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ABSTRACT

Chapter 1 presents an introduction to aspects of critical phenomena,
explored in the remainder of the thesis. The emphasis is placed on the
scaling hypothesis and the renormalization group.

Chapter 2 describes the application of the scaling hypothesis to
asymmetric systems such as single-component fluids. When the
symmetry and regularity properties characteristic of magnetic materials
cannot be assumed, the scaling hypothesis predicts various asymmetries
and singularities. In particular, it predicts that the curvature of the
vapor pressure curve should be strongly divergent and that the specific
heat has a leading order asymmetry across the coexistence surface. Even
if further assumptions are made to remove these singularities, the
critical isochore above the critical temperature must have a weakly
singular curvature.

Chapter 3 defines a class of systems more general than scaling systems,
which share many of the geometrical properties of systems satisfying
a scaling hypothesis. The notion of critical points of higher order is
discussed and a tentative classification system for such points is proposed.

Chapter 4 consists of calculations with the renormalization group of
scaling powers and critical point exponents. The corrections to the
mean-field values of these exponents are calculated for magnetic-like
systems with e" simultaneously critical phases.

Chapter 5 discusses nonlinear solutions of renormalization group
equations. By solving nonlinear equations, the competition between
different kinds of critical behavior. We describe the crossover from
asymptotically valid critical behavior to mean-field behavior for an
n-component ferroma.gnet. We also study a. system of anisotropically
interacting 2n-components spins. This system has a renormalization
group solution diagram similar to phase diagrams of systems exhibiting
tricritical and fourth order critical point behavior.
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CHAPTER 1

INTRODUCTION TO SELECTED ASPECTS OF CRITICAL

PHENOMENA



I. Introduction

This thesis consists of separate papers on various aspects of

critical phenomena. The last decade of research in critical

phenomena has been an extremely productive combination of concrete

model calculations, data-analysis and phenomenological speculation

and classification. The progenitor of many apparently divergent

notions is the scaling hypothesis, and it is again the scaling

hypothesis that is the center of this work. In Chapter: , an

overview of the body of the thesis is given to provide an introduction

to each paper and to show the connections between them.

In Chapter , , the scaling hypothesis is discussed in detail for

systems with no obvious symmetries. This represents, in part, a

study of the application of the scaling hypothesis to fluid systems,

which lack the obvious symmetrics of simple ferromagnetic substances.

However, it also serves to provide a framework for the more general

systems discussed in later Chapters.

In Chapter .3 , a system of axioms is introduced which describes

systems which are more general than scaling systems but which share

many of their geometrical features. A classification of "higher order"

critical points on the basis of these "critically ordered" systems is given.

In Chapter ~ , renormalization group calculations for critical

point exponents at a critical point of order O-(i.e., a point at

whichC6 phases are simultaneously critical) is given for arbitrary

6'. Previously, such calculationshave been made in a tortuous manner

forc-=2 (ordinary critical point),>-=3 (tricritical point), and

C-=4 (fourth order point). As a derivation of scaling properties this

Chapter complements Chapter a 

In Chapter A, nonlinear calculations within the renormalization group



group are given. This nonlinear work in a sense justifies the critical

point exponents of Chapter 4 ; exponent calculations in the renor-

malization group represent a linearization of fundamentally highly

nonlinear equations. Furthermore, it is also shown that the nonlinear

solutions of the renormalization group equations incorporate both

the "higher order" critical points typified iy the "intersection of

critical subspaces", and the systems termed "critically ordered" in

Chapter 3 .

In the remainder of this Chapter introductions are provided for

each of the following Chapters. Section II corresponds to Chapter 

and describes the terminology used to describe ordinary critical

points. Section III (corresponding to Chapter 3 ) discusses the

notion of higher order critical points and in the perspective of the

mean field theory. The simplest example of a "critically ordered"

system is discussed as preparation for the extensive discussions of

Chapter 3.. In Section IV an introduction to the renormalization

group as applied to critical phenomena is given. The linearized

theory and its connection to the calculation of critical point

exponents is discussed. The corrections to mean field exponents for a

point of order & are derived in the corresponding Chapter 4 . In

Section V, the necessity of a nonlinear global approach to the renor-

malization group is shown as an introduction to the nonlinear calculations

of Chapter 5.
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II. Ordinary Critical Points

Griffiths and Wheelerl have shown the advantage of a geometrical

viewpoint of behavior near the critical point. We consider two similar

ordinary critical points: the liquid-vapor critical point of a single

component fluid (cf. Fig. la) and the Curie point of a simple

ferromagnet (cf. Fig. lb). Below the critical temperature T and

near the coexistence surface two different types of directions are

clearly distinguishable. If we follow a path which crosses the

critical surface, there are drastic changes in the order parameter

(the magnetization in the ferromagnetic case; for fluids it is more

complicated to define (cf. Chapter 2) but prototypically, the density).

On the other hand, on a path which is always tangent to the coexis-

tence surface, the variation in the order parameter is gradual.

Griffiths and Wheeler call the former direction "strong" and the latter

direction "weak". Note that only the weak direction is unique at

any point of the coexistence surface, since any direction not tangent

will cross the surface and be a strong direction.

In the magnetic case, the coexistence surface is defined by

H=O, T<T . Thus a direction along the temperature axis H=O is weak

and, for example, a path of constant temperature is strong.

It is perhaps not obvious that this distinction between weak and

strong directions persists as the critical temperature is approached

or above T . The discontinuity in the order parameter which marks

the phase boundary vanishes at the critical point itself, and is of

course identically zero above T . However, it is extremly profitable

to follow Griffiths and Wheeler and assume that the distinction holds

in some neighborhood of the critical point; presumably the weak direction

above T is at least asymptotically tangent to the phase boundary.
c
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We now compare the critical behavior of two response functions:

for the magnetic case the susceptibility and the specific heat.

The magnetic susceptibility is given by

(2.1)
T

while the constant field specific heat CH is given by

C H PG

T T
H) (2.2)

where G is the Gibbs free energy.

Comparing (2.1) and (2.2), we note that the susceptibility is given by

the differentiation of the Gibbs potential in a strong direction

(constant temperature). On the other hand, the specific heat is

generated by differentiation in a weak direction, along the line H=O.

Extrapolating the notions of weak and strong from the region below

Tc, Griffiths and Wheeler predict that, near the critical point the

susceptibility diverges more strongly than the specific heat,

CH IT ( X a (2.3)

This is supported by the experimental and series work which indicate

that near the critical point
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- v

H " T-T c | (2.4)

where -5/4, a 1/8.

The situation in the single-component fluid is similar, but some care

must be applied since the weak direction is neither a line of constant

temperature nor a line of constant pressure: both of these directions

are strong. The weak direction is asymptotically tangent to the critical

isochore and hence, is formed from some combination of temperature-like

and pressure-like directions (cf. Fig. lb). The details of the fluid

case are considered in detail in Chapter .

A more complicated geometrical picture is given by an anisotropic

Ising ferromagnet. A model that we will return to for many examples

is shown in Fig. 2 . Ising spins are arranged in layers of planes. The

in-plane interaction strength is denoted by J while the interaction

between the planes is RJ. A diagram in the field space (H,T,R) is shown

in Fig. lc. For all R>O the character of the critical point is unchanged;

that is although the critical temperature depends on the value of R, the

critical points exponents such as 4F and d do notand have the values

of the isotropic 3 dimensional Ising model . This, of course, cannot

be the case if R=O, since for that particular value of R, the system is

two-dimensional. At R=O, critical point exponents assume their two-

dimensional values. Similarly, for R= , system behaves one-dimensionally.

The special critical point at R=O will be considered in more detail

below (it represents a critical point of "higher order"). Our interest
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is focused, for the moment, on the smooth line of critical points

generated by the variation of R. At any one of these critical points,

a direction not parallel to the coexistence surface (labelled xl in

Fig. lc) is strong; a direction in the plane of the coexistence surface

but not tangent to the line of critical points (such as x2) is weak.

The direction both in the plane of the coexistence surface and tangent

to the line of critical points (3) is clearly distinct from any of

the weak or strong directions. Since the critical behavior is the

same (as regards exponents) along the entire line, Griffiths and

Wheeler term a direction such as X3 irrelevant. Differentiation in

the x 3 direction should not markedly change the nature of the singularity

of any theremodynamic function. At the point R=O, the variation along

the line of critical points is anything but irrelevant; this will be

discussed below.

Griffiths and Wheeler axiomatize these relations between strong,

weak and irrelevant directions. Strong directions carry the system

out of the coexistence surface; weak directions leave the system in

the plane of the coexistence surface but remove it from the space of

critical points or critical surface (a line in the case discussed above);

and finally, irrelevant directions leave the system in the critical

surface itself. We may now ask what mathematical models satisfy these

geometrical-analytic axioms.

The premier example of a system which obeys the Griffiths-Wheeler

axioms is a scaling system - 4 In the form we will employ, the scaling

hypothesis assumes that the portion of the Gibbs potential which determines

the behavior near the critical point is a generalized homogeneous function

(GHF). For the simple magnetic case, this means that
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G( H tt) A G(H,t) (2.5)

where we use tT-T . The constants aH and at are called the scaling

powers of H and t respectively. It is easy to check that if aH > a t > ,

then H is a stronger variable than T.

With the assumption of the scaling hypothesis, much more is

obtained than just a system obeying the Griffiths-Wheeler postulates.

Most important of the scaling results is the conversion of inequalities

relating several exponents to the corresponding equalities. All the

usual critical point exponents can be expressed as simple rational

functions of aH and at so that any inequality relating three exponents

must be an equality (if not tautologically true). For example, the

common exponents ,y and (defined by M (T -T) on the coexistence

surface below Tc) are given by

-a= (1-a.t)/at

-): (1-2aH)/at (2.6)

F= (1-aH)/at

Thus the Rutherford inequality is satisfied as an equality

a+2z3+ = 2 (2.7)
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We have confined the discussion of scaling to the magnetic

case because the fluid case to which scaling was originally applied

is far more subtle and complicated. A magnetic system is endowed

with a natural symmetry, H -H, M-* -M. This exact symmetry implies that

all thermodynamic functions have simple symmetric or multisymmetric

properties on the coexistence surface.

This in turn implies, as is shown in Chapter . , that the scaling

variables must be taken as exactly H and t. From Griffiths and Wheeler

we know only that the variable corresponding to the larger scaling

power is exactly H, since the coexistence surface is, by symmetry, on

the line H=O. Until the symmetry condition in M is applied we might

chose any combination of H and t for the variables corresponding to the

smaller of the scaling powers. Since the scaling is in the usual

variables H and t, it does not matter what thermodynamic potential we

choose as the basis function for a scaling hypothesis. The property of

being a GHF is preserved under Legendre transformation and differentiation

and integration, so that we may scale the magnetization, or the Helmholtz

or Gibbs free energy without loss of generality. Furthermore, we know

the exact form of the coexistence surface and the "isochore" H=O; they

both form parts of the line H=O.

None of this information is available even for the simplest fluid

system except by careful measurement. (i) Since the scaling variable

(or scaling fields) are not any of the usual thermodynamic variables

(but rather some function of them) not all thermodynamic functions can

be considered as candidates for scaling equations. (ii) Until the

variables are specified there is no obvious choice of an order parameter;

the choices P-Pc and V-V (where p and V are the critical point values

of the density and volume, respectively) are inequivalent, since a

coexistence surface symmetric in one will be asymmetric in terms of the



other. Furthermore, neither of these is the best candidate, but

rather combinations of the volume and entropy or density and entropy

density (see Chapter II). (iii) Without the symmetry of the magnet

either additional hypotheses have to be made, or experimental evidence

assembled, to describe the form of the coexistence surface and iso-

chore. (iv) Since fluid systems abound in asymmetries and singularities,

it may be necessary to emend the scaling equation of state itself to

incorporate all the observed phenomena. On the other hand, it is perhaps

possible to describe the system by a sufficiently carefully chosen

scaling equation with properly chosen scaling potential, scaling

variables, and forms for the coexistence surface and isochore.

In Chapter II, we give a systematic discussion of the scaling

hypothesis in single component fluid systems. To accomodate the

difficulties in (i)-(iv) we deal with a general potential of initially

arbitrary variables, i (Xl,x2). By applying the scaling hypothesis,

it is shown that x is restricted to conform with the Griffiths-Wheeler

axioms, that is the line x 1=O must be tangent to the critical isochore

and coexistence surface. The canonical order parameter of the system

upon which symmetry requirements are imposed is chosen to be (&Jxl),

the "density conjugate to the field xl"'. The asymmetry in the usual

thermodynamic "order parameters" such as the number density is used

to establish the form of x 2, the weak variable. The form of the

coexistence surface is assumed to be a scaling invariant as is natural

in a scaling theory; that is, on the coexistence surface, x and x2 are

related by

/x= A x a2 (2.8)= A_ Ix.1
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where a and a2 are the scaling powers at x and x2 (al>a2) and A is

a constant)possibly zero. The critical isochore, however, is shown

never to be a scaling invariant (since neither the density nor the

volume is proportional to the canonical order parameter /axl); a more

complicated form than (2.8) must be chosen, but with a scaling invariant

leading term, A X2a
l/a2.

The use of the scaling invariant form (2.8) for the coexistence

surface as the most singular part of the isochore has the consequence

of satisfying another exponent inequality as an equality. The exponent

is defined by the behavior of the coexistence surface when expressed

in terms of the variables P and T, ( P/)T') "uT-Tc O. Griffiths

proved the inequality

9e a+: (2.9)

The form given in (2.8) satisfies the inequality as an equality,

Oe=ccaB, if A++O. A second consequence of non-zero A is that the specific

heat, C is not symmetric across the coexistence surface, even to leading

order; the asymmetry is proportional to A (T -T) .
- c

Present experimental evidence indicates that the isochore of a

simple fluid is smooth when expressed in terms of the chemical

potential (T). This in turn implies that the divergence of the vapor

pressure curve must be the same as the divergence of the specific heat.

That is, we must have

e =ca (2.10)



and therefore A=O, and the appropriate scaling choice is to scale

the pressure as a function of T and . This analyticity does not

constitute a "failure" of scaling since it is included in the invariant

form (2.8). However, it is somewhat disconcerting that the scaling

invariant constraint does not apply in a non-trivial manner. In other

phenomenological studies of scalings systems, scaling invariant paths

such as (2.8) have been employed to predict the geometrical properties

near certain "higher order" critical points such as the tricritical

point of a metamagnet (see discussion in Sec. III). Thus the failure

of (2.8) to hold with non-zero A may indicate that the geometrical

predictions of Ref 6 may not be valid.

Even in the absence of the scaling invariant term (A+=O), the

critical isochore above the critical temperature cannot be analytic.

A weak singularity of the form

1 x3-2 (2.11)

is predicted from the scaling hypothesis.



III. Critical points of "higher order", Generalization of the Scaling

Hypothesis and Classifications of critical points.

The ordinary critical point, although in itself a rich system, is

not sufficiently diverse to encompass all of critical phenomena.

Various terms have been used to describe new sorts of critical

points, bicritical, tricritical, tetracritical, critical points of

higher order, and so forth. No consensus on a systematic classification

system of more complicated points has been reached, but a few of the

more common hyper-critical points have established terminology and

description.

For example, in the anisotropic ferromagnet discussed in the

previous section, the special point R=O is called a critical point of

order four. To understand this definition, we must examine the system

more carefully. If we consider the same system, (in-plane interaction

J and between-plane interaction RJ) but with R negative, the system

forms a metamagnet with ferromagnetic ordering in each plane and

antiferromagnetic ordering on alternate planes (cf. Fig. 2 ). For a

particular value of R, this system has an ordinary critical point at

its Nel temperature TN . If a small uniform magnetic field is applied

the antiferromagnetic ordering can be disordered at a lower temperature.

Thus, in the H-T plane (cf. Fig. 3) there is a line of ordinary

critical points. The ferromagnetic coupling in each plane is sufficiently

strong that at some magnetic field strength the transition ceases to

be second order (in the sense of Gibbs) and becomes first order or

discontinuous. The point at which the smooth second order transition

changes to a first order transition is clearly a special critical point.

For reasons to be given below, this point is termed a tricritical point.

As R is decreased in absolute value, the phase diagram remains

qualitatively the same (as shown in Fig. 3a and Fig. 3b) with a Neel



temperature depending on R. The two tricritical points coelescs at R=O

(cf. Fig. 3c). The resulting figure in the H-T-R space for positive

and negative R is shown in Fig. 4. From the negative R side, there is

a surface of ordinary critical points, which is bounded by two lines of

tricritical points which intersect at the special point R=O.

The name tricritical was applied to the termination point of

the line of second order transitions by Griffiths who observed that

in an enlarged field space this point was formed by the intersection of

three lines of ordinary critical points. Returning to the meta-magnetic

model, we now apply a staggered magnetic field H' which alternates in

direction on alternate planes of spins, thus favoring one or the other

of the antiferromagnet orderings. Upon reaching the tricritical point,

instead of merely increasing the direct field H (and proceeding onto the

line of first order transitions) we may increase H and also apply the

staggered field H'. The staggered field conteracts the effect of

the direct field and wc mea continue along a line of second order transitions.

In the H-H'-T space, the phase diagram appears as in Fig. 5. The half-

moon coexistence surface bounded by the line of ordinary critical points

in the physical plane H'=O (cf. Figs. 3c 4), is augmented by two pairs

,,

of wings formed by coexistence surfaces between one of the antiferro-

magnetic phases and a paramagnetic phase between the wings. The lines

of critical points which border the wings intersect with the line of

critical points in the physical plane H'=O at the tricritical point.

The system when viewed in four-dimensional H-H'-R-T space is somewhat

difficult to visualize but is simplified by the symmetry of the system

with regard to the exchanging of H and H' while reversing the sign

of R. That is, a strict symmetry of the system is given by



H - H

R - -R (3.1)

s -(-1)Ps

which p is even and odd on alternate planes.

The point R=O, which is the junction of four tricritical lines is

called a point of order four t ,we kcoe the sequence of surfaces of

ordinary critical points (points of order two) intersecting in lines

of tricritical points (points of order three) which in turn intersect

in a point of order four.

It is clear that with sufficient ingenuity, this process can be

continued indefinitely, with subspaces of order 0 intersecting to form

critical spaces defined to be of order +1l. Such a classification of

critical points has been proposed by Ref. 7 who also suggest that at

a point of order , & of the variables scale. That is, if there are

n fields or field-like variables (such as H, H', R, and T) then at a

critical point of order& the important part of the Gibbs free energy

(for example) is a GHF in Q&of the n variables. The scaling variables

are to be chosen to conform with the obvious generalization of the notions

of weak and strong for ordinary critical points. For example, along

a tricritical line of the system considered above, the direction

corresponding to the strongest variable (largest scaling power) is out

of the coexistence surface. The direction corresponding to the second

strongest variable (second largest scaling power) is in the plane of the

coexistence surface but not parallel to the surface of critical points

of order two. The third direction corresponding to the weakest scaling

variable (smallest scaling power) is in the critical surface but not



parallel to the line of tricritical points. Finally, the last

direction is along the line of tricritical points and corresponds to

an irrelevant or non-scaling variable. These notions of attaching

augmented scaling equations to these critical points of higher order

is supported by series calculations on the metamagnetic model.

Almost coincidentally, the order of a critical point as defined

above agrees both with the number of postulated scaling variables and

the number of phases that are mutually co-critical at that point. For

example, at the tricritical point (point of order three) between the

wings of the metamagnet, two antiferromagnetic phases and a paramagnetic

phase are simultaneously critical. At the point of order four, two anti-

ferromagnetic phases and two ferromagnetic phases are co-critical. To

see that this is indeed a coincidence we consider a Landau model which

models higher order critical behavior.

If we wish to consider a system with three phases, the corresponding

Landau free energy in a single variable M (this is one reason why this

discussion only mimics the real situation, since in most systems two

very different order parameters are competing to form the tricritical

point) can be represented by a polynomial of degree six in M. By a

shift in the origin of M, the coefficient of the i5term can be made to

vanish. Therefore, the free energy can be written as

F(X 1,X 2 ,X 3 , x4 , M)=

xM± 3 4 6 (3.2)
X M+x 2 MZ +x3M +x4M +M (32)

(The thermodynamic free energy is derived by minimizing F with respect to M.)

The tricritical point is reached when x-x 2=x3=x4=O. We therefore must

be in a four dimensional space to achieve tricriticality. The metamagnetic



system considered above bypasses this difficulty by the high degree of

symmetry in the order parameter. The reversal symmetry of the

Hamiltonian requires that x3 be identically zero, and thus, only x, x2

and x 4 need to be adjusted to reach tricriticality. The free energy in

(3.2) provides the Landau form of scaling;

F ( ,XaXY3 x ) 

~,F ( 5iX' ,>3A X2.) D (3.3)

Thus the scaling powers of x ,x ,x ,x are 5/6,4/6,3/6,2/6.

The same argument can be applied to a situation in which &phases

become simulataneously critical. The Landau free energy is a polynomial

of degree 2'with the f2-1 term identically zero. The number of scaling

variables which must be set equal to zero to make the& minima coelesce

is 2-2. The scaling powers take the form (2-c)/2& for (=1,..,2-2.

If special symmetry requirement are placed on the Landau free energy

as in the magnetic analogue, then the number of fields necessary to

generate a point of & co-critical phases is reduced with the maximum

reduction occuring when all the odd terms except the first (which corresponds

to the ordering field) vanish. In this case, LI phases can be co-critical

in a space ofO' dimensions and cfields will scale. This represents the

magnetic limiting case discussed in Ref. 7 .

In the more general situation for multi-component fluids as

described in Refs.1'1a line of critical points terminates in a critical

end point rather than at a tricritical point (cf. Fig. 6). That is, the

third phase joins the two previously co-critical phases in coexistence

but is not simultaneously critical with them (cf. Fig. 6a). By changing

another field or field-like variable, a line of critical end points may



be generated which eventually meets another line of critical end points

at a point at which three phases are simultaneously critical (cf. Fig. 6b).

Thus, an asymmetric system can, in general, only increase the number of

phases which are simultaneously critical in a two stage process. First

the new phase must be added in coexistence with those phases previously

critical; and second, the new phase must be brought to criticality.

It is becoming customary, although there is no consensus, to define

the order of a critical point as the number of phases co-critical at that

point. With this definition, we see that the number of variables that

can be expected to scale at a point of order d& (and therefore the minimum

dimension of the space in which it must be represented) varies from C in

the fully symmetric magnetic models to 2d-2 in fully asymmetric multi-

component fluid models.

Although the single component Landau analogs do not exhaust the

possibilities for critical points of higher order, they are sufficiently

abundant to overwhelm the available experimental evidence. For example,

the "tricritical" point in NH C1, was originally thought to be a representative
4

of a Landau-like (sometimes referred to as mean-field or, inaccurately,

I0
Gaussian) critical point of order three. It has been argued that it is

plausibly a Landau-like point of order four, and the most recent tabulations

of measured exponents are even closer to that of a critical point of order

five. The phenomenal number of coincedences necessary to have a critical

point of order five (usually requiring the adjustment of eight fields)

at an experimentally accessible point mitigates against this possibility.

However, the experimental data underlines the sketchy information that is

available for most realistic systems.

In the metamagnetic system discussed above, one of the fields was

the unphysical staggered field H'. It was previously thought that all

evidence concerning such systems would have to be gathered in the "physical



plane" H'=O. On the contrary, in materials such as DAG it appears that

a distorted crystal field may produce a staggered field near the tri-

critical behavior but rather the critical behavior on one of the wings.

The staggered field cannot be controlled externally, however, and the
13

induced staggered field complicates the study of DAG considerably.

The situation is even more difficult in more complicated systems

such as multi-component fluid mixtures or the ammonium halides. In

these cases it is not even clear what field variables should be chosen

and there is no detailed information available about the phase

diagram in the man-dimensional field spaces in which these points must

be represented. Only a narrow slice of the phase diagram can be

examined; this low dimensional view could obscure the phenomenological

situation.

It is, therefore, unlikely that a true test of scaling can be made

at any of the higher order critical points such as in multicomponent

fluid mixtures and the ammonium halides. Even in model systems, the

location of tricritical and higher order points by high temperature series

expansions is difficult. The exponents derived from a high temperature

expansion are sensitive to the location of the singularity; and, therefore,

the details of the phase diagram and possible scaling properties of

even simple models systems is controversial.

Since the notions of weak and strong directions at ordinary critical

points (and their obvious extension to more complicated critical points)

have a more immediate cogency then the notions of scaling, it might be

interesting to explore a class of functions which accomodate the postulates

of Griffiths and Wheeler, but which do not scale (are not generalized

homogeneous functions). In the first part of Chapter 3 we introduce

and discuss a class of such functions which we call "critically ordered".

To illustrate what is required for a system to be critically ordered, we



will discuss the example of the ordinary critical point.

We first consider the scaling case. We assume that the singular

portion of the pressure is a generalized homogeneous function of

variables x and x which are taken to be smooth functions of the
1 2

chemical potential t and the temperature tT-T . The slope of

the isochore is given by ( I/fT) . We may express this as (

and rewrite as

c (l:s) _I

. if )p

D ( " F ) / ( -1Xt)

dAI t k) P) / ()KtX^.)j--_e-_-iP
(3.4)

Expanding the Jacobians, we obtain

) a .& )i 1 ( a) X
(49t't)Xs ~ Y-/ - g )) i 3 'K ar Z-(__ )" a ~ I) 

k n C )-P - /t~ ( \ P PlXJX 1 -X )Y, k. 
(3.5)

The coordinate derivatives ( td/-'r ), ( tP/D ), and so forth,

are smooth and non-singular by assumption. The density p is ( P/ )

and is therefore given by

I (C) () (3.6)

Therefore, the density p is the sum of two GHFs with smooth amplitudes

arisingfrowlfhe change of variables. The scaling power of P/-l) is

1-al the scaling power of( P/DAx) is 1-a2. Since a >a the second
1 2

C ('l '



term is vanishingly small compared to the first as the critical point is

approached; the ratio vanishes like It)(aj- a2)/ a # (cf. Chap. II). The

further differentiations with respect to x and x2 indicated in (3.5)

ensure that

C-5 CA > a2 ) (3.7)

Indeed, the ratio(Ofyi /)/&,yi.J again vanishes like It(al-a 2)/a2. The

quotient on the right hand side of (2.5), near the critical point

reduces to

(a-gf - (age,) @ (3.8)

This fixes the linear part of the transformation x ( ,t) in precisely

the correct way so that the line x=O is tangent to the critical

isochore at the critical point.

Note that we do not need to posulate that the weak axis, i.e. the

line xl=O; is tangent to the isochore; the scaling hypothesis guarantees it.

In passing from (3.5) to (3.8), the necessary step is that of (3.7).

The scaling hypothesis gives (3.7) and measures the precise ratio of the

two derivatives, but is clearly far stronger than is necessary. An

example of a system for which (3.7) holds, but which does not scale is

easy to construct. If the singular part of the pressure were given by

the sum of two GHFs of (for simplicity) the same variables but different

scaling powers,



(3.9)

with a >a and a '2' then (3.7) would follow but the system would
2 1 2

not scale.

To reach the statement of Griffiths and Wheeler expressed in

(3.8) we may replace the scaling hypothesis with the weaker assumption

that an ordering is associated with a particular set of variables

(x ,x ). This ordering expresses the content of (3.7): derivatives with
1 2

respect to x increase the singularity of a function faster than deriva-

tives with. respect to x . In the scaling hypothesis discussion in (3.5)-
2

(3.7) the density plays an inessential role. In fact, the same argument

shows that the critical isentrop is also tangent to the weak axis, x =0.
1

Any object Q generated by differentiation or integration of any original

scaling equation will satisfy

C) > > 3 am ~(3.10)

9XI 3X 

and therefore,

r J>}t ° (3.11)

We will assume, along with the ordering of the variables and x2 that

the set of functions for which the ordering holds is sufficiently
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large to describe all the thermodynamic functions of interest. A

system, endowed with a complete set of such functions and equipped

with an ordered set of variables is defined as being critically ordered."

In this section we have shown that the physically cogent notions of

weak and strong directions can be embodied in a system more general than

that described by generalized homogeneous functions. Such "critically

ordered" systems include all weak corrections to scaling in which extra

terms are added to a scaling equation as discussed in Chapter a. Less

trivial examples of critically ordered systems are discussed in Chapter

5 in the context of general solutions to nonlinear renormalization group

equations. These solutions are roughly of the form indicated in (3.9);

the thermodynamic functions are given as a sum of generalized homogeneous

functions with distinct scaling powers. In Chapter 3 , the definition

of a critically ordered system is extended to critical points of arbitrary

order.

As noted earlier in this section, at a critical point of orderOT (c

phases co-critical) the number of variables that could be expected to

scale (on the basis of a Landau expansion) varied from O-for the maximally

sysmmetric system to 2Y-2 for a system with no symmetries at all.

Classification system for critical points have been made for both

limits of this range; Refs. -7 have discussed the symmetric limit of

magnetic-like systems, while the fully unsymmetric multi-component fluid

systems have been described in Refs. 6- . In the latter part of

Chapter 3 , we introduce a classification system which unifies these

classification systems and also treats systems with intermediate symmetry

properties (i.e., neither full symmetry nor completely un-symmetric).

This classification system applies both to scaling and critically ordered

systems.



3 

IV. The Renormalization Group (Linearized Theory and Scaling)

A. The Kadanoff Picture

The recent application of the renormalization group to critical

phenomena has provided a frmer foundation for many of the phenomenoloo-

ical notions of critical behavior. First, it provides a derivation of

the scaling hypothesis and a method for the calculation of scaling

powers (and, hence, critical point exponents). As we will see below,

the scaling hypothesis follows from the existence of "fixed-points" of

the "renormalization group equations". The scaling powers are calculated

by determining the eigenfuncitons and eigenvalues of the renormalization

group equations when "linearized around the fixed point Hamiltonian".

Second, the fact that the renormalization group equations have

isolated fixed points (rather than, for example, lines or surfaces of

fixed points) supports the universality hypothesis. Many Hamiltonians

have their critical behavior determined by a single fixed point

Hamiltonian. Third, although the calculational accuracy of renormaliza-

tion group determinations of critical point exponents is limited by the

perturbational nature of the renormalization analysis, the renormaliza-

tion group approach can be applied to many problems where more accurate

techniques such as high temperature series do not exist or give

ambiguous results.

The terminology of the renormalization group approach reflects

a composite of field-theoretic notions and methods from the study of

systems of nonlinear first order differential equations. The connections

with field-theory and differential equations will be discussed below.

The underlying physical intuition is the extremely euristic scaling

theory of Kadanoff.

Consider a system of ising spins on a square lattice with lattice

spacing (cf. Fig.7o0). As the critical point is approached, the correla-
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tion length is very large, and spins on distant lattice sites are

strongly correlated. Over a distance L which is small with respect to

the correlation length, but which may be much larger than , we may

expect the spins to be almost certainly correlated. If we consider

the system to be composed of block spins containing b2 spins (b=L/a),

Kadanoff argues that the block spin system is essentially identical to

the orginal site spin system. In particular, the correlation length is

simply reduced by a factor of b. By a leap of faith, Kadanoff supposes

that any other variables also scale with some power of b. Thus, the

scaling form of the correlation length is obtained,

(4.1)

where h is the magnetic field andt _T-Tc.



B. An Exact Approach

However, it is not necessary to proceed in this manner. Instead

of simply replacing the 2 states of the block (16 in Fig. 7) with a

single block spin, we can explicitly average over all of the internal

block states.

The interactions of the system can be divided into inter-block

and intra-block interactions. Averaging over the internal states while

holding the block spins fixed gives an effective interaction between

the block spins. The new interactions between block spins will generally

be more complex than the site spin interactions; for example, a site

spin Hamiltonian with nearest neighbor interactions might generate next

nearest neighbor interactions in the block spin Hamiltonian. If we

consider a very general form for the Hamiltonian which includes all

possible interactions, then we may consider the process described above

as a transformation on the parameters which determine the Hamiltonian.

This is an example of a renormalization transformation. In the Kadanoff

case, we have only two parameters, the magnetic field h and the reduced

temperature t. Calling the renormalization transformation IRb, the

Kadanoff renormalization transformations are

At (4.2b)

(4.2b)
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In general, of course, we cannot expect the renormalization transfor-

mation equations to have the diagonal, linear form of (4.2). For an

arbitrary renormalization procedure and a set of parameters ~ p we have

E1.~~~~~~~ S Ad6 ([ (4.3a)
~ f' m A} { fL- (

(4.3b)

Equations (4.3) do not bear more than a passing resemblance to the

Kadanoff renormalization transformation (4.2) and scaling equation(4.1).

The Kadanoff equations have following distinctive properties:

(i) The critical point =0, t =O is a fixed point of the renormali-

zation transformation equations. That is, the Kadanoff transformations

do not change the Hamiltonian parameters if the Hamiltonian is at its

critical point.

(ii) The transformation equations are linear equations. The new

renormalized parameters are linear combinations of the or;ginal parameters.

(iii) The linear renormalization group transformations are diagonal.

The renormalization transformations in (4.3a) will, in general have none

of these properties. To obtain the simple form of the Kadanoff scaling

equation, we must somehow recover these three properties.

One feature present in the Kadanoff argument, but absent in the



transformation equations is the restriction on block size mentioned

above. For the argument to be plausible we must have

(4.4)

That is, we must include in the block spins enough spins to have an

effective average, but not so many spins that the assumption of strong

correlation within the blocks breaks down. Thus, we may expect the

exact renormalization transformations (4.3a) to have a range of b for

which the transformation equations are simple; for b too small or

too large, we cannot hope to obtain the Kadanoff behavior (4.2).

Secondly, the construction in (4.1) and (4.2) by-passed entirely

the determination of the critical temperature. We generally do not

know the values of the critical parameters. We must determine them from

the renormalization group equations themselves. In analogy with (4.2),

we look for fixed points of the renormalization equations; that is,

values of the parameters fPi*I which have the property that

IR, A A& ri(4.5)

It is easy to show that each such fixed point of the renormalization

equations corresponds to a critical point. If (4.5)holds, then we

may write (4.3b) as
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This is only possible if =0 or =o . The vanishing of the correlation

length corresponds to a so-called "infinite temperature fixed point"

(see discussion in Sec. V of this Chap. p and Chapter 5). The

divergence of the correlation length is a sure sign of a critical point.

A third characteristic of the Kadanoff equations which is not

immediately obvious in (4.2) is the role played by so-called irrelevant

variables For example, for the Ising system shown in Fig. 2 , the

introduction of lattice anisotropy shifts the critical temperature but

it does not change the critical point exponents (cf. Fig.3 ). If,

however, we included the effect of possible anisotropy in the exact

renormalization equations (4.3a) we would obtain a fixed point (4.5) for

some particular value of the anisotropy, and not any other. What

in the renormalization group picture corresponds to the smooth line of

critical points produced in the phenomenological analysis by changing

the amount of anisotropy in a system? The resolution of this

difficulty lies in the renormalization use of the term "irrelevant

variable". We will write the anisotropy parameter R as 1+, so that

?=0 corresponds to an isotropic system. We imagine that we can augment

the equations (4.2) with an equation for

6L 3 8 ~ s i (4.7)



where a is positive. As the renormalization procedure includes

larger and larger blocks of spins (corresponding to approaching

the critical temperature and infinite correlation length), the

anisotropy parameter g becomes smaller and smaller. If we assume

that the exact correlation length depends smoothly on g, we can

perhaps set g=o, its fixed point value. Thus, for sufficiely

large block averages, the effect of the anisotropy disappears;

the anisotropic system behaves like the isotropic system.

We may also approach this issue more formally. The solution

for T given by the renormalization equations (4.2) and (4.7) is

\; ( a" hh, $ t b byt r(ifg) t(4.8a)

Setting h=O for convenience, this may be rewritten using the

properties of generalized homogeneous functions as

Ta /a .
The anisotropy parameter g enters only in the combination g I g

This tends to zero as t-+O for all values of g and the dependence on g

disappears in the asymptotically valid critical behavior.

Of course, the actual renormalization group equation g is not

likely to be as simple as (4.7). However, the principle is the same.

If a parameter, regardless of its initial value, tends to a

particular value under the renormalization transformations, we term
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the parameter irrelevant. Comparing (4.2) and (4.7) we note that

the distinction between irrelevant and relevant variables in the

Kadanoff linear renormalization equations is that the irrelevant

variable g has a negative scaling power, -a , while the relevant vari-

ables h and t have positive scaling powers ah and at.

Thus a critical point corresponds to all the relevant parameters

(that would increase under renormalization, e.g. (4.2)) being set to

their fixed point values. The irrelevant parameters may have any value.

The renormalization equation for the correlation length at the critical

point reads

(4.9a)

where the irrelevant parameters have been denoted as Fi} and the

relevant parameters as ait . As b grows large, the irrelevant

parameters tend to their fixed point values and (4.9a) becomes

( pfi) ' bPi pi {q i, t (4.9b)

which, since it is true for all sufficiently large b, again implies

that T= .



C. Formal Renormalization Group Procedure

We can now describe the four stages of a renormalization group

approach to a critical system, in close analogy to the Kadanoff

approach, but presumably more rigorous.

(i) We must define a renormalization group transformation b.

Kadanoff simply assumes them to be of the form given in (4.2). The

construction of an exact transformation is more difficult.

(ii) The fixed point (or fixed points; we are not guaranteed

that there is only one) of the renormalization equations must be

located. These correspond to critical points of teh system for

a particular choice of the irrelevant variables. Kadanoff's

equations have the immediate and unique fixed point h=t=o.

(iii) Since the fixed point Hamiltonian corresponds to the critical

point, we will assume that small variations in the Hamiltonian

parameters from their fixed points values correspond to small varia-

tions from the critical point. We accordingly linearize the renormali-

zation group equations around the fixed point. Kadonoff's equations

are, of course, already linear.

(iv) The linearized renormalization equations are then assumed

to be diagonalizable; placing them in diagonal form, we arrive at the

form of the Kadanoff transformation equations (4.2) and can extract

the scaling powers from the eigenvalues of the linearized, diagonal

equations. Kadanoff's equations are already diagonal.

The range of b for which the renormalization equations might simplify

can now be specified. We choose b sufficiently large tat the

irrelevant parameters are driven to their fixed point values, however,

b cannot be so large that the relevant parameters are carried out of

the region of validity of the linearization carried out in step (iii)

of the standard renormalization group procedure.
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Later in this section, we will perform steps (i)-(iv) explicitly

for a specific renormalization group. At this point we will just

write down a set of formal equations describeing (ii)-(iv).

First we must solve the fixed point equation

IRb a+ = pi* · (4.10a)

This is often the hardest part of the solution. Just as in high

temperature series analysis, the determination of critical point

exponents is relatively straightforward once the critical point is

located. Since the renormalization equations are highly nonlinear

(cf. (4.21) below), the fixed point equation is solved in many

cases by some approximate or peturbational analysis. This step

is that which usually limits the accuracy of the scaling powers

calculated in step (iv).

Second, we set pPi=P*+pi and determine the linearized equations

for Pi

~~I ~ ~ + O({&PKS eU, (4.10b)

wherel is some linear operator which depends on #b and lp.*1.

We must assume of course that the linearized transformation exists. In

all the cases examined to date, there appears to be a well-defined

linear transformation at each fixed point.

Third, we endeavor to diagonalize the linear transformation (4.10b).
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It is a further assumption that this diagonalization procedure will

not introduce complex numbers. Thus, we assume that we may choose

linear combinations of the p. such that

) (4.10c)

where the eigenvalues A(b) are real. This is not a trivial assumption.

A simple example of a linearized renormalization transformation which

does not have real eigenvalues is

L p; = p, co05 t )- pa S (.l b ) (4.11a)

b gk = pa co;(Cib) t p S (-ib)
(4.11b)

defining z = p ip gives

i_'t L t U b

The renormalization equations (4.11a) and4.11b) describe circular

(4.11c)

LL i * C 1Z A,(6) x
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motion of the parameters p1 and P2 around the fixed point p=P2=o. The

solutions of these equations, the "renormalization trajectories",

never enter the critical point nor leave it. No renormalization

group equation seems to have anything but real eigenvalues. This

corresponds to the intuition of the Kadanoff derivation. If we

average over too large a block (baoo) we do not expect the system

to resemble a critical system. In renormalization group terms, the

relevant parameters will "run away" from their fixed point values.

Therefore, on physical grounds we expect the eigenvalues to be real.

In all our examples the eigenvalues of the linearized renormali-

zation group equations have been chosen to be powers of the renormalization

parameter b. This is a general feature of the renormalization group.

Returning to the Kadanoff picture, we can imagine performing a second

block transformation, averaging over blocks of blocks to form a super--

block spin. This must be equivalent to performing a single Kadanoff

transformation directly from the site spins to the super-blocks. If

the two separate renormalization factors are b and b' we must have

IRi b = IR b )(}I¾ (4.12)

This represents the semi-group property of the renormalization group.

It becomes a true group only when placed in its linearized form. Using

(4.12) we see that the eigenvalues in (4.1tc) must be of the form

ALb (4.13a)



so that (4.10c) can be rewritten as

Lo - b ~ t (4.13b)

These equations are well defined for all values of b. The original

transformation which transformed site spins into block spins was

only defined for integral b; (4.13b) is well defined for all b>O.

The correlation length can be considered as a function of the

parameters x t instead of the original parameters p.. Combining

(4.13b) with the renormalization equation for the correlation length

(4.13b) we finally obtain the Kadanoff form

= ( i) b& ~'t( f \) v (4.14)

Formulations of renormalization groups t(t take precisely this

form of converting site spins to block spins have been considered by

i6 7 Jo
Niemeijer and v.,n.Leeuwen, Nelson and Fisher, Kadanoff and Houghton,

and others. In these groups, the exact nature of the lattice as

well as the discrete nature of the allowed spins values is retained.

However, to date these methods have been confined to one and two

dimensional systems; since many of these systems are exactly soluble,

the exact solutions can be compared to the renormalization soltuions

to check the accuracy and validity of the renormalization equations.

Such checks seem to indicate a high reliabilty for the renormali-

zation calculations. The extensions of the site and block renormaliza-

tion schemes to three-dimensional systems appears to more difficult.
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D. Field Theoretic Analogue

An alternate approach abandons the details of the lattice

structure and spin quantatization in favor of a field-theoretic model.

Followedn Wilson, we replace the set of localized site spins

assuming discrete values with a spin density s(x) which may take on any

value -oa < s(x) < . Although this might appear to be a crude

approximation, high temperature series analysis indicates an insensiti-

vity of critical point exponents to the spin quantum number. The

lattice structure can be retained by requiring that the Fourier transform

of the spin density, s(k) has its support in the first Brillouin

zone (cf. Fig. 8). As such a requirement renders the theory cumber-

some, and since high temperature series analysis indicates an

insensitivity of critical points exponents to the details of the lattice

structure, it is convenient to replace the Brillouin zone by a sphere

- AA 3(4.15)

where A is roughly the reciprocal of the lattice spacing.

Instead of averaging over all the spins is a block of size L,

we average over all the momenta between some momentum p and A. In

the site spin case, we could only expect simple behavior if we averaged

over enough sites to smooth away unimportant fluctuations (corresponding

to irrelevant parameters), but not over too many sites (cf. (4.4)).

The corresponding restriction in momentum space is

r <4 (< I A (4.16)



Having performed the averaging over all s(k) with k between p-A/b and A,

we again choose to regard the resulting system is essentially

equivalent to the original system with new interaction parameters,

defining a renormalization transformationt cf F.7b).

This momentum space approach to renormalization was introduced to

critical phenomena by Wilson and developed by many other authors. It

is, of course, in this formulation that the theory is closest to

its field theoretic progenitor. The renormalization transformation

again reduces the length scale by a factor of b; the momentum space

scale factor is correspondingly increased by a factor of b. To see

this directly, recall that in the renormalized system, the un-averageed

over momenta are bounded by A/b. To put this in the same form as

(4.15) the renormalized value of the cutoff momentum RbA is bA. Thus,

the renormalization process can be considered to be a method of

gradually removing the cutoff of a field theory. The inverse of the

correlation length plays the role of an effective mass. Eq. (4.16)

says that we are interested in the behavior of the field theory

described by the spin density for mementa much larger than the

effective mass. This becomes the high energy limit of the field

theory as the cutoff momentum becomes infinite. The scaling form

for the correlation length and other thermodynamic functions is the

asymptotical scale invariance of field theoretic literature. The

study of cutoff field theories in the limit of infinite cutoff is,

of course, the original provenance of the renormalization group.

The advantages of this approach lie in its approximations,

which have discarded details which are unimportant. We also are free

to borrow the results and techniques of many years of field theoretic

perturbation theory. The disadvantages are that we have encumbered

ourselves with the ultraviolet divergences of field theory (when A-x )
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and must carefully rearrange and reorder all our terms to give a finite

limit as the cutoff becomes infinitely large. Of course, in field

theory, the cutoff is an artifice which must be eliminated ; in the

original lattice system, it represents te physical fact of spins

which are more or less isolated on definite lattice sites, and is

therefore real. The second disadvantage is that we are forced into

perturbation analysis of a poorly controlled nature. In the Niemeijer

approach, for example, we must, in practise, truncate the hierarchy of

of interactions contained within the renormalization scheme, including

nearest neighbor, second neighbor and third neighbor interactions but

not any fourth or more distant interactions. The approximation has a

physical basis; we may have reasons to discard such long-range inter-

actions. The remaining interactions are treated exactly. On the other

hand, in the field theoretic approach, we must assume that all the

"coupling constants" (the parameters describing the "interaction"

Hamiltonian, see discussion below) are small. For example, the Wilson-

Fisher expansion is a perturbation in the parameter sc4-d. We are,

unfortunately, interested in numerical results for real physical systems

for which d=3 and =1. This is not precisely small; in fact, it is

believed that the -expansion may be an asymptotic expansion. Good

numerical agreement is found at the O(c2 term with results of high

temperature series analysis. This is extremely fortunate since

the results are only known to 0(E4) for the Wilson-Fisher model.



E. Differential Generators

Although the connections with field theory are many and we will

continue to borrow terminology and results from it, we will not

pursue it further in this section. For the most part we will use a

formulation of the renormalization group due to Wegner and Houghton.

In this formulation, an infinitesimal or differential generator of

the renormalization group is derived. By infinitesimal we mean that

the behavior of the renormalization transformation is studied for

b differing only infinitesimally from 1. Formally, this infinitesimal

generator can be defined as

(4.17)

In contrast to the averaging over a finite shell of momenta between A/b

and A , Wegner and Houghton consider only those momenta in a very thin

shell and take the limit as the shell becomes infinitesimal. They were

able to show that in this limit certain classes of Feynman diagrams which

appear in the perturbation series for general Rb can be neglected in

this limit. They were therefore able to re-sum the pertubation series

to give a closed form expression for the infinitesimal generator.

Infinitesimal generators are termed differential generatorsbecause

they determine differential equations for the Hamiltonian parameters.

It is customary to use as the continuous parameter of the differential

generator (so that for finite renormalizations b=exp ()). The

differential generator replaces the recursive equation5(4.3a) with

first order nonlinear ordinary differential equations
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(4.18)

The correlation length scales as exp(-k) so that the differential

equation for is

S (4.19)

In Chapter q we introduce an approximate form of the differential

generator of Wegner and Houghton. Although the quality of the approxi-

mation is not subject to rigorous a priori assessment, it is equivalent

to restricting the Hamiltonian densities to be of the Landau-Ginzberg

form.

I IS I (4.20)

The "free term" in the field theory is the gradient term; Hs) is the

"interaction". A similar approximation and restriction was made by

It
Wilson in his derivation of the "approximate recursion formula". The

approximate differentail generator given in (4.21) below is probably

the differential form of Wilson's approximate renormalization group,

but this has not been shown. The advantage of the differential

4·

- -I

+
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approach is the multitude of techniques avalilable for the solution of

differential equations, some of which are unfamiliar or lacking for

finite difference equations. With this differential generator we can

carry out the entire four step renormalization procedure. We will define

a renormalization transformation, locate fixed points, linearize around

those fixed points, and extract scaling powers by diagonalization.

(i) Definition of the Renormalization Group Transformation

Wegner and Houghton choose to keep the coefficient of the gradient

term in the Hamiltonian density constant. In terms of our approximation,

we expect to determine a differential equation for the function H(s).

We find

dH t v)?S H et I +

(4.21)

where H is the matrix of second partial derivatives of the function H(s)

A H

J C S as) h , (4.22)

and d is the lattice dimension,

Although the details of the derivation of the Wegner-Houghton

equation and, in particular, this approximation, are beyond the scope

of this section, a few explanitory remarks can be made.

The first term on the right hand side of (4.21) arises from the

change in effective volume. The length scale as measured by the

correlation length behaves as exp(-Z), so that the volume changes under



renormalization as exp(-di). Since H is a Hamiltonian density, a

factor of exp(+dt) is to be expected.

The operator s is the second term of (4.21) is a power

counting operator which replaces a term of order M in the spin compo-

nents with m times the same term. This term in the generator accounts

for the rescaling of the spin variables themselves. The gradient term

in the Hamiltonian density is to be held fixed. To do so, we must

scale the spins aseXp r(2-d)/2j to compensate for the change of

length scale. In the exact formulation of Wegner and Houghton, this

rescaling factor is chosen to be exp(Y (2-d-?)/2). The critical point

exponent is introduced to cancel contributions to the gradient

term which arise from the average over the infinitesimal momentum

shell. In the approximation used here, these terms have been dropped.

Thus, the approximation fails if is not small. In (4.21), we have

set =o for consistency.

The third term in (4.21) is the only vestige of the renormalization

average taken over the infinitesimal shell of momentum. The fact that

it involves only the second derivatives of the Landau energy H(s) reflects

the simplification achieved by taking the infinitesimal limit. The

determinant represents the change of variables made in order to

perform the functional integral over the states in the shell. The

logarithm is simply the connection between the partition function and

the Hamiltonian.

(ii) Location of a Fixed Point

The fixed point equation

(4.23)



has many solutions. The simplest solution (which is central to all

our later perturbation studies) is the trivial or Gaussian fixed

point, given by H=O. Although this fixed point is obtained by

inspection and is particularly simple, we must not underestimate its

importance. It is the only fixed point which is exactly known. It

therefore is the anchor point to which we must refer.

(iii)-(iv) Linearization Around the Fixed Point and Determination of

Scaling Powers

If we linearize (4.21) around H=O we obtain the equation

4 ;H + id( 4) H v 
(4.24)

This equation has a familiar structure; the eigenfunctions of (4.24)

are the eigenfunctions of teh harmonic oscillator (as first pointed

out by Wegner for the Wilson approximate recursion formula). For

single component spins, these are the Hermite polynomials. The

eigenvalue of the th Hermite polynomial is given by

T e v d not l i f (4.25a)

These eigenvalues do not look immediately familiar. First we must recall

that the free energy density scales as exp(dQ). To convert these

eigenvalues to the scaling powers commonly used in the phenomenological

literature, we must divide the eigenvalues in (4.25a) by d,
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_ _ c-:..) +1I
(4.25b)

Now, we borrow a result from field theory which shows that mean field

theory for an order 3- critical point of Landau-Ginsberg form (cf. Eq (3.2)

of Sec. iii) is valid for all dimensions d > 2&/(-1). If we insert

the value of the borderline dimension for such a point

d a 2- o-,,f j (4.25c)

into (4.25b) we obtain

Cas
) (4.25d)

which are precisely the mean-field values of the scaling powers

derived in Sec. iii (cf. (3.3))! Note also that the eigenvalue of

the 2th Hermite polynomials is proportial to the difference between

the lattice dimension and the borderline dimension for an efth order

critical point,

(4.26)
I t!) (4 4) .



Thus, the 2th Hermite polynomial corresponds to an irrelevant variable

for d greater than the borderline dimension (4.25c) when mean-field

holds, but to a relevant variable when d is less than the borderline

dimension when mean field fails. We may understand this by considering

that when mean-field holds, we may neglect all the fluctuations of the

spin. In terms of the Fourier transform, this means that the support

of the transform is the origin of momentum space. The possibility of

such condensation into a single mementum state is lost in the field

theoretic formulation which depends on some non-zero support in momentum

space. When this assumption is invalidated, the renormalization group

incorrectly, but understanably, treats the 2th Hermite polynomial as

irrelevant; there is no contribution to the Landau form (4.20) from

fluctuations when there are no fluctuations.

Similarly, when fluctuations are important, mean field fails. The

fluctuations of the spin will contribute to the Landau energy. The 2th

Hermite polynomial corresponds to a relevant term and grows in

importance as renormalization proceeds. The Gaussian fixed point

cannot be the correct fixed point when this is the case. The eigen-

value of the 2th Hermite polynomial is relevant; to be at the critical

point we would have to set it equal to zero. The highest order term

in our Landau expression would be lost. To correctly describe the

critical behavior for a critical point of order 9, we must find another

fixed point.

In Chapter 4 we describe the location of t new fixed point and

the determination of the new eigenvalues to first order in the difference

d -d. Since the discussion takes the form of a Physical Review Letter

and is extremely brief we will describe the technique in some detail in

this section.

T3
The caseC'=2 is the now classical computation of Wilson and Fisher



for the ordinary critical point. The G=3 tricritical case has been

discussed precisely at the borderline dimension d=3 by Riedel and

Wegner , The extension of this work below three dimensions

27 xt
has been studied by Stephen and McCauley, and Chang, Tuthill and Stanley.

Ref. 2t has also considered perturbations from theeO=4 case, which has

borderline dimension d=8/3. The study of successively larger9- by the

methods employed in these references is rendered extremely difficult by

the number of simultaneous equations which need to be solved. The number

of equations necessary for the first order calculations is 2-2,

which rapidly becomes unmanageable.

The simplification and extension of the earlier results to

arbitrary ' is made possible by the simple, explicit form for the

renormalization group transformation given in (4.21). Its closed form,

differential nature makes it easier to extract the essential features

of te order C- problem.

We expect the fixed point to retain reflection symmetry so we

confine our attention temporarily to the even Hermite polynomials.

Since the mean-field and Gaussian results are identical at the border-

line dimension, we imagine that at dimensions close to the borderline,

the fixed point is "small". Postulating the existence of a fixed point

close to H=O, we attempt to locate it by a perturbation expansion of

(4.21). We write the fixed point Hamiltonian H=H* as

(4.27)

where is some small expansion parameter to be determined and where

we have discarded term of higher than second order in E0,. Inserting



into the fixed point equation (4.23) and retaining terms only up to

second order we have

(1 - c :H ' e"(i)" ) t 'Nt H'

(4.28)

wherei is the linear part of the renormalization equation given in

(4.24) and d is the quadratic part (cf. Chap. )

The linear operator acting on H ( ) and the quadratic term involving

H are both of order d. There is no term to balance the (apparently)

0(4) term tH () . Therefore, the fixed point equation (4.28) cannot

be satisfied unless H( ) is itself 0 (p). This, in turn, is only

possible if H ) is an eigenfunction of the linear operator; that is,

it must be a Hermite polynomial . The expansion parameter can be inden-

tified with the eigenvalue of the eigenfunction chosen. Thus,

H-i G7 = vo- Q - + --- (4.29a)

where Q is the 2th Hermite polynomial and

CtO -(- (4.29b)

The borderline dimensions for the order point is just given by

setting B =0.



To obtain the fixed point value of v we choose H (A) orthogonal

to Q and take the inner product of (4.29) with Q . This determines

v. Since the fixed point is small, we expect the new eigenfunctions

to differ only slightly from the Gaussian eigenfunctions. This proves

to be the case, and we may calculate an O(&*) shift in the eigenvalues

in terms of integrals of Hermite polynomials. The result is very simple

A - t (.-4)44 

5( a) # (4.30a)

The renormalized values of the scaling powers quoted for mean-field

in (4.25b) are again given by dividing these eigenvalues by d

QAir -=-- [cts r ( i ' X ) Jb, 7(4.30b)

Having obtained the scaling powers, the critical point exponents

are determined to 0( . However, comparison with the exact

Wegner-Houghton equations shows that the critical point exponent is

zero to this order. By using field theoretic techniques, we have been

able to calculate to O(6,). For Ising systems, we find

LI.p· )3 ~~~~(4.30c)

These calculations can also be carried out for n-component spins; the



details are discussed in Chapter -.

The calculations for critical points of higher order only differ

from mean-field predictions in dimensions less than the borderline

dimension for each orderO'; that is, d 2/(-1l). Thus, it is

expected that mean-field holds in three dimensions for all such higher

order point with*-3. However, (4.30) does apply to higher order

critical points in two-dimensional systems.

Eq. (4.29)-(4.30) determine the properties to leading order of all

the usual Landau model small fixed points. Ther, are however, many

other fixed points (some of which will be discussed in Chapter V). For

Ising systems, we may discuss a largeclass of these fixed pointsO those

characterized in Chapter as "odd-dominated" Hamiltonians. In

these systems, the leading term in the expansion for the fixed point

Hamiltonian is an odd Hermite polynomial in the spin s. The perturbation

expansions for such systems must be carried to cubic terms and the

expansion parameter is given by the square root of the corresponding

hermite polynomials eigenfunction. That is, we write the expansion of

the fixed point Hamiltonian H* as

H = + c H ( o()
j (4.31a)

where h2a_ 1 (s) is an odd Hermite polynomial and

6a- -- a~~~~~~~ (<R -1 ) t;-(4.31b)



The fixed point equation reads

- - H ( ) ( V4 ( blj) 

ah X h 3e
ce-t oto-, ¢ o ' C o,, M 

(4.32)

t Is wo (H"hwyi ) (0) ) P. o J(H k -), + - i H +.

where represents the cubic part of the renormalization equation (4.21).

It is now easy to see why the expansion parameter must be choosen

as in (4.31). The leading term, h is an odd Hermite polynomial,

and is orthogonal to any even function of the spin s. If an expansion

of the form (4.29) were employed, the inner product taken to determine

the fixed point would vanish identically. In this case, we must first

choose H ) to balance the O(6j.) portion of the equation. Having

determined H ) , we choose H(3 / ) to be orthogonal to h and take
- I

an inner product to determine the fixed point value of v, The eigenvalues

of the various Hermite polynomials can be calculated at the fixed point.

They differ from their values at the H=O fixed point by an O( )

correction (see Chap. f ),

The odd-dominated systems are different from the usual even

Hamiltonian fixed points in that for a ,) O(when the fixed point is

"stable", see Sec. V) the fixed point value of the Hamiltonian is pure

imaginary (at least forO-=2,3). For Cc ( 0, the fixed point is real

but "unstable". As will be discussed in Sec. V, such a fixed point

probably does not contribute to the asympototically valid values of

critical point exponents, but will influence the critical behavior

away from the critical point.

We also introduce in Chapter 4 an approximate renormalization group



generator based on the exact equation developed by Wilson using

a "partial integration technique". We show that it gives the same

results as the generator (4.21) based on the Wegner-Houghton

equations. Since the derivational technique is more subtle than

the straightforward Wegner-Houghton approach, which mimics the

Kadanoff ideas precisely, we will not discuss this new generator

in this section.



V. The Renormalization Group: Global Theory and "Critical Ordering"

In this section we show how to incorporate the linearized, local

approach to the renormalization group into a global, nonlinear theory.

In the linearized theory, a fixed point of the renormalization group

transformations is found and the renormalization equations are linearized

around that point. As discussed in Sec. III, this leads directly to

the scaling form for thermodynamic potentials and te determination of

the scaling powers. This approximation has a double nature as

expressed in the term "linearized, local" used to describe it.

First, the equation have been linearized. For example, suppose

the renormalization equations concerned a single parameter p with

renormalization equation

is = 2 P { lfp4) . (5.1)

When linearized around its fixed point p=o and combined with the

equation for the correlation length (4.14) we have

a- e
(5.2a)

(5.2b)



However, the exact solution of (5.1) is not (5.2a). Solving (4.1)

exactly we have instead of (5.2) the following

(5.3a)

(5.3b)

The expressions given in (5.2) and (5.3) do not differ significantly

for small p but have radically different behavior for large p. Thus,

the use of nonlinear equations yields "corrections to scaling" terms

similar to those discussed in Chap. ; that is, the use of nonlinear

renormalization group equations can give the deviations from te

scaling behavior derived from the linearized equations.

The example (5.1) was carefully chosen to avoid the second

aspect of t approximation in the linearized, local analysis; that

is, locality. Eq. (5.1) has only one real fixed point; in Sec. III

we were able to establish a connection between the singularities of

the correlation length and the existence of fixed points. If there is

only one fixed point then there is only ooe sort of critical behavior.

In general., there will be several fixed points of the renormalization

equations each "representing" a different critical behavior (each

fixed point represents a different critical behavior since the eigen-

values of the linearized equations will generally differ at the



different fixed points and hence the scaling powers and critical

exponents will differ).

The existence of several fixed points is a far more serious

difficulty than the simple nonlinearity introduced in (4.1). Four

questions need to answered:

(i) Is there still a scaling equation?

(ii) Which fixed point determines the exponents of teh scaling

equation, if it exists?

(iii) How do the other fixed points influence the behavior of

the system?

(iv) Under what conditions does the asymptotic scaling behavior

escape the influence of one fixed point and come under the influence of

another?

Before we can discuss these questions we must introduce a somewhat

technical subject. Wegner has termed expressions that have purely

exponential dependence on the renormalization parameter nonlinear

scaling fields. Thus the expression on the left hand side of (5.3a) is

the nonlinear scaling field corresponding to (5.1). The questions (i)-

(iv) will be addressed most easily in terms of these nonlinear fields.

Wegner explored the existence of nonlinear scaling fields in formal

power series expansions around a particular fixed point (i.e. for (5.1),

p=O). This approach is limiting by the fact t.t such series will almost

never have an infinite radius of convergence. The power series

expansion of (4.3a) around p=O fails to converge at p =1 due to the pure

imaginary fixed points at p=*i. However, the exact nonlinear scaling

field is perfectly well behaved at p =1. This is not the case for

multiple real fixed points. If (5.1) is modified slightly to introduce

additional real fixed points



(5.4)

then the solutions for p and the correlation length are given by

IP
( I FA) / (5.5a)

I " ( I-pF

i

I/.

(5.5b)

In this case, the nonconvergence of the expansion at p =1 represents a

real singularity in the nonlinear scaling field and a zero of the

correlation length.

Any truncated power series expression for a nonlinear scaling

field or a thermodynamic quantity such as the correlation length fails

to distinguish between these two possibilities and totally misrepresents

the nature of the solution at any fixed point other than the original

fixed point about which the expansion was made.

The above discussion shows that we may expect singularities in the

nonlinear scaling fields in the vicinity of other fixed points. To

successfully incorporate these expected singularities, the local approach

-IV C a
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to the renormalization group problem (as reflected, for example, in the

use of series expansions) must be superceded by a global approach which

considers all the fixed points of the renormalization equations even-

handedly (cf. Fig. 8). In this way the major singularities of the

nonlinear scaling fields can be incorporated intially and approximaties

made for any remaining smooth behavior.

If the nonlinear scaling fields for the renormalization group

equations can be found, (i) can be affirmatively answered. If Si }

is a set of nonlinear scaling fields for the nonlinear renormalization

group equations for the parameters JPi with eigenvalues aiJ then

(5.6a)

f7( { St Act b1 (ftV)
(5.6b)

Equations (5.6) hold everywhere in the parameter space where the nonlinear

scaling fields are defined. This is not a trivial restriction as is

shown by considering (5.5). The general theory of nonlinear first

order partial differential equations applies in this problem since

the nonlinear scaling fields satisfy equations of t.t form. We may

generally expect the solution region for the nonlinear scaling fields

to be some region of te parameter space bounded by surfaces on which

one or more of the scaling fields is singular.



C 

As will be shown in Chapter 5, the answer to (ii) is more proble-

matical. In general, a solution fo r the Gibbs potential, for example,

will not be dominated by the behavior of a single fixed point. These

solutions are examples of the critically ordered systems axiomatized

in Chapter 3 . These solutions, however, have "extra" singularities.

If these singularities are removed, then the so-called "stablest"

fixed point determines the asymptotically valid behavior.

The notion of relative stabilityef fixed points is simple. If

the p PiK move from a fixed point A to another fixed point B then A

is relatively unstable with respect to B. Thus, in (5.1) if the para-

meter p is not exactly 0, it tends to +1 as-y oo. The fixed point at

p=O is unstable with respect to the fixed points at l1. It is clear

taht a fixed point is unstable with respect to some fixed point if any

of the eigenvalues of te renormalization equations linearized around

that point are positive (and if limit cycles are excluded). Thus,

the strictly stablest fixed point is one at which all the eigenvalues

are negative. In (5.4) p=±l are stablest fixed points in this sense.

However, these are not the stablest fixed points that we want, since at

such a point the correlation length is zero (cf. (5.5b)). This

apparently corresponds to "infinite temperature" fixed point behavior.

Since the fixed points corresponding to critical points should yield

an infinite correlation length, we must retain at least one positive

eigenvalue. The remaining instability represents the. temperature

instability. In some cases, more than one sort of instability is

retained, such as a magnetic field. While this division may seem

somewhat arbitrary, in any concrete problem the resolution is clear.

As will be shown in Chapter 5, the global, nonlinear approach even-

tually leads to a description remarkably like that of the "higher order"

critical points discussed in Ref. 7 and Chap. 3 .. The solution



region (cf. Fig.lO) of the renormalization group equations contains a

critical surface on which the critical point exponents are given by

t!-¢ stablest fixed point within that surface. The effects of the other

fixed points (question (iii) above) disappear asymptotically close to

this surface except near its borders. This surface can be compared to

the surface of ordinary d1=2 critical points in Fig. 4. On the borders

of ti solution regions, special symmetry condition on the renormaliza-

tion equations exclude the participation of te stablest fixed point and

the determination of critical point exponents passes to another fixed

point (question (iv) above). This is analagous to the bordering of a

surface of&=2 critical points by a lower-dimensional surface of &=3

critical points (the tricritical lines in Fig. 4). In the vicinity of

the border, both fixed points compete exactly as in the phenomenological

discussion of competition between types of critical point incorporating

,731
"double-power" scaling laws. As in the phenomenofogicl discussion, this

process can be continued indefinitely by introducing additional fixed

points for each type of critical behavior.

As mentioned above, those solutions of the renormalizations group

equations for the thermodynamics functions that are not dominated by the

"stablest" fixed point, exhibit additional singularities. These systems

are not scaling systems but rather critically ordered (cf. Chap.3 ).

The decision to reject the singular solutions is not a simple one.

If they are retained, they provide a theoretical framework for a failure

of scaling in thermodynamic systems.
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CAPTIONS

la. Phase diagram of a single component fluid system, illustrating

the vapor pressure curce terminating at the critical point. The

direction tangent to the vapor pressure curve at the critical

point (the weak direction) is labeled x ; x is any direction

not tangent to the curve (a strong direction).

lb. The phase diagram of a simple ferromagnet. The weak direction

A A
X2 is along the T axis; xl may be taken parallel to the H axis.

lc. The phase diagram of an anisotropic ferromagnet. The coexistence

surface lying in the RT plane is bounded by a line of ordinary

critical points. The 3, or irrelevant direction, is tangent to

A
the line of critical points, x lies in the RT plane, and x can

2 1

be chosen as any direction not lying in the RT plane.

2. Schematic representation of an anisotropic ferromagnet. In each

plane, the spins are coupled with an interaction J between nearest

neighbors. Nearest neighbors in different planes interact with an

interaction strength RJ. For positive R (as shown) the system is

an anisotropic ferromagnet. For negative R, the spins on alternate

planes are aligned anti-ferromagnetically, so that the system

becomes a meta-magnet.

3. The phase diagram of the fourth order system of Ref. 2 is shown in

the HT plane for various values of R(R negative). The antiferro-

magnetic coexistence surface is bounded bya line of critical points

which terminates at tricritical points labelled TCP. The line of

first order transitions is shown dashed; TN is the Neel temperature

for each value of R. (a), (b) and (c) show the phase diagram for

successively smaller values of RI.



4. The phase diagram of the fourth order system of Ref. 2 in

HTR space. A coexistence volume is capped by a two-dimensional

surface of ordinary critical points. This surface is bounded by

two tricritical lines. The tricritical lines intersect at the

fourth order point: H=H'=R=O and T=T 2, the two-dimensional

Ising model critical temperature.

5. The phase diagram of a meta-magnet in HH T space. A half-moon

coexistence surface labelled CXS is bordered by a line of anti-

ferromagnetic critical points. This line terminates at two

tricritical points (TCP). By examining the phase diagram for non

zero staggered magnetic field, the tricritical point is seen to

be the point of intersection of three lines of critical points.

Wings are formed from coexistence surfaces between paramagnetic

and antiferromagnetic phases.

6. Three-dimensional slices of the phase diagram of a multicomponent

fluid system of three or more components, The variable t may

be considered to be the temperature and u and v as suitable

"fields" (combinations of the pressure and the various chemical

potential differences),

6a. The coexistence surface between the phases labelled A and B

terminates on the coexistence surface separating those phases

from a third phase labelled C. The point P is a critical end

point at which A and B are critical while simultaneously being

in coexistence with C. The line L is a line of three phase
o

coexistence.

6b. A slice containing a point Pt at which all three phases are

simultaneously critical (the multicomponent fluid tricritical point).

6c. A slice in which the coexistence surface separating B and C

terminates on the A coexistence surface. The point P' is a critical

end point at which B and C are critical while in coexistence with A.
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7a. The Kadanoff picture of scaling. Ising spins on a lattice with

lattice spacingaare grouped into blocks of size L. If L is

much less than the correlation length I, the blocks can be treated

as if all the spins within each block are aligned.

7b. The field theoretic view of renormalization. Momenta lying

between p and the cutoff momentum are integrated over; the

inverse of the correlation length is an effective mass for the

theory. Scaling behavior is expected for m <<p<< A.

8. Diagramatic representation of the continuous spin function s(x).

If we are only interested in the values of s(x) when x=2n TI,

the two different functions shown are equivalent. For this case

of a spin on a one-dimensional lattice with lattice spacing 2 I,

we need only consider wave vectors such that Ikl<l. That is,

wave vectors within the first Brillouin zone of the lattice.

9. The local linearized view of analysis is contrasted with a

nonlinear global approach. The linearized renormalization

equations can be treated in some region of any fixed point. Two

fixed points are shown at (p,q)=(0,l) and (0,0). Local renorma-

lization group equation solutions are indicated. See Eq. (1.2)

of Chapter 5.

10. Comparison between the phase diagram of the Ising metamagnet also

shown in Fig. 4 and the solution region of a nonlinear crossover

problem discussed in Chapter 5,

10a. Reproduces Fig. 4. A coexistence volume is covered by a surface

of ordinary critical points. This surface is bounded by two

tricritical lines which intersect at a point of order four.



lob. The solution region of a nonlinear renormalization group problem.

A surface is characterized by two variables which scale; the scaling

exponents for these variables are the same everywhere on the surface.

This surface is bounded by two lines on which three variables

sacle and for which there are different scaling powers. These

"tricritical lines" intersect at a point at which four variables

scale with new scaling powers.
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Appendix: On the Application of nonlinear Renormalization Group

Techniques to the Problem of "Crossover" and the

Competition of Different Critical Behaviors



ON THE APPLICATION OF NONLINEAR RENORMALIZATION GROUP TECHNIQUES TO THE
PROBLEM OF "CROSSOVER" AND THE COMPETITION OF DIFFERENT CRITICAL BEHAVIORS

The renormalization group, when considered in its nonlinear aspects,

provides a theoretical understanding of the crossover behavior of systems

which have competing critical behaviors. The result of the analysis is

to confirm phenomenological description of simultaneously valid scaling

hypotheses.

I. Examples of "Crossover"

The term "crossover" is used in critical phenomena in several

contexts. In all cases it describes a competition between two or more

distinct types of critical behaviour. The simplest example is the

crossover between mean-field behaviour and true critical behavior as

the critical point is approached. In Fig. 1, the phase diagram of a

simple Ising ferromagnet is shown. Two phases with opposite magnetization

are in coexistence surface terminates at the critical point. Semi-

quantitative information about the nature of singularities of the

thermodynamic functions is provided by various critical point exponents,

some of which are defined below

X a M T -TC at h=O

C ( as f I T - T I at h =

M, + T onB p boundary(1)
M ± | T -T c I on phase boundary



These critical point exponents are not completely independent. Rigorous

thermodynamic inequalities show that + 2 3+Y> 2. In fact,

the equality seems to hold in most systems, both theoretically and

experimentally,

A + 2 + =2 (2)

Mean-field or Landau theories of the critical point presume that

the thermodynamic potentials are analytic in M, and T-Tc. This leads

to the predictions that =0O, 8 =, and l=l. At moderate distances

from the critical point, these values may be ovserved.

However, nearer to the critical point, the character of the

singularity appears to change. Ploting log X versus log (T-Tc) we

find (as shown qualitatively in Fig. 2) that the data will fall on two

separate straight lines connected by a "crossover" knee. The values

of the critical point exponents as determined from the asymptotic

values of the slopes also appear to satisfy (2) as an equality. Thus,

we pass from one set of exponents which satisfy exponent equalities

to a different set which also satisfy equalities.

A more interesting example of crossover is the competition between

critical and "tricritical" singularities. As an example, we consider

the phase diagram of a simple Ising metamagnet. In this sytem both

antiferrmagnetic and ferromagnetic ordering are possible and compete.

In the H-T plane (cf. Fig. 3) there is a coexistence surface on which

two anti-ferromagnetic phases coexist. This region is bounded in part by

a line of ordinary critical points. At these points, the transition is

"second-order" in the sense of Gibbs. The two coexisting antiferromagnetic

phases become identical along this line with a smoothly vanishing

staggered magnetization. This critical line terminates, however, in

two special points called tricritical points. Beyond the tricritical

points the transition becomes first-order, with the staggered magnetization

dropping abruptly to zero.

As pointed out by Griffiths, this phase diagram becomes clearer

when examined in an augemented space which includes an unphysical

staggered magnetic field, H , which couples directly to the staggered
st



magnetization . In this space, we see that the tricritical points are

points at which three lines of critical points intersect. The addition

wings (cf. Fig. 4) are coexistence surfaces separating antiferromagnetic

and paramagnetic phases.

The tricritical points are obviously unique points on the phase

diagram. It is not surprising that thermodynamic functions have a

different singular behavior at the tricritical points than they exhibit

on the line of "ordinary" critical points. It is found that on lines of

constant magnetic field which do not pass through the tricritical point

the divergence of the susceptibility can be described by a single critical

point exponent

X ~ [T-T ( h ) I(3)

This "universality" of critical point exponents along the critical line

is partly explained by noting that the fundamental processes near the

critical line are still anti-ferromagnetic. The presence of the

magnetic field h shifts the critical temperature, but does not alter

the qualitative nature of the interactions. (a more mathematically

precise validation of universality is obtained in the renormalization

group calculations to follow).

However, on a line passing through the tricritical point, a new

behavior is observed. The singularity of the susceptibility is still as

power law, but with a different exponent

X IT- tricritical[-

(4)

In a neighborhood of the tricritical point (cf. Fig. 5) both the critical

singularity characterized by (and the tricritical singularity characterized

by compete.



To explore this complicated situation, we first turn to a phenomeno--

logical framework which incorporates the observed facts.

II. Kadanoff Scaling

Kadanoff's heuristic scaling notions provide a basis for both the

phenomenological theories of scaling and the more rigorous renormalization

group techniques. Kadanoff considers a simple Ising ferromagnet near it's

critical point (cf. Fig. 6). The spin-spin correlation lenght,E, which

diverges at the critical point, is very large near the critical temperature.

Many neighboring spins tend to become aligned in blocks. Kadanoff argues

that we may be able to treat such blocks of spins as single spins. Thus, if

the spins in a block of for example four spins are nearly always all pointed

up or all pointed down, we may treat it as a unit.

This new system of block spins is similar to the original system,

although it obviously is not identical to it. In particular, the internal

degrees of freedom within a block have been neglected (for each block of four

spins there are 16 states, not simply the two block states). However,

Kadanoff argues that these differences will not affect the critical behavior

of the system, and that for the purpose of studying critical behavior, the

two systems can be treated as identical in nature.

The correlation length of the block spin system (as measured in, for

example, lattice spacings) is less than that of the original system. For

blocks of b spins on a side (b=2 for four-spin blocks) the correlation

length is reduced by a factor of b.



Thus we have that

Eblock (hblock ' tbloclj 1 (h,t)

(5)

where 1bblock and 1lock are the effective magnetic field and reduced temperature

( t =(T-Tc)/T ) of the block system.

At this point Kadanoff assumes that the similarity of the two

systems is sufficiently precise that the effective magnetic field and

reduced temperature are themselves simply given by scale transformations.

h block = bah h

thbock = ba t t (6)

The constants ah and at are called the "scaling powers" of H and T, respectively.

Combining (5) and (6) we see that the correlation length is a generalized

homogenous function (GHF) of the variables h and t,

E (b a,, batt) = b- 1 i (h,t) (7)

This can be rewritten to put into "scaling form" as

i= I t-/at C (sgnt, h/itt a'h/at; (8)

From this example of the correlation length we may extend the scaling hypothesis

to other thermodynamic functions such as the Gibbs potential

G (b ah h, bat t) = b d G (h,t) (9)

We have chosen the scaling power of G to be given by the dimension of the

lattice d to conform with the renormalization group results to be obtained



later. From (9) we may calculate the critical point exponents- , , and :

Xy = 2a - d
(10)

a:,

6 = d-.A,. ;

= 2a..-d

a,

These values for the critical point exponents clearly satisfy (2) for any

values of ah , at, and d. The Kadanoff construction does not give us any

way of calculating the scaling powers ah and at; However, they can be

calculated by the renormalization group.

III Scaling and Crossover.

The success of the scaling hypothesis in describing the critical

points of ferromagnets and single-component fluid has let- to its use in

tricritical phenomena and crossover. To make the closest connection with

the nonlinear renormalization group solution discussed below, we will

consider the geometrically simple model phase diagram shown in Figure 7.

A coexistence surface lied in the plane h=0; h represents the ordering field.

The line x=h=O is a line of ordinary critical points which terminates at

x=y=h=0 at a "tricritical point." Only one of the three critical lines

is shown.

At each point of the critical line, we make a two-fold scaling

hypothesis. We assume that, apart from smoothly varying backround terms,

the Gibbs potential is a GHF in h and x,

G( b "h, b axr., Y."= bdG (h,x,y)

(11)
3 (bahh, baxx, ?i) = b- 5 (h,x,y)

With scaling powers ah and a . The variable y only enters as a parameter.x

By this means the universality of critical point exponents is guaranteed.

To distinguish the tricritical point, we assume that in the vicinity of the

origin the variable y no longer is an unimportant parameter, but rather

scales. We make a three fold scaling hypothesis



aG ahh a d
G (b hh, b x, b y) = b G (h,x,y)
tri tri

tri (b hh, b X b y) = b- tri(h,x,y) (12)

with new scaling powers - , - , and -- .
ah ) ax ay

If both (11) and (12) are to be valid near the tricritical point,

then we obtain extra information in the "crossover" region where both hold.

Consider, for example, the .= correlation length. From (11) we have

,- I XI - v ( (13)

with -1/x . On the other hand, from (12) we have instead

KX 

i 1 !-v ~(1, y / x aY/a ) (14)
(14)

tri

with l/ . We cannot require these expressions to be identical since

each scaling hypothesis represents an approximation to the critical

behavior. However, we can require that they give the same asymptotic

behavior when x + 0 with y fixed. This is the condition for the mutual

validity of both scaling hypotheses. Thus we must require that

(1 , y al >|
tri X (15)

(15)

as X + 0 a /a -

One simple function that satisfies all the requirements is given by

(16)



iI

For X +0-O with y fixed, (16) has the form expected from (13) while in the

vicinity of the tricritical point it has the form (14). The ratio

is called a crossover exponent since when x is the same order as

yJ that the crossover region is entered. For x much less than y critical

behavior rather than tricritical behavior will be seen. We also observe

that we can extract the dependence on y in the crossover region. The amplitude

of the critical singularity, which may be defined as

Ampi(y)- = ~+ o (x,y) x1
(17)

can be obtained from (15) or (16) as

(18)

Thus the amplitude of the critical singularity scales

with an amplitude exponent that is the product of the crossover exponent and

the difference of the oridinary critical point and tricritical point values

of the critical point exponent for the correlation length.

Although this disc ussion has been phased in terms of the correlation

length, it is easy to see that these properties are applicable to all the

thermodynamic functions. In each case, in the region in which both tricritical

and critical scale might be expected to hold, we obtain constraints on the

tricritical scaling functions (15), which are characteristic of "double power

law" scaling forms such as (16). Furthermore, the amplitudes of critical

singularities will obey scaling laws such as (18). These predictions of

mutually valid multiple scaling hypotheses have been tested in various model

tricritical systems by high temperature series. Within the accuracy of the

series calculations they are all supported.



D. The renormalization group

To put this phenomenological discussion on firmer ground we turn to

the "renormalization group". The renormalization group approach is a

catch-all term describing the mathematical improvement of the block

scaling notions of Kadanoff discussed earlier.

The basic physical fact utilized by Kadanoff is the divergence of the

correlation length at a critical point. This implies that the system is scale

invariant; that is, if the correlation length is infinite, then blocks of spins

look precisely like single spins. In the immediate vicinity of a critical point

we have a nearly scale invariant system. By studying how the system changes

under a scale change, we hope to extract information on the behavior of

thermodynamic functions.

Kadanoff used this idea purely heuristically. Wilson pointd out that

a more rigourous approach is possible. We can illustrate this idea with a

simple example. Consider a one-dimensional chain of Ising spins (Cf. Fig. 8a).

To achieve a critical point at a non-zero temperature, we must apply a long

range ferromagnetic interaction ( LRI) of some kind. We will not worry about

the detailed nature of this long range glue. We write the Hamiltonian as

= h·: + LRI
kT

(19)

Now we apply the Kadanoff block transformation idea to this system. We

divide the spins into blocks of 3 spins (Fig. 8b). We can define an Ising

block spin to each block by

. = S 5 )(20)
3 (20)
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We would like to be able to think of the block spin system in the same

way as the original spin system (cf. Fig. c). We want to define a new

magnetic field h' and a new long range interaction LRI'. We can calculate

the relationship between h and h' and between LRI and LRI' instead of

postulating them (as in Kadanoff) if we demand that the block system (h',LRI',f)

have the same partition function as the original (h,LRI, s) system.

The partition function for the single spin system is given by

(21)

We must first write this in terms of the block spins C. We divide the sum

in (21) into two parts. First we sum over all the values of si consistent

with a fixed set of values for the .

T
C £

(22)

Then we take a sum over the possible values of .
J

I
: 

(23)

We now must write this last expression in a form similar to (21),

e X T[- ( -I + RR1 ):= 5
1.S- -

L- r-~- CiLT)

T ( L r, ~ O- )



* fgy ,,,,~~~~r-~~i,·~~~ (' , C ) 7(24)

where C is a constant.

This can be a very complicated procedure. However, it is simple to calculate

the dependence of h' on h, if LRI is even in the spin variables. If this is

the case, we can calculate the relationship between h' and h as if LRI = 0 ,

since (as in Kadanoff) h' is a function of h only.

When we turn off the interaction, we can consider each block separate. The

possible s-states for a given c are shown in Fig. 9. There is one state for

which all the spins have the same sign as and 3 states where 2 spins are of

the same sign and one spin has the opposite sign. Therefore, we can write

-r= r ep- t3cp(- )a

(25)

The pseudo partition function formed from T is

7 - D (s1'31 - 3 cs( L J )
(26a)

where N is the number of blocks of spins. On the other hand the partition function

form using h' (with LRI'=O) is

1(- 1 i cs i / C (26b)I 

z ::7- I 1 '~e o.5~ (26b)



and therefore we have

cosh h' = cosh3h + 3cosh (h) /eC

(27)

We expect that if the magnetic field h = 0 in the original system that there is

C
no magnetic field in the block spin system. This identifies e =4 so that our

final renormalization equation relating h and h' is

cosh h' = cosh3h + 3c oshih)] /4 (28)

It would be much harder to calculate the effective interaction LRI' and

we will not attempt to do so. In any case, we would find

LRI' = function (LRI)

(29)

If we are at the critical point, = oo, and we expect scale invariance.

That is, we expect h'=h and LRI'=LRI. This is called a fixed point of the

renormalization group equations (28) - (29).

We can now study the dependence of the correlation length on the magnetic

field. By the Kadanoff block construction we employed, the correlation

length of the block spin system is given by

(30)

Near the fixed point (critical point) value h = 0, (26) implies that



Cr 6

2

(31)

If we stay at the critical temperature (LRI' = LRI), the correlation length

T is a function of h alone. Therefore,

(32)(constant) /h2

We have derived a critical point exponent!! There was nothing magic in our

choice of 3 spins per block. Any odd number leads to (30).

P -[= -T,)

( a' ) z



17

E. Continuum Spin Renormalization

For many applications it is more convenient for caculational purposes

to replace the lattice of discrete-valued spins with an n-component spin density,

s(x), which is defined at every point and which can take on all values (cf.Fig.10).

Since we are only interested in the valuesof s(a) at point of the

original lattice, the Fourier transform of s(x), which we denote (k), and

be taken to vanish outside the first Brillouin zone of the lattice. This

restriction is illustrated in Fig. 11 for a one-dimensional Ising chain. Both

the spin functions shown describe the same spin values at the lattice points.

Therefore, we may discard the more rapidly varying function. Although

there is an effective upper bound, there is no corresponding lower bound to

the wave vectors, since the case of all spins aligned is k= . From high

temperature series analysis and experimental data, it appears that the

detailes of the lattice structure do not affect critical behavior greatly.

In particular, critical point exponents are not sensitive to the nature of

the lattice. Therefore, we are justified in replacing the Brillouin zone

by a sphere (cf. FigU)of radius A i1/a, where a is the lattice spacing.

We now must write our Hamiltonian in terms of the spin density s(x).

Instead of the restriction on the spin values (s= ±1 for Ising systems) we

2 4
introduce a spin-weighting factor such as exp(-s -bs 4 -...) which serves to

qualitatively approximate the restriction on spin values. This sort of

approximation is not expected to distrub critical point exponents. Series

work indicates, for example, that exponents do not depend on spin quantum

number (cf. Fig. 13).



We write the partition functions as

L- d ( W (SC,)

(33)

whereR is the Hamiltonian functional divided by kT and W is a weight factor

(e.g. W = s2 + bs4 ) The notation s ) indicates that we must

integrate over all functions s(x).

We may absorb W intot and write thes .5ta Landau-Ginzberg-Wilson form

x71 SJl e - 5(K) t r t D S (x) - - . 7
(34)

where d is the dimension of the lattice. The gradient term represents a short

range interaction. The remaining terms could represent true interactions or

be partly from the weighting functions.

Near the critical point of the system, the correlation length is very large.

The characteristic size of fluctuations is therefore very large and we do not

expect that small scale fluctuations are important.

Wilson suggested that the analogy to Kadanoff's replacement of site spins

by block spins is the integration out of the large k components of sX(). The

procedure is as follows:

In the expression for the partition function, perform the average over all

o(k)(a( k) is the Fourier transform of s)) with A/b k . The resulting

expression will only involve o(k)'s with k A/b. Then a scale change k k/ = bk

is made to restore the original form of the cutoff (cf. Fig. 14). After this

is completed, we will find that the remaining evaluation of the partition

function can be cast into the original form with new parameters h',r',u'.



qq

The equations which relate the new parameters to the old parameters are

in general extremely complicated. In fact, we have to allow for a form more

general than (34) to encompass all the possible changes in the parameters.

There are several ways by which we may simplify the situation.

As mentioned previously, the precise size of the Kadanoff block does not

matter; when exponents are determined, the block size drops out of the final

result. In the continuum case considered here, this means that the final

results will not depend on the value of b. However, the renormalization equations

will involve b at every intermediate stage. We may remove this extraneous

depend from the problem by examining the renormalization proceedure in the

limit b -1.

If we set b=exp (~. ) with R ' 1, we are only averaging over a

very thin momentum shell (cf. Fig. 15). We expect that the renormalized values

of the parameters will differ only slightly from the unrenormalized

values

h'=h + O( )

r'=r + 0(S )

u'=u + 0(e ) (35)
We can therefore study the differential change in the parameters as O

lim (r'-r)/ _ - dr/dL_ (36)

Such an exact differential generator has been given by Wegner and Houghton.

Even these equations are still too complicated in general. We now make

the assumption that we are in dimensions close to 4. That is, we define an

expansion parameter =4-d and make a perturbative analysis of the renormalization

equations. To lowest non-trival order in & we obtain the following equations



i 00

(37a)

(37b)

2x l-x- y(n+2)/2 (n+8) 1
(37c)

= y fE (1-y)-4x7

(37d)

where x and y are related to r and u by

x = r/(l+r) + u d(n+2)

(l+r)2 2n (d-2)
(38a)

y = U -
(l+r)2

d(n+8) (38b)

2n

It is the study of these equations (37) that will return us to the

phenomenological discussions of crossover.

dx

di

dy
d X

I
- -I

-~i



F. Return to Phenomenology: Examination of the Renormalization Equations

Before we examine the more complicated equations, it is useful to examine

the simple equations (37a) and (37b) for the correlation length and the

magnetic field. The first equation just represents the scale change involved

in the renormalization transformation analogous to 5 = 1/3 in our earlier

example. The fact that the magnetic field equation involves only h is due to the

absence of any odd terms in the Wilson Hamiltonian. If all the other

parameters were fixed at their scale invariance values (fixed point or

critical values). The correlation length would again be a function of h alone

.- Idt

(39)

It is only the dependence on x and y that requires any further analysis. In

most of the following discussion we will set h=O and consider only the x and y

equations.

The particular definitions of x and y employed in (38) place the fixed

points of the equations at "canonical" locations. The fixed points with positive

y (needed for thermodynamic stability) are (cf. Fig. 16)

x=y=O the finite Gaussian fixed point

x=O,y=l the Wilson-Fisher fixed point

x=l, y=o the infinite Gaussian fixed point

Let us examine the x and y equations in the vicinity of each fixed point.



1 DZ

Near the infinite Gaussian fixed point we linearize the equations around

x=l, y-O and obtain

he

J-e A
(40)

where z=(x-1) + cs; y. These equations have simple solutions.

e - ._ .,ep E-z e

y _ Yc o -e )
(41)

Combining these with the equation for the correlation length, we see that

is a scaling function of z and y,

( )L A;y ) A =A X (of 

0 Vr

_ = z y/ lZ)
(42)

As y and z tend to zero (with y// fixed) --~ 0. The infinite

Gaussian fixed point corresponds to a point of zero correlation. It is scale

invariant but is not the sort of scale invariance that we want: it corresponds

to infinite temperature (note that x=l implies r =).



If we turn now to the Wilson Fisher point, we have the following

linearized equations

x = (2- ( x

Je

(43)

where w= (l-y) + const x. This leads to a scaling form in terms of the

variables x and w.

GVAL LnJ 'L Ec- )/6At) 'XA x'eP/( /+l~ )
(44)

The correlation length diverges as x0 regardless of the value of w.

We identify x with T-T and extract the critical point exponent / for the

Wilson - Fisher point

-_ I ..W F Z 1(L+ tY e+&

(45)

It is important to note that the variable w scales in equation (44) but in such

a way that its presence is not important as x-) 0. At least in the vicinity

of the Wilson-Fisher point the line x=O is a line of critical points, each with

the same critical point exponent (45). However, how real this behavior is

and how far this putative line of critical points extends cannot be determine|

from this linearization approach alone.



( 'l

As we examine the final fixed point, the finite Gaussian fixed point,

the phenomenological picture comes into even clear focus. The linearized

equations are

de(
(46)

and the corresponding scaling form for the correlation length is

s T (>j,( K) ("'~ ; T r)

(47)

If we compare the renormalization group solution (44) and (47) with our

phenomenological equations (12) and (13), the resemblance is quite striking

(cf. Table 1). Somewhere near the finite Gaussian point the scaling power

of x seems to change from 2- (n+2)/(n+8) to 2. Thus the correlation

length has a different singularity, a different critical point exponent at

the finite Gaussian point than it does near the Wilson-Fisher point.

Moreover, the variable y, which has no effect near the Wilson-Fisher point

(as x--O) is a crucial scaling variable at the finite Gaussian point.

The analogy is so close that we immediately feel that the finite Gaussian

point represents a "tricritical" sort of point at which the scaling behavior

changes suddenly and drastically. The Wilson-Fisher behavior(44) or rather

the Wilson-Fisher value of the critical point exponent, can be expected to

be the correct expression of the critical behavior for all y >-O (at least as

x - 0). To show this we must clearly go beyond the linearized solutions of

eqs. (40) - (47).



G. Solution of the Renormalization Group Equations

In the linearized analysis we obtained solutions valid in the immediate

vicinities of the three fixed points. To produce a global valid solution which

stiches together the solutions already obtained from the linear analysis,

we must solve the renormalization equations without linearization.

The solutions of nonlinear equations is often a matter of chance and

circumstance. Therefore, the method used to solve the particular equations

at hadn is less interesting than the motiviations which lie behind it. It

is therefore instructive to examine what we need to know to solve the

nonlinear problem.

Each of the linearized equations produced a scaling function in terms

of the original variables x and y or some linear combinations of x and y.

Taking the finite Gaussian point as an example, we found that the variables

x and y were scaling variables near x=y=O. However, near the Wilson Fisher point

we again got scaling but in terms of x and w, and with different scaling powers.

We call x and y (near the Gaussian point) and x and w (near the Wilson Fisher

point) linear scaling fields . They are linear in x and y, they appear in

scaling equations, and we borrow Griffiths terminology of fields to describe

those things which appear as arguments in thermodynamic functions. They would

be adequate to describe the system if we had only one fixed point or knew

that we were very near a particular fixed point.

Wegner suggested that we consider nonlinear scaling fields. That is,

nonlinear functions of the variables (in this case x and y) that would appear

in globally valid scaling equations. We could define such scaling fields as

j os



l O

functions which satisfy particularly simple renormalization equations. For

example,

d -4z (2- ho -egA aJ, S - -) S ) (48)
These functions have the trivial exponential dependence on and a very

complicated dependence on x and y. From the form of the equations, however,

we might guess that near x=y=O, SGau is essentially x (since they satisfy

the same equation) while near x=O, y =1, SWF is x. If we had such functions,

we could write the correlation length scaling equation as.

z (A 5~ k)A-~ (Sg. t (155

(49)

where we have reintroduced the magnetic field h for completeness The scaling

equation for the Gibbs free energy (which satisfied dG/de =dG) would be

6s ( 'sN rSg ) NSF Al N )= X( c50)

(50)



These nonlinear scaling functions shoudl be valid everywhere, not just near

the Gaussian or Wilson-Fisher fixed points. They, therefore, should contain

all the information contained in our earlier phenomenological analysis. We

should be able to show that the line x =0 represents a critical line on which

the critical point exponents are those given by the Wilson-Fisher fixed point;

the special point x=y=O should appear as a "tricritical" point at which we

see crossover effects.

Before we can proceed further, we must write down the scaling fields SGau

and SWF. They are given by

= C -(n+2)/(n+8) (+r)

(51)

SWF = x y -(n+2) /(n+8) (l+r)(4-n)/(n+8)
SWF =xy (1+r)

where the function C is given by

C = (1-y/(g)) exp[((n+2) / (n+8)) xy/ 1 ] (52)

where y = (x) is the equation of the line connecting the Wilson Fisher point

to the infinite Gaussian point. In the language of nonlinear differential

equation y = (x) is the separatrix connecting the two fixed points. The

factors of (l+r) are present in the solutions (51) to match things up at the

infinite Gaussian fixed point and are not important for our later discussion.

The interesting thing to notice is that the scaling field corresponding to

Gaussian fixed point behavior is infinite along the y = (x) separatrix, while

the Wilson Fisher scaling field is infinite along the line y = 0.

o)



We can understand this behavior most easily in terms of the line y=O.

If y = 0 at some value of , it stays equal to zero. The remaining equation

simply states that the variable r has a purely exponential dependence r=exp(2( )

and, hence, J =r. The line y = 0 represents pure Gaussian behavior. In

a similar way, the y = separatrix represents pure Wilson-Fisher behavior.

Since both sorts of scaling behavior are contained in the scaling forms

(49) -(50), the scaling fields must take on special values to avoid appearing

in the final result.. If we return to Fig. 16 we can see that these lines

are also singled out geometrically. The flow lines indicate the paths that the

variables x and y take as functions of . The separatrix y =- (x) is the only

trajectory which leaves the Wilson Fisher point; the line y=0O is the only

trajectory leaving the Gaussian fixed point which is not tangent to the y-axis.

Armed with the nonlinear scaling fields, we can now investigate what forms

the scaling functions may have. This is entirely parallel to our earlier

discussion which placed restrictions on the tricritical scaling function in

order that it also describe critical behavior. However, the present discussion

is more surely grounded than the purely phenomenological discussion since we know

that the single form given in (49)-(50) must incorporate all the behavior.

In general, G(SG au,SWF,h) will generate critical point exponents

that do not satisfy exponent inequalities as equalities. This is to be

expected since G depends on three distinct scaling field with three distinct

scaling powers. The usual scaling equalities which relate three exponents are

satisfied because there are only two independent scaling powers . An example

of a Gibbs potential which is a "nonscaling" global solution of the form

given in (50) is



G = GGau(h,SGau) + GWF(h,S WF)

(53)

where GGau and GWF are both scaling functions. Each of these will generate

its own singularities with "exponents" that satisfy equalities. Since

these exponents are not equal, the measured exponents will be the exponents

representing the larger singularities. Therefore, we must have d-t z/3 > .2 

However, (51) is not a very good solution. Since SG diverges on the

separatrix, and SWF at y = 0, the Gibbs energy given above is infinite on

these two lines. This is certainly unacceptable especially since these two

lines were to represent pure Wilson-Fisher and pure Gaussian behavior. To

examine this more closely, we consider the Gibbs potential at h = 0. We may write

it in two ways

2 -~
O= SGau

(54a)

or

2- W

G=WF X F (54b)

where I is the renormalization group or scaling invariant

2- ~ (SL) / +
T x C (55)

y2 ( t v ) 4

=- g [A- ( -4)A^+A 3/ I 7



We have written d/2 as 2 - Gau and d/(2 - (n +2)/ (n+8) as 2 - WF to

explicitly display the critical point exponent. If the asymptotically valid

value of were Gau' then it followsthat fau (I=O) is some finite

constant. However, the invariant is zero on the y = separatrix as

well as at x=O. Therefore, the function fG cannot help us avoid the

singularity in SGau along the separatrix. On the other hand, if the

asymptotically valid value of ( were WF, then fWF (I=0) is a finite

constant. This implies that the separatrix should also have Wilson-Fisher

behavior, which is what we expect. Near the line y = 0 both SWF and

the invariant I are singular. By a proper choice of the function fWF the

two singularities will cancel.. An example of a choice that works is; " ( ) r 7(55)
(55)

which near x=y=O can be written as

~- -2_e c i+ z/~

(56)

This is precisely the sort of expression that in our phenomenological

discussion served as an example of a suitable tricritical scaling function.

Thus, we have returned to our starting place. We have shown how to

discuss crossover phenomena in terms of a single nonlinear group transformation

(the renormalization group) instead of two linear groups (the regular

critical and tricritical scaling transformations). Not only does the
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renormalization group naturally give rise to the universality of critical

point exponents along the critical line, (and the attendant crossover to

"tricritical behavior") but it also provides a method for the calculation

of scaling powers. The crossover behavior resulted not from a desire to

have simultaneous validity of critical and tricritical scaling notions, but

rather from simple regularity conditions on the Gibbs potential.



P HENOMENOLOGY

Near the critical line

T I(lX I

RENORMALIZATION GROUP

Near the Wilson-Fisher fixed point

C 6 F t i< LU)-' ( Y

Th e variable y does not
change qualit ative behavior
or exponents. The line x=O
is a, line of critical singularities.

The variable w does not change
behavior or e xponents. A line
of singularities at least fo r

w Z 1 (close to Wilson -Fisher
point).

/ Y. ,
Near the tricritical point Near the Gaussian fixed point

T Iz-- r ( /l I s /v ( / X Y )

The variable y scales and there
is a change of exponent.

The variable y scales and there
is a change of exponent.

=2

Table 1.

-1"

-2- & (n+Z) /(n +8)
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CAPTIONS

1. The phase diagram of a simple ferromagnet. The scaling directions

x1 and x2 in this case coincide with the magnetic field H and the

temperature T-T .

2. Qualitative view of crossover for the susceptibility. A simple power

law dependence of would imply a straight line relationship between

log and log T-Tc. The observed relationship shows two straight-

line regions connected by a crossover "knee".

3. Phase diagram of a simple Ising metamagnet. The antiferromagnetic co-

existence surface is bounded by a line of critical points which

terminates at tricritical points labelled TCP. The line of first

order transitions is shown dashed; TN is the Neel temperature.

4. The phase diagram of a meta-magnet in HH' T space. A half-moon

coexistence surface labelled CXS is bordered by a line of anti-

ferromagnetic critical points. This line terminates at two tricritical

points (TCP). By examining the phase diagram for non zero staggered

magnetic field, the tricritical point is seen to be the point of

intersection of three lines of critical points. Wings are formed

from coexistence surfaces between paramagnetic and antiferromagnetic

phases.

5. In the vicinity of the tricritical point, three different types of

behavior can be expected. Meanfield behavior will hold far from the

tricritical point and critical line. Near the critical line, "true

critical" behavior will be observed. Finally, in the immediate

neighborhood of the tricritical point, the tricritical singularity



will be observed. In the overlapping regions and borders, crossover

behavior will be observed.

6. The Kadanoff picture of scaling. Ising spins on a lattice with lattice

spacing a are grouped into blocks of size L. If L is much less than

the correlation length ' , the blocks can be treated as if all the

spins within each block are aligned.

7. Geometrically simple tricritical system. A coexistence surface lies

in the zero-ordering field plane h = 0 . In that plane a line of

critical singularities (x = 0) terminates at a tricritical point at

the origin. The crossover core, within which critical rather than

tricritical behavior, is obtained is of the form y / , where

is the crossover exponent.

8. The renormalization group principle as applied to a one dimensional

Ising chain.

a. The system consists of a chain of Ising spins coupled to a magnetic

field h and interacting via a long range interaction LRI.

b. The spins may be grouped into blocks at spins. The interactions can

be divided into inter-block and intra-block interactions.

c. Performing an average over the "internal degrees of freedom, we

obtain a new Ising system, with an effective magnetic field h' and

an effective interaction LRI'.

9. Contributions of internal states of block spins to free energy. There

is one state in which all the spins have the same sign as the block

spin and three states in which one of the spins has the opposite sign.

Iq
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10. A system of Ising spins on a lattice is replaced by a continu 4vM -

valued spin density defined everywhere.

11. Diagramatic representation of the continuous spin function s(x).

If we are only interested in the values of s(x) when x=2nir , the

two different functions shown are equivalent. For this case of a spin

on a one-dimensional lattice with lattice spacing 2r ., we need only

consider wave vectors such thtl k 1, hat is, wave vectors within

the first Brillouin zone of the lattice.

12. A spherical Brillouin zone approximates the true Brillouin zone

approximates the trueBrillouin one of the lattice. Details in

lattice structure are not expected to change critical behavior.

13. Approximation of quantized spin values by a weight function: The

value of the spin quantum number (' = i1, and 3/2 are shown) does

not change the critical behavior. A continuous weight function

serves as an average over all spin values.

14. Renormalization procedure for a contiuum spin system. The wave-

numbers of the spin fluctuations are divided into two classes. The

more rapid fluctuations are integrated over and the remaining wave-

vectors rescaled to restore the original form.

15. A differential generator is calculated by performing the re-

normalization procedure for an infinitesimal change of scale. A

thin shell of wave-vectors of thickness A./ is integrated over.

The limit SU -P-O is then taken.



16. Solution region of the renormalization group equations. The region

includes three fixed points, denoted as the finite Gaussian, infinite

Gaussian, and Wilson-Fisher fixed points. The separatrix connecting

the Wilson-Fisher and infinite Gaussian fixed points is labeled y = (x).

The line x = 0 corresponds to the surface of critical Hamiltonian.

The origin corresponds to the tricritical point.
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CHAPTER 2

SCALING LAWS FOR FLUID SYSTEMS USING GENERALIZED

HOMOGENEOUS FUNCTIONS OF STRONG AND WEAK VARIABLES*

*(Phys. Rev. Bll, 1176 (1975) )
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Scaling laws for fluid systems using generalized homogeneous functions of strong and weak
variables*

J. F. Nicoll, T. S. Chang,t A. Hankey,1 and H. E. Stanley
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 .

(Received 28 December 1973).

We present a systematic approach to scaling at ordinary critical points with special emphasis on the
critical point of a single-component fluid. Recent work on scaling in fluids has avoided the possibility
of a singular coexistence surface. In particular, the consequences of satisfying the inequality 0 < a + ,
as an equality have not been explored. We show that 0 = a + /3 is a prediction of scaling, and that, if
O = a + /, the specific heat at constant volume has a leading-order (a-divergent) asymmetry across the
coexistence surface. We further show that the asymmetric nature of the fluid critical point precludes
the analyticity of the critical isochore above the critical temperature, whether the critical isochore is
expressed in terms of (T) or P(T). A weak singularity of the form IT - T 3-12 (8+) is predicted for
the isochore, which may be dominated by stronger singularities.

I. INTRODUCTION

The original scaling hypothesis was made by
Widom' (and, independently, by'others 2 ) to de-
scribe behavior near the critical point of a fluid.
More recently, it has been realized that this
form of the scaling hypothesis may only be ade-
quate to describe the leading-order behavior of
models and real fluid systems. The interest in
extending the domain of validity of the scaling
hypothesis has been stimulated by the discovery
of a singular diameter 3 in certain models 4' 5 and by
recent renormalization-group calculations ; the
singularity behaves like I T - T, I' - a, where a
(a > 0) is the exponent characterizing the diver-
gence of the specific heat, Cv. Mermin and
Rehr7 have suggested that this (1 - a) singularity
may be expected generally in fluids.

To incorporate the diameter singularity, Cook
and Green8 have suggested a very general equa-
tion of state. It contains as its leading term the
scaling equation of state and many less singular
terms. These corrections to scaling yield the
diameter singularity and other weakly singular
corrections to leading-order scaling behavior.
On the other hand, Rehr and Mermin9 have shown
that the singular diameter can be derived from a
simple modification of the original scaling equation.

In 1965, Griffithslo derived the rigorous in-
equality 0 < a +/ , where 8 is the exponent char-
acterizing the divergence of the curvature of the
vapor pressure curve, (a2 P/aT2 )r . In Refs. 8 and
9 this Griffiths inequality is not satisfied as an
equality since assumptions are made about the
smoothness of the chemical potential (Ref. 9) or
the degree of symmetry about the liquid-vapor
coexistence surface. This suggests that the ap-
proaches of Refs. 8 and 9 do not explore the con-

sequences of the scaling hypothesis for fluids in
the most general way.

In this work, we show how to formulate a scaling
hypothesis which can satisfy the Griffiths inequal-
ity 0 < a + j3 as an equality. To separate physical
assumptions from mathematical assumptions, we
consider the general problem of making a scaling
hypothesis at an ordinary critical point with spe-
cial attention paid to the liquid-vapor critical
point. To make a scaling hypothesis for a fluid
system the following four decisions must be made:
(i) which thermodynamic variable to select as the
dependent variable of the scaling equation; (ii)
what independent variables to choose in the scaling
equation; (iii) what curves in the thermodynamic
space to describe and how to express them in the
variables chosen; (iv) whether to augment the
scaling equation with correction terms. We will
illustrate these four decisions by examining the
assumptions implicit in the original scaling hypoth-
esis proposed by Widom':

(i) First, a particular thermodynamic potential
must be selected as a candidate for a scaling equa-
tion. For fluids, Widom chooses the pressure, P.
Each choice of a potential carries with it a natural
set of variables (here A and T, where kj is the
chemical potential and T the temperature) and a
natural set of associated thermodynamic quantities
given by the partial derivatives of the potential
with respect to these natural variables. For exam-
ple, the number density p is given by p = (aP/a g) r .
On the other hand, if one chooses the Gibbs poten-
tial, G(P, T), then the volume V is given by
V= (aG/ap)r. [For a magnetic system, -M= (G/aH)r,
where M is the magnetization and H is the
magnetic field.] Symmetries or asymmetries in
quantities such as p or V, will differ depending
on the choice of, variables and potential (cf. Fig. 1).

11 1176
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(ii) Second, one must choose variables in which
to state the scaling equation. Widom chooses
p - p.(T) and T, where p.(T) describes the co-
existence surface for T < To, and the critical iso-
chore for T> T. The choice of T as the second
variable instead of some combination of and T,
coupled with Widom's use of a single scaling func-
tion, has the consequence that the density diame-
ter is rectilinear (cf. Sec. III). The T - Tc I i-a
dependence of the diameter can be obtained in
two ways (a) by allowing the second variable to
be a function of . and T, and (b) by adding correc-
tion terms to the scaling equation. As we will
see in Sec. III, the amplitude of the T - To I ' -

term in the diameter is explicitly related to the
amplitudes of leading order singularities in case
(a), while in case (b) the amplitudes need have no
relationship. Thus, the use of a different "second
variable" (instead of T), which Rehr and Mermin9

call "revised scaling," gives the expected form of
the diameter singularity but may not correctly
give the associated amplitude, as they have pointed
out.

(iii) Third, one must decide which surfaces in
the thermodynamic space to describe and how to
describe them in terms of the scaling variables.
By his choice of A. - g(T) as his first variable,
Widom singles out the liquid-gas coexistence sur-
face (i.e., the vapor pressure curve) and the
critical isochore and describes them both by the
homogeneous'l equation p - (T)=0. The coexist-
ence surface is a natural choice in that it is the
real phase boundary. The critical isochore is not
a natural choice in this sense, but both the co-
existence surface critical isochore correspond
to paths utilized in experimental measurements,
making it highly desirable to describe these paths.
The use, however, of a homogeneous' descrip-
tion of these paths by an equation x, = 0, where x,
is some appropriate variable, limits the scaling
approach to systems described by smooth' 2 sur-
faces. To see this statement, suppose that p(T)
were singular on the coexistence surface or
critical isochore. Then the variable x, = p - p.(T)
would have. singularities at T = T, even away from
the critical point. This behavior is undesirable
although perhaps tolerable if the singularity were
sufficiently weak.l3 Since the singularity in the
vapor pressure P(T) [and its critical isochore
continuation for T > T] is expected to be strong,
having a divergent curvature, (a2P/a T'2),- o as
T- T,, there has been a nearly universal avoid-
ance of p - t scaling of G. (Here we utilize the
reduced variables, p P - P, and t =T - T,. ) In
this work we weaken Widom's assumption to allow
inhomogeneous" descriptions of the critical iso-
chore and coexistence surface in order to en-

IR FFLUID SYSTEMS... 1177

compass the more general situation. This permits
us to consider p-t scaling of the Gibbs potential
G as well as -t scaling of the pressure P.

(iv) Fourth, one must decide whether to de-
scribe the system with a single scaling function
or to augment the scaling equation with correction
terms. Widom's choice of a single function ac-
counts for the leading-order singular behavior
and, as extended in Ref. 9, places strong restric-
tions on the forms and amplitudes of asymmetries
and other weakly divergent corrections to the lead-
ing-order behavior. On the other hand, multiple
correction terms give considerable freedom to
the equation of state. Therefore, it is possible
that the revised scaling approach of Rehr and
Mermin9 gives only the qualitative nature of the
diameter, but cannot correctly predict the ampli-
tude.

In Sec. IIA we introduce a general potential a

which could be taken to be (within a linear term
subtracted off) either P(p, T) or G(P, T) for fluids
[or, for the sake of comparison, G(H, T) for a
magnetic system]. We initially choose to de-
scribe the system with a single scaling function
to simplify the exposition and to explore the limita-
tions of this approach.

In Sec. II B we discuss the restrictions that can
be placed on the forms of the scaling variables
used: to describe the system. We show that the
preferred ("weak") direction of Griffiths and
Wheeler,'4 as reflected in the scaling variables,
is an automatic consequence of the scaling hypoth-
esis. That is, one of the scaling variables, x,,
must be chosen such that the line x, = 0, the x2
axis, is tangent to the coexistence surface at the
critical point. We further show that a change in
the second variable, x,, generates a series of
correction terms to the scaling equation of a form
suggested by a restriction of the formalism of
Cook and Green.8

In Sec. II C we form a hypothesis for the de-
scription of the coexistence surface and critical
isochore in terms of the scaling variables x, and
x2. The scaling-invariant form x, =Ax2

86 is sug-
gested by the scaling hypothesis. We show that
this choice in a fluid system corresponds to a
vapor-pressure curve with a divergent curvature,
(a2P/aT2),, characterized by an exponent =a + ,
and an asymmetry in the amplitudes of the specif-
ic-heat divergence across the coexistence surface
(cf. Sec. III).

In Sec. III we derive the usual critical-point
exponents and the relationships between the ampli-
tudes of the leading-term singularities and those
of the asymmetries, such as the diameter, utiliz-
ing the s caling-invariant parametric form x,
=Ax286 for the coexistence surface and critical

i _ ______ ____
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isochore. We then show that if a single scaling.
function is used, this scaling-invariant form can-
not suffice on the critical isochore, but it must
be modified by the addition of a specific correc-
tion term.

II. A MODIFIED SCALING HYPOTHESIS AT AN
ORDINARY CRITICAL POINT

A. Choice of potential and scaling equation

We consider a system that can adequately be
described near its critical point by a potential i
which can be expected to scale. By keeping I,
general, we can discuss p-t and l1 -t scaling in
fluids and H-t scaling in a simple magnetic
system, simultaneously. For example, in a
magnetic system, we can choose * =G(H, T)-G
+Sc (T - TC ),15 where S is the entropy (the subscript
c denotes the value at the critical point).

For simplicity we choose to describe with one
scaling function and we employ initially aribtrary
scaling variables. In the simple case of a single
function, we write

' =8 +$B,(2.1)

cases in which the geometry of the transforma-
tion may be as important or more important than
that of the scaling function S. In particular, the
parametric representations of Schofield'7 embody
the singularities directly into the transformed
variables used in the parametrization. The trans-
formation is singular and noninvertible at the
critical point.

Of the large number of thermodynamic quanti-
ties, we will discuss in detail three: C, which
is an "order parameter" for the system; D, a
typical strongly divergent quantity; and D,, a
typical weakly divergent quantity.'4 In terms of
the potential 4, these are given by

(2.3)

D, 411,

Dw - (211,22 _ 12412)/11 ;

we introduce the notation

aF aF
F = ayi ; F ax,

(2.4)

(2.5)

(2.6)

where the scaling function S(x,, x2) is a general-
ized homogeneous function (GHF)

XS(xI, x2)=8( alx" , Xa2X2), (2.2)

and 63 (x,, x,) is a C' background term which van-
ishes and whose first partial derivatives vanish
at the critical point (0, 0). We choose x, and x2
to be smooth invertible functions of the usual
thermodynamic variables, y and Y2. For ex-
ample, in the simplest Ising ferromagnet, x, =y,
=H and x2 =Y2 =t. The convention a,> a2 labels xl
and x2 as the strong and weak variables of Griffiths
and Wheeler. '4 16 By restricting the transforma-
tion to be smooth and invertible, we exclude those

Table I lists the specific symbols for 4', C, Ds,
Y1, Y2, and DW, for the three cases considered
in this work.

B. Restrictions on the forms of the variables x, and x2

It is straightforward to show'8 that the scaling
hypothesis (2.2) implies that near the critical
point

b Y2c '(2.7)

where we use the notation

TABLE I. Values of symbols used in the text in three cases. Symbols not defined in the
text are s -S/V (entropy density) andKT, the isothermal compressibility.

. -t scaling p-t scaling Magnetic system

P-Pc -Pc ( -c) G -G + (T-TC)Sc G-GC +(T-T)SC
(T-T ,)s - (P -PC )Vc

Y A -c P -P -Pc H

Y2 t T-T- t-T-T tT- Tc
C P-Pc v =V-V -MD, p 2K( -XT= -T T-
Dw pCv/T -C,/T -C,/T

j~~~~~~Zavl2P~~~~~~~~~~~)
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P or /.L

V orp

FIG. 1. View of the coexistence surface in P - V or
p -p plane for the case of an asymptotically symmetric
top.

order terms, so that the higher-order dependence
of x2 is even more difficult to extract. For this
reason, we will discard any term which does not
dominate these weak singularities coming from
the nonlinear portions of the transformation be-
tween (xl, x2) and (y,, Y2).

The original postulate of Griffiths and Wheelerl4
(that the strong direction, the xl axis, is arbi-
trary), however, is correct if and only if we con-
sider solely leading terms in the expressions for
thermodynamic quantities. Our scaling hypothesis
(2.1) is stated in terms of a GHF, 8; for a function
which is a GHF to remain a GHF after a change
of variables, the change of variables is severely
limited. The transformation cannot be linear in
both variables unless either it is the unit trans-
formation or the scaling powers are equal. The
proof of these statements is given in Appendix A.

If we consider a linear transformation in one
variable, setting X2 =x2 - (const)xI, our GHF,
8(x,, x2), can be expanded as a sum of GHF's:

(2.8)ax,
ayl

Equation (2.7) is proved under less restrictive
hypotheses (than the scaling hypothesis) in Ref. 18.
Equation (2.7) shows that the line x1 =0, which is
the x2 axis, must be tangent to the critical iso-
chore at the critical point, as postulated in Ref.
14 (cf. Fig. 2). We assume that the derivative.
(2.7) is continuous from above T, to below T so
that the x2 axis is also tangent to the coexistence
surface at the critical point. Equation (2.7) deter-
,mines x1 to linear order. In general, x, will have
higher-order dependence on y, and Y2; however,
this dependence cannot be extracted from leading-
term or even first-nonleading-term behavior of
any thermodynamic quantity. The linear depen-
dence of x2 must be determined from nonleading-

Por p. 
Y1

ical
:hore

Y2

T

FIG. 2. Relationship between the x2 axis and the
coexistence surface. The dashed line denotes the criti-
cal isochore for T > Tc .

8 (x,, x) =8(x,,X2 ) + (const)x,s8(x,, X2)

+[(const)a/2! ] X, 2 2(x, X2)+ '- . (2.9)

Equation (2.9) is a series of correction terms of
the form suggested8 to account for certain of the
asymmetries in a fluid. For example, one can
easily show that the second term on the right-hand
side of (2.9) can be written

IX j(1-a2+a1)/ 2 Q (X,;l;)I X21 ( ~X21 ai/a2)

(2.10)

For the convenience of the reader, the right-hand
side of (2.10) utilizes the expressions in terms of
a, and a2 of the critical-point exponents to be ob-
tained in Sec. III.

If we try a more general smooth change of vari-
ables, we generate a more general series of cor-
rections. However, the most singular of these
corrections will still be given by the linear part
of the change of variables. It is important to ob-
serve that a linear change in the strong variable
xi generates a series of correction terms, each
of which is more singular than the previous terms.
Therefore, even if we did not have (2.7) we would
not be free to choose x, arbitrarily. This state-
ment is a special case of the situation for n vari-
ables discussed in Appendix A.

The correction terms of (2.9) are explicitly re-
lated to the original GHF, . They are not, of
course, the most general correction terms of the
same form. However, if for some choice of x2 the
corrections of the form (2.10) vanished identical-

J

= IX21-a+ 86 -1 ( x ) 

i
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ly, then revised scaling 9 alone would be sufficient
to account for all the asymmetries discussed (at
least to leading order in those asymmetries). On
the other hand, one may be forced to include cor-
rection terms from the beginning. In this case,
a change of x2 simply changes the exact form of
the correction terms without changing their quali-
tative nature; x2 can be chosen "arbitrarily." The
use of revised scaling relates the amplitudes of
the weaker singularities to those of the stronger
singularities, and is therefore capable of sharper
testing when compared to models or experiment,
than the corrections-to-scaling approach s which
leaves the weak amplitudes independent of the
leading-term amplitudes. If revised scaling 9 does
correctly give the weak amplitudes, then the x,
axis forms a second preferred direction in the
sense that it defines the most appropriate vari-
ables in which to state the scaling equation.

The x2 variable, although unspecified, has a
simple form on many paths. It fs essentially equal
to Y2. To see this, observe that on any path r,

( dx -_ J _

dy, bb -b(dxl/dx 2 )r '
(2.11)

where J denotes the Jacobian of the transforma-
tion between (x,, x 2) and (y,, Y2),

J =lb2b - b2b . (2.12)

We assume that J is nearly constant near the
critical point; this is consistent with our assump-
tion of a C' transformation. For convenience we
will normalize our variables so that at the critical
point J=1 and b1 =1.

In this case, an approximate integral of (2.12) is

x 2 -y 2 +blx,(x,) (2.13.)

for 8 and Sij:

,s(x, )= [x2'2 /S2Si(x/lIx2 I /a 2,l), (2.14a)

tJ(Xl 2) = x( i -"a1/a2 .j (x/x 2 I al/,2 :,1).

(2.14b)

The upper sign is used for x2 positive and the
lower sign for x2 negative.

Equations (2.14) suggest the possible validity
of the following scaling-invariant form for the
relationship between the scaling variables on paths
of interest:

x =A. Ix 2 al'2 =A 1 x2 ' B
6 (2.15)

In (2.15), A, is a constant, possibly zero, which
may differ above and below T, (the subscript
denotes the sign of T - T ).

The limiting case, A: =0, reduces to the homo-
geneous relation xl = 0, corresponding to a smooth
form for the phase boundary and critical isochore.
The case of A, 0 gives a power-law singularity.
We observe that on any path r,

(2.16)
dY2 2 dX2 dY2 /2 r r d r

The b are smooth by assumption and by (2.13),
(dx2/dy)r is nearly constant. We therefore ex-
pect that the curvature of the path d2y/dy2 on a
scaling-invariant path (2.15) will be given approxi-
mately by

d2 ) ( d2x) _ 2 1y I(a-2a2)/a2 y 2 -dy2 /~ dX22 [ ,I"~'~'~"°~ ~,'
(2.17)

where the exponent is given by

We will see that on the coexistence surface and
critical isochore dx,/dx 2 - 0 at the critical point,
so that the approximation in (2.13) is a good one.

C. Forms of the coexistence surface and critical isochore

We choose to describe the critical isochore as
well as the coexistence surface, since experi-
ments are performed along both paths; as we will
show in Sec. Ill, the critical-isochore path is
slightly inconvenient theoretically.

On all paths passing through the critical point,
the singularities of I in (2.1) are assumed to come
from terms involving 8. We know from (2.7) that
xI = 0 on both the critical isochore and coexistence
surface. Using the properties of GHF's we write

9=a +0. (2.18)

In both p-t and gL-t scaling, (2.18) satisfies the
inequality'° 0 < a + as an equality. 9(a) Physical
necessity (as well as convenience) suggests the
relationship (2.15) for the coexistence surface.
In the two-phase region below To, there are two
branches of 8 corresponding to the liquid and gas
phases. The coexistence surface is defined by the
equality of 8 on these two branches; that is, on the
coexistence surface,

(2.19)

Only the form given in (2.15) allows (2.19) to be
satisfied exactly,' 9b) if a single scaling function
is used. On the other hand, we will show in Sec.
III that if a single scaling function is used, (2.15)
cannot be used on the critical isochore and must

1180 11
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be modified by the addition of corrections.
Before we present the detailed results of our

modified scaling hypothesis, a discussion of the
use of any inhomogeneous description is in order."
In the p-t scaling case, for example, we can write
the form of the coexistence surface as

p - (const)t - (const')t2 + . =A .. t 12-+ .

(2.20)

The left-hand side of (2.20) is an acceptable choice
for x,; that is, it satisfies (2.7). Using (2.13) we
could rewrite (2.20) to lowest order as

x, =A_ x 2 12-e (2.21)

(A similar situation might exist in pL-t scaling
with the possibility that 0 < 0.) We assume, there-
fore, that any nonanalyticity on the coexistence
surface or critical isochore can be expressed in
an inhomogeneous way such as (2.15) or (2.21).
This is equivalent to defining x, to be some or all
of the smooth part of the coexistence surface and
critical isochore. If both of these are smooth,
we have the case treated by Widom. If one is
smooth, but the other is not, x, is the analytic
continuation of the smooth surface.

III. RESULTS OF REVISED SCALING

D,=Klt - Y +K21t [B- ,

D.=D +D I - + D 2 It1-' 2
X

-

(3.1c)

(3. d)

We have replaced Y2 with t (= T - T, ) for the sake
of clarity since this substitution is appropriate in
the three cases we are considering. The con-
stants in Eqs. (3.1) are given in Table II. The
constant Do is not derived from the scaling func-
tion 8, but comes instead from the background
term a of Eq. (2.1). Background terms have been
dropped from the other expressions. The diver-
gence in Dw tends to be weak (a,- 0.1), and hence
the terms coming from the background may be
important and measurable. The constant Q2 and
the final terms in C2, K2, and D2 come from the
expansion of x2 given in (2.13) with the upper and
lower signs applying to the critical isochore and
coexistence surface, respectively. We note that
the independent parameters in Table II are b ,
Q,, C,, K,, andA,. '9(a) The critical-point ex-
ponents are obtained in the usual way, 5

=(1 -a,)/a 2 ,

-y = (1 - 2a1)/a2,

-a = (1 - 2a2)/a2 -

(3.2a)

(3.2b)

(3.2c)

On the critical isotherm, x2 a x,, so that by -us-
ing GHF properties we have (dropping all but the
leading term)

In this section we develop the results of a re-
vised-scaling hypothesis using a single scaling
function with no correction terms [cf. Eq. (2.1)]
and utilizing the scaling invariant form (2.15) to
describe the coexistence surface and critical iso-
chore. We derive the usual critical-point expo-
nents and relate the amplitudes of the weaker
singularities to the amplitudes of the dominant
singularities in C, Ds , and D,. We show that the
use of (2.15) withA, nonzero changes both the
leading and nonleading amplitudes and gives a
leading-term (a-divergent) liquid-gas asymmetry
in DW across the coexistence surface. Finally,
we show that the use of a single scaling function
and the scaling-invariant form are incompatible
on the critical isochore; to retain a single scaling
function, Eq. (2.15) must be modified. This modi-
fication has the consequence that a weak singularity
is predicted for the pressure of a fluid system on
the isochore similar to one found in the correc-
tions-to-scaling approach of Cook and Green.8

Employing Eq. (2.15), and utilizing the proper-
ties of GHF's, we can express the quantities I,
C, D, and D as follows20 ' 21

= =Q, I t 2- ++Q8lt 13-2a-B

C =Clt 8+Czlt I'a ,

(3.1a)

(3.lb)

C = Ix _(1- Q' )/a' ,(l, 0). (3.3)

Here the upper sign corresponds to x, positive
and the lower sign to x, negative, and

6 =aA1/(l -a,). (3.4)'

Combining (3.2) and (3.4) we observe that the
usual exponent inequalities involving a, f, y, and
6 are satisfied as equalities; for example,

a +2f3 +y=2,

=( - 1).

(3.5a)

(3.5b)

TABLE II. Values of constants in Eq. (3.1).

Q =(A4 , 1)

Q2= (2-a)b A,Q 1

C=S 1 (A4,, 1)

C 2 =b[ (2-a)Ql +CA, (-6 d±)l1

K!=811(A*, ± 1)

K 2= 2b 2C t -K lb'A, (2p 6 ±y)

DI= (2-a ) (1-a)Ql-C/ 2C /Kt-C f C A (1-a-)
D2 =-b DI [2PC1/K +A,(-2,6 c)]
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Below the critical temperature, Eq. (2.19) pro-
vides some information which relates the ampli-
tudes of the scaling function 8 on the liquid and
gas sides of the phase boundary. If we also re-
quire that the coexistence surface have an asymp-
totically symmetric top, then

liquid (X1, X2)= -as(X
1 , X

2 ) (3.6)

TABLE III. Values of constants in Eq. (3.13).

Q' = 4+, 1)

2 = b (2_a)A+Q 

K; =8n (4.,1)

K' =-b [A, K;(2p6 +y) + (2-a )S 3l4(A+, 1)Q'l/Kt]

Dt= (2-a)(1- a)Q

D/2 = b YA +[ 2f6 -a +6 (1-a-f)/(1- a)]
at least to lowest order, on the coexistence curve.
Similarly, if the strongly divergent quantities are
to have the same leading-term behavior in the two
phases, we must require

Slui (x, 2) = ~l(Xl x2), (3.7)

to leading order.22 (a' Note that (2.15) is the only
relationship between xl and x2 which allows (3.6)
and (3.7) to hold exactly.

Using (2.19), (3.6), and (3.7), we can evaluate
the asymmetries across the phase boundary:

(3.8a)

(3.8b)

D' ui - Dgas =-2Cu'd (A fi6(1- aD - f) t- + b2 t 1' -2 e- 8

x {16(1 - a - 3)(216 + a)A2

+ 2[(2- a)(1 -a)(1 - a)Q, - C /K]/K,) .

the isochore, we cannot expect that path to be scal-
ing invariant as well. We could abandon revised
scaling and add correction terms to the equation
of state (2.1). If, however, we retain revised scal-
ing, we find on the isochore

-b2x -a-8 . s81 (x 1 /x2 , 1)
82 (X1 /x2

Inverting this equation we find that

x 1/x"' =f(c--.

(3.10)

(3.11)

Since we have neglected background terms and ex-
cluded corrections to scaling, we are only justified
in expanding the right-hand side of Eq. (3.11) to
first order in x-a8. Using the explicit forms
given in (3.10) we discover that on the isochore,

Observe that the asymmetries in (3.8a) and (3.8b)
are proportional to b2,. If b2 =0, then the implied
symmetry leads to a rectilinear diameter as is the
case in the original Widom formulation. This is
also true of the weaker asymmetry in (3.8c); how-
ever, the leading asymmetry depends only on A_.
If A_ is nonzero, the amplitudes of the weak di-
vergence differ in the liquid and gas phases.2'h)
Thus, although we can maintain symmetry in the
order parameter and the strong divergence, 
= a + 3 breaks the symmetry of the weak diver-
gence, typically, the specific heat.

The expressions given in Table II have one un-
fortunate consequence. On the critical isochore,
setting C1 =C, =0 implies D, =0. That is, there is
no a singularity of the specific heat. The difficulty
arises because we have implicitly assumed that the
isochore is a natural path in the same sense that
the coexistence surface is a natural path. This is
not the case in an asymmetric system. The most
natural order parameter is not simply the den-
sity or entropy, but some function of p and s given
by

(3.9)ax,

Lines of constant p might be expected to be scal-
ing invariant. If, however, we wish to describe

81(A+, 1)=0,

Ax8 b2(2 - a)8(A+, 1)X23-2 (C +B)A1,X- S , 1)
1~~~~~~~~

(3.12a)

(3.12b)

Since (3.12b) is not a scaling-invariant relation-
ship for b2 N0, the arguments of 8i and 8ij will no
longer be constant; the expansion of these ampli-
tudes gives corrections of the same order as the
corrections due to revised scaling. Employing
(3.12b), we write for the critical isochore only

(3.13a)

(3.13b)

D =Q lItl2 - +Q;Itl 3-2a-8

D =KJtl-Y+K tI s8- x ,

D,= Do +Di Itl -a+l It I l - 2a-8 . (3.13c)

The constants are given in Table III. All the for-
mulas given in this section are special cases of
the equations developed in Appendix C (cf. Tables
IV-VI).

In the case of ,u - t scaling of the pressure (3.12)
gives the following expression for the pressure on
the critical isochore (T > T,):

p = (const)t + (const' )t + Qt?-
a

+bQ1 A,(2 - a)t3 - 2a-B +pcA, t- a - 8

-P\b2 (Q(2 - A2 (2 - a - 3)) -2a+ )

(3.14)

1182 11
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An expression of this form with A+ =0 and the co-
efficient of the last term unrelated to 8 follows
from a correction to the scaling approach as well.23
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APPENDIX A: PROPERTIES OF GENERALIZED
HOMOGENEOUS FUNCTIONS

In this appendix we will develop some properties
of generalized homogeneous functions (GHF's) nec-
essary to the body of the work. We will always be
discussing a GHF, F(x,,..., r,),

X fF(X,, x, ) =F(X"a1L, ... X a,,X,). (Al)

Since thermodynamic functions are often evaluat-
ed along particular paths (such as the isochores
and isotherms), the behavior of GHF's along diff-
erent paths is crucial. The simplest path is one
along a variable axis, that is, a path on which all
the variables except one, xj, are zero. On such a
path, F is given by

F(xl, .. . x,) = | X I a / JF (O, 0,..., sgnxj, 0,. ).
(A2)

This homogeneous description" gives a pure pow-
er-law behavior. However, there are many other
paths that give a pure power-law dependence. If
we write F as

F(xl, . ., X.) = xj I afla' F(xl/ x, Jl/ j, . . .,)
sgnx, . . ., x/ x al -J),

near (A,,A2,. .. , sgnx,.. . ,A,) we would expect
(A5) to hold approximately. We would write

F(x, . . . x, ) = x' f/- j

x (FA 1 ,... ,An))

+ :Fal.x; tA,) x, q)

(A7)

Equation (A7) has (A5) as its leading term. We
will term paths such as given in (A6) as asymp-
totically tangent to the xj axis. Note that in the
case of scaling-invariant paths (A4), the path is
asymptotically tangent to all the axes with nonzero
Ak.

An example of particular interest is the "straight
line," for which the path is described by a linear
parametrization,

Xk 
=

CkXJ · (A8)

Then if a, > a., for all k such that Ck *0, the path
is asymptotically tangent to the x, axis since 1
= ak/a, + 1 - ak/a, and, by assumption, 1 - ak/a, > 0.

The variables employed in (Al) and in the body
of this work may seem arbitrary and unconnected
to the thermodynamic variables one is accustomed
to. If we make a change of variables from (x,,
x2, ... , x) to (y, x2, .. . , x,) with y =y(x,, x2, .. , x,)
we cannot expect the GHF F to remain a GHF.
Writing F for F as a function of (y, x2 ,..., x,), the
statement that F is still a GHF, i.e.,

XafF(y, x2,..., x) = F(Xayy, Xa2x .. ., XnX,),

(A9)

is equivalent to the following differential equation
for y(xl, x2, , x):

(A10)

we recognize a class of paths which we term s
ing-invariant paths, which are characterized 1

Xk=AkI xj ak/a , k #j.

(A3) where the differential operators a and A are de-
fined by

by

(A4)

On such a path we have the simple power-law de-
pendence of the homogeneous paths

F(x, . . . , x,) = x I af/aF(A, . . . , sgnxj, ...,A).

(A5)

However, there is a still larger class of paths
which give essentially the same behavior as (A4).
If on a path we can write

Xk =Ak I Xj aI a + Bk Xj lak/aj+k , (A6)

with q > 0, and if F is sufficiently nice (analytic)

a =ay- a,x a
J=1

A = (a, - j)x -.
J=2

(All)

(A12)

From (A10)-(A12) we see that if the transforma-
tion leaves the basic scaling exponents unchanged
along paths asymptotically tangent to the x axes
(j > 2), that is, a = i, then y satisfies the homo-
geneous equation"

Ay =0.

The solutions of (A13) are GHF's,

(A13)

1 1

11 1183

(Ay +) /ay =&F 18/ ax, "'/ ax,



j1qz 

J. F. NICOLL et al.

Xyy(x. . ., X,) =y(alx,,. . . , aX",,) . (A14)

The converse is not true. If we rewrite (A10) as

aF Ay =F, (A15)

where the- new differential operator, , is given
by

E= (a-af)x~ ),z (A16)
J =2

we see that y, a GHF, implies that ?aF =0. This
always has the trivial solution y =F.

In general, the right hand side of (A10) is a GHF
W such that

XalW(xl, . . ., xn) =W(lX"X., X"an,,) · (A17)

Now if y is taken to be an analytic function of
(xl, ... , x.), then W must also be analytic. The
right-hand side of (A10) is analytic only if

nja =al,

for some integers n. Furthermore, if the trans-
formation is linear, then the left hand side of (A10)
is linear and we must have n, =1, or a = a, for
all j.

If we consider a linear transformation

From (A19) we see that if a,<a, for all j such that
cj +0, then the correction terms generated are
weaker than the leading term, and that, converse-
ly, if a,>a for some k such that c, k0, then the
correction term is stronger than the original term.
Therefore, linear (and, in general, smooth trans-
formations with a nonvanishing linear part) vari-
able changes can only involve variables stronger
than the variable undergoing transformation. The
strongest variable cannot be changed at all, the
second strongest can have mixtures of the strong-
est added to it, the third strongest, mixtures of
the first and second, and so forth, down to the
weakest variable, which can be considered as ar-
bitrary.

APPENDIX B: EXACT FORMS OF C, Dw, AND Ds

(A18) From the definitions it is straightforward to ob-
tain

C =b 1 'l +b2 I2 (B1)

Ds=b'b,,u + 2blb2,, + b2a +bl *l + b 212,
(B2)

(B3)~~~~~~~~n D. = [J2(,1122 - 1212) + W +W21 /Ds,y =Xl + E Cxj ,
y =x 1 +J=2 cixwherej2a

we can expand F to yield

F =F(y,x2*,. *ax,)- cx ax, (Y, X2 .. , X,) 
]=2 (

bijk ax

The quantities W. and W2 are given by the lengthy
A19) expressions

WI= llh(bb'b + b'2 b"lb - 2bblbl2) + 2I11 2[bllbb2 + abb - b 2(blb + b b)]

+'kl' 22 (blb2b2 2+bl 2 b2 - 2bl 2bb2-' A)+'1 2(b 2lb 2 + bb 2 - 2b b 2 ),

W 2 = W, 1 = 2.

The b and b, must be understood to be smooth
functions of yl and Y2 so that the singularity struc-
ture of D,, for example, is given by

D,=ko +klltl-Y+k 2ltt - +k, I tj -

+k, It sB +k5t I t- +kIt I 1- . (B5)

The constant k6 comes entirely from the t depen-
dence of bibl; the constants k4 and k5 are a mix-
ture of bl: and b,,, on the one hand, and the t de-
pendence of b'b and b2b2, on the other. Terms
like the 1 - y divergent term k, in (B5) could also
arise by replacing the scaling function in (2.1) with

the product of a smooth function of y and Y2 and
the same scaling function. This is related to the
idea employed by Domb24 to generate corrections
to scaling for the Ising ferromagnet.

The detailed dependence of Dw as expressed in
W1 and W2 in (B4) is very complicated and general-
ly unenlightening. Each term is proportional to
second derivatives of the transformation between
(Yl, Y2) and (x,, x2) which, unlike the first deriva-
tives, we have no method of estimating. A change
of variables which changed the second derivatives
(but left the first derivatives unchanged) leads to
the generation of a series of corrections to the

1184 11
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scaling equation that are always weaker than the
original scaling function. Therefore, if we are
willing to carry correction terms of that type, we
may choose the second derivatives in any way we
wish.

We observe that if a +f3< , the leading singular
term in W1 is in fact larger than the I tl' 2 +8 term
discussed in Sec. III and Appendix C. We write Dw
as

D, =D, +D tI -a+D, I tl-2aa- +D3I tq- +D4I t B.

(B6)

The new constant D4 is given by

D4 = C (b b2b' + b 2 - 2b b ) . (B7)

Since it is proportional to C1, the It I B term vanish-
es on the critical isochore (T> To).

APPENDIX C: EXTENSIONS OF REVISED SCALING

The symmetry requirements on the coexistence
surface [cf. Eqs. (2.19), (3.6), and (3.7)] preclude
any modification of the scaling-invariant form
(2.15) without a corresponding modification of the
fundamental equation (2.1). That is, corrections
to scaling must be added. To illustrate what can
be done in a corrections-to-scaling approach, we
replace (2.1) with

I =8 +9 + X, (Cl)

where S is a correction-to-scaling term. 8 We re-
strict ourselves to a single correction term for
simplicity; the further generalization is only an
algebraic complication. We have no a priori rea-
son to restrict S in any way. However, for sim-

plicity, we assume that S is a GHF in the same
scaling variables as 8,

(C2)

Note that the exponent of X on the left-hand side of
(4.2) is not 1 but 1 +qa2 with q>0. By assumption,
the dominant behavior of any thermodynamic quan-
tity is given by 8. The correction-to-scaling term
S cannot affect leading-order scaling. If we as-
sume that S is a GHF, we know by the discussion
in Sec. IIB that the weaker variable can be chosen
freely; there is no loss in assuming it to be sim-
ply x2. The stronger variable has a natural defini-
tion as the smooth part of the coexistence surface
and critical isochore, and we assume that this
preferred variable can be carried over to the cor-
rection term. The scaling powers a, and a2 have
been chosen equal to those of the scaling function
8 for further simplicity. One of the scaling powers
can always be so chosen (cf. Ref. 15), and if the
coexistence surface or critical isochore is singu-
lar with A.* 0, the usefulness of the scaling-invari-
ant path suggests that both of the scaling powers
are equal to the corresponding scaling powers of
the leading-term GHF.

Correction terms of the same order as those
coming from 8 can be generated by modifying
(2.15). We write for the coexistence surface

xj=A, x 2 "5 +B I X2\8 6+

Anticipating the difficulties on the critical iso-
chore, we write for the isochore:

x, =A+ XY2±a + B+ x2 6+a _ b2(2 - a)

8(A., 1) 13-2(a+ B)
$n,(A+, 1) 2

(C3)

(C4)

TABLE IV. Values of constants in Eq. (C5).

Q 1 = (_, -1)

Q=- b2A-(2-a)Q1

Q 3=B _C + (4 _,-1)

C = (,, -1)

C2=bt(2 - ac)[Q -A_C ]

C3=BKt + (A,-1)
K =S1(A64, -1)

K 2 =b [ 2C -K 1 (2 6- y)1

K3 =B St, (A _, -1) + I A_,-1)

DI= (2-o a) (1 - )Q - 2C2/K -C tA4_P 6 (1-a -)

D2 = bD [._(26 +a)-218C/K]

D3=B - C [ (3-2a-13 + 2q) - (1 - a +q) (2 - a +q)l -f 2C 2K 3/K - 2/

x ( -q)C3C 1t/K + (1-a +q)(2-a +q)Q 3 +C336A_(o +-1)

11 1185.

X1+11a(X1, XZ = (X11X, X2X) .
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TABLE V. Value of the constants in Eq. (C9).

C2 = 2b (2 -a) Q

C3 = 2B _K t +lqukl (A, -1) +' (4 _, -1)

K2 = 4b 3 Cl" uid

£3 =B Siqt"d 4i,-l)-tttS,-)l +Ittuid ,-1)

-~tl (4_,-1)

i =2CQ"'dAP_(-ca-B)

D2 =K2[(2- a)(1- )Qt - P2Cj/KI/Kj +blA_ (2 i + a)D1t

D3 = 2B.Clichd[,(3 - 2ea -- +2 q) -(1 - a +q)(2 - a +q)

+B 2C I/K3 - 2 C (P +q) C " C3/K 1

+ (Ci"L -C )8 6 ( + -1)A

From our discussion of changes of variable in
Sec. IIB, we note that if we employ a nonzero S

with q = 1 - a - , we may set b = 0.
Evaluating the consequences of (4.1) and (4.3) we

find on the coexistence surface:

* =Q1 tI2- Y + Q2 t 3-2 a-- 8 +Q3 ltl2- a+, (C5a)

c=c It I +CItl-a+c 3 It I + ,

D, =K1 tl +K Itl IB-1+K3 Iti-",

(C5b)

(C5c)

D.=Do +D, It-a+D 2 I t I -- +D 3I t -a. (C5d)

The constants in (C5) are given in Table IV. The
independent parameters have increased to Q, C,,
K 1, Q3, C3, K3, A, and B,.

In the simple revised-scaling scheme of Sec. III,
p - t and ,u - t scaling, although handled in similar
ways, cannot be compatible due to the intrinsic
differences in symmetry. Even a pure t depen-
dence in p(v) leads to a tI28 diameter in v(p).
However, if we set q = , we produce I t l terms
in C (and I t B-y terms in Ds). If we assumed that
A - t scaling were valid with a t I ' - density diam-
eter, then p- t scaling would also be valid if in the
p- t scaling formalism, the following relations be-
tween the constants of (C5) held:

C = CC/ V, (CSa)

K3 = 3K 1C/Vc , (C6b)

D = D,C 1/V. (C6c)

These relations are particularly interesting in the
case A_ =0 but B_. 0, since (0C3) would then imply
that the divergence of the curvature of the coexis-
tence surface, (ap/at2 ), 19(a) would be character-
ized by an exponent with

TABLE VI. Values of constants in Eq. (C10).

Q = (A+, 1)

Q'2 =b (2-a )A +Q

Q'3 = (A+, 1)

K1 =I(A,, 1)

K' =-b [AK' 1(2 6 +y) + (2 a)S 'ilt4+, 1)Qi/KI]

K' =B +Slit+(A, 1) +l(A 4+,1)

D' = (2 -a)(l -c)Q

D -2 =b 2DA+[2,6-a + a (1-a-)/(1-a )1

D = (1 -oa +q)(2-a +q)Q )
3 3~~~~~~~~~~~,

0=a. (C7)

Equation (C7) gives the same value of 0 as that
expected in the case of a smooth coexistence sur-
face g(T).

The generation of new singular terms in (C5)
changes the asymmetries across the coexistence
surface. To evaluate the asymmetries we first
observe that in addition to (2.19), (3.6), and (3.7),

Qliquid = Qgeas (C8)

We find for the asymmetries

Cliquid as = 2 t B - + _ 3 t 
Dliqui - o =R2, It It'~i~ I 'I -7j,

(C9a)

(C9b)

Dliquid_ Das = t I -a +2. Itl ~-2a- +53 It I - of

(C9c)

The constants in (C9) are given in Table V. We
observe that the amplitudes of the asymmetries
arising from the correction term cannot be evalu-
ated in terms of the amplitudes of the leading-or-
der singularities. The amplitude D3 can be ex-
pressed in terms of leading-term amplitudes and
C3 and K3. C3 and K3, on the other hand, involve
derivatives of S and S which do not play a part in
any of the other amplitudes. Therefore, only the
difficult measurement of C3, K, and D3 can give
a test of this extended revised-scaling approach.

On the critical isochore, Eqs. (C1) and (C4) com-
bine to give

:=Qit2 - a +Qt3-2a + +Qtta-a+,

D,= Klt-Y + Kt s -' +Kt 2-r,

D, =Do +Dt- +D't '-2- + D't -e

(ClOa)

(ClOb)

(ClOc)

The constants in Eq. (C10) are given in Table VI.

.
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CHAPTER 3

AN AXIOMATIC APPROACH TO GEOMETRICAL ASPECTS OF

CRITICAL PHENOMENA IN MULTICOMPONENT SYSTEMS*

*(submitted for publication)



An Axiomatic Approach to Geometric Aspects of Critical Phenomena

in Multicomponent Systems*

J.F. Nicoll and H.E. Stanley

Physics Department, Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Griffiths and Wheeler (GW) have shown the utility of considering

the coexistence and critical surfaces of simple and complex

systems. In particular, GW have proposed postulates which connect

the geometry of the coexistence and critical surfaces to the

relative strengths of singularities at the critical surface. The GW

postulates combine axioms of an analytic nature with strictly

geometrical ideas. GW assume that derivatives taken in various

directions have different well-defined strengths and that these

directions are associated with the coexistence surface and critical

surface in a certain way. In this work, we show that the first

assumption (that different directions can be assigned relative

strengths) is sufficient to imply the geometrical association

postulated by GW. Using the reduced set of axioms, which we call

critical ordering, we discuss the application of GW to critical

points of higher order. We show that in the absence of critical

ordering, competing coexistence and critical surfaces may not merge

smoothly at their intersection. Several systems exhibiting a critical

point of order four that have this singular geometry are discussed.

Application of the analytic axioms is extended to multicomponent

fluids and a classification system unifying previous systems for fluids

and magnetc materials is introduced. The formulation of scaling

hypotheses is treated and a discussion of corrections to scaling is

given.

* This work forms part of a Ph.D. thesis of JFN, to be submitted to
the Physics Department of MIT. Work supported by the National Science
Foundation, Office of Naval Research, and Air Force Office of Scientific
Research.
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In 1970, Griffiths and Wheelerl (GW) proposed that the qualitative

behavior of systems near their critical points could be understood

geometrically. They argues that the coexistence and critical

surfaces 2 give directions which are singled out thermodynamically

as well as geometrically. In this paper we discuss analytic postulates

which imply the geometrical considerations of GW.

I. POSTULATES OF GRIFFITHS AND WHEELER

For a single component fluid (cf. Fig. la), the cirection tangent

to the coexistence surface at the critical point (labeled x2)is the

only direction determined by the geometry. GW point out that motion along

the coexistence surface produces gradual changes in the character

of the fluid while, on the other hand, motion across the coexistence

surfaces produces dramatic changes. For this reason, GW call

x2 the weak direction; any direction oblique to x2, such as xlin Fig. la,

is called strong.

In a simple ferromagnet (cf. Fig. lb) the coexistence line and

hence x2 s precisely along the temperature axis, T, and the strong

direction x1 can be taken to be parallel to the magnetic field, H.

Since T is weak and H is strong, GW predict that the constant-field

specific heat,

-CH = I 2G (1.1)

H

diverges weakly at the critical point, and that the isothermal

susceptability

T , a2H (1.2)
a2H T

diverges strongly. Here G = G (H,T) is the Gibbs potential, H the

magnetic field, and T the temperature.



It is found that the divergences of CH and xcan be represented

by power laws,

CH- IT-Tf Ia (1.3a)

and

X I T-T IY (1.3b)

with O0.1 and X - 1.

In an anisotropic ferromagnet with interplanar interations

Jzgiven by RJ y,changing the lattice anisotropy parameter R

strings out the ferromagnetic critical point (for fixed R) into

a line of critical points bounding a two-dimensional coexistence

surface (cf. Fig. c). A direction tangent to the line of

critical points (x3)is called irrelevant.

In a general system described by n field variables, GW

postulate that if an (n-l)- dimensional coexistence surface is

bounded by an (n-2)- dimensional surface of ordinary critical

points, then directions out of the coexistence surface are strong,

directions in the coexistence surface but not in the critical

surface are weak; and, finally, that the remaining variables

are irrelevant.

It is convenient for our purposes to restate these postulates

in terms of variables, instead of directions. In terms of

variables, the GW postulates are given as follows. At any point

of the critical surface, we can choose variables, (x1, x2, x3...Xn)

such that

x =0
'1

I q9

(1.4a)
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is the tangent surface to the coexistence surface at the critical

point in question and such that

XI = == 0 (1.4b)

is the surface tangent to the critical surface at the critical

point. The remaining variables (x3 ...xn) parametrize the critical surface

near the critical point. Any variables chosen in this way have

the further property that derivatives of a thermodynamic potential

with respect to xlare, in general, strongly singular, derivatives

with respect to x2 are, in general, weakly singular, and, finally,

derivatives with respect to (x3 ...xn) are, in general, finite.

The GW postulates specifically apply to determinants of matrices

of second partial derivatives of the thermodynamic potential

(e.g., the Gibbs potential)

D(A) II Ij Il xi, x. 6 A (1.5)

and we use the notation l.i a2c /x.i xj

where A is a set of the variables xk . The simplest case is that of a

set containing a single variable A = Xk]. In this case, the

determinant in (1.5) is just the susceptibility associated

with the variable xk,

D( Xkj ) = +kk (1.6)

As in (1.3), we expect that D(Ixlj) diverges strongly and D(Jx2 )

diverges weakly. The susceptibilities associated with x3,...Xn,

(that is, the susceptibilities associated with irrelevant

variables) are expected to be finite.

If the set A contains two variable, A= Xk, xl}, then

D(A) involves the ordinary and "cross" susceptibilities,

D( xkx 1 ) =
kk 1 - k6 ke (1.7)
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GW propose that the character of this combination be determined

by the ordinary susceptibility terms. That is, they suppose that

the second term in (1.7) is not more singular than the first term, and

that, in general, no cancellations occur that would reduce the

divergence of the sum. For example, D({ xl, x3}) diverges

strongly-times-weakly, D({x1, x3}) diverges strongly, D({x2, x3})

diverges weakly, and D({x3, x4}) is finite.

This lack of cancellation is a very important feature of the

GW postulates. Each term in the determinant

J ~a2G 92G

l a 2 UP aT

aG aG
3PzT aTz

(1.8)

is strongly divergent. However, by a unimodular transformation,

this determinant is seen to be exactly D(fxl, x2l). Thus, the

determinant in (1.8) is strongly-times-weakly divergent, not

strongly-times-strongly divergent. Cancellation of the most

singular parts of the determinant reduces the strength of the

singularity. However, there is no cancellation in the determinants

(1.7) which are written in terms of the geometrically distinguished

variables.

The properties of D(A) when A has three or more members are

determined in the same way. In each case, the strength of the

singularity can be read off from the product at the diagonal terms.

Thus, the postulates are:

(a) If A contains x1 but not x2, D(A) diverges strongly;

(b) If A contains x2 but not xl,D(A) diverges weakly;

(c) If A contains both x1 and x2, D(A) diverges strongly-times-weakly;

(d) If A contains neither x1 nor x2, D(A) is finite.

I



Recently 3-8, there has been great interest in higher order

3
critical points. Prototypically, in a metamagnet , three lines of

critical points meet at a special point termed the tricritcal point

(cf. Fig. 2a). The directions tangent to the critical lines, which

were irrelevant everywhere along the critical line, certainly is not

irrelevant at the tricritcal point. We may expect that the

critical behavior may be different at the tricritcal point. In

Ref. 3, a hierarchy of critical points is defined to incorporate the

tricritical and even more complicated critical points. An

ordinary critical point is defined to be a point of order two. A d-

dimensional surface of such point of order 2 is denoted 2Rd. It is

expected that in a space of n field variables d=n-2. In a space of

three variables, there are lines of ordinary critical points which may

intersect at a critical point of order three (a tricritical point).

Similarly, in a four dimensional field space, surfaces of ordinary

critical points may intersect in lines of tricritical points

(points of order three), which in turn intersect at a point or order

four. Reference 3 proposes that several R intersect at a
n-p

P+R 1 While such simple systems do not exhause the possible
n-p-l'

complexities of higher order critical points (it does not, for

example, include the possible termination of a critical line in a

critical end point rather than a tricritical point; the critical end

point is characteristic of multicomponent fluid systems 4-5, cf.

Sec. III), they do suggest the appropriate extention of GW to

higher order critical points.

We temporarily adopt the geometrical picture of Ref. 3 and
P

further suppose that on an R there are p distinct degrees of
n-p

divergence which can be classified as follows. We can choose a

set of variables at each point of the R such that
n-p

X1 = 0 (1.9a)

is the surface tangent to the coexistence surface,

X1 = X 2 = 0

1 5z-

(1.9b)



3

is the surface tangent to the surface of ordinary critical points;

and, in general

X1 = x2 = ...x =0 (1.9c)

is tangent to the surface of.critical point of order j (the R
n-j)

for all j, 1 j p. (for (1.9c) to hold for j=l, we also define the

coexistence surface to be a Rhl).

We now suppose that the susceptibilities are divergent

for 1 j p and that, as the obvious extension of GW.

»> i > >>' >> e (1.10)

The susceptibilities corresponding to the remaining n-p variables

are assumed to be finite. Just as for the p=2 ordinary critical

point case treated by GW, we assume that the singularity of the

determinants such as (1.5) can be estimated from the diagonal

terms which only involve the ordinary susceptibilities. Thus, the cross

susceptibility terms are again supposed to produce no singularities

stronger than the product of the diagonal terms and they do not

combine to reduce the strength of the singularity given by that product.

Since we now have p different degrees of divergence, we must

abandon giving each divergence a name such as strong and weak; we

may say instead that x is stronger than x2 which is stronger than x3

and so forth. Thus, the set of variables (x1... xn) is partially

ordered by the degree of singularity of the susceptibilities

corresponding to the irrelevant variables (x +l...xn ) are all assumed

to be finite. However, the ordering is complete among the

variables (x1...xp ) which we will term relevant variables to

distinguish them from the irrelevant variables.



We see that the GW postulates fall into two parts, one

analytical and the other geometrical. The analytical assumptions are

(i) at any point of a pth order critical surface we may divide the

n field variables into two classes. There are p relevant variables

whose susceptibilities are infinite at the critical point.

The remaining n-p irrelevant variables have finite susceptibilities.

(ii) The relevant variables can be ordered by the strength of the

divergence of their susceptibilities (1.10).

(iii) Determinants which contain both direct and cross

susceptibilities have the divergence properties of the products of

the direct susceptibilities (cf (1.7)).

The geometrical portion of the postulates connect the relevant variables

to the geometry of the critical surfaces near the critical point. That

is (as in (1.9)) the surface determined by

X1 = X2*.. = xj=0 (1.11)

is tangent to the surface of order j critical points, the JR ., for
n-j

all j p.

In Section II, we show that the anlytical assumptions (i) - (iii)

are sufficient to imply the geometrical association (1.11). We

also discuss the situation in which the relevant variables are not

completely ordered (several variables have the same "strength"). We

point out that the analytical axioms are obeyed by more general

systems than the scaling systems discussed in Ref. 3.

In Section III we discuss multicomponent fluid systems for which

the geometrical picutre of Ref. 3 fails. We extend our GW formalism

to these systems and introduce a classification system for surfaces

on which some non-critical phases are in coexistence with other

critical phases.
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In appendix A, we discuss the application of this work to

the formulation or scaling hypotheses; a brief discussion of

corrections to scaling is given.
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II CRITICAL ORDERING AND SIMPLE CRITICAL SYSTEMS

In part A of this section we show that a system obeying

the axioms (i) - (iii) of the previous section automatically have the

geometrical properties summerized in (1.11). We call a system that

obeys the analytical portion of the GW postulates "critically

ordered", where the ordering is, of course, that of the

susceptibilities (1.10). In part B, we discuss various scaling and

non-scaling critically ordered systems and their relation to the

renormalization group. In part C, we discuss systems with

"partial" critical ordering . The geometry of such systems is

more complicated and is illustrated by two fourth order"' examples.

A. Geometrical Properties of Critically Ordered Systems

We will use two sets of variables in this discussion. The first

(Y1 . Yn) are field like variables which are not associated with

the geometry of any of the critical surfaces. In asymmetric

systems, they may be chosen to be the usual thermodynamic fields.

For example, in a single component fluid, we could choose the

pressure and temperature. In symmetric systems such as a simple Ising

ferromagnet, the usual variables of temperature and magnets field

are associated with the geometry; the coexistence surface is

contained in the line H=O. However, we can imaging choosing slightly

skewed fields. This restriction is just a technical one to

allow certain simplifications of the discussions to follow (cf 2.3).

The second set of variables is the ordered set (x1...xp; x+...x ).

We assume that kk is divergent for k=p, and finite otherwise. We

assume that determinants of second partial derivatives of the potential

+ of the form (1.5)have the same singular behavior as the product

of the diagonal terms and that

¢11 >>422 > >¢ ... >> pp ... - . J
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The assumption of complete ordering of (xl...x ) will be relaxed

in part C of this section.

The basic geometrical connection is provided by the following

relationship between the densities qk -3/xk and the variables

(X1... xp) at the critical point.

r )t P cl (a/ °j X_ x...X. X (2.2)

for all j p, and all k, Q and where y denotes any set of

n-j yi's. The proof is as follows.

The left hand side of (2.2) can be written as the quotient of

two Jacobians8

{(Yk- ) 1 lV 3f.j {iY} ...= l )
9 (X 1...xj ; j+i n

(2.3)

a (,..¢ j{y} Yg)

( X ... x j ;xj+ l.. xn)

Each Jacobian on the right hand side (2.3) can be written as a sum

of determinants involving the susceptibilities multiplied by factors

involving the derivatives of the (Y .. Yn) with respect to the

(X1 ...Xn). These coordinate derivatives may be assumed to be non-

vanishing since we have not specified the (Y1.. Yn). The largest

of the susceptibility determinants is ( .. .j)/a(xl. .xj). This

is of the form (1.5) and therefore, this leading divergence does



not have singularity reducing cancellations (we do not care if there

are cancellations in the other determinants of susceptibilities).

T herefore, asl ... , . take on their critical values, we maywrite the right hand side of (2.3) as
write the right hand side of (2.3) as

( a, 1-) a ( r a I <)

a (X, W I j bun A > 4,, ( ~/? I
3 ..... ·

r; hi, it D i/ Xzt ), I $ j

'~ ( K q '44, 

The leading divergent term is identical in both numberator and

denominator. Cancelling this term we have

, () /(e
(2.4)

c3 A

) Ye ' i, *iXj 1Y

as the critical point is approached. Equation (2.2) is proven for the

case p=2 (ordinary critical point) in Ref. 1.

It may be instructive to work out the details of this proof for

a particular case. Consider the Jacobian

.I, , 4, X 
(2.5a)

It may be expanded to give

J II= Y 1' !X
. I

I Fz; j, (
(2.5b)

X"' )

') ( X , 1 " -1

-- 1 D ,1 i I .

I - , t 

1.D Y "
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By considering various determinants of the form (1.5) we can

estimate the divergence of the cross-susceptibilities

TZ~l 4 (+1#t4 ) ) (2.6a)

l9 +4 (+I)+stw) l(2.6b)

\iJ A\ 'li. -x z)(2.6c)

Thus the second determinant in (2.5b) has at most the divergence of

11( 22 ¢33)½ Since 2 2 z/ 33 this is much smaller than the
first determinant which is characterized by the divergence of

611 22' Similarly, the third determinant has at most the divergence

of t22(?111 33)½ and therefore may be neglected in comparison with

the first determinant.

It is easy to see that we may replace the lk in (2.2) by any

functions fk where

n-k
f k = i k+i (2.7)

where the a are any smooth functions of (x1... xn) a 0 -t 

For example, if a and b are constants,

a(,___ ___b___ y) a r b S&ts ALL 2)
,,( X ..j I As . C ,' J , , 3

The largest possible divergence of the second Jacobian is negligible

in comparison with the most divergent term of the first Jacobian.

Furthermore, the Jacobians, (and, hence, (2.2)) are invariant under



any unimodular transformation of the (fl...fj).
j' 

To apply (2.2), consider the single component fluid. For

j=l, Eq. (2.2) implies that

a ) v

3 T) P /d) xl (2.9)

as the critical point is approached in the single phase region.

Thus, whether we choose to regard the volume or entropy as the order

parameter, (2.9) shows that the coexistence surface (which is

presumed to have the small tangent surface at the critical point

as the iso-order surface) is tangent to the line x =0.

The same argument shows that (2.2) implies the tangency of the

surface xl=0 to the coexistence surface in the general case of n

fields. This identification corresponds to the physical notion

of GW that the strongest fluctuations should be exhibited by the

order parameter.

The remaining connections between (2.2) and (1.11) may be

proved by induction on j. The proof depends upon a weak version

of the smoothness hypothesis9 which is implicit in any discussion

of surfaces of higher order critical points. For our classification

by order to be useful, the critical properties of the critical

points on a particular surface of order j critical points should not

vary drastically from point to point. For our classification by order

to be useful, the critical properties of the critical points on

a particular surface of order j critical points should not vary

drastically from point to point. We need not assume that, for

example, critical point exponents are the same everywhere on the

surface; a gradual variation of exponents is tolerable. We need only

exclude variations in critical behavior which are so extreme as to

isolate a critical point from its neighbors. This criterion applies

rigorously only in the interior of the surface. The boundary of the
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surface is isolated geometrically and we cannot impose our smoothness

requirement there. This is, of course, to be expected; it is

precisely at the boundaries of surfaces of order j that Ref. 3 suggests

the existence of order j+l critical points. However, we do not

expect the ordering on the j+lR . lto be incompatible with that of
n-j-l

the boundary region of the R .. If a region of mutual validity

of the two orderings exists, no difficulty is encountered.

Consider the case j=2. From (2.2) we have that the surface

xl=0 is tangent to the coexistence surface and to the 1= constant

surface. We have also that the x = x2 = 0 surface is tangent to

the 1 = constant, q2= constant surface. We wish to show that

this latter surface must be the surface of ordinary (j=2) critical

points. Suppose that it is not. Then, if we take a derivative

of 2 in any direction contained within the critical surface, the

resulting susceptibility will contain a 22 term which cannot be

cancelled by any other term (we are already in the X 1 = 0 surface)

Thus, the density ¢ 2 varys in the surface of j=2 critical points

strongly in such a way as to isolate the critical point in question.

This contradicts our smoothness requirement. Therefore, the

surface x = x2 =0 must be tangent to the surface of critical points

of order 2.

The proof for general j proceeds in the same way to show that the

surface xl=x2=...=xj=0 is tangent to the surface of order j critical

points. We may write this symbolically as

j
X=...=x=0 Rn-j (1 j n-j (2.10)

where ' denotes tangency between the indicated surfaces.



B. Examples of Critically Ordered Systems

The most usual and useful critically ordered systems are scaling

systems. Ref. 3 proposes that on each R the"singular part" of
n-l

the Gibbs potential is a generalized homogeneous function 10(GHF) of

j of the n fields

a1 a
G( ' 1;... 7Jx.;x+l...x n) = G(xGlx ) (2.11)

If for each individual scaling hypothesis we have al C a2... aj 0,

the scaling equation (2.11) represents a critically ordered system. For

such systems, the analytical portions of the GW postulates can be

checked in more detail. For example, in E9 (1.5), each term in the

determinant expansion is of the same degree of singularity. Thus in

the determinant D( x, x21) = Gll G22 -G12G12. the cross -

susceptibility term G1 2G1 2 can never be larger than the product of the

direct susceptibilities G1 1G2 2. The noncancellation of the two terms

is not, however, guaranteed by the scaling hypotheses (2.11)

Of course, we may add to the Gibbs potential any regular or weakly

singular terms which do not disturb the leading order scaling behavior;

the system will still be critically ordered. These "corrections to

scaling" are or interest in single-component fluid systems which lack

the simplifying symmetries of magnetic systems and yet are sufficiently

simple that verification of theoretical predictions may be possible.



i 3

The scaling hypotheses (plus corrections) has the theoretical

support oif the renormalization group which also gives a method for the

calculation of the scaling powers (al...aj) by linearization of the re-

14
normalization group equations 6-7. However, even more support

for the phenomenological scaling theories can be obtained from

nonlinear renormalization group equations. In Ref. 3, it is

assumed that near the boundary of an R (the boundary is itself
n-j

an +Rnj ) there is a region in which both the order j scaling

hypothesis and the order j+l scaling hypotheses have validity. This

assumption leads to the prediction of various "double power" scaling

19
laws and relationships. In a region in which three separate scaling

hypotheses can be made (e.g. near the intersection of tricritical lines

at a point of order four) " triple-power" laws are predicted. The

nonlinear renormalization group solutions of Ref. 18 have precisely these

properties. The competiion between various fixed points 14 expressed

in these nonlinear solutions bears a striking resemblance to the

phenomenological description of Ref. 3. In the "Hamiltonian space"

surface of ordinary critical points is bounded by "tricritical lines"

which in turn intersect at a point of "order four". Double-power

scaling behaviour is found near the tricritical lines and triple-power

scaling near the point of order four. The geometry of these

renormalization group systems will be considered in more detail in Part

C of this section.
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There are also critically ordered systems which do not scale.

Consider for example, a Gibbs potential given by the sum of two

b ba ba
GHFs G=G (x1, x2 ) + G(xl, x2), with scaling powers (al , a2

andlal, a2 ) respectively. Since Ga and G are both GFs, each

generates a set of "critical point exponents" which satisfy

a 2a +a b b =2

2-12

We can choose the scaling powers such that and a > (and

bvarefore, ~;a a = 8/15,
therefore, ) p); for example, we might have = 13/15, a2 = 8/15,

bal = 6/7 and a2 = 4/7. The measured exponents would be ~ a, , andb . In this case, only some critical point exponent inequalitites

a + a b
will be satisfied as equalities; e.g. + 2( +5 2.

Thermodynamic potentials of this form arise naturally as singular

18
solutions of nonlinear renormalization group equations .

20
Calculations of the free energy by a method of Wilson's seem to

indicate that these singular solutions will not represent the true free

18-21
energy in most systems
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C. Partial Critical Ordering and Singular Geometries

We have assumed that there is a complete ordering of the divergent

i

susceptibilities, 11»)c 22)) jj, on each n-l' This

guarantees the smooth merging of intersecting critical surfaces. When

several PR intersect to form a Rn-p- 1' the complete ordering on

the P+lR gives unique tangent surface to all the iRR the
n-p-1

complete ordering on the P R gives unique tangent surface to all

the R . This merging of coexistence and critical surfaces was
n-j

described in terms of scaling systems in Ref. 22.

However, there are many systems which do not have this complete

ordering. In the scaling case, complete ordering corresponding to distinct

scaling powers. If some of the scaling powers are equal, then the

ordering is only partial. In general we may have only that

corresponding to the following relationship among the scaling powers

al=O*o = a. . a = ...= a =...a.
1 J j2+ J e !r Jr

(2.14)

In this case, the fundamental geometrical relation (211) holds only for

j=jl' 2, Jr' Thus, we cannot show the geometrical relationships of

GW for all j.; previously, the obtained results apply only to

j=j , 1 tt r.
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In particular, the smooth mergining of intersecting coexistence

and critical surface cannot be guaranteed. In Fig. 2b, we show

schematically what is expected when (i 11 2 2 )43 3 , but the relative

sizes of 1and t22 cannot be distinguished. Two coexistence surface

intersect at a finite angle but the critical lines bordering those

coexistence surfaces merge smoothly. This sort of behaviour at a

tricritical point was also discussed in Ref. 22 (corresponding to

al =a2 )a 3).

The first example of such a system that we will discuss has even

more singular geometry. Not only are the two strongest variables of

-the same strength there is also no unique tangent surface to the surface of

ordinary (order two) critical points at the critical point of order four.

Thus the left hand side of (2.1) is not well defined. The system is the

meta magnetic system of Harbus et al . The Hamiltonian is given by

xy z
= -[ s.s. +9 Z s s] -H Z s -H' (- )s

(ij> (ij> ij i i

(2.15)

The first sum is over nearest neighbor pairs in each xy-plane; the

second sum is over nearest neighbor pairs coupled in the z-direction; H

is a direct field, and H' is a staggered field which changes sign on

alternate xy planes (the parameter is zero on even-numbered planes and

=1 on odd-numbered planes). For R 0, the system is a metamagnet, for

R 0, an anisotropic ferromagnet, and for R = 0, the system reduces

to a set of uncoupled two-dimensional Ising planes. The Hamiltonian is

invariant under the transformation
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R - -R

H -a H'

H' '- H

s Ad (-1)C s (2.16)

Therefore the Gibbs potential obeys the symmetry relation

G(H, H', R, T) = G(H', H, -R, T). (2.17)

For various values of R (R (0), the phase diagrams in the H-T plane are

shown in Fig. 3. The coexistence surface is bounded by a line of

critical points, which, in turn, terminates at tricritical points

(labeled TCP).

TN is the Neel temperature at each particular value of R. In the three

dimensional space H-T-R, Fig. 4 shows a coexistence volume capped by a

surface of critical points or order two, which is, in turn, bounded by two

tricritical lines. These tricritical lines interesect at R=O at a point of

order four. The symmetry exhibited in (2.17), combines with exact

scaling results for the two-dimensional Ising model, gives rigorously

the scaling powers at the point of order four:

a, = aH = 15/16

a2 = aH,= 15/16

a3 = aR =7/8 (2.18)

a4 = aT = 1/2

Two of the scaling powers are equal; the system has only partial

critical ordering at the point of order four. For R 0 the full

coexistence surface lies in the H=O space; on the other hand, for R 0,

the coexistence surface is entirely in the H'=--O space.



At the fourth order point, the two strongest variables are H and H'

We would expect the critical surface, therefore, to be tangent to the

R-T place at the fourth order point. However, the critical surface lacks

a unique tangent plane at that point. For example, a place placed

tangent to the critical surface at the top of the coexistence volume

(at the Neel temperature) has as its limit plane the H-T plane if R 0;

while a similarly placed plane for R 0 has as its limit the H' - T plane.

On the other hand, if we approach the fourth order point along any of

the lines of tricritical points, the tangent planes do have as their

limit the R - T plane 23

It is suggestive that for this example the "proper" limiting

behaviour at the fourth order point is achieved along the line of third

order points. However, we have not been able to establish conditions for

this to hold generally.

As a second example taken from nonlinear renormalization group

calculations, we consider two internal isotropically interacting n-

component spin systems, s and s2 which interact through a biquadratic

term. The Hamiltonian density is given by

de I tI | vS| v1 t iSz 4 ' , Z 4 4S4) )

(2.18)

The properties of this system can be studied via a renormalization

group perturbation expansion in he parameterS=4 -d, where d is the lattice

dimension. The properties of the solution depend on the number of spin

components n. For 2 n 4, the Hamiltonian space may be depicted

as in Fig. 5. The variable x is related to r and is proportional to T-T ,

we have set the ordering field h=O.



The shaded portion of the x=O plane is a surface of order two critical

points. The scaling power of x is given by da =2 - 3n/(n +8) . Near

the"tricritical line"y 2n=0, Y2n is also a scaling variable with

scaling power da =( (4-n)/(n2+8). The tricriltal scaling power of
2.n

x is da = 2- 6(n+2)/(n+8), this is the usual n-component Wilson-Fisher

fixed point value .24 Near the second "tricrit;cal line" y =0, the

variable yn scales with scaling power da = ((n-2)/ (n+4). The

tricritcal scaling power of x is in this case, given by da =2- 6 (n+l)/
x

(n+4); this is the Wilson-Fisher value for a 2n-component system.

Finally, at the point of order four, yn =Y2n =0, both yn and Y2n

are scaling variables with the same scaling power da = &. The fourth

order scaling power for x is da =2; the Gaussian or mean-field value.
x

Since the scaling powers for y and 2n are identical, we are not

surprised to find that the tricritical lines intersect at a finite

angle.



III MULTICOMPONENT FLUID SYSTEMS

In systems of high symmetry (prototypically, magnetic systems) the

simple picture of Ref. 3 applies. In other words, each JR . is

~~~n--1
bounded by a lRnjl . This situation need not always hold, and

it is possible that a critical surface may terminate at a surface of

critical end points rather than at a critical surface of higher order.4

In Fig. 6a, a phase diagram for a multicomponent fluid system is shown.

A coexistence surface between two phases labeled A and B intersects a

second coexistence surface separating A and B from a third phase C.

The critical line bounding the AB coexistence surface terminates at

the point P, a critical end point. By changing a fourth field, under

certain conditions the phase diagram may be brought to that of Fig. 6b.

The three coexistence surfaced, bounded by three critical lines,

meet at the tricritical point Pt. A different value of the fourth

field produces the phase diagram shown in Fig. 6v, where

the line of B-C criticality ends at the critical end point P'.

It is possible that under cerain conditions all the critical

lines form a single connected surface in the four-dimensional field space.

This critical surface is bounded by two lines of critical end

points (swept out by P and P') which intersect at the tricritical

point, Pt. This critical surface is drawn schematically in

Fig. 7. The point labeled P is a point on the critical surface but

not on either of the two critical end lines. Universality would

argue that at every point such as P , the critical phenomena are

essentially the same; in particular, the critical-point exponents

are the same all over the critical surface. The points on the

lines of critical end points are certainly distinguished both

thermodynamically and geometrically. They bound the critical surface, and

l)P



are points where three phases are in equilibrium (two of the phases

being critical). However, the presence of the third coexisting

phase may not disturb the critical phenomena connected with the

two critical phases. We will assume that on the lines of critical end

points there are still only relevant variables.

At the tricritical point, however, three phases become critical

simultaneously. The considerations of a Landau model2 5 lead us to

expect that at the tricritical point all four of the variables scale.

We will assume that this is the case, although experimental verification

is lacking. In order to describe this more general situation, we

define a new notation for critical coexistence surfaces. A surface of

dimension d, on which9 phases are simultaneously critical, while

in coexistence with x additional phases-are simultaneously critical,

while in coexistence with x additional phases, and on which s of the

variables are relevant variables, will be denoted by Rd. We will calls d'

the order of the critical surface in harmony with Griffiths. The critical

surfaces of Ref. 3 are, in this notation, Rd. the number of scaling

variables being equal to the order of the critical surface. With this

notation, the surface of ordinary critical points in a ternary mixture

is a 2R2. The line of critical end points bounding the critical surface

21 30
is a 2R1; the tricritical point is a 4R0. Note that for these cases

s+x+d=n, where n is the number of field or field-like variables used

to describe the system.

Multicomponent fluid systems lack the extreme symmetry of magnetic

systems. The failure of the line of critical end points to be a

tricritical line (as it was in the magnetic case) exhibits this lack of

symmetry 2 6 . If we write the constraint that one of the critical phases

is in coexistence with the third phase as F(xjO)=0, then
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We can retain our identification of variables with geometry on the

critical end line, by noting that since x3 and x4 are irrelevant along

the critical end line, we can choose them in any way we wish. If we

choose x4 (locally) to measure distance along the end line and x3 to

measure distance from the end line at the critical point in question, then

by definition

a( I3 x; 0 (3.1)

at each point along the critical end line. Therefore, at each point of

the critical end line,

k Y

_ 1_2 F e y
x 2 3 (3.2)

The variables (xl,x2) are pulled out because they are critical; x3 is

pulled out by Eq. (3.1).

30
At the tricritical point (if it is a 4R0 ), Eq. (3.2) may hold by

critical ordering. For example, if we made a scaling hypothesis

at the tricritical point,

a a a a
AG(xl,X2,x 3,x 4 ) G( Xl, I x2 , 3 x x4 ) (3.3)

we might expect that the line of critical end points is described by a

scaling invariant constraint function; that is, the critical end line

is described by F=O, where



a a4 a 4 a 44
F = F Xl x2 x3X1 '2 (3.4)

al a 2 a3

X4 X4 x 4

If F is a scaling invariant constraint, then the properties of GHFs imply

that

Xi oo
(3.5)

a 4

on scaling invariant paths, i= 1,2,3, where

ai/ a4

xi AiX4 (3.6)

In the more general situation of critical ordering, we will assume that

Eq. (3.5) holds as the tricritical point is approached. In this case,

Eq. (3.2) holds by critical ordering at the tricritical point. We

will call F a quasi-critical constraint, since it constrains the

geometry in a non-critical way except at the higher order point.

If we raised the dimension of the system by one, the tricritical

point is strung out into a line of third order points. This line

could terminate at a critical end point and the process given above

repeated. In general, the relationship between successive surfaces

might be given by

2 0 2 1 30 _ 3 Rn1 O
2 n-2 2 n-3 4 n-4 4 n-5 n 0 ,
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where n2m-2. At each step in which a coexisting phase is added

to the previously critical phases, a quasi-critical constraint is

added. Systems described by Eq. (3.7) have been considered in

Refs. 4. For these systems we can replace (2.10) by

m+l 0
(x1 =...X2m -) 2m n-2m (2.8a)

(x =X 0~m +1 R1
1 (Xl=** 2m+l 2m n-2m-1, (3.8b)

where in Eq. (3.8b) we have defined the coexistence surface as a

surface of orderO'=l and written as 0R1 so that the convention s+x+d =n
0 n-i

is satisfied

The magnetic systems of Ref. 3 are described by (2.10) and the

succession surfaces.

1R1 2 0 3 0 n 0
R R R $ -j (3.9)

0 n- 2R n-2 3 n-3 *- nR '

Eq. (3.8) and Eq. (3.9) are governed by a set of rules which can be

generalized to cover different situations such as

0sRd_ X +x- Y (3.10a)
s d s+8'+l d-l

8Rx a+P'R x-O'+l (3.10b)
s d s+fY' d-l

The magnetic systems, after one application of (3.10a), use (3.10b)

exclusively; on the other hand, the multicomponent fluids use (3.10a)

and (3.10b) alternately (with '=1 and &' = 0, successively). The

rules are more generally applicable. For example, the three-phase

line of a metamagnet terminates at the tricritical point,



IR1_, 3R0 (3.11)01 30

Eq. (3.11) employes (3.10a) with 0 =2.

To explore the uses of Eqs. (3.10), consider a multicomponent

system with at least four phases. We consider the appropriate

generalization of Fig. 6a but sliced in such a way as to suppress

the coexistence surface between phases A and B. In Fig. 8 we illustrate

a three-dimensional slice of this hyperdimensional phase diagram.

The line L is a 0R 2 , where three phases (A,B,C) are in

21
coexistence. The point P is a 2R where A and B become critical

2 n-3

while remaining in coexistence with C. The line L1 is a 2R2 e C is

critical with one other phase. L1 terminates on a coexistence surface

with the phase labeled D, which is bounded by L2, where D is critical

with the phase previously in coexistence with it. As the various

undisplayed fields are changed, the point P moves on the C coexistence

surface and the lines L L1, and L2 move relative to one another. From

this diagram we see that the 2Rn3 can be bounded in the following ways:
2 n-3

(a) The point P hits the line L1 (Fig. 9a). This is the usual multi-

21 30
component fluid boundary: 2Rn 4R 42 n-3 4 n-4

(b) The point P hits the D coexistence plane but not L1 (Fig. 9b):

2 R 1 __ 2 R2

2 n- 3
a n-4

(c) The point P hits the line L1 at the termination of L1 (Fig. 9c):

2R1 .--> 3R1
2 n-3

3 n-4
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(d) The point P hits the line L1 at the D coexistence point precisely when

that point hits the D critical line: 2R 4R4 (Fig
2 n-3 4 n-4 (Fig. 9d)

In case (a) when point P moves down the line L1 to the D coexistence plance,

there are two possibilities. If phase D is not critical, then

3 R 0 3R I ; while if D is critical, 30 4R 
4 n-4 R 

4 n-5
4 n-4 5 n-5

Exhausting all the possibilities inherent in Figs. 7-8, we can make a

table of successive boundaries (cf. Fig. 10). We have used the

equation

s+x+d=n (3.12)

to predict the number of scaling variables or critical variables on each

surface. The 2 1 might be bounded on one side by a 2R2 and by
2 n-3 2 n-4

a 3R0
4 n-4 on another which intersect to form a 3 1 . The other

4 n-5

possibilities given in Fig. 10 all exhibit greater symmetry and reach

surfaces of order four more quickly.
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V. CONCLUSIONS

We have shown that the analytic-geometrical postualtes of

Griffiths and Wheelerl can be reduced to analytic statements, from which the

geometrical associations follow. Our assumption of critical ordering is

weaker than that of scaling, and yet the major results of scaling

hypotheses, such as the smooth merging or intersecting of competing

coexistence and critical surfaces, depend only on critical ordering.

The system of classification of coexistence-critical surfaces introduced

here unifies multicomponent fluid systems with the highly symmetrical

magnetic systems. We may think of Eq. (3.12) as a phase rule which

encompasses both the fluid systems of Ref. 4 (cf (3.7)) and the

magnetic systems of Ref. 3 (cf.(3.9)). The rules given in (3.10)

might also govern systems of mixed symmetry; that is, systems more

symmetric than fluids, but lacking the full symmetry of magnetic

systems (cf. Fig. 6). The phase rule given in (3.12) and the boundary

rules (3.10) are partly based on a Landau model, which may not be

correct in every detail. However, the rules apply as stated to those

systems for which we have a global understanding of the geometry of

the critical surfaces. Eq. (3.10) are the only rules that preserve

the phase rule s+x+d =n and that also have the property that the

number of relevant variables (i.e. those have divergent susceptibilities)

always increases at least as fast as the order of the critical surface.

The latter property precludes the possibility that the order could

ever be greater than the number of relevant variables. This is a

plausible condition on the basis of the systems presently known.
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APPENDIX A. FORMULATION OF SCALING HYPOTHESIS

The present expression of the Griffiths-Wheeler ideas in terms of

variables is especially suited for the discussion of the formulation

of scaling hypotheses at the various critical points, since, in the final

accounting, functions are written in terms of variables. Eq.(2.10)

can be regarded as a set of equations for the relevant variables

(X ,....x). Since the relationship is one of tangency at the critical

point under consideration, the relevant variables can only be determined

to linear terms in the fields (Y1, .. Yn). Furthermore, if (xl,...Xp)

is a solution of Eq. (2.12), then (X1,....X ) is also a solution,

where (, ...X ) is given by
1' P

X. = Z Aj x. (A 1)
1 j 13j

n Eq. (A.1), Aij is an arbitrary lower triangular matrix, with non-zerio

diagonal entries . A trivial change of variables reduces A to a

matrix with unit diagonal entries. By the construction of (2.12),

the transformation of (A 1) cannot affect the leading order behavior

of any thermodynamic quantity. However, the non-leading terms are

affected. To illustrate this effect, consider a scaling hypothesis

stated in terms of GHF in p critical variables,

a a
XG(x! s .p;X P+.. ) G(\ xl, p xP X p;x pl . xn) . (A 2)

We define the induced action of A on the function G by

A: G((x...x )...) G(A1(A .3)

Writing A 1 I +B and expanding the right hand side of (A.3) in a Taylor

series, we have

A: G= G(x .l i..... X3 BiG Xj (A 4)



We define Cij by

C.. = B..x. G (A5)
z3 13 3xi

Then the properties of GHFs imply that

a a
X +a-a i C (A.6)Cij.=O Xl... P) (a.6)

Since B is lower diagonal, aj-a. >0, and the Cij are all weaker than G

(that is, the singularities of the C.. are all weaker than the
1J

corresponding singularities of G). If we only wish to examine leading

behavior in a critical system, any solution of (2.10) can be used in a

scaling hypothesis.

In cases of special symmetry, the solutions of (2.10) are more

restricted. For example, in the case of a simple ferromagnet, Eq. (2.10)

has the solutions

xl=H

x2=T-Tc+ cH, (A.7)

where c is any constant. If a scaling hypothesis were made in terms of

these variables, the magnetization, M, would be given by

-M aG + CG 
ax atax 2 (A.8)

On the coexistence surface

-M = ± IT-Tc 2l +G-
'c- D (0,1) cT-T G(0,1)

1

(A.9)



) g-l

The term proportional to c is an unphysical asymmetry. We therefore

must set c=O. In a fluid system, on the other hand, the lack of such a

symmetry leads to the expectation 11-13,18, that a diameter

(defined as the sum of the order parameters on opposite sides of the

1-a

coexistence surface) behaving like IT-Tcl should be found in a fluid.

In general, we expect that the knowledge of particular symmetries of

the system, or the lack of such symmetries, will restrict the

transformations allowed in Eq. (A.1). Ref . 1 has suggested as a

possible equation of state for a fluid an equation that is form

invariant under (A1) and its non-linear extentions. This equation

of state includes all the corrections of the form given in (A,6) and

(A,5) and many more. However, the corrections of Ref. 11 are not

connected to an original GHF, but are independent functions. Refs.

12-13 have suggested that a particular choice of critical variables

can be used with a single GHF to describe fluid systems. The

resolution of these two approaches has not been settled experimentally.

I



CAPTIONS

la. Phase diagram of a single component fluid system, illustrating

the vapor pressure curve terminating at the critical point. The

direction tangent to the vapor pressure curve at the critical

point is labelled x2; x is any direction not tangent to the curve.

b. The phase diagram of a simple ferromagnet. The x2 direction is

along the T axis; x1 is parallel to the H axis.

c. Phase diagram of an inisotropic ferromagnet. The coexistence

surface lying in the RT plane is bounded by a line of critical points.

The x3 direction is tangent to the line of critical points,

X2 lies in the RT plane and x1 is out of the R=O plane.

2a. Phase diagram of a metamagnet. The antiferromagnetic critical line

terminates at the tricritical point where three critical lines

intersect.

b. Schematic phase diagram for a system with incomplete critical ordering.

Two coexistence surfaces are shown intersecting along the x3 axis.

3. The fourth order system of Ref. 4 is shown in the HT plane. for

various values of R(R negative). The antiferromagnetic coexistence

surface is bounded by a critical line, which terminates at

tricritical points labelled TCP. The line of first order

transitions is shown dashed; TN is the Neel temperature for each

value of R. (a) gives the phase diagram for the magnitude of R

moderately large; (b) for a smaller value of R ; and (c) gives

the phase diagram for R=O.



4. The phase diagram of the system of Ref. 4 in HTR space. A

coexistence volume is capped by a two-dimensional critical surface,

which is bounded by two tricritical lines. The tricritical lines

intersect at the fourth order point at H=H'=R=O and T=T2, the

two-dimensional Ising model critical temperature.

5. Hamiltonian space for the nonlinear renormalization group

solution of Ref. 18. The surface x=O is a surface of ordinary

critical point of order two. It is bounded by two "tricritical

lines" yn= 0 and 2n = 0 (and by a separatrix connecting the

fixed points. cf. Ref. 14,18). The point x=yn=Y2n=O is the

point of order four.

6. Three-dimensional slices of a mulcomponent fluid system of three

or more components. The variable t may be thought of as the

temperature and u and v as suitable field variables (combinations

of the pressure and various chemical potential differences).

a. The coexistence surface between the phases labelled A and B

terminates on the coexistence surface separating those phases from

the phase labelled C. The point P is a critical end point at which A

and B are critical while in coexistence with C.

b. A slice containing the point Pt at which all three phases are

simultaneously critical.

c. A slice in which the coexistence surface separating B and C terminates

on the A coexistence surface. The Point P' is a critical end point

at which B and C are critical while coexisting with A.

X%3



7. The two dimensional critical surface in a ternary mixture is shown

schematically. The points P and P' are on critical end lines which

bound the critical surface and intersect at the tricritical point

Pt. The point P is any other point on the critical surface

but not on either critical end line.

8. Phase diagram of a multicomponent fluid mixture (of at least four

phases). The line L (cf. Fig. 6a) is a n-2 dimensional surface

where three phases A,B,C, are mutually coexisting. At the point

P, phases A and B become critical. The line L1 (cf. Fig. 6a) is

a n-2 dimensional surface where C is critical with one other

phase. The C coexistence surface (bounded by L1) terminates on

a coexistence surface separating the phase labelled D from the

other phases. The line L2 is a n-2 dimensional surface where D is

critical with one other phase.

9. Phase diagram of a multicomponent fluid system. Various possibilities

for the boundary of the surface of critical end points are shown.

a. 21 30
2R 3- . The third phase C becomes critical with the

2 n-3
4 n-4

previously critical phases A and B.

b 2R - 2Rn The phase D becomes coexistent with A and
2 n-3 2 n-4.

B (critical) and C.

c. 21 31
2R -3 3R The third phase C becomes critical and simultaneously
2 n-3 3 n-4.

the phase D becomes coexistent with A,B, and C.

d. 21 -- 40
2Rn 3 4Rn4 . The phases C and D. Simultaneously become critical
2 n-3 4 n-previously critical.

with A and B, previously critical.
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10. The illustrative example of Eq. (3.10) treated in the text and

2 1
associated Figs. 8-9. All the critical chains begin from a 2R 3

and terminate at a point of order four (four phases simultaneously

4R0critical), a R s d
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CHAPTER 4

RENORMALIZATION GROUP CALCULATION OF SCALING POWERS



I. Approximate Renormalization Group Based on the

Wegner-Houghton Differential Generator*

*(Phys. Rev. Lett. 33, 540 (1974) )
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Approximate Renormalization Group Based on the Wegner-Houghton Differential Generator*

J. F. Nicoll, T. S. Chang, and H. E. Stanley
Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

(Received 16 April 1974)

We give an approximate renormalization-group formulation which parallels that of Wil-
son. The group generator represents the momentum-independent limit of the differen-
tial generator of Wegner and Houghton. The eigenfunctions near the Gaussian point are
computed for all spin dimensions n and lattice dimensions d, including d = 2. The nontriv-
ial fixed-point Hamiltonian in dimensions near d= 20/(0 - 1), together with the eigenval-
ues near that nontrivial fixed point, are found explicitly to first order in E -= 0(2 - d) +d
for all values of n and the order 0. Odd-dominated Ising systems and corresponding ex-
pansions in %. 1/2 are also treated.

The renormalization-group approach to the study of critical phenomena has had great initial suc-
cess.1 ' 2 The renormalization group embodies in concrete mathematical form the scaling notions of
Kadanoffs and provides a framework for explicit calculation. These calculations have usually been
done by perturbative expansions, in analogy with similar problems in quantum field theory. All the
difficulties of field theory have been incorporated into critical-phenomena calculations as well; the cal-
culation of thermodynamic quantities involves complicated Feynman diagrams. and divergent integrals.

Even in those cases where field-theoretic difficulties are not encountered, the perturbation tech-
niques have been "brute force" in nature. For example, the calculation of critical-point exponents for
higher-order 4 critical points has been hampered by the rapid increase of the number of equations which
contribute.d

Many renormalization-group problems can be simplified by revising the perturbative techniques to
conform as closely as possible to the structure of the renormalization group itself. It was noted by
Wegner6 that the eigenfunctions of Wilson's approximate renormalization group (when linearized around
the Gaussian point') are related to Laguerre polynomials. However, this observation has hitherto not
been fully exploited. Here we show that by utilizing the structure of the renormalization group, a num-
ber of problems [see (i)-(iv) below] may be solved simply and explicitly.

To do this, we first write down an appropriate differential equation based upon the Wegner-Houghton7

differential generator for the renormalization group. Their functional integrodifferential equations
may be simplified if we consider them in the limit of vanishing "external" momenta.2 We find that for
n-dimensional isotropically interacting spins g on a d-dimensional lattice, the renormalization action
on the reduced Hamiltonian H is given by

H =dH + (2 -d)x xH+d 1 -)ln 1+-' + n l +x 2 x

where the dot denotes differentiation with respect to the renormalization parameter 1, and x= (o §)/n.8

Since we have neglected the detailed momentum dependence in the renormalization group, we have set
=0.
(i) The general E expansion.--To solve (1), the Hamiltonian H can be expanded in terms of any com-

plete set of functions; the expansion functions should be chosen to simplify the problem under consid-
eration. A particularly useful set of functions are the eigenfunctions of (1) when (1) is linearized about
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the Gaussian fixed point, H = O0. These functions (not normalized) can be chosen to be

Q, (x)--[d/(2 -d)n] LpN2-1([(d _ 2)/d] nx), (2)

where the conventions of Erdelyi9 are used for the Laguerre polynomials, L" 2 l(z). The eigenvalue
corresponding to Qp is AX, =p(2 -d)+d. To illustrate the use of the Q,, we have calculated the non-
trivial fixed-point Hamiltonians, H =Ho*, corresponding to critical points of order 0. 4 The fixed points
of (1) are determined by setting i = O0. In analogy with the E expansions introduced in Refs. and 2,
we calculate He* as a perturbation expansion in E o 0(2 - d) +d,l ° for 6 = 2, 3,4,... (the usuall' 2 E is E2

in our notation). To first order in en, Ho*=EovoQo, where vo is given by

1 d= vo ), ) 0). (3a)

Here the bilinear functional D(i,j ) is given by

(i'J)= n- dx dx n (1-n) dx 1 (2i + n - 2)Qi . )((l-n)dx + (2i +n - 2)Qj ) (3b)

and the inner product (f Ip) for a function f(x) is defined by

f(x)= (flp)Qp(x). (3c)
P= 0

Equation (1) can now be linearized around H,*. The eigenfunctions will change slightly and so will
the eigenvalues. If we denote by , the eigenvalue of the new eigenfunction, which to zeroth order is
Q,, we find that to first order in Eo

Xl= A-2E e (D(0)g 0)) *(4)

The evaluation of the bilinear coefficients in (4) is merely a problem in classical analysis. In fact, us-
ing the full renormalization-group equations, we have shown that (4) is exactly correct" to order Ec.

For n= 1 (Ising systems), (3b) simplifies considerably, the Q, are related to Hermite polynomials,
and (4) reduces to

20 (2)! --o)!

These results are in agreement with the 0 = 2 calculations of Refs. 1 and 2, and the 0 = 3, 4 calculations
of Ref. 5. We note that (5) also contains the odd eigenvalues for I= , , , ....

From (5) we immediately deduce several important consequences. (i) For E0 >0, the correction to
the Gaussian eigenvalue is negative, so that the nontrivial fixed point always dominates the Gaussian
fixed point sufficiently near the critical point. (ii) The correction to the Gaussian eigenvalue vanishes
unless 21 - 0. In particular, to order E , Aj =2 for all 0* 2, independent of d. (iii) We note that o
=- A = - e ,, so that if we examine the first 0 eigenvalues we find that at the Gaussian fixed point they
are all positive, and at the nontrivial fixed point all but the last remain positive. The Gaussian point
is unstable, and the nontrivial point is a generalized saddle point for Eo >0.'2

We also note that the ordering field which couples directly to s is entirely decoupled from the re-
mainder of the renormalization-group transformations." The eigenvalue ,/2,, corresponding to the
ordering field, is exactly +d/2.

(ii) Gaussian eigenfunctions for d=2.-We next consider the behavior of (1) for d = 2. Te nontrivial
fixed points at d =20/(0 - 1) cluster densely around d= 2 as 0 - oo. By studying (1) with d set equal to
2 [or by examining the limit of (2) as d- 2 with p(2 - d) fixed] we find the eigenfunctions around the
Gaussian fixed point have a continuous set of eigenvalues, A - 2. A complete orthonormal set of eigen-
functions is given by14

Q (x)= (n) /2X (n/2-l) 2J,/2, 1((4 - 2A)1/2 (nx)1/ 2), (6a)

where J,/2-, denotes the Bessel function of the first kind, and

fo~ dxx2 Q x(x)Q x,(x) = 6(X -A '). (6b)

541

PHYSICAL REVIEW LETTERS 26 AUGUST 1974VOLUME 33, NUMBER 9



2o03

VOLUME 33, NUMBER 9 PHYSICAL REVIEW LETTERS 26 AUGUST 1974

The Hamiltonian is expressible as an integral, H = fvxQxdx, rather than a sum (for d• 2). In the dis-
crete case, thermodynamic potentials are generalized homogeneous functions 5 of the expansion coeffi-
cients. In the continuum limit, they become generalized homogeneous functionals with similar proper-
ties. For example, the Gibbs potential satisfies

edI G (v x) = G (e x 1X). (7)

The continuous nature of the eigenvalue spectrum leads, in general, to logarithmic factors multiplying
the usual power-law dependence of generalized homogeneous functions.' 5 Since the approximations
made in deriving (1) require setting = 0 for consistency, one must be cautious in interpreting our re-
sults for d = 2.

(iii) Power-law expansions.-The solution of (1) for other than Eo expansions is more difficult. For
n arbitrary, the expansion of H in terms of Laguerre polynomials leads to equations coupled to all or-
ders in the expansion parameters. If these cannot be assumed small, the equations are too complicat-
ed for immediate solution. If. however, H is expanded in powers of x, the resulting equations, while
not appropriate for general E0 analysis, are essentially "triangular." That is, if we expand

H= Fv2 jx/j !,
j= 0

the generator for the v,2 equation is given by

I~,p = [ P (2 -d(+ ''\ 1 / ' (2j- 1)v2x '
b"-)[P(2-d)+d n l +,--2o (]- ) ] - (8)

The linear structure has only one off-diagonal term, d(l + 2p/n)O+,,/2, and the nonlinear terms are at
most of order p in the modified coupling constants 2,j=v 2,/(l +v2). Furthermore, the nonlinear terms
include no v, j with j >p. In particular, for n = - 2m, the first m equations decouple entirely from the
remaining equations.s

We have used (8) to evaluate critical-point exponents for the ordinary and tricritical points ( = 2, 3).
For 0 =2, our results agree with those of Refs. 1 and 2. For 0 =3 we find to order es,

l = 2, 2 = l+[(6 - n)/(3n + 22)]E/2, (9)

in agreement with the general formulas for n= 1 given in. (5).
(iv) Odd-dominated Ising systems.-In addition to the usual even fixed-point Hamiltonians described

above, (1) admits (for n= 1) fixed points which have leading odd terms. We may do Ee -/2 expansions
for 0 =2, 3,... in this case as well. The fixed-point Hamiltonian is of order (E0 -1/,)/2 We write the
fixed-point Hamiltonian H* as

H* = (E -I/ 2 )/ 2V h 2 -1 + E -1/ 2V 2 fe + ( o - 1 2) 31 2 v Sfo + .. , (10)

where h2,,l is an odd Hermite polynomial, and f, is an even and f 0 an odd function of s. Solving (1)
to first order in e -l/2 we find the fixed-point value v and the perturbed eigenvalues to be given by

1 = - 6 o2(2 - 1,20 - 1)120 - 1), ( la).1/2 -h1/2 s( - 29-1,(Ilb)2 = - 3(20 - 1, 20 - 1) 120 - 1) '(b)

The operator in (11) is

8(m,l)- 641(l - 1)m(m - l)[(hm,2)2h 2, +h , 2£,,(hm-2)2 + 2hm2e,(h1 -2 h,-2)], (12)

where £ 1.is defined by Z£hp=[p(p- 1)/p- l]hp,, 2 for all Hermite polynomials h,. At least for 20 -1
= 3,5, we have v2 < 0; the Hamiltonian is real only if E. -,/2 < . For E.E 1/ 2 >0 the odd parts of the
fixed-point Hamiltonian are purely imaginary.' 7

The Wegner-Houghton approximate renormalization group proposed here provides a straightforward
framework in which to explore the consequences of the full renormalization group. As a differential
representation, it is suited to investigations of nonlinear phenomena such as crossover competition
between two or more fixed points. Elsewhere' 8 we have solved (8) near d=4 for the nonlinear cross-
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over between critical and Gaussian (mean-field) behavior. The extension to crossover from tricritical
to mean-field behavior seems to be more difficult.

We would like to thank G. F. Tuthill and L. L. Liu for many helpful comments and suggestions and
B. D. Hassard for discussions of the differential generator of the renormalization group.
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7F. J. Wegner and A. Houghton, Phys. Rev. A 8, 401 (1973).
8In the special case n =, Ref. 7 gives a derivation of a solution for (1). The zero-momentum requirement can

be weakened somewhat in this case. If we write v2(ii, . ., ik ) for the momentum-dependent 2j-spin coupling con-stant, Eq. (1) follows by restricting the kj to cancel in pairs; that is, we consider only v2j(k,-k ... , kj- k) .We also note that the reduced Hamiltonian density Hw of Wilson (Ref. 2) has the form H w = IVsI2 +l(x). The gradi-
ent term is left unchanged by the renormalization group in the approximation employed here and is therefore not
considered explicitly.9A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953), Vol. 2, pp. 188 ff.1°Our definition of differs slightly from that of Chang, Tuthill, and Stanley, Ref. 4. The convention adopted
here has the advantage that the eigenvalue of Qo is precisely %.iTo see this, it is sufficient to note that the Qj are eigenfunctions of the full linear renormalization-group opera-tor. The powers of x in the Q are replaced by more complicated sums over momentum: (nx)F becomes

. ( Sk i* *.(S p' Sk p')6k +k 1+' * *k1+. p ' 

With these emendations, an examination of the full nonlinear renormalization-group equation of Ref. 7 shows that
the fixed point and eigenvalues are correct to first order in E, and 0o is o(Eo2 ).12Points (ii) and (iii) hold for general n; (i) cannot hold for arbitrary n {e.g., for 0 = 2, 2- [(n + 2)/(n + 8)E 2}.

13 J. Hubbard, Phys. Lett. 40A, 111 (1972).14G. N. Watson, Theory of Bessel Functions (Cambridge Univ. Press, Cambridge, England, 1966). Note that the
formal completeness of the egenfunctions Qx is only guaranteed for n 3 1. Results for n 1 must be obtained by
analytic continuation of those for larger n. See also Watson, op. cit. pp. 453 ff.

15A. Hankey and H. E. Stanley, Phys. Rev. B 6, 3515 (1972).
16M. E. Fisher, Phys. Rev. Le. 30, 679 (1973).1TAfter the completion of this manuscript, we were informed that M. J. Stephen has obtained similar results for

an E3/2 3 - d/2 expansion.18J. F. Nicoll, T. S. Chang, and H. E. Stanley, Phys. Rev. Lett. 32, 1446 (1974).
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The critical point exponent V' for a critical point of order O in

dimensions less than d 20/(D-1) is calculated to leading non-vanishing

order in the parameter aE C dd - d. The result is given for n-component

isotopically interacting magnetic systems.. For Ising systems, n=l, the

result is r( =6( 2 4(f-1)2/( 2e) 3 . As 'increases, the coeff icient of

2 rapidly becomes very small, varying as 2- 60( for large. In he

limit of large n, i for odd order points approaches a constant and, for

even order points, is proportional to 1/n.

*This work forms a portion of the Ph. D. theses of G. F. T. and J.F. N. to
be submit ted to the Physics Dept. of M. I. T. Work supported by the
National Science Foundation, Office of Naval Rese arch, and the Air Force
Office of Scien tific Research.
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The classification and study of critical points of "higher order" has been

of recent interest. 1-7 The order of a critical point is defined by some authors

to be the number of phases simultaneously critical at the critical point.

Thus, an ordinary critical point is an =Z2 point; tricritical points are eI=3
points. Although there are many kinds of higher order points3, much of the

work has concentrated on systems that in the mean field approximation could

be represented by a Landau-Ginzberg form for the Hamiltonian density,

H() = dd x[r Vs(x) + > u2k (ss)k ] (10
k=l (Zk)'.

where we have specialized to the "magnetic" case of an isotropically interacting

n-component spin (x).

The renormalization group approach to such systems was introduced by

Wilson8 for the case (t=2. Corrections to mean field behavior are calculated

in a perturbation expansion in 6-E 4-d. The tricritical case, 0-3, has been

studied by Riedel and Wegner 4 at d=3. Stephen and McCauley5 and Chang, Tuthill,

and Stanley6 calculated exponents below three dimensions in an expansion in

3' 3-d. Ref. 6 also gave explicit exponents to first order in 4 8/3-d for the3; 4

0=4 case. The critical point exponents for the general O' case were given in

Nicoll, Chang, and Stanley7 to first order in ;o 20/(-1) -d. The critical

point exponent 1 was shown in Ref. 7 to be at most o( : 02). In this work,

we complete the calculation of all critical point exponents to leading order by

calculating to 0(C- )

The 6~( calculation of Ref. 7 were based on the differential renormalization

group generator of Wegner and Houghton9 . The calculation of by this method

is difficult and, therefore, through most of this work we will adopt a field-theoretic

approach utilizing Feynman diagrams. However, we will extract the dependence

of on the number of spin components, n, by combining graph-counting

with the solutions of Ref. 7.



Following the meh od used to locate fixed points 9, we assume uk to be

O(e(: ) for k f O. It is then possible to carry out a self-consistent perturbation

expansion in the parameters u4, . u6, .. uwhile applying a "mass counterterm" 8

so that the bare propagator is (p2+r)-I wdith r the zero ordering-field susceptibility.

The exponent 71 ois defined by a proportionality relation for the Fourier transform

G of the spin-spin correlation function for small wave-number

G-I() .p p2-(1 - 7np) (2)

at the order & point (r=O). We will now show that to O(- 2 ), the calculation of

7 o involves only two Feyman graphs to be evaluated in dimension d ,

In the perturbation expansion for G-1 we may write

G-( pr) = p2 + r + ( p,r) (3)

where E represents the sum of all remaining graphs (with counter-term)

displayed schematically in Fig. 1. The mass counterterm u2-r cancels all

p-independent terms in (3)) in particular, all single vertex diagrams. The

series may be further simplified by formally eliminating closed loops which

include only one vertex and introducing r-dependent generalized vertices uk(r),

defined by

6-k uk,21
zk( r) = k + Zk+ (F (r))

Here, as in Ref. 5, Fl(r) represents the loop integral ddkG(k, r)l(20 d .

With this change in notation and to O(C2), the set of graphs in Z is reduced to

those shown in Fig. 2.



Next, we note that u2k (r=0) =0 for all k < (.

scaling theorem for 2k-point vertex functions

r2k ( p=O)

This follows from Wilson 's

[k_(k-I)dI
--- r~- (5)

For d=d( -60 (5) requires that rk vanish at r = O for all k C (.O 0", 2k

first order perturbation expansion for F2k is just

Since the

uZki u2k must vanish as well.2k,

At the critical point, therefore, all the graphs except the last shown in Fig. 2

are zero.

The combinat orial factor for this diagram may be evaluated by considering

first the Ising case, in which it is simply 1/(2d-1)! . To determine the n-dependence,

it suffices to note that a factor of (n+2N-2) is associated with the connection of

two legs of a single 2N-leg vertex. 2Thus, the n-dependence of the u20 diagram

is given by fl (n) / (20-1 ) ! where

fl (n) = -'-(n+21) / (2Q+1)
1=1

2With this factor and denoting the u20

between (2) and (3) gives

p (1- p (1- enp) =p2_ u20 fl(n)

(20-1)!

Since u is O( e) 

(6)

integral by I1, the correspondence

[ I1 (p, r=O) ]p2np part

7 <9is clearly O(6 2).

The fixed point value of u2& remains to be determined ; it is chosen so

that the vertex functions satisfy scaling laws.

rz2
^ r

For k=& in (5) this gives

1 + e - I - nr ...
2

(8)

The constant of proportionality must also be expanded as a series in ' so that

(7)

[ C (5(O1I) 2 



r
I - A + 6[ A(O-1)/2 nr + B (9)

with A and B constants.

In first order, r is Us2, so that A=u2. Second order terms all

involve two-vertex diagrams u21 u2', (with , ' 0O) and graphs with internal

lines numbering L(94, (cf. Fig. 3). The r-dependence of 21 is given by the

integral Fl(r)- F(0), since by the remarks above Eu1(0)=0 for /.

F (r)-F1(0) = - d k 1 1 _-dd r I (10)
(21? (k +r) k ( k + r)

whereDd - 2 ()d/2/ r(d/2) is the area of the unit sphere in dimension d.

Changing variables} we have

oc

Fl (r)-Fl(o)=-fld rx (11)
7t~)2d o l-tx

The integral converges for 2 d 4 4 so that all r-dependence is in the prefactor;

no Qnr factors are present.

Next, we examine the r-dependence of the graph of Fig.3. By power

counting, this integral diverges like r(i O) /( O 1) for small r. (For i ,

the integral converges at large k without a momentum cutoff, and a change of

variables similar to that in (11) shows that the diagram gives a prefactor of

r (i-)/(6-) multiplied by a convergent integrals Only for i=O will .nr terms

arise; the integral for this case is denoted as I2(r).

To compare with the scaling form (9), we note that the perturbation expansion

gives

2e(20 i2 ( r) 2
~ = z r uz- -(-- u20 ·. (12)2 (!)

I



The resulting value for u 0 to first order is

U2= (--(O -1) (0 r) part

(20') [I 2 (r) ].Enr part

Combining (13) with (7), the expression for the

will be discussed below) to leading order is

exponent (for n=1: n-dependence
/& 

~.= 2 (2 1)2 ( !) 6 [ I(p) ]p Z2 np

(2Y-1) [(20)2 [I2(r)]Znr
(14)

All that remains is the calculation of the two integrals

(15)

ddR 

ddR

ipR[ (- d k e

dd i k 'R
I d k e 1rd e

(21) (k + r)

20-1

0-
) (16)

where d and dare, of course, related by d=d0-= ZG/(0-1). Both integrals are

divergent as written; I1 diverges quadratically and 12 diverges logarithmically.

To extract the finite terms desired, we cut off the R integrations by integrting

over IRI >A1.

From Bateman1 0 we note that

dd eiq xd 

where )= (d-2)/2.

00

dx -xd-I

Jo

Therefore, applying (17) to (15) we have

I [=r)(d / 2) ]
d(20-l)

(2)

Rd-ldR J(Rp) (p) 

A

rJ kd 3dk J(kR)]
0Y

(13)

and

I =

2 = 

) (17)

(18)

R

]

Fnrc d / 2) J, (xq q 2 -



The inner integral can be evaluated exactly; after a change of variable (18)

becomes
.-. ,

1 =(d/z) z2- r(0) j 2 - d/d/z)pZ (dx x3 Jp(x) (x/Z) (19)

The integral over the interval [1, co) gives a finite contribution to the p2 term.

The integral over the interval [0,1 ] can be evaluated by expanding the Bessel

function in its Taylor series. We find that

Q /(d/2) 221)l/5A) 2a- -Od'd/2)
I1 = - (z?)d 4(d/a -1)

p2 lnp + O(A2 )

The I integral can be handled in the same way except that r 0. Although

the inner integral with nonzero r can be performed exactly, it is not necessary

to do so explicitly. We merely note that

dk
(2Z7)

eikoR

k +r
- a2 fT7) C(rR2) (21)

where C(x) is analytic at x=O, C(O)=1, and C(x) --1/x for x large. The Iz

integral is therefore

I2 = d dI zd -2 C (x)

The integral over [1, co) is a finite constant which we may discard. For the

integral over [0,1 ], C(x) may be expanded in its Taylor series. Thus,

(23)

(20)

I = nd [d (d/) 2 - 1/ ()) ] r + 04)
2 (21)
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Combining (14), (20), and (23) we have for

expression

n=1 the following simple

4 {d-8) 6.
(2 )3

JI

(24)

For the general n-case, more combinatorial factors must be computed. The

n-dependent factor for the numerator is fl(n) given in (6). The combinatorial

factor for the fixed point vertex u2p is more complicated. In the differential

equation formulation of Ref. 7, these same combinatorial complications

determine the n-dependence of the fixed point. In Ref. 7, this n-dependence

is given as an integral involving three generalized Laguerre polynomials.

Performing this integral we find11 the combinatorial factor for

the numerator is f2 (n) where( I ) (f2(n)= (t5a)
(oB'c, 0) 0)

and the inner product is

(t .. i )( ) =

(-c: jZ $ i2 .
& -e -

given by the double summation

With these combinatorial factors, the result for general n and general is

7 _ 4 (6-/)
(M-JY

(n(,) z.
----

r·

(- /) 'C/(Z 5b)

(26)



2 )LI

It is easy to check that (26) reduces to the previously calculated results for

=28 and ~--35

(27)

-

We note that as O increases the coefficient of e2 rapidly becomes very

small, 2 60 for -large. In the limit of large n, 70 for odd order

points reduces to a constant and , for even order points, to zero.

For all 3 we have dg 3, and the mean field result 7 =0
therefore applies in three-dimensional systems. However, these results

and those of Refs. 5-7 may apply to higher order critical points in two-

dimensional systems. In any event, the previously obtained results8 for

ordinary critical points are placed in a broader theoretical context by the

extension to general O.

We wish to thank Prof. T. S. Chang for many useful discussions.
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Fig. 1 Perturbation series to 0(E ) for the function (p, r), defined
by Equation (3). Each diagram carries net momentum p.

Fig. 2 The mass counterterm u2 -r cancels all p -independent terms in
, and the use of the generalized vertices u2k(r) eliminates all

closed single-vertex loops.

Fig. 3 Typical second-order contribution to r2 The 20 external
lines carry no momenta.
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Ajrroximate Wilson Differential Generator and Higher-Order Critical

Point Exponents for Systems with Long Range Forces

J.F. Nicoll, T.S. Chang, and H.E. Stanley

Physics Department, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

We give a reformulation of Wilson's incomplete integration differential

generator to simplify perturbational analysis and to facilitate comparison

with the Wegner-Houghton generator. An approximate generator is then obtained

in the form of a partial differential equation. The linear structure of the

approximate generator introduced here is identical with that of our previous

generator based on the Wegner-Houghton equation. The nonlinear structures, of

course, are quite different. Using operator algebra based on an expansion

in terms of aussians eigenfunctions, we derive in closed form the eigenvalues

associated with a critical point of arbitrary order (phases simultaneously

critical) and long range force exponent (interaction energy- l/rd + 6r)

These results are obtained to first order in the expansion parameter (6) -

"(e5- d) + d. We calculate explicitly specific inner products of Gaussian

eigenfunctions. These inner products not only give the dependence of the

eigenvalues on n (the number of spin components) for the first order

corrections, but also are useful in calculating the n-dependence of the

exponent B to second order. This correction vanishes for 6'< 2 for all so

that 2 - 6. Previously, it has been demonstrated that to leading order the

value of /2 for 6 =2 is independent of the cutoff function in Wilson's original

formulation. We give an alternative proof in terms of our modified exact generator.

* This work forms a portion of the Ph.D. Thesis of J.F. Nicoll to be submitted
to the Physics Department of M.I.T. Work supported in part by the National
Science Foundation, Office of Naval Research, and the Air Force Office of
Scientific Research.



I. Introduction

1,2
The use of differential generators for the renormalization group has

several advantages over finite or recursive formulations. (i) In a recursive

renormalization group, the equations will contain the renormalization factor

explicitly. The eventually calculated critical point exponents are

independent of this factor, which therefore represents an unneccessary complication.

A differential generator avoids the difficulty. (ii) The differential equations

obtained from a differential generator will, in general, have a far simpler form than

the corresponding recursion relations. This is the case because the recursion

relations must exhibit all the feedback that results from the finite amount of

renormalization. (iii) Differential equations are amenable to more analytic

solution techniques than recusion relations. This is particularly true of

3-6
the nonlinear study of renormalization group equations

There are presently two exact differential generators. The Wegner-

Houghton generator represents the differential limit of the finite generator of

Wilson . It gives the differential changes in Hamiltonian parameters when an

ie e
infinitesimal shell of momenta is ingrated over. The Wison differential

generator2 represents a partial integration in which the larger wave-vectors are

more completely integrated than the small wave-vectors. In this paper, we

compare and contrast the two generators. To do so, we reformulate the Wilson

generator in such a way that it more closely resembles the Wegner-Houghton

generator. We may then solve a large class of problems (to first order in a

perturbation series) to show agreement between the two generators. For these

calculations we utilize approximate versions of both the Wegner-Houghton

and Wilson generators.

For many renormalization group studies the full structure of the

renormalization group equations is not needed. The location and stability

analysis of fixed points can be carried out to lowest order in a perturbation

expansion. Studies of anisotropic systems , metamagnets bicritical and



-2 3

tetracritical points9, tricritical points10, critical points of arbitrary order

4,14 3-5
coupled order parameters and nonlinear effects , to name a few, can be

studied via approximations of the exact renormalization group equations.

Detailed calculations of higher order correction to critical point exponents

(such as the calculation of 1 5,16), of course require the full exact equations.

However, in many cases the essential information is obtained in the lowest order

expansion. Many of these results were or can be obtained with the approximate

recursion formula of Wilson 2,17

13
We recently introduced an approximate differential generator based

on the exact Wegner-Houghton generator. We wrote it in a form suitable for

isotropically interacting systems: it is easily generalized for non-isotropic

systems with long range forces (interaction wl/r where dis a

"long range force exponent" 18). It may be written as

(1)

where H (s,o ) is a function of a n-component spin vactor s in a d-dimensional

A
space,d is the renormalization parameter and H is the matrix of second

partial derivatives of H with respect to the components of the spin:

H =|a H/si s. i . For 6'2, the short range value 6= 2 is to be used.

A similar approximate generator based on the Wilson partial integration

generator can be derived (see discussion below) and is given by

v5 (-= da 2 +(J7s. VH * v . -' '(2)



In Section II, we introduce an ( ) expansion for critical

points of arbitrary order ' ( phases simulataneously critical) with long

13
range force exponent 6-,. This generalizes our previous work for short

18
range forces ( arbitrary, 6 2 ) and the work of Fisher, Ma, and Nickel

for 2 and arbitrary 6: These calculations are made with the approximate

generators (1) and (2) and are exact to O ( 6 (6) ). We also find, by use

of the method of Ref. 16, that ) 'sticks" to the classical value of 2 - 6 for all

&t, in agreement with the E = 2 result of Ref. 18.

In Section III, we point out that the nonlinear structures of the two

19
generators are very different as might be expected on general groundsl9

In Section IV, we give a derivation of the approximate Wilson generator

(2) from a reformulation of the exact Wilson generator. This reformulation

when
is made to simplify the renormalization equations X expanded around the

Gaussian fixed point solution.

The reformulated exact generator contains an arbitrary function of a

different character than that of the original generator. The &' = 2, 6 = 2

critical point exponent has been shown to be independent of the arbitrary Caoff

20-22
function of the original formulation. In Section V, we show that this

independence is characteristic of the reformulated generator as well.
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II. The ' ( 6) Expansion

Recently , it has been shown that the exact Wilson differential generator

reproduces the earlier results in the 4-d expansion, 5 at least to lowest order.

Subsequently, several authors 20-22 have shown that at least the exponent ~is

correctly given to second order with this generator (= (4-d)2 /54 for Ising

n=l systems). With the approximate generator (2) we are able to show agreement

between the Wilson and other renormalization group formulations for a wide class

of critical systems.

We consider a Landau-like critical point of order efor a single-order

parameter at which W"phases are simulataneously critical. The mean-field theory

for such a system is a polynomial of degree /'in s The renormalization group

treatment of such a system is closely related to the "Gaussian" eigenfunctions of

the renormalization group equation; in the case of (1) and (2) these are the

eigenfunctions when the equations are linearized around H = O. Both (1) and (2)

have the same linearized structure and eigenfunctions. As noted by Wegner 7(b) in the

context of the Wilson approximate recursion formula 2,17 these eigenfunctions

are products of generalized Laguerre polynomials and harmonic polynomials2 3

p,m p m-+n2 (d-6-)s /4)J p(s)

(3)

with eigenvalue = [d + (6- d)-(p + m/2)] . For n-component spins, therepm
are (2m +n - 2) ( m +n - 3)!'/fm (n-2)!)) harmonic polyn omials P m(s) of degree

m; all of these are degenerate with respect to the linearized renormalization

group equations. The eigenfunctions are also eigenfunctions of the exact

Wegner-Houghton and Wilson differential generators when linearized around the

Gaussian functional (cf. discussion below)>



We restrict our attention to isotropic systems (m=O). The renormalization

group study of an order 'system is simplified if the eigenvalue of the Laguerre

polynomials of order / is small. We therefore define an expansion parameter E (6)

by

C (r) =,0

= d + ' (6' -d) (4)

For e8= 2, this is the Eof Ref. 18; for 6= 2, this is the expansion parameter

for higher order critical points discussed in Refs. 12-13.

We first locate the fixed point Hamiltonian. We expand the fixed point

Hamiltonian as

H =a ( cr Q + ~ c~ ~32 H (2 +

(5)

and substitute this into the fixed point equation>Hf =0. To the order

required we may represent both generators (1) and (2) by

Ad = H + ~)(HH) (6)

wherexis a linear differential operator common to both (1) and (2) and

E)and 2)are the quadratic parts of generators (1) and (2) respectively. Upon

inserting (5) into (6) we find

0 = a + a2 )(Q, Q + +H(2) +... (7)



2 7

We can choose H(2 ) orthogonal to Q and take the inner product of (7) with

Qr to determine a:

0 = ( QI Q > - a )( Q) I > (8)

It is convenient to define [i,j;k) by

[i,j;k -< ( Qi QI Q>/< Qk Qk > (9)

Then we may write (8) as

1= -a [e l;e'] (10)

We now determine the eignevalues of the new eigenfunctions when the

generators are linearized around H . Since the fixed point Hamiltonian H

differs from the Gaussian fixed point H = 0 only slightly, we expect the

eigenfunctions and eigenvalues to be changed only by O( e(6'd) amounts. We

set

Q =Q E () q
4 (1la)

: = + C (r) q~ (lb)

Inserting H = H + Q into (6) we find that

XQ = q + 2a ) (Q Q, )Q +. (12)
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Choosing q orthogonal to Q and taking the inner product of (12) with Qp

gives

i 4 =2a [,(; . (13a)

Using (10) to eliminate a

A = d + ( - d) -2 (6) lh 1 3/f f ;J. (13b)

Theevaluation of [fo, ;4 involved the integration of the product of three

Laguerre polynomials. For n=l, the Laguerre polynomials reduce to Hermite

polynomials and we may evaluate (13) in closed form. For both (1) and (2)

we find

= q d + .((--d) - 2 (6(2( 2 )/(2) (14)

We have not been able to demonstrate that the generators agree for arbitrary n.

However, we have checked that (1) and (2) agree for W= 2 and &= 3. We

find -

-e d 2 ( - d) - F2 ( 6-) -(6 + n -4)/(n + 8)

(15a)

for &= 2 and

-X = d + ( 6-- d) - ~ (6-) (t-1) ( 101+ 3n - 8)/(3(3n + 22)J

(15b)

for 8'= 3. For a general n and Ywe can compute (eC: ;. as a sum:

~- 1
[ : 1 =+nl2 ) ( +'i+n/2---j (-1)i (i' +l( ~j-1 Fi (16)

i,j = 1



where Fij = Ci+(j+l) (1-2i)] for generator (1) and Fij = (j+l) for

generator (2).

Equations (13) - (14) give the lowest order corrections to most critical

point exponents. However, the shift of the critical point exponent from its

classical value) 2 -6, cannot be calculated from the approximate generators.

In Ref. 162is calculated by field theoretic techniques for critical points of

order eand 6 '= 2. The result is

(17a)

where f is given by

T 5 (n +2j) ([0<< = n ) (17b)
j =j 1' 

(2 M-1)1! e (b' #;!] )2

Thus, we have f = 1 for n = 1. By an extension of the method used in Ref. 16, we find

that for 6 < 2 "sticks" at the classical value42 - 6'to 0 ( (r) 2 ), as

found by Ref. 18 for the special case = 2.

III Comparison of Nonlinear Structures at (1) and (2)

Although the linear structures of (1) and (2) are identical and both

seem to give the same corrected eigenvalues, the full nonlinear structures are

very different9. For example, if we consider a Landau-Ginzberg-Wilson

expansion of H for a single order parameter,

H- rs / 2 + us 4! +vs /6! +... (18)



We may generate equations for r,u, and v from both (1) and (2). Setting

=l1 for simplicity, we have

r= 2r + u/(l+r) (19a)

u= (4-d) u + v/(l+r) -(3/2) u2 / (1 +r) (19b)

v= (6-2d) v - 15uv/ (l+r) + 0 (u3), (19c)

for the Wegner-Houghton based generator (1). On the other hand, the

Wilson-based generator (2) gives

r= 2r (l-r) +u (20a)

u= (4-d) u + v -8ru (20b)

v= (6-2d) v - 12rv -20u2 (20c)

The "propagator factors" of (l+r) characteristic of generator (1) are absent

in (2). In recent work, we make a nonlinear transformation to remove the

propagators and change the high temperature fixed point from r = oo to r = 1.

This step is not necessary for (2), which incorporates this change automatically.

Note, however, that (2) introduces more feedback terms than (1). For small r,u,

and v, (19c) shows that v is 0 (u3) and therefore v can be neglected in (19b).

On the other hand, from (20c) we see that v is 0 (u2), and therefore v must be

considered in (20b).

The nonlinear structure of generator (1) has been explored for a variety

of problems in Refs. 4-5. Because of the extra feeback terms, a similar

analysis using (2) would be more difficult. Such a study would be extremely

interesting, however, since the details 0f crossover solutions 4-5 would appear

to depend on the details of the nonlinear structures of the generators.

IV Derivation of (2) from the Exact Wilson Equations

To derive an approximate differential generator from the Wilson partial

integration generator, it is convenient to put the exact Wilson equations into



a form closely resembling the exact Wegner-Houghton equations. This

reformulation is slightly more convenient for perturbation expansions from

the Gaussian fixed point solution, as illustrated below.

We begin with the exact Wilson equation for Ising like spins ( n = 1),

-I- d-/t (2/)

This expression differs from that given in/Ref. 2 since in (21) the operator

k -k- does not act on the sk or momentum conserving delta-functions in the

expansion of , while in Ref. 2 k- acts only on the sk. The difference is

simply an integration by parts. The function, is an arbitrary (increasing)

function of k2 (e.g., =k2).

The presence oft in the first integral in (21) as well as in the second

integral is an inconvenience for some calculations. If we make the change of

variable

AtmA AZ ; ac ̂ (22)

Eq. (21) can be ewritten as

i a CJo Sot Sot -')(
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where q is related to and C by

X ,- (23b)

The function C (k2 ) is a cutoff function in the usual sense; for example,

C = (1-k 2), a Brillouin zone cutoff, or C= exp (-k2), a smooth cutoff. In

passing from (21) to (23) we have increased the number of arbitrary functions

from one (/6) to two (q and C). We reduce the number to one again by

examining the Gaussian fixed point solution.

The Gaussian solution is defined as the fixed point solution of the

form

2+ = p | (/E/) S-A (24a)

The function w satisfied

I(-., - ~ a a W = (24b)
where we have set = 2 - 6. If we expand around the Gaussian solution,

$'=G +~, we have

, _ gt._ g C -d-fl2 +as- (25-)
where S= )--2 + 
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Equation (25) issimplified if q and C are related by q = 2 wC. Combining

this with (b) we have

/X/_____________i__ _ ~ - (26)
W a7

JC()x 2 dx

In (26) the upper limit of the integral has been chosen so that q and p

are increasing functions of Ik)for large k .

In this formulation, the generator (25) when linearized around the

Gaussian fixed point has the same form as the similarly linearized Wegner-

Houghton generator

fc~~ sais2 (27)

For the Wegner-Houghton generator, the cutoff function C is replaced by

'( k - 1). Equation (27) admits solutions with momentum independent

expansion coefficients, in contrast with the usual formulations of the Wilson

2 , 19-22, 26
generator

If we now set £t= 0 in (25) and neglect momentum dependence by considering

the limit of all k's+0, we have the following equation for H (s, )

H d j(-2 ( t (28)

where we have normalized C by C=1. The linearized eigenfunctions of (28) are

eigenfunctions of (27) if we identify sm with f Jj(k1 +...k ) ski,. sk

The above discussion may be repeated for general n, leading to the m

approximate generator (2).
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V. Lack of Dependence on C of

The reformulated equation (25), just as the original generator (21) may

be used for momentum dependent calculation. As discussed in Refs. 20-22, the

leading dependence of (for = 2, C6= 2) is independent of the function in

(21). Thus it is to be expected that is independent of the choice of C in

(25).

This is somewhat easier to demonstrate than the independence of t.

because of the simplification of the equation given by the constraint q =2wC used

in (25). It is straightforward to express in terms of the function C. The

method is similar to that of Ref. 20 and will not be detailed here. The result

is (Or 6 - 52 co -3
fw ¢r¢% (7 ?a)

I -IdtbJ? 2c//fYrlf Jin26'd( )(P2 C 2 2pcfa5t2) (252)
0 3 0 0

w'fh C ) dC((r/xx,

To compute , we rewrite the multiple integrals of (29b)in terms of the

A =0
Fourier transform of C, C (z) C(x) exp (-izx)dx.

Performing the angular integration gives a Bessel function and (29) becomes

I Arf)3 /d dC, d d Y C C c e2 ) C (3 /)V 
(30)

L · 3 (2g, y) ex ) xp rtt + Ox+ty) 3J
2 2

where x - p , y .q We now assume (as in Ref. 22) that the z-integrals can

be deformed off the real axis so that each z has a small positive imaginary part.

With the aid of this convergence factor, the integral is a well-known Bessel

function integral 24 giving
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I _ _ j423|a d d d dyy X2
(31)

The y and t integrations are now elementary and we obtain (after symmetrizing

in 1' z2 and z3 )

6rI - G4(32)c&(z~~~~,J i~~~md3 ~~(32)

Because C (x) - 0 for x0, (z) is analytic in the lower half plane. We may

therefore, close the contour down and write

I = 41/6)C(0) 3

However, (0O) = JC(X)dx, Therefore, from (29) we find ~z= 4 54

independent of the cutoff function C.

(33)

The authors wish to thank G.F. Tuthill, Prof. K.G. Wils-on and Dr. G.R. Golner
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We give the first nonlinear solution of renormalization-group equations. This solution,
based on the differential generator of Wegner and Houghton, exhibits an explicit mixing
of (or crossover between) critical and mean-field behavior. The solution is given for all
values of the spin dimension n and to first order in E -4-d, where d is the lattice dimen-
sionality.

Recently'2 much work has been devoted to the
renormalization-group equations linearized
around various fixed points. Each fixed-point
Hamiltonian governs a particular class of criti-
cal phenomena. The linearized equations about
a fixed point have solutions which represent scal-
ing equations of state, with critical-point expo-
nents which are simply calculated from the eigen-
values of the linearized renormalization-group
equations. The physically measurable exponents
are those of the dominant fixed point. The anal-
ysis of a single fixed point is therefore sufficient
to discuss the critical behavior asymptotically
close to the critical point. However, atfinite
distances from the critical point, the competing
influences of the many other fixed points may be-
come important. This competition between fixed
points is loosely described as "crossover"; the
physical system passes from the domination of
one fixed point to the domination of another.

Riedel and Wegner,3 using a semimicroscopic
model which simulates renormalization-group
crossover, have discussed the competition be-
tween tricritical and critical behavior. Here we
present the first cross over solution based di-
rectly on the nonlinear renormalization-group
equations. The solution given describes the tran-
sition from true critical behavior near the crit-
ical point to mean-field-like behavior at higher
temperatures. 4' 5

To preface the discussion of the nonlinear solu- '

tion itself, we will first give a general abstract
description of the solution of a linear renormal-
ization-group equation. This will also serve to
establish our notation. Generally a renoraliza-
tion-group representation near a fixed point can
be written as a set of linear differential equa-
tions. For example, a model Hamiltonian param-
etrized by variables p and q might be described
by the equations.

p=2p, (la)
q= Eq, (lb)

where the dot denotes the derivative with respect
to the renormalization parameter I and E -4 -d,
where d is the lattice dimension. The fundamen-
tal equation defining the renormalization param-
eter itself is given by the renormalization tra-
jectory for the correlation length, (p, q),

:(=_t. = -(2)

The solutions of Eq. (1) are

p = conste 2 ,

q = conste E'.

(3a)

(3b)

The solution of Eq. (2) is a generalized homoge-
neous function,

(A2p, X"q) = x - (p, q). (4)

The correlation-length solution is more usually
written as

(5)

where P is any arbitrary function which, how-
ever, is assumed to be regular and nonzero at
p = 0. We call p and q scaling fields. They play
the same role in Eq. (4) as the scaling variables
of the usual scaling theory. In this case, the cri-
tical-point exponent v= .

More generally, Eqs. (1) will have nonlinear
terms as well as linear ones. However, there
will still be.functions of p and q (not simply equal
to p and q) which have a simple exponential de-
pendence on the renormalization parameter. We
will call these functions the nonlinear scaling
fields.6 The correlation length is again a gen-
eralized homogeneous function, not of p and q,
but of the corresponding nonlinear scaling fields.

Wegner and Houghton' have suggested a differ-
ential generator for the renormalization group
which reproduces the results of Wilson's finite-
difference generator. For nonlinear solutions
good to first order in E, the momentum-indepen-
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dent equations of Ref. 1 reduce to

u dn+2i=2r41+r 2 ' (6a)
l+r 2 n

(4 - d n + 8 (6b)
hr=(4 -d)U -(+r) 2 2 n '

where r and u are the momentum-independent
two- and four-spin coefficients in Wilson's re-
duced Hamiltonian. 2

The character of Eqs. (6) is more easily seen
after a transformation which maps the solution
trajectories of interest into a finite region. We
define new variables F and by

(7a)

(7b)

The fundamental equations now take the form

Infinite Gaussian

Separatrix
y =(x)

Wilson-F isher

y -_

(8a)

= W[ - (3d/2n)(n + 4) - 4]. (8b)

There are three fixed points of physical interest
(u > 0): the "finite" Gaussian point at rF= =O;
the "infinite" Gaussian point at F= 1, = 0; and
the Wilson-Fisher 7 point at = - E(n + 2)/2(n + 8),

= E2n/d(n + 8).
Equations (8) are already in diagonal form

around the infinite Gaussian fixed point ( = 1,
iu= 0). It is also useful to diagonalize (8) around
the finite Gaussian fixed point ( = =0). Defining
new variables x and y by

x -r + [iu/(2 - E)j[d(n + 2)/2n], (9a)

Ey = Fid(n + 8)/2n,

we rewrite Eqs. (8) as

x= 2x{1- x- [(n + 2)/2(n + 8)]Ey},

(9b)

FIG. 1. Qualitative behavior of renormalization-
group and temperature trajectories. The light lines
depict the renormalization-group trajectories for the
parameters x and y cf. Eqs. (9) and (10)1. The heavy
lines labeled A and B depict temperature trajectories
for different system Hamiltonians [cf. Eqs. (24)].

The solutions are given by the scaling fields

(U/R2)U3(n+4)/2" = conste -d,

[(1 - i)/R]U(42)/2n= conste -2

(1 2a)

(12b)

The advantage of this formulation becomes ap-
parent when we perform a similar calculation
for Eqs. (10). Defining F and G through the equa-
tions

= - 2xF,

= - EyG,

(13a)

(13b)

we discover that the scaling fields can be written
(loa) as

(lOb)

We have neglected terms of order 2y2 in (10) con-
sistent with (6). This approximation puts (8) and
(10) into the same form. We also note (cf. Fig. 1)
that the various fixed points are located at x=y
= 0 (finite Gaussian); x = 1, y = 0 (infinite Gaus -
sian); and x= 0, y = 1 (Wilson-Fisher).

We may write the solutions to Eqs. (8) in terms
of two functions R and U, which satisfy the equa-
tions

h=2(1-r)R, =du. (11)

y/GF 2 = conste(4 -d),

x/FG("+2) /(n+8) = conste 21.

(14a)

(14b)

Since both sets of scaling fields describe the
same solutions, we may match them to reduce
the number of unknown functions. Noting that U
= G-2/(n +8) we find that

F= 1 - r,

R =xG-2(n +2)/(n +8)

(1 5a)

(15b)

All that remains is the calculation of G. The
partial differential equation for G can be solved
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x

W=Uu/(l +r)2.

F = 2(1 - T) [f + 0n+ 2)/4n],

= [E(I - y) - 4x].
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in terms of the separatrix connecting the Wilson-
Fisher point with the infinite Gaussian point; this
separatrix is indicated as y = Sp(x) in Fig. 1. The
function (p satisfies

2x{(1 - x) - [(n + 2)/2(n + 8)JE p}dp/dx

(1 - P) - 4x]. (16)

On this separatrix G is identically zero. Using
Eqs. (16) we may write 6 as

G = (1 - y /p)e', (17a)

where g satisfies

--n+ 2 X d (17b)
n+8 p dx '

Solving Eqs. (16) and (17b) together we find (to
order E)

p = (1 - x)d/2 exp[2Ex(4 - n)/(n + 8)], (18a)

G =(I -\0) (18b)

Equations (6) are now completely solved (to order
E). We define the Gaussian and Wilson-Fisher
scaling fields by

(1 9a)

For any nonzero v (at the critical temperature),
the Wilson-Fisher term will dominate asymptot-
ically near the x = 0 (T = T) singularity [provided
that a <a G, i.e., E(n + 2)/(n + 8)> 0 , giving v
= 2 + E (n + 2)/4(n + 8). However, for finite x (T • Tc)
the Gaussian term may become important. This
would give mean-field behavior, characterized
by the exponent v = . The "rate" of the cross-
over (between critical and mean-field behavior)
depends on the magnitude of the constant A and on
the explicit temperature dependences of x and y.

The temperature dependence of the two- and
four-spin coefficients r and u will vary from mod-
el to model. For the case of two-spin interaction
models, for which the four-spin term is intro-
duced as a phase-space weight factor, the only
temperature dependence is in the two-spin term,
r(T). It is straightforward to show that, in this
case, the temperature trajectories are

1 -x= (1 +rc)l(y/,c)/2[1 +rc(y/yc)/2], (24a)

where r, is the value of r at the critical temper-
ature,

r =_ Ey n+2
1+rc 2-en+8' (24b)

SWF = xy -(n+2)/(n+8)/(1 _ - (4
-n)/{n.8) (19b)

The behavior of any function whose renormaliza-
tion behavior is known can be expressed in terms
of a generalized homogeneous function. If Q is a
function that satisfies the renormalization trans-
formation

Q = aQ, (20)

then Q satisfies

Q(X" H, XaCSG, ;aWFSWF)

=aQQ(H, SG, SWF),

where H is the ordering field, and8

aH=l +d/2, aG=2,

aF = 2 - E (n + 2)/(n + 8).

In particular, the correlation length satisfies
(20) with a = - 1; the Gibbs potential satisfies
(20) with a =d.9 An example of a correlation
length which satisfies (21) is

= (+2)/(+ 8)(1- _ (4- (+ 8)1l/a F

A [(1 G(2)-/(+8) /C

and Yc is the value of y at the critical tempera-
ture. Two temperature trajectories are shown
by the heavy lines labeled A and B in Fig. 1. It
is clear that, for a given change of x, tempera-
ture trajectory A crosses more renormalization-
group trajectories than does temperature tra-
jectory B. To make this more quantitative, the
renormalization trajectories can be labeled by
the renormalization invariant I:

I= X( - )dG /2 (25)

21) The invariant I is zero on the separatrices pass-
ing through the Wilson-Fisher fixed point I[x = 0
and y = y2(x)]. It is infinite on the limiting inte-
gral curve (y = 0) joining the finite Gaussian fixed

<22) point to the infinite Gaussian fixed point. It may
therefore be used as a measure of the criticality
of a system. A small invariant characterizes a
system dominated by the Wilson-Fisher fixed
point, while a large invariant indicates that the
system is dominated by the Gaussian or mean-
field behavior. The crossover of a system from
critical to mean-field behavior is governed by
the rate of growth of the invariant. For the two-
spin systems under consideration [temperature

23) trajectories given by (24)] and n= - 2 (for simplic-

1448

24 JUNE 1974

exp Fn +'J EX Y,

Ln 'V1.

SG=X G - (n+2)/ (n+11) // (1 _ ),
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ity)' 0

I(T) -( (x(T) ('1 [1 - (T)J/Y) (26)

For small y,, I(T) is a rapidly varying function
of x(T); for Yc near 1, I(T) varies very slowly.
For x(T) monotonically increasing, I(T) is also
monotonic in T, cutting each renormalization-
group trajectory exactly once. Similar behavior
holds for general n.

If x(T)-1 as T-o, the temperature trajector-
ies all pass through the infinite Gaussian point at
x= 1, y = O. This requires that r(T)-o for T-o.
For realistic Hamiltonians, r(T) has a finite lim-
it at infinite temperature," and the formal cross-
over properties of the renormalization-group
equations are not completely realized. Moreover,
even before the limiting values of x and y are
approached (whether these limits are at the in-
finite Gaussian point or not) the correlation length
and other thermodynamic functions will be dom-
inated by their high-temperature behavior, rath-
er than by the limiting behavior of an expression
such as Eq. (23).

The authors are grateful to B. D. Hassard and
G. F. Tuthill for useful discussions.
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ABSTRACT

Recent applications of the renormalization group
to critical phenomena in magnetic systems have been
based mainly on local linear arguments. It has been
implicitly assumed that the global nonlinear effects
are important only in crossover effects and that the
behavior asymptotically close to the critical point is
determined by the stablest fixed point alone. We have
given a nonlinear analysis which incorporates the
crossover between the Wilson-Fisher and mean field
behavior. We point out in this paper that this com-
petition expresses itself in globally valid solutions
which can upset the dominance presumed from the linear
stability analysis unless certain regularity conditions
are imposed.

In a recent paper1, we gave a solution describing
the crossover between Gaussian and Wilson-Fisher 2 (WF)
critical behavior of a set of renormalization group
equations within an e expansion (- 4-d). Briefly we
considered a reduced Hamiltonian density of the form
(for an n-component spin s)

V + r + u(s2 2 (1)

Applying an approximate form3 of the differential
generator of Wegner and Houghton 4 we obtained nonlinear
differential equations for the renormalization behavior
of the parameters r and u. We found, that nonlinear
scaling fields can be written to O(e) as

SG = X- (n+2)/(n+8l+r) (2a)

SW = xy-(n+2)/(n+8) (lr(4-n)/(n+8) (2b)SWF xy (l+r)(2b)

where xr/(l+r) + u/(l+r)2((n+2)/n)and
cy-u/(l+r)2(2(n+8)/n). The function G is given by



G = (-y/~) exp{ ((n+2)/(n+3))rxy/$} (2c)

where y=,p(x) is the equation of the separatrix connec-
ting the WF to the infinite Gaussian (high temperature)
fixed point (cf. Fig. 1).

Many thermodynamic functions can now be expressed
as generalized homogeneous functions of the scaling
fields given in (2). These scaling fields are not
unique since a generalized homogeneous function of
any pair of scaling fields is again a suitable scaling
field. On the other hand, if we require that the
scaling fields be proportional to the variable x for
small x(xT-Tc), the scaling fields given in (2) are
unique up to multipication by arbitrary functions of
the renormalization invariant.

I= G2-c(n+2)/(n+8)2 d (3)I = X G /y (l+r) (3)

which are nonzero at I=0. Note that I vanishes on the
separatrix y=~(x) as well as on the line x=O; I=o on
the pure Gaussian trajectory yO.

We may, however, use the scaling fields (2) with-
out loss of generality since we have not specified the
form of any generalized homogeneous function. For
the zero field correlation length we can choose as an
example the simple form

-1/a S -1/a V (4)
= SGG + W F 

where the scaling powers of SG and S are aG=2 and
aWF=2 - (n+2)/(n+8). Since the two scaling fields
appear symmetrically in (4), this form has the virtue
of reducing to the appropriate linear solution as
either of the two fixed points is approached. For
x fixed and y+O, S -oo , and the Wilson-Fisher term
vanishes. Similarly, as the separatrix is approached,
SG+c , and the Gaussian term vanishes. For
intermediate values of y, both singularities contribute,
giving the expected nonlinear crossover.



A more complicated behavior is exhibited by the
Gibbs potential G. In addition to the spin-dependent

terms, an additive constant v in the Hamiltonian
density also contributes. This spin-independent term
grows at the rate of ed :. To first order in , we
find

ad a a, a a

G(h,SG SWF)= d h S Ge S e)

(5a)
+(dn/2)f d' n{l+r(Q')}e

0

where h is the ordering field and ah=l+d/2. As the
renormalization average proceeds (+aD ), information
about the Gibbs potential passes from the first term
on the right hand side of (5a) to the second term2

In some circumstances, (in particular, zero magneti-
zation) it may be possible to take the limit .oAD and

consider only the second term. This method has been
utilized by some authors5, 6, 7 to calculate an
approximate Gibbs potential. For our case, the
result would be

'dR
G = (n/2)Zn{l+r(O)} + n e x(9)dZ (5b)

However, for fixed , the second term contains
information that should be unimportant for critical
behavior. Accordingly, we will deal with the
homogenous term only in our discussions. Thus, when
discussing the Gibbs potential and its temperature
like derivatives, we will confine our attention to
x->o, even though the solutions for the nonlinear
scaling fields are valid for all x<l. The difficulty
does not arise when studying the derivatives of the
Gibbs potential with respect to the ordering field
h (such as the magnetization and susceptibility)
since the second term in (5a) is not dependent on h
and does not contribute. We could, therefore, phrase
our discussion of crossover in terms of these func-
tions; we will discuss the Gibbs potential to allow
the closest connection between this work and other
phenomenological discussions of crossover.

In general, G(h, SG, SIF) will generate critical
point exponents that do not satisfy exponent inequal-
ities as equalities. This is to be expected since G
depends on three distinct scaling powers. The usual
scaling equalities which relate three exponents are
satisfied because there are only two independent
scaling powers. An example of a Gibbs potential
which is a nonscaling global solution of the renorma-
lization group equations is given by



G = GG(hSG) + GWF (h,SWF) (6)

where GG and GWF are separately generalized homogeneous
functions. Each piece of the Gibbs potential gener-
ates its own singularities with exponents that satisfy
equalities. However, since G<YWF it follows that
aG>aWF. The measured exponents would be YWF and aG-
Therefore, a+2$+y>2.

A solution of the form (6) cannot, however, be
matched to the expected linear solutions near the
two fixed points since as the scaling fields diverge
the Gibbs potential becomes infinite. To show this
more explicitly, we consider the h=O potential.
We may write it in two ways,

2-a

G = {SG } fG(I) (7a)

or

G=S {2-wF () (7b)

If the asymptotically valid value of a were aG, then
it follows that fG(O) would be a finite constant.
By (3), fG(I) is also well behaved as the separatrix
y=-:(x) is approached. Since' SG- is ingular on the
separatrix, the Gibbs potential would be singular
there as well. On the other hand, if the asympto-
tically valid value of a is aWF, then fWF(O) is fin-
ite. It is also finite on the separatrix. However,
as y-+O, the invariant I+oo. Therefore, the diver-
gence in SWF as y+O may be cancelled by an appro-
priate behavior of fWF. An example which has this
property is given by

G = GG(h,SG)G (hSwF )(G G (8)

It is easy to check that (8) generates exponents
that agree with those of GWF alone; the linear analy-
sis is thereby justified by the global results. If
c<O, the arguments given above are precisely reversed
and the Gaussian fixed point (in this case the stabler)



determines the asymptotically valid critical point
exponents.

The analysis presented above gives a theoretical
understanding of a mechanism for possible non-
scaling critical behavior as global renormalization
group solutions with singularities on portions of the
boundary of the solution region. This possibility and
further nonlinear analysis will be explored in a
separate paper.7
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The analysis of selected nonlinear problems in the renormalization group

is found to show striking con trasts between the usual local linearized fixed

point analysis and the properties of global solutions of nonlinear equations

derived from an approximation of the Wegner-Houghton differential formuloXtion.

The competition between various fixed points that is incorporated ;" general

global solutions can upset the asymptotically valid critical behavior deduced

from the local analysis. In general, the critical point exponents of such

a solution will not satisfy equalities, but rather the corresponding inequalities.

However, these non-scaling solutions have extraneous singularities that are not

related to the thermodynamic singularities of the system. If singularities

of this type are excluded, then the global solution has the same critical point

exponents as the local solution derived by linearizing around the stablest

fixed point.

It is shown that in this case the critical surface in the Hamiltonian

space is closely related to the surface of order two critical points in a

thermodynamic field space. The boundaries of this surface are correspondingly

related to the critical points of higher order in this thermodynamic space. The

nonlinear global solution predicts multiple power scaling behavior from a single

scaling equation deduced form the renormalization group. Previously such

behavior was obtained by postulating the simultaneous validity of two of more

"linear" scaling hypotheses.

* This work forms a part of a Ph.D. thesis of J.F.N. to be submitted to the
Physics Dept. of MIT. Work supported by the National Science FoundationjOffice of
Naval Researc) and the Air Force Office of Scientific Research.



I. Introduction

The renormalization group approach to the study of critical phenomena is a

mathematical expression of certain heuristic ideas of Kadanoff. Kadanoff argued

that sufficiently near the critical point, the correlation length was so large

that even crude averages over small groups of spins would not alter the physics

in an unmanageable way, but would only change the parameters slightly. If

the transformation of the parameters is assumed to be of a particular form (the

"scaling hypothesis"), then many valid and useful predictions of critical behavior

follow. In the renormalization group approach, a particular form of Kadanoff

averaging is carried out explicitly. If the system Hamiltonian is characterized

by some set of parameterslptithe renormalization group equations provide a definite

transformation on the parameter space.

The fixed points of the renormalization group are just the fixed points of

this transformation in the parameter space. As is well known from the study of

nonlinear finite-difference and differential equations, the qualit .tive and

much of the quantitative properties of a set of transformations are determined by

the location and study of the fixed points of those transformations. This is

the rationaleof the renormalization group approach: to study the transformation

properties (via the fixed points) in order to deduce the properties of the partition

function and other thermodynamic quantities.

A formulation of a renormalization group may be of a recursive character with

a "finite-difference" generator, or it may have a differential generator. For

example, if we consider a system with discrete spins localized on lattice sites,

we could construct a renormalization group which replaced each spin by an

7
average of that spin and the spins of its neighbors. After averaging, the

parameters of the Hamiltonian wouldn in general, change. The new parameters would



2 3

be given by relations of the form p.'=PijpilJfor some functions Pj. Thus the

renormalization group equations in the parameter space would take the form of

finite difference equations coupling all the parameters together. A second case

of a finite-difference formulation is the well-known renormalization group of

Wilson. It treats a system of continuum spins; the renormalization average is
8

performed by averaging over a finite fraction of the momenta in the space of the

Fourier transform of the spin density.

Finite difference equations, however, are clumsy to manipulate in the large,

i.e., over large domains of the variables. A differential generator, which

performs an average over an infinitesimal number of degrees of freedom is far more

convenient. A differential generator gives a smooth transformation of the p s,

of the form dpj/d = Pj&p±t9wherel is a parameter describing the progress of the

renormalization averaging. Various differential generators have been proposed; e.g.

Wilson5 has proposed a "partial integration" generatorjwhile Wegner and Houghton9

have proposed a differential generator which averages over an infinitesimal

shell of momentum.

In applications of the renormalization group to critical phenomena, it is

customary to perform an average which corresponds to a simple scale change of the

correlation length as in Kadanoff scaling. For a finite difference generator we

expect that the renormalization equation is of the form n+1 = (constant) .



M.or a differential generator the parameter - is usually normalized so that the

renormalization equation for is 5= -5 , where the dot denotes differentiation

with respect to .A

10-11With a few exceptions , the work devoted to the application of the

renormalization group to critical phenomena has been confined to the location and

linearized analysis of fixed points. For example, we could consider a set

of two parameters p and q with renormalization group equations

I, _ % 6 -%) - Lt)
(lJb )

These equations have several fixed points. One fixed pon;: is at p = q = O. If

we linearize around p = q = 0 we obtain the elementary solutions p = p exp L '

and qo expeCs'

X In terms of p and q, the equation for the correlation length = becomes

If we make the linearized approximation for p and q (1.2) is of the

form £ He S S f - ct f C)
(1,3)
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The solutions of an equation such as (1.6) are generalized homogeneous functions

12
(GHFs) . That is, they satisfy the functional relationship

F (A ho I) A. fF( p.1)

(1.4)

The constants ai and aF are termed the scaling powers of the variables Pi and the

function F, respectively. To see that (1. ) implies (1.') it is sufficient to

examine the case at hand. We write

15 'IC, e apeve ) Y e-c (I )

which is just (1.4) with X= e , a = 2, a = ¢, and a =-1.
p q

Eq. (1.5 ) is equivalent to

(1. io.)

The quantity q/lp /2 is a renormalization invariantof the linearized equations

as is easily checked from (1.1).

The correspondence between the form for the correlation length and the

usual scaling hypothesis leads to the definition of p and q as (linear) scaling

fields. If we make the identification p - T-T we derive the value of the critical
c

point exponent4=½. However, we linearized (1.1) to obtain this solution. In

principle this analysis might only be valid locally, infinitesimally close to

the fixed point p=O,. =O( cf Fy )

We can examine other fixed points. A second fixed point is located at p:Q,

q 1l. At this fixed point, we have a different pair of linear scaling fields,

p' p and q' (q-l) +4/(2-e&J p, with the new linearized renormalization equations



.' = (-e,) pi
- ( (1 7a )

(1. 7b)

' - .. ...............- - We again obtain

a GHF but with variables p' and q' and scaling powers ap, = 2-EA and aq, = -E. Thus,

(1A; .)

or, equivalently

-f(X-4) G/(276)

`j ( ' S') - Ir'l . ( i a e 
(1.8 b)

Again, since the fundamental equations(l.l) were linearized, the solution given

in (1.8) is, in principle, valid only infinitesimally near the fixed point p=0,9 =l.

Thus, by locating two fixed points and analyzing the behavior of the linearized

equations in a neighborhood of each fixed point we have produced two completing

forms for the correlation length with different critical exponents,+ = and4 =

1,/ ~)o. If we are not to be confined to infinitesimal regions about one of the fixed

points, the effects of both fixed points must be incorporated. This obviously requires

a solution of the nonlinear equations to give a solution valid at each fixed point

and at every point between the two fixed points. To include more than a single

fixed point, the local, linear anaylsis must be replaced by a global, nonlinear

analysis( G. F'8 ) 

From the example treated above it is easy to see that any set of linearized

renormalization group equations confirm the scaling ideas of Kadarnoff: thermodynamic



functions are GHFs of suitable linear combinations of the parameters t n . Since

many fixed points may be included in a global analysis, three questions must be

answered:

(i) Which fixed point should be choosen to represent the true scaling

behavior of the system?

(ii) Can solutions derived from linearizing the renormalization group

equations around various fixed points be matched together in such a way as

to form a globally valid solution?

(iii) Does the class of global solutions include behavior that is drastically

different than the behavior deduced from the linearized solutions?

Question (i) has been traditionally answered by the criterion of relative

stability. If two fixed points can be considered as important for a particular system,

we examine them to determine whether a trajectory in the parameter space connects

them. If such a path exists, and under the action of the renormalization equations

it passes from fixed point A to fixed point B, we say that A is unstable with

respect to B. It is assumed that the fixed point which is least unstable (of those

fixed points which lie on the "critical surface", cf.Sec.III) is the dominant or

controlling fixed point. The asymptotically valid scaling behavior is assumed to

be that given by the linearization about that point. For example, the isotropic

Heisenberg fixed point is unstable with respect to an anisotropy along one spin

axis. In the renormalization group parameter space, two paths lead out of the

Heisenberg point, connecting it to a point of XY character and a point of Ising

13
character. We see that the idea that the slightest bit of anisotropy turns the

system into either an XY-like or Ising-iike system is supported by this notion of
14

relative stability ( and seems to be confirmed by high temperature series analysis).
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The procedure of checking relative stability requires first finding the fixed points

of the renormalization group transformations and this is an exceedingly nontrivial task.

Numerous pertrbation expansions have been developed to discover those fixed points

that are "close" to some fixed point located by inspection (the expansions of Ref 4-5

land the expansions of critical points of higher "order" of Ref. 15-16 are

examples).

Question (ii) must be answered individually for each renormalization group and

probably for each problem within any one renormalization group. At least for

groups with differential generators, one supposes that the solutions for the

thermodynamic functions are again GHFs with revised arguments. That is, instead

of linear combinations of the parameters ti , certain nonlinear functions of the

parameters (called nonlinear scaling fields) will be the arguments of the GHF. The

equations for the nonlinear scaling fields will be first order partial differential

equations with coefficients that are nonlinear in the pj. For any particular case,

the general theory of such equations can be envoked to determine whether solutions

to these equations exist in the large. A further question is whether every global

solution for the thermodynamic function matches onto the local solutions at all

the fixed points (or at least at all the fixed points we have found); that is,

are all the global solutions sufficiently regular (in a sense particular to each

problem) near each fixed point. (Of course, the nonlinear solution for the in }

themselves always match.) In general, the answer is no; not every global solution

matches onto the linearized solution at each fixed point. Many global solutions

exist that have singularities 'that are unrelated to the physical thermodynamic singu-

19
larities. If we require that a global solution match smoothly at each fixed point,

then the set of global solutions will be restricted, but the global solution is

still not in general uniquely determined.



Question (iii) can only be answered by explicit construction of the nonlinear

scaling fields and some class of global solutions. In this work we will consider

two cases which illustrate that the answer is yes: global solutions can be radically

different than what might be presumed from the local analysis. However, we will also

show that the global solutions that violate the local analysis have extra singularities

on the boundary or some portion of the boundary of the solution region. These

singularities are apparently unrelated to usual thermodyhamic singularities. If we

require that the solution be well-behaved everywhere on the boundary of the solution

region, then the only global solutions that are acceptable support the local

linearized analysis.

In Sec. II we review the nonlinear solution given in Ref. 11 for the crossover

or competition between the Gaussian fixed point (which has mean-field exponents) and

the Wilson-Fisher fixed point (which has non-classical exponents). We show that

a general global solution is not dominated by the stabler fixed point. Such solutions,

however, have singularities on the separatrix which emerges from the stabler fixed

point. This separatrix also forms part of the boundary of the solution region. The

exclusion of those solutions with singularities on the separatrix leaves only

solutions which are dominated by the local linearized behavior of the stabler

fixed point.

In Sec. III we discuss a three-parameter crossover problem. The system

considered consists of two internally isotropic n-spin subsystems which are coupled

together through v b. aJtic term. The competition is among a fixed point of

dubious spin and the sual Gaussian, n-spin, and 2n-spin fixed points. In this

case it is again true that a global solution which is not dominated by the linear

behavior of the stablest fixed point has singularities on the boundary of the

solution region. However, the singularities do not cover the entire bounding surface

(which is two-dimensional) but are confined to the line emerging from the stablest



fixed point. The removal of the singularity along this separatrix again

restricts the class of global solutions to those dominated by the behavior

of the stablest fixed point. The properties of these restricted global solutions

strongly resemble the crossover behavior of systems which contain several

20
different types of critical points, including critical points of higher order.

In particular, the "double power law" scaling behavior characteristic of
21

critical to tricritical crossover is an automatic consequence of the nonlinear

renormalization group solutions.

In Sec. IV we discuss the general properties of global renormalization group

solutions as illustrated in Secs. II and III. We discuss the possibility of

accepting the global solutions which are singular on some separatrix. The

critical point exponents of such systems are more complicated th0n the more

regular global solutions, but are still characterized by double-power law

expressions. These systems, which are a generalization of scaling systems, share

many properties with the simpler systems: elsewhere, we have given a partial

classification and discussion of such systemsand termed them "critically ordered"

systems.'3
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II. Two-parameter Crossover

In this section we review the crossover solution given in Ref. 11 for a set

of nonlinear renormalization group equations involving two parameters. This

solution describes the crossover between Gaussian and Wilson-Fisher (WF) critical

behavior, and is obtained within an c-expansion approximation. The techniques

used in the solution of this problem parallel those that are used in Sec. III

for a three-parameter crossover problem and, in fact, the three-parameter problem

reduces to the two-parameter problem on special surfaces in the Hamiltonian

parameter space.

The properties of the global solutions given in Ref. 11 are more fully

developed in this section. In particular, we show that not every global

solution can match the local, linearized solutions at both of the fixed points.

More precisely, a general global solution may be singular on particular

trajectories leading from the Gaussian or WF fixed points. If the global

solution is to avoid such singularities, then the class of admissible solutions

is reduced. In fact, it can be shown that the local, linearized analysis is

now justified; the global solution matches the local solutions formed at

both the WF and Gaussian points and the asymptotically valid critical behavior is

determined by the stabler fixed points.

In this section and in Sec. III we use an approximate renormalization group

based on the momentum independent limit of the differential generator derived by

Wegner and Houghton. The use of a differential formulation is far more convenient

for the global study of nonlinear equations than a iteration equation such as the

Wilson approximate recursion formula, since it allows the use of many techniques

6 18familiar from the general theory of differential equatiofs. A discussion of the

Wegner-Houghton approximate renormalization group (WHARG) is given in Appendix A,



We consider a Wilson reduced Hamiltonian density of the form

t =- I' sI + ,- r' + .5-
jo

(2.1)

for a continuum spin vector s with n-components. The variables r and u are constant

interaction parameters and i is the magnetic field. As discussed in Ref. 5, the

Hamiltonian (2.1) models a short range interaction between spins on a lattice.

The approximation of such a system by a continuous spin allows the renormalization

average to be performed more easily. The WHARG equations for the isotropically

interactiMl n-spin system of (2.1) in a lattice of dimension d are

r _ _

1 /. a- A --X)

I · ,

A natural change of variable maps all

finite region of parameter sace. We

-k i

the fixed points of interest into a

write

( r)I L
(2.2 t)

The VI{ARG equations in terms of these variables are

.

4-

V

= l- )L r (- 3 (n*, ) -/ (n4 3]

_~ ~ Y C I 3 jYd (Y/tInto) ) ir ] 

(2.ia)

(2.3b)
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The three fixed points of interest are the "finite Gaussian" point (r = yn= ),

the infinite Gaussian" point (=l, y=0O), and the Wilson-Fisher point

(f--6(n+;)/(2(n+8)), yn=l). The term "Gaussian" is applied to the first two points

since the nonquadratic terms in the effective Hamiltonian are zero. We distinguish

between the two Gaussian points by the value of r which is zero at the finite

Gaussian point and infinite at the infinite Gaussian point.

The equations given in (2.3) are already diagonalized about the infinite

Gaussian point. If we diagonalize them around the finite Gaussian point, we have

the complementary set of equations

(2.¥a)

a`LA

(2.hb)

where

In passing from (2.3) to (2.') we have discarded terms proportional to

2 22
Yn andGyn ' Thus, (2.3) and (2.q) are formally equivalent to 0(E) (see, however,

Appendix B). The advantage of this approximation is that the surface of critical

Hamiltonians is now the straight ne x=O. We are justified in neglecting the

2
Q terms if n is always of 0(1). Since the original WHARG equations (at) are

16
only good to 0 () 16 this approximation is self-consistent. The restriction on

the size of n limits us to global solutions for which the renormalization trajectories

are bounded in Yn



With these approximations, (2.3) and (2.Y) are of the same form. The three

fixed points have been placed at the canonical locations x=y =0 (the finite

Gaussian point), x=O,yn=l (the Wilson-Fisher point), and x=l,yn=O ( the infinite

Gaussian point) (see Fig A).

The solution of (2.3) and (2.6/) for x and n can be conveniently expressed in

terms of three functions R,X, and Y which are defined through the equations
n

R - AO-17o) R;

-

- - )

(2.!a)

(2.5'b)

- lY, W

(2.5c)

Employing (2.7a) and (2.7c) in Eq. (2.3j we have

co$hs e

(2. 6a)

I- r 

R -. AV

coift C

(2.6b)

Using (2.5b) and (2.5c) in the complementary equations (2.4) we also have

- co st e
(2. c)

"- co nst e
(2. d)

_ --.

X2 I 

X /1 A.,



The four expressions on the left hand sides of (2.4b)-(2.*) are termed nonlinear

scaling fields since they have a purely exponential dependence on the renormalization

parameter A. Equation (2.6a)-(2.&1) cannot all be independent since there can

only be two independent scaling fields. It is easy to see that

(2.7a)

(2.7b)

All that remains is finding the solution of (2.gc) for Y . We are interested
n

in the solution that can be written as

(2. )

By (2.g ) we mean that the value of Y n(x,yn) is to be determined by performing

the indicated integral along the unique renormalization trajectory that passes

through the point (X,yn). Thus, Y (O,yn )=l-yby direct integration of (~,5).

The separatrix connecting the WF point x=O,y =1 and the infinite Gaussian point

x=l, y =0 is denoted by y= x) in Fig. A. Since the renormalization solution along

this trajectory reaches the WF fixed point only in the limit I2--0 , at each

point y=yo(QO) on the separatrix, yy0for allQ<. The integral in the exponent

of (C.d ) diverges and, therefore Y has a zero on the separatrix y=f(x).
n n

Since we have the exact solution for x0, Y =l-y , it is easy to show that
n n

Y can be written as (to first order in ~, cf. Appendix B),

(KX3 j AlA) A .( - Cn)je -EAnY.9)
J (2. Q a)



where the separatrix functionl(x) shown in Fig.A . is given by

(2..9 b)

(The derivation of the functions and is given in Appendix B; they are used

with different arguments in Sec. III). We can now write down the globally valid

nonlinear scaling fields appropriate to the Gaussian and WF fixed points. That is,

the nonlinear fields that embody the behavior characteristic of the renormalization

equations when linearized around the two fixed points. The simplest forms of these

fields are given by

Y. d -

A4q (2. o.a)

(2.

(2. l~b)

With these scaling fields, we may describe the global behavior of any function whose

renormalization transformation behavior is known. If f is a function that satisfies

the renormalization equation = c i-)

then f is a GHF of the magnetic field h, and the two scaling fields Sls<,d a)

f ( C " , /\"> ) ,_ \ f , IXc ls' ) (2 .)



Here the scaling powers ah , agau, and a are given byAg - t d a =n

(2. .)

For example the correlation length satisfies (2.1J ' with af=-l; the Gibbs potential

satisifies (2.11 ) with af=d( see, however, discussion following Eq. (2.13) ).

The renormalization group equations do not determine the form at the GHF

(2.1t ) and they also do not determine the scaling fields uniquely. Since

any GHF remains a GHF under any transformation of varibles which is itself a

GHF we may choose new scaling fields which are arbitrary GHFs of sgauand Ss

Thus, we can choose scaling fields with any scaling powers. This

freedom is reduced by considering the fact that the separatrix connecting the finite

Gaussian point and the WF point (x=O, Oy zl)corresponds exactly to the surface of

critical Hamiltonians. That is, x=O if and only if T=T . Making the usual Taylor

series expansion we assume that xT-T for sufficiently small T-T . If we

require that the scaling fields themselves be proportional to x for T near T and
c



that they reduce to the natural linearized scaling fields at the Gaussian and WF fixed

points, then the most general fields are given by those of (2.12) multiplie by

arbitrary functions of the renormalization invariant

X

(2.13 )

which do not vanish at x=O. Note that I=O on the separatrix y(x) as well as

when x=O; I= :P- along the pure Gaussian trajectory Yn =0.

This freedom in the choice of nonlinear scaling fields is illusory since we

have not specified the GHFs for which the scaling fields are arguments. Any

change in the scaling fields induces a corresponding change in the form of the GHFs.

We may, therefore, choose the nonlinear scaling fields at our convenience.

Without loss of generality, we will use the scaling fields defined in (2.1).

With these nonlinear scaling fields a particularly simple example for the h=O correlation

length is

w-her .A..1

where A(I) and B(I) are smoothly varying functions of the renormalization invariant

(finite both at I=O and I=ao). Since both of the scaling fields appear in (2.1y)

symmetrically, this form has the virtue of reducing to the appropriate local solution



as either of the limiting trajectories (y = 0 or y = V (x) is approached. For x
n n

fixed and Yn-~ 0, S -, ce and the WF term vanishes. Similarly, as the yn n
separatrix is approached, S -~ cP and the Gaussian term -, 0. For intermediate values

gau

of y both singularities compete, giving the expected nonlinear crossover.

A more complicated behavior is exhibited by the Gibbs potential. In addition to

the spin dependent terms, an additive constant in the Hamiltonian density contributes

to G. Therefore, we can write

-d: -d
G(Pi) + e G i( ) + e (2.1 )

The WHARG equation for v can be easily integrated to give

G(pi = ed G(Pi( ) )+dn Jd e ( rt r(X)) . (2. 1Sb)

2

As the renormalization average proceeds (2- C ), information about the Gibbs

potential passes from the first term on the right hand side of (2.15b) to the second

term. In some circumstances (in particular, zero magnetization) it may be possible

to take the limit .- at and consider only the second term. This method has been

utilized by some authors 22 to calculate approximate Gibbs potentials in zero

ordering field (i.e., h=O). However, for fixed g , the second term contains information

w culd be unimportant for critical behavior. Accordingly, we will in our discussions

drop the second term of (2.15b) and deal only with the homogeneous term. Thus,
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when discussing the Gibbs potential and its temperature like derivatives, we will

confine our attention to x 0, even though the solutions for the nonlinear scaling

fields are valid for all x 1. The difficulty doesncot arise when studying the

derivatives of the Gibbs potential with respect to the ordering field h (such as the

magnetization and suseptibility) since the second term in (2.Shb) is independent

of h and does not contribute. We could therefore phr-ie our discussion of crossover

in terms of these functions; we discuss the Gibbs potential to allow the closest

no -al
connection between this work and phenomenological discussions of crossover. A brief

discussion of the limit -ec in the second term is given in Appendix D.

Within this approximation, therefore, the Gibbs potential is a GHF of the

ordering field h and the two nonlinear scaling fields S and S . In general,
n gau

G(h,S gau,Sn ) will generate critical point exponents that do not satisfy exponent

inequalities as equalities. This is to be expected on general grounds simply because

G(h,Sgau ,S n ) depends on three scaling fields withthree distinct scaling powers.

The usual scaling equalities which relate three exponents are satisfied because there

are only two independent scaling powers. An example of a Gibbs potential which is

a global solution of the renormalization equations which does not give exponent

equalities is

where Gg and G are both GHFs, . Each piece of

the Gibbs potential generates its own singularities with exponents that satisfy

exponent equalities. However, since ~n ga , it is immediate that gau)in ' The

measured exponents would be Ynand Ygau' and therefore A+2P j>2'

However, a solution of the form given in (2.1&) cannot be matched to the

expected local solutions near the two limiting trajectories. As Yn0O, Sn X and

therefore G . Similarly, as the separatrix is approached, S -. . and G
n gau gau



-~ °> . If we replace G by G/(l+I 2 ) the divergence at Yn=0 is removed. However,

to remove the divergence on the separatrix we would have to multiply Gga by a

power of the invariant. Since the invariant is proportional to a power of x(cf.

equation (2.1l )), this weakens the singularities generated by Gga. In fact, itgau

is easy to see'that it weakens Ggau just enough to ensure that the measured A will be .

Thus, if we require that the global solution match) the expected local solution on

both boundaries a splitting of the Gibbs potential as in (2.1) does not lead to the

violation of exponent equalities since the G term must be discarded. The
gau

critical behavior is determined entirely by the WF point.

To show this in another way, consider the h=0 Gibbs potential. We can write

it in two ways,

G -I.,,,,,.
G - Add' g| ,, .

If theL-s;/mptotically valid value of i. i gau then fgau (0) is a f n

constant. However, I=0 on the n= (X) separatrix as well as at xO; therefore,

as the separatrix is approached, f is well behaved and, since S is singular
gau gau

at Y=0, G has a singularity on the separatrix. On the other hand, if the asymptotically

valid value of iS in, then f (0) is finite. It is also finite, therefore,

on the separatrix. However, as y4 0, the invariant I'm. Therefore, the divergence

in Sn as YnO may be cancelled by an appropriate behavior of f (I) as I- A. An

example is given by

L7 C C!H0

, A .... ,._. .



The form given in (2.1t) has the virtue of reducing to the expected local solutions

on both bounding trajectories. A form valid for non-zero h which corresponds to

I )

(2. i'0 is

: 0 ZG = G (S ,5 ) oC t (h.S0') 

If 40O, the argument given above is precisely reversed so that the Gaussian fixed

point (which in this case is the stabler fixed point) does dominate the global

solution. Thus, in this two-parameter example, the stabler fixed point is always

daoinant globally.



III. Three-parameter Crossover; Coupled Order Parameters.

In this section we describe the solution to nonlinear renormalization group

equations which involve three parameters. These equations model a system

involving two interacting order parameters. There are several realistic systems

whose phase diagram may be understood in terms of a model Hamiltonian

encompassing the interaction between two (or more) coupled order parameters.

One simple example is provided by the phase diagram of the mixed crystals

(Fe Mn. )WO4 near the quadruple point. In these crystals (which possess a

monoclinic wolframite structure), the oxygen ions form a distorted hexagonal close

packed pattern; half the octahedra spaces are filled with Fe or Mn ions

and the other half are filled with W ions. The magnetic structure of FeWO4

(ferberite) is antiparallel in alternate planes (t, ). The magnetic cells

for MnWO4 (huebuerite) on the other hand, is quadrupled in the a-direction

and doubled in the b and c directions ( J J ). Wegner, has shown that near

the quadrauple point of such substances (defined to be the point at which the

paramagnetic phase, Fe ordered phase, Mn ordered phase, and a mixed phase

are simulataneously in coexistence) the free energy may be represented by

a model involving two order parameters with reflection symmetry and a

biquadratic coupling term. Depending on the various interaction strengths,

the two ordered phases are either separated by a first-order transition or by

an additional phase. Other examples of magnetic materials exhibiting similar

30
quadruple point include Fe(Pd,Pt)3.

Ther order-disorder tansitions in the ammonium halides provide further examples

of systems with couplM order parameters. At sufficiently low temperatures,

the NH4 tetrahedra can have two different types of ordering, parallel and

anti-parallel, in the cubic structure of the halide ions. The coupling

between the two types of ordering is, however, not direct: it is probably
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mediated by non-ordering effects (e.g., magnetoelastic interactions). Model

Hamiltonians involving the interaction of the parallel ordering and magnetoelactic

effects' have been used to simulate the order-disorder phenomena of NH4C1,

leading to a renormalization group prediction of classical tricritical behavior.

A model Hamiltonian which treats magnetoelastic effects and both the parallel

and antiparallel ordering is more complicated and will be treated in a separate

paper.?; Because the elastic distortion breaksthe reflection symmetry, the

model Hamiltonians for NH4C1 are generally assumed to contain coupling terms

different from the simple biquadratic term employed in the mixed crystal

examples discussed above.

There exist a number of systems that can be described by model Hamiltonians

with biquadratic coupling terms. These include the metamagnets (such as

FeC12)I, systems involving spin-flop transitions and displacive transitions

in perovskite crystals . It has been shown that such a model provides descriptions

not only of classical tricritical points but also "bicritical" and "tetracritical"

points in the "physical plane". We will demonstrate in the latter part of

this section that this model also contains the type of "higher order critical points"

exemplified by the intersection of critical subspaces (as first proposed by Ref. Q )

when the phase diagrams are viewed in the multi-parameter Hamiltonian space.

A general model Hamiltoaiian with a biqu adratic coupling term has five

interaction parameters (as discussed in Appendix A). In this section, we

consider the special case of a system in which the two order parameters play

precisely equivalent roles. The system considered is a generalization to

n-component spins of theojpsotropic Hamiltonian discussed in Ref. 4 for n=l. The

close relationship ¢+ this three-parameter system to the two parameter system

solved in Sec. II allows many of the solution methods of the simplerproblem to

be applied to its generalization in this section.



We consider two internally isotropic n-component spin subsystems, s and s2

which interact through a quartic term,

. l VI'' +i 1jv1 - r it -) t+ Y Ctf' t'(s j (3.1)A

+ W So is t law 5 + hall t

This Hamiltonian can be viewed as the sum of two n-spin Wilson Hamiltonians

-r 2 - 2
of the form given in Eq. (2.1) with ab;? ccJ+ interaction term .w sl s2 . On the

other hand, it can also be considered as the Wilson Hamiltonian for a single 2n-

component spin system = (slS 2) with an "anisotropy-like" interaction (w-u) \

t12 2 (cf Fig 3). These two descriptions of the single Hamiltonian (3.1) are

reflected in the discussion of the global renormalization properities of (3.1)

as will be shown below.

The WHARG equations are given by (see Appendix A for details)

r -=a[-)5 F[ t (Frye f y.ae 

" -l 3-)" J) (3.2)

j, -. -3- (, ) ~ -her-]
where the variables r, Yn, and Y2n are defined by the relations

who - cr/ ir) .

- j ~ ( +) (- e/((r) u(3.3)

& 75 J ((n++) / (I r)t
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The two descriptions mentioned above of the Hamiltonian (3.1) have been incorporated

in the choice of the variables yn and Y2n employed here. When Yn=O the system

is equivalent to an isotropic 2n-component spin system; on the other hand, when

Y2n=0 the system breaks into two non-interacting n-component spin systems.

Eqs. (3.2) are already diagonalized around the infinite Gaussian fixed point,

r=l, n=Y2n=O. If, as in Sec. II, we diagonalize around the finite Gaussian point

r=yn=y2n=0, we obtain the equations

X = ax L R-( . , 6z- (\1,4 ,*H) J (3.4a)

MujtL I (3.4b)
(3.4c)

where x ms + EL( A31 AC 8) 1 _*/ ( t) )C ') ( ct) Ia(nt) -

Terms such as 2y -,A6 :Y 2 s and 6 Y2 2 have been neglected. The
Yn' n 2n '

considerations of Sec. II apply here as well; only global solutions bounded in

Yn and Y2n are acceptable (see again Appendix B).

The surface of critical Hamiltonians is the plane x=O. There are five

fixed points at which x,y , and Y2n are O (1) (there are other fixed points

at which x,y , and Y2n are 0 (/6); these cannot be subsumed in this perturbation
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analysis). Four are located on the plane x=O, and one at x=l:

(i) the finite Gaussian point, yn=y2n=x=O;

(ii) the usual n-spin WF point, Yn=l,Y2n=x=O;

(iii) the usual 2n-spin WF point, Y2n=1, n =x=0;

(iv) a point of no particular spin (unless n=l) which we will call the

z-point, x=O, ynYno =y (n-2) (n+8) / (n +8), 2nY2no (16-n )/(n+8);

(v) the infinite Gaussian point, x=l,Yny2n=0.

These fixed points and the integral curves and surfaces connecting them form a

finite region of the parameter space which is invariant under the action of the

renormalization group.

The most relevant eigenvalue (the eigenvalue of the x equation (3.4a)) for

the four fixed points in the x=O plane are given by

o ,.

an C ;2 E-6 . ) (3.5)

I at - a> E akj

2
where z a 3n/(n + 8). Since we identify x with T-Tc for sufficiently small x,

the critical point exponent / is given by the inverse of the eigenvalues of (3.5);

for example g =1.I gau
The existence of the z-point shows that the Hamiltonian (3.1) contains a

third symmetry relation similar to the two discussed above which are represented

by the n-spin and 2n-spin fixed points4. The relative stability of the n-spin,

2n-spin and z-points depends on the spin dimension n as determined by (3.4) o



For n2, the 2n-spin point is stablest (cf. Fig. a). For 2n(<4, the z-point is

stablest (Fig. b). Finally, for n4,the n-spin point is stablest (Fig. c).

The finite Gaussian point is always unstable with respect to all the other x=O

fixed points; all the x=O fixed points are unstable with respect to the infinite

Gaussian fixed point.

From (3.4) we ote that the trajectory which joins the finite Gaussian point

(y =y =0) to the z-point (y =y~ , y =y ) is a straight 1ipe Hence, we may

supplement (3.4) by

4 - [ (- VJ 
(3.6)

where Y2n Y2- Y2nYno Note that the z-point is r " yio x=z=0. Eq (3.6)

not independent of Eqs (3.4), but the redundant information expressed in (3.6)

be very helpful in the solution of the original equations (3.4).

Proceeding as in Sec. II, we define functions Y , Y2 ,X,Rby the equations

KR =i, tmr R -(

is

will

3.7a)

I

(3.7b)

)

(3.7c)

= - )L X

- - (-- V
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By inspection of Eqs. (3.2), (3.4) and (3.6))we write down non-linear scaling fields

I -

R YA. V

= co,~ C

(3.8a)

e
3

(3.8b)

ia fRea 2. I - 3 (MV)t A(%+ i)

__-··- I - ac 1 a"

R -A. I q A

- Co v ist

C cOvst

co st eC

coiIsS e

e

e

6-C

'C4

)

Y1 i (3.7d)

)
(3.8c)

I
(3.8d)

I

(3.8e)

(3.8f)

10

ax i~v

X-:2 yl,·ia
0 V



_____ _ cor$ St e - (3.8g)

Matching scaling fields gives X=(l-r) and R=xY Y 2Q"in analogy with (2.7).
n 2n

Eq (3.gel)cannot be independent since z is a linear combination at 2n and Yn

Comparing the solutions for - 0 s ,where Y and Y2n =1 gives the following relationship

between Y and Yn
n 2n

(3.9)

Thus, for n2,4, the complete solution of the three-parameter crossover

problem depends only on the solution of (3.7) for either Y or Y2 . Unfortunately

(except for n=O and n=Wo , see Appendix C), we have not been able to derive the

form of Y or even in an 6 -expansion. The essential difficulty is in
n 2n

the x=O plane, where there is no small parameter and the nonlinear equations must

be solved exactly. However, a great deal can be learned about the solutions by

comparison with the two-parameter solutions of Sec. II on appropriate two-

dimensional surfaces. Whenever y n,Y2, or z vanishes the problem reduces to a

two-parameter problem. We have, therefore, the following partial results:

(3.10a)

J'(X 1 1:C9 b ) J *Jr) ~(3.10b)



Ton dc the I boun y cn tt al O e' (3.10d)
To discuss the boundary conditions that apply to Y and Y2 we must generalize the

notion of separatrix. A fixed point at which not all the eigenvalues of the

linearized equations are of the same sign is a saddle point in the appropriate space.

The family of trajectories leaving a saddle point in a two-dimensional space is

a one-dimensional line (a separatrix). In higher dimensional spaces, this family

of trajectories may be of higher dimension, and we will call the corresponding

surface a "separ-surface". On the separ-surface leaving the n-spin point, there

is a boundary condition on Ynj on the separ-surface leaving the 2n-spin point,

there is a boundary condition on Y2ni on the separ-surface leaving the z-point,

boundary conditions on both Y and Y2n apply. As in the discussion following (2.V),

the Y on which the condition is imposed must be identically zero or infinite on

the appropriate surface. These boundary values are shown in Fig. for the three

ranges of n, n 2, 24 n 4, and n4. The general character of Yn and Y2n is

established, even though the solutions cannot be given explicitly. We will

proceed as if Yn and Y2 were known (for n=O and n=00 , Yn and Y2n are known,

see Appendix C).

Since there are three parameters (x,yn,y2n
) there are tw independent

renormalization invarients. It will be convenient to write down several non-

independent invariants for compactness in later discussion. There are three

ways of combining (3.8e)-(3.8a):

X i-a/(,)

Y M~~Lh X (9})/(n4g) (3.11a)xn sn )I
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I 

which are connected through (3.9). Comr

three invariants involving x explicitly

I x
X X

_ ~ ----

(3.11lb)

(3.11c)

bining (3.8a) with (3.8e)-(3.8C) we have

4~~~~~~~~~~~~~h~I~.n

3

(3.12a)
*W

I 1

' X '., , a,, ,y

_ Xe X VI U

I X
q W , OLj,

(3.12b)

(3.12c)

Finally we combine (3.11) and 3.12 to give an invariant which does not contain

either Y2n or Y
2n n )

at ( e ) ( ) (-a)

I0
(3.13)

The invariant I of (3.13) is useful because it distinguishes between different

trajectories on the curved separ-surfaces where either Yn or Y2n is identically
n ¥2n

-

~~~IV 2 

Old, Y.

re Xd 

I Y
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zero or infinite. The invariants (3.11) and (3.12), which involve Yn and Y2n

explicitly, are constant on these separ-surfaces, while (3.13) varies. For n=2

and n=4 it is impossible to form an invariant that contains neither Y nor Y
n 2n'

However, in these cases it is not necessary to eliminate both of the Y's since only

one of them has singular behavior on the separ-surface. For n=2, Y =O on the separ-

surface and we can choose the invariant

IT,~ - s X Y1^ ( P , ~~~~~~(3.13b)
in this case. For n=4, Y2n=0 on the separ-surface, and the invariant

X
9, M~n ok 19) (4tO ) (3.13c)

distinguishes trajectories. For the remainder of this work it is simplest to

assume that n2,4, although the analysis carries over to those cases, via slightly

modified arguments.

We may choose the nonlinear scaling fields to be given by

~Ss~ 8-~ a~ ~~ X X hn ~bh ~(3.14a)

X£Y~~n \ 3 JYy(3.14b)



fz y

X \;Lb' An wen- IO ts

c e2_*)/(tt)(4t } ~(3.14c)
A:) _A 4) o 8 is

(3.14d)

The choice of the scaling fields is (as in Sec. II) not unique, but it is a convenient

choice for the case lnarM which is discussed in detail below as a concrete example.

In this case, both Yn and 2n are both positive throughout the solution region.

The invariant I also contains information regarding relative stability. It

is zero in the x=O plane and also in that plane which contains the stablest fixed

point. For example, in the case 2(no 4, the z-point is stablest and I=O whenever

z=0. The invariant I is infinite in those planes which contain the relatively

unstable points. For 2 n 4, I = when Yn=0 or Y2n=0.

As in Sec. II we can show that global solutions which do not generate the

exponents of the stablest fixed point have extraneous singularities. For

concreteness, we will consider 2< n 4; a similar analysis can be made for any

value of n. If we were to suppose that the asymptotically valid value of were

that given by the n-spin fixed point, rather than that of the z-point, it would

be appropriate to write the Gibbs free energy as

4c,,,

= Sn F (\nva~loutS) (3.15)

Slre clow F cIa4

C It is presumed in writing the free energy in the form (3.15) that F(invariants)

is well behaved at x=O and in the YZn=0 plane (where we definitely expect n-spin

point behavior). The amplitude of the free energy singularity is given by



(3.16)

If we consider a path in the x=O plane that is a renormalization trajectory (cf Fig.. ),

(3.11) is again constant. The function F is therefore constant and we see that the

amplitude of the free energy singularity diverges as the stablest fixed point is

approached along any renormalization trajectory (Y2 - 0). The singularity can be

removed along any particular trajectory or finite number of trajectories but it

cannot be removed everywhere in the x = 0 plane. Similar difficulties are

encountered if we assume that the 2n-spin point dominates the critical behavior of G.

If, however, we assume that the z-point dominates the exponents everywhere

(except in the y =0 and Y2 =0 planes), then we can avoid singularities. We may

define a scaling field,.S (, f5 + ( 7 go5z YLn )
-- i ------------------ " .. ........... (3.1])
21 a St S ,* , , ..,, ., ...,,,.........

I z n
S ' reduces to S as x - - 0, for yn 0, Y2n 0; as yn - , xvO S .. .

as y - 0, x o0, S - S . Thus a global solution for the Gibbs potential
n z 2n

which has z-point like exponents (except in the special symmetry planes n=O and

Y2n=0) could be given by

G , (h S<5-w) G (h lS )
G _ - (3 .l)

. e 5 2,)t Gz(i~ ) '6

The linear local analysis is again supported.

We may describe the crossover involved in the scaling field (3.31) and

the Gibbs potential (3.18) by noting that if x-*-O with y and Y2n fixed and

nonzero, then only the magnetic field h and S "scale". Near the special planes

Yn=O or Y2n=0, an additional field is important (S2n or S respectively) and "scales".



It would be more customary to describe this in an alternate manner. Away

from the special symmetry planes, S scales and Yn and 2n are truly irrelevant

variables. Thus, at each point of the critical surfac, x=O, we may consider x

to be a scaling variable with yn and Y2n being irrelevant variables which have

only an insigificant effect on the thermodynamic functions. Near the junction

of the plane x=O and one of the symmetry planes (for example, Y2n=), Y2n is

clearly important. Phenomenologically, we might expect x and Y2n to scale, while

Yn remains irrelevant. To see that this is the case, note that S can be

written as

yz = S n z a A~ ,b l n t Iv (l-~)/h'tg

-a /a
z in (3. 1Thus,,the scaling invariant combintion S S in (3.X) can be written

(apart from the irrelevant quantities y nand Y2n) as

r Ut)n ' h-lU / lt&)1 /tQ

--

This is exactly the expected scaling invariant involving x and Y2n providing that,

near the junction of the x=O and Y2n =0 planes, we identify the scaling power

of Y2n as a G (4-n)/(n+8) and the scaling power of x as a = a . An examination

of (3.4) shows that these are the scaling powers that are obtained by linearizing

around the n-spin fixed point. The nonlinear scaling field S ' embodies the

behavior of both fixed points in such a way as to generate the "double-power" scaling
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laws used to describe crossover in anisotropic systems and in higher order systems.

For example, the zero field Gibbs potential is given by
Xp ·-- ·..... ,

'+., + f / ail

(3.2

We note that Xl Tis a "crossover exponent" a n (2-( )(n +8)/(n+4)(n-1) is an

35
"amplitude exponent".

In Eq. (3.21) the dependence on the unimportant quantities X, Y , and Yn has
n Y2n

been ignored. Precisely analogous behavior is found near the junction of the

x=O and yn=O planes, where the variables yand x appear in a scaling combination

with scaling powers derived by linearization around the 2n-spin fixed point.

The analogy between the nonlinear effect incorporated in the nonlinear

scaling fields and the crossover effects in systems with critical points of higher

order can be extended. Fig. 6a shows a three-dimensional section of the four-

dimensinnal nhAnp diM.a-rm of th "in mman-ct -' w,-h it,''rn,';n T i" th-

plane and J between planes r(e0); the staggered field H' is zero in Fig. a.

By varying the strength of the interaction parameterA, the line of ordinary

ritical points of a simple metamagnet sweeps out a surface of critical points.

'he tricritical points which marked the transition between the second order critical

,ehavior and the first order transition become lines of tricritical points. At =0O,

:he system reduces to a set of two-dimensional ferromagnetic systems, and the

:ricritical lines meet on the T axis at the d=2 critical temperature. Asd- -o ,

the system becomes a one-dimensional antiferromagnet, and there is no phase tran -

sition. The surface of ordinary critical points shrinks and the tricritical lines



meet at T=O. The classification system of Ref. 20 terms the surface of ordinary

critical points a surface of critical points of order three. The special point at

O=0 is a critical point of order four. This notion of order corresponds both to

the number of phases which are simultaneously critical at the critical point

and to the number of variables which "scale" at that point. Thus, Ref. 20 proposes

that on the surface of order two points, two variables scale; that is, the singular

part of the Gibbs potential is a GHF of two of the variables (while the dependence

on the remaining variables is smooth and non-singular). At a point on one of the

lines of order three points, three variables scale. Finally, at the fourth order

point, all four variables scale.

To compare this to the coupled-order parameter system described in this section,

we note that near the plane x=0 (but not near the lines Yn =0 or Y2n =0 ) only

the variable x and the magnetic field h scale; that is, the leading singular

behavior of any function derived from the Gibbs potential (3.1) depends only

slightly on the variables Yn and 2n (and the nonlinear functions X, Yn , and Y2n).

However, near the junction of the x=0 and Y2n=0 planes, Y2 does not appear merely

as a smoothly varying parameter in the amplitudes of the thermodynamic function, but

rather in an important, characteristically "double-power" scaling manner. Similarly,

near the Gaussian fixed point, all the variables x, Yn , and Y2n appear in a "triple-

power" scaling formula. We may tentatively relabel the Hamiltonian parameter

space as in Fig. 6b. The x=0 plane is a surface of order two critical points; the

lines y =0 and Y2n=0 are "tricritical" lines or lines of order three; finally, the

Gaussian fixed point is a point of order four.

In determining the domain of influence of a tricritical point, scaling invari-

ants of the form (3.2) are natural choices for the "crossover cones"'1 The cross-

over effects contained in a double-power scaling formula are derived in the context



the fourth order point both being equal to . A similar situation does occur at

the fourth order point of the metamagnet. In this case, the scaling powers of the

direct and staggered fields are equal and the coexistence volumes do not merge

together smoothly.

We also remark that the attainment of a point of order four in a space of

four demensions is achievable in both the metamagnet and the renormalization group

examples only due to their highly symmetric nature. In general, a space of

demension six is required to observe a point at which four phases are simultaneously
Go

critical. Indeed, a less symmetric version of (3.1) discussed in Appendix A is

expressed in a six-parameter space.
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IV. Discussion

In Sec, II and III we were able to explicitly carry out the solution of the

nonlinear WHARG equations. Summarizing the features of these solutions which we

believe are of a general nature, we have shown that

(a) Global solutions can be found in a limited but finite region of the Hamil-

tonian parameter space. This region includes the competing fixed points and is

bounded by separ-surfaces emanating from the fixed points.

(b) Global solutions which do not yield the critical-point exponents derived from

the local, linearized analysis of the stablest of the fixed points (on the critical

surface ) are singular on the separatrix leaving that fixed point.

Ther properties of the "regular" global solutions are closely analogous

to those properites proposed in a phenomenological manner for crossover behavior

between various critical points of higher order.0 For the former, it is the nonlinear

character of the scaling equation and scaling fields that embodies several types

of ordering and critical behavior. For the latter, the simultaneous validity to

lowest order of several linear scaling equations with linear scaling fields is

presumed 1 In both cases, the borders of a region where m variables scale is a

region where (m+l) variables scale.

As shown in Sec. III for a three-parameter example, there is some surface (of

dimension greater than two, in general) of order two critical points. The exponents

everywhere on this surface are determined by linearization about the stablest fixed

point, which is located somewhere on that surface, This surface will be partially

bordered by special symmetry "planes" on which the renormalization group equations

involve fewer parameters. In these special surfaces, another fixed point determines

the critical behavior. Near the junction of the symmetry plane and the critical

surface the two fixed points are in sharp competition. On the border of the order

two critical points, three variables will scale in a characteristically "double-



power " law scaling form (cf. Eq. (3.-V)). If the special symmetry planes associated

with each such "tricritical" line intersect (as in Sec. III), more parameters are

removed from the renormalization group equations, a new fixed point controls the

exponents, and characteristic "triple-power" scaling behavior results. As in the

phenomenological studies, this process can be continued indefinitely. As more and

more symmetry restrictions are placed on the Hamiltonians, fixed points of weaker

and weaker stability determine the critical point exponents. Since in the immediate

neighborhood of a truly unstable fixed point there must be regions controlled by

more stable fixed points, the crossover effects get more and more complicated as

the order of the critical point increases. All of these crossover effects are

automatically incorporated into the nonlinear scaling fields.

The above discussion gives reassuring support both to the usual local

linearized fixed point analysis and also to the phenomenological descriptions of

crossover. However, there are farther questions about the behavior of real systems

modeled by renormalization group equations.

The solutions developed in Sec. II and III are only valid in a specified

region of the parameter space. For the two-parameter problem (at the critical

temperature), OYn -'- 1. For the three-parameter problem, yn and Y2n are confined

to the region enclosed by the lines Y2 =, =O0 and the two separatrices joining

the n-spin and 2n-spin points to the stabler z-point (for 2 n 4). Portions of

these boundaries can be understood on a physically intuitive level. In the two-

parameter case the restriction y > 0, is necessary for thermodynamic stability.

The parameter y is proportional to the coefficient of the quadratic term in the

Hamiltonian density; since the quadratic term is the term of highest degree in the

Hamiltonian its coefficient must be positive. In the three-parameter problem the

stability requirements are u O and w -u. These are not necessarily the "tricriti-

cal" lines (for 2 n_ 4, Yn=O and Y2n=0 are the order three lines;these restriction
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are in the lines u=O and w=u). However, if these lines do mark the boundary

of a region of first order transition, as in the metamagenetic analog, they

do form natural borders for the scaling behavior. However, the portion of

the boundary formed by the restriction y <1 in the two-parameter case and

by the separatrices in the three-parameter case have no such intuitive

explanation.

Within the confines of the region of scaling behavior, the renormalization

trajectories are bounded. We may imagine changing the values of the

parameters yn and Y2n until the system Hamiltonian lies outside the solution

region. In this case, the parameters yn and Y2n' which (except near the

"tricritical" lines) did not significantly affect the critical behavior, have

unbounded renormalization trajectories. The approximations employed wheny Yn <

and Y2n <(1 are no longer valid. The problem immediately becomes far

more complicated and it is no longer possible to discuss the renormalization

group solutions within a simple perturbative scheme. Therfore, we can only

speculate that the nonlinear solutions will involve many new fixed points

and qualitatively different behavior.

Thus, although we have seen that thermodynamic stability requirements

and possible first order transitions may account for some portion of the

bounding surface of the solution region, the boundary formed by the separ-

surfaces is more complex and possibly marks a transition to vastly altered

behavior. However, it is precisely on this surface that regularity conditions

were imposed on the global solutions. This is not an obvious step.

The requirement of regularity everywhere on the bounding surface

corresponds to the notion that we can smoothly move the Hamiltonian (in

particular, the critical Hamiltonian) to the "singular separatrix" (in particular,

the stablest fixed point). It might seem reasonable to requre that such a
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procedure have a finite limit (as in Sec. III.) This resolution has several

difficulties, among which are the following:

(i) The bounding separ-surfaces divide the region where even a general

global solution is well-behaved from a region in which (as argued above) the

global behavior may be radically different. It is perhaps over-optimistic

to ascribe to the boundary between two such regions all the properties of one

or the other of the regions.

(ii) It may not be possible by any application of an external field to

move the parameters arbitrarily close to the boundary and the singular separ-

atrix. This difficulty is unlikely in the particular cases treated in Secs.

II and III since the fixed point values of the parameters are small, but it

is not an impossible occurence. For example, we showed in Ref. 11 that temper-

ature trajectories for the two-parameter problem usually terminate at a finite

value of x (with x (l1) instead of reathing the infinite Gaussian fixed point xl.

A more cogent example is provided by the five-parameter crossover model

described in Appendix A. We consider a system with n+m spin components which

decomposes into an n-spin system and an m-spin systeml3. For n=l and m=2,

this is a description of a Heisenberg ferromagnet with a single axis of

anisotropy. The stablest fixed point is either Ising-like (one "easy axis")

or XY-like (one "hard axis"). However, these fixed points consists of the XY

subsystem parameters taking on their usual WF fixed point values, while the

Ising subsystem is at its infinite Gaussian fixed point. Loosely, one sub-

system is at its critical temperature while the second subsystem is at

"infinite" temperature. No physical system with finite Hamiltonian parameters

can be at such a fixed point; at best, it represents a limit of realizable

systems. Therefore, we might expect that anysingularity in a thermodynamic

function would not manifest itself in the physical space.
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Thus, in some cases (not necessarily those treated in Sec. II and III),

the requirement of regularity everywhere on the bounding surface may be

too stringent. If this requirement is relaxed, non-scaling behavior results.

For example, in the three-parameter problem discussed in Sec. III, we might

allow free competition among the n-spin fixed point, the 2n-spin fixed point,

and the z-point, regardless of stability. These solutions, as shown in Sec.

III, will be singular on the separatrix leaving the stablest of the x=O fixed

points. If this singularity is tolerated, the asymptotically valid critical

point exponents will be determined by the fixed point which contributes

the largest singularity to the thermodynamic quantity considered. Therefore,

4 and will be determined by the fixed point which gives the smallest

eigenvalue in the renormalization equation for x(3.4a); on the other hand (

and P will be determined by the fixed point which yields the largest such

eigenvalue. Since the competition is among three non-trival fixed points,

we need only consider the relative sizes of an, a2n, and a.

If we confine our attention to n >0 for concreteness we have A ' A and
1. 2n n

A2n > A . or 14 n <4 we also have A > A . Thus for n the

correlation length exponent will be that of the 2n-spin point, while a and S

are given by their n-spin point values for 1 An 4, and the z-point otherwise.

Instead of equality in the relationship a + 28 +y =2, we have that
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+XC t Xz =- 3a I Ago' (4e1a)

z cll~Yaln t )

If the finite Gaussian fixed point is allowed to compete as well,, is

as above; however,( = C/2 and/3 =1/2- 6/4, independent of n. The

Rushbrooke inequality is

t 2p l~ t· w Al + Anti) (4.4c)

The crossover effects embodied in a general global solution are similarly

more complicated than those of the regular solutions exemplified in (3.1). It

is reasonsible to impose the condition that, in the symmetry planes Yn=0 Y2n=0'

and z=0 (where the renormalization equations involve only two parameters) any

global solution should reduce smoothly to a two-parameter solution (except at

the intersection of the separ-surfaces and the symmetry planes). This can

always be done by using the invariants (3.10). The crossover near such a

symmetry plane is between one set of exponents determined by the free competition

of the fixed points in the three-parameter space and another set of exponents

derived from a similar competition in a two-parameter space. Neither set of
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exponents need satisfy scaling equalities. This is in contrast to the situation

described in Sec. III; in that case, both sets of exponents separately

satisfy scaling equalities.

Even though they do not satisfy exponent equalities, general global

solution share other properties with the regular solutions (3.1). The

eigenvalue of the magnetic field ah is larger than an, a2n, or a . Differentia-

tion with respect to h increases the singularity of the Gibbs potential more

rapidly than differentiation with respect to the temperature T. Therefore,

we may still describe h as a "strong" direction and T as a "weak" direction

4 ), 23
in the sense of Griffiths and Wheeler . Elsewhere , we have considered

systems which have this property that derivatives taken in different directions

have different well-defined relative strengths. We term such systems "critically

ordere and have shown that under certain conditions, the geometric postulates

of Griffiths and Wheeler are satisfied for these non-scaling systems. Using

this terminology, we can restate the distinction between the general and

regular solutions for the thermodynamic functions. The former represents

a system that is only critically ordered, while the latter has a true

asymptotic scaling form.

We wish to thank A. Aharony, B.D. Hassard, Y. Imry, L.L. Liu, D.R. Nelson,

P. Reynolds and G.F. Tuthill for helpful suggestions.
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APPENDIX A. The Wegner-Houghton Approximate Renormalization Group

9
Wegner and Houghton have introduced an exact differential generator for

the renormalization group as applied to continuum spin Hamiltonian densities. It

takes the form of a highly nonlinear functional integrodifferential equation. The

Hamiltonian density J (s) must be written as a functional of the Fourier trans-

form of the spin density s(x). Thus it is conventional to write an expansion for

the Hamiltonian density ~ as

--4 4 F 1 c i ) (A" 

Raher .t,0 t<< and ir is a j-compAnent

'Where (k) is the Courier transform of s(x) and . is a j-compnent

index, a = (A .., ).

The coefficent functions vM(k) are also to be;;considered as functions of the

renormalization parameter, . . The renormalization group equations become

nonlinear integrodifferential equations coupling the v(k). Equations of this

form are nearly intractable. Following the lead of Wilson's approximate recursion

formula, we hope that a certain "momentum-independent" or lzero-momentum" limit

of the full renormalization group structure will preserve the basic content of the

renormalization group approach. We force the mometum dependent coupling constants

to be of the form

Add VJ 1c~) t XJ;1 do, is(A2)

This is equivalent to choosing a Wilson reduced Hamiltonian density of the form
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w geese H () h i * At 4 i · SJ

Hamiltonian densities such as (A3) are, of course, not renormalization group

invariant. Thus, terms which arise from the exact group equations must be

discarded if they do not retain the form (A3). This requires, for example, that

the critical point exponent be set equal to zero since it cannot be determined

from the resulting equations.

For the momentum independent part of the Hamiltonian density (A3), H( )

we find that the Wegner-Houghton Approximate Renormalization Group (WHARG) equation

is given by

I = H d 5A2' IA t d In etli 4 FOR]
a ' )

(A4)

A
where H is the matrix of second partial derivatives

Hj -

and d is the lattice dimension.

written as

(A5)
)

Expanding the function ln det,(A4) can also be

/H S o)5 
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This however, may not be the best form of the expansion (see below).

2 3
The solutions of the linearized form of (A6) in which the traces of H , H

and so on are discarded are the Gaussian fixed point eigenfunctions. They are

given by products of generalized Laguerre polynomials and harmonic polynomials

just as in the Wilson approximate recursion formulae

Q V' K-L f v So) ? (S) ) (A7)

where Pk (s) is a harmonic polynomial of degree kand n the spin dimension

For a system in dimension n, there are (2k+n-2)(k+n-3)'/(k!(n-2)!) harmonic

polynomials of degree k. All of these polynomials, moreover, are degenerate

with respect to the renormalization group since the eigenvalue of the linearized

renormalization group equation depends only on m and k:

QVA, - d Q mK S. v 4V '+ a Q,, 

5 | ( tLJ)( mn t KPX) ] a2 . (A8).

[d ,J0.-d)(~l ,,,~/ Q~O,,

16
Elsewhere, we have given a study of the fixed points determined by perturbation
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from the Gaussian fixed points for the _ isotropic cases (m arbitrary, k=O) and

for the special case n=l. These problems were considered only from the viewpoint

of location of, and linearization about, particular fixed points.

It is easy to check that the solutions of the linearized WHARG equations

are solutions of the full Wegner-Houghton momentum dependent equations when

similarly linearized (fort =0; if we wish to insert an a priori determined

the (d-2) in the argument of the Laguerre polynomial changes to d-2+ ). Thus

if the Hamiltonian is "small", the error in using the WHARG equations is of

second order of smallness. As a parenthetical remark we note that the class of

solutions to the linearized momentum-dependent equations is very large. Each eigen-

function that is at most a polynomial of degree r in the spins has as the coeffi-

cient of the highest power of the spins an arbitrary homogeneous function of the

momentum vectors. If this coefficient function satisfies Aq f(klk 2. r)

f( kl1 Xk2, .. k ) then the eigenvalue of such an eigenfunction is d+(2-d)(r/2-q).

Fully nonlinear problems must be considered individually. For use in

Sec II and Sec III we consider a system of spin dimension n+m, which breaks into

two internally isotropic blocks; that is, the Hamiltonian is a function of x . S

and y f alone. The WHARG equations are

I'l - J .U. JA 1 ft v [ , .i4 H t \ 4 -
nI F d ri T /V1 F," I - J T - 4 '- -- w n /"

(A9g

M a m 

It is more compact to leave the nonlinear structure inside the logrithm in this

case. Now g we write H as

H racy 4 + r L~ x Go 4 Vy Iy 4 ux f
H 7 r X *vt Y * ujt -A ) (A1U)

j } t + I A K 8 t A r 
I i dkX 1 t l

A· (AlO)



and make the change of variables

y · - / ( Ji- + r)
Fr~- rl )

:en?* ) Oyl rY) (A12

~.-~ the WHARG equations are
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(tm) O., t iW )1

I-= ( L- r4 ( l)u, vi w ]I

= .t- [(CL -)v ]7Z n - r r (

(A12b)
-t , a (U t), x - U .. ,.[ rnJ (Mnou, n WJ]

&, c 64) -di.[w+n eJ Xus- W ft (V*W (t)j(z)u,^ 4Lhtl)U2i)

It is easy to check that coefficients af higher powers of the spin are 0 ( 3),

These equations are already diagonalized around the infinite Gaussian point,

r =r l1, u =u =w=O. Diagonalizing around the finite Gaussian point
n m n m

r =r =u =u =w=O, we make the further change of variables
n m n m

x n - v> 1 5lr)

- r t i _(' 1= t-r' A A )
IXY .2( 1

3

(A13)( i 4L); t f U

( +1~W~ n J 1u

and write the WHARG equations as (neglecting terms like Czo 2n

Z, n I- xn - (VI+a) uj] - m )(W

AX t - i -XM*" u 

)

= U -U J [( ,1 *g) Uj 4
124 

- fu Atl

= t&u>, -d ( 9) i Inw " --L) M - 'M~~1

( %,, Y.)= 6 -2 W r At)*t(Mt7)U i- ,2 WG u/~~D

U I

-I
.4.

) A

and e zO~)

WYIn

)

) (A14)

I i

( q . ,, j yn W 

e)

Gt = O - Irl ) [ .1 r"
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The equations given in (A14) do not lend themselves easily to global analysis.

There are 32 fixed points of (A14), many of which are not particularly interesting.

Points of particular interest in the three-dimensional subspace xn=xm =0O are

the Gaussian point at u =u =w=0; the n-spin point at u =w=o,u = /(2(n+8)); the
n m m n

m-spin point at u n=Ow,um= /(2(m+8)); the coexisting but uncoupled (n,m) spin

point at w=O,un= /(2(n+8)), u = 6/(2(m+8)); and the n+m spin point at w=u n=u m

C/(2(n+m+8)). The usual n and m spin points are unstable with respect to the

uncoupled (n,m) point which is unstable with respect to the n+m spin point. Thus,

if these fixed points were sufficient to describe the system, the n+m spin point

would be the most stable.

However, there are also fixed points for non-zero x and x . The most
n m

important are the "isolated" n-spin point at x =O x =1 (), u =w=O, u= /(2(m+8))n m m n

and the "isolated" m-spin point at x =O,xn =1 ('), u =wO, u = /(2(m+8)).
n n m

Recalling that x (respectively, x ) =1 implies that r =O0 (respectively, rm =o),
n m n

we see that these isolated points correspond to systems for which one subsystem

is at its critical temperature while the other subsystem is effectively at "infinite"

temperature. It is clear that no real Hamiltonian can be said to be "at" these

fixed points. However, the n+m isotropic spin fixed point, which is the stablest

of the x =x =O fixed points is unstable with respect to these isolated n-spin andn m
m=spin points. These isolated points are unstable only with respect to the infinite

Gaussian fixed point xn=x =1, u =u w=0. The full five-dimensional space is thus

partitioned in such a way that one four-dimensional manifold is generated by the

isolated m-spin fixed point; a second four-dimensional manifold is generated by

the isolated n-spin point; these manifolds intersect in the three-dimension

manifold x =x =0, which is generated by the n+m spin point (by generated we

mean that the fixed 'point in question is a stable node with respect to all

trajectories lying entirely within the manifold, that is, the fixed point
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is the stablest fixed point contained within the manifold.). The field-like

variable carrying the system from one of the four-dimensional manifolds through

the three dimensional boundary to the other four-dimensional manifold is

essentially the anisotropy field. Linearizing about the nm spin fixed point

gives the usual determination of the crossover exponent 3,cp 1+ (t04)'

The complicated geometry of the four-dimensional manifolds precludes

any direct attack on the full five-dimensional problem. For this reson,

Sec. III of the text considers the special case of nm and x =x , u =u.
Specializing ns A1214 to this case, one obtains 3.13. m

Specializing equations (A12-14) to this case, one obtains (3.1-3).
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APPENDIX B. CALCULATION OF i AND j.

In this appendix we will discuss the calculation of the two parameter

separatrix and crossover functions, and );which are used extensively in

both Sec. II and III. Consider the coupled first order differential equations,

X - 2 ( - - e YI ) 'I (B1)

. y ( E(J-Y)--A).
(B2)

We are interested in the form of the separatrix y= I (x), joining the point

x=O, y=l to the point x=l, y=O (cf Fig. 1). We may form an equation for

i(x) by noting that ' (i) A(<I) ( ' )

its, -A ( I- x - 6 J ) (G (-I)- It )

(B3)

Near x=l we expect I'L . Ex~

to the linear equation

z f (I-X - e d

amining (B3) in that limit, it reduces

(B4)
)



which has solutions proportional to (l-x)d/ If we set =(l-x we

obtain an equation for . This equation is rather messy and it is better

within the context of the WHARG equations to perform an C expansion. A form

for which contains all O() corrections exactly is

i' · (1 - )d2 " ^ C t-k( 1)/. 1 (B5)

However, since this is arrived at in terms of an expansion in , it is not

immediately clear that (B5) is the best or most suitable way of writing the

solution of (B3) to O(-). L 4kk A ;v_ a\i- ; ad 

?.V--okb. singularities would be introduced at that order.

t We now turn our attention to - e9 - y dl) On the line x=O, =l-y by

explicit integration. We also recall that vanishes on the separatrix y= (x).

We therefore try a solution of the form7 -(l-y/j )e6 

To first order in m, we find

(Ble.

We have also checked that this form is suitable.



Thus we have shown that the forms given in (B5) and (B) are suitable

O(&) approximate solutions. Since they are used in a variety of contexts

in Sec. II and Sec. III we repeat their expressions here and display their

dependence on 4 as an additional argument.

kJ (',) ' (.l-X c,, a ep (eAxy/ ) (B .)

It is important to stress that (B7) and (B V) give the solutions

to (B1)-(B2) to O Thus, in Sec. II, the solution given in (2.9) is the

proper O(s) solution of (2.5). However, it is not a proper solution to (2.3)

except formally. If the solution given in (2.3.) is tested with the trans-

formations given in (2..3) one of the 0( 2) terms which is formally dropped

2 2
is proportional to 2 yn2/x. This is to be expected since (2.) and (2.')

have different locations for their singularities. In passing to (2.,), the

separatrix connecting the finite Gaussian and WF points was approximated by

a straightline. It is easy to see that if terms up to Yn are kept in the

definition of x (x=O definess {critical separatrix) the terms to be formally

discarded include one proportional to yn /x. Thus to avoid this incon-

venient singularity in the solution of (2.3) we would have to go to arbitrary



order in C. Although we will argue below that such an effort is bootless,

we will sketch briefly the results of such a solution.

We make the exact change of variable x=+ (* yn) in (2.3) and demand

that x=O represent the T=T separatrix. The resulting equations are

X = 2Ii l'X R9Y) bn/ 1> 2 ( F , Jwh(B.9 

Mn ( y -+ (Blo)
wheref satisfies

o = C I+,f) ( 'e,,A,,h-A)+ ,, [ef('-,c+2A,,,,,a,
(B' ))

L~o)
Matching the solution to (2.3) and (B 9) and / will involve R, X, Y,

and two new functions Y ' and Y " defined by Y '=4 Y ' and Y "=4 y *Y n
respectively. Y n' and Y ''" are simple powers of Y if the linear approximation

forf is made as in (2.'j). An immediate consequence of (Bt.)-(B'll) is that

l+a
the singularity of Y at x is changed from (-Y n) to (-y) , where

nnn



a=2nA -4 ) - bo.
dyn

The effect of keeping the curvature of the separatrix is to introduce

at least a cubic term into the yn equation (B1D). However we have already

discarded from the y equation any six-spin interaction term which "feeds

back" from the higher order equations. By examining the WHARG equations one

finds that the six-spin coupling constant is O(yn3). Thus, we cannot keep

any curvature in the separatrix without including the six-spin terms. If

we were to use the exact separatrix we would have to solve the infinite set

of WHARG equations. Furthermore, the use of the WHARG equations could not

be justified since the momentum dependence has been neglected.

We also note that logrithmic corrections of the sort described by Wegner 7

do not appear in an -expansion. Ref. 17 gives a general procedure to extract

nonlinear scaling fields and shows that the method may fail if the eigenvalues

satisfy certain integral relations. In the examples in Sec. II or Sec. III,

Wegner would predict logrithmic corrections if 2/ .= N, an integer. These

corrections will never appear in any #-expansion. The source of these terms

is the vanishing of the denominator of some coefficient in a tentative power

series expansion for the scaling fields of the form 1/(NE -2). In a consistent

e -expansion this denominator must be expanded as -1/2-1/4I e ... Thus, to

any fixed order in no difficulty is encountered.

This rather unhappy resolution is closely related to a similar situation

in the field theoretic approach to the E -expansion. The Feyman diagram

illustrated in Fig. 7a diverges as P for small P. This divergence is not

troublesome in a few simple diagrams, but by concatenating N such simple loops

the divergence is increased to P -N(Fig. 7b). The multiple loop diagram can

replace the single loop diagram in any Feyman diagram, and no further "renor-

malization" removes this divergence. To handle this, a consistent CL-expansion

-N The divergence of each log term isis performed so that P = 1-Ne nP+... The divergence of each log term is



sufficiently weak to be incorporated into the remaining diagramatic calculations

and renormalization proceedure. Thus, in both cases a real singularity is

removed by the use of a self-consistent -expansion.

We also note that the expansion of the nonlinear scaling fields in power

series is limited in usefulness by the fact that the fields contain singularities.

The zero of the function ,for example, is hard to locate in a power

series expansion. The delineation of the basic singularities of the nonlinear

scaling fields enables the series expansions of Ref. 17 to be partially summed

to give faithful representations of the scaling fields
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APPENDIX C. The Special Cases n=O, ao, 2,4.

In a few special cases, the solution of the equations of Sec. III can be

carried further. For n=O and n= o completely explicit solutions can be obtained

within the context of an E -expansion. For n=2 and n=4, the renormalization

trajectories in the x=O plane cai be obtained exactly.

For n=O and n=wo, we may take z=yn+y 2n. The x equation and the z

equation decouple from the remaining equation. We have

(C1)

for n=O, and

(C2)

for n= oo;

while in both cases the z equation is

Z (C3)

Combining the solution of the two dimensional problem with the information

given in (3.9) we have immediately for n O

'� )( ( I - X - C- z 1 4 )

:. z ( C- O-Z) -U)
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n

Il/
_ ' t ago Yo

i h4 '-Y
(C4)

(C5)
1 'ya

where YO=J(x,yn+y2n, 1/4). Similarly for n= , we have

(C6)

Y. .4 .. .
-Y',I, At I.M:An

(C7)

where YO I (x,yn+y2n,1).

For the case n=2 and n=4 (where (3.9)

some extra information is available in the

in the x=0 plane. In principle, Y and Y2

by one integration. The form of Y and Y2

since we are interested in x-4O and we knou

Y and Y depend on x (see Sec. III). Forn 2n

fails to provide any information),

form of the renormalization trajectories

can be obtained in the x=0 plane

at x=O is probably sufficient

r how the boundary conditions for

: n=2, the trajectories are given

-~. Y. + I.,'*
Io f 't .,1
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implicitly by

F 6,, t 

- 3Jt %1t I5 .}
1zX~ L wi

- t

while, for n=4, the corresponding equation is

I /2
Asl

K (c9)
e

l -

i 
I

I -- K (C8)

3
-IL 

II tyan )q I 

jYn)
j,

I f"IY'29- I "
3 ,#

I·Y aitt3' 1 j -~
.- ? ) 
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APPENDIX D. Zero-Fields Gibbs potential

As discussed in Sec. II, the zero field Gibbs potential (for T>T ) can

v | 24,27
De wrTzIen as

- amJ e inp ( + r) ) f
36 O

(D1)

In (D1) we have set =O. Integrating this equation by parts we have that

00

.- IL it, 01 ia-e r.D A
0 l+ r(e (D2)

0

Examination of Eqs. (2.2) and (2.f) for the two-parameter problem or Eqs.

(3.2) and (3.3) for the three parameter problem shows that to O( ) we

may replace /(l+r) byZx and (l+r) by X 1 . Eq. (D;) now reads

< -AitXto) + fea) J4 ci o c2 d (D3)

The Gibbs potential can now in principle be evaluated by expressing x in terms

of the nonlinear scaling fields given in (2.10) and (3.14) for the two-parameter

and three parameter problems respectively, and performing the integration in (D3).
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For example, in the two-parameter case we may write the integral in (D3)

as

e xX n (D4)

In (D4), yn(X') denotes the value of y at x=x' on the renormalization

trajectory passing through (x,yn). We may consider two limiting cases of (D4).

First we restrict (x,y ) to lie on the separatrix y = n(x) In this case,

using (2, g3) we have

Jex(E)SL e w e ~ b Q) ̂ g(Cq2 4) (D5)
O0

As a second example we consider (x,y ) such that y .(l-x) all along the

renormalization trajectory. In this case we may neglect Y and write

oe Fr A Xj (D6)

The condition yn (1-x)2 cannot be satisfied as x -O unless y is identically

zero; in all other cases, the trajcztories sweep toward the separatrix so that

the free energy more closely approximates the solution given in (D5). We note
2-d

that the prefactor of the integral in (D6) is simply S gau with Y set =1.
gau n

For the general case, the trajectories Yn(x') are given implicitly in the

renormalization invariant (2.3 ). For further discussions and model calculations,

see Ref. 26-27.
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Figure Captions

Fig. 1. The (p,q) plane of Eq. (1.|) Only two fixed points are shown. Local

integral curves for the fixed points (0,0) and(O,l) are sketched as

shown. The local regions of validity of the linearized approximations

to the correlation length (cf. Eq. (1.,) and(l., )) are indicated,

as well as the nonlinear global region considered in Sec. II.

Fig. 2. The solution region for the two-parameter problem of Sec. II is shown.

The region includes three fixed points, denoted as the finite Gaussian,

infinite Gaussian, and Wilson-Fisher fixed points. The separatrix

connecting the Wilson-Fisher and infinite Gaussian fixed points is

labeled yn=fn(x). The line x=O corresponds to the surface of

critical Hamiltonians.

Fig. 3. Diagramatic representation of the Hamiltonian density (3.1). The

squares and circles represent the n-components subsystems s1 and s2

respectively. This system can be regarded as either (a) possessing

a biquadratic interaction between the two subsystems, or (b) possessing

an anisotropic self-interaction of a single 2n-component spin s - (s,s2).

In case (a), the intrasystem interaction strength is w while the

intersystem interaction is u/2. In case (b), the super-spin interactions

is u/2 while the anisotropic interaction is w-u.

Fig. 4. The solution region for the three-parameter problem of Sec. III is

shown for various values of the spin-dimension n. There are five

fixed points: the finite Gaussian, point, the infinite Gaussian

point, the n-spin point at x=O, Y2n=0, Y =l, the 2n-spin point at

x=0, Yn=O, Y2n=l and the "z-point" whose location depends on n as

indicated in the text. Boundary conditions on the functions Y and Y2n
n Y2n
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are indicated for the separ-surfaces. In (a), the solution region

is depicted for n 2in (b), for (n<4;in (c), n4.

Fig. 5. The solution trajectories in the x=O plane are shown. The renormali-

zation trajectories sweep toward the separatrices joining the relatively

unstable fixed points to the stablest fixed points before moving to the

satblest fixed point. This behavior, although illstrated for n l

holds for all n.

Fig. 6. Comparison of the phase diagram of an Ising metamagnet and the

three-parameter crossover problem of Sec. III.

(a) The phase diagram of the metamagnet is shown in zero staggared

field. A coexistence volume is capped by a surface of ordinary

critical points (6=2). This surface is bounded by two lines of

tricritical points (=3). The tricritical lines intersect at the

0=4 point H=O,R=O, T=T2, the two-dimensional Ising critical

temperature.

(b) The solution region for the three parameter problem for 2n-'4

is shown. The finite Gaussian point corresponds to the point of

order four; the lines Yn=O and Y2n= correspond to the '=3 lines;

The portion of the x=O plane bounded by the "tricritical" lines and

the separatrices joining the 2n-spin point and the n-spin point to

the z-point correspond to the surface of ordinary critical points (2).

Fig. 7. Feynman diagrams for simple loop divergence.

(a) A single loop with momenta P1 and P2 diverges like P where P=pl+p2.

(b) N such loops linked together give a diagram which diverges like

P , which is of arbitrary order for sufficiently large N.&P , which is of arbitrary order for sufficiently large N.
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