Reading: 6.3-6.6, Ch. 7

Next:

Last time: Distributed agreement with stopping failures

Simple alg:
- Send whole set
- Send first 2 sets
- E1E

Lower bd: \(f+1 \) sets.

Proved by constructing a chain of execs, each with \(\leq f \) failures,

1st wrt dec. value 0; last 1, \(f \) any careless, pair looks

same to some non-faulty process.

(\(n \), look same to all-but-one process)

Today: On to Byzantine (most case failures)

Recall problem: Byz m-mode complete undirected graph

Agreement: No 2 nonf ports decide differently.

Val: If all nonf have same init, then all nonf that is the

only possible decision value

Term: All nonf. ports eventually terminate
Byzantine failures: (worst-case failures)

- node complete graph

We'll see

EIG algorithm:

- Exponential comm. (in 1)
 - $f+1$ nds
 - as also $m > 3f$

Example:

Suppose p_1, p_2, p_3 solve BA and tolerate 1 failure.

Consider (in this example only) restricted case where

- algorithm consists of 2 rounds
- each sends its own val in rd 1 + what the other process told it in rd 2

(similar to EIG structure)

Exec. 1:

1. $1 + 2$ nonfaulty, init val 1
2. 3 faulty, start with 0

rd 1: all act correct

rd 2: p_3 lies + tells p_1 that p_2 sent 0 in rd 1

Then validity requires that both $1 + 2$ decide 1.
x₂: Symmetric:
 2: nonfaulty, start with 0
 1: faulty, start with 1
 rd 1: all act correct
 rd 2: p₁ lies, tells 3 that 2 sent 1

All symmetric, now validity requires that both 2 + 3 decide 0.

Now get a contradiction by mixing up these 2 executions:

x₃: 1 + 3 nonf., start with 1 + 0 resp.
 2: faulty
 rd 1: 2 tells 1 its initial value = 1
 tells 3 "..." = 0
 inconsistent
 rd 2: all relay truthfully.

Notice
 x₃ 1 ≠ x₁
 x₃ 1 ≠ x₂
 x₃ 1 ≠ x₃
 So p₁ believes same in both, decides 1 in x₃

Contradicts agreement.

This wasn't a formal proof, but could be cast that way.
It shows that no alg. of this form 3 fronts, 2 relays
send + relay
what can way is the
can solve BA with 1 failure. Decision rule: keep no
rule will work
Note: The provs can tell something is wrong

correct

E.g. in p_1, p_1 sees that 3 sends 1

but

3 tells it 2 sent 0

So p_1 can tell that either p_2 or p_3 is faulty.

But doesn't know which.

Since alg. has to tolerate 1 fault, has to decide something, but

nothing works right in all possible cases.

Can extend the idea of this detailed construction to prove that 3 provs

can't solve BA for 1 failure (any form of alg., any number

of rds).

Come back to this after showing the EIG algorithm.

EIG alg for BA

Assumes $m > 3f$ (recall didn't need this for stopping alg.)

Same EIG tree, propagate values as before, $f+1$ rds

(but now provs should "throw away" any "ill-formed" msg +)

replace with 1

Now use different decision rule:

Replace all 1 with default value v_0.

Decorate nodes again, this time bottom-up, with new vals:

Leaf: $\text{neural}(x) = \text{val}(x)$

Non-leaf: $\text{neural}(x) = \begin{cases} \text{majority of children}, & \text{if exists} \\ v_0, & \text{else} \end{cases}$

Final decision $= \text{neural}(\lambda) \quad (\text{root label})$
Example: \[T_{4,1} \]

Label with values in several (here, 2) rounds:
- \[p_3\text{ faulty} \]
- Can get:

Then each separately calculates new-val, bottom-up, choosing majority values, default if no strict majority.
Use new-val at top as decision.

Here: \[v_0 = 0 \text{ (default)} \]
Correctness:

Lemma 1: If i, j, k nonfaulty, then $\text{val}(x)_i = \text{val}(x)_j$ for every label x ending in k.

Above modes x are

\[1 \quad 2 \quad 3 \quad 4 \]

If i sends same to both, + they "decide" accordingly. (on the way down)

Lemma 2: If x ends with nonf. process index, then $\exists v$ such that

$$\text{val}(x)_i = \text{neural}(x)_i = v$$

for all nonfaulty i.

Above, any of the x modes have $\text{val} = \text{neural} = \text{same everywhere}$.

Pf: Induction on lengths of tree labels, from leaves up.

Basis: Leaf.

Then Lemma 1 implies all nonfaulty have same $\text{val}(x)$, so v.

+ $\text{neural} = \text{val}$ for leaves.

Inductive: $|x| = r \leq f$ \hspace{1cm} ($|x| = f+1$ at the leaves)

Again, Lemma 1 implies all nonfaulty have same $\text{val}(x)$, so v.

But need $\text{neural}(x)$ same too.

Every nonf. proc. has same v for x at $\text{val}(x+1)$, so

$$\text{val}(x+1)_i = v$$

for all nonfaulty i and i.

By inductive hypothesis, also $\text{neural}(x+1)_i = v$ for all nonf. i.

Claim majority of labels of x's children and with nonf. process indices:

Counting: \# of children $\geq m - f > 3f - f = 2f$

Only f faulty

So majority rule applied by i leads to $\text{neural}(x)_i = v$, for all nonfaulty i.

\[\boxed{} \]
This is already enough to see validity:

Validity: If all begin with V, then nonf. start V at rol 1,
so $\text{val}(j)_i = V$ for all nonf. i, j.

By Lemma 2, also $\text{neural}(j)_i = V$ for all nonf. i, j.

Majority rule implies neural $(x)_i = V$ for all nonf. i.

So i decides V.

Agreement: Needs a little more work.

Path covering: (of a tree) Subset of nodes containing at least one node on each path from root to leaf.

Common mode: One for which all nonf. roots have same neural.

(Does not necessarily end in nonf. root index)

Lemma 3: 3 path covering all of whose nodes are common.

Proof: Let $C = \text{all modes with labels of the form } x_i, i \text{ nonfaulty}.$

Lemma 2 implies these are common.

$
\leq 1 \text{ failures means these form a path covering}$

(each path contains $j+1$ distinct indices, j at least one must be nonfaulty)

Now show that common modes "propagate up the tree":

Lemma 4: If there is a common path covering of subtree rooted at x (any node) then x is common.
Pf: Induction, from bases up.

Base: If \(x \) is a leaf, the only p.c. of subtree is \(x \) itself.
So \(x \) is common, as needed.

Inductive step: \(1 \times 1 = n \leq f \)

Suppose \(\exists \) common p.c. \(C \) of \(x \)'s subtree.

If \(x \in C \), done.

If \(x \notin C \), then \(C \) includes a p.c. for each top-level subtree

(rooted at a child of \(x \))

say \(x_l \)

By ind. hypothesis, each such \(x_l \) is common.
So, all children of \(x \) are common.
Then def of neural implies \(x \) is common.
(all use same data to compute it)

Therefore, \(x \) is common.

Theorem: BA correct (recap)
Pf: Zem: Obvious

Validity: already argued
agreement: because \(x \) is common

Complexity: As for E16, in stopping model.
Plus \(n > 3f \) requirement.
Now show why we have to have \(m \geq 3f \) to solve BA.

Number of processes for BA:

- **Alg. requires** \(m \geq 3f \)
- Can prove as a lower bound - holds for any graph with \(m \) nodes.
- But for graphs with low connectivity, may not even be able to tolerate this many failures.

Number of failures that can be tolerated for BA in an undirected graph is completely characterized

- Depends on combination of \# of nodes + connectivity.

Start by showing 3 proc cannot solve BA with 1 fault.

Proof: By contradiction.

- Suppose Alg. A, proc 1, 2 + 3, solves BA in 1 fault.
- Construct new system 5 of 2 copies, start off with init values as follows:

![Diagram of system 5](image)

- What is 5? A synchronous system of some kind, but not required to satisfy any special card. cards.
- But we can use it in getting a contradiction anyway.

Start with 0's, 1's as above.

Runs, does something.

- Consider \((2 + 3)\). Looks like:
- In \(\Delta \), must decide 0.
- So they do in 5 also.
Consider 3 + 1: Must agree in A vs S.

But one dec. 0 and the other 1, in S.

Contrad.

Discuss

Even get the contradiction if the original algorithm is allowed to "know n".

This just means the passes in A have 3 million someplace...

... and their validity + agreement + termination conditions are only required to hold if they actually are placed in a A.

But that's all we used in the proof!

That's $3 \neq 1$.

But the same idea extends to $3f$ vs f for any f.

Can do a similar construction, with f passes playing the role of each 1.

Or, can do a reduction: Show how to transform a $3f$ vs f solution

to a $3vs1$ solution.

Since we already know $3vs1$ doesn't exist, that yields a contradiction.

If $m = 2$, easy to see impossible? LITR

$0 \leq \frac{2}{2}$

Each can be faulty, requiring 0, 1 resp.

On both non-faulty, requires \ldots
So assume $3 \leq m \leq 3f$, solve A.
Transform to B, solving $3m > 1$.
Partition A's procs into 3 groups, each $1 \leq i \leq f \lor i \in I_1, I_2, I_3$.
Each of the 3 procs simulates 1 group.
Initializes all with the input value.

Each round: Simulate sending of msgs:
- Local: just sim
- Remote: package + send

If any simulated process decides, decide same.

Consider exec. of B with ≤ 1 fault.
" Mimics" execution of A with $\leq f$ faults.
So agreement, validity, termination must hold for the emulated execution.

Show properties carry over to B's exec.

Termination: If i is monf. proc of B, then simulates at least 1 (monf) proc of A. So terminates, so i does.

Validity: If all monf. procs of B start with v, then so do all monf. procs of A. Validity for A then implies all monf. decide v, so part in B.

Agreement: If i, j monf. procs of B, simulate only monf. procs of A. Agreement in A implies these all agree, so $i \leftrightarrow j$ agree.