. An example of how such a time-line could look like is shown in Figure 5-1

PerSend

Channel
se
nd
(m
1)

se
nd
(m
1)

timepass

empty

Timeout

3 units

notsuspected re
cv
(m
1)

re
cv
(m
1)

notsuspected

nonempty

timepass

2 units

Figure 5-1: An example “time-line” view of an execution

62

Chapter 6

Conclusions

This Master’s Thesis describes the design, implementation, and usage of the TIOA Simulator,

a tool for testing and analyzing complex distributed systems. Based on the Timed Input/Output

Automaton framework, the TIOA Simulator executes automata written in the TIOA Language.

A set of restrictions and language extensions make execution of timed I/O automata possible

with minimal additional effort from the user. The Simulator features simulation of both

primitive and composite automata, as well as paired simulation of two related automata.

Simulation of TIOA is useful in the process of testing the proposed system over a specific

set of executions. During the executions the Simulator is able to test proposed invariants

and show that a proposed relation between the system’s implementation and its specification

is indeed a simulation relation. Testing the system, its invariants and its relation with the

specification greatly increases the confidence about the system’s correctness. Moreover,

a formal verification of the system becomes easier since the proof strategies will follow

naturally from the validated invariants, simulation relation and the step correspondence

that drives the testing of the simulation relation.

The TIOA Simulator can therefore be used to find any problems of the system’s implementation

or specification, help the developer gain a better understanding of the system, facilitate

verification and extract performance predictions such as message complexity. The combined

use of the TIOA Simulator with the TIOA Checker and model checking or theorem proving

tools provides a common formal framework for specifying, testing, and verifying complex

distributed systems.

63

64

Appendix A

Configuration

A.1 Loading Runtime Classes

This section describes the configuration of the TIOA Simulator to enable loading of the

runtime classes. Since TIOA allows users to specify their own data types and operators,

the TIOA Simulator allows users to write implementations for these new data types and

operators (in Java) and provides users a way to instruct the Simulator to locate and use

them in runtime.

A.1.1 Command-line configuration file

Runtime configuration can occur by loading the options from a file. The command-line

switch is -config <configuration file>. The file should contain the following options:

tioa.locationOfPackages:<list of paths to installation and to any other classes>

tioa.listOfPackages:<list of registration packages>

The paths should be absolute and the path separator should be the / character regardless

of the platform. A sample configuration file is shown in Figure A-1. In this configuration

the runtime classes are loaded from the TIOA Simulator’s installation directory.

tioa.locationOfPackages:/opt/TIOASimulator/classes/
tioa.listOfPackages:tioa.registry.java

Figure A-1: Sample runtime configuration file

65

A.1.2 Default configuration file

A user can install a default configuration file that will be loaded every time the TIOA

Simulator is run without the -config option.

The structure of the file is identical to that of a configuration file. The file should be in

the user’s home directory 1, under the name “.tioa”

A.2 Command-line Options

The TIOA Simulator expects the following command-line arguments:

[flags] <number of steps> [<automaton to simulate>] <tioa file>

A set of optional flags can be used to configure simulation. These flags are defined

below:

• [-config <string>]+ Loads the given configuration file(s) for runtime class location

• [-dbg <string>]+ Enables debug information printing for a particular java class or

package, e.g. -dbg tioa.registry.ADT

• [-debug] Enables global debug information printing

• [-formals <string>] Loads the formal parameter initial values from the given file

• [-maxEnum <number>] Sets the largest value to include when enumerating infinite

types (currently only for enumerating Nat)

• [-outputTraces] Minimum level of verbosity: Output trajectories and only external

transitions and no state variables.

• [-outputTrans] Medium level of verbosity: Output all trajectories and transitions

and no state variables. Default level outputs all trajectories and transitions and only

modified state variables.

• [-outputState] Maximum level of verbosity: Output all trajectories and transitions

and all state variables.
1Usually /home/username in Unix and C:\Documents and Settings\username in Windows

66

• [-randComp] Composite Simulation: Choose which component to execute next randomly.

Default is round-robin.

A.2.1 Formal parameters

The user can provide values for any formal parameters for the automaton to simulate during

the runtime, using the -formals command-line option as shown above. The argument

expected is the location of a file that contains the name of each parameter, its type and

value, in the following syntax:

formals ::= ’(’ formal* ’)’

formal ::= ’(’ formalName formalADT formalValue ’)’

formalName ::= <identifier>

formalADT ::= <identifier>

formalValue ::= <number>

The name of the formal parameter as used in the automaton’s definition should be used

for formalName, for example u1. The formalADT is the Java name of the runtime class

that will be used for the formal parameter’s data type. For built-in types, this is usually

tioa.runtime.adt.<type>Sort, for example tioa.runtime.adt.IntSort. The formal’s

parameter value should be given in formalValue. Currently the simulator supports only

literal numbers as values. An example of a formal parameter file is given below:

((a tioa.runtime.adt.IntSort 3)

(b tioa.runtime.adt.RealSort 2))

A.3 Graphical User Interface

The command-line tool for the TIOA Simulator is useful for getting a trace of the execution,

but a graphical user interface can make it easier for the developer to follow through the

simulation, identify any problems and configure the simulation.

For this purpose we demonstrate a working prototype of a graphical user interface that

acts as an integrated development environment for TIOA. It allows editing multiple files at

67

the same time, provides syntax highlighting for TIOA and provides an interface to both the

TIOA Syntax and Semantic Checker as well as the TIOA Simulator.

A.3.1 Checking specifications

A “Check” action, accessible from both the menu and the toolbar checks the specification

for errors and displays the results in the “Problems” console. Checking the specification

also results in displaying an outline of the specification in the left-hand side panel. The

outline displays all the automata with their state variables, transitions and trajectories.

A.3.2 Simulation

For simulation we provide both a “step-by-step” action as well as a “run” action. The “step-

by-step” action executes one step of the automaton and pauses. The user can continue with

the next step by repeating the action. Step-by-step simulation can be interrupted at any

point with the “Stop” action. The output of the simulator is shown in the “Simulation”

console. At each step, the runtime values of the state variables are displayed in the “runtime

value” column of the outline. The variables that were modified in the last step are displayed

with bold typeface.

For quickly executing the simulation up to a maximum number of steps, the “Run”

action can be used. The output of the simulation will appear in the “Simulation” console

and the runtime values at the end of the execution will be visible in the outline.

Before the simulator begins executing, a simple dialog window will provide the user

with the configuration options of the TIOA Simulator. In particular, it will provide a

list of all the automata in the specification and ask the user which one to be used for the

simulation, and also ask for other options such as the location of the formal parameter initial

values file, the maximum number of steps to be taken, and the verbosity level of the output.

Figures A-2, A-3, A-4 provide some screen shots of the Simulator’s Graphical User

Interface showing the outline view, the configuration dialog and the step-by-step features

68

respectively.

Figure A-2: The TIOA GUI with syntax highlighting and the outline view

Figure A-3: The TIOA GUI simulation configuration dialog

69

Figure A-4: The TIOA GUI step-by-step simulation

70

Appendix B

TIOA Extensions

B.1 NDR Language

Automaton

simpleBody ::= ’signature’ formalActionList+ states transtions

trajectories tasks? schedule?

schedule ::= ’schedule’ states? ’do’ NDRProgram ’od’

Scheduling

NDRProgram ::= NDRStatement;*

NDRStatement ::= assignment | NDRConditional | NDRWhile |

NDRFire | NDRFollow | NDRYield

NDRConditional ::= ’if’ predicate ’then’ NDRProgram

(’elseif’ predicate ’then’ NDRProgram)*

(’else’ NDRProgram’)? ’fi’

NDRWhile ::= ’while’ predicate ’do’ NDRProgram ’od’

NDRFire ::= ’fire’ (’input’ | ’output’ | ’internal’) actionName

actionActuals?

NDRFollow ::= ’follow’ trajectoryName ’duration’ term

NDRYield ::= ’yield’ term

Choice

choose ::= ’choose’ (variable (’where’ predicate)?) | NDRchoice

NDRchoice ::= ’det’ ’do’ NDRProgram ’od’ | NDRYield

71

Simulation Relations

simulation ::= (’forward’ | ’backward’) ’simulation’ ’from’

automatonName ’to’ automatonName ’:’

predicate

Proof?

Proof ::= ’proof’ states? (’initially’ (variable ’:=’ term);+)?

ProofEntry+

ProofEntry ::= ProofTransEntry | ProofTrajEntry

ProofTransEntry ::= ’for’ (’input’ | ’output’ | ’internal’)

actionName actionFormals?

((’do’ ProofProgram ’od’) | ’ignore’)

ProofTrajEntry ::= ’for’ ’trajectory’ trajName ’duration’

durationVariable ’:’ durationType

ProofProgram ::= ProofStatement;+

ProofStatement ::= assignment | ProofConditional | ProofWhile |

ProofFire | ProofFollow

ProofConditional::= ’if’ predicate ’then’ ProofProgram

(’elseif’ predicate ’then’ ProofProgram)*

(’else’ NDRProgram’)? ’fi’

ProofWhile ::= ’while’ predicate ’do’ ProofProgram ’od’

ProofFire ::= ’fire’ (’input’ | ’output’ | ’internal’) actionName

actionActuals? (’using’ (term ’for’ variable),+)?

ProofFollow ::= ’follow’ trajName ’duration’ term

72

Bibliography

[1] Andrej Bogdanov. Formal verification of simulations between I/O automata. Master’s

thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, September 2001.

[2] Anna E. Chefter. A simulator for the IOA language. Master’s thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, May 1998.

[3] Laura G. Dean. Improved simulation of Input/Output automata. Master’s thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, September 2001.

[4] Stephen Garland. TIOA user guide and reference manual. Manuscript, September

2005. URL http://tioa.csail.mit.edu/public/Documentation/Guide.doc.

[5] Stephen J. Garland and Nancy A. Lynch. The IOA language and toolset: Support

for designing, analyzing, and building distributed systems. Technical Report

MIT/LCS/TR-762, Laboratory for Computer Science, Massachusetts Institute of

Technology, Cambridge, MA, August 1998. URL http://theory.lcs.mit.edu/tds/

papers/Lynch/IOA-TR-762.ps.

[6] Dilsun Kaynar, Nancy Lynch, Sayan Mitra, and Stephen Garland.

The TIOA language. Manuscript, October 2004. URL

http://theory.lcs.mit.edu/tds/papers/Kirli/TIOALanguage.pdf.

[7] Dilsun Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. The theory

of timed I/O automata. Synthesis Lectures on Computer Science, Morgan Claypool

Publishers, 2005.

73

[8] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata. CWI-

Quarterly, 2(3):219–246, September 1989. Centrum voor Wiskunde en Informatica,

Amsterdam, The Netherlands. Technical Memo MIT/LCS/TM-373, Laboratory for

Computer Science, Massachusetts Institute of Technology, Cambridge, MA, November

1988.

[9] J. Antonio Ramırez-Robredo. Paired simulation of I/O automata. Master’s thesis,

Department of Electrical Engineering and Computer Science, Massachusetts Institute

of Technology, Cambridge, MA, September 2000.

[10] Edward Solovey. Simulation of composite I/O automata. Master’s thesis, Department

of Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, September 2003.

[11] Joshua A. Tauber. Verifiable Compilation of I/O Automata without Global

Synchronization. PhD thesis, Department of Electrical Engineering and Computer

Science, Massachusetts Institute of Technology, Cambridge, MA, September 2004.

[12] Joshua A. Tauber and Stephen J. Garland. Definition and expansion of composite

automata in IOA. Technical Report MIT/LCS/TR-959, Laboratory for Computer

Science, Massachusetts Institute of Technology, Cambridge, MA, July 2004. URL

http://theory.lcs.mit.edu/tds/papers/Tauber/MIT-LCS-TR-959.pdf.

[13] Michael J. Tsai. Code generation for the IOA language. Master’s thesis, Department of

Electrical Engineering and Computer Science, Massachusetts Institute of Technology,

Cambridge, MA, June 2002.

[14] Toh Ne Win. Theorem-proving distributed algorithms with dynamic analysis. Master’s

thesis, Department of Electrical Engineering and Computer Science, Massachusetts

Institute of Technology, Cambridge, MA, May 2003.

[15] Toh Ne Win, Michael Ernst, Stephen Garland, Dilsun Kirli, and Nancy Lynch. Using

simulated execution in verifying distributed algorithms. International Journal on

Software Tools for Technology Transfer (STTT), 4:1–10, 2003.

74

