Comparison of Neural and Control Theoretic Techniques

for Nonlinear Dynamic Systems
by
He Huang
B. S., University of Science and Technology of China (1990)

Submitted in partial fulfillment of the
requirements for the dual degrees of

MASTER OF SCIENCE IN OCEANOGRAPHIC ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
and the
WOODS HOLE OCEANOGRAPHIC INSTITUTION
and
MASTER OF SCIENCE IN MECHANICAL ENGINEERING
at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1994
(© He Huang, 1994. All rights reserved.

The author hereby grants to MIT and WHOI permission to reproduce and
to distribute copies of this thesis }1ocument in whole or in part.

Department of Ocean Engineering, MIT and the
WHOI Joipt Pzpgram in Oceanographic Engineering

Certified by ............. R AT T e ehee .’. Tee e N et eteteteeseeatenesnansasnann

/ Dr. Dana R. Yoerger
Associate Scientist, Woods Hole Oceanographic Institution
Thesis Supervisor

L 53T
Prof. Jean-Jacques E. Slotine

Associafe\ Professor, Massachusetts Institute of Technology

. o (7 Thesis Reader

Accepted by ............. e e A et R e e e e e SR

)
- Pro}essqr Atthur B. Baggeroer |
Chairman, Joint Committee for O _eanogra,phlc Engmee g, Massachusetts....}
Institute of Technology and t Wﬂﬁguuo IeTIOcea,nogra,phlc Institution

!at u‘p’n hm,

oy raen s IS L

AUG GZ 1994 Eng.



Comparison of Neural and Control Theoretic Techniques

for Nonlinear Dynamic Systems
by
He Huang

Submitted to the Massachusetts Institute of Technology/
Woods Hole Oceanographic Institution
Joint Program in Oceanographic Engineering
in May, 1994 in partial fulfillment of the
requirements for the dual degrees of

MASTER OF SCIENCE IN OCEANOGRAPHIC ENGINEERING
and

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

Abstract

This thesis compares classical nonlinear control theoretic techniques with recently
developed neural network control methods based on the simulation and experimen-
tal results on a simple electromechanical system. The system has a configuration-
dependent inertia, which contributes a substantial nonlinearity. The controllers being
studied include PID, sliding control, adaptive sliding control, and two different con-
trollers based on neural networks: one uses feedback error learning approach while
the other uses a Gaussian network control method. The Gaussian network controller
is tested only in simulation due to lack of time. These controllers are evaluated based
on the amount of a priori knowledge required, tracking performance, stability guaran-
tees, and computational requirements. Suggestions for choosing appropriate control
techniques to one’s specific control applications are provided based on these partial
comparison results.
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Chapter 1

Introduction

1.1 Motivation

Underwater vehicles are important tools for exploration of the oceans. They are being
applied to a wide range of tasks including hazardous waste clean-up, dam and bridge
inspections, and ocean bottom geological surveys. The Deep Submergence Lab at
Woods Hole Oceanographic Institution has developed several underwater vehicles,
and deployed them in dozens of ocean science expeditions.

Most of the current underwater vehicles are remotely operated through cables.
Human pilots are heavily involved during the operations. Precise, repeatable com-
puter control of the vehicles will significantly reduce the operator’s workload and
provide better performance. However, due to the nonlinearity and uncertainties in-
troduced by hydrodynamic drag and effective mass properties, precise control of an
underwater vehicle is very difficult to realize. Traditional well developed linear con-
trol techniques can only be applied to this highly nonlinear and uncertain scenario
by compromising performance.

The same is true with the control of a manipulator on an underwater vehicle,
which is different from its counterpart on the land vehicle. The hydrodynamic force
and other factors add nonlinearities into the dynamics, so choosing a good nonlinear

control method on the vehicle and manipulator becomes necessary and important.



1.2 Overview of Traditional Control Theory and
Neural Network Control Methods

1.2.1 Traditional Control Theory

Traditional linear control, which is a well developed control technique, performs
poorly on nonlinear dynamic systems like underwater vehicles because the dynamics
model must be linearized within a small range of operation and consequently loses
its accuracy in representing the whole physical plant. While good performance and
stability can be reached within the linearized region, stability can not be guaranteed
for the overall dynamic system. Hard nonlinearities and model uncertainties often
make linear control unable to perform well for nonlinear systems.

Nonlinear control methodologies are thus developed for better control of nonlinear
dynamic systems. There is no general method for nonlinear control designs, instead,
there is a rich collection of techniques each suitable for particular class of nonlinear
control problems. The most used techniques are feedback linearization, robust control,
adaptive control and gain-scheduling. The first and the last control techniques are
more closely related to linear control methodology and their stability and robustness
are not guaranteed. So in this thesis, I choose robust control and adaptive control for
the purpose of study and comparison.

A simple approach to robust control is the sliding control methodology. It pro-
vides a systematic approach to the problem of maintaining stability and consistent
performance in the face of modeling imprecision. It quantifies trade-offs between
modeling and performance, greatly simplifies the design process by accepting reduced
information about the system. Sliding control has been successfully applied on the
underwater vehicles and other nonlinear dynamic systems. It eliminates lengthy sys-
tem identification efforts and reduces the required tuning of the control system. The
operational system can be made robust to unanticipated changes in the vehicle’s dy-
namic parameters. However, the upper bounds on the nonlinearities and the unknown

constant or slow varying parameters in the dynamic system have to be estimated for



sliding control to be successful.

Adaptive sliding control techniques have also been successfully used to deal with
the uncertain and nonlinear dynamics of underwater vehicles [16]. It further provides
an adaptation mechanism for the unknown parameters in the dynamic system, thus
it achieves better performance if the initial parameter estimates are imprecise. It can
be regarded as a control system with on-line parameter estimation. The form of the
nonlinearities must be known, along with bounds on the parameter uncertainty. The

unknown parameters it adapts to have to be constant or slowly-varying.

1.2.2 Neural Network Control Methods

Neural network control is a fast growing new candidate for nonlinear controls. These
controllers have ability to learn the unknown dynamics of the controlled system. The
parallel signal processing, computational inexpensive, and adaptive properties of the
neural networks also make them appealing to the real time control of underwater
vehicles. J. Yuh has developed a multi-layered neural network controller with the
error estimated by a critic equation [19] [17] [18] . The only required information
about the system dynamics is an estimate of the inertia terms. K. P. Venugopal et al.
described a direct neural network control scheme with the aid of a gain layer, which
is proportional to the inverse of the system Jacobian [14].

This thesis adapts a neural network control technique from Mitsuo Kawato’s feed-
back error learning scheme which uses error backpropagation as the weight adjustment
methods [3] [5] (4] [2]. No a priori information about the nonlinear system is required.
The on-line neural network learns the inverse dynamics of the system based on the
error signals feedback from a conventional PD controller. It simultaneously controls
the motion of the system while it learns.

While the backpropagation method is theoretically proven to be convergent, there
is no theory regarding its stability when implemented into real time control problems.
Moreover, there is no standard criteria to choose the number of layers and nodes
within the networks.

A better solution to these problems is a network of gaussian radial basis functions,
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called Gaussian networks [8]. It uses a network of gaussain radial basis functions to
adaptively compensate for the plant nonlinearities. The a priori information about
the nonlinear function of the plant is its degree of smoothness. The weight adjustment
is determined using Lyapunov theory, so the algorithm is proven to be globally stable,
and the tracking errors converge to a neighborhood of zero. Its another feature is that
the number of nodes within the network can be decided by the desired performance
and the a priori frequency content information about the nonlinear function to be
approximated.

The Gaussian network is a controller which combines theoretic control and con-
nectionists approach. It uses the network to its full advantage of learning ability
while in the mean time guarantees the stability of the whole system using traditional
theoretical approach. The resulting controller is thus robust and retains its high

performance.

1.3 Outline of Thesis

This thesis chooses these two neural network controls to compare with the above
mentioned three traditional theoretic control techniques. They are evaluated based
on the amount of a priori knowledge required, tracking performance, stability guar-
antees, and computational requirements. Results from simulation and experiment on
a simple electromechanical system are studied. But due to lack of time and computa-
tional constraints, the Gaussian network control method is not implemented into the
experiments. Thus the discussion and evaluation on this controller is limited. Char-
acteristics of these controllers are discussed based on current work and suggestions
for choosing appropriate control techniques for different nonlinear dynamic systems
are given based on these comparison results.

The outline of the thesis is:

Chapter 2 describes each of the five different control design theories.

Chapter 3 contains simulation results and comparisons of these controls on a senso-

rimotor system with a nonlinear inertia load design to introduce nonlinear dynamics.
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Chapter 4 presents the experiment results and comparisons on the nonlinear sen-
sorimotor system. The experiments of Gaussian network controller remains to be
continued in future work.

Chapter 5 summarizes the results of the thesis and offers suggestions for choosing
appropriate nonlinear controllers. Limitations of current work and recommendations

for future work are discussed.
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Chapter 2

Controller Design Techniques

There is no general method for designing nonlinear controllers, instead, there is a
rich collection of nonlinear control techniques, each dealing with different classes of
nonlinear problems. The techniques studied in this thesis comprised of two groups:
one of traditional theoretic nonlinear control techniques, the other of recently de-
veloped neural network control approaches. The first group applies to systems with
known dynamic structure, but unknown constant or slowly-varying parameters, and
can deal with model uncertainties. The second group is for systems without much
a priori information about their dynamic structures and parameters. This chapter

describes their design principles and procedures.

2.1 Procedure for General Control Design

The objective of control design can be stated as follows: given a physical system to be
controlled and the specifications of its desired behavior, construct a feedback control
law to make the closed-loop system display the desired behavior. The procedure
of constructing the control goes through the following steps, possibly with a few

iterations:
1. specify the desired behavior, and select actuators and sensors;

2. model the physical plant by a set of differential equations;
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3. design a control law for the system;
4. analyze and simulate the resulting control system,;
5. implement the control system in hardware.

Generally, the tasks of control systems, i.e. the desired behavior, can be divided
into two categories: stabilization and tracking. The focus of this thesis is on track-
ing problems. The design objective in tracking control problems is to construct a
controller, called a tracker, so that the system output tracks a given time-varying
trajectory.

The task of asymptotic tracking can be defined as follows:

Asymptotic Tracking Problem: Given a nonlinear dynamics system described by

x = f(x,u,t) (2.1)

y = h(x) (2.2)

and a desired output trajectory yg, find a control law for the input u such that,
starting from any initial state in a region {2, the tracking errors y(t) — ya(t) go to
zero, while the whole state x remains bounded.

This chapter focuses on different control law designs. The desired behavior and
dynamic model of the physical plant are assumed to be known and are the same for
all different control techniques.

Let the dynamic model of the nonlinear system represented by:
™(t) = f(X;t) + b(X;t)u(t) + d(t) (2.3)

where

u(t) is the control input
z is the output of interest
X=[z 2 - g1 ]T is the state.

d(t) is the disturbance

14



f(X;t) is the nonlinear function describing the system’s dynamics

b(X;t) is the control gain

The desired behavior, i.e., the control problem is to get the state X to track a specific

state

Xa=[zg g4 - f D (2.4)

in the presence of model imprecision on f(X;t) and b(X;t), and of disturbances d(t).

If we define the tracking error vector as:
X=X-X4=[% % ... 3D (2.5)

the control problem of tracking X = X is equivalent to reaching X = 0 in finite

time.

2.2 PID Control

The combination of proportional control, integral control, and derivative control is
called proportional-plus-integral-plus-derivative control, also called PID control. This
combined control has the advantages of each of the three individual control actions.

The equation of a PID controller is given by
~ ~ Kp ~
u(t) = Ki(t) + K, Tab(t) + 2 j 5(t)dt (2.6)

or the transfer function is

u(s) 1
) - Ky(1+ Tus + ) (2.7)

<1

where K, represents the proportional sensitivity, 7; represents the derivative time,

and T; represents the integral time.

In the proportional control of a plant whose transfer function does not possess a

15



free integrator 1/s, there is a steady-state error, or offset, in the response to steady
disturbance. Such an offset can be eliminated if the integral control action is included
in the controller. On the other hand, while removing offset or steady-state error, the
integral control action may lead to oscillatory response of slowly decreasing amplitude
or even increasing amplitude, both of which are usually undesirable.

Derivative control action, when added to a proportional controller, provides a
means of obtaining a controller with high sensitivity. It responds to the rate of change
of the actuating error and can produce a significant correction before the magnitude
of the actuating error becomes too large. Derivative control thus anticipates the
actuating error, initiates an early corrective action, and tends to increase the stability
of the system.

Although derivative control does not affect the steady-state error directly, it adds
damping to the system and thus permits the use of a larger value of the gain K, which
will result in an improvement in the steady-state accuracy. Since derivative control
operates on the rate of change of the actuating error and not the actuating error itself,
this mode is never used alone. It is always used in combination with proportional or
proportional-plus-integral action.

The selection of PID parameters K,, T and T; is based on the knowledge about
the dynamic systems and the desired closed-loop bandwidth.

2.3 Sliding Control

Given the perfect measurement of a linear system’s dynamic state and a perfect
model, the PID controller can achieve perfect performance. But it may quickly fail
in the presence of model uncertainty, measurement noise, computational delays and
disturbances. Analysis of the effects of these non-idealities are further complicated by
nonlinear dynamics. The issue becomes one of ensuring a nonlinear dynamic system
remains robust to non-idealities while minimizing tracking error.

Two major and complementary approaches to dealing with model uncertainty are

robust controland adaptive control. Sliding control methodology is a method of robust

16



control. It provides a systematic approach to the problem of maintaining stability
and consistent performance in the face of modeling imprecision.

Sliding Modes are defined as a special kind of motion in the phase space of a
dynamic system along a sliding surface for which the control action has discontinu-
ities. This special motion will exist if the state trajectories in the vicinity of the
control discontinuity are directed toward the sliding surface. If a sliding mode is
properly introduced in a system’s dynamics through active control, system behavior
will be governed by the selected dynamics on the sliding surface, despite disturbances,
nonlinearities, time-variant behavior and modeling uncertainties.

Let’s consider the dynamic system described by equation (2.3). A time-varying

sliding surface S(t) in the state-space R™ is defined as
s(X;8)=0 (2.8)
with
s(X;t) = (% +A)* 1z, A>0 (2.9)

where ) is a positive constant related to the desired control bandwidth.
The tracking problem is now transformed to remaining the system state on the
sliding surface S(t) for all ¢ > 0. This can be seen by considering s = 0 as a linear

differential equation whose unique solution is Z = 0, given initial condition:
X|t=0o =0 (2.10)

This positive invariance of S(¢) can be reached by choosing the control law u of

system (2.3) such that outside S(¢)

1d ,
37 (z;t) < —7|s] (2.11)

where 7 is a positive constant. (2.11) is called the sliding condition. It constrains
the trajectories of the system to point towards the surface S(t).

The idea behind (2.9) and (2.11) is to pick a well behaved function of the tracking

17



error, s, according to (2.9) and then select the feedback control law u such that s?
remains a Lyapunov function of the closed-loop system despite the presence of model
imprecision and disturbances. This guarantees the robustness and stability of the
closed-loop system. Even when the initial condition (2.10) is not met, the surface
S(t) will still be reached in a finite time smaller than s(X(0);0)/7, given the sliding
condition (2.11) is verified.

The detailed controller design procedure is described in the following two sec-
tions. Section 2.3.1 shows how to select a feedback control law u to verify sliding
condition (2.11) and account for the modeling imprecision. This control law leads to
control chattering. Section 2.3.2 describes how to eliminate the chattering to achieve

an optimal trade-off between control bandwidth and tracking precision.

2.3.1 Perfect Tracking Using Switched Control Laws

This section illustrates how to construct a control law to verify sliding condition (2.11)
given bounds on uncertainties on f(X;t) and b(X;t).

Consider a second-order dynamic system
&E=f+bu (2.12)

The nonlinear dynamics f is not known exactly, but estimated as f . The estimation

error on f is assumed to be bounded by some known function F:
If-fI<F (2.13)
Similarly, the control gain b is unknown but of known bounds:
0 < bmin < b < bmae (2.14)
The estimate b of gain b is the geometric mean of the above bounds:

b = \/brminbmaz (2.15)

18



Bounds (2.14) can then be written in the form

B1<-<p (2.16)

Sl

where
B = \/bmaz/bmin (2.17)

In order to have the system track z(t) = z4(t), we define a sliding surface s = 0

according to (2.9), namely:

5= (% +\)é (2.18)

We then have:
§=8—F4+ A& = f+bu— 4+ )& (2.19)

The best approximation % of a continuous control law that would achieve $ = 0 is
thus:
d=bu=—f+ 35— Iz (2.20)

In order to satisfy the sliding condition (2.11) despite uncertainties on the dynamics

f and the control gain b, we add to % a term discontinuous across the surface s = 0:

u = b'[d — ksgn(s)] (2.21)
= b7 —f + &5 — Az — ksgn(s)] (2.22)

By choosing k in (2.21) to be large enough,
k> B(F +7)+ (8- 1l (223
we can guarantee that (2.11) is verified. Indeed, we have from (2.19) to (2.22)

§=(f—bb1f) + (1 — bb 1) (—&4 + AE) — bb~ksgn(s) (2.24)

19



In order to let

lil-sz = 3s
2dt- ‘
= [(F = B51f) + (1 — bb~2)(—24 + A3)]s — bbk|s|
< -—nls|
k must verify
k> (067 f — f+ (67! — 1)(—&a + A\&)| + b7y (2.25)

Since f = f + (f — f), where |f — f| < F, this leads to
k> b 1F + b6t — 1) |f — 84 + A3)| + b6y (2.26)

and using b1 < B leads to (2.23).

2.3.2 Continuous Control Laws to Approximate Switched

Control

The control law derived from the above section is discontinuous across the surface
S(t) and leads to control chattering, which is usually undesirable in practice since it
involves high control activity and may excite high-frequency dynamics neglected in
the course of modeling. In this section, continuous control laws are used to eliminate
the chattering.

The control discontinuity is smoothed out by introducing a thin boundary layer

neighboring the switching surface:
B(t) = {X,|s(X;t)| < &}; €>0 (2.27)

where ® is the boundary layer thickness, and is made to be time varying in order
to exploit the maximum control bandwidth available. Control smoothing is achieved
by choosing control law u outside B(t) as before, which guarantees boundary layer

attractiveness and hence positive invariance —all trajectories starting inside B(t = 0)

20



remain inside B(t) for all ¢ > 0-and then interpolation u inside B(t), replacing the
term sgn(s) in the expression of u by s/®. As proved by Slotine(1983), this leads to
tracking to within a guaranteed precision ¢ = ®/A"!, and more generally guarantees

that for all trajectories starting inside B(t = 0)
120(t)| < (2A)'e; i =0,---,n—1 (2.28)

The sliding condition (2.11) is now modified to maintain attractiveness of the

boundary layer when ® is allowed to vary with time.

1d .
81> @ = 2057 < (&~ )l (2.29)

The term k(X;t)sgn(s) obtained from switched control law u is also replaced by
k(X;t)sat(s/®), where:

_ @
E(Xg;t) = k(X;t) — k(Xg5t) + %— (2.30)
d
with ﬁd = ,B(Xd;t).
Accordingly, control law u becomes:
u = b7[d — ksat(s/®)] (2.31)

The desired time-history of boundary layer thickness ® is called balance condition

and is defined according to the value of k(Xg;t):

pYos

E(Xg;t) > 5 > d + A® = Bak(Xy;t) (2.32)
¥ . 2@ k(Xuit)
k H —_ _ =
Xat)S 7o = 45 = =4 (2.33)
with initial condition ®(0) defined as:
8(0) = Bak(Xa(0); (0))/) (2.34)
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The balance conditions have practical implications in terms of design / modeling
|/ performance trade-offs. Neglecting time-constants of order 1/, conditions (2.32)
and (2.33) can be written

Ate = Bak(Xqg;t) (2.35)

that is

(bandwidth)® X (tracking precision)

~ (parametric uncertainty measured along the desired trajectory)

It shows that the balance conditions specify the best tracking performance attainable,

given the desired control bandwidth and the extent of parameter uncertainty.

2.4 Adaptive Sliding Control

In order to improve performance when large parametric uncertainties are present, an
adaptive sliding controller is introduced, where uncertain parameters are estimated
on-line based on the algebraic distance of the current state to the boundary layer.
This structure leads naturally to active adaptation only when the system is outside
the boundary layer, avoiding the long term drift frequently experienced in parameter
estimation schemes. The developed adaptive controller structure is based on the
premise that there be no adaptation to that which can be modeled but adapt only to
the complex dynamic effects which cannot be simply modeled.
The basic form of the adaptive sliding controller is applicable to systems of the
type
z(™ 4 Z a;Y; =bu+d (2.36)

=1
where Y; are known continuous, possibly nonlinear functions of the state variables,
parameters a; and control gain b are unknown but constant, and d = d(t) is a bounded

disturbance.

|d(t)] < D (2.37)
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Let’s consider the second order dynamic system as follows:
Z4+aY =bu+d (2.38)

As in the previous section, the sliding surface s = 0 is defined as

s = (% + ))& (2.39)

The control discontinuities are smoothed out inside the boundary layer B(t). The
boundary layer thickness ® is constant here, since residual dynamic uncertainty would
be time invariant if adaptation were perfect, as it would be owing only to d(t). To
derive a control law that ensures convergence to the boundary, a Lyapunov function
V(t) is defined as

1

V()= Zlsh + b((h —

5 4 (b — by (2.40)

where

sa = s — ®sat(s/®) is a measure of the algebraic distance
of the current state to the boundary layer
b is the estimate of the (a/b)

b is the estimate of b

The control law w is selected as

u=hY — b u* + (D + n)sat(s/®)] (2.41)
where
ut = —3 + Az (2.42)
Noting that
sao = & outside the boundary layer
sa = 0 inside the boundary layer
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we get

V(t) = (bh—a)(Ysa +h)— (bb~! — 1)u*sa — bb~1(D + 7)sasat(s/&) +
- -l
d:sp+ (bb_l — l)b

:_1 2 2 2 . .
where b  is the time-derivative of b~!. h and b are estimated on-line according to

the following adaptation laws:

h = —Ysa (2.43)
b = [uf 4 (D + n)sat(s/®)]sa (2.44)
which leads to
V(t) = [—(D + n)sat(s/®) + d]sa (2.45)
so that
V(t) < —lsal (2.46)

outside the boundary layer. The adaptation laws (2.43) and (2.44) show that the
adaptation ceases as soon as the boundary layer is reached. This avoids the unde-
sirable long term drift found in many adaptive schemes, and provides a consistent
rule on when to stop adaptation. Definition (2.40) implies that V = 0 inside the
boundary layer, which shows that (2.46) is valid everywhere and thus guarantees that

trajectories eventually converge to the boundary layer.

2.5 Feedback Error Learning Control

Nonlinear control design techniques like sliding control and adaptive sliding control
have been successfully used on some nonlinear systems. Yet, the system’s dynamic
structure has to be understood beforehand and the uncertain parameters have to be
estimated. This section introduces integration of a neural networks scheme called
feedback error learning into the trajectory control of nonlinear systems. No a pri-

ori information about the system dynamics is required, the network will gradually
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Figure 2-1: Structure of feedback error learning control

learn the inverse dynamics model from error signals feedback from a conventional PD
controller. It simultaneously controls the motion of the system while it learns.

Let’s consider again controlling the dynamic system represented by equation (2.3).
Figure 2-1 shows the control system structure using the feedback error learning
scheme. The inverse dynamics model is represented by a neural network. The total
control force U(t) fed to the dynamic system is the sum of the feedback control force
Uy(t) from the PD controller and the feedforward control force U;(t) from the neural

network controller.

U(t) = Ugt)+ Ui(t) (2.47)
Us(t) = Kp(Xa(t) - X(1)) + Ka(Xa(t) - X(2)) (2.48)

where K, and K, are feedback gains of the proportional term and the differential
term.

The inverse-dynamics model receives the desired trajectory X4(t), and uses the
feedback control force Ug(t) as‘the error signal to adjust its weights. The training
algorithm is the error-back propagation method developed by Rumelhart et al. [10].
As learning proceeds, the feedforward network controller will provide a greater part of

the control action, while the feedback signal will gradually decrease to zero. Since the
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input layer

hidden layer

Figure 2-2: Structure of a three-layer network

network receives only the desired trajectory as the input, and produces the required
control force to the system, it is a representation of the nonlinear model of the inverse
dynamics instead of just being a neural network version of the PD controller.

As shown in Figure 2-2, the network of the inverse dynamics model has three lay-
ers. The input layer neurons represent desired trajectory, velocity, and acceleration.
The output layer neurons represent the feedforward control forces.The nonlinear char-
acteristics of the inverse dynamics model of the system is learned and represented by
this three layered cascade of linear-weighted summation and sigmoidal nonlinearity.

Let a:f , yf represent the weighted sum of the input and output of the j-th neuron

in the input layer, their relation is:
y, =z (2.49)

Next, let =¥, y& represent the weighted sum of the input and output of the k-th

neuron in the hidden layer, and the weight from the j-th neuron in the input layer to

the k-th neuron in the hidden layer represented by wlff, we have:

zf = Y wiiy; (2.50)
vi = f(zd) (2.51)
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Finally, the m-th neuron of the output layer is represented by z2, and y2, and the

weight from the k-th neuron in the hidden layer to the m-th neuron in the output

layer is wfO:

- wa,,?y,{f (2.52)

f(=2) (2.53)

]

0 30

The control force output from the network is:
Uim = Yo (2.54)

Here, f is the widely used sigmoid function:

1
1+e-=

f(z) = (2.55)

The neuron weights are updated according to the error-back propagation method,
using the feedback signal from the PD controller as the error. Let A represent the

increment of weights and p be the learning rate:

Aw? = pyf f(2Q)usm (2.56)
& = Y wl2f(=0)usm (2.57)
Awle = pylf(=F)6F (2.58)

The control command fed to the system is the sum of the feedforward force and

feedback force.
Um = Uim + Ufm (2.59)

2.6 Gaussian Network Control

Another kind of neural network control method is studied with the previous con-

trollers. It’s called Gaussian network control, which uses a network of gaussian radial
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basis functions to adaptively compensate for the plant nonlinearities [8]. The a priori
information about the nonlinear function of the plant is its degree of smoothness. The
weight adjustment is determined using Lyapunov theory, so the algorithm is proven
to be globally stable, and the tracking errors converge to a neighborhood of zero.
Sampling theory shows that bandlimited functions can be exactly represented
at a countable set of points using an appropriately chosen interpolating function.
When approximation is allowed, the bandlimited restriction can be relaxed and the
interpolating function gets a wider selection. Specifically, the nonlinear function f(x)
can be approximated by smoothly truncated outside a compact set A so that the
function can be Fourier transformed. Then by truncating the spectrum, the function

can be bandlimited and uniformly approximated by

f(x) =" crgo(x— &) (2.60)

Icl,

where cy are the weighting coefficients and £; form a regular lattice covering the subset
A7, which is larger than the compact set A by an n-ball of radius p surrounding each
point of x € A. The index set is I, = {I | {; € Ar}.

go(x — €) is the gaussian radial basis function given by:

90 (x — £) = exp(—mal||x — ¢[|?) = exp[—mol(x — £)7(x — €)] (2.61)

Here ¢ is the center of the radial gaussian, and o2 is a measure of its essential
width. Gaussian functions are well suited for the role of interpolating function be-
cause they are bounded, strictly positive and absolutely integrable, and they are their
own Fourier transforms.

Expansion (2.60) maps onto a network with a single hidden layer nodes. Each
node represents one term in the series with the weight £; connecting between the
input x and the node. It then calculates the activation energy r? = ||x — &2
and outputs a gaussian function of the activation, exp(—nr?s2). The output of the
network is weighted summation of the output of each node, with each weight equals

to c;. Figure 2-3 shows the structure of the network described above.
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Figure 2-3: Structure of the Gaussian network

The next step is the construction of the controller. Consider the nonlinear dy-

namics system

=) + £(x(2) = b(x(t))u(t) (2.62)

define the unknown nonlinear function A = b~'f, and let h4 and ;' be the ra-
dial gaussian network approximations to the functions A and b~! respectively with
approximation error €5 and € as small as desired on the chosen set A.

Figure 2-4 shows the structure of the control law. To guarantee the stability of
the whole dynamic system, the control law is constructed as a combination of three
components: alinear PD control, a sliding control and an adaptive control represented

by the Gaussian network.

u(t) = —kps(t) - -;-Mz(x(t))nx(t)||sA(t) + m(t)ua()
+(1 = m(t))[ha(t, x(t)) — b3 (t,x(2))an(t)] (2.63)

m(t) is a modulation allowing the controller to smoothly transition between sliding
and adaptive controls.

m() = max(0, sat("—(%‘—l)) (2.64)

where r(t) = ||x(¢) — %o
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Figure 2-4: Structure of the Gaussian network controller

ar(t) = Xx(t) - 2(2) (2.65)

with AT = | 0, A1, (n—1)2"2, ..., (n—1)) ] and :c,(,”)(t) is the nth derivative
of the desired trajectory.

The adaptive components h 4 and b/il are realized as the outputs of a single gaus-
sian network, with two sets of output weights: &(t) and dy(t) for each node in the

hidden layer.

ha(t,x(t)) = Y &l(t)go(x(t) - ér)

Iel,
bl (t,x(t) = > dr(t)g0 (x(2) — &) (2.66)

The output weights are adjusted according to the following adaptation law:

&(t) = —kal(l—m(t)sa(t)go(x(t) - ér)] (2.67)
di(t) = ka2 ar(t)[(1 — m(t))sa(t)go(x(t) - &1)] (2.68)

where positive constants k,; and kg, are adaptation rates. See Figure 2-3 for the

detailed structure of the adaptive control law.
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As proved by Sanner and Slotine in [8], when the parameters in the controller are
chosen appropriately according to the a priori knowledge about the smoothness and
upper bounds of the nonlinear dynamic functions, the controller thus constructed will
be stable and convergent. All the states in the adaptive system will remain bounded

and the tracking errors will asymptotically converge to a neighborhood of zero.
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Chapter 3

Simulation on a Sensorimotor

System

In order to evaluate the performance of different controllers, a sensorimotor system
is setup with a nonlinear inertia load representing the nonlinear dynamics. The
detailed descriptions of the experiments are given in Chapter 4. This chapter focuses
on simulations of the controller designs on a computer before implementing them on
the real physical plant. This makes the process of design and analysis easy to carry

out without causing physical system failures.

3.1 Nonlinear Model of the Sensorimotor Dynamic
System

The nonlinear inertia load structure is shown in Figure 3-1.A weight is attached by
cable to a point on the inertia disk through a small pulley. It has a simple design
easy to implement, yet the nonlinearity introduced is highly complicated as will be

seen from its equation of motion, which is derived by using the Lagrange’s equations.

L =T — U = Lagrangian = Kinetic Energy — Potential Energy = (3.1)
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Figure 3-1: Nonlinear inertia structure of the sensorimotor system

d oL oL
z;(gé‘)—gg = Y F (3.2)

where 8 is a generalized coordinate which uniquely specifies the location of the object
whose motion is being analyzed. In our case, 8 is the angle of rotation of the load. F
is the nonconservative generalized force corresponding to the generalized coordinate
6. In our case, it’s the torque u applied to the load.

The kinetic energy and potential energy of the nonlinear system are

— 1 02 1 .2
T = 2J9 +2My
U = Mgy
so we have
1 .
L= EJBZ + %Myz — Mgy (3.3)

Since the relation between y and 8 is governed by

y = VR?4+ L2 —2RLcos¥d (3.4)
. RLsin 6 .
§ = ;‘n 6 (3.5)
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we have

oc . RLsind
— = Ji+ My
86 Y
_ J0-+M(RLsm0)20-
d ocC . RLsin g RLsin@ RLcos@; RLsin6,
—) = Jo+M 26+ 2M6 - ]
dt(ao) ( Yy ) y [ ] y? ]
. 12 2 02
_ [J+M(RLsm0)2]0+2M0 (Rf) sm0[cosa_ RLs;n 0]
Y Y
in §
oL _ Mg[RLcOSOO RLsing; RLsm0]_ RLsin
06 y y?
M(RL)?sinfcos¥ ;, (RLs1r10)3 , MgRLsin6
- y? oo yt o~ Y

Substituting the above expressions into the Lagrangian equation (3.2) yields

M (RL sin 6)? MgRLsin 8

M(RL)?sin 8 RLsin? 6
2

(J + )+ [cos 6 — T]o’? + =u (3.6)

3.2 Simulation Results

As can be seen from equation (3.6), the dynamics of the sensorimotor system is very
complex and nonlinear, thus provides a good basis for evaluating different nonlinear

control methodologies. The actual parameter values of the system are
J=.002kg-m?* M=04749 km; R=.0476m; L=.17Tm (3.7)

The inertia value of the load J is chosen to fall within the operating range of the
sensorimotor. The dimensions of R, L and the mass of the weight M are designed
to cause the variation of the system inertia to be half the value of J, as shown in
Figure (3-2).

The different controllers are simulated on the nonlinear dynamic system (3.6) and
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Figure 3-2: Nonlinear inertia plot

their results are compared in the following sections. To establish a fair comparison,
all the controllers are designed to tracking the same trajectory shown in Figure 3-3,
which is generated by a trapezoidal speed profile also shown in the same figure. The
system accelerates to a constant speed and then decelerates until stops and has a

duration time of 15 seconds. The closed-loop bandwidth of all controller is also the
same: A = 20 hz.

3.2.1 PID Control

The control gains of the PID controller are selected according to the bandwidth ),

time constant 7 and damping constant ¢ of the nonlinear system.

K,‘ = JAz/T (38)
K, = Jr+20))/r (3.9)
Kqs = J+2X7)/r (3.10)
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with
T =1.0/(A1y) (3.11)

where 74 is the time constant factor.
In the simulation, the constant values are chosen as 74 = 0.1 and ¢ = 0.707. The
duration of the motion is 15 seconds with a time step of .0005 seconds.

Thus the control law for the PID controller is
u=K; / ddt + K, + Kib (3.12)

The simulation results of the PID controller are shown from Figure 3-4 to Figure 3-

3.2.2 Sliding Control

To use the sliding method described in Chapter 2, the dynamic function (3.6) can be

written as
§=f+bu (3.13)
where
2
b - (J+M(RLsxn9) )1 (3.14)
2 s 2 .
f = b(M(RL) sm0[ osf — RL;lzn 0]02+MgRLsm0) (3.15)

Y

Assuming the exact values of J, M, R and L are not known, thus the exact values
of the control gain b and the nonlinear function f are unknown, but have a priori

bounds as:

325 < b < 500 (3.16)

-72< f< T2 (3.17)
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The estimated values of b and f are

b = /bmazbmin = 400 (3.18)

f = —T2sin# (3.19)

and, accordingly,

ﬂ = v bma:c/bmin = 1.25 (320)

If—f] < F=2 (3.21)

Defining s as s = § + )\, computing § explicitly, and proceeding as described in

Chapter 2, a control law satisfying the sliding condition can be derived as

u=b"2[72sin8 + 6, — \§ — ksat(s/®)] (3.22)
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The constant values are chosen as 7 = 50 and A = 120. The total time duration is 15
seconds with a time step of .001 seconds.
The simulation results of the sliding controller are shown from Figure 3-6 to Fig-

ure 3-8.

3.2.3 Adaptive Sliding Control

The case for the adaptive sliding controller is similar to the sliding control simulation,
except that the value of b is updated in each step of the control according to the

following adaptation law:
-1
b = b[u* + nsat(s/®)]sa (3.23)

with
wt =0+ ) (3.24)

and a constant b2 = .00005 to control the adaptation rate.
The simulation results of the adaptive sliding controller are shown from Figure 3-9

to Figure 3-12.

3.2.4 Feedback Error Learning Control

The network consists of 3 input neurons corresponding to desired displacement 84,
velocity 64 and acceleration 6 , 15 neurons in the middle layer and 1 output neuron
which is the feedforward control torque. Each neuron has a bias term in its weights.
The starting initial weights are randomly selected between 0 and 1.

The inverse-dynamics model is acquired by repetitively experiencing the single
movement pattern, while receiving the desired trajectory and monitoring the feedback
control value as the error signal. The desired movement trajectory is the same as
before, shown in Figure 3-3. The movement has a duration time of 15 seconds and
the sampling time is 0.006 second. So the weights are adjusted 2500 times for each

iteration. The learning rate and momentum term are adjustable at the beginning of

40



Tracking error

0.2

0.15

0.1

Angle (deg)

10
Time (sec)

Velocity error

15

Angular velocity (deg/sec)

08' ...... .
o6F-- ...............................

0'4_.. : .............................

-0.6 L

Figure 3-6: Tracking error

10
Time (sec)

and velocity error for sliding control

41

15



s-trajectory with time-varying boundary layers
80 T T !

N B
(=] (=]
T Y
1 1

(=)
T
g
\
i
|
N
1

Angular velocity (deg/sec)
r
=)
1

A
(=]
T
7z
~
i

Time (sec)

Figure 3-7: Boundary layers (solid lines) and s trajectory (dashed line) for sliding
control

Control torque
0.25 — T

0.2

0.15

o
o

o
=}
G

Torque (N*m)
(]

Time (sec)

Figure 3-8: Control torque for sliding control

42



Tracking error

=3
[)
=
2_0'3_ e e e e e e
o
c
< . .
_04- e e . _
-0.5F - T
‘0.6’ .......................................................................... ﬁ
_0_7._ .......................................................................... -
- A 1.
08 5 10 15
Time (sec)
Velocity error
8 T T
6,. ............. —

Angular velocity (deg/sec)

-6

Time (sec)

Figure 3-9: Tracking error and velocity error for adaptive sliding control

43



s-trajectory with time-varying boundary layers
40

2F - - - .
> :
\ /7 \ . .
oF v -+ e~V o . . . . .
\ / \ . r
U \ : ’ \\ s ]
o \ Lo~ /7 '
\ . - \ \ .
% 20F - e \/1 . ....‘.I.. N -
ﬁ I & N
.g. I‘ R
© : \
> . ||
a -60} . . . . ].Il . . -
< N
! .
lI
-80} i'l ]
II
i
. {!
-100} . . |:' . . 4
-120 L —L
0 5 10 15

Time (sec)

Figure 3-10: Boundary layers (solid lines) and s trajectory (dashed line) for adaptive
sliding control

Estimate of inertia b

400 — T
BEOf - e e e ............................. 4
;&\300_ ................................ B
£
2
k]
B
o0k - 4
200— .............................. . R LT R . .............................. -
150 L L
0 5 10 15

Time (sec)

Figure 3-11: Inertia estimation for adaptive sliding control

44



Control torque
0.25 T T

Torque (N*m)
o

-0.1
-0.15

-0.25

Time (sec)

Figure 3-12: Control torque for adaptive sliding control

each iteration according to the performance of the last iteration.

In the simulation, the learning rate and momentum term are both chosen to be
0.01 for the first 4 iterations. Then they are decreased to .008 for the rest 6 iterations.
The network with 15 units in the hidden layer converges. For a smaller number of
hidden units, the convergence error is bigger, while for larger number of hidden units,
the model behaves unstable and is difficult to converge.

Figure 3-13 to Figure 3-19 are the results from the feedback error learning control.
Figure 3-13 and Figure 3-14 show the trajectory and velocity following errors after
learning. As shown in Figure 3-15 and Figure 3-16, the performance improves a lot
compared to the PID controller. The control force information is shown in Figure 3-
17 to Figure 3-19. The feedback control force dominates when the learning just
begins. The neural network quickly learns the inverse dynamics of the vehicle during
the iteration, it takes the place of the feedback as a main controller and produces a

majority of the control action.
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Figure 3-18: Feedforward network control torque for feedback error learning control
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Figure 3-20: Phase space portrait of the desired trajectory

3.2.5 Gaussian Network Control

Figure 3-20 shows the phase space plot of the desired position and velocity, which is
the same as used in the other controllers for the fair comparison purpose. The set A4

is thus chosen to be:
lz| ||

'3_66, 3‘6 (3.25)

||| lw = max(

with its center at xo = [360, 50]T. This represents a rectangular subset of the state
space, Ag = [0, 720] x [0, 100]. The transition region between adaptive and sliding

control modes is ¥ = 0.1 as the value in equation (2.64). So we have
A ={x||]x—xo|]|lw < 1.1} (3.26)

The maximum desired acceleration is |#4|msz < 100 as shown in the desired tra-
jectory plot in Figure 3-3 , which sets |a,| < 42 for all x € A and the error bound to
be €, = €5, + 42¢;.
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To achieve asymptotic tracking accuracy of 0.5 degrees, taking kp = A = 2 requires
that €, < 0.3. Assuming the frequency contents of A and b~! on A are 8, = 2.5 and
B; = 2.5 with uniform error no worse than 0.001 and an upper bound of 120 for the
transform of A and 0.03 for the transform of b1, a close following to the parameter
selection procedure in [8] shows that the choices 8, = 6; = 2 and I, = I; = 5 should
be sufficient to ensure the required bound on ¢,. This leads to a network of gaussian

nodes with variances 02 = o? = 20 and mesh sizes A, = A; = 0.1. So the network

includes all the nodes contained in the set Ar = [-5A,,131A,] x [-5A;,23A;], for
a total of 3973 nodes.

The control laws are given by equation (2.63) and (2.66) in Chapter 2, using a
value of & = 0.02 as the sliding controller boundary layer, with adaptation rates
kg1 = kgz = 200. Assuming uniform upper bounds of My(x) = 2.5, M;(x) = .003 and
M;,(x) = 0.005, the sliding controller gains are taken as k,; = 2.5 + 0.003]a,|.

Using Fourier transformation, it’s easy to find that the above spectra assumptions

are justified for both & and b~!. The simulation results are shown from Figure 3-21

to Figure 3-25.

3.3 Comparison of Simulation Results

Comparison are made about a priori information requirements, closed-loop band-
width, speed of convergence, memory size, control effort, computation load, and
tracking performance of these five controllers.

The PID controller needs little information about the nonlinearity, instead it re-
quires a rough estimate of the inertia of the system. For the sensorimotor system,
the constant inertia value J = .002 kg - m? is used. It then selects the control gains
based on the closed-loop bandwidth and this inertia value. The tracking performance
is shown to be good and the bandwidth can reach to 20 hz. The memory size is small
and the computation is fast.

The sliding controller is provided with the estimated structure of the nonlinearities

and the error bounds. The tracking error is slightly larger than PID controller due
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to the large estimation error bounds. It also reaches a high closed-loop bandwidth of
20 hz and needs a slightly more computation time than PID. Unlike PID controller,
the performance of sliding controller can be increased given better nonlinearity esti-
mation. There is a quantified relationship between the performance and uncertainty
trade off given by equation (2.35).

Adaptive sliding control has the capability to quickly learn and adapt to parameter
uncertainties. Although it requires slightly more memory for adaptation, the tracking
performance improves a lot after the parameters adapt to their real values. Its closed-
loop bandwidth is also the same as the sliding controller. Both sliding control and
adaptive sliding control are theoretically proven to be stable. So the overall system
stability is assured.

While previous control techniques may fail to achieve the desired performance in
the presence of unmodeled dynamics, the advantage of using a neural network for
the nonlinear control is that it doesn’t require any information about the nonlinear
dynamics which is difficult to obtain. Its performance is much better than the above
three controllers after learning. Yet the computations time is long, with control step
of 0.006 seconds. Moreover, there is no theory to provide information about the
structure of the network, i.e., the number of the layers and number of nodes within
each layer. The numbers chosen are reached only from trail and error. There is either
no theory developed regarding to the stability of the system.

Gaussian network control has precisely what the error backpropagation network
needs, a systematic approach to choose the structure of the network while assuring the
overall system stability. Its performance is good compared to the first three controllers
and the system adapts much more quickly than the previous network. As shown in
Figure 3-25, the adaptive control law takes most of the control action shortly after
the first 0.05 seconds. The knowledge required for the controller is estimation of the
frequency contents of the nonlinear function to be approximated. The structure of the
Gaussian network is chosen based on this knowledge and the required performance.
More work should be continued to study on reducing the size of the network and

achieving fast computation while maintaining the desired performance.
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Chapter 4

Experimental Comparison and

Results

The best way to compare different controllers is to implement them on a real physical
system and evaluate their performances. The system chosen for this thesis research
is a sensorimotor system manufactured by the Seiberco Inc. Sensorimotors have an
extremely simple and compact design. Unlike conventional DC brushless motors, the
sensorimotor provides rotor position and velocity feedback without the use of hall
effect devices, encoders, or resolvers. This feedback can easily be used to develop
different controllers without introducing other sensors and devices.

According to Seiberco, the inherent position feedback information is derived from
the permeance variation within the permanent magnet rotor and wound stator air gap.
This position information is identical to that of a brushless resolver that outputs two
sinusoidal signals phase shifted 90 degrees from each other.

The motors are frameless, i.e., the stator and rotor are provided without bearings
or housings. They represent a compromise between direct drive, and small, high
speed motors. The laminated stator has 24 windings, of which 4 are used for sensing
and the others for power. The rotor is composed of 18 samarium-cobalt magnets
epoxeid to a cold-rolled steel core. The magnets are skewed to reduce torque ripple.
The skewing does reduce torque output by roughly 10% when compared to a motor

without a skewed rotor, but nonetheless, the high energy rare earth magnets give the
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motor a very high torque-to-weight ratio.

4.1 Experimental Setup

The experimental setup used for the control system development includes the follow-

ing elements:

1. A transputer-based controller and data logger. The setup has analog inputs
and outputs (12 bit), and general purpose digital 10 ports. The system can run
a full controller and state estimator at 2000 hz and log up to 100000 floating

point data values.

2. The basic IO, sensor processing, state estimation, control, and data logging soft-

ware. The data logger outputs directly to MATLAB for analysis and plotting.

3. A flexible mechanical setup that allows us to change motors, inertia loads, and

external sensors quickly.

4.2 Experimental Results and Comparison

Based on the simulation results from the previous chapter, three control techniques
are selected to be implemented on the sensorimotor systems: PID control, adaptive
sliding control and error backpropagation network control. Sliding control is not select
since adaptive sliding control will represent most of its features. Gaussian network

control is not implemented due to the large computation requirement.

4.2.1 Performance of PID Control

The performance of PID control is shown from Figure 4-1 to Figure 4-2. The maxi-

mum bandwidth realized is 15 hz. The control step is 0.0005 seconds.
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Figure 4-1: Experiment tracking error and velocity error for PID control
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Figure 4-2: Experiment control torque for PID control

4.2.2 Performance of Adaptive Sliding Control

The performance of adaptive sliding control is shown from Figure 4-3 to Figure 4-6.
The maximum bandwidth realized is 13 hz. The control step is 0.001 seconds, which
represents larger memorize and more computation time than the PID controller. The
tracking performance is comparable to the PID control, and it improves after the

parameter adaptation.

4.2.3 Performance of Feedback Error Learning Control

The performance of the feedback error learning control is shown from Figure 4-7 to
Figure 4-9. The maximum bandwidth realized is 4 hz, much smaller than the previous
two controller. The control step is 0.006 seconds, represents even more larger memory
size and computation time than the last two control techniques. Due to the noise in
the real time sensorimotor control system, although the network adapts to most the

nonlinear part of the unknown dynamics, as shown in Figure 4-9, its performance is
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Figure 4-3: Experiment tracking error and velocity error for adaptive sliding control
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Figure 4-6: Experiment control torque for adaptive sliding control

not as good as results from the simulation and doesn’t improve much with increasing

learning iterations.
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and total torque (solid line) for feedback error learning control
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Chapter 5

Summary and Recommendations

for Future Work

5.1 Summary

The past decade has seen a dramatic increase in interest in neural networks systems.
They are actively explored in psychology, signal processing, pattern classification, pat-
tern recognition and optimization problems. There are also lots of interests growing in
the control community to apply neural networks to nonlinear dynamic systems. Since
control theory is a well-developed field with a large literature and solid mathematical
foundation, instead of approaching neural networks as a blanket solution to control
problems, we should make connections to existing control theory, illustrate their rela-
tionships to conventional and adaptive control techniques, and directly compare the
new neural network approach to more traditional control system designs.

This thesis tries to study three conventional nonlinear control methodologies and
two neural network approaches, compare their performances on a nonlinear dynamic
system, discuss their strength and weakness, and suggest choosing appropriate control
techniques for different nonlinear control applications. Due to the lack of experimen-
tal results and the very limited analysis performed in this thesis on the Gaussian
network control method, the discussion of this controller is limited and serves only as

a reference.
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Depending on how much we know about the nonlinear dynamic system and what
computation resources are available, we can make choices of the control methods that
are best for our applications.

The PID control is a linear control method with gains chosen based on the in-
formation of the plant and the desired closed-loop bandwidth. The results from
simulation and experiment show that it needs just a rough estimate of the inertia
term, with little knowledge about the nonlinearity. Depending on the significance of
the nonlinearity and the bandwidth constraints, it can be implemented on real time
control with little amount of computation and memory requirements. The tracking
performance is good, but can’t be improved very much even if additional information
about the nonlinearity is available. It’s a good controller for simple control tasks
on simple dynamic systems, and stability can be guaranteed for linear systems. Yet
for complicated nonlinear dynamic system, performance is limited and no stability is
guaranteed for closed-loop bandwidth.

Sliding control is a systematic nonlinear approach to nonlinear control problems.
It requires information about the structure of the nonlinearity, but need only an
estimation of the parameters involved and their estimation bounds. The tracking
performance is improved and the stability of the overall system is maintained. There
is a quantified trade off between the performance and the model precision. This
approach can also be implemented into real time control, computation time is small.
Overall, it’s best for nonlinear systems with a good knowledge of the nonlinearity
structure, but with just estimations of the parameters.

Adaptive sliding control is an extension to sliding control. It dynamically adapts
to the unknown parameters of the nonlinear systems. If initial estimates are poor,
the performance improves greatly after parameter adaptation. If the structure of the
system is known, but the coefficients are hard to obtain, like the case with underwater
vehicle’s hydrodynamic forces, then adaptive sliding control can be a good choice.

A backpropagation network is a candidate for control problems with no prior
knowledge of the structure of the system. It can be realized in on-line control with

the feedback control as a guidance. The number of nodes in the network is limited.
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Computation loads are much higher than the previous three controllers so the closed
loop bandwidth may be low. Moreover, there is no theoretical proof about its stability
and robustness. There is no established standard as how many layers and nodes are
needed.

Gaussian network control serves as a link between the theoretic control and the
neural network control. It requires a little more information about the nonlinearity,
namely its frequency contents and some upper bounds. It adapts more quickly than
the backpropagation network. Since the weight adjustment is determined using tradi-
tional Lyapunov theory, the overall system stability is assured and the tracking errors
converge to a neighborhood of zero. Unlike the previous network approach, the num-
ber of nodes within the gaussian network can be decided by the desired performance
and the a priori frequency content information about the nonlinear function to be ap-
proximated. It indeed needs more nodes inside the network in order to approximate
the nonlinear function better, and consequently increases the computation time. Yet
with the development of parallel microprocessors, this problem will be solved soon
and becomes the advantage of this network controller.

The above summary is based on the simulation and experimental results shown
earlier in this thesis. Figure 4-1 shows the experiment tracking performance of PID
control. The tracking error gets bigger when larger nonlinearity occurs, showing that
the PID doesn’t compensate for the nonlinearity since it’s not provided with that prior
knowledge and the performance is not improving with time since there is no learning
within the controller. Figure 4-3 shows that the adaptive sliding controller which
is provided with a general form of the nonlinearity adapts quickly to the unknown
parameters during the first 4 seconds of the experiment, and the performance improves
after the adaptation. As for feedback error learning control, the experimental results
shown in Figure 4-7 is not better than the previous methods, but the controller
has no a priori information about the system structure. The Figure 4-9 shows the
feedforward network component has the capability to learning the nonlinearity and
provides most part of the control action. But choosing the structure of the network

can only be realized by trial and error, and care should be taken when the system’s
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stability is not maintained. This shortcoming may cause serious problems in real
applications. The Gaussian network performance can only be seen in simulation, but
it still gives us general perception of this controller. As shown in Figure 3-21, the
tracking error is well within the design error bounds. The Gaussian networks quickly
learns the nonlinearity during the first 0.1 seconds, as shown in Figure 3-25, and
provides almost all the required control actions in Figure 3-23. The advantages of
this controller are: it assures system stability and there is established standard to
choose nodes and parameters for the network structure.

The computation requirements for different controllers can also be seen from the
results in the thesis. The PID controller runs fast with a time step of 0.0005 seconds.
The sliding controller and adaptive sliding controller have the same time step of 0.001
seconds, showing more computations time than PID. The adaptive controller further
requires more memory to accommodate adaptations of the unknown parameters. The
feedback error learning controller has even higher computation load, with a control
step of 0.006 seconds during the experiments. The memory size is also larger to
store the weights for the network. As for Gaussian network control, further work
will be continued to study its computation requirement and associated performance
trade-offs and realize real time control of this technique.

The current results of the comparison is that when we have the ability to under-
stand the nonlinear dynamic system’s structure, the sliding controller and adaptive
sliding controller are well established for such systems with good performance and
assured overall system stability. When less information is available about the system
nonlinearities, neural network approaches can be applied to learn and adapt to these

unknown structures.

5.2 Recommendations for Future Work

This thesis offers a preliminary comparison of some of the mostly used traditional
nonlinear controllers and two examples from connectionist approaches. Results from

simulation and experiment suggest when and which controllers we should use de-

68



pending on our prior knowledge of the nonlinearity and the computational resources
available.

The current work is greatly limited by the absence of experimental results of the
Gaussian network control. There is lots of work need to be done for the completion of
this comparative study. More experiments of the Gaussian network will be taken, with
the main focus on reducing the number of nodes within the network and improving
the computation speed, trading off parts of the dynamics that are known with those
that are unknown. Parallel structure based microprocessors can be implemented to
rapidly decrease the computation time and to realize the real time control of large

networks.
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