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fulfillment of the requirements for the Degree of Doctor of Philosophy

ABSTRACT

Transport of nutrients and fluids through body tissues is vital for the normal function of all
multi-cellular organisms. Materials that need to be transported through this biological

macromolecular network range from pure solvent, small molecular weight substances and

nutrients to macromolecular substances. While transport through macromolecular networks

is especially relevant to living organisms, the phenomenon is also found in a variety of

medical and industrial processes. In all applications it is important to understand the

mechanism of transport, and to know quantitative parameters such as the resistance of the

network to the moving species, the species delivery rate and species distributions within the

network.

One distinctive feature of transport through a macromolecular network is the interaction
between the flow field, the macromolecular conformation and the structure of the network, as

well as the chemical potential of the macromolecules. Previous studies have dealt with one

aspect or another of this complex mechanochemical transport problem, but the mechanism of

transport is not well understood and there are no reliable methods to predict transport

parameters of practical importance in the multi-component systems.

In this study, transport equations derived from non-equilibrium thermodynamics were

adopted. Analysis, literature data and additional measurements were then used to provide five
additional "constitutive relations" for closure. Theoretical and experimental studies of binary
and ternary systems of saline / albumin, saline / hyaluronic acid, saline / collagen gel, and

saline / albumin / hyaluronic acid were carried out. Comparisons reveal that theory agrees

well with experimental data for both binary and ternary solution systems. Several very

interesting experimental observations as well as possible problems are discussed when matrix

stress is involved.

Thesis Committee: Dr. Mark Johnson (Co-Chairman)
Prof. Roger D. Kamm (Co-Chairman)
Prof. Robert E. Cohen
Professor Ain A. Sonin
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Chapter 1

Introduction

1.1 Background

Transport of nutrients and fluids through body tissues is vital for the normal functions of

all multi-cellular organisms. This transport takes place through the extracellular matrix, a

biological macromolecular network. The extracellular matrix is comprised of the

hydrophobic, fibrous proteins elastin and collagen and the hydrophilic, highly charged

proteoglycans. The materials that need to be transported through this matrix range from

pure solvent, small molecular weight substances and nutrients to macromolecular

substances that may be either hydrophilic or hydrophobic (Bert and Pearce, 1984;

Ganger, 1981). Transport through tissues is thus a permeation process of complex

solutions through macromolecular networks.

While permeation through macromolecular networks is especially relevant to living

organisms, the phenomenon is also found in a variety of medical and industrial

processes. Membrane separation processes (Albertsson, 1986), transport in bio-reactors

(Klibanov, 1983), artificial organ design (Deen et al, 1979), hemodialysis (Colton and

Lowrie, 1981), controlled drug delivery (Langer, 1980) and gel chromatography

(Yamamoto et al, 1990) are some examples.

Whether designing a synthetic kidney, a drug delivery system, or an industrial membrane

separation device, one needs to understand the mechanism of transport through

12



macromolecular networks. In most applications, it is also important to know quantitative

parameters such as the resistance of the matrix to the transporting species, the species

delivery rate and species distributions within the network.

Permeation through macromolecular networks, especially transport in living organisms,

is usually very complex. One distinctive feature of transport through the macromolecular

network is that the structure of the network is determined by both the flow field and the

molecular conformation. The structure affects the flow and the flow alters the structure.

In addition to the forces one commonly encounters in traditional transport problems, the

permeation occurs on a molecular scale where the chemical activities play an important

role. If a network is cross-linked, then the flow will cause deformation in the matrix and

the matrix stress will also play a role. Thus the transport through macromolecular

networks is a complex mechanochemical problem. Simplified models have been

developed in the earlier studies in order to understand certain aspects of the process. We

review these studies briefly next.

1.2 Previous Studies

1.2.1 Porous Media Theory

Studies on how network structures affect transport are described as porous media theory.

Central to porous media theory is an empirical equation known as Darcy's Law, valid for

creeping flows, that relates the pressure gradient to flow rate through a parameter called

the "specific hydraulic conductivity", or the "permeability" (Bear, 1972). Hence the

determination of the permeability coefficient has been a main subject of porous media

13
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theory.

The transport of fluids through low porosity porous medium has been modeled as

internal flow as the flow paths are describable torturous pores. The permeability of the

low porosity porous medium was given by Carmen-Kozeny formula which relates the

permeability to porosity and average pore radius square through an empirical coefficient,

the tortuosity factor (Bird, et al, 1960). The transport through a porous medium of high

porosity where fluids flow around the matrix component, on the other hand, has been

modeled as external flow (Happel and Brenner, 1965). The unit cell model (Kuwabara,

1959), the method of reflections (Kirkwood and Riseman, 1948) and the "average field"

approach such as Debye-Brinkman method (Debye and Buche, 1948; Brinkman, 1948)

are examples of external flow modeling. Permeability of a variety of materials has also

been calculated from sedimentation and ultrafiltration experiments. The data are generally

in good agreement with the predictions for monodispersed porous media (Bear and

Corapcioglu, 1984).

For a polydispersed matrix, however, there are relatively few studies. Either (1991)

applied the Debye-Brinkman method to calculate permeability of a media composed of

two types of macromolecules. The hindering effect of macromolecular network on the

moving proteins has been discussed experimentally. These experimental studies

established that the sedimenting speed of albumin in hyaluronic acid solution decreases

exponentially with the increase of the square root of hyaluronic acid concentration

(Laurent, 1960, 1963; Winlove and Parker 1984). Analyses, many of which based on

the mean field theory (Flory, 1953), gives the same exponential relation reported in the

experimental studies (Altenberger et al, 1985; Jansons and Phillips, 1989).

14



1.2.2 The Effect of Chemical Activity Gradient

Chemical activity for a dilute solution is its solute concentration (Gyftopoulos, 1991). In

a solution where each component is free to move, chemical activity gradients drive

diffusional fluxes (Truesdell, 1962). In a solution where the solute is blocked by a

membrane, the chemical activity difference across the membrane gives rise to an osmotic

pressure difference (Hiemanz, 1986). Since both diffusion and osmosis are caused by

the chemical activity gradient, the diffusivity and the osmotic pressure are related; this

relationship is characterized by the Stokes-Einstein equation (Wijmans et al, 1985). In

general, the chemical activity gradient is one of the driving forces for species transport in

a microscopic system (Tanford, 1963). Transport through macromolecular networks

occurs at molecular length scale and hence chemical activity plays a very important role

(Silberberg, 1980, 1989).

1.2.3 The Effect of Matrix Stress

The deformation of an elastic matrix is associated with the development of an elastic

stress within the matrix. For a matrix composed of random coils of macromolecules,

rubber elasticity theory (Treloar, 1975) and Flory-Huggins theory (Flory, 1953) with

scaling modification (de Gennes, 1979) has been used to derive a stress and strain

relation (Horkay and Zrinyi, 1986, 1988). For a matrix under a small deformation in

general, a linear stress-strain relation may be determined experimentally (Mow et al,

1984).
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During transport through cross-linked macromolecular networks, flow causes the

deformation of the matrix and the matrix stress in turn plays a role in determining the

flow. The effect of the matrix stress in transport processes are discussed primarily in gel

swelling kinetics (Tanaka and Fillmore, 1979; Horkey and Zrinyi, 1986, 1988) and

cartilage related studies (Biot, 1962; Rice and Cleary, 1976; Mow, 1984; Eisenberg and

Grodzinsky, 1987; Holemes and Mow, 1990; Lai et al, 1991; Gu et al, 1993). The

former application motivated the derivation of a diffusion equation that describes the

displacement of the gel. The effect of the matrix stress has been lumped into an "effective

diffusion coefficient" which is determined experimentally (Tanaka and Fillmore, 1979).

Cartilage studies, based on biphasic model (Mow et al, 1984), employed an empirical

linear stress-strain relation for the combined media of solvent and solute; and the solvent

transport rate was determined indirectly through the deformation of the media (Eisenberg

and Grodzinsky, 1987). Both approaches are geared towards determining the stress and

deformation of a matrix rather than the species transport. Based on the biphasic cartilage

theory, a triphasic model has been proposed recently for cartilage studies. The elastic

stress was treated as part of a total stress tensor which represents the combined effect of

solute concentration, electric charge and the matrix deformation (Lai et al, 1991; Gu et al,

1993).

1.2.4. Transport Equations from Non-Equilibrium Thermodynamics

Linear phenomenological equations for species transport in a mixture have been described

in non-equilibrium thermodynamics (Katchalsky and Curran, 1965). The application of

the linear phenomenological equations in a binary macromolecular solution system gave

rise to a modified version of Darcy's law (Wijmans et al, 1985; Wales, 1981), in which

16



the driving force for the flow is the combination of the hydrodynamic and osmotic

pressure. The same principle is the underpinning of the triphasic theory in recent cartilage

studies (Lai et al, 1991, Gu et al, 1993). For transport through multi-component

macromolecular networks involving matrix stresses, the linear phenomenological

equations were used in conjunction with the local equilibrium assumption to derive a set

of transport equations (Silberberg, 1980, 1989). This model has the capacity to solve the

transport problem of multi-component macromolecular systems. However, the model

requires additional expressions for the chemical activities, the frictional coefficients, and

the stress-strain relation for closure. For multi-component systems where forces acting

on one component are affected by the existence of the other components, it is not straight-

forward how to determine the required expressions. An attempt was made to produce

closure and to solve for a three-component system, but the calculation was admittedly ad

hoc (Silberberg, 1989).

In summary, a variety of theories and experimental data are available in the literature

related to one aspect or another of transport through macromolecular networks. There is

no theoretical framework to date, however, which could allow us to have a

comprehensive understanding of the transport process. The transport equations of multi-

component macromolecular systems based on non-equilibrium thermodynamics is

promising, but unfortunately it is still incomplete, and has not been verified

experimentally. Further studies are required.

1.3 Objectives and Approaches

17



Based on the previous discussion, the objectives of this thesis are three-fold:

To develop a comprehensive theoretical framework to describe the transport offluid and

macromolecules in a multi-component system that incorporates non-equilibrium

thermodynamics, fluid mechanics and porous media theory

To develop a closure scheme which would allow us to obtain all necessary "constitutive

relations" for the theoreticalframework, whether by theoretical or by experimental means

To verify the framework we proposed experimentally

In short, we seek to provide a reliable framework and a systematic method to study

steady-state transport processes through multi-component macromolecular networks.

To achieve our goals, we choose a one-dimensional steady state ultrafiltration shown in

Fig. 1.1 as our model. This one-dimensional steady state model allows us to examine the

interplay of major factors affecting transport. The disadvantage of the ultrafiltration

experiment is that it requires a long time to reach equilibrium. Although sedimentation

experiments will achieve equilibrium much faster under high centrifugal force, it seems

that it would not allow us to examine the transport mechanism in detail. For example,

under centrifugation the chemical activities are negligible compared with the dominant

centrifugal force (Tanford, 1963) which is not the case in most natural transport

processes in living tissues.

Using the steady-state one-dimensional ultrafiltration model, two-component

ultrafiltration will be studied to elucidate the essential features of the transport process.

Three-component ultrafiltration will then be studied. This approach will ensure the model

and methods developed in this study can be generalized easily to solve for transport

through multi-component macromolecular systems. With the bio-engineering applications

18



in mind, we choose albumin, hyaluronic acid and collagen to be the sample

macromolecules. Hyaluronic acid is a long chain molecule and is a member of the

glycosaminoglycan family (GAGs). Collagen is a structural protein which is usually

found in a cross-linked form in nature. Both GAGs and collagen are the main

constituents of the extracellular matrix (Ogston, 1970; Granger, 1981; Grodzinsky,

1983). Albumin is a widely distributed globular protein found in plasma and tissues and

is transported through the extracellular matrix (Katz et al, 1970; Bill, 1960).

Overall, five distinct transport environments will be considered.

* Saline filtration through an albumin solution layer

* Saline filtration through a hyaluronic acid solution layer

* Saline filtration through a collagen gel, a cross-linked macromolecular network which

can support elastic load layer

* Saline filtration through a layer of albumin and hyaluronic acid mixture

* Mixture of Saline, albumin and hyaluronic acidfiltration through a membrane which

partially blocks both albumin and hyaluronic acid

1.4 Outline of Thesis

Chapter Two and Three constitute the theoretical framework of this study. The transport

equations are presented in Chapter Two with theories and methods for determining

various "constitutive relations" discussed in Chapter Three. The design and fabrication

of the main experimental apparatus will be described in Chapter Four. Chapter Five

through Chapter Nine will describe the experiments, the analysis and the comparison of

19



the data for the five model systems listed in Section 1.3. The last chapter will include

comments, conclusions and suggestions for future studies on the transport through

macromolecular networks.

AP = P - Po

0

x

P1
tr

Solvent

b%%%%%%%%% uk411 %%

- / -// / //~% % %%%%%% % %%% % %
--- /// #/*~/ /#U///

// % )% %,
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Q

Fig. 1.1 Schematics of the One-Dimensional Steady-State Filtration Model
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Chapter 2

Transport Equations in Macromolecular Systems

As discussed in Section 1.2.4, several formulations have been proposed in the literature

to describe transport in macromolecular networks and they are all based on non-

equilibrium thermodynamics. In this chapter, we will follow Silberberg's approach

(1980, 1989) to derive a set of transport equations from the fundamental relations of

thermodynamics. We only consider transport problems under constant temperature.

2.1 Thermodynamic Relations

Transport equations can be derived from the linear phenomenological equations, chemical

potential relations and the Gibbs-Duhem equation. A general n-component system will

be considered. In a macromolecular network, some components may be in a gelled state

which can support mechanical load. We will lump these components into one and

designate it as the matrix component. Furthermore, we assume that each fiber in the

matrix component can only support tensile or compressive stress. Thus, our model is an

n-component system with possibly one matrix-like species which can support tensile or

compressive stresses.

2.1.1 Linear Phenomenological Equations

21
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Transport through macromolecular networks is typically a flow with very low Reynolds

number. Frictional forces between components at slow relative motion can be expressed

linearly through Newton's friction law. The balance on each component of the frictional

forces and the driving force, the chemical potential gradient, gives the linear

phenomenological equations (Tanford, 1964)

i = 1,2,...nV i + fij(Vi - Vj) = O
j*i

(2.1)

where

gi: chemical potential per unit mass of species i

fij: frictional coefficient between species i and j, i * j

vi: velocity of species i

To determine the transport velocity of each species, one needs to provide expressions for

the chemical potentials as well as the frictional coefficients.

2.1.2 Expression of Chemical Potential

The chemical potential of the ith species, pi, is given by

daG
i = -In

IT,p,nj
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where ni is the mass of ith component and G is the Gibbs free energy defined as

G=E+pV-TS (2.3)

with E, p, V, T, S being energy, pressure, volume, temperature and entropy of the

system, respectively.

For a macromolecular system involving one matrix component, the first law, including

the elastic energy, is found as (Katchalsky and Curran, 1965)

dE = TdS - pdV + adVm + idni
i

(2.4)

where a is stress per unit cross sectional area of matrix (positive if tensile) and Vm is the

total volume of the matrix component

Vm = nI m

where Vm is its partial specific volume.

From (2.3) and (2.4),

dG = -SdT+ Vdp +( I idni )
i*m

+(m1, + cYDm)dn m

From (2.2) and (2.5), we have (Silberberg, 1980, 1989)
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dgi = -sidT + voidp + RTd(lnai) , i m

(2.6)
dlm = -mdT + Xm (dp - da) + RTd(ln am)

where R is the universal gas constant, si is the partial specific entropy of component i and

ai is defined as "chemical activity" of the ith component. For dilute solutions, chemical

activity of the ith component is the concentration of that component (Gyftopoulos and

Beretta, 1991).

The combination of (2.6) and (2.1) provides a set of equations governing species

transport through macromolecular networks. The equations involve a total of n(n-1)

unknown frictional coefficients. In the following section, we will derive Onsager

reciprocal relations which will reduce the number of unknown frictional coefficients by

half.

2.1.3 Onsager's Reciprocal Relations

Since entropy, volume and mass are all additive, we can derive Eulers equation from the

energy equation (2.4) (Gyftopoulos and Beretta, 1991):

E = TS - pV + aV m + lgin i (2.7)
i

Take differential of Eulers equation (2.7) and subtract from it the energy equation (2.4),

we have the Gibbs-Duhem equation
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-dp + ~mda + ,cidgLi +SdT = O
i V

(2.8)

where 0m and ci are matrix volume fraction and the concentration of ith component,

respectively,

Vm"'V
ni

Ci = V

The balance of mechanical forces, on the other hand, gives (Silberberg, 1980)

-dp + ~mda = 0

Hence at constant temperature, (2.8) reduces to

,,cid i = 0
i

Combining (2.1) and (2.10), we have Onsager's reciprocal relation

cifij = cjfji

or

7ij = Yji

where

Yij = cifij
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Truesdell (1962) has argued that this derivation is not strictly correct for multi-component

(n>3) mixture. The Onsager's reciprocal relation, however, may be regarded as a well-

established law based on experimental verifications (Katchalsky and Curran, 1965).

Noticing that

Fij = cifij(i -vj), Fji = cjfji(j - vi)

are the action and reaction between component i and j in a unit volume of the mixture,

Onsager's reciprocal relation is equivalent to Newton's Third Law.

Several additional relations are useful. By definition, species conservation is

vi = Civi , C)i - 1 (2.12)
i

where i is the partial specific volume of the ith component.

Substitution of (2.6), (2.9) and (2.12) into (2.10), we have

Xcid(lnai) = 0 (2.13)
i

Among the n equations in (2.1) and equation (2.9), there are only n independent

equations because the sum of n equations of (2.1) gives equation (2.9). Physically, the

summation of all n equations in (2.1) represents the total force balance in a mixture.

After all internal forces, namely the chemical activity gradients and the frictional forces,

cancel out, the remaining force balance is the mechanical force balance. Hence, we can

choose any n equations out of this set of (n+1) equations at our convenience.
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Now we are prepared to derive transport equations for n-component macromolecular

systems. Although general transport equations of n-component system can be derived

(Silberberg, 1980, 1989), we will derive transport equations for two and three-

component systems so that the underlying physics is more apparent. We will use

subscript 1 for the solvent phase and 2 for the solute phase. Subscript 3 or m stands for

the matrix phase. In two-component systems where solute is in matrix form, 2 and m are

used interchangeably.

2.2 Transport Equations for Two-component Systems

As stated earlier in the last section, for tow-component system, only two equations of the

three represented in (2.1) and (2.9) are independent in two-component systems. From

the first equation (i=l) of (2.1) with chemical activity given by (2.6), we have

V(p + RT Ilnal)+ f12 =0
t 1 t 1 (2.14)

where is the relative velocity between component 1 and 2. Equation (2.14) can be

written in the more familiar Darcy's law form. Together with (2.9), we have

V(p - ) = -Vav
K

(2.15)

Vp = OmVo

where the osmotic pressure r, the average velocity Vav and the hydraulic conductivity K
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are defined as

RT 2
= - In a, , vav = Q=V K = 2 (2.16)Dl A Y12

with Q and A being solvent flux relative to solute and the cross-sectional area,

respectively. al is the chemical activity of solvent. The reference state of the osmotic

pressure is chosen as pure solvent where al equals 1.

Equations in (2.15) are transport equations for a two component system. In order to

solve transport rate and species distribution, one has to provide the relations for the

osmotic pressure and the specific hydraulic conductivity. When matrix stress is involved,

one needs a stress-strain relation as well.

2.3 Transport Equation for Ternary System

From the first two equations of (2.1) with the substitution of (2.6), we have , for one-

dimensional transport as shown in Fig. 1.1,

ul dp +RT + f12(l - v2)+ f13(v - v3) = 
dx dx

(2.17)

2+ RT d( 2) + f21 (v2 - v1 )+ f2 3(v2 - v3 ) = O
dx dx

Using (2.13), and noticing that
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V1 -V 2 = (V1 -V 3 )-(V 2 - V3 )

=i = i, Yij cifij, ij = ji
ci

the velocities in (2.17) can be expressed as follows

V1 - V3 = d + d 2 + d3
dx dx dx

(2.18)

dp di 2 dR3
v2 -v3 = + +Cdx dx dx

where
_1Y12 + O1Y23 + 02Y12

a=

8

8

*1Y23

S

8

8 = Y12T23 + Y12T13 + Y13T23

/ij are the frictional coefficients per unit volume of the mixture. a, , , r, , are all

functions of frictional coefficients and volume fractions. i is the "partial osmotic

pressure" of component i defined as follows
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di?2 = 2 RT d
dx *1 2 dx

(2.19)

d'X3 3 RT d
dx 41 3 dx

Although the chemical activity of component 1 does not explicitly appear in the above

equations, it plays a role through equation (2.13). From Eqs. (2.15) and (2.16), in an

osmometer with a membrane blocking all solutes of a multi-component mixture, it is the

solvent chemical activity which give rise to the osmotic pressure of the mixture. Defining

the partial osmotic pressure of component 1 in a multi-component mixture as the

conventional osmotic press with pure solvent as its reference state, namely

RT
t = so nal (2.20)

then Eqs. (2.12), (2.13), (2.19) and (2.20) give

d
dx (t1 - ~2 - 3) =0 ,or ( - 72 - 73) =Const.

chose a reference state to be pure solvent at which all partial osmotic pressures are zero,

we have

C = +tl = I2 + n3 (2.21)

The transport rates of each moving species, as expected, depend linearly on the pressure

gradient and the partial osmotic pressure gradients according to Eq. (2.18). Equations

(2.18) may also be written in such a form that the conventional hydraulic conductivity
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and reflection coefficient appear explicitly (Silberberg, 1980, 1989).

One more independent equation to compliment equation (2.18) is the equation of the

mechanical force balance on the mixture

dp= m (2.22)
dx dx

(2.18) and (2.22) constitutes a set of all independent transport equations of a three

component system. To solve for the transport rates and the species distributions, we have

to provide three frictional coefficients and the stress-strain relation as a function of

concentrations. Also we have to provide osmotic pressure as functions of concentration

of all species.

2.5 Conclusions

The explicit transport equations for two and three-component systems have been derived.

The transport equations by themselves, however, are incomplete in the sense that there

are more unknowns than the equations. "Constitutive relations", which can relate the

friction coefficients, osmotic pressures and the matrix stress with concentrations of

species, must be provided to produce a closure. Additional theory and experiments to

provide these "constitutive relations" will be discussed in Chapter Three.

31



Chapter 3

Constitutive Relations

This chapter presents the theories and methods that provide closure for the transport

equations derived in Chapter Two. As discussed earlier in Section 2.2 and 2.3, two-

component systems require one osmotic pressure and one frictional coefficient, while

three-component systems require two partial osmotic pressures and three frictional

coefficients for closure. When a gelled component which can support a mechanical load

is present, an additional stress-strain relation is necessary. In two-component mixtures,

osmotic pressure as a function of solute concentration can be measured routinely by

conventional membrane osmometers (Adams, 1985; Wagner, 1945). Hence, we will

first focus on theories and schemes to determine partial osmotic pressures in three-

component systems. Then we will discuss theories and methods to determine frictional

coefficients for both two and three-component systems. A discussion of the stress-strain

relation will be left for Chapter Eight where a gelled component is considered.

3.1 Determination of Partial Osmotic Pressures

Partial osmotic pressures, as given in Eq. (2.19), are defined by chemical activities.

Although osmotic pressure can be easily measured by a membrane osmometer in a two-

component mixture, the measurement of partial osmotic pressures, or equivalently the

chemical activities, is not easy in a multi-component mixture. Based on the osmotic

pressure measurement method for two-component mixtures, one might want to use a
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membrane osmometer with membranes which can selectively block only one solute at a

time to determine partial osmotic pressures. It is not known, however, that how these

measurements relate to the partial osmotic pressures. In the following sections, we will

develop a procedure to determine partial osmotic pressures of a three-component mixture

with a membrane osmometer.

3.1.1 Equilibrium Thermodynamic Relations

Partial osmotic pressures can be obtained according to their definition (2.19) once we

determine chemical activities as functions of solute concentrations. Hence we here

discuss the determination of chemical activities in multi-component macromolecular

systems.

At osmotic equilibrium, the hydrostatic pressure difference across the membrane is

balanced by the chemical activity difference across the membrane. For species i at

chemical equilibrium across the membrane, there can be no difference in chemical

potential (Tanford, 1963):

Dgi =0 (3.1)

For clarity, notation "D" is used for difference across the membrane, while "A"

represents changes relative to the reference state "c".

Using the expression of (2.6) for chemical potentials, we have at constant temperature
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RTDp -- D(lnai )
'vi

(3.2)

The relation between chemical activities in a mixture at equilibrium is given by (2.13), or

equivalently

1{i R T A(ln ai)} = 0
i 'Oi

(3.3)

Equation (3.2) and (3.3) will be used to determine the quantity:

RTA(lnai ) i= 1,2,...
'vi

3.1.2 Experimental Scheme and Analysis

We choose saline, albumin and hyaluronic acid mixture as an example and use subscript

1, 2 and 3 for saline, albumin and hyaluronic acid, respectively. Our objective is to

determine the chemical activities of each component relative to a common reference state

RT (ln ai ) = RT (In ai - In a )
'wherei U"c" stands for the reference state

where superscript "c" stands for the reference state
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(01,02,A3) = (1,0,0)

Let's now consider experimental schemes.

pa

pb pc

B A C

Fig. 3.1 Schematics of an Experimental Scheme for Determining Partial

Osmotic Pressures in Ternary Mixtures. The three-component
macromolecular mixture is made of saline, albumin and hyaluronic acid.

Membrane between chamber A and B is permeable to both saline and

albumin while membrane between chamber B and C is permeable to saline

only. All three chambers are in equilibrium with each other. pb and pc are

pressures measured by pressure transducers in chamber B and chamber C,

respectively. pa is the ambient pressure.

Applying Eq. (3.2) across the membrane between chamber A and B for species 1 and 2 at

the equilibrium state gives:

pa_ pb =RT (lnab RT- lna)(lna -
'U1 ')1

pa -pb = RT(lnA-na(ananaa ) -na)
'u2 U2

(3.4)
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Superscript a, b and c stand for the equilibrium states in chamber A, B, and C. Chamber

C has pure saline and hence is the reference state.

Applying Eq. (3.3) in chamber B at equilibrium with the same reference state c, we have:

RT A(ln a)
1)3

=-(Cb R T A(lna ) b R T (ln)
1 b I I Aba I2

Equations (3.3), (3.4) and (3.5) give:

RT = pa b RT na)A(lnal)=p -p +-a(1nn)

RT A(ln a)
'03

' 1l

RT A(lnab ) = pa _ pb RTna
+ 2-(lna)

'2

(3.5)

(3.6)
Tb b( b

(01I-IA(ln ab _ RT
03 01 1 3 )Au2

Now, apply Eq. (3.2) for species 1 across membrane between chamber A and C:

RT (lna) = pC _ pa

Applying Eq. (3.3) inside chamber A gives:

RA(lnaa)
'2

=- (ORTAna= () = ( pa- _c)
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Substitution of Eq. (3.7) and (3.8) to Eq. (3.6) gives:

RT b bc-(lna )=-p

RT A(ln a) = _pba + ( pac

RT A(lna3) = (d p_ + ( pba ( 'P

where

pij = pi _ pj , i,j =a,b,c (3.10)

In our example, the volume fraction of hyaluronic acid in chamber B is known since all

hyaluronic acid is blocked by the membrane. The volume fraction of albumin in chamber

A can be deduced by comparing pac with the osmotic pressure-concentration curve of

two-component mixtures of albumin and saline. Given the initial concentrations, all other

volume fractions can then be obtained from the species conservation.

Rewrite the first equation in Eq. (3.9) as

tb = ba + ac (3.11)

where
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,bC RT A(lnab)

7Cba = pb _ pa (3.12)

Cac = pa _ pC

While by definition (2.20), nbc is the osmotic pressure of the mixture, or the partial

osmotic pressure of the solvent, Xba and cac are only part of the partial osmotic

pressures according to Eqs. (2.19) and (3.9).

Eq. (3.9) tells that the osmotic pressure between chamber B and C equals the osmotic

pressure between chamber B and A plus the osmotic pressure between chamber A and C.

We also know from Eq. (3.9) that for a general three-component mixture, when the

volume fraction of component one approaches zero, we recover the relation between the

measured pressure and the chemical potentials of a two-component mixture. Eqs. (2.19)

and (3.9) give the partial osmotic pressure gradients required for closure in the transport

equations (2.18) of three-component mixtures.

The direct measurement of volume fractions can be used as an independent check of the

procedure developed here.

In conclusion, chemical activities and thus the partial osmotic pressures can be obtained

from the theory and experimental scheme developed in this section for a three-component

mixture of saline, albumin and hyaluronic acid. The implementation of the measurement

procedure requires that there exists a membrane which can completely block hyaluronic

acid while allowing albumin to pass freely. This approach can be generalized for other

multi-component mixtures.
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3.2 An Alternative Method to Determine Partial Osmotic

Pressures

A semi-empirical method based on the excluded volume concept (Wielderhielm et al,

1976) can also be used to determine partial osmotic pressures in a mixture of saline,

albumin and hyaluronic acid.

Consider a mixture of saline, albumin and hyaluronic acid at osmotic equilibrium with

pure saline. The total volume of the mixture can be conceptually divided into two

compartments, namely, the volume available to albumin and that available to the

hyaluronic acid. In other words, in a three-component mixture composed of a solvent

and two solutes, the existence of one solute "excludes" a certain volume of the solvent

from the other and vice versa. As a result, the effective concentrations of both solutes

increase. At osmotic equilibrium, the action exerted by the albumin compartment on the

volume occupied by hyaluronic acid equals that exerted by the hyaluronic acid

compartment on the volume occupied by albumin; and they both equal to the equilibrium

osmotic pressure of the mixture.

Suppose we have determined experimentally the osmotic pressure in a two-component

mixture of saline and albumin, and of saline and hyaluronic acid

cbsa = f(cb)
(3.13)Aha = g(ch) (3.13)

where 1nbsa and cb are the osmotic pressure and the concentration of albumin and saline

mixture respectively, whereas cha and ch are the counterparts for the hyaluronic acid and
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saline mixture.

Then at osmotic equilibrium of the three-component mixture of saline, albumin and

hyaluronic acid, we find that

eq =f(c g(ceff) (3.14)

where 'eq is the equilibrium osmotic pressure of saline, albumin and hyaluronic acid

mixture, and

Ceff = b eff= Ch
b ' 1-1cb X =1~~~~ -X(3.15)

= V b , V=Vb+Vh
V

Vb and Vh are the volumes available to albumin and hyaluronic acid in the mixture

respectively. V is the total volume of the mixture.

From (3.14) and (3.15), we can solve X

X = X(cb,ch) (3.16)

Substitution of (3.15) and (3.16) back into (3.14) gives the equilibrium osmotic pressure

of the three component mixture. Experimental data agree well with the calculated

equilibrium osmotic pressure in the mixture of saline, albumin and hyaluronic acid

(Wiederhielm, 1976).

40



I :1

To calculate the partial osmotic pressures, I further postulate, according to Eq. (2.21):

Rb = eq , h =(1 -)eq (3.17)

where b and Rh are the partial osmotic pressures of albumin and hyaluronic acid in the

three-component mixture respectively.

At first glance, assumption (3.17) resembles Dalton's law of partial pressure for ideal

mixtures (Gyftopoulos & Beretta, 1991). The hypothesis, however, has included the

excluded volume effect as has been discussed at the beginning of this section. According

to Flory-Huggins mean field theory, the first two terms of the viral expansion of osmotic

pressure represent the ideal behavior and the excluded volume effect (Flory, 1953).

Unless the concentration of the mixture is really high or the energetic interactions

dominate, one would expect a good agreement between the second order viral expansion

and experimental data. In fact, as long as we can conceptually divide the three-component

mixture into effective saline/albumin and saline/hyaluronic acid compartments, Eq. (3.17)

is rigorous. In reality, however, the validity of Eq. (3.17) has to be checked

experimentally.

3.3 Determining Frictional Coefficient in Binary Mixtures

The hydraulic conductivity (K) of bovine serum albumin has been determined from

sedimentation experiments in physiological saline as a function of concentration (Kim et

al, 1991)
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K = 1.6 x 10l1 4 cb1(l - 1.348cb)5.1 (cm2 )

for Cb <0. 3 g/ml (3.18)

The hydraulic conductivity K apparently does not depend on solution pH in the

concentration range under consideration.

The hydraulic conductivity K of hyaluronic acid has been determined by sedimentation

experiments in buffered physiological saline (Ethier, 1986).

K = 2.92 x 10-16ch-147 (cm2 )

for 10- 4 g/ml<c h <2xl0- 2 g/ml (3.19)

The hydraulic conductivity of collagen can be obtained by fiber matrix model (Ethier,

1986) as a function of volume fraction and fiber radius of collagen. In a homogeneous

concentration regime of collagen in physiological buffered saline under which our

experiment will be carried out, we have (Ethier, 1986; Johnson, 1987)

K = 0.31a2 C-1.7 (3.20)

Sedimentation experiments of collagen have also been carried out in saline under

physiological pH and ionic strength (Obrink, 1971). Moreover, the relation between

hydraulic conductivity K and sedimentation coefficient s was given as (Mijnlieff &

Jaspers, 1971)

42



I Il

K RJs (3.21)
C2(O 2u2P)

where 1, v2, c2 and p are viscosity of the solvent, specific volume and concentration of

solute, and density of the mixture, respectively.

From sedimentation data and Eq. (3.21), we can calculate the hydraulic conductivity of

collagen. By comparison of the hydraulic conductivity calculated from sedimentation

data and from the fiber matrix model, the fiber radius of collagen is determined to be 9 A.

The calculated fiber radius is in good agreement with literature data of tropocollagen's

fiber radius (Yannas, 1972; Visvanadham et al, 1978).

Thus we have expressions of hydraulic conductivity of albumin, hyaluronic acid and

collagen as functions of concentration as discussed above. The relation between the

frictional coefficient and the hydraulic conductivity, Eq. (2.16), can be rewritten as

Y12 = t1(l-U 2c 2 )2 (3.22)
K

Eq. (3.18), (3.19), (3.20) and (3.22) will give us the frictional coefficients of albumin,

hyaluronic acid and collagen in the physiological buffered saline.

3.4 Determining Frictional Coefficients in Ternary Mixtures: I

There are two types of frictional interaction in the ternary mixture of saline, albumin and
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hyaluronic acid. The interaction between saline and albumin, and that between saline and

hyaluronic acid are interactions between fluid and solid-like solute. The interaction

between albumin and hyaluronic acid is a solid-solid like interaction which has to be

determined experimentally. I will first discuss interactions between solvent and solute in

this section. The interaction between solutes will be dealt with in the next section.

The interaction between saline and albumin, and that between saline and hyaluronic acid

can be obtained by summing up separately all frictional interactions of saline on albumin

and of saline on hyaluronic acid in the three-component mixture. At the dilute limit

where the interaction between albumin and hyaluronic acid approaches zero, we would

expect that Y12 and Y13 approach the frictional coefficients in the two-component

mixture of albumin in saline; and of hyaluronic acid in saline. As a first approximation

when both the albumin and the hyaluronic acid concentrations are small, we will neglect

the influence of albumin on the frictional coefficient between saline and hyaluronic acid.

Likewise, we will neglect the influence of hyaluronic acid on the frictional coefficient

between saline and albumin. Hence, we will use the corresponding experimentally

determined formulas given in Section 3.3 for the frictional coefficients between saline

and albumin, and between saline and hyaluronic acid in the three-component mixture.

3.5 Determining Frictional Coefficients in Ternary Mixtures:

II

As we have mentioned in the introduction, there is no theory analyzing the interaction

between albumin and hyaluronic acid in the three-component mixture of saline, albumin

and hyaluronic acid. The sedimentation and diffusion experiments of albumin through
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hyaluronic saline solution (Laurent et al, 1961; Laurent et al, 1963; Winlove and Parker,

1984), however, reveal the hindering effect of hyaluronic acid on albumin. In this

section, we will first model the process of albumin sendimenting under centrifugal force

through a mixture of hyaluronic acid and saline. Then we will use this model to

determine the frictional coefficient between albumin and hyaluronic acid using literature

data given by Laurent et al (1961, 1963).

3.5.1 Modeling Sedimentation Under Centrifuge

We use the force balance approach, once again. The centrifugal force per unit mass at

location x away from the center of rotation is

fcent = -6 2 x (3.24)

where o is the angular velocity of rotation.

Including the centrifugal force into the balance equation for the unit mass of each species,

we have, from Eqs. (2.1) (2.6) and (2.11)

-X~2x + iVp + kTV(lnai) + If(iji - vj) =O
ji (3.25)

i =1,2,...n

Let's now first apply Eq. (3.25) for a solute sedimentation in a solvent, a two-component

case.

45



3.5.2 The Relationship between the Permeability and the Sedimentation

Coefficient in Binary Mixtures

Using the balance equation (3.25) on solute, we have

2 - v= ( 2 x- v2Vp - kTV(lnai ) ) (3.26)

Recall Stokes-Einstein's formula of diffusivity (Wijmans et al, 1985), as well as the

definition of osmotic pressure in two-component mixture in (2.16)

D= K%2 dr

kT Al kT ~ 2~(3.27)

d = - kT d(lna l ) = kT d(lna 2 )
Vl v2 1

where D is diffusivity and K is hydraulic conductivity which can be expressed by the

frictional coefficient through formula (2.16).

With Eq. (3.27), we can re-write the third term in (3.26) as

kT D d 2
f v(lna2) =2 (3.28)f ~12 12 dx

Therefore, the third term of Eq. (3.26) represents diffusion which only affects the width

of the sedimenting front while the first two terms determine the velocity of the moving

front. Because we are only interested in the velocity of the sedimenting front, the third
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term can be neglected. Hence, we have

V2 -Vl = L( 2x -v 2 Vp) (3.29)

Furthermore, the mixture as a whole during sedimentaion is static and we have the

pressure gradient

Vp = p2x (3.30)

where p is the density of the whole mixture.

From Eq. (3.29), (3.30), (2.16), we obtain

K = lS (M10) = 1(?)0
c2(1-p v2 ) Y12

S O 2Q- O0 c2(1-Pv)
0

712

The superscript "0O" stands for a two-component system and s is the sedimentation

coefficient defined as

V2

O) x (3.33)

In deriving (3.31), I assumed that the velocity of the solvent is negligible compared to the
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sedimentation velocity of the solute. This assumption is valid according to flux

conservation if the concentration of the sedimenting solute is small. As expected, a

derivation using the balance equation of (3.25) on the solvent gives the same result.

In summary, the force balance approach reproduced formula (3.31), which is well

known in the literature relating the sedimentation coefficient and the hydraulic

conductivity in a dilute two-component systems. We are now ready to apply this

approach for a three-component mixture.

3.5.3 Sedimentation Coefficient in a Ternary System

Following analogous steps of the analysis of two-component systems, we can solve

velocities of albumin sedimentation in the mixture of hyaluronic acid and saline

vI - 3 (lpl)
02 X - l P

V2 = - 4(l-p 2 ) (3.34)

where p is again the density of the whole mixture, and a and 4 are functions of the

volume fractions and frictional coefficients we defined earlier in (2.18).

Subtraction of the first equation in (3.34) from the second gives

s = a -(1-P)- ul (1- p2) (3.35)
ul v~~2
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where I neglected vl again given that the concentration of albumin and hyaluronic acid

are both small.

3.5.4 Frictional Coefficient between Albumin and Hyaluronic Acid in the

Ternary Mixture

From Eqs. (3.32), (3.35) and the definition of a and 4, the ratio of s over so can be

expressed as a function of frictional coefficients 012, P013, 712, 713 and 723.

- = func(y 12 ,7Y13 ,Y712 ,Y1 3 ,Y 23 ) (3.36)
so

The frictional coefficients 7012, 013, Y12, 713 are already known according to previous

discussions. Hence the only unknown in (3.36) is the frictional coefficient between

albumin and hyaluronic acid, 723-

Furthermore, experiments (Laurent et al, 1960, 1963, Winlove and Parker, 1984) have

established that

S= 1. 03e- 6 05
so .014/(3.37)

0 < h < 0.014g / ml

It is also found that within the albumin concentration range O<cb<0.Olg/ml tested, the

ratio of s to so is independent of albumin concentration (Laurent et al, 1960).
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The frictional coefficient Y23 can thus be obtained through (3.36) and (3.37).

3.6 Summary

In this chapter, I first provided a rigorous theory and experimental scheme to determine

partial osmotic pressures in a three-component mixture of saline, albumin and hyaluronic

acid. An alternative approach to determine the partial osmotic pressures through the

"excluded volume" concept is also discussed. In case we can not find a membrane which

can completely block hyaluronic acid while letting albumin pass freely, we have to use

the alternative approach to determine the partial osmotic pressures.

The method of determining the frictional coefficient between saline and albumin, and that

between saline and hyaluronic acid in a binary system has been provided. These data

were also used to approximate 712 and T13 in the three-component mixture of saline,

albumin and hyaluronic acid in which both albumin and hyaluronic acid concentration are

small.

Finally, sedimentation processes under centrifugal force are modeled. The process of

albumin sedimenting in the saline, and that of albumin sedimenting in the mixture of

hyaluronic acid and saline have been analyzed by the model. The analysis enables us to

use literature sedimentation data to calculate the frictional coefficient between albumin and

hyaluronic acid, 723, which is the last coefficient required for closure in any three-

component system without any gelation.

The discussion in this chapter provides for the first time a complete procedure to produce
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a closure for the transport equations of ternary systems. The methods and schemes

developed in this chapter can be easily generalized to other multi-component

macromolecular systems.

This chapter and Chapter Two together constitute the theoretical framework upon which

the study of transport through macromolecular networks will be carried out.
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Chapter 4

Design and Fabrication of Experimental Apparatus

In this chapter I will focus on the design and fabrication of a custom designed filtration

cell. This filtration cell will allow us to measure the filtration flow rate, the pressure and

the osmotic pressure distribution along the filtration path. Other experimental apparatus

will be discussed in later chapters.

4.1 Unsteady Osmotic Processes

To determine the driving force loss during a filtration process, we have to measure the

pressure and osmotic pressure. A moving needle probe was used successfully to

measure the pressure distribution (Kim et al, 1989). Based on the idea of the needle

probe, one would naturally think of an "osmotic probe", a needle probe with a piece of

membrane affixed on its tip. To measure osmotic pressure of a solution, one would fill

the probe with solvent and connect the probe to a pressure transducer. When the probe is

brought into contact with a solution, osmotic equilibrium will eventually be established

across the membrane and the transducer would give the osmotic pressure reading. The

initial attempt by Kim, however, failed to build such an osmotic probe (Kim, 1989).

Kim tried to form a copper ferrocyanide membrane inside a tube of one centimeter

diameter and to epoxy a piece of Millipore membrane onto a 16 gage needle. The

osmotic probes constructed using either method gave only a small fraction of the true

osmotic pressure during calibration tests (Kim, 1989). We made our osmotic probes by
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gluing a piece of hollow fiber membrane (P10, Amicon, Beverly, MA) across the

opening of a 22 gage needle. Tests on these osmotic probes revealed that it would take an

excessively long time to reach osmotic equilibrium (osmotic pressure readings reach only

30% of the equilibrium value after 150 hours). The failure of the test prompted a study of

the unsteady osmotic processes encountered during the measurement.

The unsteady osmotic process can be modeled as follows:

membrane

I

x=O x

Fig. 4.1 Model of an Unsteady Osmotic process

The modified Darcy's law, as described in Section 2.2, applies across the membrane in

Fig. 4.1

A(p- ) =- iQAx
KA

Rearranging the equation, we have

Q =( - P) (4.1)
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The flow rate Q can be related to system compliance by definition

dV Q
dp dp / dt (4.2)

Combining (4.1) and (4.2) gives

dp 1 1

d-+ RCP RC I=°+ (4.3)dt RC p = C4 x=o+

where

R = Ax I/ (AK)

The left hand side of Eq. (4.3) is identical to the voltage equation for an electrical RC

circuit (Horowitz and Hill, 1989). From the well-known analysis of an RC circuit, we

know that if the forcing term on the right hand side is a constant, the characteristic

response time of the system is the product of the system resistance and compliance.

Notice now that the forcing term on the right hand side of Equation (4.3) is time

dependent. The osmotic potential at the membrane surface, n(x=O+), is determined by

the concentration of solute at that position. The concentration of solute in turn, is

determined by the solvent flow across the membrane and diffusion of solute inside the

solution chamber. Hence ix(x=0+) is determined by the combined effect of convection

and diffusion, and we therefor expect to observe a phenomenon known as "unstirred

layer effect" (Pedley, 1980, 1981). Hence, there are two time constants in the unsteady

osmotic process under consideration. One is the RC time scale and the other is the

diffusion time scale A2 /D, where A is the unstirred layer thickness and D is the solute
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diffusivity in the solution. For a measurement system with very small resistance R and

compliance C, we have a diffusion dominant case and the system response time is

determined by A2/D. On the other hand, the system response is determined by the RC

time scale when the diffusion time scale is negligibly small in comparison. In general, the

system response is determined by the system resistance R, system compliance C, the

unstirred layer thickness A and the diffusion coefficient D of the solute in the mixture.

Our analysis of the unsteady osmotic processes has established that for a given solution,

one has to reduce system resistance, compliance and the thickness of the unstirred layer

in order to achieve a fast response.

4.2 The Osmotic Cell - An Ultrafiltration Cell with Osmotic

Taps

Based on the analysis of unsteady osmotic processes, we have found that the failure of

our initial tests on the osmotic probe was likely due to a large membrane resistance R, a

large system compliance C and a large unstirred layer thickness A. Hence, a second

osmotic probe was made by attaching a less resistive hollow fiber membrane (P30,

Amicon, Beverly, MA) onto the tip of a 22 gage needle. All deformable connectors and

tubing linking the probe to pressure transducer were replaced with more rigid connectors.

The albumin/saline mixtures of known concentration, used as calibration solutions, were

degassed with ultrasound bath for 20 minutes. During the calibration measurement, the

solution around the probe was slowly stirred once each hour so as to minimize the effect

of unstirred layer. After these painstaking steps, the osmotic probe gave true osmotic

pressure readings of calibration solutions. However, because of the probe's large size
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and the required cumbersome testing procedure, the osmotic probe is not feasible to

measure the distribution of osmotic pressure during filtration experiments. Thus we

decided to adopt the side-wall tap approach for measuring the pressure and osmotic

pressure distributions. According to the criteria obtained from the unsteady osmotic

processes analysis, a filtration cell with pressure and osmotic pressure taps was designed

and fabricated. Made from Plexiglas, the osmotic cell is shown schematically in Fig.

4.2.

.4.

Fig. 4.2.1 The Exploded View of The Osmotic Cell

1: Top lid; 2: Porous disc; 3: O-ring; 4: Filtration chamber; 5: O-ring; 6: Main

membrane; 7: Stainless steel screen disc; 8: O-ring; 9: Bottom lid; 10: O-ring; 11:

Tap membrane; 12: O-ring; 13: Measurement tap; 14: Shouldering stainless tube
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Fig. 4.2.2. Orthogonal Projections of The Osmotic Cell

(Dimensions in mm, not drawn to scale)
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The diameter of the measurement holes is 0.9 mm while the outside diameter of the taps

is 5.0 mm. The taps are removable so that we can choose different membranes. There

are 10 measurement holes distributed in a spiral along the side wall of the filtration cell.

During measurement when all of the gaskets and membranes are in place, the center of

the lowest hole is 2.5 mm from the membrane surface. The distance between the tap

membranes and the interior of the side wall is 2.0 mm.

4.3 Measurement With the Osmotic Cell

The entire osmotic cell assembly for the filtration experiment is shown in Fig 4.3. Four

pressure transducers (Omega, PX 142-2.5 BD 5v), each in a closed aluminum shielding

box with a custom made adapter, were threaded onto measurement taps whose distance

from the membrane surface is 2.5 mm, 5.5 mm, 10.5 mm and 15.5 mm respectively.

The transducers were powered by a constant voltage supplier (Omega, PST-4130). The

osmotic pressure readings were registered by a computer data acquisition system (MINC

11-23, DEC, Mayland, MA).
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Fig. 4.3 The Osmotic Cell Assembly for Filtration Experiment

Prior to each filtration experiment, the osmotic cell assembly has to be tested. Firstly, all

pressure transducers were calibrated before tap membranes were assembled to the

filtration cell. In doing so, the saline column was set at different heights to produce

transducer voltage outputs. The calibration process generates a pressure vs. voltage curve

for each transducer. These curves were then used to convert voltage outputs to pressure

readings during measurement. After assembling tap membranes onto the osmotic cell,

the "hydrostatic test" was performed. This test provided a further calibration of zero,

positive and negative pressure by the saline column with the tap membranes in position.

Any obstruction or leakage in the measurement hole-membrane-tap-transducer linkage

will be revealed through zero shift and/or readings which are either higher or lower than
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the applied pressure. After the hydrostatic head test, osmotic pressure calibrations were

carried out with solutions of known osmotic pressure to check the integrity of the tap

membranes. A successful set-up of the osmotic cell assembly typically should have

hydrostatic test and osmotic pressure calibration results as shown in Fig. 4.4 and Fig.

4.5
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Fig. 4.4 Normal Hydrostatic Test Result of the Osmotic Cell Assembly.

Tap membranes are in position. Plotted are pressure transducers' readings when

the saline column was placed at zero from time zero to approximately time 0.4 hour;

at 42 mmHg from time 0.4 hour to time approximately 0.87 hour; and at -30

mmHg from approximately time 0.87 hour to time 1.5 hour.
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Fig. 4.5 Normal Osmotic Pressure Calibration of the Osmotic Cell Assembly.

Plotted are the osmotic pressure readings of the pressure transducers. The

calibration solution was bovine serum albumin (Boehringer Mannheim 100 030) in

physiological saline of 0.05 g/ml with reference osmotic pressure of 18 to 20

mmHg. The accuracy of the pressure transducer is +/- 1.0 mmHg.

After passing both the hydrostatic test and osmotic pressure calibration, a specified

volume of a well-mixed macromolecular solution is placed into the cell. The rest of the

osmotic cell, the reservoir and the tubing linking the two are all filled with the fluid to be

transported through the macromolecular network. The reservoir is set at a given height to

provide the hydrostatic head and the filtration experiment begins. The diameter of the

reservoir is approximately 8 times larger than that of the filtration cell to eliminate any
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Current Values: 18.5 mmHg to 20.5 mmHg

P.T. Accuracy: +/- 1.o mmHg
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sensible drop in the hydrostatic height due to the outflow of the filtrate. The filtration

flow rate is determined by weighing the filtrate over a certain interval of time (Kim,

1989). Without membrane in place, transducers connected to taps measure the pressure

distribution. With tap membranes, application of modified Darcy's law across the tap

membrane reveals that transducers measures the difference of pressure and osmotic

pressure, p-7c. Combining the measurement with and without tap membranes, we can

obtain osmotic pressure distribution. With a membrane which can selectively block only

one type of solute while letting all others to pass freely in addition, we can obtain the

distribution of the corresponding partial osmotic pressure according to the discussions

presented in Section 3.1.

After we obtain osmotic pressure distribution, the concentration distribution is also

known because we already know the relation of osmotic pressure as a function of solute

concentration. In principle we can also obtain species distributions for multi-component

filtration systems given the relationship between all partial osmotic pressures and the

solute concentrations. Hence, the osmotic cell can measure the filtration flow rate, the

concentration distribution, and both the pressure and osmotic pressure distributions.
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Chapter 5

Saline Filtration through an Albumin Layer

Albumin is a widely distributed protein, found in both plasma and tissues (Katz et al,

1970; Bill, 1960). Albumin participates in the transport through tissues by both

contributing to the osmotic pressure and by possibly imposing resistance to other moving

components (Kim, et al, 1991). It is of interest to learn how albumin behaves in a simple

two-component transport system before we study its role in more complicated multi-

component transport systems.

The bovine serum albumin molecule, globular in shape, is similar to human serum

albumin in shape, molecular weight, partial specific volume, friction factors (Loeb and

Scheraga, 1956). It is available commercially with well-specified molecular properties.

Hence, bovine serum albumin was chosen in this study.

This chapter will begin with a discussion of filtration experiments where the albumin

layer is retained by a 100 % rejection membrane to the solute. A theoretical analysis will

follow and experimental data will be compared to theoretical predictions.

5.1 Initial Filtration Experiments

A filtration cell with a needle probe was built and initial filtration experiments were

carried out by Kim (1989). The needle probe measured no pressure gradient during
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Kim's experiment as theory predicts (Silberberg, 1980,1989), which confirmed that all

pressure drop occurred at the membrane osmotically, namely Ap-- across the membrane.

The predicted osmotic pressure at the membrane surface by Kim, however, differ

significantly from the applied filtration pressure head (Kim, 1989). Thus we first repeat

Kim's experiment with the same apparatus, material and procedures and the results were

given in a previous publication (Kim et al, 1991). We briefly describe our repeating

experiment in this section.

The pressure distribution measurement was made with a 33-GA (0.02 cm OD) needle

probe in Kim's filtration cell. During the filtration experiment, saline (Dulbecco's

phosphate buffered saline, pH = 7.3, Life Science Technologies, Chagrin Falls, OH)

carrying albumin (Fraction V, Boehringer Mannheim Biochemical, Indianapolis, IN)

moves towards the membrane (PTGC 025 10, Millipore) which selectively rejects the

albumin while letting saline pass freely. Due to the membrane rejection and the balance

between back diffusion and forward convection of albumin, a concentration profile

forms. The concentration profile, known as a "concentration polarization layer" (Vilker,

1976), is depicted in Fig. 5.1 with fluoresceinated bovine serum albumin (Sigma No. A-

9771, St. Louis, MO).
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Fig. 5.1 Photograph of Fluoresceinated Albumin Concentration
Polarization Layer. The needle probe is shown inside the

concentration polarization layer. The total mass of albumin in filtration cell,

m = 0.4 g. Pressure drop applied, Ap = 460 mmHg. See Kim et al, 1991

for details.

The concentration polarization layer contributes to the gross flow resistance (the

membrane's resistance is less than 1% of the entire resistance). Nevertheless, the

pressure measurement inside the layer given in Fig. 5.2 confirms that the pressure

gradient is approximately zero everywhere other than at the membrane surface where all

the pressure loss occurred osmotically.
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Fig. 5.2 Experimental Data of Pressure Distribution Inside the

Concentration Polarization Layer. Results are measured by the needle

probe. Error bars reflect uncertainty in the measured pressure. See

Kim et al, 1991 for details.

5.2 Filtration in the Osmotic Cell Assembly

Further experiments were carried out using the osmotic cell assembly described in

Chapter Four. All the materials used are identical to those used in the initial filtration

experiment, except for the membrane (YM 10, Amicon, Beverly, MA). The saline

solution of bovine serum albumin was prepared by adding buffered saline (Dulbecco's

phosphate buffered saline, Life Science Technologies, Chagrin Falls, OH) with 0.05%

sodium azide. All the solution and perfusion saline were degassed by ultrasonic bath for
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30 minutes under low vacuum. Following the procedure described in Chapter Four, the

flow rate and the distribution of p-ic were obtained. We will show these results later in

Section 5.5 with the comparison between theory and the experimental data.

5.3 Measurement of Osmotic Pressures

The osmotic pressure has to be determined as a function of solute concentration in order

to solve the transport equation of saline through a layer of albumin. There are a variety of

methods for measuring the osmotic pressure of a solution (Adams, 1985; Wagner,

1945). We used a self-made membrane osmometer shown schematically in Fig. 5.3.

Fig. 5.3 Schematics of an membrane osmometer

The measurement chamber (solution and solvent chambers) is a stainless steel membrane

holder (Millipore xx30 012 00, Millipore, MA) of 13 mm diameter. The membranes

used were obtained from Millipore as well (PTGC 013, Millipore, MA). The pressure

transducer was supplied by Omega (PX 143-015 BD 5v, Omega, CT). The saline

solution of bovine serum albumin of different concentrations was prepared as described
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in Section 5.2. The measured osmotic pressure is given in Fig. 5.4. For comparison,

Vilker's osmotic pressure measurement results of bovine serum albumin/saline solution

with same pH value (Vilker, 1981) and Kim's data (Kim, 1989) are also shown in Fig.

5.4.

Our experimental data are similar to Vilker's but differ significantly from Kim's at high

concentration. Like Vilker, we use a "positive pressure" measurement method in which

the solution is placed in contact with the pressure transducer in the measurement chamber;

and the pressure developed in the measurement chamber due to osmosis is positive. Kim

(1989) used "negative pressure" measurement in which the saline was placed in the

measurement chamber and the solution in the other. In this approach, when the negative

pressure developed inside the measurement chamber exceeds the vapor pressure of

saline, it is no longer possible to measure the real osmotic pressure of the solution. The

vapor pressure of saline is about the same as that of water, approximately 25 mmHg at 25

OC (Keenan et al, 1969). Kim delayed the osmotic pressure reading at which deviation

would occur between the positive and negative pressure methods by raising the pressure

inside the measurement chamber (Fig 2.2 of Kim, 1989).
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Fig. 5.4 Experimental Data of Osmotic Pressure of Bovine Serum

Albumin Solutions. All measurements were obtained at pH =

7.0 approximately.

It should be emphasized that some commercial membrane osmometers, such as the

Wescor Colloid Osmometer (Wescor, Inc., Logan, UT), use the negative pressure

measurement method. The osmotic pressure obtained by the negative pressure method is

reliable only when the osmotic pressure of the solution under the investigation is less than

the vapor pressure of the solvent in the measurement chamber. In the osmotic cell

discussed in Chapter Four, we used the negative pressure method. Fortunately however,

the pressure inside the measurement chamber during the filtration is the difference

between the pressure and the osmotic pressure, p-n, which is always greater than zero as
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long as there is a filtration flux. We will discuss this further in Chapter Eight.

5.4 Theoretical Solutions

We have derived the transport equation in a two-component system in Chapter Two.

Noticing that the matrix stress is zero, from Eq. (2.15) and (2.16), we have

d(p- r) iQ
dx KA

(5.1)
dp - o
dx

To solve Eq. (5.1), we have to provide the osmotic pressure t and permeability K as

functions of albumin concentration. Osmotic pressure measurements described in the last

section provide the osmotic pressure relation. Furthermore, the permeability K of bovine

serum albumin in buffered saline is given semi-empirically by Kim (1989):

K = 1.6 x 10- 14 c-(1 - 1.348c)5 1 (cm 2 )

(5.2)
O<c<0.3 g/ml

where c is the albumin concentration in g/ml.

K does not depend on the pH of the albumin solution for the concentration range under

consideration (Kim et al, 1991).
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The boundary condition of Eq. (5.1) is

CIx=O = Cm , Clx = 0

ilx=o = (Cm) = Ap

By the fact that a is function of concentration, Eq. (5.1) can be rewritten as

d dc tQ

dc dx KA

Multiplying Eq. (5.4) by concentration and integrating over x = (O,oo) gives

A2Q = (gm ApK(cm)Cm

(5.3)

(5.4)

(5.5)d(cK) )-I~"~n(c) ~-dc 
dc

where A, g, m are the cross sectional area of the filtration cell, the viscosity of saline and

the total mass inside the filtration cell respectively.

Integrating Eq. (5.4) from x=O to x gives

A
x = -{f(c)- f(cm)}

RlQ
(5.6)

where

f(c) = fIK(c) dc
dc

Numerical integration of Eq. (5.5) and Eq. (5.6) will enable us to find the flow rate Q (
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Ap, m ) and concentration distribution c ( Ap, m, x ). Knowing the relation nI(c), we can

then obtain the osmotic pressure distribution x ( Ap, m, x ) as well as Ap-ir(Ap, m, x)

since Ap is constant over all x > 0.

5.5 Comparison of Theory and Experimental Data

The flow rate Q, concentration profile c(x), osmotic pressure distribution 7r(x) and Ap-

I7(x) as functions of Ap and m can be calculated from theory. Only those to be compared

with experimental data are presented here. In Fig. 5.5, the calculated albumin

concentration profiles under applied pressures of 20 mmHg and 41.7 mmHg are given.

Fig. 5.4 and 5.5 show that Ap = nI at the membrane surface determines the concentration

at the membrane surface. Fig 5.6 compares the calculated flow rate with the experimental

data. The distributions of p-7c from theory are compared with experiment in Fig 5.7.

Theory agrees well with the experimental data.
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Fig 5.5 Numerical Solution of Albumin Concentration Profile

Albumin distribution along the flow path during saline filtration through a

layer of bovine serum albumin. The cross-sectional area of the filtration

cell is 3.88 cm2.
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Fig. 5.6 Comparison between Theory and Data of Filtration Flow Rate

for Saline Filtration through an Albumin Layer

The product of the predicted filtration flow rate Q and the total albumin

mass inside the filtration cell as a function of applied pressure Ap.

m=0.075g for both low pressure data points. m=0.4g and 0.75g for

Ap=265 mmHg run and m=0.4g for Ap=490 mmHg test. The two low

pressure data points were obtained using the osmotic cell while the two

high pressure data points were obtained using Kim's filtration cell.
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Fig. 5.7 Comparison between Theory and Data of p-i for Saline Filtration

through an Albumin Layer. Total mass of albumin in filtration cell

m=0.075 g. Main and tap membranes: PM 10, Amicon

5.6 Conclusions

In summary, during the filtration of saline through a layer of albumin solution, there is no

macroscopic pressure drop along the flow path. The total pressure loss occurred at the

membrane surface osmotically and thus established an albumin concentration at the

membrane surface. An osmotic cell, a filtration cell with side osmotic taps, can be used

to monitor the driving force loss and the distribution of solute. Using osmotic pressure

measurement and knowledge of the permeability K(c), transport equations (5.1)

determine all quantities of interest for saline filtration through albumin. Theory and
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experiment are in good agreement.

This chapter also revealed the important fact that one should be careful in using the

"negative pressure method" to measure the osmotic pressure of a solution. When the

osmotic pressure of a solution is larger than the vapor pressure of the solvent involved,

osmometers using negative pressure method are no longer able to measure the true

osmotic pressure of the solution.
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Chapter 6

Saline Filtration Through an Hyaluronic Acid
Layer

Hyaluronic acid is a long chain linear anionic polysaccharide with a molecular weight

between 100 to 10,000 thousand Dalton. The length and radius of a repeating unit of

hyaluronic acid, the dimer, are approximately 0.95 nm and 0.5 nm, respectively (Ethier,

1983). A dimer has a molecular weight of approximately 400 Dalton. Thus a hyaluronic

acid molecule of molecular weight 1,000 thousand Dalton has an end-to-end length of

2.4 gm, a long molecule indeed (Johnson, 1987).

Hyaluronic acid is a member of the glycosaminoglycan family (GAGs), which along

with collagen, elastin and fibronectin are the main constituents of the extracellular matrix

(Grodzinsky, 1983; Granger, 1981; Ogston, 1970). Soluble in water, hyaluronic acid

has a much higher surface to volume ratio compared to that of globular molecules like

albumin, can form extremely viscous aqueous solutions and is thought to be involved in

controlling connective tissue transport characteristics (Johnson, 1987). Hence it is

important to study saline filtration through a hyaluronic acid layer. This study will

prepare us for examining saline filtration through a mixture of albumin and hyaluronic

acid.

6.1 Filtration Experiment
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Filtration experiments were carried out in the osmotic cell assembly as described in

Chapter Four to measure the filtration flow rate and the distribution of the driving force,

p-cn. Saline solutions of hyaluronic acid were prepared by adding specified amount of

buffered saline (Dulbecco's phosphate buffered saline, Life science Technologies,

Chagrin Falls, OH), with 0.05% sodium azide, into a container of hyaluronic acid (H

1751, Sigma, St. Louis, MO) and leaving the sealed container in the refrigerator at 4 0C

for 5 to 10 days. After hyaluronic acid was completely dissolved into the saline, the

mixture was very slowly stirred mechanically (Flexa-Mix, Fisher) and degassed using a

low vacuum line for about 45 minutes. The osmotic cell underwent the zero, positive,

and negative pressure tests as described in Chapter Four. Then a specified volume of the

well-mixed solution was added to the osmotic cell with its main and the tap membranes

(PM 10, Amicon, Beverly, MA) in place, and the osmotic pressure test was carried out.

After obtaining the expected osmotic pressure readings from all four tap transducers, the

rest of the osmotic cell, the reservoir, and the tubing linking the two were filled with the

buffered saline. Then the reservoir was raised and filtration started. The filtration

pressure is provided by the hydrostatic head from the filtrate outlet to the saline surface in

the reservoir. The applied pressure head was between 20 and 35 mmHg. The distance

from the membrane surface to the filtrate outlet is approximately 9.2 cm in this case.

The osmotic pressure of the hyaluronic acid solutions was determined by the osmometer

described in Chapter Five. It was found that the osmotic pressure of the hyaluronic acid

solution varies from one lot to another, as earlier studies have observed (Wiederhielm,

1976). The average value of the osmotic pressures, however, approximately followed the

relation given by Johnson (1987)

X = 5.8 x 107 x c2 (dyne / cm 2) (6.1)
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where c is the concentration of hyaluronic acid in g/ml.

6.2 Theoretical Solutions

The transport equations, as discussed in Chapter Five, are as follows

d dc - Q
dc dx KA

(6.2)

dp=o
dx

The boundary conditions for Eq. (6.2) are

CX= =Cm , CX = 

(6.3)

IXrx=O = (Cm) = Ap

The osmotic pressure is given by Eq. (6.1). Given permeability K, Eq. (6.2) with (6.3)

can be solved to obtain the solute distribution with the filtration flow rate Q as a

parameter. The additional constraint of mass conservation (the fact that total solute mass

in the filtration cell equals the integration of the entire concentration profile over all cross-

sectional area) determines the filtration flow rate Q.

For macromolecules having a high surface to volume ratio, the permeability K usually

has different dependence on concentration at different concentration regimes, known as

the dilute regime, the semi-dilute regime and the homogeneous regime (Johnson et al,

1987). The power law dependence of permeability K on hyaluronic acid concentration is
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-1, -1.5 and -1.17 respectively for the dilute, semi-dilute and homogeneous regimes

(Johnson et al, 1987). The dilute regime spans a concentration from zero to

approximately 10-5 g/ml, followed by the semi-dilute regime over a concentration

between 10-5 and 10-3 g/ml. For hyaluronic acid concentrations higher than 10-3 g/ml

in physiological buffered saline, we enter the homogeneous regime where the

permeability can be expressed as (Johnson et al, 1987; Ethier, 1986)

K(c)= 1.24 x 10-15 xc- 1, 7 (cm 2) (6.4)

According to the boundary condition (6.3) and the osmotic pressure expression (6.1), the

hyaluronic acid concentrations at the membrane surface at the applied pressure head of 20

mmHg and 35 mmHg are approximately 0.02 g/ml and 0.03 g/ml. Although hyaluronic

acid concentration approaches zero as the distance from the membrane becomes large, we

expect the hyaluronic acid mass in the region near the membrane surface to have a

dominant effect on the transport process. Hence, we use the homogeneous regime

relation of permeability, Eq. (6.4), over the entire solution domain of the filtration

problem under consideration.

Integration of Eq. (6.2), as shown in Chapter 5, gives

Q = Am ApK(cm)c m - OM X(c) dc dc) (6.5)

f(c) - f(cm) = Qx (6.6)A

where

f(c) = OK(c) dc dc
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and m is the total hyaluronic acid mass inside the filtration cell.

With Ir(c) and K(c) given in Eq. (6.1) and (6.4), we have, from Eq. (6.5) and (6.6):

1.83

Q = 1.128 x 10- 4 m (ml/sec)
m

(6.7)

0.83 105 Qx 1.205
Im 6.545)

(g / ml)

with distance x and mass m units in cm and gram, respectively.

Furthermore, from Eq. (6.1) and the boundary condition that osmotic pressure at the

membrane surface balances the pressure drop across the membrane, we have

cm 43244 (gCm = 43244 (g/ml) (6.8)

In deriving Eq. (6.8), we have made use of the fact that there is no pressure drop in the

concentration polarization layer along the filtration path for all x > 0.

Substituting Eq. (6.8) into Eq. (6.7), we have
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(Ap)0 . 91 5

Q = 6.463 x 10- 9 (ml / sec)
m

(6.9)

c= 1.185 x 10-2 x (Ap)0.41 5 - 9.876 x 10-5 (Ap) 15x (g / ml)

where m is in gram, Ap in mmHg and x in cm.

We can see that Q changes in inverse proportion to total mass in the filtration cell and

approximately linearly with applied pressure head, Ap.

6.3 Results and Comparisons

The osmotic pressure of hyaluronic acid solution, given by Eq. (6.1), and that of bovine

serum albumin solutions, given by the best fit of the experimental data shown in Fig.

5.4, is compared in Fig. 6.1. The permeability of the hyaluronic acid, Eq. (6.4), is also

compared with that of the bovine serum albumin, Eq. (5.2), in Fig. 6.2. The differences

are remarkable both in osmotic pressure and in permeability due to the large surface to

volume ratio of the hyaluronic acid compared to that of the albumin.
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Fig. 6.1 Comparison of osmotic pressure of bovine serum albumin and

hyaluronic acid in biological buffered saline. Osmotic pressure of hyaluronic

acid was calculated from Eq. (6.2) while osmotic pressure of bovine serum

albumin was obtained from the best fit of our experimental data given in Fig.

5.4.
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Fig. 6.2 Comparison of permeability of bovine serum albumin and hyaluronic

acid in biological buffered saline. The permeability of hyaluronic acid was

calculated from Eq. (6.4) while that of bovine serum albumin was calculated

from Eq. (5.2)

The predicted flow rate of saline filtration through an albumin layer and that of saline

filtration through a hyaluronic acid layer is compared in Fig. 6.3. When filtration

pressure is low, where most physiological transport occurs, the filtration flow rate of

saline through an albumin layer is much higher than that of saline through a hyaluronic

acid layer. The concentration distribution of saline through an albumin layer and that of

saline through a hyaluronic acid layer is compared in Fig. 6.4. As expected, hyaluronic

acid molecules are much more dispersed in the filtration cell than albumin molecules

under the same experimental conditions.
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Fig. 6.3 Comparison between Qm under various filtration pressure heads of

saline filtration through bovine serum albumin, Eq. (5.5), and that of saline

filtration through hyaluronic acid, Eq. (6.7). The cross-sectional area of the

filtration cell is 3.88 cm2 in both cases. The albumin data shown in Fig. 5.6

and the hyaluronic acid data which will be compared with theory again in Fig.

6.7 are plotted in this figure as well.

85



0.1

c
0

0.08

0.06

0.04

0.02

0
0 0.5 1

x (cm)

1.5 2

Fig. 6.4 Comparison of solute distribution during saline filtration through a

bovine serum albumin layer, Eq. (5.6), and saline filtration through a

hyaluronic acid layer, Eq. (6.7). Total solute mass in the filtration cell for both

cases is 0.075 g. The cross-sectional area of the filtration cell is 3.88 cm2 .

The experimental results of filtrate volume as function of filtration time under different

pressure heads are given in Fig. 6.5. The equilibrium flow rate Q was calculated as the

slope of corresponding curve approaches a constant. Typical measurements of the

osmotic taps are given in Fig. 6.6, the equilibrium values of which will be compared

with the theory.

The comparison of the experimental and the calculated flow rate was given in Fig. 6.7.

The agreement is good in general. The largest deviation between the theory and the data

is approximately 20 % under the pressure head of 36.6 mmHg. Because the filtration
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experiments of Ap = 36.6 mmHg in both tests are made after the completion of Ap = 21.6

mmHg measurement, which in both cases takes about 15 days, degradation of hyaluronic

acid or a small amount of hyaluronic acid passage through the membrane might

contribute to the deviation observed in Fig. 6.7.
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300 400

Fig. 6.5 Filtration under different pressure heads. Total amount of

hyaluronic acid in the filtration cell, m = 0.076 g. Main and tap membranes:

PM 10, Amicon. Measurement error: Ap=+/-1.0 mmHg, AV=0.005 ml.
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Fig. 6.6 Typical measurements of osmotic taps during saline filtration through

a layer of hyaluronic acid. Total hyaluronic acid mass in filtration cell, m =

0.076 g. Main and tap membranes: PM 10, Amicon. Experiments were carried

in the osmotic cell assembly as described in Chapter 4. Measurement errors:

Ax=+/-0.05 cm; Ap=+/-1.0 mmHg.
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Fig. 6.7 Comparison between the theory and the experimental data of

filtration flow rate. Total hyaluronic acid in the filtration cell, m = 0.076 g.

Main and tap membranes: PM 10, Amicon.

Finally, the predicted distributions of the driving force of the filtration, p-n, are

compared in Fig. 6.8 with the measurements of the osmotic taps. Theory agrees well

with the experimental measurement under the two experimental pressure heads in both

tests.
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Fig. 6.8 Comparison between the theory and the experimental data. x

= distance away from the membrane surface. p-r is the difference between

the pressure and the osmotic pressure in the filtration cell. Total mass of

hyaluronic acid in the filtration cell, m = 0.076 g. The main and the tap

membranes: PM 10, Amicon. Measurement error: Ax=+/-0.05 cm; Ap=+/-.0

mmHg. p-it and p reference is at the membrane surface. The distance from

the membrane surface to the filtration outlet is approximately 9.2 cm.

6.4 Summary

In conclusion, theoretical and experimental studies of saline filtration through a layer of

hyaluronic acid were presented in this chapter. The filtration experiments were

performed in the osmotic cell assembly as described in the Chapter Four. The filtration

flow rate and the distribution of the driving force of the filtration, p-r, have been

measured.
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The osmotic pressure and the permeability as functions of hyaluronic acid concentration

given in the literature were used to provide a closure for the transport equations. The

transport equations were then solved to obtain the filtration flow rate, the solute

distribution, and the driving force, p-n, distribution. It is found that the flow rate is

inversely proportional to the total mass of hyaluronic acid in the filtration system and is

approximately proportional to the applied filtration pressure head. Theoretical predictions

about the flow rate and the distribution of p-n, and hence the solute concentration profile,

agree well with the experimental data.

It is found that due to much higher surface to volume ratio of the hyaluronic acid

molecules than that of the albumin, the osmotic pressure of the hyaluronic acid is much

higher while the permeability is much smaller than that of the albumin. This in turn

makes it much more difficult for saline to filtrate through a hyaluronic acid layer than to

filtrate through an albumin layer. The distribution of the hyaluronic acid molecules is

also much more dispersed than that of the albumin molecules during the filtration

experiment.
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Chapter 7

Transport in Ternary Mixtures of Saline, Albumin
and Hyaluronic Acid

We discussed in Chapter Five the filtration of saline through a layer of bovine serum

albumin, a globular macromolecule. In Chapter Six, the filtration of saline through a

layer of hyaluronic acid, a long chain macromolecule, was presented. The comparison

between saline filtration through albumin and through hyaluronic acid has shown

remarkable differences in terms of the flow resistance and the solute distribution. In

natural transport processes in living tissues, we commonly encounter multi-component

filtration systems where bodily fluid carrying nutrients permeates through an extracellular

matrix. Hyaluronic acid is one of the main constituents of the extracellular matrix and

albumin one of the main nutrient proteins. Hence it is interesting to see how these two

types of macromolecules interact with each other in a three-component filtration system.

Although albumin and hyaluronic acid are chosen with biological applications in mind,

the method developed here is applicable to general three-component solution systems,

provided that gelation does not occur so that there are no elastic stresses in the

macromolecular networks.

In this chapter, we will first study the filtration of saline through a layer of albumin and

hyaluronic acid mixtures. Then the filtration of three-component mixtures of saline,

albumin and hyaluronic acid through a membrane which partially rejects hyaluronic acid

will be discussed. In both cases, experimental data and theoretical predictions will be

obtained and compared.
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7.1 Experimental Studies

We will first discuss the filtration experiment and then the measurement of partial osmotic

pressure for three-component mixtures.

7.1.1 Filtration Experiment

The mixture of albumin and hyaluronic acid was made by first dissolving the hyaluronic

acid (H 1751, Sigma Chemicals, St. Louis, MO) into buffered saline (Dulbecco's

phosphate buffered saline, Life Science Technologies, Chagrin Falls, OH) with 0.05%

sodium azide according to the procedure described in Chapter Six. A given amount of

bovine serum albumin (Fraction V, Boehringer Mannheim Biochemical, Indianapolis,

IN) was then added to the hyaluronic acid solution. The three-component mixture was

mixed with a magnetic stirrer very slowly inside a sealed container in a 4 oC environment

for approximately an hour. The prepared mixture was then refrigerated at 4 OC in a sealed

container for later use. The storage time of the prepared mixture was always a week or

less.

The main membrane (pm 10, Amicon for total rejection or plhk 100, Millipore for partial

rejection, see each figure for information) and tap membranes (ym 30 of Amicon. We

started with pm 10 and later found that ym 30 encounters less protein binding, which is

one of the main concerns for tap measurement) were placed into a beaker half filled with

buffered saline, and then the beaker was placed under high vacuum from a vacuum pump

(Disto-pump, model 1399, Fisher Scientific) for half an hour. The air trapped inside the

membrane would thus be mostly replaced by the saline. There afterwards, the
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membranes are placed in the osmotic cell. In the meantime, the prepared mixture of

saline, albumin and hyaluronic acid is degassed with a low vacuum line. After the

osmotic cell assembly has gone through the hydrostatic head test, a specified volume of

the three-component mixture is placed into the osmotic cell and the osmotic pressure test

starts. Often this process has to be repeated several times so that both the hydrostatic test

and the osmotic pressure test give the expected readings. After these initial tests, the

osmotic cell, the reservoir, and the tubing linking the two are filled with the perfusion

fluid. The perfusion fluid in the case of saline filtration through a layer of albumin and

hyaluronic acid is saline, while in the case of filtration through a partially rejecting

membrane, the perfusion fluid is the three-component mixture itself. The reservoir is

then raised to a given level to provide the filtration pressure head and the experiment

begin. The filtrate volume and the tap transducers' readings are obtained as functions of

time until equilibrium is reached. The reservoir's level is then changed so that the flow

rate and the driving force distribution under a new pressure head can be measured.

7.1.2 Partial Osmotic Pressure Measurement Trial

Partial osmotic pressures have to be provided in order to solve the transport equations for

three-component filtration systems. A scheme was developed in Chapter Two to measure

the partial osmotic pressure in the three-component mixture of saline, albumin and

hyaluronic acid. The key issue now is to find a membrane which rejects hyaluronic acid

completely while letting albumin pass freely. Much to our surprise, the test of osmotic

pressure of more than ten membranes from four different manufacturers revealed that it is

impossible to find such a membrane. The experimental results are summarized in Table

7.1.
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Table 7.1 Osmotic pressure of two-component mixtures of albumin in saline and

hyaluronic acid in saline measured by different membranes. Albumin and hyaluronic

acid concentration in the solution used were 0.05 g/ml and 0.01g/ml, respectively. The

corresponding reference osmotic pressure for the albumin and the hyaluronic acid

solution tested are 19 mmHg and 10 mmHg respectively (Kim et al, 1991, Wiederhielm

et al, 1976). Membrane #1 and #2 are from Poretics (Poretics Co., CA), while #3 and

#4 are from Nuclepore (Nuclepore Lab., MA). The pm, xm and ym series membranes

are from Amicon. The pltk, plhk and plink membranes are from Millipore. The

osmometer used is shown in Fig. 5.3.

The molecular weight of hyaluronic acid is several orders of magnitude larger than that of

bovine serum albumin. However, the experiment reveals that hyaluronic acid, which is a

linear chain molecule, is much more difficult to block. It is impossible to find a

membrane, from those commercially available, which completely rejects hyaluronic acid

while letting albumin pass freely. Thus we are forced to use the alternative scheme

95

Membrane I (HA) mmHg ( Exp. Time (h)) I (BSA) mmHg (Exp. T (h))

0.01 urn -6.2 (3) -6.0 (3)

0.015m -4.9 (24)

0.03 gm -4.9 ( 3) -5.7(24) -0.6 (8) -0.7 (24)

0.05 gm -3.1(24) -3.8(24) 0.0 (24) -0.1 (24)

pm 10k -11. (24) -9.2(24) -9.8 (24) -16. (24) -21. (24)

pltk 30k -5.4 (3) -11.(24) -15. (24) -7.8 (42) -9.8 (8) -18. (24) -12. (17)

xm 50k -10. (42) -11.(24) -15. (17) -16.(24)

plhk 100k -6.0 (24) -5.1(24) -4.1 (42) -2.1 (24) -2.5 (24) -0.4 (17)

ym 100k -4.4 (24)

plink 300k -4.6 (3) -1.8(24) -0.6 (8) 0.0 (24)

xm 300k -5.7 (3) 



discussed in Chapter Two to determine the partial osmotic pressures.

For the study of mixture filtration through a partial rejecting membrane, we choose the

plhk 100 membrane from Millipore to provide certain blockage to hyaluronic acid while

letting albumin to pass nearly freely. Although the 0.03 pm membrane from Nuclepore

has similar rejection characteristics to albumin and hyaluronic acid, it is a polycarbonate

screen membrane which is difficult to handle.

In order to obtain a numerical solution to the transport equations for mixture filtration

through a membrane of partial blockage to solutes, we need the solute retention property

of the membrane. A membrane's solute retention property can be obtained from osmotic

pressure measurement. Suppose the concentration difference across the membrane in an

osmometer is initially ACo and is ACe at the osmotic equilibrium, (ACe / ACo) is a

measure of the solute retention ability of the membrane. For a dilute solution, the

osmotic pressure across a membrane is linearly related, through the Van't Hoff equation

(Tanford, 1963), to the concentration difference across the membrane. Hence for a dilute

solution, we have

R aCe Ce IE
ACo Co C

where Ce and ne are the equilibrium concentration and corresponding osmotic pressure

while Co and X are that of the testing solution. R is defined here as the membrane solute

retention coefficient. The solute concentration in the solvent chamber is assumed zero all

the time during the measurement. Thus, from the osmotic pressure measurement results

given in Table 7.1, we find that for the plhk 100 membrane,

96



I II

1.7 5.0
R2 - 19 - 0.1, R3 10 .5 (7.1)19 J lo (7.1)

where R2 and R3 are membrane retention coefficients of plhk 100 for albumin and

hyaluronic acid, respectively.

During mixture filtration through a membrane that partially rejects solutes, the initial

concentration difference across the membrane is CO because the fluid downstream of the

membrane is pure solvent. When steady-state is established, the concentration difference

across the membrane is (Cx= - Coo). Assume the filtration flux does not affect the

retention property of the membrane, we have, by the definition of R we gave earlier

R = Cx=0 - COO
COO

This equation will be used to determine the solute concentration at the membrane surface.

Further osmotic pressure measurements were made with the mixture of saline, albumin

and hyaluronic acid and the results are summarized in Table 7.2

Solution I 1%HA+%BSA I1%HA+1%BSA .5%HA+1%BSA
n (mmHg)-5.0 -5.2I -

Table 7.2 Osmotic pressure of saline / albumin / hyaluronic acid measured by plhk

100 membrane. The reference osmotic pressure for 1% HA+1% BSA solution is

approximately 15 mmHg, while that for 0.5% HA+l% BSA solution is approximately

12 mmHg (Wiederhielm et al, 1976). The osmotic pressure for two-component 1% and

0.5% HA+saline solution are approximately 10 and 5 mmHg, respectively (Wiederhielm

et al, 1976) and that for two-component 0.5% albumin+saline solution is approximately

2 mmHg (Landis and Pappenheimer, 1963).
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The comparison of the data from 1% HA+1% BSA solution measurement in Table 7.2

and that of the plhk 100 membrane in Table 7.1 revealed that the presence of albumin in

the three-component mixture would not affect the plhk 100 membrane's retention of

hyaluronic acid. The concentration of hyaluronic acid appears not to affect the outcome of

the measurements either, which seems unrealistic and requires further examination. For

the purpose of determining solute concentrations at the membrane surface during three-

component mixture filtration through a plhk 100 membrane, Eq.(7.1) will be used as a

reasonable approximation.

7.2 Theoretical Studies

7.2.1 Transport Equations and Constitutive Relations for Closure

The transport equations for a three-component filtration system have been derived in

Chapter Two. Since there are no matrix stresses in the solution considered here, Eq.

(2.18) yields:

v1 -V 3 =(adp+p d 2 + dX3
dx dx dx

v -3 =d +n d2 + dc 3

dx dx dx (7.2)

dp=0
dx

where
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5a= _1712 +1723 + 2712

= 1238

0 = 4112 + 1723
8

2Y12 + 2713 + 01Y12

1Y23C=

8 = Y12723 +712Y13 +Y13Y23

Again, subscript 1, 2, 3 stands for saline, albumin and hyaluronic acid respectively. Yij

is the frictional coefficient between component i and j in a unit volume of the mixture, i

is the volume fraction, and 7i is the "partial osmotic pressure" of component i defined as

follows

d7r2 = 2 RT d n a2
dx 01 2 dx

dr3 _ 3 RT d(lna 3 )
dx 1 3 dx

The frictional coefficients between saline and the solutes can be determined, as described

in Chapter Three, from the literature (Ethier, 1986; Johnson, 1987; Kim et al, 1991)
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712 = 6.25 x 1011Cb(- 0.734Cb)2 (1- 1.3 4 8 b )- 5' 1

cb <0.3 g/ml

713 = 3.425 x 1013 . 4 7 (1 - 0.541ch) 2

ch <0.008 g/ml

and (7.4)

Y13 = 8.065 x 1012 c 1 7(1- 0.541ch)2

0.008 g/ml < ch <0.02 g/ml

The frictional coefficient between albumin and hyaluronic acid can be determined from

the sedimentation data (Laurent et al, 1960, 1963) and the analysis of the sedimentation

process presented in Chapter Two:

712(1 +2XP2 -P) + 7132(P2 P)-2 13s Ae
723 =

* (Pl - P) + (112 + YI3)soAeB (75)

where pi, i are the volume fraction and the density of species i respectively. p is the

density of the whole mixture. A=1.03 and B=6.05 are experimental constants determined

by Laurent, et al (1960, 1963). ch is the hyaluronic acid concentration in g/ml. so is the

sedimentation coefficient of bovine serum albumin in saline given by Eq. (3.32)

0
SO = c2 U- PO2)-02)So = 7ot (7.6)

112

where superscript "0" stands for quantities in a binary mixture of albumin sedimenting in

saline.
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Thus all three frictional coefficients are available through Eq. (7.4), (7.5) and (7.6).

The partial osmotic pressures of a ternary mixture can be determined by the "excluded

volume" concept described in Section 3.2 with empirical osmotic pressure relations in the

two corresponding binary mixtures. For the osmotic pressure of hyaluronic acid in

saline, we use Ogston's empirical formula (1966), which is almost identical to Johnson's

expression (1987) for the concentration range under our consideration. We used

Johnson's expression which is in a much simpler form in Chapter Six in order to obtain

an analytic solution there.

'lha = 1. 4Ch + 42500Ch +135000C3h (7.7)

Given that our albumin osmotic pressure measurement was performed mainly for

concentrations much higher than the range we are interested in this particular study, and

that at low concentrations, the osmotic pressure as a function of concentrations is well

established, the empirical formula of Landis and Pappenheimer (1963) was used for the

osmotic pressure of bovine serum albumin in saline

bsa = 2 80Cb +1 800 Cb + 12 00 0cb (7.8)

Following the procedure described in Section 3.2, with Eq. (7.7) and (7.8), we can

calculate partial osmotic pressure of albumin and hyaluronic acid as functions of solute

concentrations in the three-component mixture of saline / albumin / hyaluronic acid.
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7.2.2 Equations and Boundary Conditions for Concentration Profiles

The previous discussions established that the three frictional coefficients and the two

partial osmotic pressures are functions of albumin and hyaluronic concentration, c2 and

C3. Hence, the transport equation (7.2) can now be written as

dc 2 dc 3a12 dx + a13 dx = b l

dx dx

(7.9)

dc2 dc3 =
dx dx

where

a 12 = r 2 + ,a3

a13 =[a 2 + a"3
ac3 ac3

aCn2 aR3
a 22 = rl + c2

)2- a3
a23 =a + c

kQ3 ac3

b Qc = QC30
Acl Ac 3

b2 = QC3
Ac 2 Ac 3

[, 0, T, and 5 are coefficients given in (7.2). From Eq. (7.9) we can solve for the

concentration gradients

d (= f(C2,C3,Q, C2ooC30)
(7.10)

dC3 =g(C 2,C 3,Q,C2,C3o)
dx
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where
f a23bl - al3b2

a1 2a 23 -a 1 3a 22

a12b2 - a 22bl
a1 2a 23 - a13a2 2

(7.11)

In the case of saline filtration through a layer of albumin and hyaluronic acid mixture, we

have

C200=O ,C3 = O

An additional boundary condition at the membrane surface for saline filtration through a

layer of albumin and hyaluronic acid is

('x2 + r3 )x=0 = AP (7.12)

For the case where the membrane completely rejects both albumin and hyaluronic acid,

the total mass of both solutes is conserved

1 C2(x)Adx =m2

(7.13)

loc 3(x)Adx = m3

where m2 and m3 are the total mass of albumin and hyaluronic acid respectively, inside

the filtration cell.

In the case of a mixture of saline, albumin and hyaluronic acid filtration through a plhk
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100 membrane, which partially rejects hyaluronic acid, solute concentrations at infinity

are specified and the boundary conditions at the membrane surface are determined by the

membrane's solute retention coefficients, as discussed in Section 7.1.2:

c21x=0 = (1 + R2 )c2,,

c31x=O = (1 + R3)c 3oo (7.14)

During mixture filtration, the plhk membrane poses frictional resistance to hyaluronic

acid, and to a lesser extent, to albumin. The retention coefficients are approximate

measures of the resistances. The fact that the equilibrium osmotic pressure difference

across a plhk 100 membrane for the 1% hyaluronic solution is approximately 5 mmHg,

suggests that the friction force per unit area between the membrane and the hyaluronic

acid is approximately 5 mmHg. Thus when the osmotic pressure of the initial hyaluronic

acid solution is higher that 5 mmHg, the net force of osmosis and membrane friction

causes hyaluronic acid molecules to filtrate through the membrane until the osmotic

pressure difference across the membrane equals approximately 5 mmHg. A Similar

argument holds for albumin molecules, although the membrane's frictional force on the

filtrating albumin molecules is smaller. Hence, for mixture filtrates through a plhk 100

membrane, there is a drop in the driving force p-u across the membrane and we no

longer have

(X2 + i 3 )x=O = AP (7.15)

The information embedded in the retention coefficients of the frictional interactions

between the membrane and the solutes, however, might allow us to determine the

filtration flow rate Q. We will further discuss this issue in Section 7.4 and 7.5.
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In summary, we have equations and proper conditions to determine the solute

concentration distributions numerically.

7.2.3 Numerical Solutions of Concentration Distributions

Specifying the flow rate Q, which appears in the transport equation (7.9), and given

concentration boundary conditions at the membrane surface, we can solve the transport

equations numerically for solute distributions, c2(x) and c3(x).

First, the partial osmotic pressures were obtained in discrete form numerically as

functions of c2 and c3 by procedures described in Chapter Three. Then the fourth order

Runge-Kutta method (Press et al, 1988) was used to obtain solutions for the first three

steps required to initiate the forth order Adams-Bashforth (Press et al, 1988) method.

There afterwards, the Adams-Bashforth predictor-corrector method was used to obtain

the solute concentrations step by step until both of them approached the concentrations

specified at infinity.

The two solute concentrations obtained at each step are usually different from the discrete

concentration values of c2 and c3 where the partial osmotic pressures were defined.

Hence two-dimensional interpolation has to be used at every step to find the partial

osmotic pressure values. For functions of one variable, we have the classical Lagrange's

interpolation formula (Press et al, 1988). For a function F(x,y) with two variables, we

can decompose it into a product of two single-variable functions, as has been done in

deriving most modem finite difference schemes for multi-dimensional problems
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(Anderson et al, 1984). Thus, we obtain the two-dimensional interpolation formula

(Press et al, 1988)

i=k+l L=n+l
F(x,y) = I FiL

i=k-1 L=n-1
(7.16)

For a mixture of saline, albumin and hyaluronic acid filtration through a plhk 100

membrane, the numerical calculation is rather straight forward. The boundary condition

(7.14) determines both solute concentrations at the membrane surface and once we

specify the flow rate Q, we can solve for c2(x) and cs3(x). Then, we obtain the

distributions of the total and partial osmotic pressures, as well as the driving force

distribution, p-7. We have no explicit condition at the moment, however, to determine

the flow rate Q. As discussed in the Section 7.2.2, Eq. (7.15) is not valid for mixture

filtration through a plhk 100 membrane. We will use the experimental filtration flow rate

in the simulation and obtain p-i to compare with the experiment. Furthermore, the

calculated p-,i value at the membrane surface would allow us to verify the discussion

presented in Section 7.2.2 regarding the membrane resistance to the filtrate.

In order to obtain numerical solutions which can be compared with experiments for saline

filtration through a layer of albumin and hyaluronic acid, we need further analysis which

will be detailed in the next section.

7.2.4 A Numerical Iteration Scheme for Saline Filtration through a Layer

of Albumin and Hyaluronic Acid
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In the case of saline filtration through a layer of albumin and hyaluronic acid,

experiments were carried out by specifying the filtration pressure head Ap and the total

mass of albumin and the hyaluronic acid in the filtration cell, m2 and m3. To solve Eq.

(7.9), however, we need to specify c2(x=O), C3(X=O) as well as Q. In order to compare

the numerical solutions with the experimental data, the following procedure was used.

First, the pressure head, Ap and one of the concentrations at the membrane surface, say

c3(x=O), were specified. Then c2(x=O) was calculated numerically from the boundary

condition (7.12). By further specifying flow rate Q, Eq. (7.9) can be solved for c2(x)

and c3(x). Integration of c2(x) and c3(x) gives the total mass in the filtration cell. Q and

c3(x=O) are adjusted until m2 and m3 each equal the amount of albumin and hyaluronic

acid placed into the filtration cell, respectively. In this way we obtain the flow rate Q,

albumin distribution c2(x) and hyaluronic acid distribution c3(x) for specified Ap, m2 and

m3. Then the partial osmotic pressures xc2(x) and 3(x), as well as the total osmotic

pressure distribution (x) were calculated. Thus, we can compare theory and

experimental data in terms of the flow rate Q and the driving force distribution, p-r,

under given Ap, m2 and m3.

To speed up the solution process, an optimization scheme -- the Powell method (Press et

al, 1988) was used which minimizes the objective function defined as follows

J=[m2 -mn(c3 0,Q)l +[m3 -m3 (c3 o,Q)] (7.21)

where m and m are the calculated mass of albumin and hyaluronic acid in the

filtration cell during the nth iteration.
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7.3 Results and Comparisons for Cases with A Completely Rejecting

Membrane

The filtrate volume as a function of time under different filtration pressures in saline

filtration through a layer of albumin and hyaluronic acid is given in Fig. 7.1. The

filtration flow rates, which will be compared later with theoretical predictions, were

calculated when equilibrium was reached.
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Fig 7.1 Experimental Results of Saline Filtration Through a Layer of Bovine

Serum Albumin and Hyaluronic Acid Mixture, with a total rejecting membrane

(pm 10, Amicon). Saline filtrate volumes are as functions of experimental time

under different filtration pressures. Total albumin and hyaluronic acid mass in

the filtration cell, m (bsa) =0.06 g, m (ha) = 0.022g.

It shows that each filtration experiment takes a very long time to reach steady-state.
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Typical measurement of the osmotic taps are given in Fig. 7.2

30
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0
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Time (hour)

Fig 7.2 Typical osmotic taps' measurement during saline filtration through a

layer of albumin and hyaluronic acid mixture. Applied filtration pressure head

= 28.0 mmHg. Total mass of albumin and hyaluronic acid in the filtration cell,

m (bsa) = 0.06 g and m (ha) = 0.022 g. Main membrane: pm 10; Tap

membranes: ym 30; both of Amicon.

The p-r data will be compared later with numerical solution in Fig. 7.5.

Typical concentration distributions calculated for saline filtration through a layer of

albumin and hyaluronic acid are shown in Fig 7.3.
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Fig 7.3 Concentration profiles of albumin and hyaluronic acid in the filtration

cell during saline filtration through a layer of albumin and hyaluronic acid

retained by a completely rejecting membrane (pm 10, Amicon), from numerical

simulation. Total albumin mass, m(bsa) = 0.06 g. Total hyaluronic acid mass,

m(ha) = 0.022 g.

The numerical solutions of the filtration flow rate are compared with the experimental

data in Fig 7.4. The agreement between the prediction and the data is good with the

largest deviation of approximately 15 % occuring under a large pressure head. As the

filtration pressure head approaches zero, the agreement becomes better. The results

confirmed the assumption that for filtration problems under the physiological pressure

difference, the friction coefficients between each solute and the solvent in a three-

component system can be approximated with the frictional coefficients in a corresponding
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binary mixture. However, it should be emphasized that the interaction between solutes

still plays an important role in multi-component filtration systems both through the

elevated osmotic pressure (Weilderhielm, 1976) and though the non-zero frictional

coefficients between solutes.
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1 10-
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Filtration Pressure (mmHg)

70 80

Fig 7.4 Comparison between theory and experimental data of filtration flow

rate for saline filtration through a layer of albumin and hyaluronic acid mixture.

Total mass of albumin and that of hyaluronic acid in the filtration cell, m (bsa) =

0.06 g, m (ha) = 0.022 g. Main membrane: pmlO, Amicon

Numerical solutions of p-7s are compared with experimental data in Fig 7.5.

Experimental data agree well with numerical solutions.
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Fig 7.5 Comparison of predicted and measured driving force distribution.

Saline filtration through a layer of albumin and hyaluronic acid mixture. Main

membrane: pmlO; tap membranes: ym 30; both of Amicon. Total mass of

albumin and that of hyaluronic acid in the filtration cell, m (bsa) = 0.06 g, m

(ha) = 0.022 g.

The comparisons for both the filtration flux and the driving force p-r distribution

revealed that theory agrees well with experimental data. Based on the studies presented

in Chapter Five, Six and Seven, a comparison of the required filtration head to acquire a

given flow rate in a three-component system and its corresponding two-component

systems is given in Fig 7.6.

112



I .1

VUU

I
E 80
V

I 60

to 40

a-

.o 20

L.

0 3106 6 10"6 910 ' 1.2 10'5 1.5 105

Filtration Flow Rate (ml/sce)

Fig 7.6 Comparison of required filtration pressure to acquire a given filtration

flux for binary filtration systems of 0.06 g albumin and saline; 0.022 g

hyaluronic acid and saline, and for ternary system of 0.06g albumin , 0.022g

hyaluronic acid and saline. From numerical solution with boundary conditions

of a totally rejecting membrane to both albumin and hyaluronic acid.

This comparison shows that under low filtration pressure, the pressure required to

maintain a given flow rate for the ternary system is the sum of the pressure required to

drive the same flux in the two corresponding binary systems. Under higher filtration

pressures, however, the interaction between solutes significantly increases the required

pressure in order to drive the given flow rate in the ternary system over that for a non-

interactive system.
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7.4 Results and Comparisons for Cases with A Partially Rejecting

Membrane

Filtrate volume as a function of time under different filtration head and mixture

concentration are presented in Fig. 7.7 for mixture of saline, albumin and hyaluronic acid

filtration through plhk 100 membrane.
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Fig 7.7 Experimental results of the mixture of saline, bovine serum albumin

and hyaluronic acid filtrating through a partially rejecting membrane (plhk 100,

Millipore). Filtrate volumes are given as a function of time at different

pressures (Ap in mmHg), hyaluronic acid concentration (ch, in g/ml) and

albumin concentration (cb, in g/ml). The short duration runs were followed by

the long duration runs and hence reached equilibrium much faster.

We can see that equilibrium is reached after a very long experimental time. The steady-
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state filtration rate has been calculated at the equilibrium for each case and will be given in

Table 7.3.

Typical measurements of the osmotic taps are given in Fig 7.8. The equilibrium values

of the tap measurement will be compared with theoretical predictions later in Fig. 7.11.
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Fig. 7.8 Osmotic taps' reading during mixture filtration through plhk 100

membrane. Tap membranes: ym 30, Amicon. Hyaluronic acid concentration =

0.01 g/ml. Bovine Serum Albumin concentration = 0.03 g/ml. Applied

filtration pressure, Ap = 16.6 mmHg. Osmotic pressure of the mixture, t =

20.67 mmHg

Concentration profiles from the numerical solution of albumin during mixture filtration

through membranes with different solute retention coefficients are given in Fig. 7.9 and

the concentration profiles of hyaluronic acid are given in Fig 7.10.
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Fig. 7.9 Distribution of albumin during mixture filtration through a partially

rejecting membrane both to albumin and to hyaluronic acid. Results are from

the numerical simulation. Applied filtration pressure head, Ap=16.6 mmHg,

R2 and R3 are membrane retention coefficients of albumin and hyaluronic acid,

respectively. The flow rate was specified with the measured experimental flow

rate, Q=3.5e-5 mi/sec.

The albumin concentration at the membrane surface is solely determined by the albumin

retention coefficient of the membrane, as Eq. (7.14) dictates. With a membrane of zero

albumin retention, the concentration of albumin at the membrane surface is zero

regardless of the filtration pressure head and the hyaluronic acid concentration.

Immediately away from the membrane, however, the blockage of albumin by hyaluronic

acid effectively retains albumin even though the membrane has a zero albumin retention
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rate. Hence, membranes with small albumin and large hyaluronic acid retention

coefficients would create a sharp albumin concentration gradient near the membrane

surface. For a membrane with similar retention rates for both albumin and hyaluronic

acid, the distribution of albumin is much smoother, as the highest curve in the figure

shows.
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Fig 7.10 Concentration profile of hyaluronic acid during mixture filtration

through a partially rejecting membrane to both albumin and hyaluronic acid.

R2, R3 are membrane retention coefficients of albumin and hyaluronic acid,

respectively. Applied filtration pressure head, Ap=16.6 mmHg. Flow rate is

from the experimental data, Q = 3.5e-5 mi/sec. Filtrate concentration: C(ha) =

0.01 g/ml. C(bsa) = 0.03 g/ml.

Similarly, the concentration of hyaluronic acid at the membrane surface is solely
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determined by the membrane retention of the hyaluronic acid. The hyaluronic acid

concentration immediately away from the membrane, however, is severely affected by

the presence of albumin through osmotic repulsion, and thus creates a sharp gradient in

the hyaluronic acid concentration. For mixture filtration through a membrane with

similar retention coefficients of albumin and hyaluronic acid, the concentration profile of

hyaluronic acid, like that of albumin, is much smoother.

The filtration flow rates for the mixture of various concentrations filtrating through a plhk

100 membrane under different pressure heads are given in Table 7.3. Although a second

order polynomial fits Q very well as a function of (ApOC2/C 3), more experimental results

are required to justify this functional dependence.

Table 7.3 Filtration rates for mixtures of saline, albumin and hyaluronic acid under

different filtration pressure head - partially rejecting main membrane (plhk 100,

Millipore). The preliminary data of filtration flux Q correlates well with the quantity

Ap'(c2 / c3 ), as seen in the table. In fact, a second order polynomial fits Q very nicely to

Ape(c2 / c3 ) for the five data points given in the table.
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c(ha) g/ml c(bsa) g/ml Ap(mmHg) Ap(c2 /c3) Q*10e5

(ml/sec)

0.005 0.03 16.6 108.0 4.4

0.01 0.03 16.6 54.0 3.5

0.005 0.01 21.6 46.0 2.8

0.01 0.01 21.6 23.0 2.0

0.01 0.01 21.6 23.0 1.7



Finally, the numerical solution of p-n distribution are compared with experimental data in

Fig. 7.11.
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Fig 7.11 Mixture of saline, albumin and hyaluronic acid filtration through a

plhk 100 membrane. Comparison between theory and experimental data of p-i.

Tap membranes: ym 30K, Amicon. Albumin concentration = 0.03 g/ml.

Hyaluronic acid concentration = 0.01 g/ml. Applied pressure head, Ap = 16.6

mmHg. Osmotic pressure of the mixture, c = 20.67 mmHg

Again, theory agrees well with the preliminary data. More experiments should be carried

out in future studies so that one can obtain more data points within the concentration

polarization layer for a better comparison.

During computation of the p-n curve shown in Fig. 7.11, we have used the filtration flux

Q determined experimentally, as discussed in Section 7.2.2. In Section 7.2.2, we also
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postulated that the difference of p-it across the plhk 100 membrane should be

approximately 7 mmHg, with 5 mmHg contributed by the jump in chemical potential of

hyaluronic acid across the membrane and 2 mmHg by that of albumin. We haven't used

this postulation in our computation of the p-R distribution so that we can separate the

comparison of p-it from the determination of Q. Now that we have calculated the p-it,

we can read from Fig. 7.11 the p-lc jump across the membrane. p-t at x=0+ is

approximately -14 mmHg. The osmotic pressure of the filtrate is approximately 20.67

mmHg. Hence (p-i)x=o- equals -20.67 mmHg. Thus there is approximately a jump of

6.5 mmHg across the membrane during the filtration experiment, as indicated in the

osmotic pressure measurement. It should be cautioned, however, that p-t from

numerical computation is sensitive to the membrane retention coefficients and that these

retention coefficients are approximately determined from the osmotic pressure

measurement by Van't Hoff equation. Van't Hoff equation is only valid for dilute

solutions and hence the retention coefficients thus determined are only approximations.

More accurate determination of the retention coefficients, further filtration experiments

and analysis are required to further validate the discussions regarding the determination

of the flux Q. Preliminary discussions and comparisons between theory and

experimental data, however, suggested that we might be able to determine the filtration

flow rate through the p-it jump across the membrane determined by the osmotic pressure

measurement.

7.5 Summary

Filtration experiments of saline through a layer of albumin and hyaluronic acid retained

by a membrane which completely rejects both solutes were carried out in the osmotic cell
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described in Chapter Four. The filtration flow rate as well as the driving force

distribution, p-n, were measured. The partial osmotic pressures were calculated

according to the "excluded volume" concept, and the frictional coefficients were obtained

through the closure scheme described in Chapter Three. Numerical solutions of filtration

flow rate, solute concentration distributions and the driving force p-7t distribution under

various filtration pressures were obtained. It is found that due to the interaction between

the albumin and the hyaluronic acid, the filtration pressure head required to maintain a

given permeation flux is much higher than that required if there were no interactions. The

comparisons of predicted flow rates and p-n distribution to the measured values show

that theory agree well with the experiment.

Extensive membrane osmosis tests were performed with albumin solution and hyaluronic

acid solution of known osmotic pressure. It is found that although the molecular weight

of the hyaluronic acid is several orders of magnitude larger than that of albumin, it is

impossible to find a membrane which can completely block hyaluronic acid while letting

albumin pass freely. Given similar molecular weight, it is much easier for a size selective

membrane to block globular molecules than to block long chain molecules like hyaluronic

acid. The retention coefficient of the plhk 100 membrane for hyaluronic acid is

determined to be approximately 0.5 and that for albumin is approximately 0.1.

Mixtures of saline, albumin and hyaluronic acid were perfused under different filtration

heads through plhk 100 membranes. The filtration flux and the distribution of p-r were

measured. The filtration flux correlates very well with Ap(C2ic3) for the five data points

obtained. Filtration flux increases with increase of the pressure head or albumin

concentration and decreases with increase of the hyaluronic acid concentration in the

filtrates. The increase with the pressure head and the decrease with the hyaluronic acid
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concentration of the flux are easy to understand. The increased flux as albumin

concentration increases, however, is less obvious. Actually this also makes physical

sense because first of all the membrane used only partially blocks the hyaluronic acid

while imposing a small resistance to the albumin. Secondly, the equilibrium condition

requires that what flows in from upstream, flows out as the filtrate, namely, the

concentration of the filtrate equals that of the mixture in the reservoir. Thirdly, there are

frictional interactions between saline, albumin and hyaluronic acid. Thus as the albumin

concentration increases, albumin molecules "drag" with them more hyaluronic acid and

thus reduce the concentration polarization layer and hence increase the filtration flux.

More experiments and analysis are required to validate this argument and the functional

dependence.

With experimentally determined membrane rejection coefficients and the filtration flux,

the transport equations were solved and the distribution of p-n is compared with

preliminary experimental data. The agreement between the two is good. In order to

predict the filtration flux, however, we have to provide either the membrane resistance to

the filtrate, or the A(p-in) across the membrane during filtration. From Fig. 7.11 we

know that by specifying Q, numerical solution of the transport equations give A(p-x)

across the membrane. Hence knowing the actual A(p-x) across the membrane will allow

us to determine filtration flux Q by numerical iteration with different Q until A(p-nt) from

the numerical solution equals the actual value. Equivalently, knowing the membrane

resistance R to the filtrates would allow us to determine the filtration flux. The numerical

iteration procedure is to choose different Q, solve for the A(p-ix) across the membrane,

then calculate the membrane resistance according to the modified Darcy's law until the

numerical membrane resistance equals the real value. The information about the

membrane resistance and the p-n across the membrane during filtration is embedded in
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the osmotic pressure measurement as we have discussed in Section 7.2.2 and 7.4. One

approximation would be that p-t across the membrane during filtration experiment is the

same as that during the osmotic pressure measurement. Preliminary comparison shows

that this is a very good approximation. Future studies should be carried out to further

verify this approximation so that we can solve the filtration flux numerically as well for

mixture filtration through a partially rejecting membrane.
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Chapter 8

Saline Filtration through Collagen Gels

Collagen, with its many different types, is one of the most abundant structural proteins

found in bone, cartilage, skin, blood vessels, connective tissues, and most organs

(Nimni, 1983). A single collagen molecule typically has a triple helical structure with a

length of approximately 300 nm and a radius of approximately 0.75 to 1.5 nm (Yannas,

1972, Visvanadham et al, 1978). In most tissues however, collagen molecules tend to

aggregate to form massive micro-fibrils (Nimni, 1983). Because collagen is one of the

main components in most living tissues and can be crosslinked to form a gel, we choose

it for our study of transport through macromolecular gels.

A gel is a crosslinked macromolecular network which can support load. The transport

equations derived in Chapter Two show that if there is no matrix stress in the

macromolecular networks, there would be no pressure loss along the flow path during

filtration processes. This prediction has been verified directly by the measurement of

pressure distribution during saline filtration through a layer of bovine serum albumin, as

described in Chapter Five. The comparisons of theory and experimental data in binary

and ternary filtration systems in solution forms, as discussed in previous chapters, have

further confirmed the prediction. In a collagen gel, however, the crosslinked network

can support elastic stresses. The transport equations, Eq. (2.15), indicate that one would

then be able to measure a pressure gradient along the filtration path in the gel. Hence the

measurement of pressure distribution in a collagen gel under the saline filtration is one of

the main goals of this chapter.
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Filtration experiments were first performed in a filtration cell (Kim, 1989) with a needle

probe to measure pressure distribution. Then the same experiment was repeated in the

osmotic filtration cell described in Chapter Four to measure the distribution of p-i. We

will discuss both experiments in the following sections.

8.1. Initial Filtration Experiment

Saline filtration through gels can be described by Eq. (2.15):

V(p - 7) vav

(8.1)

Vp = }mVa

where a is the matrix stress (positive if tensile) and x is the distance from the membrane

surface (positive up away from the membrane). The osmotic pressure , the average

velocity Vav and the hydraulic conductivity K are defined as

kT 2 
7c=- Ina , vav =Q=1vl1 , K= (8.2)

U1 A ¥12

Due to the compression in the gel caused by the frictional interaction between the saline

and the collagen gel retained by the supporting membrane, the matrix stress a is negative.

a becomes more negative as the distance from the membrane surface, x, decreases.

Hence the gradient of a is positive. From the second equation of (8.1), the pressure
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gradient is also positive, and thus we expect to measure a pressure drop along the

filtration path. From the first equation of (8.1), the modified Darcy's law, the pressure

gradient minus the osmotic pressure gradient is also positive. Thus we should measure a

p-it drop along the filtration path as well.

8.1.1 Experimental Procedure

Collagen gels were made from a 3 mg/ml collagen solution (Vitrogen 100, Collagen Co.,

Palo Alto, CA), Hank's Balanced Salt Solution (HBSS) and the cross-linking agent,

glutaraldehyde solution.

To start with, 1 ml of 25 % glutaraldehyde solution (49630, Fluka Chemika,

Switzerland) was mixed with 100 ml HBSS (Sigma H4385, 10x, Sigma Chemical Co.,

St. Louis, MO) to make a 0.025 % glutaraldehyde solution. 0.2 M NaOH solution and

0.2 M HCL solution were also prepared with NaOH beads (7708-03, Mallinckrodt Inc.,

Paris, KY), a 37 % HCL solution (UN 1789, Mallinckrodt Inc., Paris, KY) and distilled

water filtered with 0.2 pm filter (NO. 4192, Gelman Sciences, Ann Arbor, MI). Then 9

ml of Vitrogen and 0.5 ml HBSS was added into a beaker, which is cooled by an ice-

water bath, and the pH of the collagen / HBSS mixture was adjusted to 7.2 by 0.2 M

HCL and 0.2 M NaOH solution. Afterwards, 0.5 ml 0.025 % glutaraldehyde solution

was added to the collagen / HBSS mixture. The beaker was shaked gently during the

entire process. The mixture, called the pre-gel solution, was subsequently degassed for

about 20 minutes with the beaker placed in an ice-water bath to prevent early gelation.

After the degassing, the pre-gel solution was used immediately to make a collagen gel

inside the filtration cell at room temperature.
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The membrane (pltk 30, Millipore, MA) was mounted inside the filtration cell and its

resistance was measured. Typically the resistance of the membrane was less than 5%

compared with the resistance of the gel. The interior wall of the filtration cell was then

coated carefully with Sigmacote (SL-2, Sigma Chemical Co., St. Louis, MO) to reduce

collagen binding to the wall. After allowing the Sigmacote to air dry for approximately 20

minutes, 7 ml of the pre-gel solution was added into the filtration cell and a 33 gage

needle probe (Kim et al, 1991) was positioned into the middle of the pre-gel solution.

Then the filtration cell was covered with parafilm (American National Can, CT) and left

at room temperature over night (12 - 24 hours), forming an elastic collagen inside the

filtration cell. Then we filled the filtration cell with saline and connected it to a saline

reservoir to start the filtration experiment. Because of the deformation caused by the

saline filtration and the binding of the gel to the side wall, the top surface of the collagen

gel deformed into a stable downward convex shape during the filtration process. After

equilibrium was reached, the pressure distribution was measured by moving the needle

probe along the filtration path. We waited approximately 20 minutes after each move and

then took a pressure reading.

8.1.2 Measurement and Comparison of Filtration Rate

Typical filtration flow rate measurement results are given in Fig. 8.1. The filtration flow

rate changes linearly with the applied filtration pressure difference, which suggests that

the deformation of the collagen gel under the filtration is small.
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Fig. 8.1 Filtration flow rate as a linear function of the filtration pressure

head during saline filtration through a collagen gel. The volume fraction

of the collagen gel = 0.0022. Total length of the collagen is approximate 2

cm. The area of the filtration cell is 3.88 cm2. Membrane: pltk 30,

Millipore. Detailed experimental procedure is given in Section 8.1.1.

To compare with literature data, the permeability, or the hydraulic conductivity, K is

calculated by Darcy's Law (Jackson and James, 1986) from our experimental results. K

is also calculated from sedimentation data (Obrink, 1971) according to Eq. (3.31) as well

as from the fiber matrix model (Either, 1986), namely

K=0.31xa 2 - 1 7 (cm2)

where a is the collagen fiber radius in A and 0 is the volume fraction of collagen. The

radius of collagen fiber has been determined to be approximately 7.5 to 15 A (Yannas,

128



I . 1

1972; Viswanadham et al, 1978).

The permeability of collagen from the sources described above, as well as literature data

from filtration experiment of Jackson and James (1986) are given in Fig. 8.2.

Ai 1010

t01-1l

} 1 0-1 3
U!o 12

' 10'

1 0.0001 0.001 0.01 0.1

Collagen Volume Fraction

1

Fig. 8.2 Comparison of collagen permeability from different sources.

FMM stands for values of K calculated from the fiber matrix model. a is

the fiber radius used in the calculation.

8.1.3 Results and Discussions of Initial Needle Pressure Measurement

The measurement of collagen permeability is consistent with literature data as given in

Fig. 8.2. The measurement of the needle probe, however, gave an inconsistent negative

pressure reading as shown in Fig 8.3.
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Fig 8.3 Initial needle measurement results of the pressure distribution in

a collagen gel under saline filtration as described in Section 8.1. Total

length of the gel is approximately 2 cm. The needle probe was initially

positioned at the bottom of the gel (x=O) and was slowly moved upwards

by a micrometer fixed on the filtration cell (Kim et al, 1991). The time

interval between each data point is approximately 20 minutes.

One might think that there exists some osmotic effect in the needle measurement results.

Osmotic pressure test of the collagen gel, however, reveals that fully crosslinked collagen

networks have near zero osmotic pressure (on the order of 1 mmHg, within our pressure

transducer's error). Furthermore, Stokes-Einstein's formula of diffusivity (Wijmans et

al, 1985) relates osmotic pressure, permeability and diffusivity
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D= K d;
wil do

where gl is the viscosity of saline and D is the diffusivity of collagen in saline.

Integrating over volume fraction gives

The diffusivity of collagen in saline is on the order of 7x10-8 cm2/sec (Obrink, 1972).

The permeability has been given in Fig. 8.2. Given the volume fraction of the collagen

gel we use in our experiment, the osmotic pressure can be calculated to be on the order of

0.5 mmHg. Hence Fig 8.3 clearly indicates that there are some additional mechanisms

other than osmosis that affect the measurement results. It is possible that the negative

pressure was caused by the extra compression and relaxation of the collagen gel due to

the movement of the needle probe. It is also possible that there are significant interfacial

interactions between the needle and the gel, as well as effects due to temperature

fluctuation. Hence a series of controlled tests were planned.

8.1.4 Needle Pressure Probe Tests in Collagen Gels

The test apparatus was depicted in Fig. 8.4. The gels was made the same way as

described before. The water bath was used to provide a constant temperature. The

pressure transducer was zeroed when the probe was in its final position inside the gel and

immediately before the measurement started. To elucidate the effect of the needle

movement on the measurement, probes were positioned both before and after gels were

formed. The possible interfacial effect was to be checked by using needles of different
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size and material.

oUrO
sducer

Fig 8.4 Experimental Set-up to test possible needle-gel interactions. The

temperature is kept constant by the water bath. The venting needle

provided the passage for the air trapped inside the bottle. Stainless steel

needles of different size were used as the probe, as described in Section

8.2. Gels were made according to the procedure described in Section

8.1. The transducer is of accuracy +/-1.0 mmHg (PX 142-2.5 BD 5v,

Omega, CT).

Tests immediately showed that the movement of the needle probe inside a gel damaged

the gel and hence contributed to the inconsistency in the measurement results. But the

inconsistency remained even if the probe was positioned before the gel was formed.

Hence tests of stainless steel needle probes of different size were performed. The results

are summarized in Fig 8.5.
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Fig 8.5. Results of needle test for possible needle-gel interaction. The

apparatus of the test was shown in Fig. 8.4. Large needle measures the

real zero pressure inside the gel.

We concluded that by using a large stainless steel needle placed in the pre-gel collagen

solution before gelation, we would be able to measure the true pressure caused by the

filtration flux inside the gel. Hence, a double-port needle probe with larger stainless steel

needles (20 gage), as shown in Fig 8.6, was made. With the double-port probe, we do

not have to move the probe during the measurement and are still able to verify if there is a

pressure gradient along the filtration path.
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Fig 8.6. Schematics of a double-port needle probe made from two 20 G

stainless steel needles. The probe holder is a stainless steel tube.

Needles are epoxied inside the holder and the holding tube is filled with

epoxy to prevent leakage.

8.2 Pressure Measurement by the Double-Port Needle Probe

The experimental apparatus is schematically shown in Fig 8.7. The filtration experiment

and measurements were carried out following the same procedure as described in the last
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section but without moving the needle probe. The flux vs. pressure curve as given in

Fig. 8.1 was obtained. The pressure readings of the two ports are shown in Fig 8.8.

H

.r6aur
:ansducrs

cell

Fig 8.7 Schematics of the filtration apparatus with the double-port

needle probe. The filtration head was provided by the saline in the

filtration reservoir. The pressure distribution was measured by the

needle probes and the transducers (PX 142-2.5 BD 5v, Omega)
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Fig 8.8 Pressure readings of the double-port needle probe during saline

filtration through a collagen geL Both needles measure the same pressure

as the applied filtration head. Schematics of the experimental set-up was

shown in Fig. 8.7. The total gel length is approximately 2 cm. The

distance between the bottom of the gel to the tip of the lower needle, the

distance between the two needle tips, and the distance between top

surface of the gel and the tip of the upper needle are all approximately

one third of the total gel length.

The results show that there is no pressure gradient along the filtration path, a clear

contradiction to the theoretical prediction! We initially suspected leakage along the side

of the needle probe. Nevertheless, the comparison of the flow rates with or without the

needle probe in position, as shown in Fig 8.9, convinced us that there was no leakage

alongside the needle. The leakage along the interior wall of the filtration cell was not
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likely since collagen gel was bounded to the wall even with Sigmacote.
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Fig 8.9 Comparison of flow rate for saline filtration through collagen

gels with or without the double-port needle probe in position. Collagen

gels used in the two tests were the same and were made according to the

procedure described in Section 8.1.1.

On the other hand, there are questions about the matrix stress term in the transport

equations. The general force balance equation on gel / saline mixture would give Eq.

(8.3) (Silberberg, 1989). Whereas the force balance on a one-dimensional slab of gel

/saline gives Eq. (8.4) (Silberberg, 1980).

dp do
dx dx= 0dx dx

137

(8.3)

0 0

0 With Probes
o Without Probes,.,,I ,,I,,f[

0



dp = d(OC)
dx dx

(8.4)

In our case, Eq. (8.3) and Eq. (8.4) differ very little because the deformation of the gel is

very small, as discussed in Section 8.1.1. Thus we may assume Eq. (8.4) holds. An

analysis depicted in Fig 8.10 with Eq (8.4) would lead to the conclusion of Eqs. (8.5).

Needle

P1

P2 ......
P2...........

Gel

Fig 8.10 Analysis of the pressure measurement of a needle probe in a

gel. The needle was filled with buffered saline and was connected to a

pressure transducer (PX142-2.5 BD 5v). The gel is the same as that used

in the filtration experiment described in Section 8.2. P1 and P3 are

values of local fluid pressure right above the gel in the saline at the

indicated positions, while P2 is the local fluid pressure inside the gel.
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pi -P2 = (~4)1 -( 0)2

P3 - P2 = (0a) 3 -(40)2 (8.5)

P3 - P2 +((4)2 pi

Eqs. (8.5) state that the needle probe can only measure the combination of the pressure

and the matrix stress, a "total pressure" which is constant everywhere inside the gel and

equal to the source pressure which drives the filtration.

If Eqs. (8.5) hold, they will have significant implications on variety of clinical tests. In

micro circulation studies, one occasionally measures the tissue fluid pressure (Intaglietta

and Tompkins, 1989; Fein, 1972; Wiederhielm et al, 1964). A device frequently used to

measure the tissue fluid pressure and the pressure inside gel filled micro cavities (Maepea

and Bill, 1989) is the Servo-Nulling Micropressure Monitor (Intaglietta and Tompkins,

1989; Fein, 1972; Wiederhielm et al, 1964). The applications of such instrument are also

found in more fundamental research such as transport through cell membranes (Intaglietta

and Tompkins, 1989). The main components of this apparatus are a highly sensitive

bridge circuit and a pressure probe known as microelectrode. The microelectrode is a

micropipette with a tip diameter of 0.5 to 5 microns filled with electrolyte solutions.

When the probe is placed into the tissue or gel filled cavities, the difference between the

sample pressure and the initial sensor chamber pressure displaces the electrolyte solution.

This displacement in turn switches on a servo to adjust the sensor chamber pressure until

an equilibrium in pressure is reached (Wiederhielm, 1964). Thus it is obvious that all the

discussions we have had for our needle measurement in gel is relevant to the

measurement made by the servo-nulling micropressure monitor. What people used to

believe to be the local fluid pressure measured by the instrument might actually be the
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"total pressure", not to mention the possibility of interfacial interaction between the tiny

micropipette and the tissue or the gel.

8.3 Measurement and Analysis of Driving Force Losses

Failing to measure any pressure gradient with the double-port needle probe in a gel, we

wanted to determine if we could measure a gradient in the driving force, p-r, as the

theory predicted. Filtration experiments were performed in the osmotic cell according to

the procedure described in Chapter Four. After the membrane resistance test, the

hydrostatic head test and the osmotic pressure test (with 0.05 g/ml albumin saline

solution), a collagen gel was made according to the procedure described in Section 8.1.

The filtration flow rate was measured and was the same as measured previously, within

experimental error of approximately 5 %. The p-l measurements were made at filtration

pressure of zero, 5 mmHg and 10 mmHg. The results are shown in Fig 8.11.
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Fig 8.11 Osmotic tap readings of p-n during saline filtration through a

collagen gel. Collagen gel was made as described in Section 8.1.1. Main

and tap membranes are pltk 30 (Millipore, MA).

All readings of the four osmotic probes stayed at zero when applied filtration head is

zero. Approximately one hour each time after the filtration head was raised, all readings

of the osmotic probes approached the same applied pressure. Once again the osmotic

taps fail to detect any gradient of the driving force, p-n. This result is not a surprise

considering the fact that a fully crosslinked gel acts as a membrane by itself. There

should not be any difference between the results obtained with a needle probe and those

obtained with an osmotic probe. However, the experimental data clearly contradict the

theory. As discussed in Section 8.1, we expect to detect a gradient in p-n. In fact the

filtration of saline through a collagen gel can be schematically shown in Fig 8.11.
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Fig 8.12 Analysis of the osmotic probe measurement during saline

filtration through a collagen gel. Positions 1 and 2 are inside the gel,

whereas positions 3 and 4 are inside osmotic taps which are separated

from the gel by tap membranes.

Applying the modified Darcy's law between point 1 and 2 gives

(P -X)1 -(p -) 2 = ? d >0
KA

Since there is no flow between point 1 and 3, and between points 2 and 4, we have,

again by the modified Darcy's law

P4 = (P - 1)2

Thus, according to the modified Darcy's law, we conclude the osmotic taps should

measure a gradient in p-ix as shown in Eq (8.9)
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P3> P4

Since the modified Darcy's law is an independent transport equation in addition to the

mechanical force balance equation for binary systems, this conclusion clearly revealed

that there is a discrepancy between the theory and the measurement.

8.4 Summary and Discussions

Experiments of saline filtration through a collagen gel have been carried out. The osmotic

pressure of the collagen gel and the filtration flow rate measured agree well with literature

data. The needle probe test revealed that there might be an interfacial interaction between

the needle and the collagen gel when the needle size is small. This interaction apparently

diminishes as the size of the needle increases. The measurement of the pressure and the

driving force distributions, however, revealed a contradiction between the theory and the

experimental data. Experimental errors are unlikely other than a possible leakage along

the interior wall of the filtration cell. Although direct experimental check of the leakage,

which may be very difficult to conduct, has not been performed, the visible binding of

the collagen gel to the wall suggests that it is very unlikely to have a significant leakage

along the wall. Another possible source of error is the effect of the surface curvature of

the gel. Due to gel binding at the side wall of the filtration cell and the gel deformation

under filtration, the top surface of the collagen gel is a downward convex during

experiment. The curvature of gel would cause flow non-uniformity. The horizontal

velocity caused by the non-uniformity alone, however, cannot explain the constant

pressure and constant p-n measured. The closest tap to the membrane surface, which is

approximately 2.5 mm away from the membrane surface in a gel with a length of
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approximately 2.0 cm, would still be able to detect a difference in p-7r, if there is any.

The experimental observations from the needle measurement and the osmotic cell

measurement of saline filtration through a collagen gel are significant and relevant to

important issues regarding clinical testing, microcirculation and other fundamental studies

involving transport through crosslinked macromolecular networks. Further studies are

called for in order to resolve the discrepancy between the theory and the experimental

observations. Regardless of the outcome, resolving this controversy would be very

exciting.
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Chapter 9

Conclusions, Discussions and Suggestions for
Future Studies

This thesis described a series of studies aimed at obtaining a better understanding of

transport in multi-component macromolecular networks, a phenomena widely found in

many biological and industrial processes. This was accomplished by establishing a

theoretical framework, developing experimental methods, and studying binary and

ternary macromolecular systems. The objective of this chapter is to summarize this

research project in a step-by-step manner, to discuss some remaining controversies, and

to suggest the direction of future studies.

9.1 A Theoretical Framework for Studying Transport through

Macro-molecular Networks

As discussed in Chapter One, current theories are based on linear phenomenological

equations, which is a fundamental set of empirical formula in non-equilibrium

thermodynamics. The phenomenological equations balance all actions and reactions on

each individual component and thus they describe the dynamics of each component.

Therefore, if a theory is intended to study the motion and the state of each individual

component, it is natural to use the phenomenological equations as the starting point. For

permeation through macromolecular systems, which typically have very low Reynolds

numbers, the linear phenomenological equations are an excellent approximation. The
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difficulties in applying linear phenomenological equations, however, rise from the fact

that they are empirical formulae involving formidable number of unknown coefficients

for multi-component systems, as we have discussed in Chapter Two. Transport

equations based on the phenomenological equations (Silberberg, 1980, 1989) were

adopted in this study, but they are incomplete and additional relations are required to

provide closure. A closure scheme based on equilibrium thermodynamics (with a local

equilibrium assumption), fluid mechanics, and experimentation has been proposed in

Chapter Three. The transport equations and the closure schemes we proposed provide a

theoretical framework for studying transport through macromolecular networks.

9.2 Experimental Studies of the Transport Phenomena

There are two purposes in conducting the experimental studies. First, to obtain additional

empirical relations required for the closure of the theoretical framework. Secondly, to

validate the theoretical framework developed in this research. The determination of

osmotic pressures is the focus of the first category. The filtration experiment, on the

other hand, was adopted for the purpose of validating the latter. By designing and

fabricating an osmotic cell, a filtration cell with side pressure and osmotic pressure taps,

we measured the filtration flow rate, the pressure and the osmotic pressure distribution

during filtration of saline through binary and ternary macromolecular solution and gels.

The theoretical framework and the experimental apparatus developed in this study

provided complete tools necessary for the study of transport through the macromolecular

networks.
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9.3 Observations, Discussions and Suggestions

9.3.1 Filtration through Solutions Retained by a Complete Rejecting

Membrane

(1) The measurement of pressure distribution during saline filtration through an

albumin layer confirmed the theoretical prediction that there is no pressure loss along the

filtration path, despite that the albumin layer generates enormous flow resistance (Chapter

Five). We also observed that:

(I) The surface-to-volume ratio of macromolecules is an important parameter

in deciding the filtration resistance of a macromolecular solution (Chapter Six).

(II) The interaction between macromolecular solutes in multi-component

mixtures retained by a completely rejecting membrane generally increases the flow

resistance (Chapter Seven).

Moreover, it is noted that in such filtration systems, it is the total mass rather than the

initial concentration of the macromolecular solute in the filtration system that determines

the filtration resistance and subsequently the flux. For example, bodily fluids transported

through tissues are usually mixtures of macromolecules. If for some reason the tissue

begins to retain solute over time, we would see a corresponding increase in filtration

resistance. In such macromolecular networks, a large filtration pressure difference has to

be applied across the network in order to maintain the original filtration flux.
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(2) The measurement of osmotic pressure of albumin solutions revealed that when the

osmotic pressure of a solution exceeds the vapor pressure of the solvent involved,

commercial osmometers based on the negative pressure method are not reliable (Chapter

Five).

(3) The distribution of the concentration, pressure and osmotic pressure, as well as

the filtration flow rate can all be determined by solving the transport equations. As

discussed in Chapter Five through Seven, theoretical solutions agree well with the

experimental data, indicating that the theoretical framework developed in this thesis is

applicable for filtration through multi-component macromolecular solutions.

(4) The analysis of the sedimentation process is described in Chapter Three for the

purpose of determining the frictional interaction between solutes. The analysis altered

our original belief that sedimentation experiments cannot reveal detailed aspects

concerning the filtration in macromolecular systems. By developing transport equations

for the sedimentation process, the effect of the chemical activities can be revealed from

the shape of the sedimenting front. Hence it would be fruitful for future studies to

explore the possibility of using sedimentation instead of the filtration experiments to

understand the transport phenomena.

(5) The future application of the modeling and the experimental method of the

unsteady osmosis developed in Chapter Four would be valuable. In many biological and

industrial systems, we would encounter processes where the potential is established

through a convective diffusion process.
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9.3.2 Mixture Filtration through a Partially Rejecting Membrane

(1) The determination of membrane rejection coefficients reveals that a size selective

membrane is more effective in blocking a globular molecule than in blocking a long chain

molecule.

(2) The flow rate, Q, increases with the increase of albumin concentration during the

mixture filtration through a partially rejecting membrane. It would be valuable for future

studies to verify the preliminary functional dependence of Q with the quantity (Apc2/c3)

as discussed in Section 7.3.

(3) It is also valuable to further verify the method, discussed in Sections 7.2, 7.4 and

7.5, of theoretically determining filtration flow rate Q in mixtures filtration through a

partially rejecting membrane.

9.3.3 Filtration through Collagen Gels

(1) In the process of using a needle probe to measure the pressure distribution during

saline filtration through a collagen gel, we discovered a possible needle-gel interation

which diminishes as the size of the probe increases. The damage to the gel due to the

movement of the needle also caused an artifact during the measurement. Experiments

revealed that a needle probe can only measure a constant pressure, which is the

combination of the local matrix stresses and the fluid pressure. The pressure

measurement is in contradiction with the theory. The experimental results may have

significant implications in the measurement of the tissue fluid pressure and the pressure
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inside micro-cavities by a servo-nulling micropressure monitor.

(2) The osmotic pressure measurement in the osmotic cell during saline filtration

through a collagen gel give constant p-n along the filtration path. This result again is in

contradiction with the theory. Further experiments are required to verify the experimental

results. An examination into the theoretical framework, especially when matrix stress is

involved, should also be conducted so that the discrepancy between the theory and the

experimental observations can be resolved.

To conclude this chapter, the most interesting future project would be to apply and to

further develop the methodology presented in this study to solve real world problems,

examples of which have been mentioned at the beginning of this thesis.
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