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Hidden Markov models are powerful tools for acoustic modeling in speech recognition
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Chapter 1

Introduction

Hidden Markov Models (HMM) are a powerful tool for performing pattern recognition

[10]. They are especially useful for speech recognition and word spotting. But, that

power comes at a price. HMM systems can be quite complex, making their creation

and analysis both time consuming and difficult. While software packages that ease

the creation and execution of HMM experiments exist, the facilities for analyzing

the results of such experiments in order to gain insight into successes and failures

are not as well developed. Described in this thesis are some data analysis tools,

integrated into an existing HMM software package, which assist in the analysis of

HMM experiments.

1.1 The Problem of Examining Experiments

At Lincoln Laboratory, the Hidden Markov Model ToolKit (HTK) is often used to

create and run HMM experiments [16]. HTK is a set of libraries and programs

designed to facilitate the creation, running, and evaluation of HMM experiments.

These experiments are evaluated mainly on the basis of recognition performance, and

intermediate data analysis is typically not performed. Because of the complexity of

HMM systems, there is often no easy way to analyze this information to determine

more details about where or why a model was effective or ineffective. Although HTK

can output vast amounts of diagnostic information and its models are defined in
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great detail, there is no method for easily interpreting this information. Additionally,

HTK does not always keep track of all of the important intermediate data during the

recognition experiments. So, while HTK eases the creation and running process for

HMM experiments, there exist no set of tools which facilitate data analysis.

1.2 Exploratory Data Analysis

One of the goals of data analysis is to open up data so that it can tell its own story [15].

Hopefully, after creating unbiased pictures from diagnostic data, a researcher can gain

a better understanding for what the system is actually doing. As this understanding

improves, one should be able to formulate more easily ideas about current system

limitations and areas for possible improvement. Therefore, one important goal for

creating data analysis tools is to realize techniques which are general and unbiased

enough to permit widely different interpretations of the data.

Eventually, the goal of any analysis is to improve the subject of the analysis, and

a prototypical data analysis process is as follows [8]. First, the system is run. Next,

intermediate data is studied using data analysis techniques. Eventually, improvements

are suggested and implemented. Earlier design decisions or assumptions are replaced

with those made from a better understanding of the problem and the system's actual

implementation. The final step in this process should be to evaluate any new design

decisions to determine if they produce the desired results. So, the data analysis

techniques should be able to suggest improvements.

With these goals in mind, a few criteria for analysis techniques may be formulated.

First, a system should not be biased toward an answer beforehand. It should not

seek to prove or disprove too specific a theory about the system [15]. Rather, the

system must strive for unbiased analysis. Second, the techniques should display useful

information. If the data displayed is too general for meaningful analysis, the technique

fails. Third, any implemented systems should be easy to use. Nothing is gained when

a data analysis technique has been developed but nobody can use it [15]. Finally, to

be useful at Lincoln Laboratory, the technique had to be integrated into the HTK
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system. As it turns out, some of the methods were implemented such that they should

be easily portable to other HMM systems with a relatively small amount of effort,

although no such effort has been made.

1.3 Overview of Analysis Tools

This thesis created and used two data analysis techniques. One system produced

the Viterbi backtrace for the putative hits of a recognition experiment (see Chapter

3). This backtrace included information such as word model design, truth, state

occupancy, as well as the per-state average of the normalized log likelihood scores. The

other technique involved using some existing software as well as creating some new

software to produce two dimensional pictures of multidimensional data (see Chapter

4). Additionally, a few examples of data analysis experiments were run and evaluated.

11



Chapter 2

Background

2.1 Introduction to Hidden Markov Models

Hidden Markov Models (HMMs) provide useful models for speech production. The

different states in a HMM allow the modeling of speech as sounds progress. How-

ever, the complexity of the models is as much a burden as an asset when it comes

to implementing the training and testing of a speech recognition system. To combat

this problem, many researchers at Lincoln Laboratory use the Hidden Markov Model

Toolkit (HTK) for running HMM experiments. This set of tools allows easier creation

of HMM experiments so that more time can be spent on developing the general archi-

tecture of a recognition, rather than the details of the HMM training and recognition

algorithms.

2.1.1 General Hidden Markov Model Introduction

Markov systems model future events as dependent on past events. At any time the

model can be in one of several discrete states. According to a set of probabilistic

rules, the system may, at certain discrete instants of time, undergo changes of state

[2]. An example of a process that could be Markov modeled is a family's fast food

restaurant choice: McDonald's or Burger King. As shown in Figure 2-1, the states

of this model are the B state, or Burger King state, and the M state, or McDonald's

12



M B
i0.45 0.55

PnmfAL PrABJTlS
M B

M0.70 o.30 
a10.40 10.601

STATE DUORAM TRANIrTONW PROABLMT

Figure 2-1: Example of a Simple Markov Model

state. At first, the family has never eaten at either McDonald's or Burger King, so

they only have advertising and word of mouth to determine their initial choice. This is

modeled with the initial probability vector. Based on factors, such as habit, additional

advertising, and actual experience with the restaurant, the family's choice may change

from night to night. The transition probability matrix models the combination of all

of these factors, where the probability P(MA@tlBt - 1) is shown in row B, column

M by convention. The process behind the family's choice can be modeled as a simple

Markov model, and the actual choice would be the output of that model.

Markov models can model spoken words as well. Consider the possible model

for the word "book" shown in Figure 2-2. A sample Markov model might consist

of three states: /b/, /U/, and /k/. Additionally, the model would require a vector

fbl /UI /k/
/b/ 1.000 /b/ 0.20 0.80 0.00
UI 0.000 IUI 0.00 0.60 0.40
Ik/ 0.000 I/ 0.00 1.00

INTUAL PROBABILTES TRANITION PAOBABILITES

Figure 2-2: Example of a Simple Word Markov Model

of initial state probabilities and a matrix of state transition probabilities. Because

the model for book begins with the /b/ sound and progresses left-to-right, the initial

probabilities and transition probabilities are constrained. Just as the human mouth

produces these sounds in succession, the model would transition through these three

sounds one right after the other.

Both of these Markov models have produced output from which the state can be

uniquely determined. For example, if we were eating at McDonald's, we are in state M.
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A hidden Markov model adds the ability of a state to produce output probabilistically.

Perhaps being in state M means we have a 85% chance of eating in McDonalds and

a 15% chance of eating at Burger King. For this case, the state sequence can not be

uniquely determined from the output in this case, thus it is referred to as "hidden". A

hidden Markov model (HMM) produces observations according to a state-dependent

probability density function [9]. Given this form, HMM users must address three

important problems [10]:

1. Given the observations, O = 01,02,...,0T, and the model, M, how do we

compute Pr(OJM)?

2. Given the observations, O = 1, 02, ..., OT, how do we choose a state sequence

I = , i, ., i, iT which is optimal in some meaningful sense?

3. Given training observations, O = 01,02,..., OT that we assume came from a

Markov process, how do we calculate the optimal model parameters?

The solution to these three problems is described in the following paragraphs.

Consider modeling an isolated word using an HMM, such as is illustrated in Figure

2-3. As before, there is a vector of initial state probabilities and a matrix of state

a,4

Figure 2-3: Example of a Left to Right Hidden Markov Model with Four States

transition probabilities. However, now the output is a probabilistically determined

observation vector. The observation vectors might be spectral envelope or low order

cepstral vectors and are generated by the probability density function of the model's

current state. Additionally, for speech models, a left to right HMM is often used. This

means disallowing backward transitions. For example, the probability of a transition

14



from state 3 to state 2 would be set to zero. Also, the only initial state allowed is

state 1.

In this way, a model for the word "book" can be constructed by specifying an

HMM architecture with enough states to ensure that the different sounds may be

sufficiently modeled, and training it on actual observation sequences from several

spoken instances of "book" (see Figure 2-4). As before, each state represents the

HMM FOR BOOK: TWO POSSIBLE

TRANSCRIPTIONS

I/b/I /U/ I/k/ I
I/b/ I/U/I /k/ I

Figure 2-4: Hidden Markov Model of "book"

specific sounds spoken for the word "book". The difference is that now the model for

the sounds is probabilistic. Another important feature of this model is that we have

not specified where the different sounds began and ended. Figure 2-4 may have one

of the two configurations shown, or it may have some completely unknown way of

splitting the sounds. Those decisions are made by the system as it applies the HMM

training algorithm.

With several models constructed for different words, the problem of identifying

specific isolated words reduces to calculating the likelihood of a specific model given

a set of speech observations P(M1O). In practice, calculating P(M1O) directly is

an intractable problem, as it involves creating a probability model for every possible

observation. Instead, P(OJM) is calculated and used to produce P(M1O) by applying

Bayes Rule, seen in Equation 2.1,

P(M1O) = P(OIM) * P(M) (2.1)
P(O)

Here, there are two extra terms, P(M) and P(O). P(M) is the a priori probability

of occurrence of this particular model, and can be estimated from the training data.

P(O) is a normalizing constant and is the same for all models. Since all of the P(MIO)
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calculations are compared to each other for the final decision, this P(O) term can

be thrown out, as it affects each model probability the same. So, for calculating

P(MIO), we are left with Equation 2.2.

P(MIO) = P(OIM) * P(M) (2.2)

The only term left to calculate is P(OJM). This is done by recursively calculating

the likelihood that the model is in state j at time t, as in Equation 2.3.

N

(t(j) = h at l(i)ai,jbj(ot) (2.3)
i=1

Here, at_l(i) is the probability that the model was in state i at time t - 1, aij

is the matrix of transition probabilities from state i to state j, and bj(ot) is the

probability that ot was produced by state j. In this way, the forward probabilities of

the model, at(i), can be computed for the set of observations. Similarly, the backward

probabilities of the model, t(i) starting with the last observation can be computed

for the same set of observations by recursively calculating t(i)'s. At time t, the

probability that the set of observations was produced by the model is the sum over

all states of the product of the forward and backward probabilities, seen in Equation

2.4 [9].
N

p(O IM) = Z at(i)t(i) (2.4)
i=l

After the probability score is calculated for each model, the system can determine

which model was most likely to have produced the observations.

Subword Modeling and Phones in Context

Sometimes, HMMs are used to model specific phonemes instead of complete words. It

is these phoneme models that are concatenated to form the models of words, as shown

in Figure 2-5. A word is recognized when its phoneme models lie, in proper order,

on the most likely path through the network. Relating this to our "book" example,

the HMMs of the system would model the /b/, /U/, and /k/ sounds instead of the

16



Ibl IUI Ikl

Figure 2-5: Example of "book" Modeled With Subword Models

word "book". A recognizer network including "book" would be built by connecting

phoneme models for /b/, /U/, and /k/.

One problem with straight phone-based models is that phones are different de-

pending on what sounds preceded or followed them. Because of this, the HMMs

actually used to model important words in recognition systems are often phones in

context. For our "book" example, the actual HMMs would not be b, U, and k. They

would be #-b+U, b-U+k, U-k+#, where the # represents a word boundary. Here,

#-b+U refers to the phone /b/ as it is said when preceded by silence and followed by

the /U/ sound. Phone models that are specific to both the left and right contexts

are called triphones.

2.1.2 Hidden Markov Model Toolkit: An Overview

The Hidden Markov Model Toolkit (HTK), created by Steve Young of Cambridge

University, is a set of software tools designed for creating, training, and testing an

HMM speech recognition system [16]. In addition to the software tools, it includes

standards for the definition of, among other things, an HMM and an HMM network.

Creation of an HMM system begins with the definition of the HMM models them-

selves. For our system and task, described in Section 2.2.1, the word "card" was

a particularly interesting word, because it occurred so frequently and because the

system often confuses other words for "card". In order to model "card", four tri-

phone models are necessary. These models are #-k+aa, k-aa+r, aa-r+d, and r-d+#,

where # denotes a word boundary. Somewhere in the network definition, there is a

representation of "card" which specifies these four triphones in succession.

Once all of the HMM models have been defined, the HTK tools can train the

system. There are several tools for this purpose [16]. As this thesis did not focus on

the training, it is sufficient at this time to state that they do exist. They will produce
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a trained set of hidden Markov models for use with the HTK recognizer.

After a new HMM system has been trained, it is time to use it in a recognition

task. The main program used to recognize speech is HVite. HVite was the central

focus of a major data analysis effort in this thesis (see Chapter 3). It implements a

Viterbi decoder, which outputs the most likely words based on the best path through

the network for all speech observations. Additionally, a specific peak picking mode

was added at Lincoln Laboratory by making some additions to the original HVite

program. This peak picking system was the subject of study in this thesis, and is

described in Section 2.2.2.

2.2 Word Spotting

2.2.1 Word Spotting Using Subword Modeling and HTK

Word spotting is one class of speech recognition problems where the goal is partial

transcription: the labeling of the occurrences of a few specific words in the speech

waveform [13]. The specific task addressed is the "credit card" task based on the

Switchboard telephone speech corpus [4]. In this task, the system looks for credit

card type words in a conversation about credit cards. In Figure 2-6, we can see an

ACTUAL TRANSCRIPTION USE MY CARD LIKE I WAS

PARTIAL TRANSCRIPTION CARD

SAMPLED SPEECH .-g .. , .... -., 4 R..,
fu;ii :;'"rr.... ........ .... " 

SETRI I.

· ! ! . . . I .

+ l
VNI I~htft~~I'

Figure 2-6: Example of Word Spotting for "card"

example of this. The system does not need to transcribe the entire utterance. It

merely needs to find where specific words were spoken. In this case it could find the

18
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word "card". Since only a partial transcription of the speech is required, full Viterbi

decoding is not necessary. Instead, only periods where specific words are likely need

to be output. From this output, the system constructs a partial transcription of the

speech message.

2.2.2 Peak Picking

Peak picking is one technique used at Lincoln Laboratory for word spotting. For

each frame of speech, the system calculates the probability of a key word ending in

that current frame. When this probability is plotted vs. time, the probability usually

peaks when the word actually occurred. So, spotting a particular word reduces to the

problem of finding periods where the probability of the word peaks above a specific

threshold. These peaks are then picked (thus the name) as the locations of the end

of the words.

One issue in peak picking is the problem of normalizing the scores of the HMM

output. Since the decisions are no longer based on the best path through the network

from the start of the speech segment to the end, peak scores need to be compared to

a threshold value to determine if they should be labeled as a putative hit (see Figure

2-7). Because different segments of speech score differently depending on several

ACTUAL TRANSCRIPTION USE MY CARD LIKE I WAS

SAMPLED SPEECH - ' "-f --

WORD PROBABILITY

WORDSPOTTER OUTPUT I CARD I

Figure 2-7: Example of Peak Picking for "card"

factors, such as speaker and communication channel, normalizing the score becomes

quite important. This system implemented a technique which normalizes the score of

model frames, bj(ot) from Section 2.1.1, by subtracting a function of all of the state

19



probabilities as follows:

bj'(ot) = bj(ot) - f(b(ot), b2(ot), ..., bN(ot)) (2.5)

Several different forms of the function f() are currently being explored. Normalizing

relative to the probabilities of all of the states given the current observation should

allow the score of the putative hit to reflect only the word being spoken and not other

factors, such as specific speaker and channel.

After these scores are calculated, the figure of merit (FOM) for the word spotter

is calculated to measure overall system performance. The figure of merit is based on

how many true instances of the word were spotted on average when the threshold

level is set to a specific false alarm rate, between 0 and 10 false alarms per key word

per hour.

FOM = Pd(FA)dFA (2.6)

Here, FOM is the figure of merit, FA is the threshold of the recognizer, as described

by the rate of false alarms, and Pd(FA) is the probability of detection based on the

current false alarm rate.

2.2.3 Choice of the Word "card"

As has been mentioned in the preceding discussion, most of the data analysis work

has been done for a particular word in the HTK word spotting system. One specific

word was chosen because in the scope of this master's thesis, it was more important

to develop the data analysis techniques than to improve word spotter performance,

although the two issues are closely related as is stated in Section 1.2.

There were two main reasons for choosing "card" over the other 19 words in the

credit card task. First, it is a frequently occurring word. Exploratory data analysis

only makes sense where sufficient examples, both good and bad, exist. Otherwise,

effects may be far too specific to a particular instance, and may have no general

meaning. Several instances are necessary to prevent overgeneralizing based on a

single token. Thus, a frequently occurring word is necessary for meaningful analysis.
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Second, "card" is a poorly scoring word. Of the frequently occurring words, "card"

is the one on which our HTK word spotter does worst. This, in theory, makes the

data analysis easier. It is much easier to fix something clearly broken than something

which works reasonably well. The bad performance of "card" suggests that it, more

than other words, would be most interesting from a data analysis point of view. So,

as "card" was the lowest scoring of the frequently spotted words, it was the choice

for closer analysis.
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Chapter 3

Viterbi Backtrace

3.1 Introduction

The first technique developed is a method for easily viewing the Viterbi backtrace of

the experiment. The Viterbi backtrace is defined as the most probable path through

the HMM trellis given the data observations. By looking at this backtrace, it is

hoped that insights about where the system works and where it breaks down may be

formulated.

F1 F2 F3 F F F ? F F S FIO F11 F12 F13 F14 F15

K2 O-- -e , 

K.4 -* -* * A 

AA3. · · · · --- 'W---- *

D.2 · 0 0 . . * * .* -- '-h _t. v
RJ 0 0 0 0 0

TIE - ALTERNATE PATHS

BEST PATH

Figure 3-1: Example of Backtrace Decoding for "card"

In Figure 3-1, we see an example of a best path calculation as it progresses. Here,

there are 15 frames of data which are being run against the model developed for

"card". As can be seen, the system calculates several paths. Paths are pruned away

either when they no longer fall along the best path to any node in the next frame

22



of the decoding, or when their likelihood falls too far below the maximum of the

likelihoods of the active paths. The backtrace tool seeks to display the overall best

path in a meaningful way.

3.2 Implementation

The implementation of the backtrace tool proceeded in two phases. In the first phase,

backtrace data was gathered. In the second phase, the backtrace viewing program

was implemented. For data gathering, additions were made to the existing HTK

Viterbi decoder. In addition, software was developed to create files containing other

information which could provide context for the backtrace pictures. The backtrace

viewer itself was written in C using the Motif library for the Graphical User Interface

(GUI). This GUI eased the viewing of specific traces, and was therefore an integral

part of the technique.

3.2.1 Data Gathering

In order for a complete backtrace to be drawn, several pieces of information are

needed. First, the specific per state location and score along the best path through

the system need to be output at the end of a trace gathering run. Additional pieces

of important, but optional, information are listed here:

1. truth; list of what was really said during this time,

2. type; reference of whether a speech token was a hit, or a false alarm for ease of

interface,

3. filename; name of specific conversation from which this piece of speech came

from, necessary for handling multiple conversations at one time.

This additional information is needed to provide the pictures with some context.
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Viterbi Backtrace

Drawing the backtrace required collecting detailed information from HTK. However,

for efficiency reasons, the standard HTK decoder did not keep track of the full Viterbi

backtrace. It only kept track of enough information to reproduce where specific

models or words occurred along the best path. It did not store the more detailed

information of specific state occupancies and specific frame scores in the backtrace

path. A new data structure was therefore developed and added to the decoder to

keep track of this information.

For our HTK systems, there were two methods of calculating when words occurred.

In the first, Viterbi decoding, the best path through all data is calculated, and the

system marks the key words wherever they occur in the best path. So, in reference

to Figure 3-1, the information along the solid line would be output to a file, for later

use by the backtrace viewing program. In peak picking, the second method, several

different word models are being calculated at the same time. Whenever the score of

the best path through these word models peaks above a certain threshold, the system

produces a word mark. For this case, partial backtraces are produced as peaks are

picked. In reference to Figure 3-1, this could either be information from the best path

along solid lines, or from temporary paths along the dashed lines.

Since HTK's decoder program does not keep track of the backtrace down to in-

dividual frames of data, a specific backtrace data collection method needed to be

developed. The solution was to create a large linked tree which resembles the back-

trace picture in Figure 3-1. A picture of the actual structure is in Figure 3-2. To print

TRACE NODES

ARRAY OF POINTERS
TO END NODES

Figure 3-2: Picture of Trace Tree
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out the backtrace information required, each node in the tree needed to keep track of

the current frame, the model information (i.e. the model's name state for this frame

of data), and the score that the current frame received given the system was in this

particular state of this particular frame (i.e. the bj(ot)'s from Equation 2.5). In order

to make this a tree, each node needed a pointer to the node of the previous time from

which the best path to the current node in the current time came. The position of

the final nodes is kept in an array, where each element in the array corresponds to

each state in the HMM network.

At each frame, HTK would already calculate all the information needed to the

backtrace. The new code only needed to create nodes for each new frame of data,

and copy the proper information into the newly created nodes. Thus, the task was

one of bookkeeping and not of calculation.

Eventually, as experiments became larger, a garbage collection scheme was de-

veloped. This was necessary as some experiments had upwards of 50,000 frames of

data. Without garbage collection, with the 400 nodes in the system being used, and

the 50 byte size of a node, the program would have used on the order of 109 bytes of

memory. Thus, a field in each node which kept track of each successor was added. As

successors to a node were added, the number of successors field would be incremented,

and as successors were freed, the field would be decremented. When a branch of the

tree had no successors, it was pruned and its predecessor was checked to see if it

could be pruned as well. For example, if we refer to the example of Figure 3-1, after

Figure 3-3: Garbage Collection in the Backtrace Output Code

frame 6 had been calculated, the branch ending in frame 5 for K.4 would be pruned,

and the memory would be freed by the system. A picture of this is in Figure 3-3.

By using this method, only important branches of the tree would be tracked. This
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resulted in reducing memory of the tree to below memory requirements of the rest of

the program.

There were two methods for outputting this information, one for the peak picking

decoder and one for the Viterbi decoder. The peak picking decoder would output

trace information for each individual word as they were picked. These are written

to a file with the .pptrace extension. The Viterbi decoder would have to wait until

the entire best path had been calculated. Only at this time could decisions about the

words be made, and then the backtrace could be output as well. This full back trace

information is written to a file with a . trace extension.

Other Backtrace Information

While the backtrace contains much information, other sources were needed to com-

pletely classify examples of the backtrace, giving the backtrace pictures a context

in which they can be interpreted. Methods for obtaining these additional pieces of

information are detailed here.

The first useful piece of external information is the truth information. Truth refers

to what was actually spoken by the person, in contrast to hypothesis, what the recog-

nition system thinks was said. Files containing truth markings in an ASCII format

were translated into a standard HTK format, so that the system could use the same

code for reading in the truth markings as well as the HTK generated hypothesized

markings. These translated files all contain the .label extension.

The second useful piece of information is the type of putative hit (i.e. was this

token a true hit or a false alarm). Calculating putative hit type is a complex problem,

as several different word variations may or may not be acceptable truth labels. For

example, in the Lincoln system, "cards" or "mastercard" are acceptable variations of

"card" and both signify a true hit when they coincide with the "card" hypothesis,

but "credit card" is its own special word and, therefore, signifies a false alarm if it

overlaps with a "card" hypothesis. As software for calculating the type of putative

hit already existed, it was adapted for use in this thesis to produce files which the

vtrace viewer could use to label putative hits. A program, called rocplot, which,
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among other things, calculates the figure of merit, and the type of each putative hit,

had already been developed. It outputs the hit type for the peak picking case of

the HMM decoding. A program included in the HTK package, called HResults, also

produces output of this nature. The vtrace viewer used its output as well. The

rocplot output was written to files with the .sorted extension, and the HResults

file output was written to files with the .results extension, so the different types of

putative hit files would not be confused.

3.2.2 Vtrace Viewer

Once all of the necessary information had been calculated and written to files on the

system, the vtrace viewer could draw its analysis pictures based on these files. This

program was written in C using the Motif library for the interface. It was written in

two phases. The first phase developed the original tool which the author wrote. This

provided an initial GUI interface, as well as code to read in, sort, select, and view

the individual trace segments. The second ongoing phase involves the continuing

effort to improve and expand upon the original definition of the backtrace viewer.

This has been taken over by Linda Sue Sohn, a staff member of Group 24 at Lincoln

Laboratory.

Operation Overview

The vtrace viewer program's general operation is described here. First, the user

selects which trace file to view. When the selection has been made, vtrace loads

all or some of the files specified in Section 3.2.1, depending on which are available.

Next, it creates and presents to the user an ordered list of all putative hits. Then,

the user clicks on the putative hit of interest, and vtrace displays it on the screen.

The actual interface is detailed below.

It is important to note that not all of the files listed above are necessary for running

vtrace viewer. In fact, the vtrace viewer only needs a .trace file to function. All

other files are optional. This decision was made because truth or putative hit type

are not always needed to gain insight from a trace, especially for some of the projects
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in the group outside the thesis. The only file needed to produce a trace is a .trace

or .pptrace file.

Additionally, the vtrace viewer can order the list of putative hits based on several

different parameters. The user has complete control over the sorting hierarchy (i.e.,

which parameters have which priority) through an additional window interface. These

parameters are the time (beginning frame number), score of the putative hit, hit type,

and hit label. A user could group all hits together to contrast them to all false alarms

more easily. Alternatively, hits and false alarms of a specific word could be compared

to determine why the false alarms occurred.

Implementation

As mentioned before, the program was written in C using the Motif library for the

GUI. It was designed, written, and compiled using a Sun SPARCstation running X

Windows. Most of the original Motif code was developed with the aid of the Builder

Xcessory tool from Integrated Computer Solutions Inc.

Most of the work went into designing code to load all of the required files and

to draw selected putative hits. The first half of this task involved loading the files,

after determining which of the possible information files were available, creating the

list of the putative hits, and sorting the hits list. Drawing the putative hit involved

loading that segment of the trace file, calculating the position of the picture objects,

and actually drawing the picture objects to the screen.

Loading Files

Loading files begins with a standard Motif filebox, seen in Figure 3-4. The routines

for loading the files use the standard C library for input and output. All of the files

have standard ASCII formats and are not too difficult to parse. Most of the files are

too big, with the exception of the trace files, so no special algorithms are necessary.

Because of the size of the trace files (upwards of 50,000 lines), an efficient loading

method was developed to prevent a long delay between click and completion of the

task. This is necessary, as it is harder to develop insight if one is constantly waiting
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Figure 3-4: vtrace File Loading Dialog Box

on the machine to display data.

There are two methods for loading the files fast, one for .pptrace files and one

for .trace files. Both are based on the same idea that the machine can scan the

trace file for trace locations faster than it can parse the whole file at once. Once the

locations have been calculated, loading the actual trace information causes minimal

delay, so the system can do that when a specific drawing request is made. The file

locations are read in using the C function ftell(), and are later used to move the

file pointer to the proper location using the function fseek().

When the vtrace viewer loads the .trace and .rec files, it stores all relevant

information in an internal list of putative hits. Each putative hit element contains

all of the information necessary to draw a trace - its type, its score, its start and

end times, its conversation, its trace location in the trace file, and its list of truth

labels. Most of this information is loaded from the other information files if they

are available. If some of the optional information is not available, vtrace viewer

simply does not include that information in the trace. The final step in loading the

new conversation is to sort the internal list of putative hits. This is done using the

qsort() function from the C library. vtrace viewer then gives this sorted list to

the selection widget, from which the user can make a putative hit selection. This

selection widget can be seen in Figure 3-5.
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Figure 3-5: Putative Hit Selection Dialog

Drawing The Trace

When a putative hit is selected, vtrace will display the trace information on its

drawing screen. Only the best path through the trellis is displayed. This is because

for real models and data, there are too many model states and frames of data to show

a complete trellis. For example, "credit card" is modeled with 10 triphones with three

states each, and it often span 80 or more frames of data. Displaying the data as a

full trellis of that size would make visualization difficult.

After a selection is made, the information from the selection widget is used to

look up the specific putative hit in the putative hit list. Once this hit has been

found, all the information needed to draw its trace is available. The file name and

file position are used to open the trace file and fseek() places the file pointer at

the proper location in the trace file. Model names, as well as the number of states,

state occupancies, and per frame scores are all read in from the trace file at this time.

From this information, most of the objects on the trace screen can be calculated.

The model names, model topologies, state occupancies, normalized log likelihood

score, and hypothesized labels (what the HMM system though had been said) are all

included here. Information about truth has either already been loaded, or is assumed

unavailable. A picture of this output can be seen in Figure 3-6.

Once all of this information has been acquired, the program is ready to begin cal-

culating where the elements of the trace should be drawn on the screen. First, vtrace
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Figure 3-6: Output Window for vtrace with Example Putative Hit

calculates the vertical locations of all of the elements. Since there is no possibility

of overlap here, the calculation is straight forward. Next, the horizontal locations of

the models are calculated, one model at a time. Here, vtrace looks for places in the

truth field and the hypothesized field where displaying labels based on their relative

time positions would cause overlap. If such places are found, the models are spread

out to prevent such overlap. After the model positions have been calculated, the

information is used to calculate the locations of the bars in the occupancy and log

likelihood bar graphs. The vertical sizes are calculated using the xygraph subroutine

written by Richard Lippman. Two calls to xygraph, one for occupancy and one for

log likelihood, finish the drawing.

3.3 Initial Insights

The goal of looking at the Viterbi backtrace for specific putative hits was to develop

insight into why some hits scored lower than some false alarms. Several ideas were

considered as a result of looking at the backtrace for the word "card" and its top few

false alarms.

One reason for high scoring false alarms was that certain triphone models did not

discriminate well between occurrences of the true triphone and the other triphones.

One example involved the most costly false alarm for the "card" model: "car".

31

*EMl imimE Em..
I



Truth 27463 get 27473 cards 27503

Hypothesized 27465 card 7495

4-k+aa k-aa+r aa-r+d r-d+

0ccupan: 10 4 5

Log L.: 18 1.29e+02 1.36e+02 4.34e+01 6.13e+01

-2

Figure 3-7: True Hit for "card", Score = 23.66

Compare the true hit in Figure 3-7 with the false alarm in Figure 3-8. For the false

alarm, one would expect that the r-d+# model would not score the speech frames at

the end of "car" as well as it did, because the /d/ sound did not occur. This would

make the overall word score lower than the true hit scores. However, the r-d+# model

did score the end of "car" reasonably well. This suggests that the r-d+# model does

not discriminate as well as it should.

For other putative hits, vtrace would show strange patterns of state occupancies,

as shown in Figure 3-9. In this example, the speech frames did not match up with the

#-k+aa model very well. This did not affect the overall score because the correspond-

ing duration for this model is much shorter than the normal duration for #-k+aa, as

seen in Figure 3-7. The short duration prevented the expected accumulation of bad

scores that should accompany segments of speech which do not match well against

the model. Because the rest of the utterance matched with the rest of the model well,

the utterance received a high scored. In this way, abnormal occupancy patterns can

assist a false alarm to score well. These kinds of observations led to the idea that

improving the modeling of durations in the hidden Markov models might help im-

prove word spotting performance. However, developing such a test would be beyond
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Figure 3-8: False Alarm "car" for "card" Model, Score = 37.85

the scope of this thesis, as it would have involved significant additions to both the

training and testing software.

A second improvement idea for the word spotter was to limit the contribution any

single model may have on recognition decisions. Analysis showed that certain phonetic

models tended to dominate recognition, resulting in recognition decisions based on a

subset of the phonemes rather than on the entire word. For example, word scores from

the "card" model reflected the scores of the k-aa+r and aa-r+d models more than

the scores of the #-k+aa and r-d+# models. This might be because the dominating

models scored higher and matched more frames of data than the other models. One

way to limit the contribution of these models might be to set an upper bound on the

frame score of the model states. When the system calculates the state likelihood of

a single frame of data, the system would limit the score if it is above the maximum

threshold. A second way to limit model contributions might be to normalize the model

contributions based on their occupancies. One scheme for occupancy normalization

might be to recalculate the word scores based on an equal contribution from each

state of each phone in the word model.
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Figure 3-9: False Alarm "far as" for "card" Model, Score = 25.07

3.4 Secondary Test

After looking at several trace pictures, such as those shown in Figure 3-7 through

Figure 3-9, it became apparent that the per state occupancies and per state normal-

ized log likelihoods might be useful for discriminating false alarms from true hits.

It seemed reasonable to run a secondary test, after the Viterbi decoder, to try to

improve word spotting performance [12]. Because software existed to facilitate this

type of test, such an experiment was run.

A multi-layer perceptron (MLP) classifier developed as part of the LNKnet soft-

ware package was used as the secondary test [6]. The MLP input features were the

per state occupancy and per state normalized log likelihood of 100 true hit examples

of "card" and 181 false alarm examples of "card" from the training data, as shown in

Figure 3-10. The training false alarms included all false alarms which scored higher

than the lowest scoring true hit. The MLP then classified 43 true hits (as judged by

the word spotter) and 97 false alarms (as judged by the word spotter) running on the

testing data. The MLP took the per state occupancies and per state normalized log

likelihood scores and removed from the putative hit list those hits judged to be false
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Figure 3-10: MLP Classification on Per State State Occupancies and Per State Nor-
malized Log Likelihood

alarms. The secondary test did improve the performance of the system on the word

"card", as the original FOM was 42.2 and the secondary test improved it to 48.5.

This test was run again for words other than "card". Unfortunately, to date no

similar results have been achieved. This confirms previous experiences with secondary

testing, which is that secondary testing can sometimes help and can sometimes have

no effect [7]. Because of this information, and because this line of research was off

the principle subject of the thesis, no major effort was put into developing this test.

3.5 Conclusion

The backtracing seems to be useful. It provides a way to make sure the system is

decoding as expected. Also, several ideas about what can improve our word spotter

have been formulated. Perhaps some of these ideas may lead to improvement in sys-

tem performance. Additionally, as a result of work with the vtrace viewer program,

a secondary test was inspired and yielded some promising results. Unfortunately,

some of the ideas for improvement mentioned in Section 3.3 were deemed too time

consuming to fit in to the scope of this thesis project.

35

2n

2

C L.. i

rHIT

HIT
4 12.5
1 13.5
6 12.4
5 12.4
5 14.3
5 16.8
1 15.3
4 14.7
4 14.3
2 14.1
4 42a -

1 13.



3.6 Future Work

There are several ideas for future study related to the vtrace viewer. The ideas

formulated from using the vtrace viewer could be implemented, and improvements

to the actual vtrace viewer system can be made. The word spotter system improve-

ments are listed in 3.3. The subject of vtrace viewer improvements is discussed

below.

The vtrace viewer project has been taken over by Linda Sue Sohn, a full-time

software engineer at Lincoln. Currently she is being guided by the author to imple-

ment improvement features for the vtrace viewer system. Some of the improvements

already implemented in this effort include rewriting the GUI code to make it more

efficient, as well as using the qsort () library function for loading and sorting putative

hits quicker. Additional new features include an option to display several different

traces at once, as well as a hook to an xwaves interface, which will allow a user to lis-

ten to a putative hit as well as to view the waveform and spectrogram of the putative

hit with the word spotting transcription.
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Chapter 4

Multidimensional Scaling

4.1 Introduction

A word spotting system compares speech segments to internal models for words and

makes decisions based on how well those segments fit the internal models. In the pro-

cess of improving such methods, it may be useful to provide pictures that show the

positions of one model relative to another model or of a set of model centers relative

to speech segments. For our case, this involves an interesting technical challenge. If

speech were represented using two parameters, it would be possible to display speech

segments as well as model centers on a two dimensional picture by taking one parame-

ter as the X axis, and one parameter as the Y axis. However, in this system, speech is

represented using two data streams, 12-dimensional cepstra and 13-dimensional delta

cepstra. By using multidimensional scaling (MDS), the data's dimensionality can be

compressed and meaningful two dimensional plots can be produced. Unlike vtrace,

the MDS plots will not be exact representations of the data, but it is hoped that the

meaning of the data will be retained in the scaling process.

Three experiments were run. The first experiment attempted to display the rela-

tionship between speech vectors from hits and false alarms to the Gaussian centers

from the word models. The second experiment displayed the monophone set from

the word spotter to try to determine those those sounds that may be difficult to

distinguish given the data set. The final two experiments displayed the relationships
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between models which had been trained on different amounts of data in an attempt

to determine the effects of limited training data on model location. Each of these

experiments is discussed below.

4.2 Method

Multidimensional scaling provides a mechanism for projecting vectors in an N-dimensional

space to a representation in lower dimension, while still maintaining relative distances

between vectors [5]. As seen in Figure 4-1, there is a three step process for converting

Figure 4-1: Three Step Process for MDS

raw data to an MDS plot. First, the distances between all of the data points in the

N-dimensional space must be calculated and stored in a matrix. Second, the MDS

program is called to produce a two dimensional representation of points related by

the distance matrix. Finally, this picture is plotted using a suitable program. In this

case it was a program written at Lincoln Laboratory called mdsplot.

4.2.1 Distance Calculation

The first part of the method shown in Figure 4-1 is the distance calculation. There are

three important factors for choosing a distance metric for MDS. First, the distance

must be inversely proportional to the nearness of the data points. It is also important

that the same method can compute distances between all points in a single MDS

picture. Finally, the chosen distance metric should relate in a meaningful way to the

system being studied.

The two distance formulas detailed below were used to create the distance matrix

described in Section 4.2. The Mahalanobis distance was chosen because of its simi-

larity to the word spotter scoring method for the case of comparing model centers to
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speech vectors. Additionally, it provides a meaningful metric for distances between

speech vectors as well as distances between model centers. The Bhattacharyya dis-

tance was chosen because of its usefulness in determining model confusion for other

speech tasks [11]. Both of these metrics are described below.

Mahalanobis Distance for Gaussian Random Vectors

The first distance metric used for MDS was a weighted Euclidean distance, or Ma-

halanobis distance [3]. This is the Euclidean distance where each of the features

are normalized to have variance of one. We can calculate the distance between two

vectors, X and Y with common diagonal covariance A as follows:

Ul 0 O ... 0

o0 2 0 ... 0

0 0 a 3 ... 0

O 0 0 ... aN

d(X, Y) = (X - Y)TA-(X - Y) (4.1)

While the Mahalanobis distance is similar to the word spotter distance between

a speech vector and a model center, there are some differences. First, the word

spotting system implements a tied Gaussian mixture model (TGMM) probability

density function with 128 model centers. Each center Ci has an associated covariance

matrix Ac. So the distance between a speech vector X and a specific center Ci is as

follows:

d(Ci, X) = (C, - X)TA, (Ci - X)[1]. (4.2)

Because MDS requires a single metric for all distance calculations, the distance metric

needs a single global covariance matrix A. So, the distance metric relating model

centers to speech vectors for MDS is an approximation to the distance metric relating

model centers to speech vectors used by the word spotter.

There is a second difference associated with relating the distance metric used by
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the word spotter to the Mahalanobis distance used here. For computational reasons,

the word spotter does not use all 128 Gaussian mixture centers in its distance calcu-

lation. Rather, it chooses the five centers closest to the speech vector and averages

their distances. The distance to the different state density functions is based on these

five closest centers as shown below:

5

d(A, X) = log[i wi exp(d(Ci, X))], (4.3)
i=1

where A is the specific tied Gaussian mixture density function, X is the speech vector,

C1 through C5 are the five closest centers to the speech vector, and w1 through w5

are the weights for these centers in this model. Because a consistent distance metric

was desired for all states, and because useful pictures would include several different

speech vectors, the Mahalanobis distance was used to relate the speech vectors to

each of the top weighted centers for each state individually rather than jointly as in

Equation 4.3.

A third difference is that whereas the word spotter actually uses the 12 cepstra

and 13 delta cepstra values for each frame of speech, only the cepstra were used for

MDS.

Bhattacharyya Distance for Gaussian Models

The second distance metric used for MDS was the Bhattacharyya distance. This

distance is based on an estimation of the expected probability of error for two multi-

modal Gaussian probability density functions, and is not the exact distance between

two Gaussian mixture models. However, it has proven useful for other speech pro-

cessing problems, such as speaker identification using Gaussian mixture models [11].

For two probability density functions representing two classes, p(x A1) and

p(x A2) with a priori class probabilities P1 and P2, the expected probability of

misclassification is defined as

e = J min(Pp(XA), Pp(X IA) P))dX (4.4)
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and can be seen in Figure 4-2 [11].

PpWx;J
.P(NIJ

Figure 4-2: Depiction of the Probability of Error Between Two Class Distributions

Because the calculation in Equation 4.4 has no closed form for Gaussian mixture

models, it is often approximated, such as with the Bhattacharyya bound [11]. The

Bhattacharyya bound calculates an upper limit on [11]. For two Gaussian densities,

Al = pl, A1, and 2 = 2, A2, the Bhattacharyya bound is calculated as follows [11]:

E < b = / min(Plp(XA),P 2p(X[A2))dX = Pe- a (4.5)

where

p = -(/2 l)-1(A2 --) T + Ilog JAI (4.6)
8 2 A111II21A

The quantity p is known as the Bhattacharyya distance between densities [11].

It can be used to create a distance metric which relates two tied Gaussian mixture

models, p(xjA 1) and p(x[A2), where p(xlAl) and p(xZA2) are defined as

Ml

p(xlA1) = Epbi(x), (4.7)
i=l

M2

p(xlA2) = E qjaj(x), (4.8)
j=1

in which b(x) and aj(x) are Gaussian densities. The distance used was

d(Al, A 2) = -log E max Vi exp-p(i j)] (4.9)

where p(i,j) is the Bhattacharyya distance between bi and aj [11].

HHDist, a program to calculate this distance for HTK models, has been written

by Beth Carlson, a researcher in the group. With a few minor changes, it was able to
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produce the distance output which MDS could convert into a two dimensional plot

of the models.

The Bhattacharyya distance is not representative of any part of the word spotter

training or testing. Both of these phases of word spotter operation maximize the

likelihood of the data rather than maximizing the discrimination, therefore distances

between models are never required. However, the distance between models certainly

does effect performance. Therefore, the Bhattacharyya distance was employed to help

gain intuition into the positioning of models.

4.2.2 Multidimensional Scaling Method

The pamphlet "Multidimensional Scaling" by Kruskal and Wish gives a basic overview

of MDS [5]. The method transforms a high dimensional representation of data into

a lower dimensional representation, while preserving the relative proximities of the

points as dimensions are removed.

The first step in MDS is to compute the distances between all data points X, and

store them in a matrix, A, shown in Equation 4.10.

1,1 61,1 - 61,N

52,1 62,2 ... 2,N

- 5N,1 5N,2 *-- 5 N,N 

(4.10)

X is the set of all data points xi as shown in Equation 4.11.

X1

X2

XN

(4.11)
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So, the distance between two points xi and xj would be calculated as in Equation

4.12, where 6 is some meaningful distance function, such as those described in 4.2.1.

i,. = 6(i, xj) (4.12)

Once A has been computed, all N of the data points are scaled using the following

iterative process. First, they are placed in R dimensional space, where initially R =

N, using a stress minimization process described below. Once the points have been

placed, a dimension is removed, and the points are re-placed in this lower dimensional

space. This process of removing one dimension and reconfiguring the points proceeds

until the required dimension has been reached.

Points are placed in the scaled space by minimizing the stress between the Eu-

clidean distance of the scaled space, d, and the proximity information in A. This is

done in a four step process. First, dij is calculated for each i and j, based on their

initial position, as in Equation 4.13, where xi , is the rth dimension of xi.

dij = A (Xir- X, )2 (4.13)
r=1

Next, the "f-stress" of the current X placement is calculated, as seen in Equation

4.14, where f(Si,j) is the objective function which relates proximity, 6, to distance in

the space, d.

f-stress(A, X, f) E Ej [f (6ij)-di, (4.14)

The stress of the current A and X configuration is calculated by finding the best

objective function:

stress(A, X) = min(f-stress(A,, fX,)) (4.15)
argf

Finally, the best fit ( for the proximity matrix A involves choosing the X which
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minimizes the stress of the system, as seen in Equation 4.16.

stress(A, X) = min(stress(A, X, f)) (4.16)
argX

Actually, the above process, while useful for defining the best fit, does not provide

a good way to calculate X given A. For this, Kruskal and Wish used the method of

steepest descent to find X. An analogy of this method is reproduced here. Imagine

a three dimensional graph, where x and y are dimensions of the configuration, and z

plots the stress. Essentially, the method involves dropping a ball on this terrain at

any point, and letting it find the lowest point it can by following the line of steepest

descent. This method has one main drawback. It is possible that the calculation of

X will produce a local minimum, although the above method of starting with R = N

makes it unlikely. Producing a local minimum is undesirable, but there is no way to

be absolutely sure it does not happen, short of calculating all possible stresses for all

possible positions. According to the pamphlet, however, becoming trapped in a local

minimum is rare.

For this thesis, a 1973 version of the MDS program was used, because it was the

only MDS program the group had. Because the program used was an older version,

it could only scale up to 62 points at a time. It is realized that newer programs are

available which do not have such a limit, but they were not available for this thesis.

4.2.3 Output: mdsplot

The output of the multidimensional scaling program can be converted into standard X

and Y coordinates, and simple plotting packages exist already to display the picture.

However, to facilitate the display of speech models and speech segments, a special

plotting program was created to display MDS type plots. mdsplot, developed by

Linda Sue Sohn, takes as input simple plotting commands (such as Circle (x, y,

r, color)) and draws the MDS picture.

The final pictures are graphs of the data elements in two dimensions. Because the

points are placed by using an iterative process which minimizes the difference between
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actual distances and the displayed distances, the meaning of the two dimensions in

the final picture is unclear and changes from experiment to experiment.

4.3 Experiment 1: Relating A True Hit and a

False Alarm to a Model

The first MDS experiment compared a high scoring false alarm to an example of a

true hit to see if significant differences could be seen. As mentioned in Section 2.2.3,

"card" was the word on which most of this analysis took place. The highest scoring

false alarm (i.e. the word which scored best in the card model) was an instance of

the word "car". In fact, for figure of merit calculation, "car" factors into the poor

performance of "card" much more than the rest of the false alarm words combined.

One would expect little difference in the beginning parts of these words, as "car" and

"card" are initially the same. In contrast, it is expected that the lack of a /d/ sound

in for "car" would result in divergent tracks at the end.

The six top examples of "car", as defined by their score from the "card" model,

were paired up with the six top examples of "card". These pairs, in addition to the

Gaussian centers from the triphones for the word "card" were run through the MDS

system. The vectors from the words were the 12 cepstral coefficients of each frame

of data. For the models, which were tied Gaussian mixture models with 128 model

centers per model state, only the two or three centers with the highest weight for each

of the three model states were chosen. The Mahalanobis distance metric was used.

A typical result can be seen in Figure 4-3. The circles represent the different model

centers and are included only for display purposes. The center labels describe which

specific center each was, as well as which models the specific center represents. For

example, the model label "d.35" refers to the 35th Gaussian center which represents

one of the centers with highest weight among the three states in the r-d+# triphone.

The two lines show the progression of cepstral observation vectors for the two words

scaled into two dimensions. The solid line represents a true hit, while the dashed line

represents a false alarm from a different speaker. The labels describe which word the
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Figure 4-3: MDS Output for Experiment One: Hit vs. False Alarm

data came from as well as which specific frames are being shown. For example, the

data frame labeled "hit4.23" means that the data point came from the 4th highest

scoring hit from the word spotter's "card" model, and this was data frame 23 for that

word. In comparison, "fa3.35" means that this data point came from the 3rd highest

scoring false alarm for the "card" model, and this was data point number 35.

The words tracked along the model centers for the /a/ and /r/ sounds and diverged

at the /d/ sound as expected, but the tracks also diverged at the /k/ sound where

it was expected that they would be more similar. Although the /k/ sounds for "car"

and "card" were different, they were both within the spread of the #-k+aa model's

centers. The last few frames of the false alarm are different, however, and the data

points "fa3.37" and "fa3.39" do not appear within the spread of the r-d+# model's
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centers. This suggests that while both tokens of the /k/ sounds appear to be close

to their model centers, the false alarm token of the /d/ sound appears to be far from

its model centers. This result was interesting because this token of "car" scored well

in the "card" model, even though its last few frames were far away from the r-d+#

model. This suggests that the r-d+# model did not affect scoring very much. It also

suggests that there are differences between the ends of "card" and "car" that can

potentially eliminate "car" as a false alarm.

A second example from this experiment is the case of scaling two true hits, shown

in Figure 4-4, which can be compared with the hit vs. false alarm picture of Figure

4-3. This figure differs from the hit vs. false alarm case as expected because the

y

hit2hit4

x

Figure 4-4: MDS Output for Experiment One: Hit vs. Hit

end sounds, where there really is a /d/ for both examples, do not diverge. Again,
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however, one can see that some of the frames from the /k/ sound and the /aa/ sound

were not as close to each other as one might expect. For example, "hit4.11" was not

close to the track of the other true hit as expected. However, it was close to the

"k.80" model center suggesting again that this wide variation may be normal for the

/k/ sound. Another, difference between Figure 4-3 and Figure 4-4 is that the similar

data points are not in similar locations. The word tracks in Figure 4-3 proceeded

counterclockwise while the tracks in Figure 4-4 proceeded clockwise. This is because

the MDS procedure not guaranteed to produce similar pictures for similar data, and

it emphasizes that caution must be used when interpreting MDS pictures.

Figure 4-5 is an alternative hit vs. false alarm picture. This shows one example

y

Figure 4-5: MDS Output for Experiment One: Alternative Hit vs. False Alarm

where the tracks for "car" and "card" were very dissimilar, and the plot is a bit
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more difficult to interpret. However, if we look at the actual vector distances in

Table 4.1, we see that the MDS plot is a relatively accurate representation of the

data. For example the vectors "fa5.1" and "fa5.3" had a Mahalanobis distance of 3.3

Table 4.1: Mahalanobis Distances for Speech Frames

fa5.1 fa5.3 fa5.5
hit5.1 4.9 5.6 5.8
fa5.1 0.0 3.3 7.1
fa5.3 3.3 0.0 5.3

whereas "hit5.1" and "fa5.1" had a Mahalanobis

reasonably reflected in the MDS picture.

distance of 5.6. These distances are

4.4 Experiment 2: Clustering Models

Although the distance between the models is never used explicitly in the word spot-

ter training or testing, it does relate to performance. In this experiment, the Bhat-

tacharyya distance described in Section 4.2.1 was used to create an MDS plot of the

monophone set from the word spotter. It was hoped that such a plot would provide

insight as to which models might cause confusion for the system.

As can be seen in Figure 4-6, most of the models were clustered as one would

expect by phonetic classification, while a few models seemed to be misplaced [14].

Some of the phones in unexpected locations include the dx model and the k model

Table 4.2: Bhattacharyya Distances for Monophones

t p b s th f
dx 14.7 14.4 14.0 14.0 13.7 13.5
k 6.7 4.9 8.6 9.2 7.5 7.6
b 7.1 5.3 - 10.4 9.0 9.7

(both expected near the other stops). The dx model is not placed near the other stops

as expected. However, the Bhattacharyya distances to these models shown in Table
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Figure 4-6: MDS Output for Experiment Two

4.2, support such a placement, as they show the dx model to be different from the

other stop phones. In contrast, the k model is surrounded by the fricative models th,

s, and f, and the Bhattacharyya distances, again in Table 4.2 do not support this,

as k is closer to t and p than to s, th, and f. These two examples can be compared

to the b example where MDS was successful. The b model is closer to the t and p

models than to the fricatives, and the MDS picture reflects that. This shows that

while MDS can assist in viewing data which are otherwise difficult to display, results

must be checked against the original data.

50

Q



4.5 Experiment 3: Amounts of Training Data

A final experiment involved exploring the differences between models which had been

trained on different amounts of the training data. Because the Switchboard runs had

been made using models trained on various amounts of data, it was desirable to see

what affect varying the amount of training data has on model positions. Four model

sets had been trained: set 1 had been trained with 100% of the data; set 2 had been

trained with 75% of the data, set 3 had been trained with 50% of the data, and set

4 had been trained with 25% of the data.

Because of the 62 model limit imposed by the MDS system described in Section

4.2.2, two different experiments were run. In the first one, all of the monophones from

the fully trained set were multidimensionally scaled. For some of the monophones (uw,

ng, er, dx, aa and sh) the models from each training set were included. The results

can be see in Figure 4-7. The circles are used to point out where the model locations

actually are. The labels with no numeric extension are from training set number 1.

The models with a numeric extension are from the partially trained model lists. A

small segment of Figure 4-7 is shown in Figure 4-8. Three particular examples are

traced, uw, ng, and er. Here, it seems as though the models are exchanging positions

relative to each other with for each new data set. This may be explained by looking

at the distances in Table 4.3. The distance between ng.2 and uw.4 is larger than

Table 4.3: Bhattacharyya Distances for Partially Trained Monophones

ng ng.2 ng.3 uw.4 m
ng - 8.6 9.5 9.2 6.2

ng.2 8.5 - 7.6 9.0 9.5
ng.3 9.5 7.6 - 7.5 8.8

the distance between ng.2 and ng, but the MDS plot in Figure 4-7 places ng.2 and

uw. 4 very close while it places ng much farther away. This shows that the scaling

procedure can produce misleading pictures.

The second experiment involved displaying all training sets for all models. Because
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Figure 4-7: Output for MDS Experiment 3: All Monophones

this experiment involved many data points, the models were divided into three groups,

based on the experiment in Section 4.4. Figure 4-9 displays one of the three MDS

plots, although similar results were seen in the other two pictures as well. Figure

4-10 shows a subset of the information of Figure 4-9 which is easier to analyze. It

shows that while some models seem to cluster apon a particular location as the

training increases, others seem to reverse locations in this two dimensional picture.

For example, it appears as though the k model is converging on a specific point, as

the distances between model positions are decreasing as the amount of training data

increases. It also appears as though the t model is not converging on any point

relative to the other models. However, the picture is not representative of the data,

shown in Table 4.4. The closest model to k is t according to the data, whereas the
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Figure 4-8: Partial Output of Experiment 3: All Monophones

closest model to k is k. 2, according to the picture. The rest of the models follow the

same trend, suggesting that in this case the picture is not an accurate representation

of the data.

4.6 Conclusion

The MDS method seems to provide some useful insights for speech data. The first ex-

periment attempted to demonstrate the difference between true hits and high scoring

false alarms resulting from "car". For most of the example false alarms, this could be

seen using the MDS method. However, MDS plots which were ambiguous show that

the trends must confirmed up with further analysis of the original data.

The second experiment demonstrated that this method allows visualization of

groups of models which might be confused for each other. The MDS picture placed
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Figure 4-9: MDS Experiment 3: Partial Monophone List

most monophones in a reasonable way relative to each other. However, a few mono-

phones seemed to be misplaced.

The third experiment demonstrated the effects of training on the confusedness

between certain models. As more training data were used, certain models appeared

to converge on a point, suggesting that these models may not be affected by the limited

training data. However, on closer examination, the pictures seemed inconsistent with

the true distances, leaving doubt regarding the ability of MDS to accurately represent

the type of data.

In general, this method is only as good as the metrics behind it. There is no

new information about point by point comparisons in data displayed using MDS.

Additionally, the use of MDS adds an element of error due to the nature of its scaling
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Figure 4-10: Partial Output of Experiment 3: Partial Monophone List

process. The overall conclusion is that the benefit of MDS is its ability to show high

dimensional data on two dimensional plots, but it cannot be used blindly.

4.7 Future Work

The MDS software was written in 1973. As a result, the algorithm to perform MDS

scaling can process a maximum of 62 points. It was most useful to look at points

which had been scaled in a single invocation of MDS, and we would have liked to have

added more than 62 points for some comparisons. New software that could handle

more than 62 points should be installed at Lincoln Laboratory.

Another limitation of this method was the lack of a way to relate the radii of the

circles to the actual distances between points. The circles ended up being nothing
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Table 4.4: Bhattacharyya Distances for Monophones

k k.2 k.3 k.4 t t.2 t.3 t.4
k 7.9 9.5 10.5 6.7 9.3 8.9 10.6

k.2 7.8 - 9.3 9.2 8.7 6.8 9.8 8.9
k.3 9.5 9.3 - 8.2 10.3 10.0 8.2 9.0
k.4 10.5 9.2 8.2 - 11.6 9.7 10.2 8.1
t 6.7 8.7 10.3 11.6 - 9.9 9.6 10.7

t.2 9.3 6.8 10.0 9.7 9.9 - 10.4 9.9
t.3 8.9 9.8 8.2 10.2 9.6 10.4 - 10.0
t.4 10.6 8.9 9.0 8.1 10.7 9.9 10.0 -

more than meaningless artifacts for display, rather than useful instruments for analy-

sis. It was hoped that the radii of the circles for model centers would possibly define a

region where speech segments would be strongly classified by the models. Definition

of strong classification would be subject to the needs of the experiment. The inability

to translate radii from the pre-scaled domain into the post-scaled domain prevented

such analysis.

Additionally, while the experiments in Section 4.4 and Section 4.5 explored mono-

phones, the word spotter uses triphones. Therefore, it would be a good idea to

perform the same experiments using triphones.
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Chapter 5

Conclusion and Future Work

The exploratory data analysis provided some insights into an HMM word spotting

application. The backtrace viewer shed insight into state occupancy. This led to a

secondary test which could improve the figure of merit of the word spotting system.

The MDS technique showed how a word progressed through the different models. It

was able to show the clustering of different model centers and models. It also could

show how models move about relative to each other as they are trained. Some ideas

for future work are discussed below.

5.1 Improvements on the HTK Word Spotter

First, adding a better duration model to HTK might improve word spotter perfor-

mance. Data analysis suggested that odd paths through the models were in some

way responsible for poor word spotter choices, either by scoring true hits too poorly

or by scoring false alarms too well.

Second, it seemed clear that some models did not capture the full complexity

of the sounds they were trying to model. From the MDS analysis, it seemed that

the models were not converging on a specific point in the space. This suggests that

the architecture of the models was insufficient. Perhaps different model architecture

would be more trainable for the data.

Third, the MDS analysis also suggested that certain sounds were difficult to dis-
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tinguish. Adding a system to the HTK word spotter which could notice when a

sound was possibly within an ambiguous group and then performing some additional

analysis might assist in distinguishing between these easily mistaken sounds.

5.2 Development of New Techniques

The development of two data analysis techniques and some of the insights gained by

using them suggests that this general field of study should be explored further. In

the proposal for this thesis, additional data analysis techniques had been suggested.

Perhaps implementing these or other techniques and using them may yield additional

insight to the problem of word spotting.

5.2.1 Testing State PDFs with Observations

One way to compare the training data to the testing data would be to plot only the

bj(ot) versus t for all j (see Figure 5-1 for an example). Recall that bi(ot) is the

probability that observation ot was produced by state j. This could provide insight

as to how the specific model states compared to the series of sounds making up the

word. This graph could be time-indexed with a spectrogram of the actual waveform

LU
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Figure 5-1: State Score vs. Frame Index

to compare bj(ot), the state probability scores, with ot, the observations.

Referring to the book example, one would expect that the probability the speech

was produced by the b state would be highest during the time the /b/ phoneme

was produced, and similarly for the U and k states for the /U/ and /k/ phonemes
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respectively. In this way, it would be possible to evaluate the state models for the

phonemes of the word represented by the HMM in question.

5.2.2 Gaussian Mixture Analysis

As mentioned in the introduction to HMMs, the output of a hidden Markov model is

determined by state-dependent probability density functions. To make useful prob-

ability density functions describing the speech observations, assumptions have to be

made about the distribution of the speech vectors (e.g. are they modeled accurately

by Gaussian mixture densities). As is demonstrated in Figure 5-2, these assumptions
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Figure 5-2: Real vs. Modeled Feature Distributions

can be checked by plotting the assumed distribution of feature vectors against the

actual distributions for both the training data as well as the testing data. This could

ensure that the data for a specific state's model fits the overall probability density

function implementation. If this were not the case, the model's probability density

function could be altered to reflect that. Additionally, states could be split if they

are found to model in one node what could be better modeled in two. In this way, it

may be possible to determine when an improper number of states has been used in

specifying the HMM architecture.
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