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Abstract

An experimental study was carried out to examine the possiblity of using textural
information from ultrasonic images to help characterize tissues. Several statistical models of
increasing generality for the generation of textural characteristics as quantified by the
autocorrelation of the ultrasonic scan information are presented. The final model treats the
returning ultrasonic pulse as the summation phasor of a circularly-Gaussian component due
to diffuse individual scatterers and a specular component due to structural regularities
within the tissue. Several summary statistics of the autocorrelation curve are described.
Experimental data from laboratory samples of normal and diseased myocardium collected
with commercially available ultrasonic equipment were analyzed. The area under the
autocorrelation curve of the normalized image intensities, an image variability-weighted
measure of the speckle cell size, demonstrated a significant dependence on the tissue
disease group (p<0.005 by analysis of variance), indicating that it may serve as a possible
characterizing measure. Issues related to real-time data collection from living subjects were
also explored. Analysis of the dB-luminance probability distribution from the left
ventricular blood cavities of subjects undergoing transesophageal ultrasonic examination
revealed an observed mean square error of approximately 5% of mean expected energy,
suggesting the feasibility of real-time data collection from living subjects.
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1. Introduction

Ultrasound is most often used in clinical cardiology in one of two ways. First,
analysis of specular echoes arising from the smooth surfaces of the heart allows clinicians
to visualize and evaluate the size, shape, and function of the cardiac chambers and valves.
Second, quantification of Doppler frequency shift data recorded from red blood cells allows
the evaluation of cardiac output and valvular function, and the detection of intracardiac
shunts.

In addition to these principal uses, clinicians have long noticed certain textural
differences between the appearances of normal and abnormal myocardium in two-
dimensional echocardiograms, also known as B-scans. These qualitative observations
suggest that clinical abnormalities resulting from variations in the histologic structure of
myocardial tissue are associated with variations in measurable acoustic parameters. This
evidence is, in turn, a strong motivation for research in ultrasonic tissue characterization,
which attempts to classify tissues as normal or abnormal and to indicate the nature of the
abnormality based upon ultrasound signals returning from the myocardium.

Because of the simplicity, relative safety, nonionizing and noninvasive nature, low

cost, and portability of diagnostic ultrasonic equipment, a system to directly characterize



abnormalities in myocardial tissue using an ultrasonic texture analysis technique would
have great clinical utility, and would be safer than invasive surgical techniques or other
methods requiring the use of ionizing radiation.

In this thesis report, statistical models for the generation of texture in ultrasonic
images are presented and their limitations for tissue characterization explored. A simple
model, based upon diffuse random scattering by tissues on principles related to both laser
optics and communications theory, describes image texture solely as a function of the
ultrasonic beam characterisitics and the average scattering power of the tissue. Useful in
characterizing such random materials as unclotted blood, it provides a first step towards a
more general model allowing greater flexibility in dealing with structures with a constant
underlying order. This intermediate model will then allow the introduction of another
general model, known as the Generalized Rician model, also based in part on work in
communications theory, which allows the structural component to be described by its
statistical properties. Since these models all attempt to predict the autocorrelation function in
the direction of the interrogating beam, single-valued summary statistics of the
autocorrelation curve are introduced for use in comparing the autocorrelation functions of
different tissues.

The principal experimental research in this thesis was designed to test the
hypotheses that laboratory samples of the same tissue type, heart muscle tissue, which have
been subject to different pathologic processes, will exhibit differences in the characterizing
statistics compiled from the autocorrelation curve, and that unavoidable variations in
experimental setup can be accurately controlled for. The observed differences in the
characterizing statistics are then related back to possible variations in the independent
variables of the general statistical model.

Lastly, extension of the experimental design to real-time data acquisition from living

subjects is considered. Specific issues introduced by this design are described, and



experimental data is presented to support the feasibility of valid data collection under these

conditions.



2. Ultrasonic Image Generation
2.1 Basic Principles

When an ultrasonic pressure wave propagates through a tissue from a source,
sound energy propagates back towards the source whenever acoustic impedance
mismatches are encountered. Such impedance mismatches may occur at the interface
between two different tissues, or as part of an inhomogeneity within a tissue. The
priniciples of reflections and scattering are analogous to electromagnetic principles. For
example, if the wavelength of the ultrasound is much smaller than the dimensions of the
boundary, such as at the relatively smooth interface between endocardium and blood, a
specular reflection occurs. Such reflections are useful for the visualization of the smooth
surfaces of the heart. If the mismatch dimensions are much smaller than the wavelength, as
in a single blood cell or fiber of collagen, Rayleigh scattering occurs. These scattered
waves radiate multidirectionally, and some portion of the resulting wave is directed back
towards the transducer, i.e. backscattered. In most soft tissues, scattered waves contain
much less energy than the incident wave, and hence one can make the simplifying

assumption that all wave energy at a point is due entirely to the incident wave and that
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scattered waves are neglible. [Reid, 1986] This assumption is known as the Born

approximation.

2.2 Pulse - Echo Techniques
Overview

Most clinical imaging is performed using pulse-echo techniques, where tissue is
insonified with a narrow, pulsed radio frequency (RF) ultrasonic pressure wave from a
transducer, typically at 1-10 MHz for diagnostic ultrasound. The returning RF signal is
received by the same transducer, converted to an electrical signal, amplified, and
processed. An image is constructed by mapping image intensities to the envelope amplitude
of the returning wave. Assuming a constant sound speed of 1500-1540 m/s in soft tissue,
true distances can be estimated by mapping depth to the “time-of-flight” of the returning
wave. By performing a planar sector sweep over a region of interest, a complete image can
be constructed, which can be interpreted as a form of reflectivity map for the tissue. The

basic process is depicted in Figure 2.1.
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Figure 2.1: Graphical depiction of pulse-echo imaging. Tissue is insonified
with narrow wave pulses. The returning RF signal after each pulse is
individually processed. After a sector sweep, a 2-D image is constructed.
Output image intensity is mapped to the signal amplitude returning from that
position. The lightly shaded region within the body wall is insonified by the
sweep, and maps to the darkly shaded region of the scanner output.

11



Attenuation and time-gain compensation

An ultrasonic wave is attenuated as it propagates through soft tissue. Because of
internal friction and viscous forces between molecules of soft tissues, absorption is largely
caused by a relaxation phenomenon that converts the wave energy into heat. Additionally,
scattering by small inhomogeneities in the tissue may contribute to attenuation. In the
diagnostic ultrasonic frequency range used in medical imaging, 1-10 MHz, absorption
dominates, and scattering is only a small fraction of overall attenuation. However, as in
electromagnetic wave theory, ultrasonic scattering is proportional to the fourth power of the
frequency used, and thus attenuation increases with increasing frequency. Whereas higher
frequencies can provide better image resolution, the price is decreased penetration depth.
Attenuation properties of tissues at a given frequency are usually described in terms of the
exponential attenuation coefficient o, which is analogous to the loss coefficient for an
electromagnetic lossy medium.

Time-gain compensation (TGC) amplification attempts to correct for the attenuation
of the signal by tissues. Increasing gains are applied to the signal as it returns from
increasing depths. Common clinical equipment allows the operator to adjust the TGC gains
for various depth levels individually to obtain the optimal, i.e. most visually pleasing,
image. On most equipment, the operator also has control over the transmitted power level.

Figure 2.2 depicts the processing of a portion of the received signal following a
single pulse from a simulated transducer into a tissue. The received RF signal, also known
as an A-Line, is TGC-corrected, then passed through an envelope detector which extracts

the echo amplitude envelope.
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Figure 2.2. Construction of an A-Line. A simulated returning RF wave
from a 2.5 MHz transducer has been TGC-corrected (solid wave) and its
envelope (dotted wave) is converted to an electric signal. Time axis
represents elapsed time since pulse was emitted. Distance from transducer
can be determined by multiplying time axis by the speed of sound in soft
tissue (1500 m/s) and dividing by 2, since the wave must travel back and
forth from the transducer to the region of interest. The entire plot represents
approximately 1 cm of signal.

Construction of a two-dimensional image

To create a two-dimensional B-scan, A-line data are collected along many scan
lines, typically in a sector sweep. For example, the Hewlett-Packard Sonos 1500 series
ultrasound machine used in the experiments reported in this thesis computes 121 A-lines
per image in its standard configuration.

To perform the sector sweep, the transducer may be mechanically rotated.
However, most common clinical machines utilize an electronic steering mechanism. A real-
time phased array transducer system, such as the HP Sonos 1500, directs its beam by
appropriately delaying signals from the individual piezoelectric crystal elements of the
array, which typically number 64 or 128, to establish a dominant wavefront in a chosen
direction. The different lines of the sector scan are produced by altering the direction of the
beam formation through an arc. Since image quality at a given depth is also a function of
the focus distance of the beam, phased array transducers offer the additional advantage of
variable focusing of the beam. Figure 2.3 shows the generation of a narrow pulse in a

region of interest using a phased array system.
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Figure 2.3. The generation of an electronically steered narrow ultrasonic

pulse with a four-element phased array transducer. By varying the delays

introduced into the signal from each element, the beam can be variably

directed and focused during beam generation, or dynamically focused to

receive the returning signal. The two dotted lines represent the effective

width of the beam, which comes to a minimum at the focal distance where

the waves shown all come together and interfere constructively.

A scan converter subsequently transforms data acquired along the various scan lines
into a rectangular (Cartesian) format for output using conventional video displays and
videotape recorders. The HP Sonos 1500 utilizes 64 output gray levels (6-bit resolution).

The scan converter also interpolates missing values to create a continuous image from the

scan lines.

Compression of RF dynamic range

TGC-corrected RF signals from tissues typically occupy about 100 dB of dynamic
range. Since the six-bit equipment used to display the images has about one-fifth the range,
some form of data compression is required [Skorton et al., 1985]. Many machines allow
the operator to choose from various compression schemes. Common settings range from
linear to logarithmic. Since much information is contained in the lower part of the dynamic
range, logarithmic compression is generally preferred so that weak and strong echoes can
be seen on roughly the same scale in the resulting images.

Figure 2-4 shows a simple block diagram for a complete phased array system.
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Figure 2.4. Block diagram for a phased array ultrasonic imaging system.

2.3 Relevant physiology
Heart structure and function

The ventricular walls of the heart are made up of many layers of muscle travelling
across the ventricles. The layers are composed of cardiac myocytes and fibrous connective
tissue rich in capillaries. Since these muscle layers scatter more efficiently than blood in the
range of ultrasonic frequencies used in clinical imaging, cardiac tissue appears brighter on
average than blood in echocardiograms. Since adjacent muscle layers are oriented at angles
up to 90 degrees with respect to one another, the discrete layers of myocardial tissue form
relatively smooth surfaces over large areas. As a result, ultrasonic reflections from muscle
layers have a specular nature. Not surprisingly, these reflections are dependent on the angle
of insonification by the interrogating beam. [Skorton and Collins, 1986]

Collagen is an important constituent of the connective tissue found in myocardial
tissue. Collagen is a major structural protein and source of local elastic variation. Since
acoustic scattering in tissue is caused largely by spatial variations in elasticity [Fellingham
and Sommer, 1984], the distribution of collagen may be an important factor in determining

the characteristics of an ultrasonic wave returning from the heart. Although the normal
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myocardium contains less than 1% collagen per wet weight of tissue, the collagen content
of the heart may increase in many disease states, particularly chronic conditions. Increases
of over five-fold in collagen concentration have been demonstrated in animal models of
chronic infarction and may be linked to the increased backscatter observed in infarcted

tissues [Skorton and Collins, 1986].

Acoustic properties of Blood

Blood consists of plasma in which mainly red blood cells, also called erythrocytes,
white blood cells, also called leukocytes, and platelets are suspended. Normally 40-45% of
the blood volume is filled by cells. This percentage is known as the hematocrit. Red blood
cells (RBCs) make up almost all of the cellular volume, numbering approximately 5 million
per microliter in a normal adult, more than 700 times more common than similarly sized
white blood cells, and 20 times more common than the much smaller platelets. RBCs are
shaped like biconcave discs with a mean diameter of 7.5 microns, average maximum
thickness of 1.9 microns, and mean volume of 83 cubic mirometers [Guyton, 1991]. Since
these dimensions are much smaller than the wavelength of diagnostic ultrasound
(approximately 600 microns for a 2.5 MHz pulse in human tissue), the scattering of
ultrasonic waves from blood can be predicted to be independent of cell shape and
orientation, and isotropic scattering can be expected. Moreover, the position of individual
scatterers in blood can be treated as uncorrelated, although it has been suggested that as
hematocrit levels increase, contact between scatterers may lead to a more correlated

distribution [Shung et al., 1976].
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3. Previous Research in Ultrasonic Tissue Characterization
3.0 Background

Research in ultrasonic tissue characterization is usually broken down into two areas:

analysis of radio-frequency (RF) data and analysis of B-scan video images.
3.1 RF based approaches

Many methods directly analyze the returning RF data to estimate acoustic
parameters which can be used to characterize tissues. The advantages of these approaches
are the availability of the raw transducer data with frequency resolution limited only by the
sampling equipment. At this early stage, the data are still unaffected by most operator
dependent variables such as TGC settings and compression.

One parameter used in RF based tissue characterization is the relationship between
attenuation and frequency. It is well known that attenuation of ultrasound by myocardium
is due both to absorption and scattering and varies approximately linearly with frequency.
Thus, the slope of the attenuation/frequency relationship, typically measured in
dB/cm/MHz, has been very well studied. Many investigators have studied the slope of

attenuation coefficient versus frequency as a possible characterizing parameter. Lizzi et al.
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[1986, 1992] averaged the power spectra estimated from scan lines in a region of interest
and divided by a calibration spectrum derived from the front surface of a flat plate. In
theory, this calibrated spectrum technique removes various frequency-dependent transfer
functions associated with the electronics of the system and the transducer. Linear
regression was used to fit the quasi-linear shapes to estimate the slope of the attenuation
parameter. They were able to relate slope to the effective scatterer size, and the average
spectral intercept to both scatterer size and acoustic concentration.

Another group of related parameters used to characterize tissues represent various
quantifications of backscatttered energy. The backscatter transfer function measures the
power spectrum of the returning signal with respect to a standard reflector plate. Integrated
backscatter (IB) is the frequency average of the backscatter transfer function, i.e. a measure
of the total energy in an echo signal. IB measurements have been found to permit the
differentiation of normal from ischemic or cardiomyopathic tissues in animal models.
[Mimbs et al., 1981] A normally occuring cardiac cycle-dependent variation of IB
measurements has also been observed [Madaras et al, 1983], and attenuation of this
difference in IB between systole and diastole has been related to reduced contractile
performance [Wickline et al., 1985], infarction [Vered et al., 1989], hypertensive
hypertrophy and hypertrophic cardiomyopathy [Masuyama et al., 1989], and transplant
rejection [Masuyama et al., 1990].

Another approach to RF based tissue characterization is direct pattern recognition
based on the RF signals. Dyer et al. [1986] studied minimum-distance and nearest-
neighbor classification schemes based on training set data collected from in vitro samples of
canine and human hearts. To reduce the dimensionality of their data set, they applied one of
four orthogonal transformations, such as the discrete Fourier transform, and kept only
those entries with the highest variance between the two sets. Classification accuracy on the

order of 75% were achieved.
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There are several disadvantages to RF-based methods. First, the returning RF
signal must be sampled at a very high rate (10 MHZ or higher), and requires a great deal of
storage space for the resulting data. Additionally, processing of such large data sets can be
very time consuming. Most importantly, RF-based methods require specialized equipment

not normally available in a clinical setting.
3.2 Video based approaches

Other methods directly examine the video images produced by the clinical B-
scanner. Such images are readily available in clinical laboratories and can be digitized by
easily-accessible video digitizing equipment. Video-based data require much less storage
space than the corresponding RF data. Additionally, video images can be stored
conveniently on conventional videotape for later off-line analysis.

Video-based methods are based upon qualitative observations made by direct
visualization of the images. Clinical echocardiographers have noticed several textural
qualities associated with certain physiologic and pathologic states. Examples include
increased brightness of echo reflections from scarred tissue in patients with chronic
myocardial infarction [Rasmussen et al., 1978}, an unusual "ground glass" texture of the
myocardium in patients with hypertrophic cardiomyopathy [Martin et al., 1979]
(presumably related to the altered myofibrillar architecture of the septum in this disorder)
and a peculiar "sparkling” texture in the myocardium in most B-scans of patients with
amyloidosis [Siqueira-Filho et al., 1981]. Logan-Sinclair et al. [1981] and Parisi et al.
[1982] have noted increases in displayed echo intensity in regions of fibrosis related to
chronic infarction and other injuries, and have used color encoding to facilitate perception
of these differences.

Unfortunately, the utility of qualitative descriptions of abnormalities in the
appearance of the myocardium on standard B-scans is largely dependent upon the ability of

the observer to recognize these abnormalities in gray scale images. Since descriptions of
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myocardial texture utilize such subjective qualitative terms as coarse and fine, hypo- and
hyper-echoic, or uniform and nonuniform, these approaches are also limited by their
subjective nature, the variations in equipment settings, artifacts produced by the imaging
system, and the skill of the technician operating the equipment. Compression, TGC
settings, reject, damping, imaging depth, transducer frequency, and other operator-
determined factors may significantly alter the appearance of image texture, possibly
masking "diagnostic" texture distributions or mimicking others [Skorton and Collins, 1986;
Thijssen et al., 1990] Additionally, some variablility may be introduced into images during
the interpolation required during scan conversion [McPherson et al., 1986].

Nonetheless, since the previously described abnormalities could often be described
qualitatively by simple visual inspection of standard images, researchers believe that the
information relevant to ultrasonic properties of the tissue may be extracted directly from the
images. Hence, there has been much research of objective measures of image
characteristics through various quantitative approaches to tissue characterization.

Investigators have attempted to classify the patterns and gray-level distributions of
echo images. Skorton et al. [1983] analyzed the gray-level histograms of the video images
of normal and infarcted myocardium in dogs. The normal myocardium exhibited a peaked,
skewed gray-level distribution with high kurtosis value (ratio of the fourth central moment
to the square of the variance), whereas infarcted regions exhibited a relatively larger
number of higher gray levels, lowering the kurtosis. Other investigators have also studied
first-order statistics of images, e.g. mean, variance, kurtosis, and skewness [Nicholas et
al., 1986]. Hishida et al. [1990] found statistically significant differences in the mean,
skewness, and kurtosis of normalized gray levels within the interventricular septum of
patients with left ventricular hypertrophy, myocardial infarction, and normals. Stempfle et
al. [1993] have found that acute cardiac rejection in dogs is associated with a progressive
increase in the mean gray level of echocardiographic images. Lythall et al. [1992] found a

completely reversible decrease in the difference between the echo amplitude at end-diastole
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and end-systole in the interventricular septum and left ventricular posterior wall during
coronary occlusion with an angioplasty balloon. Pingitore et al. [1993] found significant
reduction of mean gray-level variation in humans developing intraoperative ischemia.

Another area of research is the spatial distribution, or second-order statistics, of the
images. Skorton et al. [1983] applied gray level run-length statistics, a technique borrowed
from satellite terrain classification [Galloway, 1975], and other quantitative texture
measures to assess the usefulness of these measures in the diagnosis of the myocardial
contusion. They found contused regions characterized by coarser texture as assessed by the
quantitative measures of run-length statistics. Chandrasekaren et al. [1991] used gray-level
run lengths and differences to yield information about the heterogeneity of the image and
the relative size of the individual echo reflections and thus characterize the image texture.
Using standard videotaped echocardiographic data, they found that quantitative texture
analysis can distinguish normal from myopathic myocardium and discriminate between
infiltrative and hypertrophic processes. McPherson ef al. [1986] found significant
differences in run-lengths and differences in closed-chest dogs before and after coronary
occlusion.

Although much work has been done using some measures of second-order
statistical variation, little work has been completed in cardiac ultrasound utilizing the
autocorrelation function, a natural measure of texture. Although the texture of an image is
highly dependent on the transducer frequency and instrument settings, controlling for these

variations should allow for direct comparison between images from different subjects.
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4. Speckle Theory
4.0 Background

Much of the work described in the previous chapter reports the observation of
various phenomena in data without offering any underlying model for its generation. This
work focuses on the autocorrelation function as a quantification of texture characteristics.
This chapter introduces models which help to better understand the sources of image
texture and to indicate how changes in the underlying tissue structure and composition may
lead to changes in the autocorrelation function measured from ultrasonic images.

Texture in ultrasonic images is largely due to interference effects from unresolvable
scatterers and is characterized by a granular appearance in ultrasonic images, a phenomenon
known as speckle. Reflected waves interfere coherently when an ultrasonic pulse
encounters many unresolvable scatterers. An early simple mathematical model for
ultrasonic speckle was presented by Burckhardt [1978] who extended work in laser optics
speckle to ultrasound. Additional insight has been gained through comparison to
narrowband noise theories in the field of statistical communications. The random scatterer
model first developed by Burckhardt has been carefully studied by many researchers in the

field. It treats tissues as a randomly arranged collection of individual scatterers. Wagner et
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al. [1985] have extended the basic model to include background signals representing
underlying tissue structure, using some results from statistical communication theory. This
chapter reviews theories from Burckhardt’s simple model to Wagner’s general model,
including some extensions of these theories relevant to clinical ultrasound.

Full derivations of first-order and second-order statistics for these models can be
found in Appendix A and Appendix B, respectively. Important steps in the derivations and
final expressions for relevant statistics will be presented below. Section 4.1 will present the
simple homogenous random media model, where the tissue is treated as a diffuse collection
of randomly arranged scatterers. Section 4.2 will cover an intermediate model which
permits the addition of a constant background signal to represent an underlying specular
structure component of the returning signal. This model will be used as a stepping stone to
the general model, presented in Section 4.3, which allows both the diffuse and specular

components to be described in terms of their statistical properties.

4.1 Speckle in the Case of Randomly Arranged Diffuse Scatterers

The first model presented considers scattering by a homogenous random medium.
The component of the returning signal determined by random scatters is referred to as the
diffuse component. This model consists of only a diffuse component.

The resolution cell of an ultrasound scanner is defined as the smallest resolvable
volume of interrogated tissue. It is the volume bounded axially by the beam pulse length
and laterally by the diffraction width of the beam and beam focusing effects. Usually, the
cell dimensions are defined by the -6 dB points from the maximum in the directions
involved. When more than one scatterer lies in a single resolution cell, the pressure waves
returning from the individual sites will interfere coherently when received at the transducer,
i.e. superposition holds. Such scatterers are said to be unresolvable. This model treats

tissues as a collection of randomly distributed unresolvable scatters.
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Mathematically, the wavelet returning from any one scatterer within a resolution cell
can be modeled by a phasor, and the total pressure wave returning from that resolution cell
to the transducer face can be represented as the summation of the individual scatterer
phasors within the cell. If the phase angle of each phasor is independently and uniformly
distributed over the primary interval, as in a random distribution, and the amplitude of each
phasor is independent of its phase, then the solution of the sum of the phasors is analogous
to the random walk problem in a complex plane [Jacobs and Thijssen, 1991]. For a
sufficiently large number of scatterers, one can invoke the central limit theorem, and the
distribution for the resultant phasor is a zero-mean circular Gaussian probability density
function [Goodman, 1985]. The conditions where these assumptions hold are said to result
in "fully developed" speckle. Ohya et al. [1992] define the speckle region to exist when
more than about 10 scatterers exist within a resolution cell.

For the narrowband pulses used in ultrasound, envelope detection of the returning
signal can be modeled by detection of the instantaneous phasor amplitude [Middleton,
1987]. Thus, applying a change of random variables relating the magnitude and phase of
the resultant phasor to its complex components, the marginal probability density functions
(PDFs) for the envelope amplitude E and intensity / of the theoretical distribution, as
modeled by the amplitude and squared-amplitude of the summation phasor, can be easily
solved. These simple PDFs are known as the Rayleigh and negative exponential PDFs,
respectively, and are presented in Equations 4.1 and 4.2 for envelope amplitude £ and
intensity /, where the parameter y is a measure of the mean-square scattering strength of

the tissue, equal to the variance of the real and imaginary Gaussian phasor components

[Goodman, 1975].

p(E)= %exp{—Ez/Z w}, for E>0. [4.1]

1
p,(I)= ﬁexp(—l/Zl//), for I>0. (4.2]
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From these PDFs, the following important quantities can be solved [Papoulis, 1991]:

(E)=y"F
(E)=(I)=2y
(E)=(r")=8y"
c.%= (4_ ”)W
g 2
o =4y* =1y [4.3-7]

An important characteristic of these PDFs is their constant signal to noise ratio
(SNR). By calculating the ratio of the expected standard deviation to the expected value as a
function of y, the envelope SNR is determined to be approximately 1.91, and the intensity
SNR is unity, both independent of y. Experimental studies [Smith et al., 1982; Foster et
al., 1983] have found measured SNRs in computer simulations or tissue mimicking
phantoms in agreement with these theoretical values. Thus, a constant SNR can be used as
a test of agreement with the underlying model. Additional implications of a constant SNR

will be discussed later.

The Log Compressed Rayleigh Distribution

To date, there is a lack of significant amount of research or experimental data clearly
demonstrating the possibility of extracting scatterer characteristics from the compressed
signals normally encountered in commercially available B-scanners [Waag et al., 1991].
The statistics for such a system, however, can be derived from the above solutions. Since
these statistics will be used later to assess some of the issues of real-time data collection
from real subjects, they will be developed here. For the case of fully logarithmic

compression, the following substitution is made:

B=Clog,,E=Clog,,I. [4.8]
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If the result is expressed in decibels, C=20. The following PDF for compressed image
strength as a function of scattering strength y and coefficient C is obtained through

statistical transformation of Equation 4.1 or 4.2:

In10 2BIn10 exp(2BIn10/C
ps(B)= CXP{ _ el A9)

for —ee < B < +o0. [4.9]
Cy 9 2y }

This PDF, which will be referred to as the log compressed Rayleigh distribution, is
characterized by identically shaped curves with means increasing for larger values of v.
Some of these curves are presented in Figure 4-1. The power-level independent shape of
the resulting family of PDFs is a manifestation of the y independence of the expected
standard deviation of the transformed PDF. This reflects the fact that the logarithmic
transformation converts the signal dependent noise of the original estimates into additive
noise. Thus there is constant variance within this family PDFs [Steinmetz et al., 1992]. A
similar statement was made by Burckhardt [1978] who noted that the fixed signal to noise
ratio of magnitude required the noise to be converted to additive noise upon logarithmic
compression. In Appendix A, the variance is verified to be independent of ¥ and

approximately equal to 31 square-decibels.

0.1
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Figure 4-1: Log compressed Rayleigh distributions from Equation 4.4 for
different values of y with C=20, i.e. compression to decibels. From left to

right: y=25, y=100, =400, y=1600 normalized scattering power units.
Dotted regions would be clipped to zero on a six-bit system (see text).
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It is also possible to calculate the expected theoretical value of B as a function of y

with C=20:

(B), =0.5035+10log,, y. [4.10]

As expected from the description above, the expected value is a simple function of y, one
which varies linearly with the compressed tissue scattering power in decibels.

On the six-bit system used in this research, only the integer range of values
0 < B<63 are defined, with values outside of this range clipped to the bounds. This is
represented by the dotted segments of the PDFs in Figure 4-1. The expected value of

Equation 4.5 is valid over the wide range of y where high and low clipping are minimized.

Second-Order Statistics of the Diffuse Model

Second-order statistics are useful to describe the qualities of texture. This research
focuses on the autocorrelation function to quantify textural differences. These statistics can
be determined in both the axial and lateral directions. The lateral statistics are influenced by
diffraction and focusing of the beam, both functions of imaging depth, whereas the axial
statistics are influenced primarily by the pulse envelope waveform, which is effectively
unchanged with depth. For these reasons, this work will focus only on the axial
autocorrelation function. To minimize diffraction and focusing effects, all images of interest
will be taken near the focal depth of the transducer, and a constant beam width will be
assumed.

Use of these functions to describe the texture of the myocardium and other B-scan
regions is based on the assumption that the tissue can be treated as a wide-sense stationary
system, that is, that all the statistical parameters relating two points are completely
determined by the two-dimensional separation between the two points, and not by their
absolute positions. Complete derivations and references of the equations presented in this

section can be found in Appendix B.
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Properties of the System Point Spread Function

The transducer point spread function (PSF) can be modeled as separable into two
terms: an axial component and a radial component. While the lateral component is a depth-
dependent function of diffraction and focusing effects, the axial component can be modeled
as a constant characteristic of the system, specifically the waveform envelope of the pulse.
For a transducer with a symmetrical usable bandwidth around its center frequency, created
by the proper use of damping materials along the piezoelectric crystal, such waveforms can
be approximated by a Gaussian window applied to a continuous wave of the center
frequency. Thus the axial PSF can be modeled by a Gaussian PSF of an appropriate width
centered at the middle of the pulse. A typical -6 dB pulse width for an imaging transducer is
on the order of two wavelengths [Jacobs and Thijssen, 1991]. Shorter envelopes are
physically difficult to generate, and longer ones sacrifice resolving power.

Thus, the axial PSF g can be modeled as a purely real function [Wagner, 1983]

symmetric about r =0, such that g(r) = g(~r).

Autocorrelation of the Complex Phasor

Let A be the complex amplitude phasor for the returning wavelet described

previously. The autocorrelation of this random variable is defined as:

R,(Ar)=(A(r)- A(r + Ar)) [4.11]

where the overbar indicates complex conjugation of this complex variable. Rewriting A as
the convolution of the scatterer position-strength process R and the point spread function

(PSF) g of the system yields:

A(r)=R(r)=g(r), [4.12]
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where the asterisk denotes the aperiodic convolution operator of linear systems. The PSF g
is a nonrandom characteristic of the imaging system, and R will be modeled as a stationary

process, such that the autocorrelation function of A can be rewritten as:

R, (Ar) = g(—Ar)xg(Ar)xR(Ar). [4.13]

Furthermore, the function R can be separated into two parts:
R,(Ar)= (R(r) ‘R(r+ Ar))

[4.14]
= Ro2 '.u'R(Ar)

where R} is the average scattering strength of R and g is the normalized short-range

internal autocorrelation. Combining Equations 4.13 and 4.14:
R,(Ar) =R g(—Ar)yxg(Aryp.(Ar). [4.15]

This model assumes that the microstructure is random and uncorrelated, i.e.
U,(Ar)= 8(Ar), the Dirac delta function, such that the internal autocorrelation can be
canceled in the convolution of Equation 4.15. Additionally, since g is real and symmetric

about zero, Equation 4.15 can be further simplified to:
R, (Ar) = R,’[g(Ar)xg(Ar)] [4.16]

Thus the speckle texture in the diffuse model, as characterized by the autocorrelation of the
complex phasor, carries only information about the system PSF and average scattering
strength. With respect to ultrasonic tissue characterization, tissues that produce fully
developed speckle can be characterized entirely by their average scattering strength. For a
Gaussian g, the autocorrelation will also have a Gaussian shape. Note that for Ar=0,

Equation 4.16 is equivalent to the expected value of the intensity I, which was found in

Equation 4.4 to be 2y

R,(0)=(A&)=(I)=2y [4.17)
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Thus, if g is defined such that the second term of Equation 4.16 is equal to one, i.e. the

PSF g, has unit total power, then the constant term in Equation 4.16 can be related to the

mean tissue scattering power Y, using Equation 4.17, to yield:

R, (Ar)=2y[g,(Ar)*gy(Ar)] [4.18]

Autocorrelation of the Intensity

Since the phasor A cannot be determined from the ultrasonic image, an expression
for the autocorrelation for phasor amplitude E or intensity / must be derived. Approaches to
this transformation include approaches from statistical communication theory [Middleton,
1987], laser optics [Goodman, 1975], and application of the Gaussian moments theorem.
These approaches are outlined in Appendix B. Only the resulting theoretical autocorrelation
function for the intensity I, the variable used in the experiments of this research, is

presented here:

R,(Ar)=13(1+]p(ar)). [4.19]

In this equation, I, =(I)= 2. The subscript d has been added to indicate contributions

from the diffuse component of the tissues. A specular subscript will be introduced in later

models. The variable p is the normalized phasor autocorrelation, also known as the

complex coherence factor. It is defined as:

R,(Ar) _ Ry g(Ar)*g(Ar)
R,(0) (L)

plar)= = gy (Ar)g,(Ar). [4.20]

4.2 An Intermediate Model: Constant Structural Component

The purely diffuse model of Section 4.1 can be extended to add a component
resulting from underlying structure within the tissue. Assuming that in addition to random

scatterers, the tissue now has a microstructure on a dimensional order smaller than the
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pulse length of the beam, i.e. it is unresolvable. Such a structural component will give rise
to a “distributed specularity” [Wagner et al., 1987]. If the microstructure is regular, e.g. a
regularly spaced lattice of scatterers, the specular component phasor would be a function of
the spacing and orientation of the lattice. For proper orientation and spacing, this structural
phasor component has constant length and phase. In this intermediate model, the
distributed specular component, i.e. structural component, is modeled as a constant at all
positions. This can be incorporated into the previous model by adding a fixed phasor of
length § to the summation phasor of each resolution cell. Without loss of generality, the
angle of the phasor can be fixed at zero.

As before, the returning phasor A has a circularly Gaussian distribution, but in this
case the mean is not zero, but is offset by the constant structural phasor. Applying the same
transformation of variables as above, the following PDF is obtained for the intensity I:

_ 2
pi(1) == exp{ (HS)}IO{S\[I—} for 1> 0. [4.21]
2y v

where I,(...) is a modified Bessel function of the first kind and zero order, and S is the
amplitude of the constant phasor. This distribution is known as the modified Rician PDF,
since I is the square of the Rician random variable E. The following moments can be
determined from this new distribution:

(h=2y+S*=1I,+1I,
o =4y’ +4yS’ = 0] +21,1,. [4.22-23]

In these expressions, the constant I has been introduced to represent the contribution to

intensity from the structural component, where I, = §>. The SNR for this model is no

longer unity. Instead:

12 2
sNR= Lt 2Ll AL [4.24]
+21,],
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Note that there is a corresponding increase in the SNR relative to the purely random
condition, such that it must be greater than unity for nonzero structural components. In an
experimental study by Tuthill e al. [1988], the SNR was shown to have maxima for
microstructural spacing at integer multiples of the transducer base wavelength where
constructive interference is maximized, up to the pulse length used (four wavelengths), and
minima at non-integral half-multiples where destructive interference dominates. Above the
pulse length, SNR decreased as resolvability increased, i.e. there was no distributed
specularity, only resolvable specularity with increasing amounts of purely “diffuse space”

in between.

4.3 The Generalized Rician Model: Stochastic Structural Contribution

The intermediate model of Section 4.2 assumed a constant background distributed
specularity added to the returning signal, consistent with very regular microstructure
spacing. Real tissues, however have a much less regular structural spacing, and may
contain both resolvable and unresolvable parts. The final model, in which the structural
component is modeled statistically, has been called the Generalized Rician Model by
Wagner et al. [1988]. In this model, the diffuse scattering component continues to be
described in terms of the diffuse tissue mean-square scattering power y, but now the
additive distributed specular component is described in terms of its statistical properties,
i.e. the tissue is now defined by the statistical properties of both its diffuse and distributed
specular components. Important first-order statistics are derived in Appendix A. The mean

and variance are:

ol =4y’ + o, +4y(l) =0, + 0, +2I,(L). [4.25-26]

s

In this model, I, is no longer a constant, but rather defined by its statistics. Note

that the expected value of intensity 7 has the same form as in the intermediate model, but the
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intensity variance has a new term incorporating the variance of the specular component into
the system. The SNR in this model now depends on the SNR of the specular component.
Specifically, for specular SNR less than unity, the total intensity SNR will also be less than
unity, and vice-versa. Clearly, the degree of change will also depend on the relative
magnitudes of the specular and diffuse contributions as compared to signal and variance.

The autocorrelation function for intensity / is found in appendix B:

(nhY =121+ |+ 20, (L) + (1, L,) + 21, (rr, + i, )p. [4.27]

The variables r and i are the statistically defined real and imaginary parts of the specular
phasor component. The autocovariance can be found by subtracting the square of the mean

in Equation 4.25 from Equation 4.27. The result is:

C, = Lp* +{I,1,)~ (L) +2Lp{rr, +ij,). [4.28]
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5. Experimental Methods

5.0 Experimental OQOutline

Three sets of experiments were performed. A first set of preliminary experiments
was performed to assess the noise effects of the videotape storage medium on the data. A
second set of principal experiments was designed to examine the dependence of certain
summary statistics of the autocorrelation on the pathologic classification of a number of
human cardiac autopsy specimens under very controlled conditions. Finally, a last set of
experiments was performed to study some of the issues involved in real-time data collection

in patients.
5.1 Equipment

The experimental setup used in each set of experiments was identical. A Hewlett-
Packard (HP) Sonos 1500 ultrasonic scanner was used to collect standard B-Mode images
with a standard transducer for subsequent analysis. Several transducers were used,
specifically: an HP model 21364A 5.0 MHz 64-element transesophageal multi-plane
phased-array transducer, and both 5.0 MHz and 2.5 MHz 128-element transthoracic

phased-array transducers. These pieces of equipment are commonly available clinical tools.

34



For storage on videotape, the video output of the scanner was connected directly to
a Panasonic AG-7350 Super-VHS video cassette recorder with 75 Ohm coaxial cable. The
images were recorded onto Super-VHS video cassettes at the fastest standard VHS
recording speed. A different VCR of the same model was used for playback. Output was
also via 75 Ohm coaxial cable.

Images were digitized using a PCVISIONplus model PEFEGPLUS-640-3-60 frame
grabber from Imaging Technology, Inc. which captured 640x480 pixels per frame. The
digitizing board was installed in an Intel-486 based PC system. The image acquisition
software used was the OPTIMAS video package from BioScan, which had been calibrated
against the direct output of the scanner, by analyzing known video standards produced by
the scanner. Images from the frame grabber were viewed on a Sony PVM-2030 Trinitron
color video monitor using RGB inputs from the frame grabber.

Digitized image data was stored on the PC hard disk drive in the standard tagged
image file format (TIFF). Signal processing was performed using MATLAB 4.0 by The
MathWorks, running on the same PC. Statistical analysis was performed using STATA by

Computing Resource Center, also on this PC.

Ultrasound Scanner Calibration

Before recording any data, the scanner settings were set to the standardized values

listed in Table 5-1.
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Table 5-1: Standard Scanner Settings

Parameter Setting=
Preprocessing 2 (linear)
Persistence 0
Compression logarithmic
Postprocessing A (linear)
Transmission Power variable}
TGC variable¥

+The adjustment of these variable settings is
described in the text.

The transmission power dial and time-gain compensation (TGC) sliders were
adjusted to obtain the most visually pleasing picture, i.e. one of relatively uniform contrast
and brightness at all depths, without any obvious low- or high-clipping of data. The

significance of these settings and operator-dependent variabilities is described in Chapter 7.

5.2 Videotape Noise Experiments
Data Collection

A normal male subject was imaged in the transthoracic parasternal long axis view
using the 2.5 MHz transthoracic transducer. If power levels were adjusted to image heart
tissue, as in normal imaging, the blood, a much less efficient scatterer than the tissue,
would return signals in the lowest part of the dynamic range, below the levels displayed on
the output, and would hence be clipped to zero. To properly image the texture of the blood
cavity, the gray-level within the blood cavitity was increased to make the texture visible by
increasing the transmitted power and the TGC gains. (Of course, in this setting, the heart
tissue will now typically exceed the dynamic range of the output, and be clipped to the

output’s highest value.) Using the loop-capture function of the ultrasonic equipment, one
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half of a second (15 frames) of real-time data was collected and stored by the ultrasound
machine. These frames were individually digitized, bypassing the videotape apparatus, and
stored as the reference frames. Then, each frame was recorded onto videotape for several
seconds, and the VCR playback images were digitized and stored as the video frames. The
images were checked visually to insure proper vertical registration, i.e. that each row of
data in each video frame matched the corresponding row in the reference frame.

Identical 16x16 pixel regions were selected from each pair of frames. The regions
were chosen to lie entirely within the blood cavity. A new signal, the video error signal e,

was defined as:
e[n,,n2]=v[n,,nz]——r[nl,nz] [5.1]

for all positions [nl,nz] in the 16x16 pixel samples, where v and r were the video and

reference frames, respectively. The error e was computed for each of the 15 pairs of

frames.

Data Analysis

A probability distribution estimate of the error signal e was computed from the 3840
sample values obtained (15 frames of 256 pixels each) for visual inspection, along with the
overall mean error and its standard deviation. Using a model where error signal was
stationary with respect to position, but not with respect to reference signal strength, the
expected value u and standard deviation o of the video error e as functions of the reference
signal strength r were estimated using linear regression models. The standard deviation
model was calculated using standard deviation estimates at each reference signal strength
value where 5 or more samples were available, with each such estimate equally weighted.
This standard deviation model was then used to calculate the expected signal to noise ratio

as a function of reference signal strength.

37



Assuming constant variance, a corrected error signal with stationary mean was

defined as:
eo[mn, | = ¢e[n,n, |- i1, (r[n,,n2 ]) [5.2]

where fI,(...) is the estimate of the error mean as a function of reference signal strength as
determined by the model computed earlier. The vertical autcorrelation of e,|n,,n, | and the

crosscorrelation of e[n;,n, | with r{n,,n,] were then estimated.

5.3 Pathology Lab Study
Data Collection

Specimens included sections of histologically classified hearts fixed in a 10%
formalin solution. The specimens were individually placed into a 0.9% saline water bath
measuring approximately 50x30x12 cm at 37 degrees Celsius. Data were collected using
the 5.0 MHz transthoracic transducer placed inside a latex sheath to protect it from water
damage. Both the transducer and the sheath were previously treated with acoustic coupling
gel. The covered transducer was aimed down the long axis of the bath approximately 4 cm
below the surface to minimize reflective noise from the bath borders. The specimens were
positioned approximately 2 cm from the transducer atop a plastic support structure resting
on the bottom of the water bath. The samples were positioned by hand during the data
acquisitions, and all obvious air bubbles were eliminated.

Specimens were examined in two experimental sessions. Seven specimens were
imaged in the first session, and fifteen in the second. Descriptions of the hearts used are
presented in Table 5-2. The variable settings were adjusted for the first specimen of each
session, and were left unchanged for subsequent samples in each session. The zoom mode
of the ultrasonic scanner was used for maximum video resolution. For each heart

specimen, image views were collected from three different regions of the left ventricular
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heart wall. In each view, the heart was oriented such that the surface of the outer wall was
as normal to the transducer beam as possible as determined by visual inspection of the
sharp water-tissue interface echo. With the heart properly positioned, the scanner's freeze
function was employed to hold the image. This frozen output frame was then recorded for
several seconds onto the video tape. Data were identified by the sample number of the

specimen only, to prevent unintentional biasing.

Table 5-2. Description of Imaged Samples

Group Session 1  Session 2
Normal 1 2
HCM 1 2
Amyloid 2 3
LVH 0 2
IDCM 2 3
RCM 1 0
Cyclophosphamide 0 1
Myocarditis 0 2
Total 7 15

CM=cardiomyopathy; HCM=hypertrophic CM; LVH=left ventricular
hypertrophy; RCM=restrictive CM (non-amyloid), IDCM=idiopathic
dilated CM.

Image Processing

Statistical analysis was ultimately performed on corrected final images derived from
the digitized sample views. The process of generating these final images, described below,

is summarized in Figure 5-1.
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Figure 5-1: Summary of the generation process for the final corrected

images used in the statistical analysis. The steps are described in the text.

New images were generated by selecting regions of interest from each digitized
sample view which included as much of the myocardium as possible in a rectangular
region, while excluding the sharp water-tissue boundary echos. If no suitable region was
attainable, the view was not included in subsequent analysis. These images were corrected
to account for the expected video noise error as determined in the first set of experiments.
Specifically, each pixel value was corrected by the expected error computed by inverting
the linear video error model from above to reflect expected error as a function of measured
video signal strength.

For TGC normalization, a session correction curve as a function of depth, i.e.
vertical position, was subtracted from each image collected during that session. This
correction curve was determined by lowpass filtering the average of the deviation curves
for each intermediate image in a given session. Before filtering, the average was corrected
to account for the varying number of samples at each depth resulting from the variable
sizing of the intermediate images. For each image, the deviation curve represents the

average deviation at each depth, i.e. vertical position, of the received signal from the total
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image mean. The lowpass filter was an 11-point moving average filter. The first and last 5
points of the average were retained unchanged, and the middle kernal was replaced by the
moving average output.

At this point, the corrected video signal v’ was transformed from the scaled decibel
units attained using the scanner’s logarithmic compression to the intensity units used in the
derivations in Chapter 4. The corrected data were first converted to true decibels by
dividing by four, since the frame grabber generates 6-bit data in the highest bits of its 8-bit
output, setting the lowest bits to zero, i.e. the data is output as integer multiples of four.
These decibel values were then directly converted by dividing by 10 and computing the

inverse logarithm to base 10. This transformation is given by Equation 5.3:
(v'/4)
1=10 o [5.3]

To convert to normalized values, the resulting images were then divided by the resulting
mean intensity value. These final unitless normalized values constituted the final corrected

images on which subsequent analysis was performed.

Data Analysis

For each session, the resolution, in pixels per centimeter, was computed by
measuring, in pixels, the separation between the scanner calibration markings in the
original digitized images. The calibration markings are included at 1 cm intervals. The
resolution was computed using the outermost calibration markings for accuracy.

An unbiased estimate of the vertical autocorrelation function for each corrected
image was computed. For ease of coding, a biased estimate was first extracted from the
biased two-dimensional autocorrelation as computed by two-dimensional Fourier
techniques. This estimate was then scaled to remove bias. Since the mean value of the

image was set to unity during normalization, the autocovariance is simply one less than the
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autocorrelation at each lag, i.e. the autocovariance is the autocorrelation minus the square of
the mean.

Four summary statistics were computed from the autocovariance estimate. Two of
these statistics are depicted graphically in Figure 5-2. All lag distances were converted to
millimeters using the computed session resolutions. The maximum value, abbreviated max,
was defined as the autocorrelation value at zero lag, i.e. the mean square intensity. The full-
width at half-maximum, abbreviated fwhm, was found by linear interpolation between data
points as twice the distance between the zero-lag point and the minimum positive lag at
which the autocovariance was half of the maximum value. The area under the curve,
abbreviated auc, was found by taking the sum of all autocovariance values at lags between
zero and 5 millimeters equivalent distance, scaled by the appropriate interval length. This
sum is an estimate of the integral of the autocovariance from O to 5 millimeters. The area to
maximum ratio, abbreviated by a/m, was found by dividing the area under the curve auc by

the maximum value max.

C(Ax)

Figure 5-2: Graphical depiction of the summary statistics derived from the

autocovariance curves. The abbreviations used are described in the text. The

area under the curve is simply the area under the autocovariance between -5

and 5 mm lags.

To assess the dependence of the autocorrelation on pathologic group, multiple linear
regression models were generated for each of the summary statistics found above.

Restrictive cardiomyopathic and idiopathic dilated cardiomyopathic samples were not

included in the test set. The test set contained the normals, and the diffuse processes left
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ventricular hypertrophy (LVH), hypertrophic cardiomyopathy (HCM), amyloidosis,
myocarditis and cyclophosphamide damage. A separate model was generated for each
session, where the pathologic grouping and the heart specimen were the independent
categorical variables, with the heart specimen nested within the group. The summary
statistic of interest served as the dependent variable. Additionally, another model
controlling for session was generated by adding the session as another independent
categorical variable. Thus, three models were computed for each of four summary
statistics.

The significance of the regression models and the significance of the group variable
within each model were found by standard analysis of variance. Significance was noted for

p values less than 0.05, i.e. 95% confidence.

5.4 Transesophageal Echocardiography (TEE) Study

Data Collection

For transesophageal examinations, subjects were patients of the Brigham and
Women's Hospital (BWH) undergoing thoracic surgery. The data were prospectively
collected in the operating room with a 5.0 MHz transesophageal multi-plane phased-array
transducer. Data were collected preoperatively in standard B-Mode form and stored on the
videotape in real time. On pause-mode playback, data were collected from every other
frozen video frame, i.e. 1/30th second increments, using the frame-by-frame search of the
VCR.

A set of image data was recorded from each subject onto video-tape for subsequent
analysis. The same machine standardizations were used as in the Pathology Lab
experiments. TGC and gain settings were adjusted for each view of each patient to optimize

the images.
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All data were recorded from the transgastric view with the multi-plane transducer
set at zero degrees. A zoom mode segment was recorded at the maximum zoom for the
blood cavity. The gains and transmission power were adjusted as in the first experiments
so that the speckle patterns in the blood cavity were visible. In each subject, at least three

cardiac cycles were recorded.

Image Processing

At least 25 consecutive frames of 128x128 pixel data were digitized for the zoom
mode images of the blood cavity, attempting to exclude as much as possible of the
myocardium in the data. The images were collected in TIFF format and stored on hard disk
for later analysis.

The regions of interest were collected as close as possible to the center of the scan
region, such that the vertical direction would closely approximate the true axial direction of

the scan lines used to create the B-mode image.

Data Analysis

For the blood cavity data sets, histograms were computed for 10x10 subregions in
the center of the blood cavity over the entire data set. The histograms were normalized such
that the area included in the histogram summed to unity for direct comparison with the
theoretical log-compressed Rayleigh distribution. The theoretical model curve was fit to the
data in two ways. First, the theoretical scatterer power parameter ¥ was computed from the
observed histogram mean using the equation for expected value as a function of the
logarithm of y as found in Chapter 4. Second, the total-square error was minimized with
respect to scatterer power Y. The total square-error (7SE) was employed as a measure of

accuracy for the model and was defined as:
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TSE = 6i{hist[n] ~py(B=n)}’ [5.3]

n=0

where hist[n] is the histogram function for the discrete bins 7n=0..63 and p,(B) is the
theoretical probability density function at the discrete value B=n, i.e. the value of the PDF
at B=n was used as an approximation to an equivalent probability mass function (PMF) at
each point. The TSE was expressed as a percentage of the total energy (TE) in the

distribution, approximated by:

TE = i{pB(B)}z. [5.4)

n=0

Thus, the TSE as a percentage of TE is used as a measure of the error. Additionally, values

for chi-square goodness-of-fit tests were found for the observed data.
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6. Experimental Results

6.1 Videotape Noise Experiments
First order statistics

The video error e was defined as the difference between an image recorded to video
and digitized on playback and the same image digitized directly from the ultrasound
scanner. The mean and standard deviation of the video error function e were computed
from the fifteen frames of video and direct-line data. Mean was 1=0.4044 decibels, and
standard deviation was 0=2.48 decibels. The normalized histogram of the error function is
presented in Figure 6-1 along with a Gaussian distribution having mean and standard
deviation matched to the experimental values u and o. The noise appeared to have some

Gaussian-like characteristics.
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Figure 6-1: Raw videotape error signal. The bar plot indicates a normalized
histogram of error values computed from 3840 samples collected over 15
different images. The solid line represents a Gaussian distribution with
mean 0.4044 dB and standard deviation 2.48 dB.
A negative covariance between the signal and the error at a given position was

found. The mean error e as a function of signal strength s was estimated by linear

regression (p<0.0001) as:

fi(s) = 4.757—0.0996s. [6.1]

The experimental data and the model are presented in Figure 6-2.
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Figure 6-2: Linear regression model for the mean video error as a function
of the signal value (p<0.0001). The dotted lines indicate the overall mean

error (Ue=0.4044 dB) and the mean signal (ug=43.68 dB) from the full data
(n=3840). The circles are the mean error computed for each signal value
where 5 or more samples were available. The equation of the solid

regression line, computed from the full data set, is fi(s)=4.757 —0.0996s.
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For a given signal s, the standard deviation of the video error was estimated by linear

regression (p<0.0001) as:

5(s) = 4.81-0.0526s. [6.2]

This result is presented in Figure 6-3.
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Figure 6-3: Linear regression model for standard deviation of videotape
error as a function of signal strength. Both are in decibel units. The circles
represent standard deviation estimates calculated at signal strengths where 5
or more samples were present, using the mean found in Equation 6.1. The
solid line represents the linear model (p<0.0001) calculated from the circle

data points (n=33) and has the equation 6(s)=4.81-0.0526s.

The expected SNR in decibels, given by

€

SNR,peciea(5) = 2010, {5/ 6(s)}, | [6.3]

is plotted in Figure 6-4.
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Figure 6-4: Expected Signal-to-Noise ratio as a function of signal strength.

The models for signal deviation as a function of signal strength are used to

calculate this expected curve, which is shown in the range in which most of

the sample points existed. The solid line is the expected SNR, as in

Equation 6.3. The dotted line is a straight line passing through the data

points at s=25 and 57 to demonstrate that the expected SNR is nearly linear

in this region.

The figure shows the values for Equation 6.3 over the range of signal values in
which 5 or more data points were present in the sample data set. Although not shown in the
figure, as the signal strength approaches zero, the SNR goes to negative infinity by
definition since the received signal becomes all noise. In the range presented above,

however, the increasing strength and decreasing noise powers balance, leading to an almost

linear increase in the expected SNR with increasing signal strength.

Noise autocorrelation

Figure 6-5 shows the average vertical direction autocorrelation function for the
corrected noise process, i.e. the error corrected for the expected error for the signal

strength. This function was found to be very well matched to

R,(Ax) = o7 exp{-{Ax} [6.4]

e

for the vertical direction with 07 = 5.64. The error is correlated significantly (r>0.1) over

only 2 pixels.
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Figure 6-5: Normalized autocovariance function for the corrected videotape

noise process. The heavy solid line represents computed values from the

data set, the lighter solid line represents the approximating exponential

function of equation [6.4] The dashed lines represent the 95% confidence
intervals.

Noise crosscorrelation with the signal

The crosscovariance function, presented in Figure 6-6, shows that the corrected
error function is not correlated with the signal. The zero-line model fits well within the
confidence intervals. As in Figure 6-5, the confidence intervals increase in size with larger
lags, a result of the reduced number of samples available from which to calculate the

estimate at increased lags.
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Figure 6-6: The crosscovariance of the corrected error signal with the
underlying direct-video digitized signal. The dashed lines represent the 95%
confidence intervals for this estimate. Note the increasing size of the interval
for larger lags.
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6.2 Pathology Specimen Experiments

Resolution

Two pathology sessions were conducted. The zoom resolutions for the first and

second sessions were 141 pixels/cm and 107 pixels/cm, respectively.

Off-line TGC Correction

A TGC deviation correction curve was computed for each session in an attempt to
correct for operator-dependent variations in the TGC settings. Figure 6-7 shows the TGC

deviation corrections computed for pathology sessions 1 and 2.
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Figure 6-7: Session TGC deviation correction curves. The solid and dotted

lines are computed for pathology session 1 and 2, respectively.

Analysis of Variance Results

The autocorrelations of the normalized, corrected images were computed for image
intensity /. Several summary statistics were computed from the autocorrelations to allow
dependent variable analysis of variance on regression models. These summary statistics
were the area under the autocovariance curve over the range from 0 to 5 millimeters

(abbreviated auc), the maximum autocorrelation (max), the ratio of the area to the maximum
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autocovariance (a/m), and the full-width at half-maximum (fwhm). Models were computed
for each of the sessions separately, and also for both sessions together. The results of

analysis of variance studies on the computed statistics are presented in Table 6-2.

Table 6-2: Significance Values of Group Parameter from Analysis of Covariance

Session
Statistic One Two Both
auc NS 0.0001 0.005
fwhm NS NS NS
max NS 0.0171% NS
a/m NS NS NS

auc=area under curve; fwhm=full-width at half-maximum; max=maximum
autocorrelation value, a/m=ratio of area to maximum autocovariance. Set
includes normal, HCM, LVH, amyloid, cyclophosphamide and myocarditis
groups. NS is noted for p>0.05. Unless otherwise noted, in cases where
the group is significant, the underlying multiple regression model is
significant at the p<0.05 level. tModel p=0.0534.

Group Statistics

Groups statistics are presented in Tables 6-3, 6-4, and 6-5 for the first session,
second session, and combined sessions, respectively. The values listed represent the group
average of the specimen sample means for each heart. Summary statistics which were
found to show a statistically significant dependence on group are presented in graphical
form in Figure 6-8 by group. These statistics are the auc and max statistics of the second
session, and the auc statistic of the combined sessions, corrected according to the
regression model computed above to the scale of session 2. No combined-sessions area
statistic for IDCM or RCM groups is presented because these groups were excluded in the
model used to determine the session correction values. Also, session 2 contained no non-

amyloid RCM specimens.
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Table 6-3: Statistics by Group for First Imaging Session

Summary Statistic Number of
auc whm max a/m Samples
Normal 12.38 0.458 4.42 3.02 1
HCM 12.76 0.511 4.11 3.27 1
Amyloid 12.25 0.544 3.96 3.33 2
(0.68) (0.186)  (0.25) (0.29)
IDCM 13.79 0.458 7.57 2.52 2
(2.09) (0.002) (4.53) (0.85)
RCM 10.73 0.458 2.22 4.84 1

Note: Values are presented as mean (standard deviation).

Table 6-4: Statistics by Group for Second Imaging Session

Summary Statistic Number of
_ auc whm max a/m Samples
Normal 10.62 0.466 2.02 5.36 2
(0.05) (0.013) (0.21) (0.46)
HCM 11.59 0.509 2.06 5.74 2
(0.15)  (0.036)  (0.08) (0.25)
Amyloid 13.09 0.540 2.66 5.02 3
(1.14)  (0.071)  (0.51) (0.46)
IDCM 13.03 0.548 2.95 4.85 3
(2.10)  (0.051) (1.11) (0.79)
Cyclo- 11.06 0.517 2.21 5.08 |
phosphamide
LVH 11.52 0.501 2.11 5.59 2
(0.55) (0.009) (0.12) (0.13)
Myo- 10.56 0.507 1.85 5.85 2
carditis (0.54) (0.027) (025 (1.00)

Note: Values are presented as mean (standard deviation).
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Table 6-5: Statistics by Group for Both Imaging Sessions Corrected for Session

Summary Statistic Number of
auc max a/m Samples

Normal 11.00 2.19 5.22 3
(0.67) (0.34) (0.40)

HCM 11.77 2.12 5.55 3
(0.34) 0.12) (0.36)

Amyloid 12.51 2.43 5.11 5
(1.18) (0.50) (0.38)

Cyclo- 11.06 2.21 5.08 |

phosphamide

LVH 11.52 2.11 5.59 2
(0.55) (0.12) (0.13)

Myo- 10.56 1.85 5.85 2
carditis (0.54) (0.25) (1.00)

Note: Values are presented as mean (standard deviation).
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Figure 6-8: Group statistics for summary statistics found to be significantly
dependent on group. Circles = mean; error bars = + one standard deviation.
Data (left-to-right): auc for both sessions corrected for session (dotted), auc
for session two (solid), and max for session two (dashed). Scalebars are for
area values (left) and maximum correlations (right).
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6.3 TEE Blood Cavity Experiments

Table 6-6 summarizes the results of fitting normalized image histogram results to
the theoretical diffuse model probability distribution for all blood data sets using both the
mean fit and error minimization methods. For each subject, the data were collected from the
same 10x10 pixel region in the blood cavity data set over all available frames. Slightly
better results are observed for minimization of error technique, but error is consistently
around 5% (TSE as a percentage of TE) by either method. The 7SE and TE were defined in
Equations 5.3 and 5.4, respectively. Defining TSE as noise energy, and TE as signal

energy, this is equivalent to a signal-to-noise ratio of approximately 13 decibels.

Table 6-6: Blood Data Histogram Fitting Results

TSE %
subject# (mean) (minerr)

1 3.46 3.02

2 4.94 3.77

3 5.60 5.58

4 4.95 4.84
mean 4.74 4.30
standard dev 0.91 1.13

Results for four TEE subjects. The values are total squared-error (TSE) as a
percentage of the total distribution energy. Different subjects were excluded
for showing an observable variation of average intensity in the blood cavity
with cardiac cycle, thus widening the observed histogram.

Additionally, the observed histograms were used as input for a chi-square
goodness-of-fit test. The results indicated that the observed and theoretical data are
statistically different with confidence p>0.999 in all cases, even though there is an obvious

visual agreement between the observed data and the model. These results are in agreement
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with those of Waag et al. [1991] who found similar chi-square results in a comparison
between the expected Rayleigh distribution and the log-compressed data which were

decompressed using calibrated lookup tables.
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7. Discussion and Conclusions

7.1 Effects of Videotape Noise on Data Analysis

Ideally, ultrasound scanners would have a digital output for storing image data
magnetically or optically. Currently, this is not a feature on commonly available clinical
scanners. Although direct-line digitization from the ultrasound scanner to the frame grabber
would be the next best arrangement for the collection of the experimental data, clinical
conditions make this an extremely difficult setup. In the experiments conducted in this
research, space limitations in the operating rooms and examining rooms where the data
were collected prevented the transport of the digitizing computer to the data collection site.
Until clinical ultrasound scanners are regularly equipped with suitable digital storage
devices, videotape is the most feasible way to collect the data.

Video recording is a feature available on almost every commercial scanner.
However, the ability to accurately retrieve data from video tape is a controversial subject in
the field of ultrasonic tissue characterization. Hence, it was necessary to explore and
quantify the signal degradation introduced by this additional link in the experimental setup
to determine its effect on the data of interest. In a controlled environment, it was possible to

set up the digitizing equipment to directly digitize the data from the scanner, and to record
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the exact same data to videotape, and subsequently digitize the playback images for
comparison. To eliminate the frame-by-frame playback effects of real-time videotape
recording, which are addressed later, each frame from a half-second loop was individually
displayed by the scanner and recorded for several seconds, so that a constant picture could
be captured with the videotape running at normal playback speed during image digitization.
The loop capture function is a standard feature of the machine used in these experiments.

By comparing identical regions of interest in both directly digitized and videotaped
images, some conclusions about the nature of signal degradation could be made. For the
data analyzed, the mean upward shift introduced by the tape record/playback step was
1=0.4044 digitization intervals (decibels), where a total of 64 intervals (6 bits) were used
to match the digitizing board to the ultrasound scanner. Furthermore, this raw error signal
was found to have a standard deviation of 0=2.48 digitization intervals (decibels).
Although visual inspection of the data presented in Figure 6-1 suggests a simple Gaussian
model might be sufficient, some observations about the error signal permit a more accurate
description of the noise process.

First, a negative covariance was found between the reference signal and raw error
signal. This finding suggests a dependence of the error on signal strength, with higher
signal values having a generally lower average error. Early data supported a linear model
for error mean as a function of signal strength, so this simplifying assumption was made.
The linear regression model of Equation 6.1, presented in Figure 6-2, is highly significant
by analysis of variance and agrees with the earlier observations. A similar analysis was
performed to estimate the standard deviation of the error as a function of signal strength.
Again, a simplifying linear model seemed appropriate in light of early results.

Using the model for the noise variance of Equation 6.2, it is possible to calculate
the expected signal to noise ratios as functions of the signal strength. The expected SNR,
shown in Figure 6-4, is almost linear in the range presented, which included all signal

strengths represented by at least 5 data samples out of a total of 3840. (A uniform
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distribution would give 60 samples per data value.) The balance between increasing signal
strength and decreasing noise powers lead to this almost linear increase. Thus, one would
expect the best data, i.e. that with the highest SNR, if the equipment is adjusted to the
highest possible values without introducing significant clipping errors, assuming that no
additional error is introduced in the ultrasound imaging equipment at such settings. In fact,

this was the method used to collect data in subsequent experiments.

Noise autocorrelation.

The next step was to determine second order properties of the noise process, i.e. to
determine whether or not the noise is correlated and whether it is uncorrelated from the
signal process. In order to obtain an significant autocorrelation estimate, a stationary
process is required. Clearly, the mean of the raw error signal was not stationary. Thus,
before computation, the noise was transformed into a zero-mean process by subtracting the
expected mean as computed by Equation 6.1 at each point. Although correction for the non-
stationary variance may have ultimately provided a better model of the noise, a constant
variance was used to reduce model complexity.

The autocorrelation and crosscorrelation curves presented in Figures 6-5 and 6-6,
respectively, indicate that the corrected error signal is only slightly correlated, dropping to a
correlation coefficient of less than 0.1 in about 2 pixels, and that it is essentially
uncorrelated with the signal function. This second result is important because it justifies
modeling the noise as a simple additive process, i.e. neglecting interaction effects between
the signal and the corrected error signal. Since the error noise was found to be slightly
correlated, a better estimate of confidence intervals for error statistics might have been made
by correcting the number of samples by scaling by the effective correlation cell length,
which is the integral of the normalized autocovariance function. Integrating, the effective
correlation cell length is approximately 2 pixels, and the effects of this correction would not

change any of the conclusions made. Additionally, horizontal correlations were not
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examined, and may further increase the correlation cell size, thus further reducing the
effective number of independent error samples analyzed.

In summary, the final model presented for the noise is that of correlated Gaussian
noise. This model is appropriate after received signals have been corrected for the expected

video noise.

Effects of videotape noise on intensity autocorrelation estimates

It is shown in Appendix C.1 that after correction of the signal for the expected
video error, the computed autocorrelation estimates for the intensity are corrupted by the

video error in a multiplicative way. Specifically, reproducing Equation C.4,
R, =<1112>E12’ [7.1]

where E is the multiplicative error scaling, a function of lag, defined in Equation C.5. It is
also shown in Appendix C.1 that for properly collected and normalized data, the noise
should equally affect all estimates as an upscaling of approximately 39% at zero lag,
dropping off to negligible effects over a few pixels as the noise decorrelates. Since this is a
relatively limited effect, and one which should equally affect all of the data, the
autocorrelation estimates from different images are still directly comparable. Attempts at
noise reduction in the compressed signal, while relatively simple for slightly correlated
additive Gaussian-like noise, are not desirable because of their modifying effects on the
true signal autocorrelation. Many such noise-reduction methods require some knowledge of
the shape of autocorrelations of the signal, which is precisely that which this study attempts
to determine, and differences in which it attempts to characterize. For these reasons, no
noise reduction was attempted other than mean correction, i.e. an adjustment of the

received signal strength to correct for the expected error associated with that received signal

value.
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7.2 Off-line TGC Adjustment and Power Normalization

Having provided evidence that the received data collected through the experimental
setup are sufficiently uncorrupted by the intermediate storage channel, one must turn to
issues related to the operator-dependent variables of the ultrasound scanner. During
experimental collections, without the benefit of immediate histogram and gray-level
analysis of the recorded images, a few parameters were necessarily adjusted subjectively by
the operator to give the “best” picture, namely signal power and TGC settings.
Additionally, anatomical variations within living subjects make signal strength and
resolution standardization even more challenging. The goal of operator TGC adjustments
was to achieve, as best as possible, a uniformity of average signal strength throughout the
heart wall imaged.

Variations in signal power, resulting from either the differences in emitted power
settings or in attenuation by differing amounts of intervening tissue, are normalized by
scaling all uncompressed signals to unit mean. The consequences of operator-introduced
variations in TGC settings, however, can be more insidious. An essential assumption of
this analysis is that the selected regions of interest represent homogeneous material, i.e. a
region in which autocorrelation represents has a meaningful physical interpretation. Subtle
long-range trends in data introduced by excessive or insufficient TGC may not be readily
discernible by the operator during visual examination of the images and adjustment of the
ultrasound scanner settings. These hidden trends may introduce unexplainable variations in
autocorrelation estimates if they are not considered. The introduction of dropouts and
similar undesirable effects by improper TGC adjustment distorts this condition and
introduces a more abstruse interpretation of the autocorrelation. For example, a gradual,
long-range decrease in received signal strength resulting from insufficient TGC will lead to
a “tipping” of the autocorrelation leading to higher values at small lags and lower values at

large lags. Thus, before analysis, the data must be examined and corrected for variations in
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TGC such that the resulting data are as statistically stationary as possible, i.e. closest to the
assumption of a homogenous media.

To accomplish the task of vertical TGC normalization, the average deviation of the
received signal from the mean signal value has been computed at each depth, i.e. vertical
position. This deviation function of position was further lowpass filtered with an 1 1-point
moving average filter to leave only the gradual trends that are associated with improper
TGC settings. The first and last 5 points of the average were retained unchanged, and the
middle kernel was replaced by the moving average output. These computations were
performed on the compressed data since attenuation in soft tissues, which TGC attempts to
counteract, and the TGC amplification are generally modeled as exponential process,
which, upon compression, should be linear. Similarly, errors in TGC settings can be
expected to occur in roughly linear sections and are best retained by lowpass filtering.

Since the settings were not changed during the course of each experimental session,
and the samples were all imaged at the same distance from the transducer, one would
expect the deviations to be similar for all images collected during a given session. Thus, a
session average deviation function was computed and subtracted from all signals from that

session, completing the TGC normalization.

7.3 Pathologic Grouping Dependence of Summary Statistics

Statistical Results

For the data considered, the area under thé curve statistic, computed across the first
5 millimeters of the autocovariance curve, is highly significant in the multiple regression
model by analysis of covariance for data from the second session alone, and for data from
both sessions after controlling for the session. This suggests that the model coefficient for
at least one of the groups is non-zero, i.e. the group in at least one of the groups included

has a significant effect on expected measure of the area statistic. This evidence supports the
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hypothesis that qualities of the autocorrelation change in formalin-fixed tissues in different
diseased states. Further experimentation with freshly excised tissues is necessary to be
certain that these results are not due solely to different fixation properties of these tissues.

It follows that if the autocorrelation can be described by the generalized model
presented in Chapter 4, then some parameter of the model must change in at least one of the
pathologic conditions studied. Also, the maximum value statistic taken from the zero-lag
value of the autocovariance curve, is also significant, but only for data collected from the
second session. But in this case, only a trend towards significance (p<0.10) can be noted
for the underlying multiple regression model, decreasing confidence in the meaningfulness
of the significance of the group in the model. However, there is still a possibility that the
maximum value may change in some pathologic conditions.

No significant models were computable for the other statistics: the ratio of the area

to the maximum value, and the full-width at half-maximum.

Physical Interpretation of the Computed Measures

The zero-lag values of the computed autocovariance curves are measures of the
normalized variability of the data, i.e. the variance normalized to the square of the mean,
which is also known as the inverse of the signal-to-noise ratio (SNR), or signal contrast.
Several parameters of the proposed tissue autocorrelation model could influence these
values. Differential effects of changes in the overall diffuse and specular components of the
tissue, incorporated into the model as I, and I, respectively, can be analyzed easily by
differentiating the model expression with respect to the parameters of interest.

The ratio of the area under the autocovariance curve to its maximum value or zero-
lag value, the units of which are distance, is related to a quantity known as the speckle cell
size, which is used as a measure of the average size of a speckle “spot” in an image. The

speckle cell size S, is defined by Wagner [1983] as the integral of the unit-normalized

autocovariance over all positive and negative lags. Although only the range from 0 to 5
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millimeters was summed in the experiments reported, it was observed that the computed
autocovariances tended to zero in the first 5 millimeters in the data collected. Thus, at the
high resolution used to sample the data, the computed ratio should be approximately one-
half of the theoretical speckle-cell size.

The area under the curve, then, can be considered as a weighted form of the average
speckle cell size. The weighting is maximum value, which has been described above as a
measure of normalized variability. The speckle cell size is weighted by the signal contrast,
or inverse SNR. It is not surprising that at least one of the two quantities involved also
tends towards significance, as indicated above in the statistical analysis of the maximum
value. The data suggest that the multiplicative combination of the two values may enhance
their overall significance.

The full-width at half-maximum (FWHM) is a rough measure of how quickly the
autocovariance drops towards zero. In cases where the autocovariance fits a simple model,
the FWHM may be sufficient to completely characterize the curve. However, in more
complicated models, its value in describing the autocovariance is greatly reduced.
Therefore, it is not disturbing that the regression model for the FWHM including the
pathologic group as an independent variable was not statistically significant by analysis of

covariance.
7.4 Real-Time Data Collection Videotape Limitations

In order to sequentially digitize and store images from tapes recorded real-time from
subjects, the images must be frozen on the screen using the VCR pause function and
advanced frame-by-frame with the VCR search function. When playing back videotapes in
frame-by-frame freeze-mode on the equipment used in this research, the video tape
advances in 1/60th second fields, or half a frame corresponding to either the odd or even
lines of the image. The VCR duplicates the interlaced information to fill in the missing

lines, resulting in a doubling of the data and a loss of half of the vertical resolution. In
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contrast, during the previous experiments where the tape was running at normal playback,
both fields were captured simultaneously.

From a signal-processing point of view, this change can be modeled by decimation
of the data by a factor of two in the vertical y direction, followed by a two-fold vertical
upsampling and convolution with a filter with impulse response h(r)= 8(r)+ 8(r —1).
From a statistical point of view, this effect will alter second-order statistics. Theoretically,
only even lag points in the vertical autocorrelations will represent true data, with odd points
interpolated between the adjacent points. This loss of resolution and accuracy was
considered when the data were analyzed. From a frequency domain point of view, the
original spectrum is compressed to half of its bandwidth, duplicated at the highest
frequency, and then multiplied by the frequency response of the aforementioned filter, i.e.
a two-point periodic sinc function. These facts were also considered when the data were
analyzed.

Note that there is no such loss of information in the lateral direction.
7.5 TEE Histogram Statistics

An average error energy of approximately 5% has been determined for the TEE data
collected from the blood cavity when compared to the expected histogram. It is argued that
since all other parameters are held equal, similar error energies would be expected within
the tissue regions if the exact expected histogram shapes were known. More generally, a
5% energy error is representative of the data collection system.

Thus, given a system energy error of about 5%, data values collected with this
experimental setup are sufficiently close to the actual compressed values of the radio-
frequency amplitude log information that further analysis of these data are justified. A 5%
error level corresponds to a signal-to-noise ratio of 13 dB. The low level of this distortion
makes it less likely that any results observed are purely the results of equipment variations

introduced through processing.
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Unfortunately, the operating room facilities did not permit direct-line collection of
blood cavity data for comparison. These results would be useful in determining at which
point the error is introduced. Specifically, such experiments would be useful in determining
how much error is present at the scanner output already, and how much is introduced in the
transformation to-and-from the analog domain of videotape. Finally, direct results of
histogram information determined from the underlying radio-frequency data, corrected for
attenuation, would allow the estimation of the error introduced during scan conversion to
Cartesian format. This last set of data would also suggest the limitation of the ultrasound
machine itself as a data collection method, including the differences in attenuation down
each line-of-sight.

Overall, however, this low error rate indicates that off-line videotape analysis of
recorded ultrasound examinations does not introduce a great deal of error into the system.
As long as all of the resolution matching and freeze-mode considerations are kept in mind,
video-based analysis should provide sufficient information with low enough distortion to

justify meaningful analysis of the resulting signals.
7.6 Summary and Conclusions

A number of theories modeling the generation of texture in ultrasonic images of
tissues were presented. The final model presented a tissue arrangement consisting of both a
diffuse randomly arranged component and a statistically defined microstructure. This model
predicts that the autocorrelation function computed from image intensities should change to
reflect changes in the model parameters. It was proposed that histologic differences in
tissues resulting from different pathologic processes lead to changes in these parameters,
and hence to a change in the properties of the autocorrelation function. To test this
hypothesis, an experimental design was constructed using standard ultrasonic imaging
equipment to collect images of pathology laboratory heart tissue specimens. Images were

recorded on videotape, and subsequently digitized and analyzed on a computer.
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Experiments were conducted to study the effects of the noise introduced by the
videotape link on the data. It was concluded that the noise approximates additive Gaussian
noise correlated significantly over only two pixels. Theoretical derivations were undertaken
to assess the distortion introduced by such noise upon decompression of the image from
decibels to intensity. It was found that the effects of the video noise are essentially limited
to an upscaling of the main peak value of the autocorrelation, i.e. the mean square, by
approximately 39%, after the normalizations used in the study. Since this effect was
constant, limited, and equally present for all images analyzed, it was judged that the use of
videotape was consistent with valid data collection.

Normalizations of the collected images were designed to attempt to correct for two
of the user dependencies in the equipment setup: TGC settings and transmission power.
Normalized images were computed from laboratory specimens in two separate sessions.
Seven different pathologic groups and normal heart specimens were included. Four
summary statistics were introduced to simplify statistical analysis of the autocorrelation
functions. Upon analysis of variance of linear regression models for these summary
statistics, only the area under the autocovariance curve between 0 and 5 millimeters showed
a statistically significant (p<0.005) dependence on the pathologic grouping over both
sessions, although both area and the maximum autocorrelation value were significant
(p=0.0001 and p=0.0171, respectively) for second session samples only. The area under
the curve represents the contrast weighted speckle cell size, i.e. a variability weighted
measure of the size of the speckle “spots” in the axial direction. It was concluded that this
summary statistic, and hence the autocorrelation function, may be useful as tools for
characterizing tissues using ultrasound.

Lastly, the feasibility of real-time data collection and analysis from living subjects
with this experimental design was considered. The implications of continuous videotaping
and pause-mode playback for data digitization were considered, particularly the field-by-

field advance without interlacing found with the VCR used, and judged to be unlikely to
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significantly affect data collection. Images collected from the blood cavities of live subjects
using a transesophageal transducer were analyzed, and the resulting distributions compared
with theoretical distributions for blood. The distortion was measured by the total squared
error as a percentage of the theoretical distribution energy and found to be approximately
5%. It was concluded that real-time collection of data from living subjects with this
experimental system is feasible.

In conclusion, this research has indicated that the autocorrelation function computed
from digitized images may provide a means of successfully assisting in the characterization
of tissues ultrasonically, without the need for biopsies or other invasive procedures or the
use of ionizing radiation. Furthermore, although direct digital output from ultrasonic
scanners would provide the ideal source of data, the use of videotape to conveniently store
image data for later analysis can provide data of sufficient quality for meaningful analysis,
even when collected as real-time images from living subjects, and opens to researchers an

enormous collection of previously collected clinical images for further study.
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Appendix A - Derivations of First-Order Speckle Statistics
A.l1 The Diffuse Model: Randomly Arranged Scatterers

If the number of scatterers in a resolution cell is large and they are randomly
distributed, the resulting statistics are described as the "fully developed" speckle case. The
derivation of the first- and second-order statistics in the similar laser optics case have been
carefully studied [Goodman, 1975]. A similar application in narrowband noise in the field
of statistical communications [Middleton, 1987] has also yielded analogous results.

When an ultrasound pressure wave interacts with a scatterer much smaller than its
wavelength, a weak wave is reradiated omnidirectionally, resulting in a spherical wavefront
leaving the scatterer. Neglecting insignificant secondary reflections, i.e. applying the Born
approximation, each scatterer results in one wave returning towards the transducer. At the
range of the transducer, the individual wavelets may be treated as planar. Thus the wavelets
from all the scatterers add at the transducer face. The wavelet from a single scatterer s, can

be described by the phasor

1 .
S, =—ﬁlak|exp{J¢k} [A.1]

where a is the amplitude and ¢, is the phase angle associated with the wavelet, and N is
the total number of scatterers in the resolution cell. The wavelets will add at the transducer
face, giving a resultant phasor A.

If the position of each scatterer is independent and randomly distributed, then the

phases of each wavelet will be independent and uniformly distributed over the primary

interval [0,27]. If the number of wavelets adding at the transducer face is large, the

statistics of the complex phasor representing their sum can be treated as the well-studied
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random walk problem in the complex plane, and Gaussian statistics can be derived through
application of central limit theorems.

The following relations hold for the received phasor A:
1 N
Az =Re1Aj=—=) |a,|coOs
R { } \/ﬁkaI kl ¢k
1 & .
A, =ImiA}=—— ) |a,|sin [A.2a-b]
 =Tm{A}= = 3 Ja|sin g,

Since the phase components are independent of the magnitude components, their

contributions can be separated in the following expressions for the expectations of the

phasor components:
1 N
= W;( > COS ¢k =0
N
= _\/lﬁ ;( a,])(sin ) = [A.3a-b]

where the solutions <cos q)k) = (sin ¢k> =0 for a phase variable uniformly distributed over

the primary interval have been used. Similarly, the variances of these zero-mean random

variables can be written:

(47)=(a%) =5 325

k=1

<Iakl > [A4]

where <cos2 ¢k> = <sin2 ¢k) =1 has been used to simplify these equations. Additionally,

since (cos ¢, sin q)k) =0, the two variables must be uncorrelated. In the case of large N,

the central limit theorem states that both distributions are approximately Gaussian.

Thus, the real and imaginary parts of the resultant phasor are uncorrelated,
identically distributed, Gaussian variables. The joint distribution for the phasor components
is simply the product of two independent Gaussian density functions with zero mean and
variance defined as o”. This distribution is known as a circular Gaussian probability

density function (PDF), and can be written as:
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1 A+ A} As
pAR.A:(AR’Al)':zEOJ exp T for A, A, 20. [A.5]

First-Order Statistics of Envelope Amplitude and Phase

By applying a statistical transformation, the PDF for the amplitude envelope E and

phase angle 6 of the phasor can be determined. The following relations hold between the

two sets of random variables:
Ap=Ecos 8;A,=Esin 0 [A.6]

By transformation methods, the resulting PDF can be solved from:

A, /SE GA, /59‘

E.0)= E i
PealE:0)= Pa o, (ECOSO.ESING) o0 o 54 156

[A.7]

where the vertical bars indicate the determinant of the enclosed matrix.

Since the ultrasound processor is phase-insensitive, i.e. only the envelope of the
signal is important, integrating over phase returns the marginal PDF for the envelope
amplitude. The B-scanner detects only the envelope of the echo of the transmitted
sinusoidal signals, which is ideally the instantaneous amplitude of the phasor. Solving for

the envelope PDF:

E —E?
E)=— , for E20. A8
p-EenE] s

where the parameter y is a measure of the mean-square scattering strength of the scatterers

in the medium:

w=o’= ﬁﬁ(larf) [A.9]

k=1

The distribution in Equation A.8 is known as a Rayleigh PDF. Since the envelope
amplitude returning from a resolution cell is proportional to the luminance assigned to the

B-mode image for that cell under linear processing, the ultrasonic image of a scattering
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region meeting the requirements described earlier will exhibit "fully developed" speckle. It
is a simple extension to solve for intensity I = E’, which is described by the negative

exponential PDF:

1 -1
p,(I)= ﬂexp{@—} for 120. [A.10]

Moments of the Rayleigh PDF

In order to describe the variance of amplitude and intensity, some moments of the

amplitude are required. The v order moment of E is defined as:

(E")=| E"p,(E)dE. [A.11]
0

Solving for v=1,2,4:

(5)= 2~

(E*)=2y=(I)
EY)=8y*=(I" [A.12-14]
(E*) (r)

Finally, recalling that I = E?, the variances of the envelope E and intensity I can be solved

from these moments.

2 (4_ ”)‘V
2
02 =4y’ [A.15-16]

Ok

The signal to noise ratio (SNR) at a point can be defined as the ratio between the mean and

the standard deviation of the signal. Solving:

SNR, = [A.17-18]

The inverse of the SNR is known as the speckle contrast. Note that the SNR for both

amplitude E and intensity I are both constant, independent of scattering power y.
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First-Order Statistics after Logarithmic Compression

The statistics for the random variable B= Clog,, E will be determined. This
corresponds to the case in most ultrasound images where logarithmic compression has been
used to allow strong and weak echoes to be viewed on the same scale, compressing the
dynamic range of the returning signal to better fir within that of the video screen.

Proceeding from the negative exponential PDF for intensity

() = ﬁexp{%} for 120, [A.19]

statistical transformation yields

ol 2B
ps(B) = p,(I)—aE for I= IO_E' [A.20]
Solving, the following PDF is obtained:
2B 28
22 _ C
B(B)=-1n—loloc ex 10 for —oo < B< +c0. [A.21]
Cy
Rewriting:
2BInl
po(B)= 210, [2BIn10 exp[2BIn10/C]| . . p. oo, [A22]
Cy C 2y

Of course, a video monitor can only display non-negative values of B, so values of B

below zero will be clipped to zero.

Moments of the logarithmically compressed distribution

The moments of the distribution found above can be expressed as

(B*)= j B'p,(B)dB. [A.23]
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For the first moment in the case of logarithmic compression to decibels, i.e. C=20,

Equations A.22 and A.23 yield:

o0
(B)=1jBexp 2aB-—M B, where a=w.
v 2y 20

—o0

Making the substitution v = exp{2aB}:

(B)= 4_:_l/_/ fln{v} exp{—v/2y}dv.

Making another substitution, u =v/2y:
B)= —1—]:ln{2 yu}exp{-u}du
2ay,

=1 j (In w +1In2 + Inu)exp{—u}du.
2a o

Splitting into separate integrals and solving:

1 [ln v+In2+ J. In uexp{—u}du}
0

2a

(B)=

1
=—((lny+1In2 -
2a( y+In2-7)
~0.5035+10log,, ¥

[A.24]

[A.25]

[A.26]

[A.27]

where 9=0.5772 is Euler’s constant. (Below, the integral and ywill be related through the

generalized factorial function.) Note that the expected value is directly linear with the

scattering strength expressed in decibels. Similarly, solving for the second moment gives:

<32 J In*{2 yu}exp{-u}du

J- In{2y} +Inu) exp{ utdu.

0

[A.28]

Splitting Equation A.28 into multiple integrals and solving as in Equation A.27 yields:

<BZ> = ﬁ In{2y}(In{2y}-27)+ Tln2 uexp{—uldu |.
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The remaining integral can be solved by noting that it is equivalent to the second derivative

of the generalized factorial function I'(z) = jt’“l exp{—t}dt evaluated at z=1, which is
0

solved to:
(1) = [In* texp{~t}dt = y* + < [A.30]
0
Thus, Equation A.29 reduces to:
2 ]' 2 2 nz A 31
(B):IIT In*{2y}-2yin{2y}+y < [A31]
Finally, the variance of B can be found using Equations A.31 and A.27:
2 1 2 2 71:2 2
%=1 In* {2y} -2yIn{2y}+y +—8——(ln{2w} -7)
=
4a’| 6
=131 [A.32]

Note that the variance is a constant, independent of the scattering power y, indicating that

the curves of this family of probability distributions have constant shape.

A.2 Intermediate Model: Constant Structural Component

In this section, the statistics of speckle in the presence of a constant background
structural signal will be determined. This case is analogous to the random walk described
above with the addition of a constant phasor of amplitude S to the wavelets summing at the
transducer face. Without loss of generality, the angle of the constant phasor will be set to
zero. Thus the resulting PDF for the components of the resultant phasor will still be circular

Gaussian with equal variances, but the mean will be shifted to as required by the constant

phasor. The new PDF can be written as
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2 2
A, +S8) +A
X 2(12 ! } for Az, A, 20. [A.33]

1
P, (ArsAr)= Py CXP{-(

Applying the same transformation described above, and solving for the marginal PDF for
intensity, the following PDF is obtained

1 [H1+8)| . [svI
=— 20. A34
p,(I) 2wexp{ 2w }Io{ ‘/’} for 120 [A.34]

where I(...) is a modified Bessel function of the first kind and zero order:
1,(k) = 51; j exp{kcos 6}d6. [A.35]

The PDF for I has been named in the literature as the modified Rician density, since / is the

square of the Rician random variable, the amplitude E.

Moments of the Modified Rician PDF

As described by Middleton [1987], the moments of I can be found through the

relation:
v s?
(r')y=02y)"v, Fl(—v;l;ﬁj [A.36]

where |F,(a;b;c) is the confluent hypergeometric function. The first two moments of I are:

(H=2y+S"
(Py=8y* +8ys’ +5*. [A.37-38]

From these moments, the Rician variance can be calculated:

0-12 = <12> _'(I)Z
=4y’ +4ys°. [A.39]

Note that this model no longer has a constant signal to noise ratio, and always exceeds

unity for a nonzero structural component amplitude S. These results can also be derived
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from the autocorrelation result found in Appendix B, in a manner similar to that shown in

the next section.

A.3 Generalized Rician Model: Statistically Defined Structural Component

First-order statistics in the Generalized Rician model are easiest solved from the

autocorrelation function derived and explained in Appendix B, rewritten below:

(hL) =171+ |+ 21,(1)+ (1, ® 1)+ 2L (R ® R, + [, ® L)p.  [A.40]

The first order moments can be found with the following substitutions:

(LL,)= {g ;2} when p= {?} [A.41]

Solving, one obtains:

A

(=1,+(I) [A.42]

(PYy=21+(I})+41,(I)

which can be solved for the variance of the intensity I:

op =i +(I)+21,(1)=(1)
=0, +0, +21,(1)

R

=4y’ + 0o, +4y(l,) [A.43]
where O',Zx is the variance of the intensity of the specular component. Note for the case of

zero specular variance, i.e. a constant specular component, Equation A.43 reduces as

expected to Equation A.39.
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Appendix B - Derivations of Second-Order Speckle Statistics
B.1 Second-Order Statistics in the Absence of Background Signal

The properties of texture are described by the second-order statistics of the random
variable. The correlation properties for the amplitude envelope E and intensity / in the pure
diffuse, "fully developed" speckle case are described below. The statistic of interest is the

autocorrelation function.

The autocovariance K, (r,,r,) of a random variable x defined over a region is

related to its autocorrelation function R,(r,,r,) such that:

Kx(r,,r2)+<x(rl)><f(r2)) = Rx(rl’rZ) = (x(r,)-k'(rz» [B.1]

where (...) denotes the expected value, r,,r, are two image positions, and the overbar
denotes complex conjugation.

To derive the autocorrelation function for the echo amplitude E and intensity /,
some statistical properties of linear systems will be used. First, the received complex
phasor A, described in detail in Appendix A.1, will be modeled as the convolution of the
scatterer point position process R and the symmetric system point spread function (PSF) g,

such that:
A(r) = R(r)g(r), [B.2]

where the asterisk denotes the aperiodic convolution operator, R describes the spatial
distribution of the complex scattering amplitude of the scatterers, and g describes the
ultrasonic beam geometry. As before, A is a zero mean process whose first-order statistics
are described by a circular Gaussian probability distribution. Solving for the autocorrelation

of A, treating g as a deterministic function and R as a stationary process, gives:
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R, (Ar) = g(~Ar)xg(Ar)* R, (Ar) [B.3]

where R, (Ar) is the autocorrelation of R. The last term of Equation B.3 can be rewritten

Re(Ar)=(R(r)-R(r+ Ar))

~ (RO - oA B4

In these equations, f,(Ar) is the normalized microscopic autocorrelation. Setting the
average scattering strength to the constant R? in the region of interest, the autocorrelation
of A can be simplified to:

R,(Ar) = g(Ar)yg(Ar) Re(Ar)

= g(Ar)*g(Ary Ry - pg(Ar) [B.5]
=R, g(=Ar)=g(Ar)s i, (Ar)

If the microstructure is assumed to be random and uncorrelated, then u,(Ar)= 8(Ar), the

Dirac delta fuction, and the autocorrelation of A is only a function of the point-spread
function and the average scattering strength. Since the point spread function can always be
modeled as a real function [Wagner,1983], the autocorrelation will also be real. So, the
speckle texture only carries information about the system PSF. For a symmetrical PSF,

Equation B.S5 simplifies to:
R,(Ar) =Ry’ - g(Ar)*g(Ar) [B.6]

For the amplitude envelope E =|A|, the autocorrelation can be determined from the
general results found in statistical communication theory [Middleton, 1987]:

(E"(x)E"(x+ Ax)) = 29) """ [(m/2 +1)

x T(n/2 +1),F, (—m/2,—n/2;l;lk(AX)|2) [B.7]

where ,F| is the Gaussian hypergeometric function and I'" is generalized factorial and

_R(&x) _{44)
R,(0) ()

k(Ax) [B.8]
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is the normalized autocovariance function for A also called the complex coherence factor p
or (. The subscripts 1 amd 2 in the last term of Equation B.8 have been introduced for
notational simplicity, and correspond to x and x+Ax. The autocorrelation of the amplitude
envelope E is given for the case m = n =1, which reduces to:
Re(Ax) <(my/2),F,(-1/2,-1/2; L je(Ax))
= 1,/[25, (Je(ax)) - (1-[(ax)f )E, (lk(Ax)l)]

[B.9]

where E,(...),E,(...) are elliptical integrals of the first and second kind, respectively. For

intensity I, the solution simplifies to:

R,(ar) =1y (1+ (8 ) = (1) +[(AZ,)

’ [B.10]

Clearly, the results for the intensity / are much easier to manipulate, and therefore,
the autocorrelation of the intensity is the function studied in the experiments of this work.
The same result has been obtained by Goodman [1975] in the field of laser optics. Equation
B.10 can also be found more simply using the Gaussian moments theorem [Bendat, 1971],

which states that for four zero-mean Gaussian random variables:
(x,x2x3x4) = (x,x2)<x3x4) + (x,x3)<x2x4> + (x1x4 ><x2x3> [B.11]

Applying the moment theorem to the complex Gaussian phasor A :
(1) =(4AAZ) o
=(AAYAA)+(AANAA)+(AA)AA,) [B.12]
= (L)L) +[ad) +(AL)

Recalling that real and imaginary parts of A have the same variance and are uncorrelated,

the second term of Equation B.12 can be elliminated by substituting A = r + ji:

(AIAZ) = <r,r2)—<i1i2>+j<r1i2>+j<ilr2>
=0’-0+j-0+j-0 [B.13]
=0

Thus the system reduces to:
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(1112>=<11)<12>+|<A1;{2>|2 [B.14]

which is equivalent to Equation B.10. For yet another derivation of equation B.14 using

the moments theorem, interested readers are referred to the work of Wagner, et al. [1988].
B.2 Intermediate Model: Constant Structural Component

Rewriting intensity in terms of its real and imaginary components r and i, and using a fixed
background vector length S and phase zero gives:
2, 2 o)
(1L)=([(n+5) +i2]-[(r. +5) +2])

=((r7 +i)(r3 +2)) [B.15]
+{(r? + 37 + 87 +28r,)(S? +28r, )+ (r +i2)(S? + 257, ))

The first term corresponds to the solution from the diffuse case of Section B.1. Expanding
the second term gives:
(LL) = Ij[l + |p|2] +SH(r] +if +1ry +13 )+ 8 +48(rr,)

B.16
128 (r, +1,) +28(r,(r} +37)) +28(r, (1] +83)) (.10l

The subscript d has been introduced in the first term to indicate that it is the expected
diffuse component of the signal, as found in the previous section. Recall that the expected
value of both r and i is zero at all positions. Thus, by treating S as a Gaussian random
variable with zero variance, the moment theorem (Equation B.11) can be applied to terms in

Equation B.16 with odd powers of § to demonstrate that they must equal zero. Simplifying

the remaining terms, and substituting 1, = S” to represent the structural component of the
signal gives:

<1112> = Idz[l +|p|2]+ls<ldl + Id2>+ I +4I_s<r1r2>

B.17
=1112[1+|p|2]+21¢lls+Is2+21d1vp [ ]
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B.3 Generalized Rician Model: Statistically Defined Structural Component

Using a similar process as that used above, the autocorrelation of intensity / in the

case of statistically defined specular contributions can be found:
(11,)= 1;[1 + [pr'] +20,(L)+(I,1,)+21,(r,r, + iji,)p [B.18]

where r and i now denote the real and imaginary components of the strucutural intensity 7,

respectively. Readers interested in a detailed derivation of Equation B.18 are referred to

Wagner et al. [1985].
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Appendix C- Other Derivations

C.1 Effects of the Video Error on Autocorrelation Estimates

The issue of assessing how much the noise introduced by videotape storage affects
the data of interest when computing the autocorrelation of the intensities, as described in
Chapter 4, is addressed by considering the decompression of the received data. Since the
data collected has been recorded in a full logarithmic compression mode setting of the
machine, the signal values represent a decibel equivalent of the actual amplitude as

described earlier. To reconvert to intensity /, the following relation must be applied:
I =exp(sin10/10)=10""° [C.1]

(Note: Although the digitizing board used in this research actually returns values which are
multiples of four, this factor of four is explicitly removed by the data processing programs
and for clarity is not included in this discussion) When the videotape noise is added in, one

obtains:
I = exp{(s+¢)In10/10} [C.2]
The tilda mark over intensity is used to indicate that it is not the true value, but the received

signal which is corrupted by the videotape channel noise. Thus, computing the

autocorrelation gives:

R, =(LL,)={exp{(s, + ¢)In10/10}exp{(s, +¢,)n10/10}) [C.3]

Note that the subscripts 1 and 2 have been used in place of the more conventional x and

x+Ax to simplify notation. At this point we will assume that the error noise e at every

position is zero mean and uncorrelated with the signal. In Section 6.1, it was shown that
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these assumptions are justified when the expected mean error fi(s) is subtracted from the
received signal. Thus, Equation C.3 can be rewritten:
R, = (exp{(s, +5,)In10/10}exp{(e, +¢,)In10/10})

=(II, ><exp{(e1 +e,)In10/ 10}>
=(LL,)E, [C.4]

In order to solve for the error multiplier E, not to be confused with the envelope amplitude
used elsewhere, certain simplifying assumptions must be made. Specifically, the noise is
assumed to be Gaussian with the autocovariance properties found in Section 6.1. This
assumption is reasonable since the noise has an approximately Gaussian distribution and
characteristics. In order to simplify notation, the In10/10 factor will be incorporated in the
variable e and the appropriate scaling of the standard deviations and correlations will be
made. This factor will be extracted at the conclusion of the derivation. Thus,
E,= <exp{e, +e, })

— hoe phee ’ ’ a4 d Ild ”

=] _weXP{el + eZ}I’e,,ez (ef. €5 )deide,

= H exp(e]’+ e)N(e,e;0,0;0,0,r,, )dede; , [C.5]

where N(x,y;ux,u_‘,;al,az,r) is the joint normal distribution for x and y and r is the

correlation coefficient. At a given lag, r is found from the autocorrelation found for the
error function as given by Equation 6.4, normalized by the variance. The distribution N in

Equation C.5 is given by Papoulis [1991]:

1 -1 el +el-2r.ee
N, (e,e,;...)= ex 12 272 |1 C.6
12(1 2 ) 271'0'3\/1-—r,22 P|:2(1_r]22)( P J:| (C.6]

Solving Equation C.6 is tedious, but easily accomplished with careful substitutions:
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E = __}___Ijexp_l_
" 2mot1-7 202(1-r}y)

-{“312 —e&l +2r,ee, + 20‘82(1 -r} )(el +e, )}]de,de2

1
270, ] 2ol (1-2) P 267(1=13)

-{—e§ + 2e2[r12e, +a’ (1 ~rl )]}]de2

1
-exp[m{—ef +202(1=r})e, }}alel [C.7]

Solving the inner integral by completing the square in the exponential:

1

J‘...de2 = I\/Zﬂa = r [20_ (1 rn)
.{—(32 —[r,2e1 + 0, (1 —-r,2)])2
+[r,2e1 + 0'2(1 - rn)] }]de2

[rlze1 + 0, (1 ’12)]2
20, (l r,z)

= exp

-J’N{e2 U=r,e+0, (1 rn), o’ = 0'3(1 — r,ﬂ"z)}de2

)
C e :[rne1 + 0, (1 r,z)]
B P 20'3(1 - r,22)

- -

[C.8]

where N is a Gaussian distribution with the given parameters. Substituting the result of

Equation C.8 back into Equation C.7:

I
B = 27:0 Jero 203(1—r,22){[r'ze‘ +02(1-rt)]

—e +20° (1 - rlz2 e, ]de1

1
- 21o, je *P 20, (1 r122){ ~(i=r)
4

+2e,0 (1 rlz)(1+r)+0' (1 r122)2}]de1 [C.9]

Cancelling terms in Equation C.9:
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E,= 2150_ jexplﬁzé_2 {—612 +26,0; (1+1,)+ 0 (11} )}}de,

1

ettt

2ro,
Haz(1+ rlz)]2 +ol(1-r}, )}]del

4
Ge
= explizo_2 (1 +2r,+rh,+1- r,zz)]

e

-'[N(el;/u=0'3{1+rl2},0'2 =0'f)de, (C.10]

Finally, solving and cancelling terms in Equation C.10 and replacing the subscripts 1 and 2

with the more conventional x and x+Ax , and extracting the In10/10 factor:

In*10

E(Ax)=exp 1+ r(Ax))] = exp[ 00

[@21—0( (02 + Re(Ax))] [C.11]

Thus, with Equation C.11, the multiplicative scaling E applied to the autocorrelation
estimates in Equation C.4 can be estimated for any lag if an estimate of the error
autocorrelation is known. To characterize the effects of the error, however, one may look
specifically at two points of interest, those of maximum and minimum autocorrelation, i.e.
lags zero and infinity. At these points, the multiplicative factors from Equation C.11 can be
solved to be exp{20; In’10/100} and exp{o? In*10/100}, respectively. To assess the
effect on the data to be considered, a standard deviation of 2.5, as found in the sample data
of Section 6.1, is considered. In this case, the multiplicative factors are 1.94 and 1.39,
respectively, resulting in a zero-lag scaling of 1.39 or 39% after division by the received
mean, which will also be upscaled by 1.39. Since the actual distribution found in section
6.1 is even narrower than the corresponding Gaussian curve, we might expect an even
smaller effect. Since variance appears to rise as signal decreases, the upscaling effect would
also increase at lower average signal values.

In summary, the effects of videotape noise on the calculated autocorrelation curves
for data collected near the high end of the signal range should be an upscaling of the main

peak of approximately 39%, quickly dropping off to no effect over a few pixels as the
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noise error decorrelates. It is important to realize that data collected in a consistent manner
with respect to the average signal strength will always be consistently and equally affected

by a scaling factor and can thus be compared directly.

C.2 The Correlation Cell Size

The correlation cell size S, is a measure of the average size of the speckle spot in a given

direction. It is defined by:

J'C'(Ax

0 Ax), [C.12]

where C is the autocovariance function of intensity I. For the Rayleigh case, the speckle

cell size in the axial direction reduces to:

Se = _|p(Ax) d(Ax). [C.13]

Correlation is actually two dimensional in ultrasound scanning. The lateral or
transverse dimension of the structure is due to the shape of the diffraction and focusing
pattern, and the axial or range dimension is due to the shape of the pulse in the range
direction. Assuming that beam phase at a given range in constant lateral phase, the point
spread function can be factored into separate functions for the axial and transverse
directions [Wagner et al., 1988]. In Appendix A, it was found that p is determined by the
point spread function in the axial direction.

Thus, in the case of fully developed speckle with a Gaussian beam pulse envelope,
the correlation cell size is proportional to the standard deviation of the pulse length. Stated
differently, the axial cell size is exclusively and inversely dependent on the transducer

bandwidth [Thijssen,1990].
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