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Abstract
In this thesis, we address the tactical planning decision problem of ingot sizing in an
aluminum sheet manufacturing facility. Ingots used for sheet manufacturing are made-to-
stock, and used when necessary, to satisfy customer demands. The facility produces large
ingots to exploit economies of scale in ingot casting, but customers order products
frequently, and in small quantities. In this situation, the facility's current practice of
dedicating an ingot to each order generates large amounts of scrap and increases
processing costs. To prevent this, the facility is considering an alternate strategy of
combining more than one order for production on a single ingot.

When we permit multiple orders to be jointly produced from the same ingot, what
standard ingot sizes should the facility produce, and which orders should be combined to
minimize total scrap? We group similar orders over a long planning horizon into one
product. Given the forecast demand for each product, a set of candidate ingot sizes, and
a set of feasible product combinations, we need to determine the standard set of ingot
sizes, and the number of times each product combination is produced on the standard
ingots to minimize total scrap, while satisfying demand for all products.

We formulate the ingot sizing problem as an integer program, and develop an efficient
solution procedure. The solution procedure consists of dual ascent to obtain lower
bounds, and two heuristics to provide good feasible solutions. We have implemented the
dual ascent procedure and the heuristics, and tested them with data on actual orders
received at a leading aluminum sheet manufacturing facility.

Our computational results indicate that the solutions obtained by the dual ascent and
heuristic procedures are within 4% of optimality on an average. For the alloy that we
studied, a comparison of the proposed set of standard sizes with the current set of ingots
suggests that the proposed solution could reduce total scrap by an average of 9.5%. The
reduction in total scrap could result in savings of up to $100,000 annually in scrap
reprocessing and ingot casting costs.

Thesis Supervisor: Anantaram Balakrishnan
Title: Associate Professor, Sloan School of Management
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Chapter 1

Introduction

1.1 Problem Motivation

This thesis addresses a tactical planning decision problem in a make-to-order

aluminum rolling facility. The facility manufactures sheet and plate products to customer

specifications. Traditionally, the facility has treated each order independently, and assigned

a customized ingot for each order, thus minimizing the total scrap during the process. But

over the past few years, the company has upgraded its rolling facility and can now produce,

large size ingots in order to exploit economies of scale at the ingot casting stage. On the

other hand, with an increase in the emphasis for just-in-time production, customers are

ordering products more frequently, and in smaller quantities. In this situation, the previous

practice of dedicating an ingot to a single order is uneconomical, since the facility could

very well be using a 10,000 pound ingot for a customer order of 4,000 pounds. The

remaining 6,000 pounds have to be either scrapped or stored in intermediate inventory. As

a result, the facility would have to incur additional cost in scrap reprocessing or holding

intermediate inventory.

In this situation, the plant is considering an alternate strategy of combining more

than one order for production on a single ingot (Ventola [1992] and Gopalan [1992]). This

strategy allows multiple orders to be combined on a single ingot, and allows the plant to

exploit its production capabilities while reducing excess scrap or intermediate inventory.
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Each order specifies the alloy, temper, width, thickness or gauge, and weight of the sheet

product that the customer requires. Different orders can be combined within certain

processing limits. Gopalan [1992] has shown that combining order can increase profits by

hundreds of thousands of dollars per annum for just a single alloy type.

This thesis addresses the following tactical planning decision: when we permit a

facility to jointly produce multiple orders from the same ingot, what standard ingot sizes

should the facility produce, and which orders should be combined to optimize

performance? Selecting "good" ingot sizes is important for several reasons. The facility

makes ingots to stock, and satisfies customer orders from the stocked ingots. Changing

ingot sizes requires considerable capital investment, and hence cannot be done frequently.

Moreover, maintaining a large number of ingot sizes in stock increases inventory and

material handling costs, and creates logistical problems (Vasko et al. [1989]). Hence, the

facility can only maintain a small number (relative to the number of orders received) of

ingot sizes in stock. Simulation experiments by Gopalan [1992] show that economic

benefit from order combination is very sensitive to the ingot sizes.

1.2 Outline of Thesis

The objective of this thesis is to model the ingot sizing problem and develop an

efficient solution procedure for this problem. The input to the problem is the physical

characteristics and forecast demand over the planning horizon for each product type, a

limited set of candidate ingot sizes, and the set of feasible product combinations. Given

this data, we need to choose a set of a prespecified number of ingots and determine the

optimal combination of orders to minimize total production and scrap reprocessing cost,

while satisfying demand for all products.
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We formulate the ingot sizing problem as an integer program. Since all costs are

proportional to the weight of the ingot used, we minimize the total weight of all ingots used

to satisfy demand for all products. The desired output is the set of standard ingot sizes and

the optimal order combinations. The assumptions and approximations we make are

explained in detail in chapter 2. We also discuss two special cases of the ingot sizing

problem.

We have developed an efficient solution procedure using a dual ascent method and

some heuristics. We use the dual ascent procedure to generate a lower bound as well as a

heuristic solution for the problem. We have also developed two stand-alone heuristics to

obtain good feasible solutions for the problem. Both the heuristics are greedy, and select

ingots based on either the total order weight covered by an ingot, or the weight of order

combinations. We have implemented the dual ascent procedure and heuristics, and tested

them using data on actual orders received, and actual processing constraints at a leading

aluminum sheet manufacturing company. We also use our model to perform sensitivity

analyses related to width constraints, and the number of standard ingot sizes allowed.

This thesis focuses on an important practical problem facing an aluminum rolling

facility. The problem addresses the issue of ingot sizing with order combination. The

current literature either focuses on the sizing problem or the order combination problem.

We have developed and tested an efficient solution procedure for solving the problem.

Our computational results indicate that the solution procedure is quite effective (within 4%

of optimality on an average) and, that the set of ingots suggested by the solution procedure

reduces the total scrap by an average of 9.5% over the current set of ingots used by the

manufacturing facility. For the alloy that we studied, the total reduction in scrap could

result in savings of up to $100,000 annually.
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1.3 Organization of Thesis

The remainder of the thesis is organized as follows. Chapter 2 describes the

manufacturing process and the order combination process in detail. This chapter defines

the ingot sizing problem, develops a mathematical formulation of the problem, and

discusses a few interesting special cases. We also present a review of relevant literature in

this chapter. Chapter 3 describes the dual ascent procedure and the heuristics in detail.

Chapter 4 describes the input data analysis, and reports the computational results for the

dual ascent and heuristic procedures. Finally, Chapter 5 provides conclusions and

directions for future work.
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Chapter 2

Problem Definition and Formulation

In this chapter, we first describe the aluminum sheet manufacturing process and the

processing constraints of order combination. We then present the ingot sizing problem

description and the modeling assumptions. Next, we develop a mathematical model of the

problem, and discuss a few special cases of the problem. Finally, we discuss the relevant

literature.

2.1 Process Description

This section describes the sheet manufacturing process at the aluminum rolling

facility we studied. The sheet manufacturing process consists of five main stages: ingot

casting, hot rolling, cold rolling, heat treatment, and finishing operations. Figure 1 depicts

the various stages in the process flow. In the first stage, aluminum in the form of pure

metal and scrap is cast into rectangular ingots. In this facility, ingot casting is a make-to-

stock production process. The cast ingots are then "scalped" to provide a smooth uniform

surface for the rolling operation. During the scalping process, a fixed depth of aluminum is

removed off the top and bottom faces of the ingot. The scalped ingots are heated to the

temperature required for the hot rolling operation. The hot rolling station consists of

several rolling mills in series, that successively reduce the thickness of the ingot. The ingot

comes off the hot rolling mills as a coiled sheet. The hot rolling operation can produce

large reduction in the thickness of an ingot, but cannot maintain tight dimensional
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Figure 1. Sheet Manufacturing Process
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tolerances. So, the sheet of metal next goes through a cold rolling operation, that further

reduces the thickness of the product. Some of the cold mills can change gauge on the fly

within certain ranges. On these cold mills, we can dynamically adjust the spacing between

the rollers while processing a coil to produce sheets with different gauges (within certain

ranges) from the same coil. This allows us to process two orders as a single one until the

last phase of the cold rolling stage, and is one of the processing flexibilities which makes

order combination a feasible strategy. Cold rolling is followed by heat treatment and

finishing operations (Balakrishnan, [1993]).

2.2 Problem Context

Figure 2 shows the hierarchy of decisions involved in production planning for

metal sheet manufacturing. When a sheet manufacturing company has more than one plant

where it can make ingots and final products, it must decide how to allocate ingot and sheet

production to various plants to utilize capacities effectively while meeting customer

requirements at minimum total production and transportation cost. Therefore, at the long

term planning stage, we would decide which plants would produce what size of ingots,

given the production costs and capacities at the various plants, the forecasted customer

demands, and transportation costs between plants, and between customers and plants. The

goal is to minimize total production and distribution costs, and the decision serves as an

input to the medium term planning problem.

Given the long term decisions for each plant that produces ingots, we have the set

of products whose demands must be satisfied from the ingots in stock at that plant. Given

the forecasted demand for these products, and the set of available candidate ingot sizes, the

medium term planning problem decides the standard ingot sizes to stock, assuming that the

facility can produce more than one order using a single ingot. The objective at this stage
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Figure 2. Hierarchy of Decisions
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is to minimize the total production and scrap processing cost. For the short term planning

problem, we have the actual set of orders to be processed during the planning horizon and

the standard ingots. We must decide which specific orders to combine to optimize system

performance (minimize total cost or maximize revenue from satisfied demand).

We focus on the medium term ingot sizing problem, assuming that multiple orders

can be jointly produced from the same ingot. We first describe the constraints and

requirements for combining two orders for production on the same ingot in Section 2.3,

and then define the ingot sizing problem and discuss the assumptions in Section 2.4.

2.3 Order Combination Process

Planners at the facility that we studied indicated that combining more than two or

three orders on an ingot requires many special instructions to operators, and poses

challenging operational problems (Balakrishnan, [1993]). Moreover, combining more than

two or three orders on an ingot increases the number of orders that need expediting, if the

entire ingot has to be scrapped due to defects. Hence, we assume that at most two orders

can be combined on an ingot. Given the set of orders, not all pairs of orders can be

combined. They must meet certain processing constraints that limit the maximum

differences in gauges, and we must be able to process them as a single job until the final

phase of cold rolling. The processing path for each combination describes the various

steps in the actual processing of that combination - the ingot used, the amount of reduction

at the hot line, the number of passes at the cold mills, and finishing operation

specifications. Order combination tries to group orders that share a common processing

path until the final pass at the cold mill, and require the same alloy.
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During the final pass at the cold mill, the difference in gauges achievable, by

changing the spacing between the rollers, is limited. Hence, we can only combine orders

whose gauges are compatible, i.e., the minimum and maximum gauge in a combination

must not differ by more than a prespecified value. This maximum gauge differential

depends on the final finished gauges of the combined orders. For each alloy, the facility

has determined a set of intervals of gauges which can be used as a guideline to combine

orders. Table 1 shows a representative for an alloy that we studied. The table has nine

different overlapping intervals, each of which has its own characteristic processing path.

All orders on a single ingot must have gauges that are in one of the nine intervals, and the

width of each order must be less than or equal to the width specified in that interval.

We pick the order with the minimum gauge and identify the intervals into which this

gauge falls. If the gauge of the other order is less than or equal to the thickest order gauge

requirement on one of the intervals, and both orders have width less than or equal to the

maximum cold mill entry width for that interval, then we can combine them. Suppose we

have an order of width 48 inches and gauge 0.080 and another order of width 54 inches

and gauge 0.250. We pick the thinner order and see that it satisfies gauge and width

requirements on intervals 2, 4, and 5. Now the thicker order does not satisfy gauge

requirement of intervals 2 and 5, but satisfies the requirements of interval 4. Hence, we

can combine the two orders.

A combination that satisfies the maximum gauge differential is feasible only if it can

be produced on one of the available ingots. We refer to the gross ingot weight minus

planned and unplanned scrap as the final recovered weight. A pair of orders can be

produced using an ingot if the total weight of the two orders is less than or equal to the

weight of the ingot after planned and unplanned scrap. The planned scrap consists of the

following: a certain percentage of the total weight removed during scalping, a fixed depth (a
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few inches) along the length of the ingot on either side (side trim), and a fixed amount

along the width of ingot (head and tail scrap). Given the set of available ingot sizes, for

each possible combination of orders, we can determine the set of ingots that can process the

combination. If none of the available ingots can process the combination, the combination

is not feasible. Figure 3 shows the various steps involved in the order combination

process.

For each feasible combination, the planner chooses an ingot whose width exceeds

the width of the order (including the necessary side trim), and whose recovered weight

after scalping and head and tail scrap removal is greater than or equal to the weight of the

order. The planner then decides the hot line exit gauge, which helps decide the reduction

required at each hot rolling station. He finally determines the number of cold mill passes

required to achieve the final required gauge, and assigns the combination for processing.

For a detailed discussion of the costs and benefits of order combination, see Ventola [1991]

and Balakrishnan and Brown [1992].

2.4 Problem Definition and Assumptions

We have focused thus far on the short term planning problem and described the

various aspects of order combination. We will now define the higher level planning

decision of choosing the standard ingots and the optimal order combinations.

2.4.1 Problem Definition

Customers place orders for sheets of a particular alloy, temper, gauge, width, and

weight. Similar orders might be placed several times over a long planning horizon, say one

year. We define a product as a collection of similar orders. Thus each product is

20



Table 1. Gauge Combination Table

* The numbers have been disguised to preserve confidentially of data.

21

Processing Finish gauge for Maximum Finish gauge
path thinnest order cold mill for thickest

entry width order
> < <

1 0.039* 0.071 60 0.229

2 0.071 0.082 60 0.229

3 0.082 0.229 60 0.229

4 0.071 0.114 75 0.257

5 0.071 0.157 75 0.214

6 0.157 0.214 75 0.286

7 0.214 0.286 75 0.357

8 0.286 0.357 75 0.450

9 0.357 0.500 75 0.500



Figure 3. Rules for the Order Combination Process
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characterized by its temper, gauge, width, weight, and frequency. The frequency of the

product corresponds to the number of times the product is demanded over the year or

equivalently, the number of orders grouped under the product type. In order to define the

ingot sizing problem formally, we first describe the inputs to the model. We are given

the following input data:

· Forecast demand for each product over the planning horizon.

* The set of candidate ingot sizes. Each ingot size is characterized by its weight,

width, and length. We consider only the width and weight of the ingots. We

assume that the planner specifies a discrete set of candidate sizes in the range of

possible sizes that the ingot plant can produce. The actual choice of candidate sizes

depends on the width and demand of the products. We need to choose a set of

candidate sizes that can produces all the products. We choose candidate widths and

weights in proportion to the widths and weights of the products.

* The set of feasible order combinations, based on order combination rules and

constraints described in the Section 2.3. We assume that at most two orders can be

combined on an ingot.

· The maximum number of standard sizes, p, that we can choose. Several factors

such as, storage capacity, ease of tracking inventory, scrap reprocessing costs, and

inventory costs play a role in determining this number. The higher the value for p,

the lower the scrap will be. However, an increase in the number of stock sizes

results in higher inventory costs and more detailed inventory tracking systems. We

do not incorporate the inventory costs in our model.

The ingot sizing problem chooses a subset of p or less candidate ingots as standard

ingots, and the number of times a product combination is produced on a standard ingot, to

satisfy demand for all products at the minimum total processing and scrap reprocessing
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costs. The processing cost is the sum of the operating cost (equipment and labor) at each

station for all the processed ingots. The scrap reprocessing cost consists of the ingot

casting and melting cost for the total amount of scrap. Since all the costs that we use here

are proportional to the number of pounds of metal rolled, we use the total weight of the

ingots used to satisfy demand, as a surrogate for the costs.

The ingot sizing decision decomposes by alloy, since finished products of a

particular alloy have to be produced from an ingot of the same alloy. Only certain tempers

of an alloy can be combined since they have similar processing paths up to the final pass of

cold rolling. Thus, we have to solve the ingot sizing problem for each alloy and group of

tempers that can be combined together.

2.4.2 Modeling Assumptions

The input data for the ingot sizing problem consists of forecast demand for the

products. For a particular realization of demand, two products that must be combined

might not occur simultaneously. For example, the solution to the ingot sizing problem

might suggest that product A (frequency = 2) and product B (frequency = 2) must be

combined twice. However, if demand for product A occurs during months 1 and 2 and for

product B during months 4 and 5, then we cannot combine them. In this case, we would

have to choose an alternate combination. Hence, there is some loss of generality in not

considering the due dates explicitly for each order in a product. However, if product

frequencies are relatively high, then we can assume that two products that have to be

combined, occur together most of the time.

We have mentioned that during the order combination process, orders can be

combined only based on the limits given by Table 1. Also, it is advantageous to combine
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orders of similar widths, since this would minimize scrap. Though the objective function

would minimize trim loss, and hence combine orders whose widths are comparable, we

explicitly limit the difference in the widths of orders combined to a pre-specified maximum

width differential. This also reduces the number of feasible combinations, and the problem

is easier to solve.

2.5 Model Formulation

The ingot sizing problem can be formulated as an integer program as follows. We

first provide the required definitions.

I = set of products

K = set of candidate ingots

J(i) = set of all products with which product i can be combined

IJ(k) = set of all feasible combinations on ingot k

A combination is a pair (ij) and without loss of generality, we assume

that i < j for all combinations. Combination (i,i) denotes producing two

orders of product i. A combination can contain just one unit of a product,

to allow dedication of an ingot to an order. In this case, we denote the

combination as (i,O).

K(i,j) = set of ingots which can produce combination (i,j), i < j, i.e., set of

ingots for which maximum width of the two products + side trim <

width of ingot, and total weight of products < recovered weight of ingot.

Given the width, weight, and gauge of all the products, and the width and weight of the

candidate ingots, we first determine the feasible combinations for each ingot using the order

combination rules explained in Section 2.3. The actual parameters used by the ingot sizing

model are:
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wk = weight of ingot k,

fi = frequency (total demand) of product i (as number of orders for

product i ),

p = maximum number of standard ingots, and

iji = min {fi, fj}.

The decision variables are:

Yijk = number of times the combination (ij) will be produced during the year

using ingot k, and

[1 if ingot k is chosen, and

Zk = 10 otherwise.

We want to minimize the total weight of the ingots used to satisfy demand for all the

orders. The ingot sizing model can be formulated as follows:

(ISP) Min E C Wk Yijk (2.1)
k e K (i,j) E U(k)

subject to:

Demand constraints

2* I Yiik + E E Yijk > fi for allie I (2.2)
k e K(i,i) j E J(i)k E K(i,j)

Forcing constraints

Yijk ij Zk for all (i,j) E U(k),
k K (2.3)

p-median constraint

z k < p (2.4)

Integrality constraints
Yijk E {0,1,2,...} for all (i,j) e IJ(k),

zk E {0,1} k e K (2.5)
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The objective function (2.1) is the total weight of all the ingots used to satisfy the

total demand for all orders. Constraint (2.2) requires that the demand for each product be

completely satisfied. The forcing constraint (2.3) ensures that two products i, j are

combined on an ingot k, only if ingot k is a standard ingot, and the number of times the

two products are combined is less than or equal to the minimum of the demands of the two

products. When we combine products i and j, we have to make sure that we do not

combine them more often than necessary. The p-median constraint (2.4) restricts the

number of chosen ingots to less than or equal to the prespecified value p. We can vary the

value of p parametrically to determine the number of standard ingots to produce, to

minimize scrap and inventory costs. The higher the value for p, the lower the scrap will

be. However, an increase in the number of stock sizes results in higher inventory costs.

We do not incorporate the inventory costs in our model. But we can solve the ISP for

different values of p, and let the planner select the best value of p by weighing the reduced

scrap against the increase in inventory cost and inventory tracking efforts.

We next show that when we dedicate ingots to orders, [ISP] reduces to the p-

median location problem which is NP-complete (Garey and Johnson [1979]). We also

show that when the set of standard sizes are given, the problem of determining the optimal

product combinations can be solved as a non-bipartite matching problem.

2.5.1 Special Cases

Ingots Dedicated to Orders

If we allow only one order per ingot, then the ingot sizing problem reduces to a p-

median location problem. In this case we always satisfy demand for a product from the
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same ingot, whereas in (ISP) we might satisfy demand for a product using more than one

ingot. For this special case, we would incorporate the frequency of the orders into the

objective function, and determine the assignment of orders to the subset of selected ingots.

The model for the special case can be represented as follows. Let

K(i) = set of ingots that can satisfy demand for product i

Cik = fi Wk

The decision variable Yik is defined as

1 if ingot k satisfies demand for product i

Yik = lotherwise

The remaining parameters and decision variables are as defined in [ISP]. The formulation

of the special case is as follows.

(ISP-SC) Min Cik Yik (2.6)
i I k E K(i)

subject to :

Assignment constraints

CYik = 1 forall i I (2.7)
k e K(i)

Forcing constraints

Yik < Zk for all i I,
k K(i) (2.8)

p-median constraint

EZk < P (2.9)
keK

Integrality constraints
Zk E {O, 1} foralli eI,

Yik E {0, 1 k K(i) (2.10)
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This is a standard p-median location problem and to solve this problem, we can use any of

the specialized p-median algorithms. (See Mirchandani and Francis [1990] for a review of

p-median solution algorithms.)

Determining Optimal Combinations

When we are given the set of standard ingots to be maintained in stock, then the

determination of the Yijk values can be solved as a non-bipartite matching problem

(Papadimitriou and Steiglitz, [1982]). Note that this is a special of [ISP], where the

number of candidate ingot sizes is equal to the number of required standard sizes. Given

the set of standard ingots, we can determine a priori the ingot to be used for each possible

combination: this is the lowest weight feasible ingot. We can also determine if combining

an order with itself (if it is feasible) is more economical than assigning a dedicated ingot to

each of the two orders. Given these cost parameters, we can the transform to the matching

problem as follows. We refer to the example in Figure 4 to explain this transformation.

For each product i with frequency fi, we create fi nodes in the graph. If products i and j

can be combined at a cost of Wk, then from each node corresponding to product i, we add

an edge to each node corresponding to product j, at a cost of Wk. For example, in Figure

4, we create three nodes corresponding to product 1 which has a frequency of three, and

two nodes for product 2. Since combination (1,2) is feasible and the cost is w2, we add

two edges from each node of product 1 to the nodes corresponding to product 2 with a cost

of w2 .

For all products with fi equal to 1, we add a dummy node with a cost of the

corresponding edge equal to the cost of dedicating an ingot to product i. If the frequency of

product i is greater than 1, and it is more economical to combine two orders of this product

than dedicating it to an ingot, then we just add one dummy node. On the other hand, if it is
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better to dedicate ingots to product i, we add fi dummy nodes and connect one to each one

of the nodes corresponding to order i. Note that in the example one dummy node for

product 1, since combining two orders is better than dedication. On the other hand, we add

two different dummy nodes for product 2. All the dummy nodes are connected with each

other at a cost of 0. A minimum cost matching on this non-bipartite graph produces a

solution to (ISP) when the standard sizes are given. We use this transformation to solve

the sub problem of determining the Yijk values in our solution procedure. An arc (i,j) in

the matching solution indicates that we combine the product corresponding to node i and

the product corresponding to node j once.

We can reduce the number of arcs in the graph by making the following

simplification. Assume order i can be combined with orders j and k. We sort orders j and

k in ascending order of their frequencies. Let j be the first node and k the second in the

sorted list. Then each node corresponding to order j is connected to min fi, f j ) nodes

corresponding to order i, and each node of order k is connected to min { fi, f j + fk } nodes

corresponding to order i. This simplification will be useful when we have a few orders

with very large frequencies and the remaining orders with relatively smaller frequencies.

2.6 Related Literature

We have described the ingot sizing problem and formulated it as an integer

program. Now, we discuss some of the relevant literature and the unique features of the

ingot sizing problem. We first present an actual application in a steel manufacturing

facility. We then describe two closely related problems and, the similarities and differences

between these problems and the ingot sizing problem. Vasko et al. [1986, 1987, 1989]

describe an actual application of a set covering approach for choosing an optimal set of

ingot sizes for Bethlehem steel. Although developed for the steel industry, their model
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Figure 4. Matching Transformation

Products:

Frequency:

Combining 2 orders
of product better than
dedication?

Feasible Combinations:

Cost:

1 2 3

3 2 1

Yes No --

(1,1) (1,2) (1,3) (2,3) (1,0) (2,0) (3,0)

W1 W2 W2 W3 W1 W2 W3
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shares with our model features such as generating feasible assignments of orders to ingots

based upon processing constraints. The main difference is that they allow only one order

on an ingot, and do not consider frequencies of the products. In other words, frequency

for all products is 1. Thus their model is a special case of the ingot sizing problem. They

do not explicitly impose the restriction of selecting at most p standard sizes. Given a set of

products, and set of ingots, they determine the set of standard ingots and the assignment of

products to ingots, to minimize the number of standard sizes, and the total yield loss from

assigning orders to ingots as a secondary objective. They use a set covering heuristic to

solve the problem and report that the results have produced millions of dollars in savings

for the company. They define "inflexible" orders as orders that can be satisfied by only a

few ingots. The heuristic initially selects ingots to cover as many inflexible orders as

possible, and then switches to selecting ingots that can cover as many orders as possible.

Further, they also use neighborhood search to locally improve the solution.

The cutting stock problem, which is common in glass, paper, and steel bar

manufacturing, is similar to the ingot sizing problem in some ways. In the cutting stock

problem, large sheets or rolls are maintained in intermediate inventory and they are cut to

size to satisfy customer demands. Here, all the final products have the same quality and

differ only in their dimensions. So the problem reduces to determining the best patterns to

use to minimize scrap. In the ingot sizing problem, in addition to combining final products

of varying quality (such as temper), we have the additional decision of selecting the optimal

stock sizes. The generation of feasible combinations is similar to the generation of feasible

patterns for the cutting stock problem.

Gilmore and Gomory [1961, 1963] have used a column generation approach to

solve the linear programming formulation of the one dimensional cutting stock problem.

They have also presented a solution approach for the two dimensional problem which is
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based on the one-dimensional technique (Gilmore and Gomory, [1965]). Many researches

have addressed the single and multi-dimensional cutting stock problems. Most of the work

deals with determining optimal cutting patterns for a given set of stock sizes. (Christofides

and Whitlock [1977], Goulimis [1990], Stadler [1990], Wang [1983]). A few articles

(Chambers and Dyson [1976], Beasley [1985], and Farley [1990]) examine the question of

optimal dimensions for the fixed stocked sizes, and the optimum number of stocked sizes.

Chambers and Dyson [1976] address a two-dimensional cutting stock problem with stock

size selection. They develop a two stage heuristic algorithm, where they first decide the

single best width to stock during the first stage. In the second stage, they determine the k

best lengths for the selected width. Beasley [1985] presents a two stage heuristic algorithm

for the deciding the best stock sizes of rectangular plates and the best cutting patterns for

each of these plates. These papers consider frequency of the products, but the solution

procedure is different from the solution procedure for ISP. Beasley [1985] determines the

cutting patterns first, and selects the stock sizes which are used the maximum number of

times in the cutting patterns. Dyson [1976] allow only one width for the set of standard

sizes.

The assortment problem deals with selecting the best sizes to stock from a give

set of sizes, in order to satisfy demand for all products at a minimum cost. In this problem,

only one final product is obtained from a standard size. So this model does not deal with

the order combination issues addresses in our ingot sizing problem. Given a set of

products with known demands, Wolfson [1965] uses a dynamic programming approach to

select the best lengths to stock to minimize scrap costs incurred while satisfying demand for

sizes not in stock from the standard sizes. An important property of the solution which

facilitates the use of dynamic programming is that all products (including the stocked sizes)

can be ordered based on the single dimension with which we are dealing, and demand for

any unstocked size is satisfied from the closest stocked size. This property does not hold
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for the ingot sizing problem since we allow one unit of the stocked size to satisfy demand

for more than one product. Pentico [1976] extends the work of Wolfson to the case with

probabilistic demand for the products. Pentico [1988] has also developed heuristic

procedures for the two dimensional assortment problem. In the two dimensional problem

also, one unit of a stocked size can satisfy demand for only one unit of any product. We

once again highlight the fact that while the problems presented here have a lot of similarities

to the ingot sizing problem, they also have distinct differences, which makes it worthwhile

to study the ingot sizing problem.

In this chapter, we have provided a description of the metal sheet production

process and order combination. Next we defined the ingot sizing problem and stated the

assumptions of our model. We have also developed a mathematical formulation of the

ingot sizing problem and presented two special cases of the problem. Finally, we have

discussed some of the relevant literature and highlighted the similarities and differences to

the ingot sizing problem.
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Chapter 3

Dual Ascent Procedure and Heuristics

This chapter describes a solution procedure for the ingot sizing problem. The

solution procedure that we have developed uses a combination of dual ascent to generate

lower bounds and heuristic methods to generate good solutions to the problem. We have

developed an optimization-based approach that heuristically solves the dual problem and

generates lower bounds and heuristic solutions. We next describe the dual ascent

procedure.

3.1 Dual Ascent Procedure

In order to generate lower bounds, we approximately solve the dual of the linear

programming relaxation of [ISP] using dual ascent. We use dual variable ui for the

demand constraint (2.2) of [ISP], dual variables vijk for the forcing constraints (2.3), and

the variable a for the p-median constraint (2.5). The dual problem can be written as

follows:

[DISP] Max E fiui - pa (3.1)
i I-{O}

subject to:

i + j - Vijk Wk for all (i,j) E IJ(k),
k K (3.2)
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X ijvik - a
(i,j) U(k)

ui > O, Vijk 2 O, a 0

0 for all k e K, and (3.3)

for all (i,j) E IJ(k),

k K (3.4)

The set U(k) includes combinations (i,i) also. For combinations of type (i,i), equation

(3.2) reduces to
2 ui - viik < wk for all (i,i) e U(k),

keK (3.5)

3.1.1 Lower Bound for [ISP]

The objective value of [DISP] is a lower bound for the ingot sizing problem. We

start with an initial solution for the dual problem and try to improve it iteratively, to obtain a

good lower bound. We next describe the method to construct the initial solution to the dual

problem.

Initialization

We construct the initial dual solution using the following greedy method. We start

with vijk = 0 for all (i,j) E U(k), and k E K, and a = 0. We note that ui = for all

i I is a feasible dual solution, but we want to start with better starting values for the u i

variables. Having fixed the value of the vij variables at 0, inequalities (3.2) reduce to:

ui + uj < w k for all (i, j) E IJ(k),

k K (3.6)

For each feasible combination (i,j), define

8i
min

k U(k)[w]
(3.7)
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i.e., aij is the minimum weight ingot on which combination (ij) is feasible. Then,

inequalities (3.5) reduce to

u i + Uj < aij for all orders (ij) that
can be combined (3.8)

The initialization procedure is greedy and tries to increase ui as much as possible in

each iteration. Starting with ui = 0 for all products, we iteratively increase one u value at a

time using the following procedure. We first increase the dual variable u i corresponding to

the product i with the maximum frequency fi, since this variable has the maximum dual

objective function coefficient. We set this variable equal to its possible maximum value by

checking inequalities (3.8) which contain this dual variable. Having fixed the first variable,

we pick the dual variable corresponding to the second most frequent product and repeat the

procedure. The procedure can be expressed formally as follows.

Step 1: Index the products from 1 to n in the descending order of their frequencies,

i.e., f > f2 ... > fn. Let (ul,u2,...,U n) be the dual variables

corresponding to the indexed list of products. Initially, ui = 0 for all i, and

the objective value = 0.

Step 2: Set m = 1.

For all j E J(m), we have constraints of the type um < Bmj - uj. If the

combination (m,m) is feasible on some ingot, then we have an additional

constraint of the type 2um < m . Note that mj is the minimum weight

ingot on which combination (mj) is feasible. Now, set

~u = Min[ J(m)[imj - uj], a ]In j e J(m) 2jU] _~
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Step 3: Increase the objective function value by fmUm. Set m = m+l, and go to

step 2 if m is less than or equal to n.

The initial lower bound is the objective value of the dual with the initial values of the

variables. Next, we try to increase the lower bound using dual ascent techniques.

3.1.2 Dual Ascent Techniques

Dual ascent refers to a broad class of heuristic strategies to iteratively change the

values of the dual multipliers in an effort to monotonically improve the dual lower bound.

Several authors have successfully used this technique to obtain very good bounds for hard

problems. Erlenkotter [1978] has applied dual ascent to the uncapacitated facility location

problem, and Fisher and Kedia [1990] have applied it to the set packing problem. Two

other successful applications of dual ascent include Balakrishnan, Magnanti, and Wong

[1989] for the network design problem, and Wong [1984] for the Steiner tree problem.

We use two heuristic adjustment techniques to increase the lower bound. The first

technique attempts to increase the value of one vijk at a time, and the second increases the

values of two vijk simultaneously, if possible.

Increasing one dual variable at a time

We now describe the first procedure to increase the dual objective by increasing one

Vijk at a time. Increasing vijk permits us to increase u-values and hence the dual objective

value; but a might also need to increase to satisfy constraints (3.3), reducing the objective

value. So, we must judiciously select the vijk value that produces a net increase in the

objective function value. In this procedure, we pick a vijk variable to increase, and

calculate the net change in the objective function if we increase the vijk variable by A units.

We evaluate this change for all vijk variables, and increase the variable that results in the
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maximum increase in the objective function. The changes in the vijk variables are directly

related to changes in the ui variables, and hence we develop a procedure to keep track of

the changes and determine the best candidate for increase.

We can potentially increase the value of the objective function only if we increase a

vijk on a tight constraint (3.2). When we increase vijk on a tight constraint (3.2), we have

to increase either ui or uj to maintain feasibility of the dual solution. This might increase

the value of the objective function. On the other hand, if we increase vijk on a constraint

(3.2) that is not tight, we do not affect feasibility of the dual solution and hence we do not

have to increase the u-values. Hence, we try to increase vigi for some constraint (3.2)

which is tight. We use the following set definitions to describe the procedure.

A = set of tight constraints in (3.2). This set consists of triplets (i,j,k).

B = set of tight constraint in (3.3)

T(i) = {j (i,j,k) e T1i, i.e., the set of products that can be combined with

product i, and the constraint (3.2) for this combination is tight for

some ingot k. T(i) does not contain i, if (i,i) is a feasible

combination and (i,i,k) e T1 for some ingot k. This set consists of

values for j.

NT(i) = {(j, k) (i,j,k) T1}, i.e., the set of products that can be combined

with product i, and the constraint (3.2) for this combination is not

tight for any ingot k. This set consists of pairs (j,k).

During the first phase of the dual ascent, we want to increase only one vijk variable

at a time. So, we pick a feasible combination (ij) for which only one constraint in (3.2) is

tight. If we increase this vijk variable by A units, then can increase either ui or uj by A

units. By increasing u i or uj by A units, we contribute fi A or fj A to the objective

function. We would profit most by increasing the ui corresponding to the product with the
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higher frequency among products i and j. Let us assume that fi > fj, and so we wish to

increase ui by A units. If i = j in the combination that we choose, then we can only

increase ui by A /2 units.

Now, for every unit of increase in ui , every um T(i) must decrease by A units.

If any urn value is equal to 0, we cannot increase vijk without increasing vimk also. But

we might be able to increase uj instead of ui. If the value of any um E T(j) is also equal

to 0, then we do not consider this ijk as a candidate for increase, since we are increasing

only one vijk during this ascent phase. If on the other hand, if um > 0 for all m E T(i) or

T(j), then we can increase vijk . WLOG, assume that we are increasing u i. Thus, the net

contribution from all the u values to the objective function, due an increase of vijk by A

units is

Aijk = fi- fm A (39)
m e T(i)

maj

The dual variable we are increasing, viik, corresponds to combination (ij) on ingot

k. If k E B, i.e., the constraint (3.3) corresponding to this ingot is tight, then the increase

in vijk will increase the value of a by min {fi, fj} A. This contributes to the net change

in the objective function too. Hence, if k e B,

Aijk = fi- I fm A - Xij pA (3.10)Aijik I (3.10)
mrnE T(i)

If the net change, Aijk, in the objective function given by (3.9) or (3.10) is greater than 0,

then we can increase the lower bound by increasing viik. If it is less than or equal to 0,
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then it is not advantageous to increase Viik . The actual amount of change will depend on

several factors.

For every unit of increase of vijk, ui has to increase by a unit also (or by half a unit

if i = j in the combination). So the amount of change of vijk is indirectly controlled by the

set of u values which have to change as a result. Hence, we have to examine all the

constraints of (3.2) which contains ui . If the constraint is not tight, then the change

allowed by that constraint is equal to the value of the current slack. We first determine the

maximum possible increase in u i while considering the constraints in NT(i), as

min
Al = (m,k) NT(i) [Wk +Vimk -Ui-Um] (3.11)

If constraint (i,j,k) of (3.2) is tight, then the change allowed by that constraint is equal to

the current value variable uj. We define the maximum possible increase in ui allowed by

the constraints in T(i), as
min

A2 =UmI (3.12)
m E T(i) [um ]

If we are increasing viik, and k o B, we can increase vijk such that the slack in constraint

k of (3.3) reduces to 0. In other words, we do not increase the value of a while increasing

vijk . This change is defined as

= [slack of constriant k of (3.3) (3.13)

Finally, the increase in variable viik is determined as
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min[A,A 2] ifk B

min[A1,A2,A3 ] if k B

The objective function value increases by Ais as a result.

Considering each vijk e A as the variable to increase, we evaluate the final change

in objective function and pick the (i,j,k) with the maximum change as the dual variable to

be increased. At the end of an iteration of the first procedure, if we increased the objective

function, then the set of tight constraints might change. And this implies that we might be

able to identify other dual variables corresponding to the new tight constraints, if any,

which can be increased. So we update the values of the dual variables which changed, and

the set of tight constraints, and repeat the procedure until no further improvement. When

we cannot improve the objective function any more using this procedure, we try to increase

two dual variables simultaneously. We summarize the first procedure for dual ascent

formally below.

The sets A and B are defined as before. For every (i,j,k) E A

Initialize: Pass = 0. WLOG, fi > f j, and we choose to increase u i in the first pass.

Set 1 = i.

Step 1: Define the sets T(l) and NT(l) as:

T(l) = set of products that occur with product I, except the other product

in the combination (ij), in the all the tight constraints in (3.2)

NT(l) = set of products that occur with product i in the constraints that are

not tight in (3.2). This set contains pairs (j, k).

Pass = Pass + 1

Step 2: If for any (m,k) e T(1), um= 0, then
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if Pass = 1, we can try to increase uj. Let 1 = j, go to step 1.

if Pass = 2, go to initialization step and evaluate the next (ij,k) e A.

Else

We can increase ul. WLOG, assume 1 =i.

If k B,

Aijk

else,

Aijk fi E i fm
m E T(i)

If Aijk > 0, then go to step 4.

Else,

if uM > O for all (m,k) e TO(), set 1 = j and go to step 1.

else go to initialization step and evaluate next (i,j,k) e A.

Determine the maximum allowable value of A.

A1

A2

A3

A

=[

min

(m,k) NT(i) [ k + Vi- u i u m ]

min

m T(i) [um ]

slack of constriant k of (3.3)

Xki

{min[Al,A2]

min[A1,A2,A3 ]

ifk B
ifk B

]

Repeat steps 1 through 4 for all (ij,k) E A, and pick the combination

(ij,k) with the maximum value of Aijk. Let this be combination (i,j,k).
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A - Xj pA

Step 3:

Step 4:

Step 5:



Update: ui --ui + 

Um -Um - A for every m E T(i)

ijk <- vijk + A

If k B, then a a + ij A

Bound --Bound + Aijk

Update sets A and B, and go to step 1.

Increasing two dual variables simultaneously

When we can no longer increase a single vijk variable, we try to increase two of

them simultaneously. If there is a combination (ij) which is feasible on more than one

ingot, and exactly two of the constraints (3.2), say k and k', are tight for this combination,

then we can increase the dual variables vijk and vij, . As a result, we will still be

increasing one of the dual variables ui and decreasing one or more u variables. The rest of

the procedure is similar to the first procedure, except that we have to consider two

constraints of (3.3) when calculating the values of A and Aijkk'. When both constraints k

and k' of (3.3) are tight, then we increase the value of the variable a by increasing viJk and

vijk,, and we have to take this into consideration when calculating the change in the

objective function due to an increase in the vijk variables. On the other hand, when neither

the constraints k and k' of (3.3) are not tight, or atmost one constraint k or k' of (3.3) is

not tight, we do not have to increase the value of a. We consider the slack in the

constraints to determine the maximum amount by which we can increase the vijk variables

in this case. The changes are shown in the formal description of the procedure below.

Let A = set of combinations (ij) with exactly two tight constraints in (3.2). This

set consists of (i, j, k, k').

B = set of tight constraint in (3.3).

For every (i, j, k, k') e A
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Initialize: Pass = 0. WLOG, fi > f j , and we choose to increase ui in the first pass.

Set 1 = i.

Step 1: Define the following sets.

T(I) = set of products that occur with product i, except product j, in the

all the tight constraints in (3.2)

NT(I) = set of products that occur with product i in the constraints that are

not tight in (3.2). This set contains pairs (j, k).

Pass = Pass + 1

Step 2: If for any m T(1), u= 0, then

if Pass = 1, we can try to increase uj. Let 1 = j, go to step 1.

if Pass = 2, go to initialization step and evaluate next (i,j,k,k') E A. ·

Else

We can increase ul. WLOG, assume 1 =i.

If both k and k' E B,

Aijkk' = fi- Z fm A,
m T(i)

maj

else

Aijkk' = fi 1 fm |A - Xj pA
m E T(i)

Step 3: If tijkk, > 0, then go to step 4.

Else,

if um > O for all (m,k) T(j), set 1 = j and go to step 1.
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else go to initialization step and evaluate next (i,j,k,k) e A.

Step 4: Determine the maximum allowable value of A.
min

1 = (m,k) NT(i) [Wk + Vimk - i - Um]

min
A2 - U]m T(i) [ m ]

If at least one of k or k' B, then between k and k', determine the

constraint with the minimum slack. Let the index of this constraint be k*.

A = [ slack of constriant k* of (3.3).

min[A1,A2] if both k and k' B
{min[A1, A2,A3] if both k and k' B

Step 5: Repeat steps 1 through 4 for all values of (i,j,k,k') e A, and pick the

combination (i,j,k,k') with the maximum value of Aijkk,

Update: ui -- ui + A

Um um - A for every m e T(i)

Vijk vVij k + A

Vijk' Vijk' + A

If k and k' e T2,

then a - a + ij A
Bound - Bound + Aijkk'

Update sets A and B, and go to step 1.

Once again, we repeat the second procedure until no further improvement is

possible. If we increased any dual variables, the sets A and B would have changed at the

end of the second procedure, and there might be an opportunity to repeat the first

procedure. Hence, we go back to the first procedure, and repeat the two procedures until
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we can make no further improvements from both the procedures. The final value of the

objective function when the procedure terminates is the lower bound to the ingot sizing

problem. We can use the final dual solution to construct a primal feasible solution for the

ingot sizing problem. This process is explained in the next section.

3.2 Upper Bounds for [ISP]

We develop several heuristic solutions for the ingot sizing problem. The dual

solution at the end of the dual ascent phase provides one starting solution. We have also

developed two stand-alone heuristic procedures, which provide additional upper bounds.

In the following section, we describe the heuristic solution approaches.

3.2.1 Dual Heuristic Solution

When the dual ascent procedure terminates, we try to construct a primal feasible

solution using complementary slackness conditions. If the kth constraint in (3.3) is tight,

then by complementary slackness, the corresponding ingot size k is a candidate for being

included in the set of standard sizes. Hence, if the dual ascent procedure ends with p or

less constraints of (3.3) being tight, then we choose the ingots corresponding to these tight

constraints as the standard ingots. Given the standard ingot sizes, we then determine the

optimal combinations and the actual solution value, by transforming the problem to a non-

bipartite matching problem as described in the Section 2.5.1. If more than p constraints of

(3.3) are tight at the end of the dual ascent phase, we select all the ingots corresponding to

the tight constraints as candidates for standard sizes. We then apply the heuristics

explained below for this restricted set of ingots to select a subset as standard ingots.
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The two stand-alone heuristics that we have developed are greedy heuristics. One

of them selects ingots based on the utilization of the available ingots, and the other based on

the total demanded weight of orders.

3.2.2 Ingot Utilization Heuristic

This heuristic picks ingots based on the total weight of the orders an ingot can

satisfy. As an input parameter, we specify a threshold utilization level of 13 %. The

purpose of this threshold utilization level is to reduce the combinations that we consider to

only those that utilize the ingots well. We consider only feasible combinations that occupy

at least 3 % of an ingot's weight, and refer to them as " [ -effective" combinations. Using

this strategy, we attempt to minimize the amount of scrap generated while satisfying

demand. Given a set of candidate ingots and their weights, the threshold P for the

minimum acceptable utilization level, and the set of all products with their weights and

frequencies, we need to pick a set of at most p standard ingots. Once we determine the set

of standard ingots, we find the optimal allocation of order combinations to the ingots.

For each available candidate ingot, we determine a measure of its "flexibility",

M(k), as the total weight of all 3 -effective combinations that the ingot can satisfy. We pick

the ingot with the maximum measure of flexibility as a standard ingot, and assign the

corresponding feasible combinations (i,j) Xij times to this ingot. We then update the

frequencies of the products, and repeat the procedure until we have chosen p ingots, or all

product demands are satisfied. Consider the situation when we have chosen less than p

ingots, and all the product demands are not yet satisfied. If we do not have any product

combinations that occupy at least [ % of any of the available ingots, then we reduce the

value of [3 by a fixed percentage and continue with the heuristic. This prevents the

48



heuristic from stopping prematurely. In our computations, we reduce ,1 by 10%. We

present the formal description of the heuristic below.

Initialization:

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Set N = 0

Set M(k) = 0 for every ingot k. Let Fk be the set of all feasible order

combinations (ij) on ingot k such that weighti + weightj > wk.

For every ingot k that has not been chosen as a standard ingot, calculate

M(k) = E bm (weightm) ,
m e Fk

where each element m of Fk corresponds to two orders i and j, and

bm = min {fi, fj} = ij, and weightm = sum of the weight of the

products in the combination.

If M(k) = 0 for all ingots, then set = 0.90 * 13 and go to step 1. Else,

pick the ingot with the maximum value of M(k) as a standard ingot.

Set N = N + 1 and update frequencies of all the orders that have been used

to calculate the measure of the chosen ingot.

If N < p and the total unsatisfied demand > 0, then go to step 1. Else go to

step 6.

For the chosen set of ingots, solve the non-bipartite matching problem to

determine the optimal combinations and the actual cost of the selection.

Figure 3 provides a flowchart of the ingot utilization heuristic.
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Flowchart for Ingot Utilization Heuristic
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3.2.3 Order Based Heuristic

This is also a greedy heuristic which first selects the order combination with the

maximum total ordered weight, and assigns it to its best feasible ingot. The best feasible

ingot for a combination is the ingot which can produce the combination with minimum

scrap. This best feasible ingot is then chosen as the first standard ingot. We assign the

combination to the ingot kij times, and update the frequencies of products i and j of the

combination.

This heuristic attempts to satisfy demand for the highest volume combinations with

minimum scrap. We continue to assign the high volume orders to their best ingots until we

have chosen p standard sizes, or satisfied demand for all the products. We do not use any

threshold values to make the selection decision, since we always assign the current

combination to its best ingot, irrespective of the percentage of the ingot the combination

utilizes. We provide a formal description of the heuristic below.

Initialization: Set N = 0

Step 1: For each feasible order combination (ij), set M(i,j) = 0.

Step 2: For each feasible combination (ij) calculate

M(i,j) = ij * (weighti + weightj).

Step 3: Pick the combination with the maximum value of M(ij) and assign it to the

best feasible ingot, i.e., the ingot which minimizes scrap for this

combination. Update the frequencies for the orders in the chosen

combination. Set N = N + 1.
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Step 4: If N < p, and total unsatisfied demand > 0, then go to step 1. Else solve the

non-bipartite matching problem with the selected set of standard sizes to

determine actual cost of the solution.

This heuristic strategy might be useful when the demand for a few orders dominate

the demand of all the other orders. In this case, we want to pick good ingots to satisfy the

demand for the orders with the maximum weight and then satisfy demand for the

remaining products from the selection that we have made. Figure 4 shows a flowchart of

the order based heuristic for the ingot sizing problem.

A local improvement would attempt to move from a standard ingot to its neighbor

that is not chosen and determine the cost of that selection. In doing so, we have make sure

that the new set of ingots can satisfy demand for all the products. If the matching problem

for the new set of ingots has a feasible solution, then the new set of ingots is feasible. If

the solution value with this new set of ingots is lesser than, the previous solution value,

then we can make the swap permanent. We have not implemented the local improvement

procedure, since initial computational results showed that the gaps between the heuristic

solution values and the lower bounds were not very high.

In this chapter, we have presented the dual ascent procedure which generates lower

bounds and heuristic solution for the ingot sizing problem. We have also described two

greedy heuristics for generating upper bounds for the problem. In the next chapter, we

test both the heuristics and measure their quality with the lower bound generated by the

dual ascent procedure.
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Figure 4. Flowchart for Order Based Heuristic
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Chapter 4

Computational Results

We implemented the dual ascent procedure and the ingot utilization and order based

heuristics, and tested them with data on actual orders received over a year at a leading

aluminum sheet manufacturer. In this chapter, we present the implementation details and

the results obtained from the heuristic and the dual ascent procedure.

4.1 Implementation Details and Data Analysis

We implemented the dual ascent procedure and the heuristic in FORTRAN on an

IBM 4381 computer. For each problem, we first generate all the feasible combinations

based on the order combination rules. This set of feasible combinations serves as an input

to the heuristics and the dual ascent procedure. Given the set of feasible combinations, and

the set of products and candidate ingot sizes, we obtain the dual ascent lower bound and

heuristic solutions for each problem. For solving the non-bipartite matching problem, we

use a FORTRAN implementation of a matching algorithm developed by Derigs [1988].

We obtained data on actual orders received at an aluminum sheet manufacturing

facility over a period of one year, for one important product group. The data set contains a

one record for each order placed. Orders with similar gauge, width and weight

specifications are grouped into a single product type. We use the following rules to group

orders into product types.
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· Width of all orders are rounded up to the closest integer value.

· Orders of the same width can be grouped if they satisfy gauge and weight

requirements explained below.

· For each width, if the gauges of two or more orders fall within a non-overlapping

interval of the gauge combination table (Table 1), then we can group the orders.

For example, we see that in the first row of Table 1, we allow any order of gauge

between 0.039 inches and 0.071 inches to be combined with an order of gauge less

than or equal to 0.229 inches. The interval (0.039, 0.071) does not over lap with

any other interval. Now, if we group all orders with gauges in the interval (0.039,

0.071) into a single product type, we can still combine the orders of this product

with orders of gauge less than or equal to 0.229 inches.

· For each width and gauge interval, we group all orders with weight of + 1000

pounds into a single product type.

The weight of a product is the average weight of the orders that have been grouped

into that product, and its frequency is the number of orders that have been grouped into that

product. The original data set had 638 orders, ranging in width from 301 inches to 90

inches. The weight of the orders ranged from 2,500 pounds to 115,000 pounds. Since the

plant can only produce ingots weighing up to 40,000 pounds, we eliminated 100 orders

that required ingots weighing more than 40,000 pounds. The remaining orders were

grouped into products, using the rules above.

We grouped the products into 4 data sets. The first data set contains products with

width ranging from 30 to 42 inches, and the second has products with widths from 48 to

53 inches. The third data set consists of a single width (54 inches) which accounts for

1A numbers from the original data have been disguised to preserve confidentiality of data.
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approximately 50% of the individual orders and 40% of the total pounds of metal ordered.

The fourth data set has products with width ranging from 55 to 90 inches.

Currently, the facility has 6 standard sizes. The standard sizes are of 3 widths - 60,

72 and 84 inches. The weight of the standard ingots range from 12,000 to 40,000 pounds.

For our experiments, we generate candidate ingot sizes from 5,000 to 40,000 pounds. The

actual weights and widths of the candidate ingot sizes depend on the product widths and

demand. We have candidate ingot sizes to satisfy demand for all products, and allow more

sizes for higher volume widths. For example, in problem 1 products with a width of 42

inches account for more than 50% of the total volume. So we pick 46 inch candidate ingots

ranging in weight from 10,000 to 40,000 pounds. We have a candidate ingot size for

every 2500 pounds. Other than these 13 candidate ingots, we also have ingots of widths

35, 39, and 43 inches. We have four sizes (10,000, 20,000, 30,000, and 40,000 pounds)

for each of the three widths. For each of the four problems, we have a limited set and an

extended set of candidate ingot sizes. Table 2 contains data on the number of products, the

total frequency, and number of candidate ingots for each of the four problems, and Table 3

presents details on the actual candidate ingot sizes for all the four problems. We solve the

ingot sizing problem with the candidate sizes we have chosen for each problem, and the

current standard sizes and compare the two solutions. We solve relatively large problems -

the largest problem that we solve has 11096 integer variables and 11166 constraints. The

following sections describe the various steps involved in detail.

4.2 Framework for Experimentation

This section describes the various computational tests that we performed on the four

problems. For each of the four problems, we have the set of products and their frequencies

and physical dimensions. We obtain heuristic solutions and lower bound for all four
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problems using two different sets of candidate ingot sizes for each one of them. We do this

to study the impact of the candidate ingot sizes on the total pounds of metal used to satisfy

demand for all products. For the first run, we use only a few (the maximum is 10)

candidate sizes, while in the second run, we increase the number of candidate ingot sizes.

We discuss the effect of the number of candidate sizes on the solution in Section 4.4.

For each set of candidate sizes, we compare the upper bounds from the two

heuristics in Section 4.3. For the ingot utilization heuristics, we vary the threshold

utilization level 3, from 50% to 90%. Initial experiments revealed that the heuristic

solution with f3 = 65, 70 or 80 is always better than the solutions with 3 = 50 or 90. So,

we report results for all five levels for problem 3 (in Table 4), and for the remaining

results, we use only the 65%, 70% and 80% levels.

When we generate feasible combinations, we restrict the difference in the widths of .

combined orders to a prespecified level, which we refer to as the maximum width

differential. For each problem, we use three different maximum width differential (2, 4,

and 6 inches) and repeat the computations.

The ingot sizing problem has an explicit constraint limiting the number of standard

sizes to at most p. We can obtain solutions for the different values of p, and make a choice

by considering other factors such as ease of tracking inventory storage space, and the

inventory costs. We use four different values of p - 3, 4, 5 and 6 - for each problem in our

computational study.

Finally, in order to validate the benefits of order combination, we solve the ingot

sizing problem for the following two special cases: (i) all orders are dedicated to ingots,

and (ii) orders can either be dedicated or combined with one other order of the same type.
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We also compare our proposed solution with the set of standard sizes currently stocked by

the facility. The results of all these experiments are presented in the following sections.

4.3 Comparison of the Upper Bounds

For all the four problems, we obtained heuristic solutions using the ingot utilization

heuristic and the order based heuristic. Tables 5-8 present the heuristic solution values for

the four problems when the maximum width differential is 2 inches. The results shown are

for the limited set of candidate ingot sizes.

The first observation is that in most of the cases the best solution from the ingot

utilization heuristic has less scrap than the solution from the order based heuristic. One

reason for this is that the ingot utilization heuristic considers all feasible combinations on an

ingot, and chooses the ingot which can satisfy the maximum demand. On the other hand,

the order based heuristic could get stuck because of a choice made during the initial stages

of the algorithm, based on only one combination with the maximum ordered weight.

The performance of the ingot utilization heuristic with varying utilization levels

merits an explanation. When we choose 3-effective combinations for an ingot, we

compare the weight of the orders to the raw weight of the ingot (before scalping and trim

losses). As a result, there might not be many 3-effective combinations for an ingot.

Hence, at this high level of threshold utilization, we might have to choose an ingot which

will serve just a few high utilization combinations and many other relatively low utilization

combinations. As a result, we might produce more scrap by choosing this ingot. On the

other hand, when we reduce the threshold utilization level to 65 or 70%, we have the

opportunity to consider more feasible combinations when selecting an ingot. And at this

level, we are also considering the combinations that occupy more than 70% of an ingot.
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Table 2. Problem Characteristics

59

Number of Candidate
Ingot Sizes

Problem Number of Total
Number Products Frequency

Limited Extended
Set Set

1 -38 8 25 50
2 36 9 22 56
3 73 8 18 260
4 97 10 28 172



Table 3. Candidate Ingot sizes for the 4 problems

* The first number indicates the width of the candidate ingot in inches and the numbers

following each width indicate the weight in thousands of pounds for the ingots.
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Problem List of Candidate Ingot Sizes
Number

Limited Set Extended Set

42- 8* 35 - 10, 20, 30, 40
46 - 10, 12.5, 15, 20, 25, 30, 40 39 - 10, 20, 30, 40

1 43 - 10, 20, 30, 40
46 - 10, 12.5, 15, 17.5, 20, 22.5,

25, 27.5, 30, 32.5, 35, 37.5,
40

46 - 10, 12.5, 40 46 - 10, 20, 30, 40
2 60 - 15, 20, 25, 35, 40 50 - 10, 15, 20, 25, 30, 35, 40

53 - 10, 15, 20, 25, 30, 35, 40
56 - 10, 20, 30, 40

60 - 10, 12.5, 15, 20, 25, 30, 35, 58 - 6, 8, 10, 12, 14, 16, 20, 22,
3 40 24, 26, 28, 30, 32, 34, 36, 38,

40

60 - 5, 20 62 - 10, 15, 20, 25, 30, 35, 40
4 62- 40 70 - 10, 15, 20, 25, 30, 35, 40

72 - 7.5, 10, 15, 25, 30, 40 76 - 10, 15, 20, 25, 30, 35, 40
84 - 10, 15, 20, 25, 30, 35, 40



Table 4. Performance of ingot utilization heuristic - Problem 3
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Number of Ingot Utilization Heuristic
standard

sizes
allowed Utilization level

50% 65% 70% 80% 90%

3 3722000 434000 3472000 4792000 3952000

4 3722000 3400000 3438000 3930000 3884000

5 3722000 3390000 3398000 3902000 3392000

6 3722000 3386000 3392000 3402000 3386000



Table 5. Comparison of Heuristics - Problem 1, width differential = 2,
limited set of candidate ingot sizes

* Numbers in parenthesis indicate CPU time in seconds on an IBM 4381.

The highlighted number is the best upper bound.

62

Ingot Utilization Heuristic
Number of Order
Standard Utilization Level Based

Sizes Heuristic
Allowed

65% 70% 80% 

3 910000 890000 885000 890000
(0.34)* (0.28) (0.33) (0.32)

4 890000 880000 875000 880000
(0.29) (0.30) (0.23) (0.28)

5 880000 877500 875000 877500
(0.34) (0.30) (0.32) (0.35)

6 877500 872500 872500 877500
(0.33) (0.31) (0.32) (0.36)



Table 6. Comparison of Heuristics - Problem 2, width differential = 2,
limited set of candidate ingot sizes

* Numbers in parenthesis indicate CPU time in seconds on an IBM 4381

The highlighted number is the best upper bound.
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Ingot Utilization Heuristic
Number of Order
Standard Utilization Level Based

Sizes Heuristic
Allowed

65% 70% 80%

3 1245000 1260000 1260000 1240000
(0.57)* (0.57) (0.58) (0.40)

4 1245000 1245000 1245000 1240000
(0.58) (0.58) (0.58) (0.40)

5 1235000 1245000 1245000 1240000
(0.60) (0.58) (0.59) (0.40)

6 1235000 1245000 1232500 1240000
(0.60) (0.58) (0.60) (0.40)



Table 7. Comparison of Heuristics - Problem 3, width differential = 2,
limited set of candidate ingot sizes

* Numbers in parenthesis indicate CPU time in seconds on an IBM 4381.

The highlighted number is the best upper bound.
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Ingot Utilization Heuristic
Number of Order
Standard Utilization Level Based

Sizes Heuristic
Allowed

65% 70% 80%

3 3625000 3625000 3610000
(40.53)* (40.20) (33.01) Infeasible

4 3525000 3610000 3605000
(43.56) (37.42) (40.31) Infeasible

5 3522500 3515000 3515000
(54.97) (28.10) (41.13) Infeasible

6 3522500 3515000 3515000 3515000
(34.25) (31.06) (31.52) (31.76)



Table 8. Comparison of Heuristics - Problem 4, width differential = 2,
limited set of candidate ingot sizes

* Numbers in parenthesis indicate CPU time in seconds on an IBM 4381.

The highlighted number is the best upper bound.
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Ingot Utilization Heuristic
Number of Order
Standard Utilization Level Based

Sizes Heuristic
Allowed

_ 65% 70% 80%

3 2930000 3115000 2930000 3095000
(4.33)* (3.8) (4.31) (4.11)

4 29.10000 2910000 2910000 2910000
(4.09) (4.06) (4.05) (4.17)

5 2865000 2865000 2910000 2865000
(3.29) (3.27) (4.06) (3.46)

6 2865000 2865000 2865000 2855000
(3.42) (3.3) (3.36) (3.91)



Hence, the selection we make at this utilization level might produce less scrap when

compared to the selection made at 90% utilization level. One interesting observation is that

the order based heuristic failed to produce a feasible solution (the standard sizes chosen

based on the orders with the maximum ordered weights could not satisfy demand for all

orders) for p = 3, 4, and 5 for problem 3. The order based heuristic chooses standard

ingots to satisfy demand for high volume combinations with minimum scrap. At each

stage, since the choice of ingots is based on only a one combination, the final set of

standard sizes could be infeasible.

We also varied the number of standard sizes allowed. As the number of sizes

allowed increases, the solution values either remain the same or improve, since we have

more ingots to assign the feasible combinations to. We also varied the maximum width

differential from 2 inches to 4 and 6 inches. As the width differential decreases, the

number of feasible combinations reduces. Hence, we do not have as much flexibility in

combining orders. Thus, for a given value of p, as the width differential decreases, the

solution value increases. Tables 8-11 show the number of feasible combinations for the

different width differentials for the four problems. This table also gives the best upper

bound from the two heuristics for all the problems, and the percentage of orders dedicated

to an ingot in the best solution. In most of the cases, the percentage of dedicated orders

decreases as the width differential increases. This is due to the fact that we have more

feasible combinations, and hence more opportunity for order combination. The behavior of

the two heuristics exhibit the same characteristics as we change the width differential.

The time taken by the two heuristics are comparable. The reported CPU times

include both initialization and computations. When the number of feasible combinations in

a problem increases, the matching problem contains more arcs and hence, takes longer to

solve. Problem 3 which has 4119 feasible combinations with the first set of ingots takes
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Table 9. Comparison of bounds - Problem 1, limited set of candidate
ingot sizes

67

# of % of
# of Width feasible orders Best Lower Average

Standard differen combina dedicated Upper Bound % Gap Gap
Sizes tial tions in the best Bound

solution

2 562 32 885000 868500 1.9
3 4 613 20 870000 860000 1.2 2.7

6 766 20 850000 810000 4.9

2 562 16 875000 868500 0.7
4 4 613 16 860000 860000 0.0 1.5

6 766 8 840000 810000 3.7

2 562 32 875000 868500 0.7
5 4 613 16 860000 860000 0.0 1.5

6 766 8 840000 810000 3.7

2 562 32 872500 868500 0.5
6 4 613 16 860000 860000 0.0 1.4

6 766 8 840000 810000 3.7



Table 10. Comparison of bounds - Problem 2, limited set of candidate
ingot sizes

# of % of
# of Width feasible orders Best Lower Average

Standard differen combina dedicated Upper Bound % Gap Gap
Sizes tial tions in the best Bound

solution

2 391 17.9 1240000 1200000 3.3
3 4 497 17.9 1240000 1170000 6.0 4.2

6 530 17.9 1240000 1200000 3.3

2 391 17.9 1240000 1200000 3.3
4 4 497 21.4 1230000 1170000 5.1 3.6

6 530 17.9 1230000 1200000 2.5

2 391 17.9 1235000 1200000 2.9
5 4 497 21.4 1230000 1170000 5.1 3.5

6 530 17.9 1230000 1200000 2.5

2 391 21.4 1232500 1200000 2.7
6 4 497 21.4 1230000 1170000 5.1 3.4

6 530 17.9 1230000 1200000 2.5

Table 11. Comparison of bounds - Problem 3, limited set of candidate
ingot sizes

# of % of
# of feasible orders Best Upper Lower Average

Standard combin dedicated Bound Bound % Gap Gap
Sizes ations in the best

solution

3 4119 8.5 3610000 3367500 7.2
4 4119 8.5 3525000 3340000 5.5 6.1
5 4119 7.7 3515000 3325416 5.7
6 4119 7.7 3515000 3316666 6.0
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Table 12. Comparison of bounds - Problem 4, limited set of candidate

ingot sizes

40-50 seconds to solve, while problems 1 and 2 which have a few hundred feasible

combinations solve within one second. We measure of the quality of the heuristic solutions

by comparing them with the lower bound from the dual ascent procedure. The next section

presents the results and discussion of the comparison of the bounds.
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# of % of
# of Width feasible orders Best Lower Average

Standard differen combina dedicated Upper Bound % Gap Gap
Sizes tial tions in the best Bound

solution

2 1952 22.1 2930000 2751250 6.5
3 4 2335 16.3 2860000 2731250 4.7 5.6

6 3068 14.0 2840000 2689687 5.6

2 1952 22.1 2910000 2741250 6.2
4 4 2335 16.3 2850000 2731250 4.3 5.4

6 3068 14.0 2825000 2676250 5.6

2 1952 31.4 2865000 2738750 4.6
5 4 2335 24.4 2815000 2731250 3.1 4.0

6 3068 23.3 2790000 2676250 4.3

2 1952 34.9 2855000 2736250 4.3
6 4 2335 25.6 2810000 2731250 2.9 3.8

6 3068 26.7 2785000 2676250 4.1



4.4 Comparison of Lower and Upper Bounds

We compare the best upper bound from the two heuristics with the lower bound

generated by the dual ascent procedure. The dual ascent procedure also generates heuristic

solutions. For problems 1 and 2, the product frequencies are low when compared to the

value of p and hence, the dual ascent procedure stops with the initial solution. So, the

heuristic solution generated by the dual ascent bound is equal to the best upper bound from

the two heuristics. However for problems 3 and 4, the dual ascent procedure improves the

initial bound and obtains a heuristic solution. In all cases, the scrap produced by this

selection of ingots is greater than or equal to the scrap produced by the best heuristic

solution.

Tables 9-12 present the results of the comparison between the bounds for the four

problems. We compare the bounds for all the three width differentials and the four

standard sizes. For problem 3, we do not have any width differentials, since this problem

deals with only one width. We calculate the gap between the bounds as:

(upper bound - lower bound) * 100%
percentage gap = 100%

lower bound

For all our test problems, the gap between the bounds decreases with an increase in the

number of standard sizes. When the dual ascent stops with the initial solution for some

value of p = p', the lower bound remains the same for all values of p greater than p'.

However, we noticed that if the dual ascent improves the initial solution, the lower bound

decreases with an increase in the number of standard sizes. The average gaps for the four

problems are 1.8%, 3.7%, 6.1%, and 4.7% respectively for the first set of ingot sizes.

When we increase the number of candidate ingot sizes, the total scrap for the best solution

from the two heuristics decreases and so does the lower bound. The average gap between

the upper and lower bounds for the four problems in this case are 2.7%, 3.0%, 4.9%, and
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5.9%. Tables 13-16 present the comparison between the lower bound and the best upper

bound for the four problems, when using the second set of candidate ingot sizes. The

procedure obtains solutions within 4% of optimality on an average.

4.5 Comparison with Current Practice

The manufacturing facility currently uses 6 standard sizes. Using these 6 sizes as

the standard ingot sizes, we use the matching procedure to determine the order

combinations and the total scrap for each problem. We assume that the facility combines

orders rather than just dedicating ingots to orders. We compare the best heuristic solution

with current practice and evaluate the percentage reduction in scrap for the proposed set of

standard sizes.

Table 17 presents the results of the comparison with current practice for the first set.

of candidate ingot sizes. Once again, for problem 3, we do not have 3 width differentials,

since this problem has only one width. The standard sizes currently used by the facility are

of only three widths - 60, 72, and 84. In our proposed solutions, at least for the first

problem which has orders of width 30 to 42 inches, we allow ingots of width 42-54

inches. This is clearly reflected by the 18.3% reduction in the proposed solution's total

scrap over current practice. Problem 2 has a reduction of 21.5%, while problem 3 has only

a 0.9% reduction.

We used 8 candidate ingot sizes for problem 3. In the limited set of candidate ingot

sizes, we used ingot weights from 10,000 to 40,000 pounds, with an ingot for every 500

pounds. We also used an additional 7,500 pound ingot. All ingots are of width 58 inches.

We wanted to test if increasing the number of candidate ingots could reduce the scrap. So,
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in the extended set of candidate ingots, we used 18 ingot weights from 6,000 to 40,000

pounds, with an ingot for every 2,000 pounds.

We compared the reduction in scrap for the proposed solution when compared to

current practice in both cases. The 0.9% reduction in scrap when using the limited set of

ingots increased to 5.2% when we used the extended set of ingots. This highlights the

importance of using good candidate ingot sizes. Even with the extended set of ingots sizes,

the reduction in scrap for problem 3 is lower than the reduction for problems 1 and 2. This

is due to the fact that the current set of standard sizes at the facility consist of three 60 inch

width ingots, two 72 inch ingots, and a 84 inch ingot. The 60 inch ingot caters to the

products in problem 3 (of width 54 inches) with minimum scrap. On the other hand, our

proposed solution for problems 1 and 2 introduces new widths which reduce the scrap

significantly. The results for the fourth problem are similar to that of the third problem.

We present the comparison of the proposed solution with current practice for the extended

set of candidate ingots in Table 18. The proposed set of standard sizes reduce scrap when

compared with current practice. By reducing scrap, the facility can save on the ingot

casting and reprocessing costs for the scrap. For the alloy (all four problems together) that

we studied, the proposed solution could potentially reduce total scrap by an average of

9.5%, and could result in total savings of up to $100,000 annually.
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Table 13. Comparison of bounds Problem 1, extended set of candidate

ingot sizes
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# of % of
# of Width feasible orders Best Lower % Gap Average

Standard differen combina dedicated Upper Bound Gap
Sizes tial tions in the best Bound

solution ,

2 2656 16 780000 740000 5.4
3 4 2955 0 762500 740000 3.0 3.7

6 3819 0 755000 735000 2.7

2 2656 4 777500 740000 5.1
4 4 2955 8 757500 740000 2.4 3.4

6 3819 0 755000 735000 2.7

2 2656 8 760000 740000 2.7
5 4 2955 4 747500 740000 1.0 1.8

6 3819 4 747500 735000 1.7

2 2656 8 760000 740000 2.7
6 4 2955 4 747500 740000 1.0 1.8

6 3819 4 747500 735000 1.7



Table 14. Comparison of bounds - Problem 2, extended set of candidate
ingot sizes

# of % of
# of Width feasible orders Best Lower % Gap Average

Standard differen combina combined Upper Bound Gap
Sizes tial tions in the best Bound

solution

2 1387 17.9 1200000 1150000 4.3
3 4 1781 17.9 1200000 1147500 4.6 4.5

6 1892 17.9 1200000 1147500 4.6

2 1387 17.9 1190000 1150000 3.5
4 4 1781 21.4 1180000 1147500 2.8 3.0

6 1892 21.4 1180000 1147500 2.8

2 1387 17.9 1180000 1150000 2.6
5 4 1781 17.9 1170000 1147500 2.0 2.2

6 1892 17.9 1170000 1147500 2.0

2 1387 21.4 1180000 1150000 2.6
6 4 1781 17.9 1170000 1147500 2.0 2.2

6 1892 17.9 1170000 1147500 2.0

Table 15. Comparison of bounds - Problem 3, extended set of candidate

ingot sizes

# of % of
# of feasible orders Best Upper Lower % Gap Average

Standard combin combined Bound Bound Gap
Sizes ations in the best

solution

3 9838 6.9 3434000 3251999 5.6
4 9838 6.9 3400000 3244999 4.8 4.9
5 9838 7.7 3390000 3242999 4.5
6 9838 6.7 3386000 3231000 4.8
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Comparison of bounds - Problem 4, extended set of candidate
ingot sizes
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Table 16.

# of % of
# of Width feasible orders Best Lower % Gap Average

Standard differen combina combined Upper Bound Gap
Sizes tial tions in the best Bound

solution

2 7107 33.7 3115000 2680000 16.2
3 4 8457 16.3 2850000 2672500 6.6 9.7

6 11068 14.0 2830000 2662500 6.3

2 7107 19.8 2855000 2680000 6.5
4 4 8457 15.1 2815000 2672500 5.3 5.6

6 11068 14.0 2795000 2662500 5.0

2 7107 19.8 2840000 2680000 6.0
5 4 8457 15.1 2795000 2672500 4.6 5.0

6 11068 14.0 2780000 2662500 4.4

2 7107 30.2 2780000 2680000 3.7
6 4 8457 24.4 2755000 2672500 3.1 3.3

6 11068 24.4 2745000 2662500 3.1



Table 17. Comparison of Proposed Solution with Current Practice 
limited set of candidate ingots
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Problem # of Width Current Proposed %
Number Standard Differential Practice Solution Reduction Average

Sizes

2 1071792 872500 18.6
1 6 4 1050408 860000 18.1 18.3

6 1025784 840000 18.1

2 1571376 1232500 21.6
2 6 4 1570080 1230000 21.7 21.5

6 1559064 1230000 21.1

3 6 - 3546504 3515000 0.9 0.9

2 2799352 2855000 -2.0
4 6 4 2773432 2810000 -1.3 -1.6

6 2745568 2785000 -1.4



Comparison of Proposed Solution with Current Practice -
extended set of candidate ingots
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Table 18.

Problem # of Width Current Proposed %
Number Standard Differential Practice Solution Reduction Average

Sizes

2 1071792 760000 29.1
1 6 4 1050408 747500 29.0 28.4

6 1025784 747500 27.1

2 1571376 1180000 24.9
2 6 4 1570080 1170000 25.5 25.1

6 1559064 1170000 25.0

3 6 - 3546504 3364000 5.2 5.2

2 2799352 2780000 0.70
4 6 4 2773432 2755000 0.70 0.5

6 2745568 2745000 0.02



4.6 Impact of Order Combination

In order to understand the effect of order combination on the total scrap, we solved

two special cases of the ingot sizing problem for problem 3. In the first case (product

dedication), orders can either be dedicated to an ingot or two orders of the same product

type can be combined on an ingot. In the second case (order dedication), orders can only

be dedicated to ingots. Table 19 presents the results of this comparison. The number of

feasible combinations increases dramatically when we allow order combination. We have

897 possible assignments of orders to ingots for the order dedication model, 1441 possible

assignments of products to ingots for the product dedication model, and 9838 combinations

for the order combination model. In each case, we use our solution methodology to

determine a good set of standard sizes. Order combination allows us to utilize the available

ingots better, and reduces total scrap. The results indicate that order combination reduces

scrap by an average of 8.3% when compared to the product dedication model, and by an

average of 26% when compared to the order dedication model. These figures illustrate the

benefits of order combination.

4.7 Summary

This chapter presents the computational results of our study. We have implemented

the dual ascent procedure and the heuristics and tested them with data on actual orders

received at an aluminum sheet manufacturing facility. The overall results indicate that the

methodology is efficient. In order to illustrate the results of the various sensitivity analyses

that we performed, we summarize the results for problem 3. This problem accounts for

more than 50% of the total volume. The average gap between the upper and the lower

bounds is 5.5%. The ingot utilization heuristic performed better than the order based

heuristic in most cases. The impact of the utilization threshold on the total scrap was
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Table 19. Order combination versus dedication - Problem 3

* Product Dedication: Orders can either be dedicated on an ingot, or two orders of

the same product can be combined on an ingot.

** Order Dedication: Orders can be dedicated on an ingot
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Number of Number of % of % Increase
Standard Problem Type Feasible Solution Dedicated in Scrap

Sizes Combinations Orders over ISP

ISP 9838 3434000 6.9 -
3 Product Dedication* 1441 3978000 24.6 13.7

Order Dedication** 897 4928000 100.0 30.3

ISP 4838 3400000 6.9 -
4 Product Dedication* 1441 3704000 25.4 8.2

Order Dedication** 897 4648000 100.0 26.9

ISP 9838 3390000 7.7 -
5 Product Dedication* 1441 3602000 25.4 5.9

Order Dedication ** 897 4528000 100.0 25.1

6 ISP 9838 3364000 6.2 -
Product Dedication* 1441 3558000 25.4 5.5
Order Dedication** 897 4268000 100.0 21.2



quite interesting. We obtained the least scrap for 65 or 70% threshold utilization. The

scrap increased when we either decreased or increased 3 beyond these levels, in most

cases.

As we increased the number of allowed standard sizes from 3 to 6, the total scrap

reduced and for the problems that we solved, the gap between the bounds decreased too.

We also illustrated the impact of candidate ingot sizes. When we increased the number of

candidate ingot sizes from 8 to 18, the total scrap reduced by 4.1%. In comparison with

current practice, the proposed set of ingots for this problem reduces scrap by 5.2%. This

problem contained products of a single width. For the other three problems, we studied the

effect of increasing the maximum width differential - the maximum allowed difference in

widths of combined orders. As we increase the width differential, the number of feasible

product combinations increases, and the total scrap decreases. For instance, the scrap

reduces by 2.4% on an average when we increase the width differential from 2 to 6 for

problem 4.

For the problems that we solved the method obtains solutions within 4% of

optimality on an average. Both the heuristics and the dual ascent procedure are relatively

quick. We solve relatively large problems within one minute of CPU time. Finally, we

highlighted the benefits of order combination by comparing the scrap for the order

combination solution to scrap for the order dedication and product dedication models.

Order combination reduces scrap by an average of 8.3% when compared to the product

dedication model, and by an average of 26% when compared to the order dedication model.

Finally, for the alloy that we studied, the proposed set of candidate ingots reduces scrap by

an average of 9.5%, and the total reduction in scrap could result in savings of up to

$100,000 annually.
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Chapter 5

Conclusions and Recommendations

In this thesis, we addressed the tactical production planning problem of ingot

sizing in metal sheet manufacturing. Ingots used for sheet manufacturing are made-to-

stock, and used when necessary, to satisfy customer demands. Orders can be combined

on a single ingot in order to minimize total scrap. In this scenario, given the set of

products, their dimensions, weights and frequencies, the set of available ingots, and the

rules for order combination, we address the question of selecting standard ingot sizes to

maintain in stock. The objective is to minimize total processing and scrap reprocesisng

cost.

5.1 Summary and Conclusions

We have formulated the ingot sizing problem as an integer program, and

developed an efficient solution procedure. The solution procedure consists of dual ascent

to obtain lower bounds, and two heuristics to provide good feasible solutions to the ingot

sizing problem. We have implemented the dual ascent procedure and the heuristics, and

tested them with data on actual orders received at a leading aluminum sheet

manufacturing facility. The computational results indicate that the solutions obtained by

the dual ascent and heuristic solution procedure are within 4% of optimality on an

average.
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A comparison of the proposed solution with the current set of standard ingots

suggests that the proposed set of standard sizes could reduce the total scrap for the alloy

that we studied by an average of 9.5%. Since approximately 9% of the orders received

are of width less than 40 inches, the proposed solution suggests carrying 48 inch width

ingots also as standard size, as opposed to just 54, 66, and 78 inch ingots. This reduces

the scrap generated when satisfying demand for the orders with width less than 45 inches.

We also demonstrated that order combination reduces total scrap by an average of 26%

when compared to the scrap generated when we dedicate an ingot to every order. The

time taken by the solution procedure is under one minute for all problems. The results

suggest that the proposed methodology is effective and could result in significant savings

for the company.

5.2 Future Work

The ingot sizing problem determines the set of standard ingot sizes to stock, and

the optimal order combinations and the assignment of these combinations to the standard

ingots. Our model considers the forecast demand for all products over a long planning

horizon. For a particular demand realization, two products that have to combined might

not occur simultaneously. In this case, we have to choose an alternate combination, and

hence the actual amount of scrap generated might be different from the amount produced

by our heuristic solution. It will be interesting to determine the deviation of the actual

scrap generated from the total scrap generated by the ingot sizing model solution. We

can simulate the order arrival process, and schedule the orders as they arrive on the

proposed set of ingots to measure the actual amount of scrap generated.

When a sheet manufacturing company has more than one plant where it can make

ingots and final products, it must decide how to allocate ingot and sheet production to

82



various plants to utilize capacities effectively while meeting customer requirements at

minimum total production and transportation cost. Therefore, at the long term planning

stage, we would decide which plants would produce what size of ingots, given the

production costs and capacities at the various plants, the forecasted customer demands,

and transportation costs between plants, and between customers and plants. The goal is

to minimize total production and distribution costs, and the decision serves as an input to

the medium term planning problem.
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