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Abstract
The Microsystems Factory Representation is a language/representation with which
the resources pertaining to production systems can be described. It consists of the
organization of static data, the static data itself, and the organization of dynamic
data.

The MFR, in conjunction with data describing the processes required to manufac-
ture the products of the factory and data on the demand for those products, provides
all the necessary information to perform tasks such as scheduling in real time, sim-
ulating the operation of a factory and making graphical representations of it. With
the aid of MFR, the same factory representation and computer programs can be used
for both simulations and real time scheduling. In this way, simulations will be more
realistic and schedulers will have the opportunity to be extensively tested before they
are put in use. Another way with which MFR can be used as a tool in the design
process of factories is for it to provide data to programs that check the feasibility of
meeting production requirements.

MFR was developed such that the set of information it consists of, and the way
this information is organized, is chosen by the user. A textual representation with
which the data of a factory can be specified has been developed, and a program that
creates interpreters for a particular schema (organization) has been written.

MFR was designed to be used within the CAFE CIM system, developed by the
MIT CIDM project, but it can be used as part of other environments as well.
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Chapter 1

Introduction

This thesis tackles the problem of factory representation within a Computer Inte-

grated Manufacturing (CIM) environment. The CIM system in question is the Com-

puter Aided Fabrication Environment (CAFE) developed as part of the Computer

Integrated Design and Manufacturing project at the MIT Microsystems Technology

Laboratory (MTL). A factory representation provides a way to organize and store

data pertaining to resources of production systems. Several application programs,

such as factory controllers (schedulers) and simulators can benefit from such a repre-

sentation.

1.1 The CIDM Project and the CAFE Data base

The CIDM research project deals with several aspects of semiconductor manufactur-

ing such as process optimization, efficient capital resource utilization, process flow and

factory representation as well as new technology CAD tools. Semiconductor manu-

facturing is very complex in nature since it involves many steps, long cycle times and

high precision operations. Capital costs are very high and efficient use of resources is

vital. Handling all the data required for production is a difficult task that must be

tackled effectively.

The CAFE CIM system and Gestalt database [8] was developed, as part of the

CIDM project, to support semiconductor manufacturing. It has been in use at the
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MIT Integrated Circuits Laboratory since 1988. It uses an object-oriented data model

and an explicit schema to organize the data storage. In 1993 CAFE was installed at

Lincoln Laboratory of MIT where it is used to run their new fab [5].

One of the important contributions of the CIDM project and the CAFE data base

is the Process Flow Representation, known as PFR [6]. PFR is a language with which

the steps required in the production of specific products are described. It includes

instructions to operators and other knowledge essential to the fabrication process.

Some PFR data is useful in capacity estimation, scheduling and simulation. The

information specified in PFR can be installed in the data base via a PFR interpreter.

The MFR was designed to complement the PFR. The PFR, MFR, and demand data

together compose all static data required for capacity estimation, scheduling and

simulation.

1.2 Definition of the Microsystems Factory Rep-

resentation

MFR is a powerful, common language/representation with which semiconductor fac-

tories can be described unambiguously.

The data necessary to describe a factory can be segregated into static and dynamic

data:

* Static data: By static data we mean information about a factory that does

not change frequently. An example of static data is information that tells us

what machines exist in the factory, their characteristics, their location and so

forth. Another example would be information about the technicians currently

employed and their duties.

* Dynamic data: Dynamic data, on the other hand, does change frequently. An

example of dynamic data is information on the current status of a machine,

that is, whether it is operational or whether it is busy, what set up it has, etc.

Another example would be information about the work in process of the factory.

11



MFR consists of three items:

1. The organization of static data pertaining to resources of production systems.

2. The static data itself.

3. The organization of dynamic data pertaining to resources of production systems.

By data organization, we mean the definition of the pieces of information that

are relevant and the way they are related. So, for example, we might decide that it

is important to know the mean time to failure of machines, and that this is part of

the static data of our factory. We might also decide that it is important to know the

lot(s) that a machine is currently operating on, and make this part of our dynamic

data.

As already stated, MFR includes not only the organization of static data, but the

static data as well. Thus, MFR will specify that it is important to know the mean

time to failure of machines, and it will also provide this information. On the other

hand, MFR does not include the dynamic data of a factory. This is part of the factory

state.

1.3 Related Work

Work related to this thesis has been done by the SEMATECH's SWIM (Semicon-

ductor Workbench for Integrated Manufacturing) project. A factory data model,

implemented in Smalltalk, has been developed as part of it, and is used within the

SEMATECH CIM framework. The introduction of new factory data is done via a

CRM Loader. ManSim, a factory simulator, uses data provided via the SWIM data

model. A Bridge that enables this data to be used by ManSim is necessary. Also,

some work has been done on the Future Factory Design (FFD) project that uses data

provided via the SWIM data model, with the aid of another Bridge.

As pointed out in [9], one of the major hurdles in the use of the SWIM data model

is data entry. MFR provides a language with which all the data about a factory can
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be described, along with an interpreter that facilitates the use of that data. The

interpreter can be used both for storing this data in a data base, and for creating

C data structures that include all the information specified. Furthermore, MFR has

the advantage of allowing the user to decide what information is important (i.e. the

attributes of a factory), and how this information should be organized.

To the best of our knowledge, no other work closely related to this thesis has been

done.

1.4 Motivation for the Microsystems Factory Rep-

resentation

The need for a language that describes the resources of production systems arose when

several applications of the CAFE data base needed this information. One of the most

important applications is the scheduler/simulator which is discussed in Section 1.4.4.

Another application is a factory design tool that is discussed extensively in Chapter

3. The MFR provides a common language for specifying factory data that can be

used by all applications that need it. The advantage is that all applications can refer

to a common data base and consistency of the data can be secured.

1.4.1 The need for an MFR Textual Representation and

interpreter

An MFR Textual Representation is necessary in order to specify the static data per-

taining to resources of production systems. Such a representation has been developed

and its syntax is defined in Chapter 2. In order to use the data specified in this

way, an interpreter was written that parses the textual representation and creates a

representation of the factory in computer memory, and if required, in the CAFE data

base. The representation in computer memory mirrors the representation in the data

base. This way the data is in a format that is easily accessible by any application

that needs to refer to it, either from computer memory or from the data base itself.

13



By making the data accessible from computer memory we allow for experiments

with hypothetical factories without affecting the data in the the data base.

1.4.2 The need for a Schema Representation and inter-

preter

In order to make a good representation of a factory, one needs to record all the

relevant information about it. This can be a difficult task since it is not easy to

predict ahead of time what data will prove to be important in future applications.

The above problem became apparent in the design process of such a representation

where a decision on the set of data that is relevant had to be reached. Even though a

lot of time and thought was spent, and several people were consulted before we were

done, our representation had to be modified several times. This led to the conclusion

that it is necessary to be flexible about the MFR schema. The MFR schema specifies

the data included in the MFR representation of factories and it defines the way this

data is organized.

An MFR textual representation interpreter can work for a particular schema.

Therefore, in order to be flexible about the MFR schema an automatic way of creating

MFR interpreters from a schema definition is necessary. A program that does exactly

that is discussed in Chapter 2.

1.4.3 Various uses for MFR

Some of the ways MFR has been and will be useful include:

* Help in writing simulations. This subject is discussed in Section 1.4.4.

* Provide data for factory controllers (schedulers). This subject is discussed later

in this section (1.4.4) as well.

* Help in communication. MFR provides a standard for describing factories.

* Provide data for analytical models. Various analytical. models that can give

insight to the operation of production systems need information that will be

14



included in MFR.

* Aid in the design of factories. One way in which MFR can be used as a design

tool is illustrated in Chapter 3.

* Provide the organization of dynamic information (state). MFR includes the

organization of the dynamic data that will be stored. The state of the factory,

which is used by several applications, can then be realized.

* Provide data for graphical representation of factories. Data from the MFR can

be used to make graphical representation of factories. Also, by using state

information, these representations can show the status .of the factory in ques-

tion. This way simulations can be animated and provide further intuition on

production control issues.

1.4.4 Relationship between a scheduler, MFR and other

factory data

The MFR can be used in conjunction with a set of representations of other semicon-

ductor factory data. They include:

* the state of the factory, a list of all relevant dynamic information. The evolution

of the state provides a history of the factory's activities:

* the Process Flow Representation (PFR), a representation of the process that is

used to produce a given product. PFR is discussed briefly in Section 1.1.

* the demand, all the information available about future requirements including

known specific orders, long range forecasts, and any statistical measures of

uncertainty.

* the scheduler, the set of rules by which the factory is run. It takes information

from the current state, the MFR, the PFR, and the demand, and it makes

a decision about which operation to do next, where to move lots, etc. This

decision, when implemented, determines the next value of the state.

15



The MFR, the state (and its evolution), the PFR, and the demand, will provide all

the necessary data for simulations and for the implementation of factory controllers.

When a system is created from these items, the state evolves, and reports are gener-

ated that summarize the behavior of the state over time. These reports may include

such performance measures as average in-process inventory, mean cycle time, machine

utilization and others.

The relationship among the above items and a scheduler is illustrated in Figure

1-1. The scheduler reads the factory representation (MFR) that will tell it where

to produce, it also reads the process representations (PFR) that will tell it how to

produce and finally it reads the demand representation that will tell it what and

how much to produce. Then, the scheduler, reads the current state of the factory,

determines the actions that need to be taken, and in this way, it influences the

evolution of the state.

Figure 1-1 can represent either a real factory or a simulation of a factory. The only

difference lies in the state and its dynamics. In a real factory, events occur either as

a result of decisions made by the scheduler (controllable events such as loading lots)

or at random (uncontrollable events such as machine failures). In a simulation, the

random events are synthesized by means of a random number generator.

One important advantage gained through the use of MFR in scheduling and sim-

ulation is that the representation of the factory and the organization of the state

are the same, whether used as part of a real-time factory management system, or a

simulation of a factory. PFR and future demand information can also be used in the

same way, whereas current orders may have to be synthesized in a simulation.

When a simulation is performed, a simulator manager will create the initial state,

request a tentative schedule from the scheduler, and follow the schedule until the first

random event occurs. At that point it will request a new tentative schedule from

the scheduler and follow that schedule until the next random event occurs. This is

repeated until the simulation is completed. In the actual operation of the factory, the

random events will not be generated by a random number generator but will actually

occur in the factory floor. Also, managers or workers review the proposed schedules,
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From Factory or
Random Number Generator

Figure 1-1: Relationship between a Scheduler, MFR, PFR, Demand, State and Re-
ports.
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and may override them if they are aware of information not available to the scheduler

or to the authors of the scheduler.

The fact that exactly the same factory, process and demand representations can

be used both for simulations and real time control has the following consequences:

1. The same computer programs can be used for both simulation and real-time

management systems. Computer programs that are written for the simulation,

and are debugged, have survived extensive testing. They are therefore more

reliable than if they were written from scratch for a management system.

2. The simulator is likely to be a better representation of the actual factory than

if it were developed separately from the management system. This makes the

simulation more realistic and therefore its outcome more believable.

More information on the scheduler can be found in [4].

1.5 Thesis Outline

Chapter 2 of this thesis is an overview of the Microsystems Factory Representation.

There, the MFR textual representation, the MFR schema representation and their

relationship are introduced. Chapter 3 illustrates one way in which MFR can be

used as a factory design tool and discusses several others. We describe a program

that checks for the feasibility of the production requirements of a factory specified

via MFR.

In Chapter 4 of this thesis, we offer a formal definition of the MFR textual rep-

resentation syntax. Also, an interpreter for this representation which makes data

easily accessible is described. Then, in Chapter 5, the MFR schema representation is

defined, and a schema interpreter is discussed.

Chapter 6 is a programmer's manual for the schema and MFR interpreters. It

describes the architecture and data structures of the programs. It also explains how

one may use the MFR data directly from the representation created by the MFR

18



interpreter in computer memory. Finally, in Chapter 7 we summarize and offer some

conclusions.
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Chapter 2

Overview of MFR

This chapter provides an overview of the MFR textual representation, the MFR

schema representation and their relationship.

2.1 Introduction

The MFR textual representation is a language with which the resources of factories

can be described unambiguously. The schema of this representation is the set of classes

that will be used for that purpose. The syntax of the MFR textual representation

depends on the schema that is being used, but will always have the same structure.

For any given schema, there is one and only one possible syntax.

The schema textual representation is a meta language with which the schema of

an MFR textual representation can be specified. A program has been written that

creates interpreters for the MFR textual representation given a particular schema.

2.2 A Factory Schema

The schema of the MFR textual representation determines how the information about

a factory will be organized. An example of a possible schema is illustrated in Figure 2-

1. In this schema, the data is organized hierarchically. The factory is represented as a

collection of cells that form a tree-like structure. The cells themselves are collections

20



of machines, buffers, and lower level cells. The factory is the top-most cell and is

decomposed into subcells. The leaf-cells are composed of machines and buffers only,

and therefore do not include sub-cells. Observe that there can be one or several levels

of cells, depending on how the user chooses to organize the factory. Machines and

buffers can be part of cells at any level. In practical terms, a cell can be a portion of

the factory with some special characteristic. For example, the set of photolithography

machines of a semiconductor factory may form a cell of their own.

The MFR allows the user to organize a factory hierarchically, but it does not

require such an organization. The user can specify any organization he or she wishes.

2.3 Relationship among MFR and the Data Base

Schema

As mentioned in Chapter 1, the CAFE data base uses an object-oriented data model

with an explicit schema to organize the data storage. That means that in order to

store some information in the data base we must first define how this information is

organized. For example, the factory schema described in the previous section would

imply a data base schema with the following classes (object types): MACHINE,

CELL, BUFFER. It would also imply that some attribute of the class CELL would

refer to a list of objects of class MACHINE, some other attribute would refer to a list

of objects of class BUFFER, and yet another attribute would refer to a list of objects

of class CELL. The data base schema could also specify other attributes of the class

CELL that would be used to store various kinds of information, such as a cell name,

or possibly a cell description. Classes of type MACHINE and BUFFER would have

attributes of their own.

The MFR organization of a factory mirrors the way data is organized in the data

base. The information provided by the data base schema is required by MFR since

it defines the data structures. Also, the syntax of the MFR textual representation

depends on the schema used. Finally, in order to store MFR data in the data base,

the schema used by MFR must be installed in the data base.

21



POSSIBLE FACTORY SCHEMA

*
* 0

* 0

Figure 2-1: A possible factory schema.
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Figure 2-2: Instantiation of MFR in the CAFE data base.

2.4 The MFR Interpreter

The MFR interpreter can parse the textual representation, perform various consis-

tency checks on the data provided and create a representation of the MFR objects in

computer memory. The interpreter can also be used to store the information provided

by the textual representation in the CAFE data base. In other words, if the schema

used has been installed in the data base, the interpreter can instantiate the MFR

objects in it. This process is illustrated in Figure 2-2. If the schema has not been

installed in the data base, application programs can use MFR data directly from the

C data structures the interpreter creates.

An important feature of the MFR interpreter is that it allows the user to define

multiple identical objects once and to specify how many exist. This feature applies

only to classes that have an attribute with keyword number that must be of type

integer. These classes must have a singleton attribute with keyword name of type

string or varstring as well. The MFR interpreter is then responsible for creating all

the identical objects, and if necessary for providing default names for those objects.

Identical objects are objects that have the same values for all their attributes, except

for the name attribute.

23



2.5 The MFR Schema Representation

The MFR schema representation is a language with which the schema of an MFR

textual representation can be described unambiguously. A schema interpreter has

been developed that parses the schema representation and creates interpreters for the

MFR textual representation. More about this program is said in Chapter 4. In order

to use the CAFE data base to store the MFR objects one must install the schema

that is being used in the data base. The relationship between the MFR schema, the

MFR interpreter and the data base is shown in Figure 2-3.

2.6 Using MFR to Describe a Factory

In this section, a simple example of using MFR to describe a factory is presented. For

a formal definition of the syntax of the MFR schema representation and the MFR

textual representation please refer to Chapters 4 and 5 respectively.

2.6.1 Specifying the schema

A schema consisting of three classes will be described here. The schema has the char-

acteristics described in Section 2.2, and the classes described in Section 2.3.

Attributes of class CELL:

Static

* STRING name;

* LIST machines; (MACHINE)

* LIST buffers; (BUFFER)

* LIST subcells; (CELL)

* CELL supercell;

* STRING description;

24



Figure 2-3: Schema representation, the MFR interpreter and the data base.

25

Creation of

"Object Types"
in the Data base



* INTEGER number;

Attributes of class MACHINE:

Static

* STRING name;

* CELL cell;

* INTEGER batch; (max batch size)

* FLOAT mttf;

* FLOAT mttr;

* INTEGER number;

Dynamic

* STRING status; (busy, idle, down, engineering)

* STRING detailed status; (if busy, operation; if down, failure mode)

Attributes of class BUFFER:

Static

* STRING name;

* CELL cell;

* INTEGER capacity; (max number of lots)

* INTEGER number;

Dynamic

* LIST lots; (LOT)

26



The type of the attributes of an object is indicated by capital letters. Only the

dynamic attributes will be mutable in the data base. In order to change a static

attribute one must reinstall the MFR. Observe that a dynamic attribute of the class

BUFFER is a LIST of type LOT, even though LOT is not an MFR class.

This schema is a subset of the schema presented in Section 5.2. For the formal

schema textual representation defining these classes, please refer to Chapter 4.

2.6.2 Specifying the factory

The syntax of the MFR textual representation is a C-like syntax. Some of its features

are demonstrated in this section through an example.

CELL

machinel bufferi

machine2 buffer2

buffer3

CELL

buffer CELL

machinel1 buffer1
machine2 buffer2

buffer3

Figure 2-4: Possible factory configuration

Consider the factory configuration of Figure 2-4. The highest level cell is the

factory to be represented. Machines machinel and machine2 are identical, and so

are the buffers bufferi, buffer2 and buffer3. The leaf cells are identical as well.
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We want to define this factory with names as shown in Figure 2-5.

ICL

baylphoto_cell betv/\ veence

GCA_old bufferphotol

GCA_new bufferphoto2

buffer_photo3

lls bay2_photo_cell

GCA_old buffer_photol

GCA_new buffer_photo2

buffer_photo3

Figure 2-5: Example of a factory

The MFR textual representation of this factory is the following:

/* Higher level cell ICL */

CELL ICL {

description "Integrated Circuits Laboratory at MIT'";

number 1;

buffers "between_cells";

};

/* photolithography cells in room 3-110 */

CELL photolithography {
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description "'These cells include the photo equipment";

supercell ICL;

number 2;

}bayl_photo_cell bay2_photo_cell;

/* buffer between photo cells */

BUFFER between_cells {

capacity 300;

number 1;

};

/* machines in photo */

MACHINE GCA {

cell photolithography;

batch 3;

mttf 14.0;

mttr 2.0;

number 2;

}GCA_old GCAnew;

/* buffers in photo */

BUFFER buffer_photo {

cell photolithography;

capacity 100;

number 3;

};
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The first block is the definition of cell ICL, which is the highest level CELL.

The description, number and buffers attributes are specified. The machines and

subcells are not specified, so the fact that they belong to ICL should be specified

when the corresponding objects are defined. Since there is only one CELL ICL, the

name of the CELL will be ICL.

The next block is the definition of CELLs photolithography. Note that the par-

ticular names of each cell are specified to be bayl_photo_cell and bay2_photo_cell.

This is done in a list between the closing bracket of the object and the semicolon termi-

nating the object definition. Had they not been specified, they would be

photolithographyl and photolithography2.

Next, the buffer between_cells is declared. The CELL it belongs to is not spec-

ified. This is not a problem because the fact that this buffer belongs to CELL ICL

is specified in the first block. It would therefore be redundant for it to be specified

again. Redundant specifications are allowed if they are consistent.

The next two blocks are the definitions of the machines and buffers of the cells pho-

tolithography. Since there are two cells photolithography, the machines and buffers

defined are 4 and 6 respectively, even though the number attributes are 2 and 3. The

particular names of the buffers are not written, so the default names buffer_photol,

buffer-photo2 and buffer-photo3 are given.

The order in which the attributes of the objects are defined is irrelevant. In fact,

it is not necessary to give a value for all the attributes. Default values for them are

provided in the MFR schema representation. Another feature of MFR not illustrated

in this example is that objects can be specified in a nested fashion. These features

and more are illustrated in Section 5.2.

2.7 How to use the Schema and the MFR Inter-

preters

In order to use the schema interpreter, one must first write a schema representation

in the syntax defined in Section 4.2. Then, a directory where the source code for the
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interpreter will be written must be created. The command for the schema interpreter

is:

schi [-s] <infile> <subdirectory> [outfile]

The -s option should be used only if the schema represented has been installed in

the data base. If this option is set, the MFR interpreter created will have the ability

to instantiate objects in the data base. The file in which the schema representation

is stored and the directory where the MFR interpreter will be created must follow.

Then the user may specify an output file. The default name for this file is out. In this

file a representation of the schema, as it was read by the interpreter will be printed. If

any syntax or consistency errors are made, error messages will be printed to standard

error. The output file for the example of Section 4.3 can be found in Appendix A.

Once the source code has been written, it should be compiled. First, the lex

lexical analysis program generator and the yacc parsing program generator must be

used to create a lexical analyzer and a parser. This can be done by typing lex clex

and yacc cyacc. Then, the Makefile shown in Appendix B can be used to compile

and link the MFR interpreter.

The following command can be used for the MFR interpreter:

mfri [-s] <infile> [outfile]

The MFR textual representation file must be written in the syntax defined in Section

5.1. If any syntax or consistency errors are made, error messages will be printed in

standard error and in the outfile. If the -s option is set, and the schema used has

been installed in the data base, the objects will be instantiated in it. The user may

specify an output file. If not the default name for this file is out. Provided that no

errors have been made, a representation of the objects will be printed in the outfile.

The computer memory address where the objects are stored will be printed next to

each one of them. The output file for the example of Section 5.2 can be found in

Appendix A.

It is possible to use the MFR objects directly from computer memory, as they

are created by the MFR interpreter. For that purpose, some modifications of the

main function in main.c, and an understanding of the data structures in interp.h is
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necessary. The data structures used to create the objects in computer memory are

described in the programmer's manual for the MFR interpreter in Chapter 6.
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Chapter 3

Use of MFR as a Design Tool

There are several ways in which MFR can be useful in the design process, in simulation

and in the real time control of a factory. Some of these are discussed in Chapter 1.

Here we first give a description of the tools that can be used, and then we illustrate

one way in which MFR can be useful in the design of a factory. This is done with the

aid of a program that checks the feasibility of meeting production requirements in a

hypothetical factory described via MFR.

3.1 Tools in the Design and Control of Factories

Some tools useful for the design and control of factories, and the data they require are

illustrated in Figure 3-1 1. Tool number 1 is a feasibility check against the existence

of the machines required to produce the products described by PFR. Tool number 2

is an approximate feasibility check against machine capacity. This tool is discussed

in detail in Sections 3.2 and 3.3.

The third tool is a more sophisticated capacity feasibility check, that takes queuing

delays and limited buffer space into account. No scheduling policy is required for this

tool. The next item, policy development, refers to choosing a method for scheduling

the production process. Item 5, system design, is the step where the set of resources

for the production system in question is decided. This decision should be based on

1This picture was made by Dr. Stanley Gershwin.
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DATA

Figure 3-1: Tools in the design and control of factories.
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the previous steps, after several designs have been considered. Tools 1 through 5

use only static data, namely the description of the factory (MFR), the description

of the processes required to produce the products (PFR), and the demand for those

products.

Before finalizing the design of a factory, it is a good idea to make a full scale

simulation. The same scheduling algorithm and code as the ones intended to be used

for the real time control of the factory should be used in the simulation. Also, the

same static data and the same organization of dynamic data must be used.

The real dynamic data of the factory in question is a representation of the current

state of that factory. In the case of a simulation, the state of the factory at every

tick of the clock will be stored as if it were real dynamic data. The same schema,

determined by MFR, will be used both for storing real dynamic data, and dynamic

data synthesized by the simulation manager.

Finally, the real time scheduling tool can be an aid to management for the control

of the factory. The only differences between real time scheduling and simulation is

that the dynamic data in the real time scheduling case will be real as opposed to

synthetic, and that in the real control, the management will have the opportunity to

modify the schedules proposed by the scheduler.

3.2 Checking the Feasibility of Factory Require-

ments

In the design of a factory, one of the most important concerns is whether the factory to

be built will meet the production requirements. There are several ways to tackle this

problem including analytic and simulation techniques. Here, we describe a program

that first makes sure that all the machines needed for every product are present,

and then calculates the utilization of every machine in the factory. A programmer's

manual for this program can be found in Appendix D. By utilization we mean the

percentage of time a machine will be operating given it is operational. Failure and

repair rates are taken into account when performing capacity calculations.
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The capacity check performed by this program is only a first cut approximation

to determine whether the production requirements can be met. This is so because

no queuing delays or limits are taken into account. Still, the program offers a very

quick and useful way of rejecting many infeasible proposed designs. It will flag all the

machines that have utilization higher than an upper bound and lower than a lower

bound specified by the user. That way it is easy to identify machines whose capacity

constraints may cause problems, and machines that will be idle most of the time.

Then, with the help of the MFR textual representation, one may change the number

of certain machine types and run another feasibility check.

3.2.1 Data required in order to perform the feasibility checks

In order to perform the feasibility checks we need a representation of the factory,

a representation of the processes of the products to be manufactured, and the de-

mand for those products. We also need the number of hours that the factory will be

operating in a year.

The factory in question is specified via MFR, and the processes required to man-

ufacture the products via PFR. PFR (Process Flow Representation) is a language

with which the processes for making semiconductor products 'can be described. It is

discussed in Chapter 1 and in [8]. The demand for the products is expressed as a

number of lots per year for each product. Finally, the number of working hours in a

year is specified as the number of days that the factory will be operating in a year,

and the number of working hours in a day.

For this particular program, the mean time to failure and the mean time to repair

for every machine are required. Therefore, an MFR schema in which this information

is included must be used. Also, it is very useful to be able to change the number

of machines of any type of the factory easily. For that purpose, a schema in which

the MFRJMACHINE objects have a number attribute should be used. The schema

described as an example in Section 4.3, which is the schema installed in the CAFE

data base, was assumed when writing the feasibility checking program.

Both the information about the factory and the information about the processes
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of the products to be produced is read from the relevant data base objects. The

process flow data though may be cached in order to speed things up.

3.2.2 Calculating machine utilization

When calculating the machine utilization we need to know the number of hours per

year a particular machine is available. For that purpose we need the efficiency of the

machine, which we calculate with the following formula taken from [2].

mttf
e = mttf + mttr

where mttf and mttr are the mean time to failure and mean time to repair respec-

tively.

Let the time required from a unit of product j on machine i be tj. Also, let

the annual demand for product j be dj and the total number of hours the factory is

operating per year be h. Then, the utilization of machine i, denoted as ui is:

Ej tjdj
Ui = S-i- x 100%

eih

In words, the number of hours the machine is operational in a year is the number

of working hours in a year times the efficiency of the machine (eh). The number of

hours a machine is needed in a year can be calculated by adding all the time required

for the machine by each product times the demand for that product (j tijdj). Then,

the utilization of a machine is the fraction of hours required by the machine divided

by the hours the machine is operational times 100.

3.3 Example of Checking the Feasibility of Fac-

tory Requirements

The Integrated Circuits Laboratory at MIT was used as the basis for the example

that is described in this section. An MFR description of this factory was written, and
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objects were created in the CAFE data base. An MFR textual representation of ICL

can be found in Appendix C. The schema used is as described in Section 4.3. This

particular program can read the factory data from the data base, or directly from the

MFR textual representation. This was accomplished by calling an MFR interpreter

from within the program, and reading the relevant data from the data structures

created. Several combinations of products were tried with different demands for each

one of them. The processes used for the following example are processes that had

been described via PFR, and had been installed in the data base.

Following is the input file used for this example. The first number, 250.0, indicates

the number of days in a year the fab is operating, while the second number, 10.0,

indicates the number of hours in a day it is open. Then, process names and demand

in number of lots per year required follow.

250.0 10.0

DA 155.5

MICROBRIDGE 133.4

PLASMATWO 12.3

WELL-OXIDE-WET-ETCH 20.0

JUNCTION-DRIVE 53.0

RESIST-FLOW 16.0

The command line is:

fsblt -c] [-d] [-ml <infile> <mfrfile> [upbound lowbound]

The -c option specifies that the feasibility check against machine capacity will be

performed, and the -d option that the processes will be read from the data base.

Once they are read, the information required is cached, in a <infile. cache> file. If

the -d option is not there, the program will look for this file and read the necessary

process information from there. The -m option indicates that the factory data should
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be read from the data base. If this is chosen, the <mfrfile> will not be read. If one

wants to write their own .cache file, they should use the following format:

1. For each process, a list of machines and time-durations in seconds must be

specified as shown: asher 5400. If machines are visited multiple times, every

time must be specified.

2. The descriptions of the processes must be in the same order as they appear in

the input file. Every process must end with - 0.

A small example of a cache file follows.

stepper 3600

developer 3000

microscope 1800

oxide 1200

tubeB5 3600

- 0

oxide 1560

ellipsometer 900

- 0O

rca 7200

ellipsometer 900

- 0O

The <mfrfile> is the file in which the MFR textual representation of the factory

in question is stored. The upper and lower bounds are the the bounds of utilization

that will determine whether a machine is flagged in the output or not. The default

values for them are 70.0 and 20.0% respectively. A sample run was done:

mstamatoChierarchy 98 % fsblt -c -d processes icl.mfr 80 15

reading processes from the data base...

Feasibility check 1 passed.

Feasibility check 2 failed: excessive demand for 2 machines.
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Two output files summarize the results of the run. The <infile .brf> file indi-

cates the total operating time for all processes, and whether the existence feasibility

check was passed. Then, it flags the machines that are outside the utilization bounds

specified, and the machines whose utilization are more than 100%. Finally, it indi-

cates whether the feasibility check against machine capacity was passed. The brief

output file of our example follows.

operating time for process

operating time for process

operating time for process

operating time for process

operating time for process

operating time for process

DA: 205.97

microbridge: 22.77

PLASMATWO: 14.25

WELL-OXIDE-WET-ETCH: 0.68

JUNCTION-DRIVE: 3.25

RESIST-FLOW: 0.83

Feasibility check passed.

machine prometrix has low utilization: 1.56

machine dektak has low utilization: 2.89

machine varian has low utilization: 14.41

machine VTR has low utilization: 0.00

machine pre-metal has low utilization: 11.38

machine nitride has low utilization: 11.51

machine tubeB8 has low utilization: 0.00

machine tubeB6 has low utilization: 6.34

machine rca ** FAILED capacity check, utilization:

machine etcher-3 has low utilization: 7.16

machine etcher-2 has low utilization: 7.23

machine developer has high utilization: 82.60

machine stepper has high utilization:

230.66 **

89.45

machine asher ** FAILED capacity check, utilization: 128.14 **

Feasibility check 2 failed: excessive demand for 2 machines.
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The <infile.rprt> file includes all the information of the brief file, and the

utilization of all machines in the factory.
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Chapter 4

The MFR Schema Representation

The MFR schema representation is a representation of the information required to

create MFR textual representation interpreters and to install a schema in the data

base. Please refer to Chapter 2 and to Figure 2-3. In this chapter we describe the

data it consists of, and we offer a formal definition of its syntax.

4.1 Information Required About the Schema

In order to define the schema it is necessary to define all classes (object types) that

are part of it. A keyword and a list of attributes must be specified for every class.

The attributes themselves must have a keyword as well as the following information,

which is organized in slots in the schema representation, specified:

type: An attribute type can be an integer, a float, a boolean, a string, a

varstring or an object. Varstring and string are treated exactly the same way

until the objects are stored in the data base. This is the case for integer and boolean

as well.

1-1 vs l-m: This slot will tell whether the attribute corresponds to a single attribute

value or if it corresponds to a list of attribute values.
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active vs passive: There may be cases where the same information is included in

two attributes. For example, consider the schema described in Section 2.2. Assume

the class CELL includes both an attribute that specifies the supercell in which the

cell in question belongs to, and an attribute that specifies the subcells that belong to

this cell. Even though it is required for application programs to have both attributes,

it is redundant to store both of them since one of them would be enough to describe

the hierarchy. In such a case, one of those attributes should be passive. This slot will

be used by the schema interpreter if the schema has been installed in the data base.

invertible vs non-invertible: If an attribute of a particular class in the data base

is invertible, there is a query that will retrieve the object(s) given the attribute's

value. This slot is not used by the schema interpreter, but it should be specified

anyway.

uniqueness: If an attribute is unique, two objects in the data base can't have the

same value for this attribute. This slot is not used by the schema interpreter, but it

should be specified anyway.

mutable vs non-mutable: If an attribute is mutable, its value can be changed in

the data base. Attributes that describe dynamic data should be mutable; attributes

that describe static data should not be mutable.

prefetched vs not prefetched: If an attribute is prefetched, its value is retrieved

from the data base when the object is. If, on the other hand it is not prefetched,

its value is only retrieved when the attribute is accessed. Passive attributes can

not be prefetched. Therefore attributes that are not frequently used should not be

prefetched. Again, this slot is not used by the schema interpreter, but it should be

specified anyway.

child vs parent: If an attribute is an object, it is important for the schema in-

terpreter to know whether this object is a parent object, or a child. The reason it
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is important is because the MFR interpreter created will be responsible for replicat-

ing identical objects that have a number attribute with value greater than 1. If the

object(s) to be replicated have children objects, those objects will be replicated as

well. The objects created that way (that is, objects replicated because their parents

were replicated) will keep their original name (if such an attribute exists), but will

have a different, newly created, parent. As an example consider a machine GCA that

belongs to a cell PHOTO that has number 2, and assume machine is a child. The

MFR interpreter will create cell PHOTO1 and PHOT02, and two machines GCA,

one with parent PHOTO1 and one with parent PHOT02. If machine were a parent

object, both PHOTO1 and PHOT02 would have the same machine GCA as the value

in their corresponding attribute.

The other reason it is important for the MFR interpreter to know whether an

object is a parent or a child is because the MFR interpreter may be responsible (if

the schema has been installed) for creating the objects in the data base. Objects

of classes that are part of the hierarchical structure will be created recursively, but

objects of classes that are not part of it will be created separately. Also, the MFR

interpreter must make sure it does not create objects twice. As an example consider

a schema that has objects of type CELL, of type MACHINE, that are children, and

of type TECHNICIAN that are not part of the hierarchical structure but have an 1-

m attribute of type MACHINE. Objects of type MACHINE will be created recursively

when their parents are, but they should not be created again when an object of type

TECHNICIAN is created.

Parent attributes must be 1-1.

default value: The MFR interpreter will give default values to attributes that have

not been specified via the MFR textual representation. The default value of an at-

tribute should therefore be part of the schema.

If the type of an attribute is a class, this class must be defined. If the class is

not an MFR class, but a class that is part of the data base, this should be indicated.
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Such attributes must be mutable, since they can not be specified before the MFR

objects are created in the data base. As an example consider the the one in Section

4.3 where the attribute lots of class BUFFER is of type LOT. The class LOT is not

an MFR class, but objects of type LOT exist in the CAFE data base, and they can

be referred to.

A simple example of a class definition follows.

FR_BUFFER {

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf, ,null;

cell MFR_CELL, 1-1, pas, inv, nonunq, nonul, nonmut, prf, par, null;

capacity integer, 1-1, act, noninv, nonunq, nul, mut, prf, , 0;

lots LOT, -m, act, noninv, nonunq, nul, mut, nonprf, , null;

number

}

Here, the class MFRBUFFER is defined. The keywords for its attributes are

name, cell, capacity, lots and number. Since the number attribute is part of this

object, the name attribute is required. The slots for each attribute must appear in a

prespecified order as discussed in Section 4.2, and they can take values as shown in

Table 4.2.

4.2 Syntax of the MFR Schema Representation

The symbols defined in Table 4.1 will be used in this section. Tokens will be indicated

in capital letters.

The syntax of the schema representation has a block structure. Each class is

specified in a block of the following form:

class-definition : NAME { attribute-definition-list }
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Table 4.1: Definition of symbols

Symbol Meaning
: can have the form

I[ ~ or
'. .. ' terminal

... nonterminal
/*...*/ comment
CAPS token

_; end of production

So the keyword of the class (NAME) is specified, and then, within the brackets,

the list of attributes are specified. Keywords for classes should be in capital letters.

All the class-definitions together make a class-definition-list that ends with

'end' as shown.

class-definition-list : /* empty */

I class-definition class-definition-list

I end-of-file

The list must end

end-of-file: 'end';

with the keyword 'end'.

The attribute-definition-list is as shown:

attribute-definition-list : /* empty */

I attribute-definition attribute-definition-list
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attribute-definition: NAME type COMMA single COMMA act COMMA inv

COMMA unq COMMA null COMMA mut COMMA

prf COMMA hie COMMA dfl TERMINAL

NUMBER TERMINAL

I NONMFR TERMINAL

COMMA is returned by the lexical analyzer when a ',' shows up, and TERMINAL

when a ';' shows up. NAME is returned when a string without quotes appears.

An attribute-definition can be one of three things. It can be a comma separated

list, with prespecified order, of values for all the slots that need to be specified; or it

can be a single keyword which returns NUMBER and indicates that the class has an

attribute named number with all the implications indicated in the previews section;

or it can be a single keyword witch returns NONMFR indicating that the class is not

part of the MFR schema but already exists in the data base. If an attribute with

keyword 'number' will be created, it will be of type integer, 1-1 and with default

value equal to 1.

The lexical analyzer will return NUMBER whenever the keyword 'number' ap-

pears in the schema representation. Remember that if such an attribute exists, the

class must also include a singleton attribute with keyword 'name' of type string or

varstring.

The slots of the attribute-definition are specified as shown in Table 4.2.

STRINGTYPE, VARSTRINGTYPE, INTEGERTYPE, BOOLEAN and

FLOATYPE are returned by the lexical analyzer when string, varstring, integer,

boolean or float respectively appear. ONETOONE and ONETO_ MANY are re-

turned when 1-1 or 1-m appear, ACT and PAS are returned when act or pas appear,

etc. CNULL is returned when null appears, STRING is returned for a string within

quotes, and INTEGER for an integer number.
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Table 4.2: Possible values for each slot in attribute-definition.

type: STRINGTYPE I VARSTRINGTYPE I INTEGERTYPE 
BOOLEANTYPE I FLOATYPE I NAME;

single: ONETOONE I ONETOMANY;
act: ACT I PAS;
inv: INV NONINV;
unq: UNQ I NONUNQ I INTEGER;
nul: NUL I NONUL;
mut: MUT NONMUT;
prf: PRF NONPRF;
hie: PAR [ CHD I /* empty */;
dfl: STRING I INTEGER I FLOAT I CNULL /* empty */;

4.3 An Example of the MFR Schema Represen-

tation

An example of the MFR schema representation follows. This is the representation of

the schema that was installed in CAFE on January 1994. It consists of six classes,

namely MFR CELL, MFRMACHINE, MFRBUFFER, MFRMAINTMODE,

MFRFAILUREMODE and MFRTECHNICIAN. Attributes of MFR_CELL include

children lists of MFR_CELLs, MFRMACHINEs and MFR-BUFFERs. A hierarchy

of cells is created as discussed in Section 2.2 and illustrated in Figure 2-1.

Reference of non-MFR objects was required, so the corresponding classes were

specified as non-MFR classes. These classes are LOT, TIME, and ACTIVEOPINST.

Representation of the MFR schema curently installed.
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*$$$*$$$$$$$$$$$$$*$$*** ************ ******** *********************

/ * Factory cell $/
MFR CELL {

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf,,; 10

supercell MFR_CELL, 1-1, pas, inv, nonunq, nul, nonmut, nonprf, par, null;

subcells MFR_CELL, 1-m, act, noninv, nonunq, nul, nonmut, nonprf, chd, null;

machines MFR MACHINE, 1-m, act, noninv, nonunq, nonul, nonmut, nonprf, chd,

null;

buffers MFR_BUFFER, 1-m, act, noninv, nonunq, nul, nonmut, nonprf, chd,

null;

description varstring, 1-1, act, inv, nonunq, nul, nonmut, prf,,

null;

number;

} 20

/* Equipment in the factory */

MFRMACHINE {

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf,,;

cell MFR CELL, 1-1, pas, inv, nonunq, nonul, nonmut, nonprf, par,;

batch integer, 1-1, act, noninv, nonunq, nul, nonmut, prf,, 1;

mttf float, 1-1, act, noninv, nonunq, nul, nonmut, prf, , 1.0;

mttr float, 1-1, act, noninv, nonunq, nul, nonmut, prf, , 0.0;

failuremodes MFRFAILUREMODE , 1-m, act, noninv, nonunq, nul, nonmut, nonprf, 30

chd, null;

maintmodes MFR_MAINTMODE, 1-m, act, inv, nonunq, nul, nonmut, nonprf, chd, null;

status string, 1-1, act, inv, nonunq, nonul, mut, prf, , "up";

detailed_status varstring, 1-1, act, inv, nonunq, nul, mut, prf, , null;

number;

/* Storage area $/

MFRBUFFER { 40
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name string, 1-1, act, inv, nonunq, nonul, nonmut, prf, ,null;

cell MFR CELL, 1-1, pas, inv, nonunq, nonul, nonmut, prf, par, null;

capacity integer, 1-1, act, noninv, nonunq, nul, mut, prf, , 0;

lots LOT, 1-m, act, noninv, nonunq, nul, mut, nonprf, chd, null;

number;

I

/* Required maintenance operation */

MFR MAINTMODE{ 50

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf, , null;

maintmax integer, 1-1, act, noninv, nonunq, nul, nonmut, nonprf, , 0;

description varstring, 1-1, act, inv, nonunq, nul, nonmut, nonprf,,

null;

currentmaint integer, 1-1, act, noninv, nonunq, nul, nonmut, prf, , 0;

/ * Possible failure */

MFR FAILUREMODE{ 60

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf, , null;

mttf float, 1-1, act, noninv, nonunq, nul, nonmut, prf,, 999.9;

mttr float, 1-1, act, noninv, nonunq, nul, nonmut, prf, , 0.0;

description varstring, 1-1, act, inv, nonunq, nul, nonmut, nonprf,,

null;

last_failure TIME, 1-1, act, noninv, nonunq, nul, mut, nonprf, chd, null;

last_repair TIME, 1-1, act, noninv, nonunq, nul, mut, nonprf, chd, null;

/ * Staff that perform operations and maintenance */ 70

MFR TECHNICIAN{

name string, 1-1, act, inv, nonunq, nonul, nonmut, prf, , null;

email string, 1-1, act, inv, nonunq, nonul, nonmut, prf, , null;

machines MFR_MACHINE, 1-m, act, noninv, nonunq, nonul, nonmut, nonprf,,

null;
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present boolean, 1-1, act, inv, nonunq, nonul, mut, prf, , 0;

busy boolean, 1-1, act, inv, nonunq, nonul, mut, prf, , 0;

activeopinst ACTIVEOPINST, 1-1, act, noninv, nonunq, nul, mut, nonprf, chd, null;

}

LOTf

nonmfr;

}

TIME{

nonmfr;

ACTIVEOPINST{

nonmfr;

end
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Chapter 5

The MFR Textual Representation

The MFR textual representation provides a convenient way for describing a factory.

The information specified via MFR, and its organization depends on the MFR schema

that is being used. For a discussion of the MFR schema and its relationship with the

MFR textual representation please refer to Chapters 2 and 4.

5.1 Syntax of the MFR Textual Representation

The symbols defined in Table 4.1 will be used in this chapter as well.

The syntax of the MFR textual representation is a C-like syntax,

block structure. Each object, or group of objects of the same class, is

block of the following form:

and it has a

specified in a

object-declaration-block: class-name object-list TERMINAL;

The class-names available are the keywords specified for classes in the schema

representation. An object-list is a comma separated list of objects of the same class.

The object-list is defined next.

object-list : object

I object COMMA object-list
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object: IDENTIFIER attribute-list specific-name-list;

The IDENTIFIER is a string without quotes. It is used by the MFR interpreter

to keep track of the object definitions. Two object definitions of the same class can

not have the same identifier. If the class in which the object defined belongs has an

attribute of type string or varstring with keyword "name", and the class does not have

an attribute "number", then the value of the "name" attribute will be the identifier

of the object definition. If the class has an attribute "number" but its value is set to

one (which is the default value), the value of the "name" attribute will again be the

identifier of the object definition. If, on the other hand, the value of the "number"

attribute is greater than one, several MFR objects will be created. The names for

these objects can be either specified in the MFR textual representation as specific-

name-list, or they will be generated by the interpreter from the identifier by adding

a number suffix. If some of the those names are provided by the user, but they are

not enough to name all the objects to be created, the interpreter will again use the

identifier with a number suffix to name the rest.

Notice that an object definition in the MFR textual representation may result in

the creation of several MFR objects.

The names of identical objects can be specified as a list between the closing bracket

of the object and the COMMA or TERMINAL that follow.

specific-name-list : /* empty */

] specific-name specific-name-list

specific-name: IDENTIFIER;

Let us look at the attribute-list:
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attribute-list : /* empty */

I attribute attribute-list

attribute: attribute-key value-list TERMINAL;

The set of valid attribute-keys is determined by the schema used. The value of

the attributes can be specified as a comma separated list, since we need to allow "one

to many" attributes.

value-list: value

I value COMMA value-list

value: object INTEGER IDENTIFIER I STRING I FLOAT;

The value of an attribute can be an object, which means that objects can be

defined in a nested fashion. Nesting can have arbitrary depth. Alternatively, the value

can be the identifier of an object defined elsewhere. The interpreter is responsible

for making sure the type of the value specified for an attribute is consistent with the

type the attribute should have as specified by the schema.

The collection of object-declaration-blocks constitutes the MFR textual rep-

resentation. The list must end with the keyword 'end'.

object-declaration-block-list : /* empty */

I object-declaration-block object-declaration-block-list

end-of-file

If the same information about the hierarchical structure of the objects can be specified

in two attributes, the user can specify this in any one of those two or both, since the
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interpreter will perform consistency checks. So for example consider a schema where

machines are children of cells and an attribute of class CELL specifies the machines

that belong to a cell but also an attribute of class MACHINE specifies the cell in

which a machine belongs. The user can specify the cell in which a machine belongs

in the attribute of MACHINE or in the attribute of CELL or in both places as long

as there is consistency. It does not make any difference which of those attributes is

the active one in the data base.

5.2 An Example of the MFR Textual Represen-

tation

An example of the MFR textual representation with the schema defined in section 4.3

follows. Several features of the MFR interpreter are illustrated through this example.

The top level cell which represents the whole factory is ICL. It is decomposed in

subcells that are leaf cells. That way, a two level hierarchy is implemented as shown

in Figure 5-1.

ICL has five subcells; three of them are DIFFUSION and two are PHOTO. Cells

DIFFUSION are specified within the same object-declaration-block as ICL is. The

number is three but only one name is provided, bayl. So DIFFUSION cells will have

names bayl, DIFFUSION1 and DIFFUSION2. The two PHOTO cells are specified in

a nested fashion when MFRMACHINE GCA is specified. There names are specified

to be photobayl and photobay2. Some buffers of cell ICL are declared in a nested

fashion, and some are declared in the last object-declaration-block. Three ma-

chines tube (tubel, tube2 and tube3) are specified within the cell DIFFUSION. Since

there are three DIFFUSION cells, nine MACHINE objects will be created, three for

each DIFFUSION cell. Next, two machines, GCA1 and GCA2 are specified. Some

MFRFAILUREMODEs and MFRMAINTMODEs are declared in a nested fashion.

The next three object-declaration-blocks are for an MFRFAILUREMODE ob-

ject, an MFRMAINTMODE object and an MFR_TECHNICIAN object.
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Figure 5-1: Pictorial representation of the factory defined in MFR textual form.
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/$ This is an ezample of an MFR teztual representation */

MFR CELL ICL{

name "icl";

subcells DIFFUSION, PHOTO;

buffers a{}, b{number 2;}, c, d{number 3;};

}I,

10

DIFFUSION{

number 3;

machines tube{mttf 3.3; number 3;};

}bayl;

MFRMACHINE GCA{

cell PHOTO{number 2;} photobayl photobay2;

failuremodes lamp{mttf 34.2; description "exploding lamp... ";}, computer;

maintmodes focus{maintmax 3;}, lamp;

number 2; 20

};

MFR FAILUREMODE computer{

description "computer failure can cause machine GCA to be down";

mttf 5.5;

mttr 0.4;

};

MFR MAINTMODE lamp{

maintmax 56; 30

description "I have no idea how to maintain a lamp!";

};

MFR_TECHNICIAN me{

machines rca{cell DIFFUSION;}, GCA;
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email "mstamato";

MFR BUFFER big{

cell DIFFUSION;

}1

capacity 100;

I;

end
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Chapter 6

Programmer's Manual For the

Schema and MFR Interpreters

This chapter is a guide to programmers who may want to modify an MFR textual

representation interpreter created by the MFR schema interpreter, or for programmers

who want to modify the MFR schema interpreter itself. One reason for modifying

the MFR textual representation interpreter may be to use the factory data without

storing it in the data base. Only minor changes in the main function are required for

this.

6.1 The Schema Interpreter Architecture

Please refer to Figure 6-1 for an overview of the schema interpreter architecture.

The schema interpreter first parses the schema textual representation and stores all

the information provided in computer memory. Then, it performs some consistency

checks, prints a representation of the schema it just read, and finally proceeds to

create the source code for the MFR interpreter.
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Figure 6-1: Architecture of the MFR schema interpreter.
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6.1.1 The main function

The main function is responsible for reading the command line with which the schema

interpreter is run, for running the input file through the C preprocessor cpp, for calling

the function initialize, and finally for calling the parser. If the command line is not

correct, the format of the command line will be echoed to the user.

All the files required will be opened by the main function. The default name for

the output file, if it is not specified by the user is out. The input file is run through

the C preprocessor cpp in order to strip the comments and to use the #define macro.

The output of the preprocessor is stored in a <input.int> file. The old version of

this file, if any, is removed. For all the above, the system function is used.

The parser function created by yacc is called yyparse. It reads the input from the

external file yyin. For this reason the .int file is opened as yyin. Also, for the same

reason, the output file is opened as an external file yyout.

The initialize function initializes the linenumber variable to 1, the error flag

to 0, and the classilistf lag to 0. The error counts how many consistency errors

are detected by the classconsistency. In this way the program does not need to

exit when the first error is detected, but it can check all the classes, give appropriate

error messages for all the errors, and then exit it error is greater than 0. The

classlist-flag is used by the function that allocates memory in order to store

information relevant to a class, allocateclass. The first time a class is allocated,

the head_class is set to point to that class, and classlist flag is set to 1.

6.1.2 The parser

The lex lexical analysis program generator and the yacc parsing program generator

were used to create a lexical analyzer and a parser. In the lex file clex the tokens used

by the parser are specified and the definitions of a string, a name, an integer and a

float are given. In other words, the lexical analyzer returns a prespecified value for

every token it recognizes so that the parser knows what was just read. Another job

the lexical analyzer does, is that it keeps track of the line number of the input file it is
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reading. This is particularly helpful, because when syntax errors are detected by the

parser, the line number of the syntax error is given as part of the error message. The

way this is accomplished is by introducing an integer variable linenumber, initialize

it to 1, and have the lexical analyzer increase it by 1 every time the new line character

is recognized.

In the yacc file cyacc the syntax of the schema interpreted is specified, the in-

formation given by the schema textual representation is stored, and all the other

functions are called. This can be done because yacc allows the execution of C com-

mands when patterns are recognized. For example, when a class-definition pattern is

recognized, the function that allocates memory to store all the information relevant

to this class is called, and the NAME as it was read by the lexical analyzer is stored

as the keyword for the particular class. Then, when an attribute-definition pattern is

recognized, memory to store the information relevant to this attribute is allocated,

the NAME is stored as the attribute keyword, and then all the values of the slots

are stored. The values of the slots are stored as strings, in a way that they will be

understood easily. So for example, if the attribute is one to one, "1-1" will be written

in the 'class->attribute->single' string. If, on the other hand, the attribute is

one to many, "1-m" will be the value of class->attribute->single. More on the

data structures will be discussed later in this section.

If a syntax error is detected, an error message that includes the current line number

is sent to standard error.

When the token end has been recognized by the lexical analyzer, and end-of-file is

returned, the functions that will perform the interpreter tasks will be called. Those

functions are: classconsistency, printclass and createinfrint. They will be

discussed later in this chapter.

6.1.3 The function classconsistency

The classconsistency function makes sure none of the rules specified in the schema

are violated. The rules that this function checks are:
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1. Attributes that are not of some object type can not be child or parent attributes.

The parent vs children slot only applies to attributes that are of some object

type.

2. Parent attributes can not be one-to-many. Objects can only have a single parent.

3. Attributes that are of some object type must have a valid one. A valid object

type can be either an MFR class defined within the same schema, or a non

MFR class specified in the schema textual representation.

4. At most one class can have children or parent attributes of the same type. This

means that only one class can form the MFR hierarchical structure.

5. A class that has hierarchical structure must have both a children and a parent

attribute of the same type as the class. This is an assumption that was made

early in the design process of the interpreter.

6. All MFR classes must have at least one attribute. It would not make sense to

have a class that does not have any attributes.

7. If the number attribute exists, a singleton attribute with keyword name and

of type string or varstring must also exist. This attribute will be used to

distinguish among the identical objects that may be created by the MFR textual

representation interpreter.

The class_consistency function is also responsible for. creating an attribute

number and assigning the proper values in its slots. This will be done for the classes

that it is appropriate.

Another task this function performs is to find the attributes that form the hier-

archical structure, if any. If a class that has attributes of the same type as the class

exists, the children attribute and the parent attribute that have the same class are

found. Then global variables lattr and hattr of type attribute pointers, are set to

point to those attributes. This is done because several functions need to use these

pointers.

The source code for this function is in file classconsistency. c.
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6.1.4 The function printclass

This function prints to the output file a representation of the schema after the

checks of class_consistency are done. The source code for this function is in file

printclass. c and is self-explanatory. The output of the example of Section 4.3 can

be found in Appendix A.

6.1.5 The function createmfr_int

From this routine, all the functions that actually create the MFR interpreter are

called. Each one of those functions is responsible for creating a single file, so the

source code of the MFR interpreter consists of the same files regardless of the schema.

They are:

* ilex This function creates a lex file that can make the lexical analyzer

necessary for the MFR interpreter.

* iyacc This function creates the yacc file that can make the parser necessary

for the MFR interpreter.

* interp This function creates the header file for the MFR interpreter.

* imain This function creates the main function of the MFR interpreter.

* def This function will create the function that will provide the default values

for the attributes of objects.

* printmfr This function will create the function that will print the MFR

objects in the output file.

* readattr The function responsible for reading attributes values, and making

sure they are valid is created.

* store The Function that will actually store the values of attributes is created.

This function is also responsible for dynamically allocating memory in order to

store attributes that are not singleton.
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* imalloc The routines that allocate memory for the structs as defined in the

header file is created.

* alloc The function that will dynamically allocate memory for the new MFR

objects, by calling the appropriate routines, is created.

* utilities Routines that handle stacks and strip strings from their quotes

are created.

* nest Functions that can handle objects when defined in a nested fashion is

created. The nesting can have arbitrary depth.

* insert Routines that insert MFR objects at an arbitrary location of the

corresponding linked lists is created.

* def-names A function that provides default names to objects with number

greater than one whose specific names are not given is created.

* consistency A function that performs various consistency checks among

objects is created. This function will also create pointers pointing to the parent

and children objects, if any.

* unravel This function creates the functions that will replicate identical ob-

jects. They will also set pointers to parent and children for the new objects.

* replicate Functions that are called while unraveling are created. They are

responsible for replicating children objects, if their parents are being unraveled.

* subobj ectlist The function responsible for finding children of the objects

of the class type that has hierarchical structure is created.

* instantiate If the schema currently used has been installed in the data base,

this function will create the functions that will write to the data base. If the

schema has not been installed, it will create a function that will print an error

message if the user tries to write to the data base.

A more extensive discussion of the above functions can be found in Section 6.3.
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Figure 6-2: Data structure for the MFR schema interpreter.

6.2 The MFR Schema Representation Interpreter

Data Structure

The MFR schema interpreter needs to store all the information relevant to the classes

specified in the schema representation. This is accomplished with two structs that

are related as shown in Figure 6-2.

The class struct forms a linked list of classes. There, the keyword of the class

is stored as a string (dbkey); various flags that indicate, among other things, whether

the class has a number attribute and whether it is an MFR class are present; and the

pointer of the head of the linked list of attributes that correspond to the class is stored.

typedef struct class_struct *classptr_type;

struct classstruct {

char dbkey[KEYLENGTH];
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char key [KEYLENGTH]; /* same as dbkey with the addition of an "s" at the end.

This became necessary in order to avoid naming conflicts with data base types

that occurred during the writing of instantiate.c c/

int attrlistlflag;

int number, id, normfr;

int unravel;

attr_ptr_type attr, head_attr;

class_ptr_type next;

int hierarchy-lag;

The attribute struct forms a linked list of attributes. There, the keyword of the

attribute is stored in dbtype. All the other information about. the attribute provided

through the schema representation is also stored within this struct.

typedef struct attr_struct *attrptr_type;

struct attr_struct {

char type[KEYLENGTH], single[10], act[10], inv[10], unq[i0];

char nul[iO], mut[iO], prf[IO], hie[10i, key[KEYLENGTH];

char def_type [10];

int id, var, bool;

char dbtype[KEYLENGTH];

union dfl_value dfl;

attr_ptr_type next;
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6.3 The MFR Textual Representation Interpreter

Architecture

Figure 6-3 is an overview of the MFR textual representation interpreter. A descrip-

tion of the files that make up the source code of this interpreter follows. A moderate

effort was make to have good indentation on those files. Since the MFR textual

representation interpreter depends on the schema that is being used, the following

discussion refers to the way the schema interpreter creates the MFR textual repre-

sentation interpreter.

6.3.1 The main function in main.c

The main function is responsible for reading the command line that calls the in-

terpreter, for opening the necessary files, for running the input file through the C

preprocessor cpp, for calling the initialize function (also in main.c) and finally, for

calling the yyparse parser.

The getopt function provided by C is used to read command options. Then the

number of arguments is checked, and an error message is printed if it is not correct.

The input file, the file where the output of the cpp preprocessor (<infile.int>) will

be stored and the output file are opened. Then, with the aid of the system function

provided by C, the cpp preprocessor is called and its output will be the yyin file used

by yyparse. In the function initialize, various flags are set. Those include flags

for every class, that indicate that no memory allocation has yet been done for each

particular class. This information is necessary for the allocate_obj function that

needs to set the head of the object linked lists for every class.

In order to use the interpreter from another program, and use the C data structures

it creates, one can not use the same main function. Instead, the following tasks must

be done. The textual representation file must be run through the cpp preprocessor,

the files yyin and yyout must be opened for the yyparse function to use and finally

the same initialize and yyparse functions must be called. An example where this
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Figure 6-3: Architecture of the MFR textual representation interpreter.
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was done is described in Chapter 7.

6.3.2 The lexical analyzer in file clex

A file clex is created by the schema interpreter. This file is written in the language

understood by the lex lexical analysis program generator. There, all the keywords

for the classes and for the attributes are being specified. Also, the definition of what

constitutes a string, a float, an integer and an identifier are provided. Furthermore,

blank spaces are ignored, the counter linenumber is advanced whenever the new-line

character is read, and the "," the ";" the "{" and the "}" are recognized. For more

information on lex, please refer to [3].

6.3.3 The parser in file cyacc

A file cyacc, written in the language understood by the yacc parsing program gen-

erator is created by the schema interpreter. There, the definition of the syntax of

the MFR textual representation is provided. All the major functions of the MFR

textual representation interpreter are called from within the parser, as patterns are

recognized. For more information on yacc, please refer to [3].

When the keyword of a class is recognized, the global variable of type integer obj

is set to a value that represents that class. This information is necessary for several

functions that need to know which class they are dealing with. Also, when the pattern

of a new object is recognized, the following actions are taken. The identifier of the

object is stored, and if the object has been defined in a nested fashion (at any depth),

the function nest is called that allocates memory for the object via the insert

function, otherwise the function allocateobj is called. The reason a distinction

between nested and not nested objects is necessary is discussed in Section 6.3.8. The

global variable nest keeps track of whether the object that is being read is a nested

one.

As attribute keywords are recognized, the global variable atr is set to a value that

corresponds to the attribute being read. If attributes with the same keyword exist
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in different classes, they will be given the same value. Also, as values are read, the

global variable val will keep track of the type of the variable, i.e., whether it is an

integer, a float a string or an identifier (string without quotes). Then, the functions

read_attr and storeattr are called. The former will make sure that the type of

the attributes value is valid and give an error message otherwise, while the latter will

store that value.

If a syntax error occurs, the line-number is printed. When the keyword end is

found, and if error is zero, the parser calls the following functions:

* defaultnames This function is responsible for providing default names to ob-

jects whose number attribute is greater than 1.

* consistency This function performs various consistency checks and sets point-

ers to children and parent objects.

* unravel and subobjectlist These functions unravel objects whose number

attributes are greater than one.

* printmfr This function will create a file with a representation of the factory

that was just read.

* instantiate This function will be called if the interpreter is run with the

-s option, and it will create data base objects that will represent the factory

described in the textual representation.

6.3.4 The files readattr.c and store.c

A single function, read_attr, is in file readattr.c. This function is responsible for

making sure that the type of value read as an attribute value is the type expected.

First, the variable atr is checked, and then, if the variable val does not indicate the

appropriate type, an error message is send to standard error, and the variable error

is incremented by 1.

In file store.c the functions that store the values for the object attributes in com-

puter memory exist. There are as many functions as classes plus one. The function
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storeattr will determine which function to call, depending on the class in which

the object being read belongs to. Then, the specialized functions for every class will

determine the attribute that was just read, and store its value. If the attribute is

1-m memory space will be allocated for the new attribute just read.

6.3.5 The files allocate.c and insert.c

There is a linked list of objects that corresponds to every class of the schema. A

discussion on the data structure can be found in Section 6.4. The files allocate.c and

insert.c include the functions that create the linked lists of all the classes. In both

files, there are as many functions as classes in the schema. The functions in allocate.c

assume that when they are called, the global pointer corresponding to the object of

the class is the last object in the linked list, and they will put the new object as the

next (and now last) in the list. On the other hand, the functions in insert.c make

no assumption on the pointer of the current object, and they will put the new object

before the current one. If the current one is the head of the class, the new object will

become the head.

6.3.6 The file malloc.c

In file malloc.c all the memory allocation routines are located. Memory allocation

routines are needed for the structs that correspond to every class, for the structs that

correspond to attributes that are 1-m and for stacks needed in the nest function.

In all those routines, error messages are given in the case the computer runs out of

memory.

6.3.7 The file default.c

The functions that provide default values for the attributes of objects are in this file.

There are as many functions as classes, and the default values are as specified in the

schema representation. These functions are called after memory is allocated for new

objects from the functions in files allocate.c and insert.c.

72



6.3.8 The file nest. c

In this file the functions nest and unest are located. When an object specified in

a nested fashion is recognized, the variable obj must be updated, but the type of

the parent object must be stored. Since nesting can have arbitrary depth, a stack of

values for the obj variable must be kept. When a new nested object is introduced,

the current value of obj is pushed into the stack (in function nest), and when the

definition of a nested object ends, a value is popped off the stack (in function unest).

A stack is needed to keep the value of the variable atr as well. This is necessary

because as the new object is stored and attributes are read, the value of atr will be

updated.

In nest, the type of the new object is determined by finding the type of the

parent object and the attribute through which the new object is being defined. Also,

in this function, memory is allocated for the new object by calling functions in the

insert.c file. The identifier and the pointer of the new object are kept in the struct

corresponding to the parent object. In unest, the pointer of the class for the object

that was nested is returned to the last object in the linked list.

6.3.9 The file utilities.c

In this file, several functions needed for the obj and atr stacks mentioned in Section

6.3.8 exist. Also, the function strip_quotes is there. This function is called every

time a string is read, and its job is to delete the quotes on either side of the string.

6.3.10 The file defnames.c

In this file, there are as many functions as classes with a number attribute, plus the

function default-names that calls all the rest. Each function loops through all the

objects of the class it is responsible for, and gives default names to those that need

them. The structs that correspond to classes with a number attribute include a linked

list of specific names. The ones provided within the MFR textual representation are

already stored there as they are read. As long as the number attribute indicates
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more identical objects than specific names, a new name is added to the list of specific

names. The new names are the identifier of the object with a number suffix. A

counter keeps track of the number suffix.

6.3.11 The file consistency. c

In this file, there are as many functions as classes, plus the function consistency

that calls the rest. Special attention is required for the function that corresponds to

the class (if any) with which the hierarchical structure of the MFR representation is

achieved. This class can be recognized by the fact that it has children of the same

object type. As pointed in Section 6.1.3 , there can be at most one such class.

The schema interpreter uses the following algorithm to create this file:

go through all classes

- if the class is the hierarchical class

1. write the code that finds the parent and children of the same

(hierarchical) class and looks for consistency errors regarding

those objects.

2. write the code that finds children objects that are not of the

same (hierarchical) class.

- if the class is not the hierarchical class

1. write the code that finds parent (not if they are of the hier-

archical class type) and children objects.

All functions loop through all the objects of the class they correspond. The

consistency function that corresponds to the class with the hierarchical structure is

called last. This function first finds the parent object of the same class. If the parent

is not indicated as an attribute of the object, it loops through all the other objects of

the same type and checks whether the object under consideration is a child of them.

If it is, then the pointer and the identifier of the parent are stored. If it is a child

in more than one object, an error message is printed in the output file, and error is

74



incremented. If no parent is found, the object is assumed to be the topmost object

in the hierarchy. When more than one object without a parent is found, an error

message is printed in the output file, and error is incremented. If the parent object

is indicated, the program checks for its existence, it stores its pointer, and it also

checks that the object in question is not a child of yet another object.

All functions, including the one that corresponds to the hierarchical class, perform

the following tasks. First, they find the parents of every object. If the parent is not

indicated as an attribute of the object in question, it is found by looping through

all the objects of the class in which the parent belongs. If the parent is found, its

pointer and identifier are stored, otherwise, an error message is printed and error

is incremented. Consideration is also made for the case a consistency error in the

textual representation was made and multiple parents are found. Also, all attributes

of some object type are checked. The objects they refer to are checked for existence

and their pointers are stored.

6.3.12 The files unravel.c, replicate.c and subobjectlist.c

These files include the functions responsible for creating multiple identical objects

where this is appropriate.

In unravel. c, there are as many functions as classes with a number attribute, plus

the function unravel that calls all the rest. The schema interpreter loops through all

classes and writes the necessary code for all classes with the number attribute. The

function that corresponds to the class (if any) responsible for the hierarchical structure

of the data organization is different than the rest. This function loops through all

objects of the hierarchical class, for every object it calculates the number of identical

objects required and then creates those identical objects. The number of identical

objects required due to its ancestors is found by climbing the hierarchical tree and

multiplying the value of the number attribute of the parent of the object in question

by the value of the same attribute of its parents parent, etc, until the topmost object

is reached. Then new objects are created by allocating memory with the appropriate

insert function according to the value of the number attribute, and copying all the
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information of the original object. For each of the new objects, a number of identical

objects depending on the number of ancestors is created by calling the hierarchy

replicate function. A complication occurs for attributes of some object type that are

children because those objects can not simply be copied, but they must be replicated.

This is done by calling the replicate functions described later in this subsection. It

is assumed that when the unravel function corresponding to the hierarchy class is

called, all the other objects have been unraveled according to their number attribute.

This is ensured by calling this function last.

The unravel functions corresponding to non hierarchy classes with a number at-

tribute are responsible for creating multiple objects according to the value of the

number of each object. Also, they are responsible for updating the list of children

of the parent of an object that is unraveled in this way. The new objects are cre-

ated with the appropriate insert function and by copying all the information included

in the original object. If children objects exist, they will be replicated by using a

replicate function described later in this subsection.

In replicate. c the hierarchy replicate function and functions that replicate children

of other objects exist. The hierarchy replicate function has an integer argument that

tells how many new objects to create. Then it calls an insert function and copies all

attributes. For attributes of some object type, other replicate functions are called.

The other functions also have one argument, which is a pointer to the head of the

list of objects they are to replicate. The type of this pointer is the same one as the

pointer of the struct that the corresponding class uses to store the list of objects of

the type this function will replicate. As the functions replicate the whole list, they

create another list of the same type that maps the original list. Finally, they return

a pointer to the head of this list.

File subobject list.c consists of two functions responsible for the tree structure of

the hierarchy class after unraveling has been done, and of functions responsible for

finding multiple identical objects for attributes of classes that do not have a number

attribute. In the process of unraveling new objects are created, and so the list of

children for some objects is now larger. These lists of children for objects that belong
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to the hierarchical class, are updated by function subobjectlist. This function

first calls the function identicalhobj ssublist which sets the parent of objects

whose parent can be any one of multiple identical objects. A flag found-super that

facilitates this process is included in the struct corresponding to the hierarchical class.

Then, it loops through all objects of the hierarchical class, and updates the list of

children.

Classes that do not have a number attribute, and are therefore not unraveled,

may have attributes of some object type that need to include newly created identical

objects. In file subobjectlist.c functions that take care of this exist. There, -m

attributes of some object type are checked. For every object in the list of objects

corresponding to such an attribute, a search for identical objects among the class the

attribute refers to is done, and the ones found are added to the list. These functions

are called from subobjectlist.

6.3.13 The file printmfr.c

In this file, a function for every class and function printmfr that calls them are

included. Each function prints all the objects of the class they correspond including

the values of their attributes. The address where the objects are stored in computer

memory are printed next to the their identifiers. An example of the output file can

be found in Appendix A.2.

6.3.14 The file instantiate.c

This file consists of the functions that will instantiate objects in the data base. The

objects that are part of the hierarchical structure, and their children are created

in the data base recursively starting from the topmost one. In this way objects that

belong to the hierarchical class, and objects that are children of those are instantiated.

For example, for the schema described in Section 4.3, the objects of classes CELL,

MACHINE, BUFFER, MAINTMODE and FAILUREMODE are created recursively,

but the objects of class TECHNICIAN are not. The function instantiate calls
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the one that will start the recursion with the pointer to the topmost object as the

argument. Then, it calls the functions that will create the objects that are not part of

the hierarchical structure. If those objects have children though, they will be created

before their parents.

The function that will start the recursion returns a pointer to an object that

belongs to the hierarchical class. Then it calls functions (in the same file) that create

the children of the object currently being instantiated. One of these functions is the

function that creates children of the same class. This function calls the first one

in order to create each object. That way the recursion starts. The functions that

create the children return gestalt [7] type LISTs of them. These lists are necessary

to instantiate the object currently under consideration. In order to make objects in

the CAFE data base gestalt functions are called.

6.4 The MFR Textual Representation Interpreter

Data Structure

The data structures of the MFR textual representation interpreter are constructed

in the header file interp.h. In this file, the global variables used and the structs for

storing the MFR objects in computer memory are declared. First, the structs for the

linked lists of attributes with arbitrary number of values (-m) are declared. If these

attributes are of some object type, they include the identifier and a pointer to the

object they refer to. Otherwise, a variable whose type depends on the type of the

attribute, is included in the struct. Next, the structs where the names of multiple

identical objects for classes that have a number attribute are declared. The struct

definitions for the MFR objects follow. For each class, a struct that points to the

next and previews objects, is declared. This way, a doubly linked list of objects for

every class is formed. An overview of the data structure for the objects of any class is

illustrated in Figure 6-4. In those structs, variables for the values of all the attributes

that are not of some object type and pointers for attributes of a single object type

are included. Also, pointers to the heads of the linked lists of i-m attributes and flags
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some object type

some object type

1-m attribute
of object type

some object type

A'

1-m attribute
of object type

1-m attribute
not object

Figure 6-4: Data structure for the MFR objects.
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that tell whether the head of those lists have been set are part of the structs.

In the same header file interp.h, the structs necessary for the stacks of obj and

atr used by nest can also be found. Then, global variables where attribute values

and object identifiers will temporarily be stored as they are read, are declared. These

variables will be used by the parser to get values from the lexical analyzer. There is

one such variable for every type, i.e. one for strings, one for integers etc. Also various

flags that tell whether the first object of each class has been allocated, the number of

consistency errors found so far, the line-number currently being read and more can

be found in this file. Finally, pointers to the heads of the class doubly linked lists,

and functions that return pointers are declared.
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Chapter 7

Conclusions

7.1 Summary

In this thesis, a language/representation with which the resources pertaining to pro-

duction systems can be described is introduced. This language is the Microsystems

Factory Representation and it consists of the organization of static data, the static

data itself, and the organization of dynamic data about factories. Thus, MFR defines

the pieces of information, static and dynamic, that are important and the way they

are related. This is the schema with which factories will be described. MFR also

provides the static data about factories. An Example of static data is information

about the characteristics of machines in the factory, as opposed to dynamic data

which might be their status.

Once a factory schema has been specified, a textual representation of a factory,

where the data about the factory are provided is available. The syntax of this rep-

resentation depends of the schema, but it always has the same characteristics. An

MFR textual representation interpreter parses the factory description, runs various

consistency checks, and makes the data easily accessible. This data can be used ei-

ther directly from the C data structures the interpreter provides, or from the CAFE

data base [8] where the data can be stored. A program that creates MFR textual

representation interpreters for any particular schema has been developed.

The MFR, along with the CAFE data base, can guarantee the consistency of fac-
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tory data used by various applications. With the aid of MFR, we can have simulations

that use the same factory data and the same schedulers as in real time control of a

fab. That way simulations are more realistic, and schedulers can be tested extensively

and debugged before they are put in use. Furthermore, MFR can be a very useful

tool in the design of factories, since various checks and performance measures can be

calculated by data provided via MFR.

7.2 Suggestions for Future Work

The question of what information is important about a factory has been left for the

MFR user to answer. The way this data is structured though, may emphasize some

aspects of production systems. For example, by organizing the factory data in a

hierarchical fashion, we indicate that a factory can be decomposed and studied in

pieces.

A potentially useful feature that may be added to MFR is the ability to specify

functions that relate various attributes. This way, the value of some attribute may

depend on other values. For example, the relationship of the efficiency of a machine

as a function of its mean time to fail and mean time to repair (Section 3.2.2) could

be part of the MFR schema. Then, two of the values of those attributes would be

necessary, and the third would be calculated by the MFR interpreter. Another way

this may be useful, is in the case of specific mittfs (mean time to failure) for different

failure modes, and a computed summary mttf for each machine.

In Chapters 1 and 3, various applications that require MFR data are discussed.

Those applications include programs that perform production feasibility checks, sched-

ulers and others. These programs need to be developed such that they make full use

of MFR and benefit from doing so. By using MFR, they provide their users an easy

way of specifying and modifying factory data, and therefore facilitate experiments.

Also, if the schema installed in the CAFE data base is used, they can provide the

option of reading data from it.
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Appendix A

Output Files

A.1 Output From the Schema Interpreter

The output from the schema interpreter for the example of section 4.3 is the following:

class: FRCELL

name 1-1 act inv nonunq nonul nonmut prf empty -

supercell MFRCELL 1-i pas inv nonunq nul nonmut prf

par null

subcells MFRCELL 1-m act noninv nonunq nul nonmut

nonprf chd null

machines MFRMACHINE 1-m act noninv nonunq nonul nonmut

nonprf chd null

buffers MFRBUFFER 1-m act noninv nonunq nul nonmut

nonprf chd null

description 1-1 act inv nonunq nul nonmut nonprf

empty null

number 1-i act inv nonunq nonul nonmut prf empty i

number yes

83



class: MFRMACHINE

name 1-1 act inv nonunq nonul nonmut prf empty -

cell MFRCELL 1-1 pas inv nonunq nonul nonmut nonprf

par -

batch 1-1 act noninv nonunq nul nonmut prf empty i

mttf 1-1 act noninv nonunq nul nonmut prf empty 1.000000

mttr 1-1 act noninv nonunq nul nonmut prf empty 0.000000

failuremodes MFR_FAILUREMODE -m act noninv nonunq nul nonmut

nonprf chd null

maintmodes MFRMAINTMODE 1-m act inv nonunq nul nonmut nonprf

chd null

status 1-1 act inv nonunq nonul mut prf empty up

detailedstatus 1-1 act inv nonunq nul mut prf empty null

number 1-1 act inv nonunq nonul nonmut prf empty 1

number yes

class: MFRBUFFER

name 1-1 act inv nonunq nonul nonmut prf empty null

cell MFRCELL i-i pas inv nonunq nonul nonmut prf par

null

capacity 1-1 act noninv nonunq nul mut nonprf empty 0

lots LOT 1-m act noninv nonunq nul mut nonprf empty

null

number 1-1 act inv nonunq nonul nonmut prf

empty 

number yes

class: MFRMAINTMODE

name 1-1 act inv nonunq nonul nonmut prf empty
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null

maintmax 1-1 act noninv nonunq nul nonmut nonprf

empty 0

description i-1 act inv nonunq nul nonmut nonprf

empty null

currentmaint 1-1 act noninv nonunq nul nonmut nonprf

empty 0

class: MFR_FAILUREMODE

name 1-1 act inv nonunq nonul nonmut prf empty null

mttf 1-i act noninv nonunq nul nonmut nonprf empty 999.9000

mttr 1-1 act noninv nonunq nul nonmut nonprf empty 0.000000

description 1-1 act inv nonunq nul nonmut nonprf empty null

lastfailure TIME 1-i act noninv nonunq nul mut nonprf empty

null

lastrepair TIME 1-i act noninv nonunq nul mut nonprf empty

null

class: MFR_TECHNICIAN

name 1-1 act inv nonunq nonul nonmut prf empty null

email 1-1 act inv nonunq nonul nonmut prf empty null

machines MFRMACHINE 1-m act noninv nonunq nonul nonmut

nonprf empty null

present i-1 act inv nonunq nonul mut prf empty 0

busy 1-1 act inv nonunq nonul mut prf empty 0

activeopinst ACTIVEOPINST 1-1 act noninv nonunq nul mut

nonprf chd null

class: LOT

nonmfrname 1-i act inv nonunq nonul nonmut prf empty
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class: TIME

nonmfrname 1-1 act inv nonunq nonul nonmut prf empty

class: ACTIVEOPINST

nonmfrname 1-1 act inv nonunq nonul nonmut prf empty

A.2 Output From the MFR Interpreter

The output from the MFR interpreter for the example of section 5.2 is the following:

MFRCELLs

identifier

name icl

supercell

subcells

ICL, address 1078896, prev 0

0

photobayl 1095496

bayl 1101808

DIFFUSION2 1105592

DIFFUSIONI 1081232

photobay2 1083120

machines

buffers

a 1079776
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bi 1080272

c 1087672

dl 1080872

b2 1094176

d3 1094656

d2 1095136

description

number 1

specific_names

identifier PHOTO, address 1095496, prev 1078896

name photobayl

supercell ICL 1078896

subcells

machines

GCA1 1096104

GCA2 1099016

buffers

description

number 2

specific_names

identifier PHOTO, address 1083120, prev 1095496

name photobay2

supercell ICL 1078896

subcells

machines

GCAI 1082536

GCA2 1091264

buffers
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description

number 2

specific_names

photobayl

photobay2

identifier DIFFUSION, address 1105592, prev 1083120

name DIFFUSION2

supercell ICL 1078896

subcells

machines

stepperl 1106200

ascer 1106904

stepper3 1107608

stepper2 1108312

buffers

big 1109016

description

number 3

specific_names

identifier DIFFUSION, address 1101808, prev 1105592

name bayl

supercell ICL 1078896

subcells

machines

stepperl 1102416

ascer 1103120

stepper3 1103824

stepper2 1104528
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buffers

big 1105232

description

number 3

specific_names

identifier DIFFUSION, address 1081232, prev 1101808

name DIFFUSIONI

supercell ICL 1078896

subcells

machines

stepper1 1081840

ascer 1086608

stepper3 1089856

stepper2 1090560

buffers

big 1087312

description

number 3

specificnames

bay1

DIFFUSION2

DIFFUSIONI

MFRMACHINEs

identifier stepper, address 1090560, prev 0

name stepper2

cell DIFFUSION 1081232

batch 
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mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_ status

number 3

specific_names

identifier stepper, address 1089856, prev 1090560

name stepper3

cell DIFFUSION 1081232

batch 1

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_ status

number 3

specificnames

identifier stepper, address 1081840, prev 1089856

name stepperl

cell DIFFUSION 1081232

batch 1

mttf 3.300000

mttr 0.000000

failuremodes

maintmode s
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status up

detailed_ status

number 3

specific_names

stepper3

stepper2

stepperi

identifier ascer, address 1086608, prev 1081840

name ascer

cell DIFFUSION 1081232

batch 1

mttf 1.000000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_status

number 1

specific_names

identifier GCA, address 1091264, prev 1086608

name GCA2

cell PHOTO 1083120

batch 1

mttf 1.000000

mttr 0.000000

failuremodes

lamp 1091968

computer 1092624
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maintmodes

focus 1093280

lamp 1093728

status up

detailed_ status

number 2

specific_names

identifier GCA, address 1082536, prev 1091264

name GCA1

cell PHOTO 1083120

batch 

mttf 1.000000

mnttr 0.000000

failuremodes

lamp 1083952

computer 1085176

mlaintmodes

focus 1084728

lamp, 1085712

status up

detailed_status

number 2

specific_names

GCA2

GCA1

identifier GCA, address 1096104, prev 1082536

name GCA

cell PHOTO 1095496
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batch 1

mttf 1.000000

:mttr 0.000000

failuremodes

lamp 1096808

computer 1097464

maintmodes

focus 1098120

lamp 1098568

status up

detailed status

number 2

specific_names

identifier GCA, address 1099016, prev 1096104

name GCA2

cell PHOTO 1095496

bat ch 1

mttf 1.000000

m.ttr 0.000000

failuremodes

lamp 1099720

computer 1100376

maintmodes

focus 1101032

lamp 1101480

status up

detailed_ status

number 2

specific_names
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identifier stepper, address 1102416, prev 1099016

name stepperl

cell DIFFUSION 1101808

batch 

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailedstatus

number 3

specific_names

identifier ascer, address 1103120, prev 1102416

name ascer

cell DIFFUSION 1101808

batch 

mttf 1.000000

mttr 0.000000

failuremodes

maintmodes

status up

detailedstatus

number 1

specificnames

identifier stepper, address 1103824, prev 1103120

name stepper3

cell DIFFUSION 1101808
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batch 

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_ status

number 3

specificnames

identifier stepper, address 1104528, prev 1103824

name stepper2

cell DIFFUSION 1i01808

batch 

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_ status

number 3

specificnames

identifier stepper, address 1106200, prev 1104528

name stepperi

cell DIFFUSION 1105592

batch 

mttf 3.300000

mttr 0.000000

failuremodes
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maintmodes

status up

detailedstatus

number 3

specific_names

identifier ascer, address 1106904, prev 1106200

name ascer

cell DIFFUSION 1105592

batch 

mttf 1.000000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_status

number 1

specificnames

identifier stepper, address 1107608, prev 1106904

name stepper3

cell DIFFUSION 1105592

batch 

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_status

number 3
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specific_names

identifier stepper, address 1108312, prev 1107608

name stepper2

cell DIFFUSION 1105592

batch 1

mttf 3.300000

mttr 0.000000

failuremodes

maintmodes

status up

detailed_status

number 3

specific_names

N[FR_BUFFERs

identifier b, address 1094176, prev 0

name b2

cell ICL 1078896

capacity 0

lots

number 2

specific_names

identifier b, address 1080272, prev 1094176

name bi

cell ICL 1078896

capacity 0

lots
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number 2

specific_names

b2

bi

identifier d, address 1095136, prev 1080272

name d2

cell ICL 1078896

capacity 0

lots

number 3

specific_names

identifier d, address 1094656, prev 1095136

name d3

cell ICL 1078896

capacity 0

lots

number 3

specific_names

identifier d, address 1080872, prev 1094656

name dl

cell ICL 1078896

capacity 0

lot s

nlmber 3

specific_names

d3

d2
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dl

identifier a, address 1079776, prev 1080872

name a

cell ICL 1078896

capacity 0

lots

number 

specific_names

identifier big, address 1087312, prev 1079776

name big

cell DIFFUSION 1081232

capacity 0

lots

number 1

specificnames

identifier c, address 1087672, prev 1087312

name c

cell ICL 1078896

capacity 100

lots

number 1

specific_names

identifier big, address 1105232, prev 1087672

name big

cell DIFFUSION 1101808

capacity 0
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lots

:number 1

specific_names

identifier big, address 1109016, prev 1105232

name big

cell DIFFUSION 1105592

capacity 0

:Lot s

number 

specific_names

MFR_MAINTMODEs

identifier focus, address 1084728, prev 0

name focus

maintmax 3

description

currentmaint 0

identifier lamp, address 1085712, prev 1084728

name lamp

maintmax 56

description I have no idea how to maintain a lamp!

currentmaint 0

identifier focus, address 1093280, prev 1085712

name focus

maintmax 3

description
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currentmaint 0

identifier lamp, address 1093728, prev 1093280

name lamp

maintmax 56

description I have no idea how to maintain a lamp!

currentmaint 0

identifier focus, address 1098120, prev 1093728

name focus

maintmax 3

description

currentmaint 0

identifier lamp, address 1098568, prev 1098120

name lamp

maintmax 56

description I have no idea how to maintain a lamp!

currentmaint 0

identifier focus, address 1101032, prev 1098568

name focus

maintmax 3

description

currentmaint 0

identifier lamp, address 1101480, prev 1101032

name lamp

maintmax 56

description I have no idea how to maintain a lamp!
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currentmaint 0

MFRFAILUREMODEs

identifier lamp, address 1083952, prev 0

name lamp

mttf 34.200001

mttr 0.000000

description exploding lamp...

lastfailure 0

lastrepair 0

identifier computer, address 1085176, prev 1083952

name computer

mttf 5.500000

mttr 0.400000

description computer failure can cause machine GCA to be down

lastfailure 0

lastrepair 0

identifier lamp, address 1091968, prev 1085176

name lamp

mttf 34.200001

mttr 0.000000

description exploding lamp...

lastfailure 0

lastrepair 0

identifier computer, address 1092624, prev 1091968

name computer
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mttf 5.500000

mttr 0.400000

description computer failure can cause machine GCA to be down

lastfailure 0

last repair 0

identifier lamp, address 1096808, prev 1092624

name lamp

mttf 34.200001

mttr 0.000000

description exploding lamp...

last failure 0

last_repair 0

identifier computer, address 1097464, prev 1096808

name computer

mttf 5.500000

mttr 0.400000

description computer failure can cause machine GCA to be down

last failure 0

last repair 0

identifier lamp, address 1099720, prev 1097464

name lamp

mttf 34.200001

mttr 0.000000

description exploding lamp...

lastfailure 0

last_repair 0
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identifier computer, address 1100376, prev 1099720

name computer

mttf 5.500000

mttr 0.400000

description computer failure can cause machine GCA to be down

last_failure 0

last_repair 0

MFRTECHNICIANs

identifier me, address 1086040, prev 0

name me

email mstamato

machines

GCA2

GCA1

GCA2

ascer

ascer

ascer

GCAI

1099016

1096104

1091264

1106904

1103120

1086608

1082536

present 0

busy 0

activeopinst O

LOTs

TIMEs

ACTIVEOPINSTs
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Appendix B

Makefile for the MFR Interpreter

This Makefile can be used to compile the MFR Interpreter:

# BINDIR is where the executable goes

BINDIR = .

CAFEROOT = /fs/cafe/cafe

INCLUDE = $(CAFEROOT)/include

CFLAGS = -g -I$(INCLUDE) -I$(INCLUDE)/gdm

LIB = $(CAFEROOT)/lib/gdm.a $(CAFEROOT)/lib/cafe.a

CC = gcc -g

TARGET = $(BINDIR)/mfri

HEADERS = interp.h

SRCS = y.tab.c instantiate.c allocate.c malloc.c\

default. c read_attr.c storeattr.c\

printmfr.c nest.c insert.c utilities.c defaultnames.c\

consistency.c unravel.c replicate.c main.c subobjectlist.c
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OBJS = y.tab.o instantiate.o allocate.o malloc.o\

default.o read_attr.o store_attr.o\

printmfr.o nest.o insert.o utilities.o default_names.o\

consistency.o unravel.o replicate.o main.o subobjectlist.o

SRCS2 = dprint.c

OBJS2 = dprint.o

mfri : $(OBJS)

$(CC) -o $(TARGET) $(OBJS) $(LIB) -ly -11 -lm

$(OBJS): $(HEADERS)

lintout : $(SRCS)

lint $(SRCS) $(CFLAGS) > lintout

lintout2 : $(SRCS)

lint -bach $(SRCS) $(CFLAGS) > lintout

TAGS : $(SRCS) $(HEADERS)

etags $(SRCS) $(HEADERS)
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Appendix C

MFR Textual Representation for

the Integrated Circuits

Laboratory at MIT

This is an MFR representation of ICL.

MFR_CELL ICL {

subcells PHOTOLITHOGRAPHY_CELL, ETCH_CELL, DIFFUSION_CELL,

METALIZATION_CELL, ION_IMPLANT_CELL, INSPECTION_CELL;

};

MFR_CELL PHOTOLITHOGRAPHY_CELL{

machines asher{mttr 50.0; mttf 624.2; /*number 2;*/},

stepper{mttr 51.0; mttf 435.7;},
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coater{mttr 31.0; mttf 594.6;},

HMDS{mttr 25.0; mttf 8735.0;},

developer{mttf 1440.0; mttr 72.0;};

},

ETCH_CELL{

machines etcher-l{mttr 32.0; mttf 453.7;},

etcher-2{mttr 154.0; mttf 952.2;},

etcher-3{mttr 64.0; mttf 423.1;};

DIFFUSION_CELL{

machines rca{mttr 48.0; mttf 2141.7; /* number 3;*/},

tubeAl{mttr 30.0; mttf 8730.0;},

tubeA2{mttr

tubeA4{mttr

tubeA5{mttr

tubeA6{mttr

tubeA7{mttr

tubeA8{mttr

tubeBl{mttr

tubeB5{mttr

tubeB6{mttr

tubeB8{mttr

44.0; mttf 2876.0;},

0.0; mttf 99999.9;},

205.0; mttf 1032.1;},

115.0; mttf 1344.8;},

99.0; mttf 448.4;},

390.0; mttf 1799.5;},

30.0; mttf 8730.0;},

30.0; mttf 8730.0;},

83.0; mttf 4297.5;},

0.0; mttf 99999.9;};

METALIZATION_CELL{

machines nitride{mttr 145.0; mttf 1314.7;},
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oxide{mttr 89.0; mttf 425.9;},

pre-metal{mttr 29.0; mttf 640.4;};

},

ION_IMPLANT_CELL{

machines VTR{mttr 155.0; mttf 1304.7;},

varian{mttr 150.0; mttf 945.1;},

implanter{mttr 72.0; mttf 720.0;};

}.

INSPECTION_CELL{

machines ellipsometer{mttf 99999.9; mttr 0.0;},

nanospec{ mttf 99999.9; mttr 0.0;},

microscope{mttf 17520.0; mttr 120.0;},

dektak{},

osi{},

prometrix{};

};

end

109



Appendix D

Programmer's Manual for the

Production Requirements

Feasibility Program

This Appendix provides a guide to the program which checks for the feasibility of

meeting production requirements of factories. The goals of this program are set in

Chapter 3.

There are two versions of this program, one that links with the CAFE data base

and gives the option of reading data from it, and one that does not. The latter one

can be used as a stand alone program. Both versions have the same architecture,

except that the former one has some extra routines for getting MFR and PFR infor-

mation from the data base. These routines are read_processes, readmflrmachines,

read_descr and getfringe.

D.1 The Data Structures

The data structures of this program are constructed in the header file feasibility.h.

An overview of them is illustrated in Figure D-1.

A linked list of processes is constructed by the processflowstruct. There, the

total operating time (ideal_cycle), the demand for the product (demand), a name
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Figure D-1: Data structures of the production requirements feasibility program.
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(prsfl), various flags as well as pointers to the head of linked lists of operations

(head-descr)and virtual machines (head_vmachine) are stored. In the first version

of the program that is linked with the CAFE data base, a pointer to the corresponding

PROCESSDESCRIPTION is part of this struct as well.

The struct descr-struct contains information for each operation. It consists of a

generic machine name (mchn), a pointer to a list of machine pointers (atrhead-machine),

and the time required for the operation (tint). The linked list of machine pointers is

constructed by the atr-machine.struct which has a pointer to a machinestruct.

The machinestruct forms an independent linked list of all machines in the fac-

tory. It includes a name (mchn), the mean times to failure (mttf) and repair (mttr),

the efficiency (e), and the total demand required by this machine (totdemand).

The vmachinestruct consists of r and p which are the reciprocal of the mean

times to repair and failure respectively, mu which represents the rate of production

for the virtual machine, and buffer which is the space of the downstream buffer.

D.2 The Program's Architecture

An overview of the program's architecture is shown in Figure D-2. The MFR inter-

preter is used to read data form a textual representation of the factory to be tested.

In order to do that the source code of the MFR interpreter is linked together with

the rest of the program. The only changes made are in the main function which is

merged with the one of the production feasibility program.

D.2.1 The main function

A description of the tasks performed by the main function follows. First, the command

line of this program is read with the aid of the getopt function provided by C.

Then, the cache file where the information about the processes of the products to be

produced is stored, is opened. If the -d option was used, and the processes are to be

read from the data base, the cache file will be opened as a write file, otherwise it will

be opened as a read file. Next, the report files (long and sort form), the MFR textual
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Figure D-2: Architecture of the production requirements feasibility program.
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representation file and the MFR output file are opened. The textual representation

file is run through the C preprocessor cpp and the output is the yyin used by the

parser. Then, the function initialize is called, and the global variables upbound and

lowbound referring to the upper and lower bounds of utilization for which machines

will be flagged, are set. Next, the input file is read and the processflow names are

stored as a linked list. A discussion of the data structures can be found in D.1.

If the process data are to be read from the data base, the function read_processes

which finds the PROCESSDESCRIPTION objects, the function readdescr that

finds and reads the fringe of PROCESSFLOWs as well as the function cache are

called. Otherwise, the function read_cache which gets information from a cache file

is called. If the factory data are to be read form the data base, readanfr-machines is

called, if not, the mfr interpreter (yyparse) and readinterp-machines which gets

data form the interpreters data structures are called. Next, checkl, the function

that checks the machine existence feasibility is initiated. Finally, if the -c option was

recognized, check2 which performs the capacity feasibility check is called.

D.2.2 The function read_processes

This functions loops through all the processes read from the input file and uses

createpredicate provided by gestalt [7] to find the PROCESSDESCRIPTIONs

needed. The names the query looks for are the ones read from the input file capital-

ized. The last version of the processdescriptions is found, and its pointer is stored as

part of the processflow struct.

D.2.3 The functions read_descr and get_fringe

Function read_descr is responsible for getting all the information required from the

data base for the current process. The pointer to the current process is a global

variable, so this function does not have any arguments. First, the fringe of PRO-

CESSFLOWs is found by get fringe. This function takes the FLOWROOT of the

PROCESSDESCRIPTION object as an argument, iterates through the list of sub-
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flows and if it finds a leaf flow it adds it to the fringe. Otherwise, it calls itself

recursively.

Once the fringe is found, readdescr loops through it and stores the relevant

information. For every leaf PROCESSFLOW, memory is allocated, and the machine

name as well as the time duration of the PROCESSFLOW are stored. This way a

linked list of leaf descr is created.

D.2.4 The functions cache and readcache

Function cache creates the cache file. It loops through all processes, and then through

all the operations. For each operation, the machine name and the time duration is

seconds are printed on a line of their own. If the machine name is null, "NULL" is

printed for the machine name. At the end of every process a - 0 is printed.

Function readcache reads the cache file and stores the data. It allocates memory

and creates the linked list of the operations for every process.

D.2.5 The functions read mf rmachines and read_interp_machines

Both these functions get and store data regarding the machines in the factory under

consideration. Also, both construct a linked list of machines where the relevant

information is stored. The data stored, are the machine names, mean time to failure

and mean time to repair.

Function readnfr-machines reads this information from the CAFE data base by

looping through all MFR machines in it. On the other hand, readinterpnachines,

reads this information by looping through all the machines in the linked list created

by the MFR textual representation interpreter.

D.2.6 The function checkl

This routine checks for machine existence feasibility, assigns a list of possible machines

to every operation and calculates the hours of operation required from each machine.

It goes through all operations of every process, finds the machine(s) that can perform

115



the operation, and makes a linked list of them. The machines are recognized by a

string compare of the first n characters, where n is the number of characters of the

machine specified in the operation. This is done because the MFR interpreter, in the

case of multiple identical machines, will add a number suffix to the generic name of

a machine type.

If the machine name for a particular operation is null, a warning is printed, the

existence feasibility check does not fail, and no time is added to the demand of any

machine. If it is not null, the hours demanded from the machine(s) that can do the

operation is incremented by the time required by the operation times the demand for

the product in question divided by the number of identical machines. If the machine

name is not null and no machine is found, an error message is printed in the report

file, and the counter of missing machines is incremented. For every process, the total

operating time is calculated and printed in both the long and' brief report files.

D.2.7 The function check2

This function calculates the utilization of machines in the factory, flags the ones that

are not within the prespecified bounds, and makes the capacity feasibility check fail

for the ones that have more than 100% utilization. The utilization is calculated

by dividing the total number of hours required from each machine by the machine

efficiency times the number of hours the factory operates in a year. The machine

efficiency is calculated by the following formula:

mttf
e-- mttf + mttr

where r and p are the reciprocal of the mean time to repair and mean time to

failure respectively. For more information on those calculations please refer to Section

3.2.2.
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D.2.8 A routine that unwinds the processes

This program was written under very general assumptions on the factory and the rout-

ing of the products. Thus, use of the same machine for several' processes, re-entrance,

and multiple identical machines are allowed. All these characteristics make the prob-

lem of performance measure calculations very difficult. A routine has been written

that approximates the system with several transfer lines, one for every product.

Function trlineapprox loops through all products, calls cr_virtualmachines

which crates a transfer line for each one, and prints information about the machines

that it consists of in a .vmchn file. The approximation is based on an idea developed

in [1].

In cr_virtual-machines processes are unwound to a transfer line. A linked list of

virtual machines that make up this transfer line is created. The parameters provided

for these virtual machines are the inverse of the mean times to repair and failure,

their rate of operation, and the downstream buffer space. The first virtual machine,

is a machine whose purpose is to control the release of parts in the line. It is very

reliable, it has a big buffer and its rate of operation is the rate of the demand for

the particular product. The other virtual machines correspond to the operations the

product type has to go through. If the machine for the operation is null, a reliable and

fast machine is assigned. In particular its speed is a hundred times the demand. If it

is not null, the mean times for failure and repair of the virtual machine are the ones of

the real machine where the operation is to be done. The rate of the virtual machine

is set to be the inverse of the time duration for the operation times the fraction of

this time duration over the total demand required from the actual machine. Note

that if a machine is one of several identical ones, the total demand for each machine

is equally distributed among those machines. This is taken care of in checki.
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