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Abstract

An efficient time domain method is needed to analyze problems containing high loss
viscoelastic materials with complex geometry. One presently available method for low loss,
constant , materials is the finite difference method with memory variables attributed to
Carcione et al., and Blanch et al. [2, 5]. In this method, the constitutive relation is
approximated by a sum of decaying exponential functions with matched or optimized
relaxation spectra. This allows the time domain convolutions, appearing in the constitutive
relation, to be eliminated at the cost of additional field variables or "memory variables". The
total number of field variables is roughly doubled for both 2D and 3D models with attendant
increases in computer speed and storage requirements. Greater efficiencies are needed to
make this method more competitive.

In this thesis, I investigate the idea of cancelling the error due to the constitutive relation
approximations (optimization error) with the error due to the finite difference time domain
model (discretization error) by a process referred to as reoptimiztion. Error cancellation is
possible because the discretization error is completely predictable and can be accounted for
during the optimization procedure. To this end, the work of Blanch et al. is extended to high
loss factor materials with } = O (1) by matching both real and imaginary parts of the complex
modulus with experimental data and implemented in a finite difference model using a
Predictor-Corrector scheme with 3-point centered spatial differencing. Using this model, the
reoptimization process is compared to the optimization process for three cases: 1.) high loss
factor, narrow band, moderate Courant number; 2.) high loss factor, wide band, moderate
Courant number; and 3.) high loss factor, wide band, low Courant number. Results show
that, for a given accuracy, if the reoptimization process is used, then the temporal and spatial
step sizes of the finite difference model are roughly doubled for all three cases. This
represents a decrease in model run time by 8 times in 2D and 16 times in 3D. The
corresponding reduction in storage requirements is 4 times in 2D and 8 times in 3D.

Thesis Supervisor: J. Robert Fricke
Title: Assistant Professor
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Chapter 1

Overview

1.1 Introduction

A viscoelastic material is any material that dissipates energy when subjected to stress or strain. In

accordance with the second law of thermodynamics, all materials are viscoelastic, which is ample

motivation for the present study. Materials related to ocean engineering, known to exhibit overt

viscoelastic effects under rather common conditions include arctic sea ice, seawater, and fluidized

seabeds. Viscoelasticity is also important in the design of submarine hulls which are often

covered with a layer ofviscoelastic material to absorb interrogating sound waves. Clearly,

viscoelasticity is of general interest and importance to all who study the ocean and ocean related

technologies.

A problem of particular interest at MITs Department of Ocean Engineering is to analyze how a

constrained viscoelastic layer at the center of a submarine hull thickness can be used to reduce

scattering noise levels due to shear waves. Four hull designs under consideration are shown in

Figure 1.1. Each design includes regions of a high loss elastomer constrained by a pressure

bearing steel shell. The basic constrained layer configuration is shown in Figure 1. la. Figure 1. lb

is configured to tradeoff dissipative characteristics with pressure bearing capacity by replacing

areas of elastomer with steel Figure 1. c shows the conventional constrained layer design with

added complexity due to a bulkhead. The final figure is a more radical approach to breaking up

propagating shear waves with resonant sawtooth cavities. Notice that the geometries are, in

general, complex, requiring a time domain numerical solution.
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a.) Basic Constrained Layer Configuration

b.) Interspersed Elastomer

\ _ A _ __ __ _ __ __ _ A A AA A A A _A A A A A A A A A A A A A-

c.) Bulkhead Interface

d.) Jagged Layering

Figure 1.1
Cross section of various constrained layer submarine hull designs used to attenuate shear
wave energy. Constrained layer is an elastomer with a loss factor qr = O (1). Constraining
layer is made of steel.
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More incentive for using a time domain numerical approach is that viscoelastic materials often

exhibit material non-linearities due to temperature, ambient pressure, or large dynamic strain rates

[17]. Because spectral methods rely on linear superposition, they are not suited for analyzing

non-linear effects. In short, situations commonly arise that dictate the use of time domain

methods.

The problem with time domain solutions is that the computational burden, in terms of both

computer storage and run time, is immense. The problem lies in the fact that the constitutive

relation for viscoelastic materials is a convolution in the time domain given in one dimension by

tr(t) = G * t, (1.1)

where is the shear stress, G is the stress relaxation function, and % is the time derivative of the

strain. Not only does the time convolution operator consume computer run time but the strain

history at every point in the modeled domain must be stored, which requires preclusive amounts

of memory, even for moderate size models. In 1988, J. Carcionne, D. Kosloff, and R Kosloff

developed the memory variable concept [5], which eliminated the convolution. In short, the

convolution is traded for additional field variables referred to as memory variables. This created a

resurgence in the use of time domain methods, the finite difference method among them. While

the trade-offbetween the additional memory variables is a good one, the computational burden of

time domain modeling for viscoelastic materials is still high. A comparison of the total number of

field variables required for an elastic model compared with narrow band and wide band (about 2

octaves) memory variable models is presented in Table 1.1 using values generated in

Section 2.7.3. For narrow band models, the number of field variables in 2D increases by 80% and

in 3D by 67%. For wide band, the respective increases are 160% and 155%. Storage

requirements increase directly with the number of field variables and computation time also

increases (roughly) with the number of variables. These numbers indicate the need to improve the

efficiency of these types of methods.
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TABLE 1.1

TOTAL NUMBER OF FIELD VARIABLES REQUIRED FOR ELASTIC MODELING

VERSUS VISCOELASTIC MODELING.

1.2 Objectives

In light of the importance of viscoelastic problems in the field of ocean engineering, the necessity

to analyze these problems in the time domain, and the computational intensity of time domain

solutions, the objective of this thesis is to increase the generality and computational efficiency of a

popular time domain solution, namely, the finite difference method with memory variables.

Specifically, the finite difference method with memory variables applied to low loss factor

materials, q = 0(10-2 ), by Blanch et al. [2] is extended to high loss factor materials with

r = O (1). Computational efficiency is improved by a new process referred to as reoptimization.

How these improvements are made is described in the following section. While the layered

submarine hull problem is not analyzed in this thesis, the capability to do so is demonstrated in

sufficient detail. The damped hull problem motivates the present study and is used as the context

in which to interpret results. The focus of this thesis is on the development of a general and

computationally efficient numerical tool.

9
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1.3 A Few Definitions and Concepts

Before discussing the approach to generalizing and improving numerical efficiency of existing

time domain methods, I need to introduce a few concepts and define a few terms relative to

viscoelastic materials. I am always gratified to learn something new by recasting things I already

know and there is opportunity to do that here. Let us begin with the hypothesis that the modulus

for a viscoelastic material is complex in terms of frequency. If we consider the complex shear

modulus then

5,(60) = g +j'ip , (1.2)

where the real part, ', is called the storage modulus and the imaginary part, "g, is the loss

modulus. Phase speed, frequency, and wavenumber are related by the same relationships as

elastic materials (relationships we already know),

C 2 - (1.3)

except now all quantities can be complex. If o is real, then k must be complex; if k is real, then

X is complex. We also know that a right going shear wave is given by

= e i ' ( tk x) (1.4)

But if c is real, then k is a complex function of X and Equation 1.4 is

?(x, t) = e +(k)-x . e j-(-'r- a(k).) . (1.5)
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A viscoelastic wave must therefore exponentially decay (or grow) depending on the imaginary

part of k and propagate at a phase speed 6epanding on the real part of k. Both are functions of

frequency and viscoelastic waves are, therefore, dispersive and dissipative.

A useful measure of energy dissipation, which is often referred to in this thesis, is the spatial loss

factor Ul defined by

l = 11 . (1.6)

If <<1, Equations 1.2, 1.3, and 1.6 can be manipulated to show that (k) - - Ik. - and
2

t(k) - IkI - k. In words, the phase speed is independant of the level of dissipation. Equation 1.5

can then be recast as

r(x,t) e . ( t+k) (1.7)

The decay has the same form as the free vibration of a damped single degree oscillator. In l

wavelengths, the wave amplitude decays by e" ' . For small , there is no distinction between

ordinary (temporal) loss factor and spatial loss factor. In general, they are space and time duels of

each other. For those readers accustomed to using quality factor measures of dissipation, the

spatial quality factor is the inverse of the loss factor. By hypothesizing that the modulus of a

viscoelastic material is complex, and applying what we already know, we have uncovered the

fundamental dispersive and dissipative character ofviscoelasticity and have a quantitative

understanding for the spatial loss factor.

Before proceeding to the next section, I need to define three different types of wave dispersion.

All three are defined in terms of the basic dispersion relation, Equation 1.3. The first two are

easily defined. If the complex modulus is given by experimental data, then Equation 1.3 is the

material dispersion relation. If the modulus is given by an analytic model, Equation 1.3 is the

analytic dispersion relation. Finally, there is numeric dispersion, which is analytic dispersion with

11



error due to the finite difference time domain model. The precise definition and nature of numeric

dispersion is fully developed in Chapter 3.

1.4 Approach

This thesis is broken into three main tasks. The first task is to review the theoretical basis leading

to the governing differential equations using memory variables. The second task is to extend the

memory variable method used by Blanch for low loss materials to high loss materials. The third

task is to present the reoptimization procedure including the theoretical basis for reoptimization

and demonstration in a working time domain model. The first task is detailed in Chapter 2, the

second and third are covered in Chapter 3.

The new concept of reoptimization is introduced here by first reviewing the "conventional" finite

difference method with memory variables used by Blanch and then discussing how the method is

modified to make it generally applicable and more efficient. This is merely an overview of the

method, greater detail is given in Chapter 3. The "conventional" finite difference method with

memory variables is shown in block diagram form in Figure 1.2. There are four components

(blocks) of the method: the complex modulus experimental data, a complex modulus model a

least squares equation solver, and a finite difference model. The equation solver is used to

optimize the parameters of the assumed complex modulus model with the data in terms of loss

factor, , over a preselected frequency band. The complex modulus model, in terms of the

optimized parameters, is inverse Fourier transformed and incorporated into the finite difference

model. Note that there are two models used here; the complex modulus which models the

behavior of a point in the viscoelastic material; and the time domain model which models the

behavior of a collection of points. Together they model waves in viscoelastic mediat. As

indicated in the Figure 1.2, there are two sources of error in the conventional method. The first is

t For brevity, I will at times refer to either the complex modulus model or the finite difference
model as "the model". The context of the statement will make the distinction clear.
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referred to as optimization error and is due to the finite number of complex modulus parameters.

The second is referred to as discretization error and is due to the finit. size of the temporal and

spatial grid size of the finite difference model. In Chapter 3, the origin and nature of these error is

described in detail.

In Figure 1.3, a new approach, referred to as the finite difference method with reoptimized

memory variable parameters is illustrated. The approach is different than the conventional

method in several significant ways. While the conventional method is used for low loss materials,

the new method models high loss materials. To do this, it is necessary to optimize to both the real

and imaginary parts of the complex modulus rather than their ratio, the loss factor. The ability to

model high loss materials is, therefore, more general and needed to model the constrained layer

submarine hull. The other important difference is the reoptimization process, the focus of this

thesis. The basic idea, conceived jointly with my advisor, J. R Fricke, is a simple one and its

implementation requires only slightly more recurring work than standard optimization. In short,

reoptimization is the process of cancelling discretization error with optimization error. Because

the finite difference error is completely predictable for a given temporal and spatial step size, it

can be accounted for during the optimization process. In practice, the reoptimization process is

the same as the optimization process, only the numeric dispersion relation is substituted for the

analytic dispersion relation. For reasons relating to the stability, it is often better to optimize first.

Then the numeric dispersion relation is substituted for the analytic dispersion relation and, using

the optimized parameters as an initial guess, optimization is carried out again, thus the term

reoptimization.

13



Input: L, Initial Guess

Input:
Initial Conditions, -
Ax, At

- -- Optimization Error

---- Discretization Error

r (x,t)

Figure 1.2
Block diagram of Finite Difference Method with Optimized Memory Variables used to
simulate wave propagation in low constant tl materials [Carcione et al. (1988), Blanch et al.
(1993)]. Decaying exponential constitutive model parameters are matched to complex iq data
within a specified frequency band using a non-linear solver. The inverse Fourier transform of
the complex modulus model is incorporated into a time domain finite difference model used to
predict wave propagation in viscoelastic media.
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Input: L, Initial Guess

Input:
Initial Conditions,
Ax, At

Optimization
l_ __ - Error

Discretization
Error

'r (x, t)

Figure 1.3
Block diagram of Finite Difference Method with Reoptimized Memory Variables used to
simulate wave propagation in high loss q materials. Complex model parameters are matched
to both real and imaginary parts of data within a specified frequency band using a non-linear
solver. Because the complex modulus relation includes error due to the finite temporal and
spatial step sizes of the finite difference model, discretization error is canceled by
optimization.
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Chapter 2

Viscoelastic Theory

2.1 Introduction

This chapter presents background information on viscoelastic theory needed to fully understand

the reoptimization process presented in Chapter 3. I set out to accomplish three things. First, I

discuss the general properties and nature ofviscoelasticity in both the time and frequency

domains, expanding on the concept and significance of complex modulus begun in Section 1.3.

Second, I review four constitutive models which approximate the true constitutive relation

including the decaying exponential model used by Carcione et al. The other models are included

for completeness and comparison. Third, I review the memory variable formulation of the D and

3D viscoelastic wave equations. Introduction of these memory variables eliminates memory

hogging convolutions required for time domain modeling. The 3D formulation is important to

justify that conclusions based on ID results are generally applicable. It is also presented to

emphasize the computational intensity of time domain solutions to viscoelastic problems and the

need to improve their efficiency.
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2.2 Overview of Viscoelastic Materials

Viscoelasticity is a general term for materials that dissipate energy when subjected to stress and

strain. All materials are dissipative to some degree; a condition linked to the second law of

thermodynamics. Viscoelastic materials can be considered to be somewhere between an elastic

solid, responding to stress and strain instantaneously but non-dissipative, and a fluid, dissipating

mechanical energy as heat but unable to support a sustained load. Viscoelasticity is characterized

by material memory; the material "remembers" and is forever responding to earlier loads. In the

time domain, viscoelastic materials creep or relax and propagating waves decay and disperse. In

the frequency domain, constitutive relations are functions of frequency.

Viscoelasticity is quantified by the loss factor, aq, or alternatively its inverse, the spatial quality

factor, Q. Both are measures of energy dissipation. As shown in Chapter 1, the amplitude and

energy of free waves in viscoelastic media decay exponentially in proportion to rl. Waves in low

Q or high -r materials decay rapidly. Stiffer materials tend to have low loss factors; soft

materials tend to have high loss factors. Steel has an ,1 of order .001, fiber reinforced polymers of

order .01, and polymers of order one. Materials may have vl higher than one; there is no limiting

physical mechanism However, they are typically not much higher than one. Because polymers

have such high l , they are considered typical viscoelastic materials. I show in later sections that

another way to express viscoelasticity is to allow the modulus to be complex, that is,

M - M( ) = M + j-M", (2.1)

where M' is referred to as the storage modulus, and M"as the loss modulust. Elastic moduli are,

t I use the symbol Mto refer to complex modulus in a general sense, either compressional
or shear.

17



therefore, pure real numbers. The loss factor defined in terms of the complex modulus is

M//
l. = . (2.2)

M/

The second law of thermodynamics requires that M' monotonically increase with frequency and

that r be positive. Typical complex shear modulus data for a viscoelastic elastomer is shown in

Figure 2.1. Shear loss factors are generally an order of magnitude greater than the extensional

loss factor. The figure shows three distinct regimes: the glassy region at high frequencies and low

temperatures; the rubbery region at low frequencies and high temperatures; and the

glass-transition region between the other two where the most dramatic changes occur. Note that

as the frequency goes to either infinitity or zero, the material approaches elastic behavior, since

M' approaches constant values and M "-o . The high frequency limit of the storage modulus is

referred to as the infinite frequency modulus, M , and the low frequency limit is the relaxed

modulus, MR.

Many environmental variables effect the n of elastomers: preload, age, chemical exposure,

sunlight, static stress, and displacement amplitude [17]. Frequency and temperature generally

have the strongest influence. For polymers there is a close inverse relationship between

temperature on an absolute scale and frequency on a logarithmic scale. Therefore data is usually

given as a function of these two parameters. Because of the strong dependance on displacement

amplitude and temperature, viscoelasticity is commonly a non-linear process. In this thesis, I

restrict the problem to be isothermal and linear but the modeling procedures developed are

generally applicable.

2.3 Relaxation, Creep, and Complex Modulus

Early development of viscoelastic theory began with W. Weber's studies of creep in silk threads

under a constant load [14]. I begin our more mathematical discussions of viscoelastic theory in

the time domain, as well. My goal, in this section, is to show the relationships between relaxation,

18



Complex
Shear

Modulus,

(N)

}7

frequency, f (Hz)

Figure 2.1
Typical complex shear modulus versus frequency for high loss elastomeric material with loss
factor, il - .5. The top curve is the storage modulus, it', and the bottom curve is the loss
modulus, lt'. Note that in both the high and low frequency limits, the material approaches
elastic behavior. The curves shown are generated using the fractional derivative model fit to
data near 2 kHz (refer to Torvik and Bagley [17]).
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complex modulus, and creep, which links the time and frequency domains. The derivations are

based on those given by R M. Christensen [6].

Consider the time domain response of a slender massless viscoelastic rod (a silk thread perhaps)

to a sudden unit step strain as shown in Figure 2.2. Neglecting inertial effects, since it is massless,

the second law of thermodynamics requires that the response, G(t) for t> 0 , monotonically

decrease with time to a some value greater than zero. The shape of the decaying stress curve is

otherwise general. G(t) is referred to as the step response function or relaxation function. The

initial response, M", is elastic with an asymptotic decay to either zero or some offset MR, where

MI and MR are the infinite and zero frequency moduli defined earlier. If MR is zero the material

is defined to be a fluid; otherwise it is a solid. This distinction is nebulous when the decay is very

gradual.

I have shown the response of a viscoelastic material to a step function. How do we model the

response to a general strain input? A general input strain fimunction, (t), can be thought of as the

sum of a series of delayed and scaled step strain functions as shown in Figure 2.3. The scale of

each step is given by the slope of the strain at the corresponding delay time, t . The stress

response is the sum of the product of each input step strain with the step relaxation fnction

evaluated at t='. For infinitesimal sample size, A -0, the stress response becomes a

convolution,

(t) = I G(t - ) ( d . (2.3)
0 d t=-

This equation applies only if the input strain, (t), and its derivative are smooth, and E(t) is zero

for t<0. The convolution is expressed more compactly as

o(t) =G* et. (2.4)

By Fourier transforming Equation 2.4, the expression for complex modulus is in terms of the

20



KI A (t) = 0(t) LViscoelastic Rod

I

L

Input Strain,
E (t)

AOutput Stress, 
(t) AM

oo

MR R

Unit Step Function,
/ 0(t)

time, t

Relaxation Function,
/ G(t)

-- -- - - - - - - - - -_- --_

time, t

Figure 2.2
Relaxation response of viscoelastic rod to unit step strain input. The upper figure shows the
loading of the rod; the middle figure is the unit step input strain, @(t), plotted versus time;
and the bottom figure is the output stress versus time. Since the input strain is a unit step
fimction, the output stress is the relaxation function. The initial output response is elastic with
magnitude, M", which relaxes over time to the asymptotic value, MR.
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d E(t)
It 1.

Input Strain, E (t

d (t) I.
d t d (t)I

dt I t-s

s1

Trl Tr 2 IT 3 time,t

Output Stress , a(t

M s2

M s3

T I T2 T3 time, t

Figure 2.3
Schematic showing output stress response, a (t), to a general input strain function, (t). The
input is constructed from a series of step functions delayed by time, t = r and scaled by the
increase in strain occurring since the previous step function, si. The output stress response is
given by the sum of the product of the constructed series of step functions with the relaxation
response of the material. For infinitesimally small step sizes, A r, the summation becomes a
convolution integral.
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relaxation function is given by

-= M () =j A ,,G,

where the hat overscript denotes the transformed variable. Using Initial and Final-Value

Theorems for Fourier transforms, we get a formal verification that the initial and infinite time

response to a step function are indeed M and MR,, respectively, that is,

M = lim
j' O -* oo

and

(2.6)

MR = lim
j-o -

j · ( G.

It is now easy to show how the step relaxation function, G(t), is related to the step creep

function, (t) . By following the same arguments used previously it can be shown that the strain

response to a general stress input is

e(t) = Y a jt ' (2.8)

If we now Fourier transform Equation 2.8 and rearrange the terms, we get a new expression for

complex modulus,

a 1= M () -
j- oY (2.9)

23
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By equating Equation 2.9 and Equation 2.5, the creep and relaxation fimunctions are related by

= 12 (2.10)
(j·0) 2~Y

The creep and relaxation function are not inverses of each other but they are inversely related. In

this thesis, the wave equations are formulated using the relaxation functions, but the choice is

arbitrary.

2.4 Constitutive Models

In this section, I discuss the four constitutive models. By the end of this section, we see that two

of them are special cases of the remaining two. I discuss each in terms of either the time domain,

the frequency domain, or both depending on what information is needed in other sections of this

thesis.

2.4.1 Decaying Exponential Model

The decaying exponential model is the constitutive model implemented in the time marching finite

difference model. I discuss it in detail because it gives us insight into the nature of viscoelastic

materials and the optimization process that is central to this thesis. The model is based on an

expansion that is akin to the Fourier transform, except that the integration is along the real axis

rather than the imaginary axis. More specifically, Golden and Graham show that it is possible to

expand the stress relaxation function, G(t), without error in a continuous spectrum of decaying

exponentials given by

G(t) = M( ) e dr, (2.11)
where is the relaxation time spectra and M() is the magnitude of the spectral content of

where is the relaxation time spectra and M(s) is the magnitude of the spectral content of
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relaxation times [14]. The only restriction on the relaxation function, G(t) , is that it be causal

and monotonically decrease. The relaxation spectra, r, can be either positive or negative.

For a sampled response, G(t) can be expressed exactly as an infinite sum of discrete relaxation

spectra. By using a finite number of spectra, the sampled relaxation function is

G(t) = (MR + M e (t), (2.12)

where 0(t) is the Heaviside function, st is the relaxation time, and Ml is its corresponding

magnitude. The infinite r, term has been brought out front and identified as, our now familiar

friend., the relaxed modulus, MR. To insure monotonic decay, we will restrict ourselves to

positive zi values.

It is possible, at this point, to use some optimization technique to determine the values of the Ml

and r, parameters that would best fit the true response. Figure 2.4 shows schematically how

Equation 2.12, with L=2, approximates the true relation function. Each term or "relaxation

mechanism" decays at its own relaxation time ¶t and is scaled by Ml. Notice that the share of the

initial infinite frequency response for each mechanism is Ml. This is expressed mathematically as

L

M = MR + E M. (2.13)
1=1

However, because the source used in the time domain model is band limited, a more accurate

technique is to optimize in the frequency domain. To find an expression for complex modulus, we

Fourier transform the approximate relaxation function, Equation 2.12, and substitute it into

Equation 2.5, yielding

M(@) = MR + i @ to ' Ml (2.14)
=1 1 +j o ' x
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Figure 2.4
Schematic of a time domain synthesis of a general relaxation function for a viscoelastic solid,
G(t), from a series of three decaying exponential functions of the form, Ml · exp(-t/ l).
The top curve shows the general relaxation function, G(t), versus time. The first term in the
series has an infinite relaxation time, -, with a scale factor, M1 equal to the relaxed
modulus of the material, MR. The second and third terms have finite relaxation times and
moduli as shown.
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Equation 2.14, in terms of the real and imaginary parts, is

2

M(@) =MR + 1 ( (2.15)
+ -t+ 2

and

M" =E E, (2.16)

al)

where o, is just the inverse of ?t. The parameters, 7l and Ml, can now be varied to determine

the best fit between Equation 2.15 and Equation 2.16 and the real and imaginary parts of the

complex modulus experimental data, within the frequency band of the source.

To get a better idea of how this might work, consider an approximation with only one term in the

expansion and examine Equations 2.15 and 2.16 graphically, as shown in Figure 2.5. The

mechanism "corners" at a frequency given by co = 2. a f1 = 100 Hz. The loss modulus is

greatest at the corner frequency and falls off toward zero at about 1 decade to each side. Over

that same interval, the elastic modulus increases by M. Note the similarity in form between the

model and the real data ( Figure-2. 1). We should expect this since the relaxation time functions

have similar shapes. For both the experimental data and the model, the magnitude of the loss

modulus is related to the slope of the storage modulus. Several sections in Chapter 3 are devoted

to the optimization of the model parameters to experimental data. I postpone further discussion

of the complex modulus matching until then.

One more note before moving ahead. The reader may recognize that the complex modulus

expansion, Equation 2.14, has the equivalent circuit shown in Figure 2.6. The circuit components
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Figure 2.5

Complex modulus, M¢, versus frequency using decaying exponential model with one term

in the expansion. The top and bottom curves are storage modulus and loss modulus,

respectively. For this example, the relaxed modulus is MR 1, the infinite frequency

modulus is Me = 2, and the the corner frequency is f = = 00Hz. Note that the

shape of the curves are similar to those in Figure 2.1 for the complex modulus

experimental data.
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Figure 2.6
Equivalent circuit representation of the relaxation function using the decaying exponential model.
The time derivative of the input strain is analogous to the input current; the output stress is
analogous to output potential; and the parameters of the decaying exponential functions are
analogous to circuit element impedances.
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are a series of L resistor-capacitor pairs in parallel, where the capacitance is Cl =1 and the
Ml

resistance is, Rz= r, *Mr. The output voltage (stress) is the response of the circut impedance

(complex modulus) to the input current (time derivative of strain). The decaying exponential

model is a bank of discharging capacitors. The electrical circuit analogy is used in the next

section to motivate an extension to the viscoelastic model.

2.4.2 Mini-oscillator Model

The second of the four constitutive models is the Mini-Oscillator Model (MOT). Once equivalent

circuit theory has been invoked and the circuit contains only resistive and capacitive elements, it

doesn' take long before wondering, 'Vhy not inductive elements?". Mactavish provided the

answer [15]. He extended the resistor-capacitor (RC) model (or the decaying exponential model)

to include an inductor element in parallel with the RC parallel combination. He is clever to

require that each RLC combination be an overdamped oscillator, which guarantees a causal

system The relaxation function is now

G(t) =M s · i 1 + Ha ~ct1· ( * e .- .b1l * l 2't, (2.17)
1-1 b21- bit b21 bll

where a is a scaling factor for each mini-oscillator. Parameters b1I and b21 (inverse relaxation

times) are given by

bkl, bk2 = co1 [ (C2 1)1 /2 ],(2.18)

where the damping ratio is C1>1, and co is the natural resonance frequency of each RLC. Both

the damping ratio and the natural frequency are defined in the usual sense for a simple oscillator.

Restricting a,, , o, > 0 ensures an overdamped, causal system.
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The complex modulus for the MOT model is

L _ 2+ _2__

MC(() = MR *· 1 +j 2 ' (2.19)21=1 2601 - ' + j . 2 ' c 

Equation 2.17 shows that one term in the MOT model contains two decaying exponential terms.

The magnitude and relaxation time for each exponential are not independant, however. Also, note

that the MOT model allows one of the exponentials to have a negative magnitude. In the

decaying exponential model, a negative magnitude (Ml) would violate the second law of

thermodynamics (a rod in tension would contract). This extra degree of freedom can potentially

result in a better fit with experimental data. The MOT model is, therefore, the more general

application of Equation 2.11. It should be noted that the inductor or "mass" element is not

physical mass but rather a convenient mathematical construct. Mactavish applied the MOT

model to a finite element beam model.

2.4.3 Generalized Model

I introduce the third constitutive model, the generalized model, because it is a precursor to the

fractional derivative model (yes, the generalized model is not most general) introduced in the next

section. The derivation follows that given by Nashif [17]. We begin with the simple statement

that stress is some function of strain,

o(t) = f ((t)). (2.20)

We have seen previously that stress and strain for viscoelastic materials are functions of time.

Both sides of Equation 2.20 can, then, be expanded in a (Taylor-like) series about a point in time

to give

aa 2 a2
+ a2E+ b + b 2 + a(. a + a1 + a 2 + (2.21)

at at2 at at 2
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or more compactly,

a 1 a n ao · + at
m-l atm n=l at 

(2.22)

If we now assume harmonic solutions for both a and , substitute them into Equation 2.22, and

solve for Mc = , then the complex modulus for the generalized constitutive model is
I

N

ao+ an · (j -() n

n = 

M

1 + b E (j ()) M
m = 1

for M , N -.

In practice, of course, a finite number of terms for M t and N are used. It is not required that M

and N be equal. A problem with the generalized model is that even for moderate values for M

and N, the matrix inversion process required to solve for the coefficients, a and b, is

ill-conditioned and only the simplest of generalized models are used [17].

2.4.4 Fractional Derivative Model

The fourth and final constitutive model is the Fractional Derivative Model. The fractional

derivative model is a more general form of the generalized derivative model and allows derivatives

t The integer M should not be confused with the script symbol for modulus, M.
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to have fractional powers rather than just the integer powers. Equation 2.23 becomes

N

a + a E ( .)X
Mc( o ) = (2.24)

M

m=l

where and pM are real numbers. Of all the different models, the fractional derivative model is

the most powerful and usually requires the fewest number of terms for a given accuracy. Usually,

M and N are one. In some special cases the physics of the material on a molecular level has been

shown to behave according to fractional derivatives [19]. Unfortunately, the time domain

representation of fractional derivatives cannot be manipulated to eliminate the convolution

integral. Therefore, the fractional derivative model is not a candidate for a time domain finite

differencing formulation. I still find several uses for the fractional derivative model in this thesis.

In Chapter 3, I actually optimize against a fractional derivative model of experimental data rather

than the data itself I am able to do this because the model is extremely accurate. There are a

number of reasons I do this. A broad range of materials has already been characterized using

fractional derivatives and results can be generalized in terms of the fractional derivative

parameters. Also, the closed form fractional derivative relations are easier to handle than raw

data and the model smooths the data. Furthermore, when it is more convenient to work with real

wavenumber rather than real frequency, I use the model to easily transformation the data from

real frequency to real wavenumber (c ( ) -. c (k)). In future studies, I plan to use the fractional

derivative model as a benchmark to test the generality of the decaying exponential model. The

reader is referred to P. J. Torvik and D. L. Bagley for further details on the uses of this method

[19].
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2.5 Classical Formulation of the ID Viscoelastic Wave Equations

In this section, I collect the constitutive equation with the momentum equation, defined in terms

of stress and velocity, to form the classical ID viscoelastic wave equations. The simplicity of

these equations belie the insight that can be gained from them. By applying the von Neuman

method, the dispersion relation is determined and much of the behavior ofviscoelastic waves is

revealed.

I begin by restating the constitutive relation presented in Section 2.3,

o(t)= G * (2.25)

But for particle velocity u, et = u,, Equation 2.25 can be written as

a= G * u
Ix (2.26)

Taking the time derivative of both sides of Equation 2.26 and collecting the result along with the

conservation of momentum equation, results in the classical formulation of the ID viscoelastic

wave equation in terms of velocity and stress,

where where p is the material density. These two equations form a set of coupled equations

governing the propagation of viscoelastic waves in one dimension. As discussed in Section 1.1,

applying a numerical method, such as the finite difference method, to solve these equations
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directly is not appealing because of the convolution. The memory variable method, presented in

the following section, circumvents the convolution shown in Equation 2.27.

To gain more insight into Equation 2.27, I apply the von Neuman method, which assumes that

both particle velocity and stress have harmonic solutions of the form

u, a e (k x + t) (2.28)

where k is the wavenumber and X wave frequency. Substituting these forms into the D wave

equation, eliminating both o and u, and using the previously derived expression for complex

modulus,

Mc -(j · ) · ((), (2.29)

results in an expression for the phase speed ofsound, c = , in a viscoelastic medium,

(2.30)
k P

This is recognized as the ordinary definition for sound speed except either wavenumber and

frequency (or both) are complex (since the modulus is complex). In all cases, this relation tells us

how fast the wave travels and decays in both space and time. We can infer that higher frequencies

travel faster, since the storage modulus is monotonically increasing, but not faster than c =

and not slower than - . For low damping levels, the group speed is given by c = 

Equation 2.30 is also referred to as the dispersion relation.
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2.6 Memory Variables Formulation of 1D Wave Equation

The memory variable method is, in short, a clever mathematical trick using the properties of

exponentials and linearity to eliminate the computationally costly convolution appearing in the

constitutive equation. In this section, the derivation of the viscoelastic field equation with

memory variables for scalar waves is presented because it is instructive and fundamental to the

present study. The memory variable method was conceived by Carcionne et al. but the following

derivation offered by Blanch et al. is used because it is clearer and more complete.

If the relaxation function, G, is modeled using the decaying exponential model, then taking the

time derivative of G and substituting it into the constitutive equation yields

abt; [( MRf re~ J 6(t) 1
L =1 / 1 lt/~~~~~~~

Ie 0'(t)'M - IC, °Ne I*u
(2.31)

By defining the L memory variables as

for 1=1, 2,...L , (2.32)
lI *Ml*e *f }I 

Equation 2.31 becomes

at = . U + j r/. (2.33)
1=1

Notice that the convolution has been removed from Equation 2.33. To remove the convolution

from Equation 2.32, I take its time derivative,
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r t = - (.- I Ml e e(t) + Ml te 6(t * u

for I = 1, 2,...L .

Then by substituting Equation 2.32 into Equation 2.34 results in

, -- + Ml U
I

for =1, 2,...L .

Equation 2.35 and Equation 2.33, with the addition of the momentum equation, comprise a set of

2+L equations, referred to as the D viscoelastic wave equations with memory variables,

a ,t M a,,+ Egri
1=-1

1U =-* a

r Ml
rl,t = - = u

(2.36 a,b, and c)

for I=1, 2,...L .
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The memory variables can be thought of as a continuous correction made to the propagation of

waves in an elastic material Ath modulus equal M . Initially, if all memory variables are set to

zero, the top two equations appear like their elastic counterparts. The third equation tracks the

rate at which the infinite frequency elastic response should be corrected due to the collective

effect of past loads and of any new loads (occurring in the past dt seconds). Any new strain loads

represented by u = E t are scaled by M, (which is the share of the new load associated with that

particular memory variable) and registered by the second term on the right side of the memory

variable equation. The first term on the right side tracks the rate of relaxation of both new and

past loads associated with a particular memory variable.

2.7 Full 3D Viscoelastic Wave Equations

Previous discussion of viscoelastic wave behavior in D has allowed us to become familiar with

four new concepts presented here in bullet form for clarity.

* First, the constitutive relation for viscoelastic waves in the time domain is a convolution of the

time derivative of the strain with the relaxation function.

* Second, the modulus is a complex quantity.

* Third, we can hope to model the relaxation function with a series of decaying exponentials.

* Fourth, provided we use this model, the convolution can be eliminated with the introduction of

mnory variables.

In this section, I use our understanding of D viscoelasticity to help derive the full 3D viscoelastic

wave equations which includes a full tensor description of the state of stress in a linear isotropic

viscoelastic solid. I then proceed to derive the 3D wave equations using memory variables. The

increase in the number of field variables emphasizes the need for improved numerical efficiency.

I also show that the full 3D description can be decomposed into a set of four waves, one

compressional and three shear, that behave like the D wave. Therefore, the discussions and
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conclusions based on the D results are not only appropriate but applicable. The derivation of the

classical viscoelastic wave equations follows that given by Christensen [6]; the memory variable

formulation is again based on the work of Carcione et al. [5]; and the Helmholtz decomposition is

given by Christensen [6] and J. D. Achenbach [1]. All derivations, as presented here, are intended

to be more intuitive than rigorous.

2.7.1 Constitutive Equations

Consider the hypothesized stress-strain constitutive relation given by

oi = Gikl * kl ' (2.36)

where Einstein's subscript notation is used to indicate individual tensor elements. We expect the

convolution based on the D case. But now the relaxation function, G,*, is a fourth order tensor

which is the most general relation between two linear second order tensors. The fourth order

tensor has, in general, 81 independent variables. By confining our considerations to isotropic

materials and using arguments involving symmetry, coordinate system independence,

compatibility of the strain field, and stain energy density, the relaxation tensor, Gr, written in

terms ofjust two independent relaxation functions, G1 and G2, is

Gijkl = (G 2-G 1) 6 i k· 1 + 2I G1 (k · 6j + 6, 8k) , (2.37)

where 8 i is the Kronecker delta function. The constitutive relation is simplified if we first define

the deviatoric stress and strain by subtracting the dilational stress and strain from the total stress

and strain, that is,

s = a -_ o (ij) (2.38)
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and

e = E ' 61. ij ii 3 6 kk (i0j) (2.39)

Then, by substituting these Equations 2.37, 2.38, and 2.39 into 2.36, we obtain the constitutive

relations for a 3D isotropic viscoelastic solid,

0 kk = G2 * kkt (2.40)

and

St = G 1 * en, (2.41)

For the full 3D viscoelastic equations, there are now two convolutions required; one associated

with dilational or bulk stress; and the other associated with deviatoric shear stress. In terms of

the more conventional definitions of stress and strain,

1
J -- - ' * ' e2 *E + G * iM (2.42)

By Fourier transforming Equation 2.40 and Equation 2.41, we obtain expressions for the complex

bulk and shear moduli,

B = J - 2,
3 (2.43)

and

=J' (2.44)

The two relaxation functions, G and G2, are puiposefully defined in Equation 2.37 to arrive at
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these simple expressions for bulk and shear modulus. Equation 2.37 could be defined in terms of

other relaxation functions to arrive at simple expressions for complex modulus, in terms of other

commonly used moduli, such as, the Lame' constants, A and i. The bulk and shear moduli are

chosen because the physical mechanisms that dictate material behavior are separate and distinct

when expressed in terms of their dilational and deviatoric components.

2.7.2 Helmholtz Decomposition

We have seen consistently throughout this chapter that, in the frequency domain, the expressions

for the moduli are the same as those for elastic materials, except that the moduli are frequency

dependant. If we restrict our attentions to infinite domains (no boundaries, no boundary

conditions), then the equations of motion in the frequency domain are, therefore, also the same.

The equations of motion in terms of displacements, 4,, are given by

(/ )O)' i' qk4i [(' () + ' to)' 1 i¢ = - P '2 .k ' (2.45)

Since vector calculus operators holds true for complex as well as for real vectors, the Helmholtz

decomposition can be applied to the above equation, thus

Q, = , + (curl ), , (2.46)

where (x; ,t) is a scalar potential and (x ,t) is a vector potential. Substituting this equation

into the displacement equations of motion, Equation 2.45, and inverse Fourier transforming yields
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four equations governing the propagation of one compressional wave and three shear waves,

v24_ 1 '4.
Cp

V2 I * x.t

' (2.47a, b, c, d)

V2 I = I. *,

C

where the complex compressional and shear phase speeds are c = 12 IL and c,= ,

respectively. Equation 2.47 shows that both the dilational and deviatoric waves are governed by

four scalar 3D wave equations. For infinite media, the dilational wave is completely uncoupled,

while the deviatoric waves remains coupled through the vector potential, (xi ,t). Therefore,

results presented throughout this thesis, based on the analysis of the ID scaler wave equation, are

justified provided they are not changed by the dimension of the wave equation or the coupling

between equations. The coupling restricts the number of solutions that satisfy Equation 2.47, but

does not change the form and nature of those solutions. In other words, the set of solutions for

* that satisfy Equation 2.47b, 2.47c, and 2.47d, is a subset of the solutions for * that satisfy any

one of the individual equations. A physical system with boundaries only introduces more coupling

between the waves, including coupling between the dilational and deviatoric waves. The

dimension of the scalar wave equation is not significant because any (plane) wave traveling in

some arbitrary direction in 3D space can be modeled by a ID model with an appropriate rotation

of the coordinate system In addition to increasing our understanding of waves in 3D viscoelastic

solids, the Helmholtz decomposition is important to the present work because it substantiates the

earlier claim that my discussion and conclusions in terms of the simpler ID wave are applicable to

the general full 3D wave behavior.
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2.7.3 Full 3D Wave Equation with Memory Variables

Before presenting the 3D viscoelastic wave equations with memory variables, it is useful to

summarize the key steps in deriving the wave equatioin in D with the memory variables. It was

shown that the convolution of the time derivative of the relaxation function with some other

function, Gt* },couldbe replacedby M { + 1. rt where r is givenby

r = - + { }), provided G is approximated by the decaying exponential model.

Following these same steps, the constitutive relations for a viscoelastic solid, Equation 2.42,

combined with the momentum equations resulting in the following abbreviated set of equations,

where u, v, and w are the velocities in the x, y, and z directions respectively, and

= u ,+ v + w is the divergence of the velocity vector. For clarity only representative

components are shown. For the full 3D case, there are a total of N = 9 + 6 L + M field

variables; 3 velocities, 6 independant components of stress, 6 L memory variables

corresponding to the shear modulus, and M corresponding to the bulk modulus. In 2D, there are

N = 5 + 3 ·L + M field variables. These relations for the total number of field variables, N,

were used to generate Table 1.1 presented in Chapter 1.
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Chapter 3

Numerical Analysis

3.1 Introduction

The benefits of the reoptimization process, discussed in Chapter 1, are now described in detail

and demonstrated in a working time domain model. To this end, Chapter 3 covers three

areas: finite difference time domain modeling, the optimization and reoptimization process,

and the benefits of the reoptimization process demonstrated using the time domain model.

Section 3.2 covers topics relating to the finite difference model; origins of error, scheme

selection, and practical implementation. Because optimization and reoptimization are very

similar, both processes are covered in Section 3.3. The results of three case studies

comparing optimized and reoptimized models under various bandwidths and Courant numbers

are presented in Section 3.4. Results of these studies, the central results to this thesis, are

discussed in Section 3.5.
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3.2 Finite Difference Time Domain Modeling

This section covers what we need to know about the finite difference method to understand

the process of reoptimization. One objective is to trace the sources of error and show how

they can be predicted. The relationship we are looking for is the numeric dispersion relation,

which dictates how viscoelastic waves travel on the finite difference grid. Another objective is

to show that the finite difference scheme selected is properly implemented in a practical

model To avoid confusion between schemes, I make note now that it is the Predictor-

Corrector scheme with 3-point centered spatial differencing that is ultimately implemented in

the finite difference model.

3.2.1 Overview of the Finite Difference Method

The concept of the finite difference method, that the elastodynamics of a physical continuum

can be approximated by considering a large but finite number of points, is intuitively

gratifying. A distilled description of the finite difference method is that the operators of the

differential equation governing the physical system at a given point can be approximated by a

weighted sum of the field variables at that point and at judiciously selected surrounding points.

This can be expressed generally for one dimension problems as

N

L[ m] , I . Wn (3.1)
n=1

where L is the differential operator, 4n is the field variable at location x,=n · Ax, and w is a

weighting factor. This contrasts with the finite element method, where the governing

differential equation is altered usually by integration over the physical domain and a solution,

*, to this new system is found that includes influences fom all points within the physical

domain. The salient features of the two methods are forever bound to these fundamental

differences.
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For more insight into the finite difference method, consider the three point centered

approximation 0' (where the prime denotes spatial derivative) at the grid point m. Using

Equation 3.1,

, = Wm-1 - + w · d + W *+, l +, + Error. (3.2)

By expanding the function at the left and right most points in a Taylor series about the center

point yields

m i km4<CAX+4,// a2 /// Ax3O .Ax + 4b4' +~ (3.3)2 6

and

m+1 i 4 + m a x +m + . (3.4)2 6

If Equations 3.3 and 3.4 are substituted in Equation 3.3, then it is clear that

win..,= - wX 1 = l for the right and left side of Equation 3.3 to be generally equivalent.

Furthermore, for Equation 3.2 to be true when A x-O, the weight of the center point must be

w-=O. This is the referred to as the consistency requirement. The weights are now all

determined and the error is given by the remaining truncated terms in the expansions,

Error = 0 + /, - + + 0, + A* . (3.5)
6 120

Since the leading error term is proportional to Ax2 , the scheme is referred to as order two

accurate in space or, in short, 0(2). The leading error term governs the convergence of the

finite difference approximation to the exact solution for increasingly smaller step sizes.
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Another spatial differencing scheme that is considered is the five point centered scheme.

Using the same procedure as above, the weights are

w , -, - 1 (3.6)
12 12 12' 12

and the leading error terms are

Error = - ·Ax 4 - Ax(3.7)Error - + (3.7)
30 180

Note that the points closest to the center point have the greatest weight as expected and that

five point centered stencil is 0(4) accurate. I will discuss these error terms more extensively

and look at them in a number of different ways in subsequent sections. I will also consider the

additional complexity due to error from the approximation to the time derivative operator and

error due to sets of differential equations with multiple field variables. Since I can

approximate operators by selecting any points within the spatial and temporal domains, the

number of possible schemes is infinite. Usually known schemes are used that have been

shown to be computationally efficient and accurate. It is interesting to note that as the

number of points used in the finite difference approximation approach all grid points within

the domain, then the finite difference method approaches the pseudo-spectral method [18].

The spirit of the finite difference method is, however, to use only local points and schemes

with moderate order accuracies, e.g., 0(2) to 0(6) accuracy.

3.2.2 The Predictor-Corrector Scheme

There are a great many finite difference schemes from which to choose and many factors to be

considered when choosing one. The major concerns are stability, error, and computational

speed. It is shown in the following section that, even for hyperbolic systems, the finite

difference scheme can introduce both phase and magnitude error. Other considerations

include two dimensional scheme isotropy, boundary conditions, material contrast, problem
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size, and source type. No scheme treats all requirements satisfactorily. The analyst seeks to

strike a balance among the most important factors.

A quick survey of a number of popular schemes was conducted. Since typical problem grid

sizes are 500 by 500 with at least five field variables, implicit methods are not considered

because they would require inversion of a 125,000 by 125,000 matrix at each time step. The

explicit Lax-Wendroffmethod depends on cancellation of error due to temporal and spatial

finite differencing of elastic waves and is thought to be inaccurate for modeling high loss

materials. It also requires that 3 point centered differencing be used for spatial derivatives

which was thought to be limiting (Blanch suggests that higher order spatial accuracies are

needed). This method was also not used because the complexity of its dispersion relation

would make results too difficult to generalize.

Thankfully, not all methods were discarded or this would be the end of this thesis. Two

schemes were investigated in detail including a hybrid Leap-Frog/Crank-Nicolson (LFCN)

scheme and Huen's Predictor-Corrector (PC). Blanch suggested LFCN, reasoning that the

non-dissipative characteristics of Leap-Frog are favorable. The LFCN scheme was initially

chosen but after running into difficulties related to parasitic modes, the PC scheme was

ultimately used. Although the PC scheme is weakly unstable for elastic waves, it will be

shown to be stable for high loss materials. Unless specified, Predictor-Corrector is the scheme

discussed throughout this thesis and it is the scheme implemented in the two dimensional finite

difference model.

The time evolution stencils for the two schemes are shown in Figure 3.1. All field variables,

pt, u, and each r, are calculated at every grid point. For the LFCN scheme p and u are

evolved in time using Leap-Frog, while Crank-Nicolson is used for the memory variable

equations. Both LF and CN are 0(2) accurate in time and therefore the overall scheme will

not exceed that accuracy. The LFCN combination is used by Blanch but apparently in a

different manner since the resulting dispersion relation is different than reported [2]. Blanch's

t The pressure and stress field variables are related by p = -a .
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Figure 3.1
Various finite difference stensils considered in this thesis. Figure 3. la is 0(2) accurate three
point centered stensil used for spatial integration. Figure 3. lb is 0(4) five point stensil also
used for spatial integration. Figure3. lc is hybrid Leap-Frog/Crank-Nicolsen used for 0(2)
accurate time integration. The pressure, velocity, and, memory field variables are symbolized
by the circle, square, and triangle respectively. Figure3. d is Huen's Predictor-Corrector 0(2)
accurate time integration scheme. The predictor (*) is Euler-Foward and the corrector is also
Euler-Foward using the average of the old and predicted values.
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reasons for using LF are that it is unconditionally stable and non-dissipative for the elastic

wave equation. The scheme is also weakly unstable; for any attempt to add dissipation to LF

renders it so [10]. A slight inconvenience of LF is that it requires a jump start. Some method

must be used to determine the initial conditions of either u orp. Although CN is an implicit

scheme, it is possible to show that the overall scheme is effectively explicit and does not

require matrix inversion.

Both PC and LFCN are 0(2) accurate in time. Both 0(2) and 0(4) spatial order of accuracies

were considered corresponding to the three and five point centered spatial differencing

discussed earlier. For the high loss factor modeling investigated in this thesis, the error turns

out to be magnitude limited t and the three point scheme provides more than sufficient

accuracy.

t Error between the exact and modeled solution that is correctable by scaling the modeled
solution by some constant value is referred to as magnitude error, error that is correctable by
phase shifting is phase error. When magnitude error is much worse than phase error, this
situation is referred to as magnitude error limited. What constitutes "much worse" is a subjective
judgement. Later, in Section 3.3.2, I subjectively define a/4 radians as the maximum acceptable
phase error and a ldB as the maximum acceptable magnitude error.
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The finite differencing of the viscoelastic difference equations using the Predictor-Corrector

scheme with 3 point centered differencing is straightforward and is demonstrated here by

differencing the D viscoelastic wave equations given in Chapter 2. Euler-Foward is used for

the predictor which gives

P* - P,

At W

* k

At

* k
rl,;m - r1,m _ I k Ml

tAt m, t

Uk - k L

2Ax - L E 'lm
-=1

k k
1 P+i - P- 1

p 2Ax

k k
Urn+ - Urn.1

2Ax

where the m and k subscript and superscript denote the field variable at spatial step m and time

step k; all other variables have been previously defined. The corrector is also Euler-Foward

except the average of the k and *-step values are used rather than just the k-step. The

corrector finite difference equations are then

P,, + -p,. 1 uM 1+l -l +l .

A\t 2 2Ax 2Ax

k+1 k
-u _ P,+1- P,,l

Mt _ I 
A t p 2Ax

L

= 1 2 (r m + r1
' )

1-1

P+l - PM-I
2-Ax

k+1 k- 1 * I k 
=At - (, + ,m)

2.,,'

m l . U +1l - + . - 1
2-t l 2Ax 2Ax

for I = 1 ....

These are the equations that are implemented in the time domain finite difference model.
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3.2.3 Two Dimensional Time Marching Model

A two dimensional finite difference model was written to simulate the propagation of scalar

waves in a homogeneous isotropic viscoelastic medium. The model is written using Matlab

and uses the Predictor-Corrector scheme described earlier. The PC scheme, as implemented,

uses the centered three point stencil for spatial derivatives and is, therefore, second order

accurate in space and time. Periodic boundary conditions are imposed to eliminate errors

introduced by boundaries [3], since periodic boundary conditions are effectively a

boundary-less system. Energy is injected into the model using initial conditions for either a

sinusoidal wave or a modulated Gaussian pulse. The model is described in Appendix A.2 with

actual computer codes used given in Appendix A.4. For this thesis, all physical domains

modeled are one dimensional.

Convergence tests are run on the model to verify that the finite difference scheme is correctly

implemented. Initial conditions are set to establish a sine wave traveling in the x-direction.

The model is run using progressively finer mesh sizes that are two times finer in both space

and time while keeping the physical size and final time constant. The expected error between

successive runs should approach four because the scheme is 0(2) accurate in both space and

time. Model convergence tests are conducted for both elastic and viscoelastic wave

propagation. Results, presented in Figure 3.2 and Figure 3.3, show that the error between

successive runs approaches a factor of 4 times which verifies that the model is correctly

implemented. Note that in both figures the model results and the results predicted based on

the numerical dispersion relation are indistinguishable (hashed line is on top of solid line)

because the boundary-less model has only numerical roundoff error. The results for a wave

traveling in the y-direction are identical.
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Figure 3.2
Model convergence tests for elastic wave propagation. Circles mark finite difference model
result, hashed line is predicted result based on numerical dispersion relation, and solid line is
result based on analytic dispersion relation. Figures a.) thru d.) are results using progressively
finer mesh sizes; each figure is two times finer in both space and time than the preceding
figure while maintaining a constant physical size and final time. Average rms error between
model and analytic prediction for each run is 71, 88, 21, and 5.3%.

53

I I

j -- -- .



0 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0. 0.9 1

Distance, x (m)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Distance, x (m)

I 0.1 0.2 0.3 0.4 0.S 0.6 0.7 0.8 0.9 1

Distance, x (m)

0 0.1 0.2 0.3 .4 0.5 0.6

Distance, x (m)
0.7 .8 0.9 1

Figure 3.3
Model convergence tests for viscoelastic wave propagation. Circles mark finite difference
model result, hashed line is predicted result based on numerical dispersion relation, and solid
line is result based on analytic dispersion relation. Figures a.) thru d.) are results using
progressively finer mesh sizes; each figure is two times finer in both space and time than the
preceding figure while maintaining a constant physical size and final time. Average rms error
between model and analytic prediction for each run is 87, 110, 22, and 5.1%.
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3.2.4 Numeric Dispersion and Dissipation

It has been said that finite difference equations have a life of their own and in the following

paragraphs we will see what is meant by this statement. In this section, I describe and discuss

the derivation of the dispersion relations for the both the differential and finite differenced

viscoelastic wave equations in D. The dispersion relations hold the secrets of how waves

behave. As has been the theme throughout, the ID study sufficiently describes the important

phenomena of wave behavior for the more general 2D and 3D cases. A closed form solution

of a dispersion relation is presented to bring out what non-dimensional quantities control

dispersion. I will then examine the dispersion of elastic waves graphically in non-dimensional

frequency-wavenumber space to demonstrate most dramatically how finite differencing alters

wave behavior. The X -k space gives a complete picture of wave behavior including error and

stability.

I often refer to three different types of dispersion relations, which I define here. The first is

the material dispersion relation which is the true (measured) physical dispersion relation of the

material being modeled. The analytic dispersion relations is defined as the dispersion relation

for a scheme with infinitesimal step sizes. In general, the material and analytic dispersion

differ since the number of memory variables used is finite and the matching or optimization

process between the complex modulus of the model and the material is not perfect. The

numeric dispersion is the dispersion relation for the finite difference scheme and includes two

types of errors. One type due to the matching process (the same errors as the analytic

dispersion) and the other due to finite temporal and spatial step sizes of the finite difference

method. In the section on optimization, I investigate the notion of allowing these two types of

error to cancel! This is referred to as reoptimization.

One of the important advantages of finite difference methods over other methods, such as

finite elements, is that dispersion errors can be determined a priori using the von Neumann

method. To determine the analytic dispersion relation, all field variables are assumed to be

proportional to ef'(k '. .,t) where co is the frequency and k is the wavenumber. By
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substituting the assumed form of the field variables into the viscoelastic differential equations,

Equations 2.35, and taking temporal and spatial derivatives as required, results in the

following system of equations,

1 -k.M - 1

._k
- k 1 o

p

o 1 1-
0i X,

P

u (3.10)

rI

A similar set of equations results if more memory variables are used. This equation has the

form of a standard eigenvalue problem with complex eigenvalues equal to radial frequency o.

For one dimensional problems with one memory variable, there are two eigenvalues

corresponding to a left and right going decaying wave and one corresponding to a stationary

decaying wave. The eigenvectors, which are in general complex, give the relative phase and

amplitudes between the field variables. These eigenvalues and their corresponding

eigenvectors are used in the finite difference model to determine initial conditions for a cosine

modulated Gaussian source.

To determine the numerical dispersion relation, the discretized field variables are assumed

proportional to e}' (k' Axr "' At). These are then substituted into Equations 3.9 resulting in

the system of equations,

*c =k[ I + A ] 4 (3.11)

where p = [p, u, rI ]T the superscript (*) denotes the predictor value, the k superscript

denotes the kth time step, the matrix I is the identity matrix, and the matrix A is given by
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A =j.

-M At j sin(k Ax)
O - At

2 Ax

-At j sin(k- Ax) 
2 p Ax

-Ml At ji sin( Ax) At
0 -

2 l 'Ax l

(3.12)

The corresponding set of equations for the both the predictor and the corrector steps is

e-j-t t . q k = [ I + A + .5 A2 ] . (3.13)

Like the derivation for the analytic dispersion relation, we arrive at a system of equations in

the form of an eigenvalue problem and the earlier discussion of eigenvalues and eigenvectors

apply. They are, of course, different than their analytic counterparts but approach each other

in the limit of infinitesimally small step sizes. Equation 3.13 is solved using standard matrix

eigenvalue solution routines. In this form, the dispersion relation is easily solved for complex

frequency, oa, given real wavenumber, k (not to be confused with time step, k).

It is possible to solve for the numerical dispersion relation in closed form for certain schemes,

such as LFCN, but not PC. This is done by eliminating all L+2 field variables from the L+2

equations, which leaves an equation relating o and k in terms of the material properties

modeled in terms of the memory variable parameters and the temporal and spatial step sizes,

in short, the dispersion relation. When LFCN is applied to model the ID wave equation, the

dispersion relation is

sin2(X ) = sin2(k) N - tan(3.14)
- 1·tan(O)

where dimensionless radial frequency is 3= coA t, dimensionless wavenumber is k=k. Ax, and

the Courant number is Nc = -x. Also, the dimensionless memory variable moduli are
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M = and the dimensionless relaxation times are = -'-. A similar relation was given by
M. At

Blanch when only one memory variable is used.

In the limit as o -oo, the summation terms inside the square brackets go to zero and Equation

3.14 becomes the dispersion relation for the elastic wave equation using Leap-Frog with a

sound speed equal to the unrelaxed sound speed. The summation terms, therefore, represent

the viscoelastic effects. As &Ax-O and A t-, the numerical dispersion approaches the

theoretical dispersion relation,

CO2 · M,M2 |l+j E (3.15)

For real co, the right hand side of Equation 3.15 is recognized as the original expression for

complex modulus, and we have come full circle. Note that the closed form dispersion

relations clearly show that waves propagate with radial frequency o, which is in general

complex, and that they are non-linear in frequency and wavenumber and must be solved

iteratively to find either one in terms of the other.

The closed form dispersion relation for LFCN has been useful to see what dimensionless

variables govern dispersion. In practice, when the full wave equations are used a closed form

dispersion relation is too difficult to derive and no further insight could be gleaned from it

even if it could be derived. I now return to discussing the PC scheme, which is our principal

interest, where dispersion is determined numerically.

To understand the dispersion relations better, let's graphically compare the analytic dispersion

to the numeric dispersion for the PC scheme for the one dimensional case. To keeps things

clear and simple, I restrict our discussions to real wavenumber. Also, I consider only elastic

waves to emphasize that the dispersion and dissipation error is due to the finite differencing

In a continuum, the elastic material dispersion relation is two infinitely extended straight lines

which intersect the o -k origin and have slopes of +/-. c. For a material with sound speed

c=.5, the elastic material dispersion in o-k space is shown in Figure 3.4. The real part of

o represents the phase speed of the wave related by the slope of the curve. The positive
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sloping curve is a right traveling wave and the negative slope curve is a left traveling wave.

The imaginary part of o is, of course zero, so there is no amplitude decay. The group speed

is given by C = which is equal to the phase speed, c, in the elastic case. This relation

applies exactly only when dissipation is small; when there is heavy damping the group speed

relation is only crudely valid [18]. Since there is two fold symmetry between the four

quadrants, it is enough to consider only the first quadrant

Waves on finite difference grids are sampled waves. Both spatial and temporal aliasing occurs

and it is sufficient to consider only the non-dimensional domain - < w < and - < k < I,

where w and k are dimensionless wavenumber and frequency [18]. In Figure 3.5, the

numerical dispersion relation for PC is applied to the elastic wave equation and plotted versus

non-dimensional wavenumber and frequency. In Figure 3.5a, near the origin, the curve starts

out at the correct slope, which fulfills the consistency requirement discussed earlier. But away

from the origin, the curve bends over and waves become more and more dispersive, a

completely non-physical numerical artifact. Beyond k= /2, the group speed is negative and

energy propagates in the opposite direction. In Figure 3.5b, notice that there is dissipation

even though the material modeled is elastic. These dispersive and the dissipative errors occur

in all finite difference models and are completely predictable in the manner discussed.
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Figure 3.4
Top and bottom figures show real and imaginary frequency versus wavenumber for waves in
an elastic medium, respectively. In the top figure, the upward sloping line represents a right
traveling wave with sound speed, c=.5, and the downward sloping line represents a left
traveling wave. The phase speed is constant versus frequency (or wavenumber) and there is,
therefore, no dispersion. As shown in the bottom figure, elastic waves are non-dissipative, as
well.

60

_ I I I

I I

-..

-1

r

_n c



1

0.8

0.6

0.4

0.2

It
0 0.5 1 1.5 2 2.5 3

_

k

Figure 3.5
Top and bottom figures show real and imaginary dimensionless frequency versus
dimensionless wavenumber for elastic waves modeled using the Predictor-Corrector scheme,
respectively. The dimensionless material sound speed, the Courant number, is N c -. 5.
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3.3 Optimization and Reoptimization

The optimization procedures are discussed in general terms in Section 1.4 and throughout this

thesis. The non-linear solver is discussed in more detail in this section, followed by the

definition of the figure-of-merit error analysis which is used to determine how well the

complex modulus parameters have been optimized.

3.3.1 Non-linear Equation Set Solver

There are three instances when we need a method to solve a non-linear set of coupled

complex equations: first, to find o in terms of k in the dispersion relations; second, to find the

optimum values of the constitutive model parameters that best match experimental complex

modulus data; and third, to convert the complex modulus data given versus real frequency to

real wavenumber using the fractional derivative model. Since there are so many uses for the

non-linear solver, it is presented here in general terms.

Consider how a real non-linear set of equations would be solved using the Gauss-Seidel

method. In general terms, a set of I non-linear equations, each a function of Jvariables can

be expressed using indicial notation as

F (x.) = 0 , where i= , 2,...I and j=1, 2,...J . (3.16)

The set of I equations is linearized by expanding each function in a Taylor series with respect

to all the x s and keeping first order terms yielding

[

. [xl - x1]T = - [F (xI")]T (3.17)
j~~~~~~~~ (317

where x is an initial guess at the solution and x,"' is the improved prediction found by

solving Equation 3.17. The form of Equation 3.17 is A ·x = b, an eigenvalue problem, which
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is easily solved by standard methods. I use Matlab's matrix inversion routine. By iterating,

x, may or may not converge on the solution x, depending on the initial guess, the condition

of matrix A, and the strength of the non-linearities. Equation 3.17 can be solved in a

deterministic manner using the same number of equations as unknowns or as an

overdetermined system where I > J. The derivative is evaluated in a discrete sense by

perturbing the variables a given percentage of their total value, usually .001 percent. Matrix A

then becomes the sensitivity matrix Convergence is determined by testing if the improvement

of all variables between iterations is below some acceptable threshold, usually 10 times higher

than the perturbation. For systems with high sensitivity, the solution can be underrelaxed by

letting x. +1 be the solution of Equation 3.17 and then defining

n+ 1 -n -- +1= a xj + (1 - )x , (3.18)

where a = 0 is normal iteration and a = 1 is complete underrelaxation (the solution doesn't

move).

A complex set of N equations is handled as a set of 2N real equations. The Gauss-Seidel

Method can now be used to solve the dispersion relations for either complex radial velocity in

terms of real wavenumber or for complex k in terms of real o . From these values the

complex modulus is computed using Equation 1.3. Both the analytic and numeric dispersion

relations are solved in a deterministic manner without any underrelaxation. An initial guess of

[.1 +j .1 ] is used in all cases.

Use of the non-linear solver to fit the constitutive model to the data is described in Section 3.4

for each individual case. In general, the solutions are found in an overdetermined manner with

each data point given equal weight Underrelaxation is not necessary for optimization (unless

the initial guess is poor) but is needed in some cases for reoptimization.
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3.3.2 Figure-Of-Merit Errors

As we have seen, finite difference methods introduce errors that are both dissipative and

dispersive. As a basis for judging these errors and comparing different finite difference

schemes, the figure-of-merit approach as described by Fricke [12] is presented here. The

phase error figure-of-merit, N,, is defined as the number of time steps to phase error and is
4

given by

N 4 (3.19)
I at(in - (m) I

where ~n is either the numerical or analytic phase speeds, &o is the material phase speed,

and N( ) takes the real part of the expression in parenthesis. The complex wavenumbers are

determined by solving the dispersion relations for a range of wavenumber using the non-linear

solver. Since only real wavenumber waves exist in the finite difference model described in the

Section 3.2, we take the real part of o to find the phase speed. The magnitude error

figure-of-merit, N.,s is the number of steps to 1 dB magnitude error given by

Na= 20 ·log(e) ·| S( - °)l (3.20)mag 20 log(e) I - (-O I (3.20)

These figures-of-merit offer a more quantitative judgement of how well the model fits the data

and are used to balance, if possible, the two types of errors for more efficient computation.

Their use will be demonstrated in Section 3.4.
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3.4 Optimization and Reoptimization Results

Three cases are presented here, which cover a number of important aspects of optimization

for high loss materials. The first case is narrow band optimization at moderate Courant

number where the bandwidth is less than an octave and the Courant number is Nc = .5. The

second case is wide band (two octaves) at the same Courant number. The third case is wide

band at a low Courant number, Nc = .1. Only one term in the complex modulus expansion is

required (L=1 in Equation 2.14) for the narrow band case while two terms are used for the

wide band. The center wavenumber is the same for all cases.

The same material is used for all three cases. The material is a high loss elastomeric material

given by Torvik and Bagley [19]. It has a peak loss factor of about n =.5 and is

representative of many elastomers with properties close to the more common Nitrile rubber.

The shear modulus data, originally collected versus real frequency, is converted to real

wavenumber using the fractional derivative model as described in Chapter 2. The material is

optimized in the glass transition region near the peak loss factor where the wavenumber

dependence is the strongest.

Since the benefit of reoptimization increases as the step size increases, an effort was made to

find the largest step size at which the reoptimization process would converge. While the exact

upper limit is not precisely determined, an argument will be made that it is near the step size

investigated, Ax =- .004 m, which is fixed for all three cases. The effect of changing the

temporal step size is found by comparing the second and third cases where the temporal step

size is decreased by a factor of five to change the Courant number by the same amount.

To gain more insight into the optimization process t, I present the results in tabulated form

and several graphical forms. The first graphical form shows the original complex modulus

matched with the experimental data versus wavenumber. The second shows the match in

t I use the term optimization in a general sense, which can include reoptimization as well.
If I am distinguishing between the two, then the context of the statement will make this clear.
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terms of the phase and magnitude time step limits, N, and N.o defined earlier in Section

3.3.2. The third is time domain simulations showing the propagation of a cosine modulated

Gaussian pulse using a finite difference model with either optimized or reoptimized

parameters. Each form brings out certain aspects of the results that increase our

understanding of the optimization process and its potential benefits. Let us now consider the

results for each of the three cases.

3.4.1 Case 1: Narrow Band, Moderate Courant Number

For the first case, a one term expansion in the decaying exponential constitutive model is used,

and therefore, there are three model parameters to be optimized, MA, M l , and f . Forty

equally spaced data points t in the 100 to 150 m -1 wavenumber band are used. Optimization

requires the solution of the following overdetermined set of non-linear equations,

Mc,data(ki , x) - Mcmodel(i Xj) =O(3.21)
(3.21)

for i = 1,2,...20, and j = 1,2, and 3.

This has the same form as Equation 3.16 where x are the constitutive model parameters and

MC,,Sod is given by the analytic dispersion relation for optimization and the numeric dispersion

relation for reoptimization. The non-linear equation solver described earlier is used to solve

this system in iterative fashion. It should be noted that the solution of the complex modulus

model also requires the use of a non-linear solver and therefore optimization requires nested

iterations.

The optimization process begins with initial guesses of the constitutive model parameters. For

this example, the initial guesses for the model parameter values are given in Table 3-1. The

initial guess is required input to the non-linear solver described earlier and implemented in the

t Forty data points is equivalent to twenty wavenumber points because each wavenumber
gives two data points corresponding to the storage and loss moduli.
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program, optl.m, described in the Appendix A. The fixed inputs, At and Ax, are not needed

for optimization when the analytic dispersion relation is used. To improve the conditioning of

the optimization process, all moduli are normalized by the relaxed modulus. Normalization is

not needed for the corner frequencies. The program is run for 50 iterations yielding the

optimized parameter values shown in line two of Table 3-1. The modeled complex modulus

using the initial and optimized parameters is graphed with the data in Figure 3.6.

Reoptimization is now performed using the optimized values as the initial guess and the

numerical dispersion relation for Predictor-Corrector determined in Section 3.4. Optl.m is

allowed to run for 50 more iterations resulting in the optimized parameters shown in Table 3-

1. The finite difference grid step sizes assumed are also shown in the table. The spatial step

size is the maximum step size (within a factor of two) at which the solution would converge.

I refer to this as the reference step size, which is fixed at Ax = .004 m for all three of the cases

considered. The difficulty of finding a convergent solution can be explained by Equation 3.14,

the dispersion relation for the LFCN scheme. As the spatial step size becomes large, the

sinusoidal terms in the dispersion relation begin to oscillate and the non-linear solver cannot

lock onto a consistent trend in parameter space.

Table 3.1

Initial, Optimized, and Reoptimized Constitutive Model Parameters
for Narrow Band and Moderate Courant Number.
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Item# Name J x (m) A t (see) MR (N/m2) M (N/m2) f (H)

1 Initial Guess NA NA 8.00e+07 7.00e+07 5.00e+03

2 Optimized NA NA 1.05e+08 1.25e+08 1.03e+04

3 Reoptimized 4.00e-03 4.00e-06 1.16e+08 1.35e+08 1.06e+04
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Figure 3.6
Complex shear modulus optimization results for narrow band, moderate Courant number with
L=1 and NC -. 5. Both figures show experimental data (dotted) compared with complex
modulus determined by the analytic dispersion relation (solid). For this material, the storage
modulus, ', is always greater than the loss modulus, a". Top figure shows complex modulus
using initial guess as model parameters, while the bottom figure is modulus using optimized
parameters after 50 iterations. The parameters are optimized over a narrow band between
k- 100 and 150l m 
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To judge how well the parameters have been matched to the data and to compare

optimization with reoptimization, several additional plots are now presented. The plots are

formatted to determine, for a given accuracy, how fine the step sizes must be made for a finite

difference model using the optimized parameters compared with the step size at which the

reoptimized parameters are determined (the reference step size). Since the Courant number is

fixed for each case, if the spatial step size is halved then the temporal step size is also halved.

For example, Figure 3.7 shows experimental data versus wavenumber compared with the

modeled complex modulus determined by the numerical dispersion. The optimized

parameters are used to calculate the modulus for the Figure 3.7a, 3.7b, and 3.7c with spatial

step sizes of 0, 1/2, and 1 times the reference grid size. The reoptimized parameters are used

in Figure 3.7d (using the reference grid size, of course). By using the numeric rather than the

analytic dispersion relation (even when the optimized parameters are used) the behavior of the

viscoelastic wave on the finite difference grid is revealed. Judging from this figure, it is

necessary to half the grid size of a model using optimized parameters in order to obtain the

same accuracy as the reoptimized model.

While optimization and reoptimization performed in terms of complex modulus improves

conditioning t, it is not the best way to judge how well the data is matched. A better way is

shown in Figure 3.8 where the magnitude and phase error figures-of-merit, NA, and N.,

defined in Section 3.3.2 are plotted. Figures 3.8a through 3.8d correspond to the same four

axes in Figure 3.7. The advantage of using N.g and N, is that phase and magnitude errors

are now clearly distinguished. It is evident that the phase error is drastically improved by

reoptimization and is better than the optimized parameters at zero grid size (I explain this in

Section 3.5). Furthermore, the magnitude error is on average the same as the optimized

parameters at half the step sizes.

tBlanch recognized that conditioning is improved by optimizing to loss factor rather than
its inverse, the quality factor. Optimizing to complex modulus is an equivalent notion. The key
idea is that loss factor and modulus are impedance type quantities that add independently to some
total impedance while their inverses do not. The independence of the elements that make up the
whole leads to a more stable and better conditioned process.
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Complex shear modulus optimization results for narrow band, moderate Courant number with
L=J and Nc = .5. All figures show experimental data (dotted) compared.with the modeled
complex modulus determined by the numerical dispersion relation (solid). The storage
modulus, !', is greater than the loss modulus, ;i', in all cases. Optimized parameters are used
to calculate the modulus for the top three figures while reoptimized parameters are used in the
bottom figure. The temporal step size is A t = 4e-6 sec and spatial step sizes used for the top
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Yet another way to judge error is to examine the time domain behavior of a propagating shear

pulse. Since the ultimate objective is time domain modeling, the finite difference model

described in Section 3.2 is used to compare optimized and reoptimized parameters. The initial

pulse shapes that are used to test both the narrow and wide band optimization are shown in

Figure 3.9 with their respective power spectral densities. The narrow band results are shown

in Figure 3.10 in the same customary format. The figure shows the pulse versus position after

100 time steps have elapsed. The pulse has travelled less than .5 m and already the peak

amplitude has decayed by 20 dB. Also, there is very little dispersion because the bandwidth is

narrow. Comparing Figure 3. 10a through 3. 10d, it is again clear that a reoptimized model is

at least as accurate as the optimized model. From the time domain viewpoint, the reoptimized

model is more accurate than even the zero step size optimized model (see Section 3.5)!

3.4.2 Case 2: Wide Band, Moderate Courant Number

A two term decaying exponential model is needed to accurately match the data over the wider

two octave band investigated here. This is consistent with the finding by Blanch for low

constant loss factor modeling. There are now five constitutive model parameters to be

optimized. The same techniques used in the narrow band optimization are used with two

exceptions. In order to reoptimize at the same reference spatial step size, I first optimize at

Ax= .003 m, then reoptimize in sequence at Ax= .003 m, .0035 m, and .004 m The result of

the earlier reoptimization is used as the initial guess for the subsequent reoptimization. A limit

of 20 iterations for each step is imposed for a total of 80 iterations. In addition, the solution

is underrelaxed as described in Section 3.6 using an underrelaxation parameter, = .1 . The

extra effort required for the wide band reoptimization indicates that the numeric dispersion

relation is nearing the unstable oscillatory region discussed earlier and, therefore, the upper

limit for the reference spatial step size has been obtained. It should be noted that the

technique is systematic and could easily be programmed to automatically search for the

maximum spatial step. Furthermore, the "extra effort" is non-recurring and does not detract
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Figure 3.9
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optimization and reoptimization in the time domain. Since the constitutive model is only
accurate over a limited bandwidth, it is neccessary to limit the bandwidth of the energy
injected into the finite difference model by using initial pulse shapes such as these.
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Time domain results for narrow band, moderate Courant number optimization with L=1 and
N c = .5. All figures show a cosine modulated Gaussian pulse at fixed time, t 100 A t,f as
predicted by a spectral method (solid) and a finite difference model. (dash-dot). The original
pulse shapes are shown in Figure 3.9. The temporal step size is At - 4e-6 sec and spatial step
sizes used for the top through the bottom figure are 0, .5, 1, and 1 times the reference step
sizes, Ax = .004 m. These four figures correspond to those shown in Figure 3.7. Note that
the reoptimized pulse shape follows the spectral method results more closely than the
optimized parameters at half the step sizes.
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from the potential payoff ofreoptimization. The initial, optimized, and reoptimized

parameters are given in Table 3-2 with intermediate steps omitted for clarity. There is one

more point of interest. Since the extra effort was not required for the narrow band

reoptimization, it indicates that the maximum reference step size was not reached and that

more improvement due to reoptimization could be achieved in that case.

Table 3.2

Initial, Optimized, and Reoptimized Constitutive Model Parameters
for Wide Band and Moderate Courant Number.

The complex modulus model is compared with the experimental data in Figure 3.11. The

agreement over the band for the optimized parameters at zero step size is very close. As was

observed in the narrow band case, the additional error introduced due to discretization is

apparent at the half reference step size (Figure 3.11 lb) and gross at the reference grid size

(Figure 3.11 c). Reoptimization again improves the fit and is closer in appearance to the

optimized parameters at half step size than to the full reference step size.

Figure 3.12 gives the more quantitative N, and N sag measures of error. The same trends

observed for the narrow band are here again. The phase error after optimization is roughly

the same on average as the optimized model at half the step sizes. The magnitude error is

improved to some point between the optimized models at the half and full step sizes. An
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Item Name MR N/m 2 ) M (N/m2) M2 (N /m2 ) f (Hz) (Hz)

I Initial 5.00e+07 1.00e+07 2.00e+08 1.00e+03 6.00e+03

2 Optimized 8.02e+07 6.55e+07 1.18e+08 3.37e+03 2.05e+04

3 Reoptimized 9.39e+07 4.16e+07 1.27e+08 3.04e+03 1.32e+04
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Figure 3.11Complex shear modulus optimization results for wide band, moderate Courant number with
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Error analysis of results for wide band, moderate Courant number optimization with L2 and

c .5. Dotted curves represent number of time steps to = phase error, N,, solid curves
represent time step limit to 1 dB magnitude error, Nq. The four figures correspond to the
four figures shown in Figure 3.11. Note that N q for the reoptimized parameters (Figure
3.12d) is higher than the optimized parameters at the same step sizes (Figure 3.12c) but less
than the N at half the step size (Figure 3.12b). The N, for the reoptimized parameters is
on average about the same as the optimized parameters at half the step sizes.
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unsuccessful attempt was made at this point to balance the phase and magnitude error by

weighting the loss modulus more heavily than the storage modulus with the idea that this

would yield a more efficient model. For low loss materials, the loss modulus controls the

magnitude error while the storage modulus controls phase error (this is only roughly true for

the high loss materials). For light amounts of weighting, the improvement is negligible. As

the weighting is increased, before any significant improvement is realized, the solution will no

longer converge. I attribute this to the limited degrees of freedom in the decaying exponential

model where there is a fixed relationship between the loss and storage modulus. By changing

the weighting, I am is trying to force a change in this relationship which is not possible. In

other words, the solution I am trying to achieve is not contained in the decaying exponential

model and therefore cannot possibly converge.

The results from the time domain experiments are shown in Figure 3.13. The wider band

pulse shown in Figure 3.9 is now used. Figure 3.13 gives the pulse shapes versus distance

after 100 time steps. Due to the wider bandwidth, dispersion of the pulse shape is evident.

The improvement in phase error due to reoptimization is evident by comparing the

reoptimized model with the optimized model at the same step size. The improvement in

nmagnitude error is somewhat better than anticipated from the wavenumber domain error

analysis figures. ne reason for this may be the filtering effect that the source spectrum has

on the wavenumber domain error. Another reason is that there may be some phase and

nmlgnitude error cancellation. In any event, once again, based on these results the reoptimized

model at the reference step size is as good as the optimized model at half the reference step

size.

To compare error at different times, the reoptimized model and the optimized model at the

reference step size is plotted (along with the "exact" spectral model solution) after 25, 50,

100, and 200 time steps in Figure 3.14. All three solutions are close together after 25 time

steps. The error in the optimized model is seen to increase more rapidly than the reoptimized

solution. The stress levels are extremely small after 200 time steps.
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Figure 3.13
Time domain results for wide band, moderate Courant number optimization with L=2 and
N c = .5. All figures show a cosine modulated Gaussian pulse at fixed time, t= 100- At f, as
predicted by a spectral method (solid) and a finite difference model. (dash-dot). The original
pulse shapes are shown in Figure 3.9. The temporal step size is At= 4e-6 sec and spatial step
sizes used for the top through the bottom figure are 0, .5, 1, and 1 times the reference step
sizes, Ax = .004 m. Optimized constitutive model parameters are used for the top three
figures while the reoptimized parameters are used for the bottom figure.
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Figure 3.14
Time domain results for wide band, moderate Courant number optimization with L=2 and
NC -. 5. Figures from top through the bottom show a cosine modulated Gaussian pulse at 25,
50, 100, and 200 time steps where t- 100. At ,-*.4e-6 sec. Each figure has three curves
representing shear stress as predicted by a spectral method (solid), the finite difference model
with optimized parameters (solid-dot), and the finite difference method with reoptimized
parameters (dash-dot). The original pulse shapes are shown in Figure 3.9 and the spatial step
size is Ax .004 m.
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3.4.3 Case 3: Wide Band, Low Courant Number

Due to the low sound speed of high loss materials, it will often be required to model wave

propagation at low Courant numbers near NC = .1, which is the reason this case is considered.

The reference spatial step size is the same as the earlier cases; the temporal step size is

decreased by a factor of five to achieve the low Courant number. Exactly the same

optimization procedure used for the wide band, moderate Courant number is used for this

case. The results are given in Table 3-3. It is interesting to note that the reoptimized

parameters are within several percent of those for the moderate Courant number.

Table 3.3

Initial, Optimized, and Reoptimized Constitutive Model Parameters

for Wide Band and Low Courant Number.

The complex modulus match versus wavenumber is graphed in Figure 3.15. The appearance

is similar to the corresponding graph for the moderate Courant number indicating that the

discretization error is driven by the spatial step size. The phase and magnitude errors versus

wavenumber are shown in Figure 3.16. Both N, and N,.. are five times greater than the

moderate Courant number case merely due to the smaller temporal step size. The differences

beyond that are not pronounced. The time domain experiments for the wide band wave

packets after 500 time steps (same time as the moderate Courant number cases after 100 time
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Item Name MR (N/m 2 ) ML (N/m2 ) M2 (N/m2 ) fMe(Hz) fc 2 (Hz)

I Initial 5.00e+07 1.00e+07 2.00e+08 1.00e+03 6.00e+03

2 Optimized 8.02e+07 6.55e+07 1.18e+08 3.37e+03 2.05e+04

3 Reoptimized 9.56e+07 3.97e+07 1.32e+08 3.05e+03 1.32e+04
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Time domain results for wide band, low Courant number optimization with L=2 and N = .1.
All figures show a cosine modulated Gaussian pulse at fixed time, t - 500 A tg,f as predicted
by a spectral method (solid) and a finite difference model. (dash-dot). The original pulse
shapes are shown in Figure 3.9. The temporal step size is At = .e-6 see and spatial step
sizes used for the top through the bottom figure are 0, .5, 1, and 1 times the reference step
sizes, Ax - .004 m . Optimized constitutive model parameters are used for the top three
figures while the reoptimized parameters are used for the bottom figure.

84



steps) are shown in Figure 3.17. The error for the optimized model at the reference step size

is worse than the same conditions at the moderate Courant number. For this reason, the

improvement due to optimization is greater than the moderate Courant number case.

3.5 Discussion

In most cases of interest, the domain of the finite difference model is heterogeneous and will

include several materials of various degrees of viscoelasticity including non-dissipative elastic

materials. Because high loss materials are soft and typically have the lowest sound speeds,

they dictate the spatial step size of the entire grid. In extreme cases, such as the constrained

layer submarine hull problem discussed in Chapter 1, the sound speed contrast between the

steel hull and the elastomer is approximately 10 times. Therefore by increasing the step size

required by the viscoelastic material, the step size for the entire domain is also increased. This

is how reoptimization is used to increase computational efficiency.

lThe results of the previous section show that for narrow band modeling, the time steps to

error for the reoptimized parameters have a larger average N, and nearly the same average

Nag in a narrow band about the center wavenumber than the optimized values at half the

spatial step size. Therefore, reoptimization allows a two-fold increase in spatial and temporal

step sizes which increases computational speeds by eight times for 2D models and by sixteen

times for 3D. The attendant saving in computer memory is also significant, especially

considering the roughly two fold increase in field variables due to the memory variables (refer

to Section 2.8.). The contention that, for a given accuracy, reoptimization allows the grid size

to be doubled has been verified in both the frequency domain and in the time domain by the

experiments presented. The time domain results are most important since that is the where

the final solution is desired. The use of narrow band modeling is particularly useful for

modeling complex geometry, precluding the use of spectral methods, and whenever the

computational cost of wide band is prohibitive due to additional terms in the constitutive
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model expansion. This is likely to arise when modeling 3D viscoelastic waves where the

computational burden is already immense and each additional term in the constitutive model

expansion adds six additional field variables.

How is it possible that the reoptimized results (see Figure 3.7) are better than the optimized

results at zero grid size? I discussed in Chapter 2, how the fractional derivative model

required the fewest number of model parameters for a given accuracy. Remember that the

this model allowed for the frequency dependance to have fractional powers (more degrees of

freedom). This means that the physical nature of most viscoelastic materials follow fractional

power relationships. In contrast, the decay exponential model has integer power relationships

(see Equation 2.15 and Equation 2.16). Fitting the decay exponential model to experimental

data is somewhat like fitting a square peg in a round hole. As shown in Figure 3.7, the

numerical error distorts the frequency (and wavenumber) relationship by making it flatter. It

is fortuitous that this happens to be closer to the frequency behavior of the material. Other

materials must be investigated to determine whether this is a general result.

While the benefit of wide band reoptimization is slightly less dramatic, clearly the reoptimized

model performance at the reference step size is closer to the accuracy of the optimized model

at half the reference step size than at the full reference step size. In hindsight, a wider band

source spectrum should be used to take full advantage of reoptimization. Reoptimization

works best where discretization error is greatest, which for wide band is towards the upper

band edge (see Figures 3.7, 3.11, and 3.15). The bandwidth of the source used is too narrow

compared with the optimized bandwidth. One idea is to weight the optimization process by

the power spectral density of the source to ensure a proper relationship between the two.

The wideband results at different Courant numbers indicate that the benefits of reoptimization

is effective at all Courant numbers. The wide band results are important because the wider

bandwidth models are more efficient and because wide bandwidth models are needed to reveal

the dispersive nature of viscoelastic waves.

How do the time step limits for a viscoelastic model compare with those for an elastic model

at the same spatial sample rate? For the three cases studied, the time step limit for the
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reoptimized parameters is magnitude limited at roughly 100 time steps corresponding to a

spatial sample rate of 12 grid points per wavlAeigth (12 gpw) at the center wavenumber.

These numbers are competitive with time step limits for elastic schemes at the same sample

rate and Courant numbers. For example, the Lax-Wendroff scheme used by Fricke [10] is

phase error limited to about 200 time steps at 12 gpw and Nc = .5, and 800 time steps at 12

gpw and NC = .1. But if the viscoelastic material is modeled at 12 gpw, then the elastic

material must be near 120 gpw due to the high sound speed contrasts. Time step error limits

for elastic materials at these sample rates are on the order of le5. This means that the

viscoelastic material is severely limiting the accuracy of the entire model and indicates

inefficient computation. All is not lost, however, when one considers that the magnitude error

time step limit, as defined, is unduly hard on rapidly decaying waves. The limit is defined in

terms of the error relative to the amplitude of the wave at the present time step (not at its

original amplitude). If we consider two packets of energy, one traveling in the elastic region

of a heterogeneous medium and the other in the viscoelastic, a 1 dB magnitude error in the

first wave packet is much more significant than a 1 dB error in the viscoelastic packet. As an

example, for the moderate Courant number cases studied, the amplitude has decayed more

than 20 dB after 100 time steps. This suggests that a redefined error limit is needed for the

high loss material modeling that adjusts for the rapid amplitude decay.

To model heterogeneous materials with high contrast in sound speed, the Courant number in

the high sound speed material will be close to unity which means that the viscoelastic material

will be low, perhaps as low as Nc=. 1 (at least for our submarine hull problem). Optimization

at low Courant number is therefore important and is the reason why in the previous section it

is run at Nc=. 1 and .5 by changing the temporal step size. The reoptimization at the moderate

Courant number shows that the error is severely magnitude limited. It was hoped that

decreasing the temporal step size would reduce the magnitude error relative to the phase error

and therefore increase the modeling efficiency. The results show (compare the reoptimized

error limits for case 2 and 3 in Figure 3.12 and 3.16) that there is little change in the relative

error.
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It makes sense that the high loss materials would be magnitude error limited. The rapid decay

rate associated with high loss materials requires higher tetperal than spatial sampling. This

contention is in agreement with the Blanch's results for the low loss materials [2]. Blanch uses

a five point centered spatial differencing with 0(4) accuracy, and their model is still phase

error limited. I use three point differencing with 0(2) accuracy and error is magnitude limited

(refer to Section 3-2 for discussion of spatial differencing). As observed in the error analysis

for all three cases (see Figures 3.8, 3.12, and 3.16), reoptimization improves phase error more

than magnitude error. This suggests that the benefits of reoptimization will be even more

significant for lower loss materials.

3.6 Future Work

Since reoptimization is truly a new method, there remain untested ways in which it can be

implemented and numerous conditions under which it may be useful; too many to cover in the

present study. I mention ones that I have considered here without full and adequate

disclosure.

* Low or Intermediate Loss Material Modeling- I have already discussed the possible use of

reoptimization to improve low loss material modeling.

* Application to the Pseudo-Spectral Method- Carcione [5] used pseudo-spectral methods

rather than finite differencing for spatial integration of the viscoelastic wave equation with

memory variables. Finite differencing was still used for time domain integration and therefore

reoptimization may still be applied to the constitutive model parameters.

* Wider Bandwidth Optimization and Split Finite Difference Schemes- Wider bandwidths

beyond two octaves using more than two memory variables need to be investigated. It was

mentioned earlier that finite difference schemes are more meaningful and efficient for wider

bandwidth source spectrum. The wider the bandwidth, the more information the model

carries and evolves in time. If optimization and reoptimization is done for wider bandwidth
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using more memory variables (also with a wider spectrum of relaxation spectra), the more one

would be inclined to use a split finite difference scheme [8]. A split scheme updates or

samples the slow relaxation spectra less often; the relaxation spectra are, in effect, each

treated with a different (or split) scheme. I believe that reoptimization applied to a split

scheme would therefore realize the benefit closer to the narrow band results rather than the

wider band results.

* Use of Mini-Oscillator Technique (MOT) to Improve Reoptimization- While the MOT

model [15] by itself does not significantly improve optimization, it may help to improve

reoptimization. As seen from Figures 3.11 and 3.15, the loss modulus is matched well on

average and it seems that, with the ability to "tweak" the match using the MOT model, error

could be drastically reduced.

* Use of Memory Variables in ELF Model- The Eulerian Finite Difference model (ELF),

which models elastic waves in heterogeneous media with high contrast boundaries uses added

dissipation of the form Am to control instabilities originating at these boundaries [11]. The

spectral selectivity of the memory variables may be used to improve the accuracy of such

models by adding dissipation outside the source spectrum where it is needed.
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3.7 Conclusion

While the focus of this chapter has been on reoptimization, it should not be overlooked that

the application of optimized memory variables for high loss materials using the finite

difference method has been successfully demonstrated. Specifically, that the use of optimized

memory variable parameters, matched to both the real and imaginary parts of the complex

modulus of a high loss viscoelastic material, and formulated in a finite difference model is

collectively new. Furthermore, that the method has been analyzed in terms of stability, both

phase and magnitude error, and implemented in a practical two dimensional time domain

model using Huen's Predictor-Corrector scheme with three point centered spatial differencing.

I claim that reoptimization of the memory variables used for narrow band, high loss materials

reduces the model size requirements by a factor of 8 times in 2D and 16 times in 3D. Given

that the number of field variables is roughly doubled from that required for the full viscoelastic

equation with memory variables in both 2D and 3D, the reduction in storage requirements is

reduced by a factor of 4 times in 2D and 8 times in 3D. Furthermore these reductions require

negligible additional work over ordinary optimization.

Similar results have been demonstrated for reoptimization over a two octave wide band.

While the reduction in error is slightly less pronounced, with proper weighting between the

source bandwidth and optimization bandwidth, the same improvements are possible for

wideband modeling.
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Appendix A

Computer Programs

As described in Chapter 1, the use ofthefinite difference method with memory variables to

predict the behavior of waves in viscoelastic media requires two computer models, the

constitutive model at a point in a viscoelastic material, and the finite difference model of the

physical domain (a collection of points). I describe the subroutines which compose each program

here, followed by a listing of the Matlab codes.

A. 1 Description of Constitutive Model Parameter Optimization

The computer program, optl.m, finds the optimum complex modulus parameters (MR, Ml, ft)

for given complex modulus data in a specified wavenumber band. Opt l.m is used for either

optimization or reoptimiztion. If the complex modulus model is based on the analytic dispersion

relation, then the process is the ordinary optimization process. If the model is based on the

numeric dispersion relation, the process is the new reoptimization process. A block diagram of

opt l.m is shown in Figure A. 1. A brief description of the function of each subroutinet,

t All Matlab subroutines have a ".m" extension and are referred to, in Matlab vernacular,
as "m" files.
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represented by individual blocks, is given here. The Matlab computer codes are given in Section

A.3.

* optl.m- Top level subroutine which prompts user for input file name and calls other subroutines

as shown in Figure A. 1.

* inXXX.m- Input file to opt l.m provides: initial guess at model parameters; scale factors used to

normalize parameters and improve conditioning of sensitivity matrix (refer to Section 3.3.1);

spatial and temporal step sizes needed for reoptimization process; and wavenumber optimization

band.

* apost2.m- Calculates complex modulus "data" points at specified wavenumbers from hardwired

fractional derivative model parameters.

* solve l.m- Advances iteration of modulus parameters.

* fit4.m- Calculates sensitivity matrix (refer to Section 3.3.1).

* trans2.m- Buffer program which allows fit4.m to talk to ica3.m or icn4.m

* ica3.m- Calculates analytic complex frequency at specified wavenumber.

* icn4.m- Calculates numeric complex frequency (eigenvalue) at specified wavenumber and spatial

and temporal step sizes for Predictor-Corrector scheme with 3-point spatial differencing. Also,

provides scale factors and phase relationships (eigenvectors) between field variables needed to set

initial conditions for time domain model.
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A.2 Description of Time Domain Model

The Matlab program used to verify the effectiveness of the reoptimization process is described in

this section. The subroutine, referred to as m2d7.m, is shown in block diagram form in Figure

A.2. The model predicts the behavior ofviscoelastic waves in two dimensional homogeneous

viscoelastic medium. The following is a brief description of the function of each subroutine (that

has not already been descnribed in the previous section). A listing of each subroutine is given in

Section A.4.

* m2d7.m- Main subroutine: reads input file and calls other subroutines as shown in figure.

* nmXXX.m- Input file specifies: complex modulus parameters; grid size and spacing; type of

initial conditions; and normalization factors.

* sourcel.m- Calculates source function for specific model run.

* syn4.m- Calculates or synthesizes initial conditions for model run for given source function.

Also, uses spectral method to predict material model behavior and analytic model behavior (refer

to Section 3.2.4).

* apost2.m/icn4.m/icn3.m/fit .m/dat5.m- Described in previous section.

* pc3.m- Advances all field variables by one time step using the Predictor-Corrector method.
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Figure A. 1
Block diagram of optl.m program used to find the optimized and reoptimized constitutive
model parameters. Program is written in Matlab and uses the Gauss-Seidel method with
underrelaxation to solve a set of non-linear equations.
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Figure A.2
Block diagram of the finite difference time domain model, m2d7.m. Program is written in
Matlab and uses Huen's Predictor-Corrector scheme with 3-point centered spatial differencing
to model waves in a two dimensional, high loss, homogeneous, viscoelastic medium.
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A.3 Listing of Optimization Program

% inlOla.m
% input file for opt 1.m

0/0 ------- - - ----------

tol=l.e-4;
delt=le-4;
urp=1;
keys=[0,2,2];

itmax=l;
N=20;
k=linspace(10,40

input variables --------------------- %
% tol on optimized x parameters
% percent perturb of x
% underrelax. parameter, =normal, O=stop
% key(l): not used
% key(2): =anal dd, 2=num. dd(re trans2.m)
% key(3): optimization weighting
% maximum iterations allowed

% number k points
),N); % wavenumber band

rho=1000;
Mr-8.0232e7;
Mm=[.6550,1.1866]*1e8;
fc=[3.375,20.485]* 1e3;

dx=le-2;
NC=.5;
theta=0;

MOD=5e7;
RHO=1000;
LEN=1;
TIME=LEN*(RHO/MOD)A.5;

% .-- ----------------------------------

% density
% relaxed modulus
% memory variable moduli
% my corner freq

% spatial step
% Courant number
% grid angle (radians)

% refmodulus
% ref density
% ref length
% reftime

mm.-%
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% optl.m

clear all
global keys itmax tol delt urp kh theta
global Nmag Nph Nlim gpw iter reqd

%------------------- get input file -----------------------%
infile=input('input file name? ','s');
eval(infile);

Mu=Mr+sum(Mm); % unrelaxed modulus
cu=(Mu/rho)^.5; % unrelaxed sound speed
dt-NC*dx/cu; % grid time step
kh=k.*dx; % non-dimensional k

%------------------ experimental data --------------------%
[Gp,Gpp]=apost2(k);
%---.--- normalized quantities ---------%

nrho=rho/RHO;
nM[u=Mu/MOD;
nM[m=Mm/MOD;
nfc=fc*TIME;
ndx>dx/LEN;
ndt=:dt/TIME;
nk==k*LEN;

nGp=Gp/MOD;
nGpp=Gpp/MOD;

%------------------ optimize and renormalize ---------------- %
tenmp l='solve l(nMu,nMimnfc,ndx,ndt,nk,nGp,nGpp,nrho)';
[nMu,nMmnfc,nEpnEpnEpp]=eval(temp 1);

Mu.-nMu*MOD;
Mm=---nMm*MOD;
fc=nfc/TIME;
Ep-=nEp*MOD;
Epp-=nEpp*MOD;

Mr=Mu-sum(Mm);
cu=(Mu/rho)A. 5;
NC=cu*dt/dx;
NT=dt./(2*pi*fc);
NM=Mm/Mu;
wx=(( l/rho)*(Ep+j*Epp).A. 5).*k;
wxid=(( l/rho)*(Gp4j*Gpp).A. 5).*k; % wk data
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% solvel.m

function[Mu,Mm,fc,Ep,Epp]=solve l(Mu,Mm,fc,dx,dt,k,Gp,Gpp,rho)';

global keys itmax tol delt urp kh theta
global k rho Nmv dt dx yexp keys
global Nmag Nph Nlim gpw iterreqd

yexp=[Gp,Gpp]; % experimental data for matching
khx--kh*cos(theta); % kh in x-dir

% --------------------------- fit -----------------------------%

iter_reqd=O;
x=[Mu,Mmfc].'; % (Nvxl) not (lxNv)
N=max(size(yexp))/2; % number of data points (N must be even)
Nmv=max(size(Mm)); % number of memory var. param. pairs
Nv=size(x); % total number of parameters
fl='trans2(x,k,rho,Nmv,dt,dx,yexp,keys)';
if itmax>O % iterate to find best fit for x parameters

[xiter,fiter,Am]---fit4(fl,itmax,tol,delt,urp,x);
[dummy,iterreqd]=size(xiter); % iter required for converg.
ifiterreqd=[]
end;
=xiter(:,iter_reqd); % new x's(Nv x 1)

end

% ------------------------- post ------------------------------ %
Mu=x(1);
Mm=x(2: l+Nmv).';
fc=x(2+Nmv:Nv).';
Mr=Mu-sum(Mm);
tau=( 1 )./(2*pi. *fc);
cu=(Mu/rho).5;
NC=cu*dt/dx;

% find final value of Ep and Epp vs k (will not work for vs f)
mode=l;
ky=O;

sgn=- 1;
nopt=[1,2,sgn,1];

for n=l :max(size(k))
kx=k(n);
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if keys(2)=1
[tenp 1]=ica3(mode,kx,ky,Mu,rho,ltau,sgn); %temp 1=wc

elseifkeys(2)=2
[temp l]=icn4(mode,kx,ky,Mu,Mm,rho,tau,dt,dxnopt);

end
wx=[wxtemp 1];

end
cx=wx./k;
Ex=rho*cx."2;
Ep=real(Ex);
Epp=imag(Ex);

/o----------------------- error analysis ------------------- %
wkd=(l/rho)*(Gp+j*Gpp).. 5).*kh*(NC/cu); % wk data
wk=(( l/rho)*(Ep+j*Epp).^.5).*kh*(NC/cu);
Nph=(pi/4)./abs(real(wk-wkd));
Nmag=( 1 )./(20*log 1 O(exp(1))*abs(imag(wk-wkd)));
gpw=2*pi./khx; % grids per wavelength along x-direction
Nlim=min([Nph;Nmag]);
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fimction[xiter,fiter,Am]--fit4(fl ,itmax,tol,delt,urp,x)
global k rho Nmv dt dx yexp keys

O/ -.-.--.--.--------------------- %

M=max(size(x));
xiter-0;
fiter=O;
iter=l;
if itmax>0;

key l='gogo';
else

keyl='nogo';
end;
while keyl=='gogo'

iter
Am=U;

for n=l:M
n;
Fa=eval(fl);
x(n)=(l+delt)*x(n);
Fb=eval(fl);
x(n)=x(n)/(l+delt);
dF=(Fb-Fa)/(delt*x(n));
Am=[Am,dF];

end % for n
delx=Am\(-Fa);
xnew-x+delx;
condAm=cond(Am);
xerr=abs((x-xnew)./x);
merr-max(xerr);
x=(l-urp)*x+urp*xnew;
xiter=[xiter,x];
fiter=[fiter,Fa];
if iter >= itmax;

keyl='nogo';
message='fit4 did not converge

end
iteriter+ 1;
if merr<tol;

keyl='nogo';
message='fit4 converged';

end
end % for iter
xiter=xiter; message

% M, total no. param (2XL)

% (Nxl)
% perturb x delt perc. (Nxl)
% (Nxl)
% reset x
% (Nxl)
% (NxM)

% del x params, not dx

% percent abs error (1XN)
% max percent abs error (1X1)
% underrelax x
% track x thru iter (1XN)
% track x thru iter (1XN)
% enough trys?

% solution converge?
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fimction[wc,amp]=ic a3(mode,kx,ky,Mu,rho,Mm,tau,sgn);
Nmv=max(size(Mm));
tempO=-sgn*i*[O,-i*'kx*Mu,-i*ky*Mu,- 1 *ones( 1,Nmv);

-i*kx/rho,O,O,zeros( 1,Nmv);
-i*ky/rho,O,O,zeros( 1,Nmv)];

temp2=[];
for n= 1 :Nmv

ttl =[0,-i*kx*Mm(n')/tau(n)];
tt2=[-i*ky*Mm(n)/tau(n),zeros( 1,n- 1)];
tt3=[- 1/tau(n),zeros( 1,Nmv-n)];
tenm l=i*[ttl,tt2,tt3];

tenp)2=[temp2;temp 1];
end
A=[l:empO;temp2];
[vect,val]=eig(A); % val is a diagonal matrix
valv=diag(val).'; % diagonal of eigenval matrix (lxNv)
% ---- %-----------------------%
[dum,index 1 ]=sort(real(valv));
temp 1 =valv(indexl);
temp,2=[temp 1( 1 ),temp 1(3+Nmv),temp 1(2:2+Nmv)];
wc=:emp2(mode);
vect 1 =v ect(: ,index 1);
vect2-=vectl(:,[1,3+Nmv,2:2+Nmv]);
amp=--ect2(:,mode)./vect2(1 ,mode);
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fimction[wc,vect]-icn4(mode,kx,ky,Mu,Mm,rho,tau,dt,dx,opt)
0/0 -------- ------------------ %

Nmv=max(size(tau));
khxkx*dx;
khyky*dx;
cg=dx/dt;

if opt(l)--=l % 3pt centered spati
sxj*sin(khx);
sy=j*n(khy);
elseif opt(l)=-2 % 5pt centered spati
sx-j*(-sin(2*khx)+8* sin(khx))/6;
syj*(-sin(2*khy)+8*sin(khy))/6;

end
ttl=[0, -Mu*sx/cg, -Mu*sy/cg];
tt2=[-sx/(rho*cg),0,0];
tt3=[-sy/(rho*cg),,0O];
Al=[ttltt2-tt3];
ifNmv>0

A1(1,4:Nmv+3)=[-dt*ones( 1,Nmv)];
for n= l:Nmv

Al(3+n,2)=-Mm(n)*sx/(tau(n)*cg);
A 1(3+n,3 ) Mm(n)*sy/(tau(n)*cg);
Al(3+n,3+n)-dt/tau(n);

end % n
end % if
if opt(2)==I % Euler-Foward

A2=eye(3+Nmv)+A1;
elseif opt(2)=2 % Predictor-Correct
A2=eye(3+Nmv)+A1+.5*A1^2;

end

[uvects,gval]=eig(A2);
g=diag(gval).'; % take diagonal of gval matrix (lxNv)
valvlog(g)/(j*opt(3)*dt); % solve for w
[dumindexl]=sort(real(valv)); % sort eigenvalues
templ=valv(indexl);
wcs=l[temp l( l),temp(3+Nmv),temp 1(2:2+Nmv)];
wc-wcs(mode);
temp l=uvects(:,indexl); % sort eigenvectors
vects=[temp 1(:, l),temp 1(:,3+Nmv),temp 1(:,2:2+Nmv)];
vect=vects(:,mode)./vects( l,mode);

al differentiation

al differentiation

or
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function[dy]=-trans2(x,k,rho,Nmv,dt,dx,yexp,keys);
N=max(size(k)); % prelim calc
N'v=max(size(x));
MU=x(l);
Mm=x(2: 1+Nmv);
fc:=x(2+Nmv:Nv);
tau=( 1 )./(2*pi. *fc);

r=[]; %
mode=1;
k=O .;
sgn=- l;
nopt=[1,2,sgn, ];
for n= 1 :max(size(k))

kxk(n);
if keys(2)==l
[temp 1]=ica3(mode,kx,ky,Mu,rho,Mm,tau,sgn); %/otemp l=wc

elseif keys(2)==2
[temp 1]=icn4(mode,kx,ky,Mu,Mmrho,tau,dt,dx,nopt);

end
wx=wx,temp 1];

end
cx=wx./k; Ex=rho* cx.^2;
key.s(2)=l ;

ifkeys(3)== 
dyl=((yexp( 1 :N)-real(Ex))./yexp( 1 :N));
dy2=(yexp(N+ 1 :2*N)-imag(Ex))./yexp(N+ 1:2*N);
dy4[dyl,dy2]';

elseif keys(3)==2
dy l=yexp(1 :N)-real(Ex);
dy2=yexp(N+ 1 :2*N)-imag(Ex);
d=[dyl,dy2].';

elseif keys(3)==3
dy l=(yexp( 1 :N)-real(wx))/(pi/4);
dy2(yexp(N+ 1 :2*N)-imag(wx))*20*log 10O(exp( 1));

dy l-=(yexp( 1 :N)-real(wx))/4;

d.y2=(yexp(N+ 1 :2*N)-imag(wx))*8;
dy=[dyl,dy2]';

elseifkeys(3)==4 % Q opt
dq=yexp(N+ 1:2*N)./yexp( 1 :N)-imag(Ex)./real(Ex);
dy ==((yexp( 1 :N)-real(Ex))./yexp( 1 :N));
dy= [dyl(N/2),dq( 1:N- 1),dq].';

end
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function[fcn]=dat 5(w,k)

w,=w( 1)+j*w(2);

ao=4e7;
al=4e5*(5A.5);
bl=le-3*(5^.5);
a=:.5;

b=:.5;
bouy =l e-3;

fi.nx=w/k-(bouy*(ao+a 1 *(j*w). 'a)./( l+b 1 *j*w)./b) ).A.5;
fic=[real(fcnx);imag(fcnx)];
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A.4 Listing of Time Domain Model

%-- c:\thesis\model\run701.m -------%

clear all;
%--.-----input ------------%
% model parameters
not==le-30;
K=2 ]L;

M=4;
N=6;
dx=l/(N-2);
dt=dx/2;
fact=2/'3;
sgn=-. 1;

TF=dt*(K - 1);

/o--- material properties ---%
rho=l;
Mr=l;
Mn=[0,0,,0];
fc=[11,2,3,4];
Nmv=4;

% --. source parameters --- %
sxkey=2;
sykey=3;
kcx=2*pi;
Ax=l;
xcx = . 1;

xsx=:. 5;

kcy=:. 125;

Ay=l;
xcy=:.35;

xsy=:. 1;

% convienient small number
% number of time increments
% number of y increments
% number of x increments
% x and y step
% time step
% increase eff. model size by "fact"or
% must be neg.

% density
% relaxed modulus
% memory variable moduli
% mv corner freq
% number of memory variables

% (l=Gaussian, 2=k-tone, 3=const. 4=Ricker)
% source key for y or m-dir.
% Gaussian source center x-wavenumber
% x-amplitude
% x-spatial decay factor
% x-spatial delay
% center y-wavenumber
% y-amplitude
% y-spatial decay factor
% y-spatial delay

% --output control parameters --%
snap=[l,K*fact]; % k-steps for x-y pressure snapshots
xtrace=2; % y or m pos. of x length trace
ytrace=2; % x or n pos. of y length trace
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% ------------ normalize ------------------- %
MO)D= 1;
RHC)= 1;

LEN=1;
TIAME=LEN*(RHO,/MOD). ^. 5;

rho=rho./RHO;
Mr=Mr/MOD;
Mn==Mm./MOD;
fc=fc .*TIME;
dx=dx/LEN;
dt=dt/TIME;
TF=TF/TIME;

%----call main subroutine-------%
m2d7

%--- plot----%
figure(l)
plot(x,pfa,x,pfn,x,pf;,'o');
aNis([0,1 ,-1.5,1.5])

108



% nd7.m
% ------------------ precalc -------------------- %
tl=clock;
K=flect*(K- 1)+ 1;
N=iact*(N- 2)+2;
dt=dt/fact;
dx=:dxfact;
tau=( 1 )./(2*pi*fc);
Mu=Mr+sum(Mm);
cu=(Mu/rho)A. 5;
cg=dx/dt;
Nc==cu*dt/dx
Nm=Mmn/Mu
Nt=dt.,/tau
x=dx*('O:N-3);
y=dx*(O:M-3);
Lx=max(x)+dx;
Ly=max(y)+dx;
% TF=(K- )*dt;
tp=O:dt:TF;
cl=-Mu*dt/(2*dx);
c2=-dt/(2*dx*rho);
c3=.-(t;
c4=--dt./tau;
c5=-..Mm *dt./(tau*2*dx);

% relax. times
% unrelax. modulus
% unrelax. sound speed
% grid speed
% Courant no.

% n-grid coord. (2 to N-1)
% m-grid coord. (2 to M-1)
% total x length
% total y length
% final time (for pressure)
% time (for pressure)
% constants

%------------ initial conditions---------------%
paranm=[kcx,xsx,xcx];
[fx,Fx,FFx]=sourcel(x,param,sxkey);
paranm=[kcy,xsy,xcy];
[fy,KyFy,FFy]=source l(y,param, sykey);
global M N Mu rho Mm tau dx dt TF sgn
[p,u.v,r 1l,r2,r3,r4,pfin,pfa,pfn]=syn4(x,fx,y,fy);

tpx= [p(xtrace,2:N- 1)];
tux=[u(xtrace,2:N- 1)];
trlx:=[rl(xtrace,2:N- 1)];
tpy=[p(2:M- l,ytrace)];
tuy=[u(2:M- l,ytrace)];

%---------------- iterate:--------'
t2=clock;
msg=='begin iterations...'

% x pressure trace (lx(N-2))
% x velocity trace
% x velocity trace
% y pressure trace (lx(M-2))
% y velocity trace
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global M N Nmv cl c2 c3 c4 c5
if snap(l)==l; psnapl=p(2:M- 1,2:N-1); end;

for k=2:K
Ik

[p,u,v,rl,r2,r3,r4]=pc3(p,u,v,rl,r2,r3,r4);
for kk=1 :max(size(snap))

if k-=snap(kk)

eval(['psnap',int2str(snap(kk)),'=p(2:M- 1,2:N- 1);']);
end

end
tpx=[tpx;p(xtrace,2:N- 1)];
tux=[tux;u(xtrace,2 :N- 1)];
trlx=[trlx;rl(xtrace,2:N- 1)];
tpy=[tpy,p(2:M- 1,ytrace)];
tuy=[tuy,u(2:M- 1,ytrace)];

end 1% for k
msg='...completed iteration'
t3=clock;

%--- . . ..---- post processing-----------------%
pfm-=pfi( 1,:);
pfa=pfa(l,:);
pfn=pfn(1,:);
pf=tpx(K,:); % final pressure
uo-=lux(l,:); % initial vel.
uf-tax(K,:); % final vel.
rlo=trlx(l,:); % initial vel.
rlf=ltrlx(K,:); % final vel.

% max and rms error versus amplitude of pfn and pfa
merrn=max(( ( (pf-pfi)/max(pfn) ).A2).A.5);
merra=max(( ( (pf-pfa)/max(pfa) ).A2).m.5);
errn-=l sum(( (pf-pfi)/max(pfn) ).^2)/max(size(pfn)) ).m.5
erra=( sum(( (pf-pfa)/max(pfa) ).2)/max(size(pfa)) ).A.5
t4=clock;
elapsed_time=etime(t4,t 1)

iter time=etime(t3,t 1)
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% sourcel.m
function[y,wtot,Y,YY]=source l(t,param,key)

O --------------------------------%
N=max(size(t)); % even
fo=param(1)/(2*pi);
if key--==l % cosine modulated Gaussian

to=param(2);
tau=param(3);
y=exp(-pi*((t-to)/tau).A2).*cos(2*pi*fo*(t-to));

elseifkey==2
y=cos(2*pi*fo*t);

elseifkey=3
y=ones(1,N);

elseifkey=4 % shifted zero phase Ricker wavelet
to=param(2);
y=exp(-. 5*foA2*(t-to).A2). *cos(pi*fo*(t-to));

end
0/%- ------ ------------------------------- %

Y--ffshif(ffi(y,N))/N;
YY=abs(Y)

dt--=t(2)-t(1);
fsamp=l/(2*dt);
ftot=linspace(-fsampfsafsamp*(N-2)/N,N);
wtot=2*pi*ftot;
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% syn4.m
finction[p,u,v,rl,r2,r3,r4,pfm fa,p fn] ]=syn4(x,fx,y,fy)

global M N Mu rho Mm tau dx dt TF sgn

I=-max(size(fy));
J=max(size(fx));
dx=abs(x(2)-x(1));
dy=dx;

fxy=.'*fx; %M
M=1-2;
N=J+2;
kxs=2*pi/dx;
kys=2*pi/dy;
Ky=kys/I*[O:I/2 - 1,-1'2:- 1];
Kx=kxs/J*[O:J/2- 1,-J/2:- 1];
Y--ffl2(fxy,I,J);
YY=abs(Y);

IxN

% must be even
% must be even

% sample spatial freq in x dir.

% no shifting, I even
% no shifting, J even

% pwr. spect. density

0/o ------------------------------------ %

P=zeros(I,J);
U=zeros(I,J);
V=zeros(I,J);
Rl=;zeros(I,J);
R2=;zeros(I,J);
R3=;zeros(I,J);
R4=;zeros(I,J);
PFM:=zeros(I,J);
PFA=zeros(I,J);
PFN:=zeros(I,J);

% - ... .synthesis ----------%
nopt:=[1,2,sgn,1]; % options for icn4.m
for ii=l:I

ky=Ky();
for ij=l:J

kx=Kx(ij);
ko=(kx^2+ky2) .5;
if kx>O;

% ifky>O;
mode=l;

else
m.ode=2;
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end
if YY(i,jj)> le- 1

[wca,ampa]=ica3(mode,kx,ky,Mu,rho,Mm,tau,sgn);
[wcn,ampn]=icn4(mode,kx,ky,Mu,Mim,rho,tau,dt,dx,nopt);
amp=ampa;
P(iiij)=amp( 1)*Y(iijj);
U(iii)=amp(2)*Y(iij);
V(iji)=amp(3)*Y(iijj);
Rl(iij)=amp(4)*Y(iijj);
R2(lij)=amp(5)*Y(iij);
R3(iij)=amp(6)*Y(iijj);
R4(iiijj)=amp(7)*Y(ijj);

ifkx,-=O
[sEdata,lEdata,rhodata]=apost2(kx);
mscale=1/5e7;
rhoscale=1/1000;

cdata=(mscale*( sEdata+j *Edata)/(rhoscale*rhodata))^. 5;
wcm=-cdata*kx;

else
wcm=0;

end
%keyboard

PFM(iijj)=amp(l 1 )*Y(ii)*exp(j*sgn*wcm*TF);
PFA(iii)=amp( 1)*Y(iijj)*exp(j*sgn*wca*TF);

PFN(iijj)=amp( 1 ii)j)*Yexp(j* sgn*wcn* TF);
end % ifYY

end %jj
end '% ii
p=real(iffi2(P)); % take real(-) to rid roundoff error
u=real(iffi2(U));
v=real(iffi2(V));
rl=real('iffi2(R1 ));
r2=real('iffi2(R2));
r3=-real(iffi2(R3));
r4=real(ifft2(R4));
pfin=real(iffi2(PFM));
pfa=real(iffi2(PFA));
pfni=real(iffl2(PFN));
-o .... ------------- %
p=real([0,p(M-2,:),0; p(:,N-2),p,p(:, 1); O,p(1,:),0]);
u=real([0,u(M-2,:),0; u(:,N-2),u,u(:, 1); O,u(l,:),0]);
v=real([0,v(M-2,:),0; v(:,N-2),v,v(:, 1); O,v(l,:),0]);
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rl=real([O,rl(M-2,:),0 ; rl(:,N-2),rl,rl(:,1); O,rl(1,:),O]);
r2=real([0,r2(M-2,:),; r2(:,N-2),r2,r2(:, 1); O,r2(1,:),0]);
r3=real([0,r3(M-2,:),0; r3(:,N-2),r3,r3(:, 1); O,r3(1,:),0]);
r4=real([0,r4(M-2,:),,0; r4(:,N-2),r4,r4(:, 1); O,r4(1,:),0]);
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finction[pF,uF,vF,rlF,r2F,r3F,r4F]=pc3(p,u,v,rl,r2,r3,r4);
global MN Nmv cl c2 c3 c4 c5

/----- ... p & u predictor-------%
for m=2:M- 1

for n=2:N- 1
SUMr(m,n)=(rl(m,n)+r2(m,n)+r3(m,n)+r4(m,n)); /o(M- lxN- 1)
dpv(m,n)=p(m+ l,n)-p(m- 1,n); /o(M- lxN- 1)
dpu(m,n)=p(m,n+ 1)-p(m,n- 1); /o(M- lxN- 1)
duv(m,n)=v(m+l,n)-v(m- 1,n)+u(m,n+l)-u(m,n- 1);%(M- lxN- 1)
p S(m,n)=p(m,n)+c 1 *duv(m,n)+c3* SUMr(m,n);
uS(m,n)=u(m,n)+c2*dpu(m,n);
vS(m,n)=v(m,n)+c2*dpv(m,n);

end
end
pS(1,:)--pS(M-1,:); pS(M,:)=pS(2,:);
pS(:, l)=pS(:,N- 1); pS(:,N)--S(:,2);
uS( 1,:)=uS(M- 1,:); uS(M,:)=uS(2,:);
uS(:, l)=uS(:,N- 1); uS(:,N)=uS(:,2);
vS( 1,: )=vS(M- 1,:); vS(M,:)=vS(2,:);
vS(:, 1)=vS(:,N- 1); vS(:,N)=vS(:,2);
O/onote: exterior nodes of SUMr, dpv, dpu, and duv not used

% ---------- r predictor---------------%
if Nmv>O; %/onote: Nmv either 0 or 4

for m=2:M- 1
for n=2:N-l
rl S(m,n)-rl(n,n)+c4(1)*rl(m,n)+c5( 1)*duv(m,n);
r2 S(m,n)=r2(m,n)+c4(2)*r2(m,n)+c5(2)*duv(m,n);
r3S(m,n)=r3(m,n)+c4(3)*r3(m,n)+c5(3)*duv(m,n);
r4S(m,n)r4(m,n)+c4(4)*r4(m,n)+c5(4)*duv(m,n);
SUMrS(m,n)=(r 1S(m,n)+r2 S(m,n)+r3 S(m,n)+r4 S(m,n));

end
end
rlS(1,:)=rlS(M-1,:); rlS(M,:)=rlS(2,:);
r2S(1,:)=r2S(M-1,:); r2S(M,:)=r2S(2,:);
r3S(1,:)=r3S(M- 1,:); r3S(M,:)=r3S(2,:);
r4S( 1,:)=r4S(M- 1,:); r4S(M,:)=r4S(2,:);
rlS(:,l)=rlS(:,N-1); rlS(:,N)=rlS(:,2);
r2S(:,l)=-r2S(:,N- 1); r2S(:,N)=r2S(:,2);
r3S(:,l)=r3S(:,N-1); r3S(:,N)=r3S(:,2);
r4S(:, 1)r4S(:,N- 1); r4S(:,N)=r4S(:,2);

else
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SUMrS(m,n)=O;
end % ifNmv
% ---------- p & u corrector-------------%
for m=2:M-1

fbr n=2:N- 1
dpuS(m,n)=p S(m,n+ l)-p S(m,n- 1);
dpvS(m,n)p S(m+ 1,n)-p S(m- 1,n);
duvS(rn,n)=vS(m+ 1,n)-vS(m- 1,n)+uS(m,n+1 )-uS(m,n- 1);

vl:=cl*.5*(duvS(mn)+duv(m,n))+.5*c3*(SUMrS(m,n)+Slr(m,n));
pF(mn,n)=p(m,n)+vl;
uF(m,n)=u(n,n)+c2*. 5 *(dpuS(m,n)+dpu(m,n));
vF(Im,n)=v(m,n c2*. 5 *(dpvS(m,n)+dpv(m,n));

end
end % for m-p
pF( 1,:)=pF(M- 1,:); pF(M,:)--pF(2,:);
pF( :, 1 )=pF(:,N- 1); pF(:,N)=pF(:,2);
uF( 1, )-uF(M-1,:); uF(M,:)=uF(2,:);
uF(:, ])-uF(:,N- 1); uF(:,N)-uF(:,2);
vF( 1,: -vF(M- 1,:); vF(M,:)=vF(2,:);
vF,(:, 1)=vF(:,N- 1); vF(:,N)=vF(:,2);

%- . .....--- r corrector-------------%
if Nrmv>O;
for m=2:M-1

for n=2:N- 1
vl=c4( 1)*.5*(rl(m,n)+rl S(m,n))+. 5*c5( 1)*(duv(m,n)+duvS(n,n));
v2=c4(2)*. 5*(r2(m,n)+r2S(Jm,n))+. 5*c5(2)*(duv(m,n)+duvS(m,n));
v3=c4(3)*. 5*(r3(m,n)+r3S(m,n))+. 5*c5(3)*(duv(m,n)+duvS(mn,n));
v4=c4(4)*.5*(r4(m,n.)+r4S(m,n))+. 5*c5(4)*(duv(nm,n)+duvS(m,n));

rlF(m,n)=rl(m,n)+vl;
r2F(m,n)=r2(m,n)+v2;
r3F(m,n)=r3(m,n)+v3;
r4F(,n)=r4(m,n)+v4;

end
end
rlF(1,:)=rlF(M-1,:); rlF(M,:)=rlF(2,:);
r2F(1,:)=r2F(M- 1,:); r2F(M,:)=r2F(2,:);
r3F( 1,:)=r3F(M- 1,:); r3F(M,:)=r3F(2,:);
r4F( 1I,:)-r4F(M- 1,:); r4F(M,:)-=r4F(2,:);
rlF(:,1)=rlF(:,N- 1); rF(:,N)=rlF(:,2);
r2F(:, 1 )r2F(:,N- 1); r2F(:,N)=r2F(:,2);
r3F(:, 1 )=r3F(:,N- 1); r3F(:,N)=r3F(:,2);
r4Fi(:, 1 -r4F(:,N- 1); r4F(:,N)=r4F(:,2);

end %/o if Nmv
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