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Abstract
We analyze the formation, evolution, and spatial persistence of ribbing in coating pro-
cesses by parallel spectral element simulation of the fully nonlinear, unsteady, three-
dimensional, free-surface symmetric forward-roll coating fluid flow problem. The
calculations can be interpreted in terms of two well-understood phenomena: the "vis-
cous fingering" instability of a splitting meniscus; and the leveling of viscous films
under the effect of surface tension. These two solutions are matched over a transition
region of length, Lt, which is on the order of the final coating film thickness. The
downstream extent of the leveling region - the distance over which ribs persist, Le
- depends on the fluid properties, the flow conditions, and the wavenumber content
of the nonlinear meniscus rib profile.

We present the numerical methods used for our simulations of unsteady highly de-
formed two-dimensional and three-dimensional free-surface problems; representative
results for the evolution of the coating flow from perturbed unstable two-dimensional
steady states to stable three-dimensional ribbed steady states; and detailed descrip-
tions of stable three-dimensional ribbed steady states for moderate and highly super-
critical capillary numbers, Ca, and for different spanwise periodicity lengths, A. The
model and numerical calculations are consistent with reported experimental observa-
tions and linear stability analysis.
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Chapter 1

Introduction

The coating of continuous webs is an important manufacturing process which finds

wide application in the photographic and publishing industries. Although much effort

is devoted to developing and studying processes for the production of uniform films,

a major cause of defects, the three-dimensional hydrodynamic phenomenon known

as "ribbing," or "ribbing line instability," is not yet completely understood. Ribbing

is characterized by a spanwise waviness of the film free surface[1, 14, 51, 59] that

extends downstream with the web, and in most applications, renders the finished

product useless.

This thesis studies ribbing in the symmetric forward-roll coating device depicted

in Fig. 1-1. In the forward-roll coating process, two counter-rotating rollers entrain

and meter fluid onto a web. During normal operation, a continuous uniform film is

produced; however, if the speed of rotation of the rollers or the viscosity of the fluid

is increased, or the surface tension of the fluid-gas interface is decreased, ribs appear

and persist downstream on the film[14, 51, 59]. The rotating speeds for which ribbing

is encountered in symmetric forward-roll coating are un-economically slow and thus

other industrial coating processes have been developed. These other processes[8, 13,

6, 10, 11, 31, 34, 42, 43, 45, 52, 59, 4, 19, 27, 32] may also exhibit ribbing, but at higher

coating speeds; we choose to study forward-roll coating since it does not involve the

analysis of static or dynamic contact lines[44, 24, 69, 22, 21, 23, 17, 30, 39, 34, 40,

61, 60, 55, 29] , and ribs are readily obtainable.
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Figure 1-1: Schematic of a forward-roll film coating device: two rollers of diameter
D*, counter-rotating at angular speed w*, entrain fluid of viscosity /,*, density p*, and
surface tension a*, through a metering gap of width H*.

1.1 Previous Work

Coating processes in general, and ribbing in particular, have been the object of nu-

merous research efforts. Early experimental studies consisted of characterizing the

ribs produced during spreading as a function of the clearance between the spreader

(roller or wedge) and the coating surface, and the advance speed of the spreader.

From the practical point of view, determining the conditions for the onset of ribs

proved of greater utility.

Pearson[50] presents an analysis of coating flows in terms of lubrication theory and

linear stability theory to explain why some uniform coating flow regimes are unstable.

The approach identified two distinct regions of the flow field, the region upstream of

the splitting meniscus and the region downstream of the splitting meniscus. The flow

field in both regions was assumed one-dimensional; this approximation is equivalent to

considering the problem shown in Fig. 1-2 (b). Since the two flow fields do not match,

ad hoc boundary conditions were put forth in order to solve the two-dimensional

(non-ribbing) problem: the meniscus was assumed to form at the first stagnation

point downstream of the nip. Based on these approximations, the two-dimensional

problem was solved. Pearson[50], then studied the growth of small lateral disturbances

24
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a)

c)

Figure 1-2: Lubrication theory approximations for the two-dimensional domain: (a)
Original geometry; (b) geometry resulting from "matching" two one-dimensional flow
regions proposed by Pearson[50] and (c) "parabolic" meniscus region proposed by
Pitts & Greiller[51].

in order to predict onset, and to attempt to predict the wavenumber of the resulting

ribbing. Rough agreement was reported over a limited range of advance speeds despite

the crude approximations performed. Greater errors were incurred for high advance

speeds for which the "one-dimensional" lubrication theory approximations fail.

Pitts & Greiller[51] studied the flow of thin films between rollers. Naturally,

they first studied the "even flow regime" and then tried to determine the critical

conditions in which "ripples" first appear. From their experiments, they concluded

that, to a very close approximation, the "even flow regime" meniscus is "parabolic

over a large portion of its profile" as shown in Fig. 1-2 (c). In their analysis they used

25
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this observation to simplify the local meniscus geometry and predict the meniscus

location. With regard to ribbing, they studied the effects of a small perturbation

to the free surface in the spanwise direction and arrived at a stability criterion in

terms of the pressure gradient normal to the free-surface that is a function of the

local free-surface in-plane curvature. Using their model for the base states, and using

linear stability theory, they arrive at critical values of the governing parameters. They

also tried to determine the onset of ribbing through experimental observation for a

limited range of the governing parameters and compared them to their analytical

predictions. Their predictions for the onset of ribbing have limited success due to the

inherent errors of their approximations.

Both Pearson[50] and Pitts & Greiller[51] identified the characteristic capillary

number as a governing dynamic parameter. The capillary number, Ca, is defined as

Ca = ,I*V*/o* where V* is the characteristic tangential velocity of the spreader, and

* and a* are the viscosity of the fluid and the surface tension of the fluid-gas inter-

face (here, and in what follows, superscript * indicates a dimensional quantity). As

previously mentioned, the range of Ca studied by Pearson[50] and Pitts & Greiller[51]

was limited, and thus their results and conclusions are not general.

Mill & South[47], studying rotating rollers, performed a more thorough experi-

mental attempt at predicting the onset of ribbing covering a slightly wider range of

clearance (given in this case by roller separation) than Pitts & Greiller[51]. Attempts

at characterizing the ribbed state were also made, though the conclusions are not

general. Beyond criticality, they first observe a rapid increase in the wavenumber of

the observed ribs. Above Ca = 2.4, the wavenumber of the observed ribs became

independent of the Ca and varied "solely with geometrical parameters of the system,

i. e. roller radius and gap". The results they present include, however, variations of

the wavenumber with increasing Ca in the range where they state there are no more

variations. For specific coating "windows" given by specific ranges of Ca, stable ribs

were not obtained, but rather, a continuous meandering of ribs was observed.

Taylor[65] first studied the deposition of fluid on the wall of a tube when a viscous

liquid is blown from an open-ended tube. In this problem, the capillary number,
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now based on the speed of advance of the interface, is again a governing parameter.

Taylor identified three possible flow regimes, two of which exhibit recirculation re-

gions (analogous regimes are observed in symmetric forward-roll coating processes).

Taylor[66] then went on to study cavitation of a viscous fluid in narrow passages. The

main problem studied was that of eccentric lubricated bearings. Based on creeping

flow type approximations, Taylor proposed an expression that relates the flow rate (or

final coating thickness) to the pressure at the point of smallest clearance between the

rotating cylinders. Based on this result, Taylor determined the position of the menis-

cus as a function of Ca and the clearance (like Pearson[50] and Pitts & Greiller[51],

Taylor too had to assume something at the interface). Taylor identified the difficulty

of applying lubrication theory near the fluid-gas interface where the flow field is two-

dimensional. This clearly explains the limitations of the work of Pearson[50] and Pitts

& Greiller[51] that are based on flow field or boundary condition simplifications based

on nearly parallel lubrication flows. With regard to the three-dimensional problem,

Taylor identifies two types of cavitation, "separated" cavitation, in which the flow

is mainly two-dimensional, and cavitation in which air fingers appear making the

flow three-dimensional. The equivalence with ribbing in the free-surface geometries

is clearly seen. Taylor also reports on measurements made to determine the onset of

the three-dimensional flow regime for the cylindrical apparatus and on the influence

of gravitational effects on the onset.

Savage[62], in the context of cavitation in lubrication, studied in detail the different

models proposed by others (Swift-Stieber, Hopkins, Taylor, and Coyne & Elrod[15,

16]) to approximate the boundary conditions at the free surface. The boundary

conditions are used in conjunction with lubrication theory to predict the location of

the free surface and the resulting flow field. Savage does not answer the question of

which is the correct model (that is, if any is the correct model), but instead, goes on

to study the stability of the cavity-fluid interface without specifying any particular

geometry but based on the conditions put forth by Coyne & Elrod[15, 16], which

build on the work of Taylor[66]. Savage[62] confirms the original stability result of

Pitts & Greiller[51], but then goes one step further and, based on lubrication theory,
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proposes a more general stability criterion which relates the capillary number to the

position of the two-dimensional meniscus. The criterion proposed by Savage[62] for

stability of a uniform cavity interface to small perturbations is

d * + <0 (1.1)

where p* and a* are the fluid pressure at the interface and the in-plane radius of

curvature of the interface, respectively. The derivative with respect to x* is also

evaluated at the interface. Savage[62] also performs a more complete analysis of

steady small-amplitude wavy interfaces which is in good agreement with experimental

observations near criticality but grossly overestimates the wavenumber of the observed

ribs for greatly supercritical Ca. In later work, Savage[63] revisited the models for the

free-surface boundary conditions, determined their range of applicability, and used

them to make predictions for forward-roll coating such as coating thickness in the

limit of creeping flows.

Dowson & Taylor[19] reviewed, in the context of cavitation in bearings, the for-

mation of cavities, and the boundary conditions that can be applied at the cavity

interfaces. They conclude that the Reynolds condition and the separation condition

perfected by Coyne & Elrod[15, 16, 19, 63] are the most appropriate for analyses that

attempt to predict the location of the interface. The Sommerfeld and Giimbel[19, 63]

solution fields do not predict the interface location accurately, but are useful for

roughly estimating separating forces in journal bearings. Dowson & Taylor[19] also

review the prediction of the number of "streamers" that arise in cavitation and the

approximate stability conditions described above.

Gokhale[28] studied the lubrication flow between counter-rotating rollers. By

means of barrier functions that bound the pressure from above and below, Gokhale

proposed an even tighter stability criterion compared to that of Savage[62], but still

could not predict onset since the condition proposed is necessary for stability, but not

sufficient.

The description of the mechanism for ribbing, as mentioned above, dates back
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to the work of Pearson[50] and Pitts & Greiller[51]; other descriptions are given by

Savage[62], Ruschak[59], and Coyle[11] and can be readily understood by looking at

the criteria for stability. Briefly stated, the splitting meniscus and roller curvature

cause a non-negative pressure gradient normal to the meniscus free-surface; from

arguments forwarded by Saffman & Taylor[61] to explain viscous fingering, it can

then be shown[11, 51, 62] that, in the presence of this positive pressure gradient

normal to the free surface, and in the absence of surface tension, disturbances to the

free surface tend to grow. Figure 1-3 shows a perturbation, of amplitude , to an

interface where there is a macroscopic pressure gradient normal to the free surface,

Op/On. The pressure difference Pb -P indicates if the perturbation will grow or decay;

in the absence of surface tension forces, the pressure difference is Pb -Pc 2 9p/,n;

thus, the perturbation will grow if Op/9n is positive. Surface tension, acting through

both "in plane" and "out of plane" curvature, will, however, oppose this growth;

hence the capillary number as the critical parameter governing the ribbing instability.

An instability criterion that incorporates the out-of-plane curvature is reviewed by

Coyle[11] and is given by

. (p* +-)-a( > 0 (1.2)
dx* a* A*

where A* is the wavelength of the disturbance, p* is the fluid pressure at the interface

and a* the in-plane curvature at the interface.

The analogy between ribbing and viscous fingering is readily visualized by consid-

ering that air (the less viscous fluid) is blown into the coating fluid (the more viscous

fluid) that occupies the space between the rollers and analyzing the problem with a

reference frame attached to the interface.

Ruschak[57, 58] and Coyle et al[12] use lubrication theory and matched asymptotic

expansions to predict the two dimensional base states in the limit of vanishing gap

to roll diameter, H*/D* -+ 0 . The use of matched asymptotic expansions allows for

the correct imposition of boundary conditions between the distinct flow regions, here

divided into inner and outer problems, in contrast to the ad hoc matching conditions
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Figure 1-3: Schematic of the growth (or decay) of a disturbance on an interface with
a positive (negative) normal pressure gradient.

imposed by Pearson[50], or the simplifications of the meniscus geometry performed

by Pitts & Greiller[51]. To obtain the outer problem, the equations are appropriately

scaled and the ratio of the gap to the diameter, H*/D*, is used as the small parameter

for the expansions. Lubrication theory is appropriate for the outer problem since

the streamlines are nearly parallel. In contrast, the inner problem remains two-

dimensional; the leading order problem reduces to H*/D* - 0, the splitting flow

between two parallel plates. The inner problem was solved numerically by Ruschak[57]

using the finite element method and then matched to the outer problem.

For arbitrary H*/D*, full numerical approaches must be considered due to the

two-dimensionality of the flow field and the free-surface-induced nonlinearity. Coyle

et al[12] combine the finite-element method and Newton-iteration solution procedure

to compute two-dimensional flow geometries and flow fields for forward-roll coating

for a wide range of H*/D*; their reported results are in very good agreement with

experiment.

On the basis of these (correct) two-dimensional states, Ruschak[58] (for small
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Figure 1-4: Schematic of the dependence for a fixed geometry, D*/H*, of the eigen-
mode growth rate, y*, on the eigenmode wavenumber, /3 = rH*/A*, for: subcritical
(Ca < Ca,), critical (Ca = Cac), and supercritical (Ca > Cac) capillary numbers.

H*/D*) and Coyle et al[14] (for general H*/D*) present numerical solutions to the un-

symmetric eigenvalue problem for the growth rates of infinitesimal three-dimensional

disturbances. The stability of two-dimensional base states, for a fixed D*/H*, to

three-dimensional disturbances of given spanwise wavelength, A*, is determined by

the capillary number Ca = lp*V*/a*, where A*, a*, and V* = w*D*/2 are the vis-

cosity and surface tension of the fluid, and the tangential velocity of the rollers,

respectively. The critical capillary number, Ca,, for a given geometry, D*/H*, is

defined as the minimum capillary number, Ca, for which the greatest growth rate,

y*, over all disturbance wavelengths, A*, vanishes. The associated critical eigenfunc-

tion has a wavelength, A*, and a wavenumber, ,3 , related by i, r H*/A c (note we

nondimensionalize the wavenumber with respect to the half-gap, H*/2). In addition,

linear stability theory indicates that, for supercritical capillary numbers, Ca > Cac,

a continuous range of wavenumbers, [L (Ca), /3H (Ca)] is unstable[14], where PL (Ca)

and PH (Ca) are low and high wavenumber cutoffs, respectively (see Fig. 1-4). Linear
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stability theory accurately identifies the onset of ribbing[14, 47, 50, 51, 58] as the

growth of infinitesimal three-dimensional disturbances to the two-dimensional steady

"base" states. The linear stability results presented by Coyle et al[14] are in very

good agreement with experimental observations for the onset of ribbing[14, 47, 51]

confirming that the instability (disregarding imperfections such as end effects) is a

supercritical bifurcation[20]. Coyle et al[14] present their experimental results com-

bined with the previous experimental results of other investigators and clearly show

the limited range of Ca and configurations of the previous studies and their overall

agreement in predicting onset.

1.2 Objectives

Despite the agreement between the linear stability analysis of Coyle et al[14] and

experimental observations of the onset of ribbing, several important issues remain

outstanding. This thesis addresses the following:

1. Previous work can not explain experimental observations of ribs over the entire

roller surface, or on the web far downstream from the meniscus. The mecha-

nisms outlined above indicate that the source of the instability (the free-surface

normal pressure gradient) is not present on the rolls; indeed, Coyle et al[14]

report eigenfunctions which (spatially) decay rapidly in the downstream direc-

tion. In addition, the eigenfunctions determined using linear stability analysis

do not exhibit the mechanisms required for the dowstream leveling of the finite

amplitude ribs as explained in detail in Chapter 3. These results indicate that

the presence, or more precisely, spatial persistence, of ribs cannot be explained

solely in terms of linear stability arguments.

2. Previous work, in particular linear stability theory, can not address the non-

linear evolution, interaction, and resulting spatial structure of finite-amplitude

ribs. The wavenumber content and amplitude of the resulting finite amplitude

meniscus disturbances must be determined to study the nonlinear evolution and
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spatial structure of the resulting finite amplitude downstream ribs.

Understanding the mechanism for the growth, spatial persistence and, relatedly, the

amplitude of ribs is critical to the design of effective coating procedures, and to

the selection of optimal operating parameters: it is the persistence of ribs of finite

amplitude, and not simply the meniscus-local presence of free-surface waviness, that

determines the quality of the finished product.

This thesis proposes numerical methods for the study of the nonlinear evolution

and spatial structure of ribs in symmetric forward-roll coating flows and proposes

a framework for understanding the formation, evolution, and spatial persistence of

ribs that sheds light on the seeming contradictions between previous analytical work

and experimental observations. In particular, we formulate the problem in Chapter

2; present the "model" for ribbing in Chapter 3; discuss the numerical methods

in Chapter 4; reproduce existing results for two-dimensional forward-roll coating in

Chapter 5; present new results for three-dimensional finite amplitude ribs in Chapter

6; and briefly state our conclusions in Chapter 7.
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Chapter 2

Problem Formulation

2.1 Problem Description

The symmetric forward-roll coating device depicted in Fig. 1-1 consists of two cylin-

ders of equal diameter D* separated by a gap H* counter-rotating at the (same) an-

gular rate w*. In the analysis that follows, we consider a reduced problem on the sym-

metrized domain, Q*, shown in Figs. 2-1 and 2-2 for the two-dimensional and three-

dimensional cases, respectively. The domain Q* has a boundary aQ* = U 1 OaQ,

comprising five parts: Ao9, inflow; Oa, roller; aQ*, outflow; 9Q*, free surface; and

9Q5, symmetry. The domain considered extends up to (at inflow) where the cylinders

are closest[12] -- the nip region - and extends sufficiently downstream of the nip (at

outflow) so that the film profile and the pressure become uniform or, at least, change

very slowly.

Our assumption (like that of Coyle et al[12, 14]) of symmetry about the y* = 0

plane, 9Q*, improves numerical conditioning, decreases the degrees-of-freedom, and

reduces the overall computational time; collateral "full domain" numerical calcula-

tions (see Chapters 6 and 7) suggest that both the two-dimensional steady states and

the nonlinear three-dimensional free surface evolution are, indeed, y*-symmetric for

the range of Ca of interest.

For the three-dimensional analyses, we limit our considerations to domains that

are A* periodic in the spanwise (z) direction; one periodic cell of the domain is shown
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Y*

a*1
Z*

Figure 2-1: Two-dimensional domain Q* and boundaries: OlQ*, inflow; 92f, roller;
aQ, outflow; afQ, free surface; and aQf, symmetry.

in Fig. 2-2. A periodic domain of finite length, A*, does not permit the study of the

complete three-dimensional geometry of a forward-roll coating device; in particular,

we can not consider end effects, which might give additional insight into the (imperfect

bifurcation[14]) nature of the ribbing instability (See Chapter 7).

Figure 2-2: Three-dimensional domain Q* and boundaries: aQ1*, inflow; ia2, roller;
aQ*, outflow; aQ*, free surface; and OQf, symmetry.
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2.2 Governing Equations

We consider the unsteady incompressible creeping flow of a Newtonian fluid of viscos-

ity * and density p* in the time dependent domain Q*. The nondimensional (without

superscript *) governing equations are then given by

Re ui,t = - (),j ij + (i,j + Uj'i), in Q. (2.1)

with boundary conditions

ni [-p Jij + ui,j + uj,i] nj

ti [ui,j + uj,i] nj

= Pnip

O

ui = V ti

ni [-P 6ij + ui,j + uj,i] nj = Pout

ti [ui,j + uj,i] nj = 0

ni [-p ij + (ui,j + uj,i)] nj = (1/Ca) rn

ti [ui,j + uj,i] nj = 0

ui ni = 0

ti [ui,j + uj,i] nj = 0

}

}

}

on c9 1,

on aQ2,

on IQ3,

on 1Q4,

on aQ5,

and periodicity in the spanwise direction for all variables (say ),

(,y,z,t) = (x,y,z+ A,t)

In addition, the domain is time-dependent, and we thus define a material veloc-

ity in order to follow the evolution of the domain Q. The kinematic condition imposes

restrictions on the normal component of the material velocity on the boundary aQ4;

the normal velocity of a material point on the free-surface, wi nilo4, must coincide

with the corresponding fluid normal velocity, thus wi ni o4 = ui nila 4. On the other

hand, the kinematic condition does not impose restrictions in the tangential direction

(we set wi ti - 0 on afQi). The reader is referred to more complete descriptions of
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the possible boundary conditions in the tangential direction in reference[35]. The

evolution of the domain is thus governed by:

xi,t = Wi in (2.8)

with the following (normal) boundary condition imposed by the kinematic condition:

wi ni = ui ni on 9Q4 (2.9)

wini = 0 on OQ \ 0Q4 (2.10)

The previous treatment of the domain gives rise to additional terms that modify

Eq. 2.1 which we discuss in Chapter 4.

We use standard Cartesian indicial notation (e.g. i,j = Oui/Dxj), where subscript

indices range from 1 to 2 or to 3 for the two-dimensional or three-dimensional problem,

respectively; rc is twice the mean curvature; ni is the unit normal on 0 ; ti is the unit

tangent (or tangents) on OQ (in two dimensions, ti x ni = ); Re = p* V* H*/lp* is the

Reynolds number; a* is the surface tension at the fluid free surface; Ca = *V*/o* is

the capillary number; Pnip and Pout are the pressures imposed at inflow and outflow,

respectively; and V* = w*D*/2 is the tangential speed of the rollers. Length (xl),

velocity (u), time (t*), and pressure (p*) are scaled by H*, V*, H*/V*, and *V*/H*,

respectively to arrive at their nondimensional counterparts. Both H and V are by

definition equal to unity but sometimes are not dropped for clarity.

For future reference, we also introduce several auxiliary coordinates: r and f, to

measure the radial position; and s and 0, to measure the downstream position along

the rollers. The coordinate r (see Fig. 2-1) measures the distance to the center of the

roller, r = (2 + (D/2 + H/2 - y)2)1/ 2, while f is the distance to the roller surface,

f = r - D/2. The coordinate 0 (see Fig. 2-1) measures position downstream from the

nip, 0 = arc tan (x/r), while the coordinate s measures the arc length along the roller

from the point where the cylinders are closest, s = r 0.

38



2.2.1 Boundary Conditions at Inflow and Outflow

We now discuss the conditions at inflow and at outflow. As regards inflow, we make

the simplifying assumption that the region upstream of the nip is flooded[12], and, in

addition, that the flow in this region admits adequate approximation by lubrication

theory (consistent with the creeping flow assumption in Eq. (2.1)). The pressure at the

nip, Pnip, is thus only a function of the total volumetric flowrate per unit depth[12, 66]:

3 - 3Pnip -= 427 1-Q 2 , (2.11)

where Q = Q*/ (V* H*), and Q* is the total volumetric flowrate per unit depth

through the nip. Equation (2.11) must be solved coupled to the fluid flow equations.

Proceeding now to outflow, we note that, sufficiently far downstream of the nip,

the film profile and the pressure become uniform. The domain considered extends a

finite arclength sn 3 along the roller, equivalent to an angle 0on3 ; on aQ3 (that is, at

0 = Oan,), we impose

1 2
Pout=Ca D + 1.3 H' (2.12)

which is an estimate for the pressure jump across the free surface of the uniform film.

This boundary condition is asymptotically correct for D/H -+ oo and son3 -4 oo.

2.3 Governing Parameters

In this problem formulation we neglect advection and gravitational terms, since these

effects are, first, typically not important, and second, not necessary to explain and

study the basic mechanisms of ribbing. In particular, we concentrate on flows which

commonly exhibit ribbing and in which inertial effects are negligible, Re < 1, as is

usually the case in configurations that involve extremely viscous fluids (characteristic

values are H* = 100/m, D* = .4 m, L* = 20 Pa s, p* = 950 Kg/m3, a* = .05 N/m,

V* = 1 m/s, implying Re = 5 x 10- 3, see reference [11]). This allows us to drop the
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advection term, Re uj ui,j, from the Navier-Stokes equations in arriving at Eq. (2.1).

We do not, however, eliminate the unsteady term, Re ui,t, since the time constant

associated with instability evolution is not known a priori. As will be seen in Chapter

7, the time constant is such that the temporal dependence of the problem enters

primarily through the movement of the physical domain; thus, in retrospect, the

Re ui,t term could have been safely discarded, yielding a quasi-steady Stokes problem

in a time dependent domain. There are, of course, operating conditions for which

inertial effects are not negligible. As mentioned previously, we do not consider such

regimes[14, 68].

The ratio of gravitational forces to viscous forces, given by the Stokes number St =

p*g* (H*)2 / (ii*V*), and the ratio of gravitational forces to surface tension forces,

given by the Bond number Bo = St Ca = p*g* (H*)2 / o *, are small in the applications

that we consider, and thus we do not include gravity effects (here g* is the acceleration

of gravity) even in the limit of moderately large Ca. Neglecting gravitational (and

inertial) effects places restrictions on the gap, H* we do not consider these cases

referred to as the wide-gap regime, in which Re, Bo, and St are order unity [68],

since for the applications we are interested, H* remains small and thus inertial and

gravitational effects are not important. Since we solve the full two-dimensional (and

three-dimensional) problem instead of the lubrication theory based equivalent, we can

consider Ca above the limits of applicability of the lubrication theory approximations

(Ca - .01).

The physical problem is governed by three parameters:

D = H* (2.13)H* '
/t*V*Ca = (2.14)

o*

A A* (2.15)
H*'

where D is a geometric quantity that measures the relative importance of roller cur-

vature to roller separation, Ca is the ratio of viscous forces to surface tension forces,

and A is the wavelength of the spanwise periodicity. For the two-dimensional problem,
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only D and Ca are of interest. Values of D and Ca in actual manufacturing processes

can span several orders of magnitude, D E [50, 50 000] and Ca E [10- 3, 103]. We will

only consider those (intermediate) values of D and Ca for which steady-ribs can be

readily observed; we will, however, study a range of A. Considering a specific value

of A provides a lower bound for the possible wavenumber content, and thus limits the

possible wavenumber content to = m ir H/A for m = 1,..., o.
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Chapter 3

Nonlinear Modelling of Ribbing

3.1 Description of Mechanism

In this chapter we present a framework for understanding ribbing in terms of two well

understood physical phenomena: the growth of disturbances on a splitting meniscus

[14, 50, 51, 59, 62], and the leveling of a viscous film under the effects of surface

tension[41, 46, 48]. Since the flow fields of these two phenomena are not compatible,

we "match" the two regimes by means of a transition region. In total, we describe the

ribbing flow free-surface geometry and flow field by the four regions shown in Fig. 3-1.

A brief summary of each region follows:

I Meniscus: In this region the pressure gradient normal the free surface is great

enough for ribs to grow and develop. The flow field is "helical" in nature: the

fluid near the free surface moves toward the crests of the ribs and away from the

troughs. As described in Chapter 1, the driving force for this flow pattern is a

positive pressure gradient normal to the free surface as shown in Fig. 3-2 which

drives the spanwise (tangential) flow described before and shown in Fig. 3-3.

II Transition: In this region the flow field of the meniscus is matched to that of a

leveling film. The pressure gradient is not great enough to sustain the helical

flow field, which rapidly decays, due to the effects of viscosity, towards the

leveling solution. The transition region length is of order unity: Lt = LH* -
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Figure 3-1: Schematic showing regions of ribbing flow geometry and flow field: I
Meniscus; II Transition; III Leveling Film; IV Leveled Film.

Pnip,

0

X

Figure 3-2: Pressure distribution along the symmetry plane for a flooded roller pair.
The negative pressure at xs is due to the free-surface-curvature induced pressure
jump.
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Figure 3-3: Characteristic flow field generated near a free-surface disturbance subject
to a positive pressure gradient normal to the interface. The fluid moves away from
the troughs toward the crests.

45



0(1).

III Leveling Film: In this region there is no appreciable pressure gradient, and thus

the ribs level under the effect of surface tension. This region can be extremely

long, depending on the wavenumber, , of the rib disturbance created at the

meniscus; the length of this region, L = LH*, scales as -4 in the low

wavenumber limit, p - 0, and as p-l in the high wavenumber limit, -P oco.

These results are valid only when gravitational effects are not important, and

must therefore be corrected when Ca > 1 (reduced surface tension effects),

since gravitational forces will become comparable to surface-tension-induced

forces as measured by the Bond number Bo - 0(1). Gravity will accelerate

leveling, and thus reduce Le, more so for longer wavelength ribs. Neglecting

gravity sets a low-wavenumber cutoff for the ribbed geometries that can be

considered accurately.

IV Leveled Film: In this region the film is rib-free and the flow field is one-dimensional.

This region is far downstream from the meniscus, since leveling generally occurs

over a very long distance.

3.2 Model Components

In what follows, we address the mechanisms associated with the model in more detail:

first we discuss the nonlinear nature of ribbing (I); next we evoke film leveling to

explain the spatial persistence of ribs (III); finally, we match these two regimes (II) to

construct the complete model. The discussion that follows concerns flows for which

ribbing is observed.

As described in Chapter 1, for sufficiently large Ca (Ca > Cat), the two-dimensional

solutions are unstable to spanwise perturbations (for a limited range of wavenumbers

/ E [L, PH]) to the free surface in the meniscus region. As a result of this super-

critical bifurcation, an initially small disturbance will evolve into a finite-amplitude

rib, the amplitude and structure of which we present (based on numerical results)
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in Chapter 7. However, the driving pressure gradient normal to the free surface be-

comes vanishingly small outside the meniscus region, and ribs, therefore, cannot grow

either in the transition region or further downstream. This observation is in agree-

ment with the rapidly decaying eigenfunctions found in the linear stability analysis

of Coyle et al[14]; this picture is also consistent with the experimental observations

of Hasegawa and Sorimachi [33], in which local quenching of the instability in the

meniscus region eliminates the instability everywhere downstream. Based on these

arguments, we conclude that ribs observed downstream of the meniscus can only orig-

inate in the meniscus. Why, then, do perturbations which grow only in the meniscus

region persist far downstream?

3.2.1 Leveling of a Viscous Film

In order to understand the spatial persistence, we first look at the physics of leveling.

We consider the leveling[41, 46, 48] of a fluid film of mean thickness h and viscosity

/* under the effect of surface tension a*. At time t = 0 the free surface disturbance

is of sinusoidal shape of amplitude A* and wavelength A*, as depicted in Fig. 3-

4. For typical roller configurations, gravity and fluid inertia terms are unimportant

(see below). If we assume that the perturbation amplitude is small compared to

the wavelength, A* < A*, and that the wavelength is large compared to the film

thickness, A* > h, the pressure difference that drives the leveling of the film scales

as Ap* p* - p , a*A*/(A*)2 , and thus Ap*/Az* a*A*/(A*)3 . Assuming locally

fully developed plane Poiseuille flow, the local volume flowrate (per unit s* depth) in

the spanwise direction is then given by QZ (1/*) (Ap*/Az*) (h*)3. As the volume

of fluid that must be displaced scales with A* A*, the time to equilibration scales as

A*A* A ( * ( A*
* QA for -» >1 . (3.1)

Qz a °(ho) ( he /
In the limit of short wavelength disturbances[41, 48] (similar to deep water waves),

the time to level scales linearly with the wavelength of the disturbance. In this case,

the flow rate associated with the leveling of the ribs is no longer a function of the
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Figure 3-4: Leveling of a thin viscous film (ho < A*). The main flow is in the (r*, z*)
plane (r* is normal to the surface of the roller), driven by surface-tension-induced
pressure gradients in the z* direction.
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film thickness as is the case with thin viscous films. The film thickness is not the

characteristic length associated with the flow field; the characteristic length is now

A*, resulting in Q* (1//*) a* A* and thus

* at Q " * ho for - < 1. (3.2)Q* hi

Equations (3.1) and (3.2) correspond to kinematic time scales based on conservation

of mass arguments for which we neglected inertial terms, both unsteady and advective,

throughout. Viscous effects must dominate over both unsteady and advective terms,

and we thus require:
p* (h*)2

and

u << . (3.4)* (h*)2 '

respectively. Combining the previous expressions with Eqs. (3.1) and (3.2) we obtain

the following conditions:

p 0 thoh* < 1 and Pi a A ( ) < 1 (3.5)
(/,)2 ,A* A(* *

for long wavelength ribs and

p*a*h* h* p* * A* h*
P(/ )2 ,, < 1 and ()2 ° < 1 (3.6)GO ) · (W*)2 A*

for short wavelength ribs, respectively. We concentrate on small-amplitude ribbed

flows for which the ratio Re/Ca is small (this is the case in most ribbed flows, eg as

shown before Re = 10- 3 and Ca = 0(1)) thus satisfying both criterions for neglecting

inertial terms in the leveling analysis.

Orchard[48] and Khesghi[41] solve the equations of motion exactly for small am-

plitude disturbances without restrictions on the wavelength; the expression for the

time scale associated with leveling in the creeping flow limit, without neglecting grav-
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itational forces acting normal to the free surface, is shown to be

T - 2 (h) 2p*g* + * 3 [hi f tanh/-f /sech2f3J (3.7)

where f is the nondimensional wavenumber based on the average film thickness, fi -

2 ir ho/A*. Here T is defined such that the evolution of the amplitude of the disturbance

is given by A* (t*) = A* exp (-t*/T*). Equation (3.7) reduces to Eqs. (3.1) and (3.2)

in the appropriate limits, as shown in Fig. 3-5. This requires that gravity-induced

hydrostatic forces (p*g*A*) be small compared to the surface-tension-induced pressure

forces (u*A* (A*)2); this is clearly visualized in Eq. (3.7) where both terms appear

explicitely. The criterion for neglecting gravitational effects is thus

Bo= (h) p*g* << 1 (3.8)
of /2

where Bo is called the Bond number, which measures the ratio of gravitational forces

to surface-tension-induced forces. As mentioned previously, we concentrate on flows

where gravitational and inertial effects are negligible and thus the analysis that follows

is for Bo << 1 (thin films with ribs of wavelengths that are not too great). Neglecting

gravitational effects provides a low wavenumber cutoff for the validity of the results.

Levelling will be, in general, underestimated compared to an experimental setup since

the effects of gravity have been neglected.

To consider the movement of a fluid film entrained by rollers, we must now su-

perimpose on the leveling solution a velocity V* normal to the plane of the film.

Leveling can be interpreted to occur as the film moves in the downstream direction;

time in Eqs. (3.1), (3.2), and (3.7), can then be replaced by the distance traveled

downstream, s*, divided by the superimposed velocity, V*. This neglects the effect

of downstream curvature (which is very small) of the free-surface on the leveling rate

and on the mean film thickness. From the previous expressions, the length scale in
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Figure 3-5: Time constant associated with the surface-tension-driven leveling of a
disturbance on a viscous film as a function of the wavenumber f.
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the downstream direction associated with leveling, Lt = Lt/H*, can be estimated as

A
Le = 3 Ca3Pf,4 f for H > 1, (3.9)

L = 2 Cafiv fIv for <<1, (3.10)

where fIv is the leveled film thickness, trivially calculable once Q, the volume flowrate

per unit depth, is known and fji v is the wavenumber of the rib based on the leveled

film thickness fIv, fv = 2 r fv/A. A value of Q ' 1.3 can be used as an estimate

in forward-roll coating, as described in Chapter 6. Here Le is defined such that the

film amplitude decays as exp (-s/Lt), where s is the distance along the roller.

Equations (3.7), (3.9), and (3.10) show two characteristics of leveling that we will

use to explain the spatial persistence of ribs. Firstly, viscosity hinders the leveling

process; this is in contrast to the decay of a velocity perturbation, in which the decay

rate is increased by increasing viscosity. Secondly, the distance over which leveling

takes place, Le, decreases monotonically with the wavenumber of the perturbation as

shown in Fig. 3-5. If wavenumber interactions are negligable (as should be the case

for small amplitude ribs) we expect that as the ribbed film proceeds downstream, the

high wavenumber components of the disturbance will decay at a faster rate than the

low wavenumber components.

3.2.2 Transition from Ribbing to Leveling

The two flow fields discussed -meniscus and leveling- do not match; in the meniscus

region, the fluid is drawn into the crests of the ribs and away from the troughs[14],

as shown schematically in Fig. 3-6(I), while in leveling films, fluid is drained from

the crests, as shown schematically in Fig. 3-6(III). The eigenfunctions resulting from

linear stability analysis indicate growth of the disturbances in the meniscus region

and vanishingly small growth downstream and the corresponding underlying flow

field but do not (and can not) exhibit the correct flow field for the decay of the ribs

downstream. The flow geometries and flow fields are "matched" in what we term the

transition region. The helical velocity field will decay under the action of viscosity
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over a length Lt = L*/H* which is on the order of the viscous length scale of the

film. The length scale over which the meniscus flow field decays can be estimated by

considering the equivalent problem of the decay of thermal disturbances in a periodic

domain. This problem is almost equivalent to the viscous flow problem of interest.

The original helical disturbance, v (0, y, z), can be written in the following form

v (0, y, z) = Re amn sin h exp - (3.11)(E oo 2m y a2rsn z Am=l n=-oo 

which satisfies the equivalent no-slip and no-shear boundary conditions for y = 0 and

y = ho respectively. We seek solutions of the form

v (x, y, z) = Re amn exp x sin2mry } (3.12)
m=ln=-oo Xmn h,3

to the governing equation

V2v = (3.13)

resulting in

(4m27' 2 4n27r2 - 2
Xmn = (ri 2 + 2 (3.14)

where Xmn is the length scale associated with the decay (in space) of the disturbance

component identified by the subscript pair mn. The largest Xmn corresponds to the

most persistent mode (in space) and is equal to

X X + - = h (4r 2+ 32) (3.15)

which in the limit of low-wavenumber disturbances (ho/A < 0 (1)), scales with the

film thickness ho. The analogy assumes that the downstream pressure gradient is

identically zero in the transition region; in reality, the pressure gradient is not iden-

tically zero, just not large enough to support the ribs, and thus we expect that the

vortical velocity profiles decay over a distance slightly larger than h*/H*. On leaving

the transition region, the ribs level following the mechanisms outlined above.
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Figure 3-6: Schematic of characteristic flow fields: (a) meniscus region, (b) leveling
region.

3.3 Approach to the Steady Ribbed State

We have addressed the growth of disturbances and estimated the time scale for their

"linear" growth based on linear stability theory. We have not addressed the final ap-

proach to the steady state and its corresponding time scale. The time scale associated

with the approach towards the steady state is, in general, longer than that associated

with the initial growth of the free-surface disturbance (which is approximately the in-

verse of the growth rate y determined by linear stability). The approach to the steady

state is governed by pressure gradients due to spanwise free-surface curvature, in con-

trast to in-plane free-surface curvature which drives the initial disturbance growth.

The fluid forces due to the spanwise curvature balance the "new" viscous forces due

to the disturbance and thus can be used to estimate the time scale associated with

the approach to the steady state. This balance between spanwise-curvature-induced

pressure gradients and viscous effects is observed in the leveling of viscous films as

described above. This observation can be used to estimate the resulting time scale

for the approach to the steady state (equal to dA,/dt); r,, is of the same magnitude
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of the time scale associated with leveling and is approximately equal to

1 A
T7s - dA, 2 Ca 2-. (3.16)

-A, 27rdt

The time constant depends on the harmonic content in the steady state, but the

slowest mode should be the dominant factor in determining the time constant.

The previous results indicate that two regimes should likely be observed during

the evolution from the unstable two-dimensional steady states to the stable three-

dimensional steady-states: first a linear growth followed by the saturation of the

growth (as is shown in Chapter 7).

3.4 Summary

The pressure gradient caused by in-plane curvature in the meniscus region generates

ribs that move downstream with the rollers. The initial growth (in time) of the ribs (in

region I) is determined by the in-plane free-surface curvature (linear stability) while

the final non-linear evolution toward the steady-state is governed by the spanwise

free-surface curvature. As the ribs proceed downstream, the flow field under the ribs

suffers a (spatial) transition (in region II), over a distance order ho/H*, from the

helical nature of the meniscus region to the "convergent" flow field of the leveling

film region. Upon leaving the transition region, the ribs begin leveling and persist

downstream over a very long length scale (region III), given by Eqs. (3.9) and (3.10).

Due to the dependence of the leveling rate on the wavenumber content of the rib

profile, the rib profile first becomes monochromatic (still in the leveling region III)

and, eventually, uniform far downstream (in region IV).

We now present the numerical methods and the numerical calculations by which

we verify and quantify these predictions: the instability of the meniscus; the bimodal

growth of the meniscus instability; the coupling between the instability of the menis-

cus and the ribs observed downstream; the rapid change in the spanwise flow field in

the transition region; and the leveling of the ribs.
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Chapter 4

Numerical Methods for

Two-Dimensional Flows

In this chapter, we present the methods used to generate the steady two-dimensional

base states required as a point of departure for the three-dimensional simulations. In

the following chapter we present the methods used to obtain the three-dimensional

steady ribbed states. In what follows, we summarize the numerical methods adopted,

discuss the treatment of any non-conventional boundary conditions, and present the

remeshing and continuation algorithms developed.

4.1 Numerical Procedure

For the solution of steady (ut 0 in Eq. (2.1)) two-dimensional problems we adopt a

numerical procedure developed by Ho and Ronquist[38] for the efficient treatment of

problems in which surface tension forces dominate inertial contributions (ReCa << 1).

A brief description of the solution algorithm, hereafter referred to as S, follows:

SO Initialize iteration counter, SI = 0.

S1 Solve the (spectral element) spatial discretization of Eq. (2.1) subject to the

mixed boundary conditions ui ni = 0 and ti [ui,j + uj,i] ni = 0 on the free sur-

face, aQ4, with the remaining boundary conditions on 9 \ Q4 as described
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by Eqs. (2.2), (2.3), (2.4), and (2.6). The mixed boundary conditions applied

correspond to what is observed at a steady state (see step S2).

S2 Compute the residual traction on 09Q4 based on the solution of step S1. The

residual traction is defined as ri = ij nj - a r ni where rij nj is the traction on

the free surface, and oa is the surface-tension-induced pressure jump across the

free surface. The residual traction is identically zero for a steady-state solution.

S3 Perform a direct solve of a Poisson problem for the corrections to the free-

surface geometry, Axi; the free-surface curvature is expressed as a function

of the corrections to the free-surface geometry, and the residual traction, ri,

enters as an inhomogeneity to the resulting Poisson problem. This procedure

produces a non-zero Axi for the mesh node of the free-surface that is common

to outflow. The correction of this node is projected onto the plane of outflow

thus allowing for changes in the outflow film thickness (while preserving the

downstream position of the outflow) as the free-surface node "slides" in the

outflow plane.

S4 Extend Axi into the interior (and free-surface) of the domain by means of an

elliptic (partial-differential-equation) operator. The sliding mesh requires that

the mesh nodes at outflow be updated. This will not be the case in the three-

dimensional equivalent as discussed in the following Chapter.

S5 Update all the mesh coordinates and iteration counter, SI = SI + 1.

Steps S1 through S5 are repeated until the maximum correction to the free-surface

geometry is smaller than a tolerance, say until maxan4 Axi < 3.0 x 10- 4.

The numerical procedure comprises: variational description of the curvature [36,

56]; spectral element spatial discretization [36, 49, 53, 5]; decoupled treatment of

the domain geometry; solution of the nonlinear system of discretized momentum

equations by Newton-Raphson iteration; direct serial solution of the free-surface cur-

vature solve[38]; and elliptic mesh extension[36]. The variational description of the

curvature provides a surface-intrinsic natural (weak) condition for continuity of the
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surface tangent across elemental boundaries, and does not require either a global

coordinate system, orthogonal local coordinate systems, or a C1 free-surface descrip-

tion; the spectral element spatial discretization provides a high-order representation

of both the fluid flow and flow geometry which exploits regularities in the solution,

requires less degrees of freedom and has a reduced overall workload (even greater in

three-dimensions) than a low-order finite element[64, 2] discretization for a fixed error

requirement; the decoupled treatment of the domain geometry and the flow solution

reduces the problem size relative to a coupled treatment, and enables fast subproblem

solution strategies. In addition, the spectral element domain discretization allows for

simpler remeshing techniches due to the structured nature of the mesh.

4.1.1 Special Treatment of Boundary Condition at Inflow

As described in the problem formulation, the boundary condition at inflow, aQ1 given

by Eq. (2.11) relates the pressure at the nip, Pnip, to the volume flowrate per unit depth

through the nip, Q; the latter, however, is not known a priori. Equation (2.11) is thus,

treated by means of an outer loop, OL; this is possible since the dependence of the

final flow geometry on the nip pressure is weak and is consistent with our explicit

treatment of the nonlinear operators. Coyle et al[12, 14] added Eq. (2.11) to the

system of equations, while other investigators varied the flowrate "manually" until

the pressure boundary condition is met at the inlet. The treatment implemented is

as follows:

OLO Assume a value of Q = 1.3 to calculate the corresponding pressure at the nip,

Pnip, based on Eq. (2.11). Initialize outer loop iteration, OLI = 1.

OL1 Solve for the steady-state geometry, flow field, and hence flowrate using the

procedure, S, described above.

OL2 Update the outer loop iteration counter and re-compute the pressure at the nip

as given by Eq. (2.11) with a new volume flowrate obtained by under-relaxing

the flowrate obtained in step OL1 with that of the previous iteration. More
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precisely, the flowrate that will be used to compute the pressure at inflow in

Eq. (2.11), is taken to be:

Q QOL + KOL QL- 1 (4.1)

where QOLI is the flowrate obtained in step OL1 and QOLI_1 is the flowrate

corresponding to the previous outer loop iteration. The constant KOL is con-

servatively set to 6. Smaller values can be used for Ca > 1 for which the flowrate

does not change much.

If steps OL1 and OL2 are repeated until there is no appreciable change in the com-

puted steady flow geometries, say using a stopping criterion based the maximum

change of position over all free-surface mesh nodes between two computed steady

states (maxan4 Axi): maxan4 Axi < 3.0 x 10- 4 , incorrect flow rates are obtained since

Eq. (2.11) is not satisfied. This is because the flowrate is a measure of the overall

meniscus shape and not due to the "local" meniscus position and thus with very

small local changes in the meniscus geometry, greatly varying flow rates can be ob-

tained. Instead of the stopping criterion presented above, we adopt a criterion based

on the computed flow rate. If the flow rate difference between two computed steady

states differ by less than .05% (in addition to the condition on the free surface ge-

ometry described above), the flow geometry is taken to be at a steady state and to

satisfy the flooded inflow condition.

4.2 Remeshing

For very large surface deformations the elliptic partial-differential-equation mesh-

coordinate extension scheme[35, 36], may yield elements that are nearly singular (in-

dicated by vanishing Jacobians) as observed in Fig. 4-1 (b).

To remedy this problem we initiate automatic remeshing procedures when the

iteration counter SI exceeds a given value. This open-loop procedure can be further

refined by initiating the automatic remeshing only when absolutely required. The
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(a)

(b

Figure 4-1: Example of interruption of solution procedure during evolution from (a)
one steady state (D = 200, Ca = .1) to a new desired steady state (D = 200, Ca = 1)
due to a (b) greatly distorted mesh with a vanishing Jacobian.

smallest Jacobian over all elements can be used as a measure of the quality of the mesh;

when the Jacobian falls below a given threshold, indicating impending problems, the

remeshing procedure can be executed. This closed-loop strategy was not necessary,

though, since the computational cost of remeshing is small allowing for remeshing even

when not required. During the remeshing procedure, a new spectral element mesh

is constructed based on a template (see Fig. 4-2), which provides the connectivity

information between elements, and the current mesh, which provides the geometry,

and, in particular, the position of the meniscus. The steps of the remeshing procedure

implemented, R, are described in more detail in what follows:

R1 Extract necessary information from the current mesh: the position, x5 and 0s, of

the mesh node where the free surface meets the symmetry plane; the piecewise

polynomials that define the free surface (Q4); and the film thickness at outflow,

foa = rfn - D/2, as shown in Fig. 4-3.

R2 Compute the desired position of the outflow boundary (3), given by 0oa3 =

08 + 107r/180 or 0oh3 = 1.5 8, which ever is greater, and an estimate for the
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Figure 4-2: Representative information of mesh template for a two-dimensional do-
main discretization.
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Figure 4-3: Step R1 of the two-dimensional remeshing procedure applied to the greatly
distorted mesh of Fig. 4-1: extract relevant free-surface information (position of the
free surface mesh nodes).
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Figure 4-4: Step R3 of the two-dimensional remeshing procedure: position mesh
nodes (a) on the rollers, and (b) on the mid-plane. (To aid in visualization, steps R5
and R6 were also performed.)

position of the end of the meniscus region, given by 0II = 0s + 0.8 7r/180, as

shown in Fig. 4-2. The meniscus region length is thus A0,, = O - and the

film length is set to AOIII = 8an3 - II

R3 Position element-edge boundary-nodes on the rollers (Q2) and on the mid-

plane (isQ5) based on the template information shown in Fig. 4-4 and Table 4.1.

The element-edge internal-nodes are then positioned based on the element-edge

boundary-nodes and the edge template as shown in Fig. 4-5.

R4 Discretize the free surface into curved segments based on the template informa-

tion shown in Fig. 4-6 and Table 4.2. The angles corresponding to the beginning

and end of a free surface segment are a function of Os, Oan3, and the element un-

der consideration. The mesh nodes are positioned along the free surface based

on the high-order polynomial information extracted in step R1. The angle 0

is used to parameterize the free-surface in the film region ( > 0II). Problems

arise for 0 < 0I though, and to remedy the problem another angle is used. The

new angle is such that 0 = 0 where the free-surface intersects the mid-plane and
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02

03

04

05

06

07

08

09

010

Oil

X12

X1 3

X14

X15

X1 6

X1 7

X18

0

.2508

.5908

.8508

.8708

0II- .25A0II
9II + .03AOIII

OII + 15AOIII

1 + .35AOIII

OII + .70AOIII

OII + A0 11 1

0

X2

X3

(2X3 + X4 )/3
X4

(X4 + Xs)/2
Xs

Table 4.1: Position of element-edge boundary nodes: (a) on the rollers, and (b) on
the mid-plane.
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Figure 4-5: Position of internal element-edge nodes relative to the edge boundary
nodes: (a) on the rollers, (b) edge template, and (c) on the mid-plane.
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Figure 4-6: Step R4 of the two-dimensional remeshing procedure: discretize the free
surface extracted in step R1, and position mesh nodes based on the edge boundary
nodes and the downstream position.

9 = II where = II. The angle used to parameterize the free-surface is given

by:

- 0 for 0 > II{ 9 for 9ŽOii (4.2)
arctan(+NtaiIll-2 -) for 0 < 0n

which is a continuous single-valued parameterization of the free-surface.

If the outflow is moved away from the nip, information is not available to po-

sition the nodes; to get around this problem, the film thickness is assumed

constant and equal to fn3, independent of 0, for all the mesh nodes in this

region.

R5 Construct inter-element edges as well as the remaining external edges, the inflow

019

020

921

622

023

024

925

926

927

0

.250II

.600I
OII

OxI + .03AOIII

OII + .15AOIII

OII + .35AOIII

II+ .70AOIII

0o3

Table 4.2: Position of element-edge boundary nodes on the free surface (Q4).
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Figure 4-7: Step R6 of the two-dimensional remeshing procedure: Blending algorithm
for the position on the internal mesh (collocation) nodes for: (a) near quadrangular
element, and (b) high aspect ratio element .

(0Q1) and outflow boundaries (Q~3), as straight segments.

R6 Position intra-element nodes based on the element boundary nodes and a blend-

ing interpolation. The blending algorithm is a function of the aspect ratio of

the element in consideration and of the shape of element boundary. Care was

placed to avoid elements that had two adjacent curved (non-internal) edges and

thus a linear blending suffices; in addition, the linear blending guarantees non-

singular Jacobians since it originates from any one of the curved edges. Two

examples are shown in Fig. 4-7.

R7 Map field quantities onto the new mesh. This step is not needed (or used) for

the creeping two-dimensional problem but, as is seen below, it will be used in the

solution of the three-dimensional problem. The mapping of the fluid velocity

and pressure fields onto the new mesh is necesary for flows of Re $ 0 since the

previous flow field is used a first guess for the non-linear fluid flow solve.

A bi-linear interpolation scheme is used to compute the field value on the new

mesh based on the mesh nodes of the original mesh that are closest to the

target node on the new mesh. Spectral accuracy is lost due to the bi-linear

interpolation but proved not to be detrimental to the three-dimensional solution
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Figure 4-8: Example of remeshing for a not overly deformed domain. The original
and final meshes are overlaid.

Figure 4-9: Remeshing of greatly distorted elements: top-original mesh; bottom-new
mesh.

procedure.

An example of the effects a complete remeshing procedure is shown in Fig. 4-8.

This particular discretization has 15 spectral elements; the order of the interpolant

in each direction in each element is 5, resulting in approximately 1 500 total degrees-

of-freedom (velocity, pressure, and geometry unknowns). The computational cost

associated with this two-dimensional remeshing is small compared to the fluid flow

solution, so remeshing can be performed every few iterations, as shown in Fig. 4-8,

even if not strictly required. If remeshing is performed only when the mesh elements

are greatly distorted, the effects of remeshing are more easily visualized, as shown in

Fig. 4-9.
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Figure 4-10: Remeshing-continuation for a change in roller separation.

4.3 Extension of Remeshing: Continuation

The modular nature of the remeshing procedure allows for the implementation of

simple continuations schemes useful when performing parameter studies that include

changes in geometric conditions. For example, if the solution for a new Ca, D} pair

is desired, the existing solution for a different geometry D ( and Ca) can be used to

construct an initial estimate for the desired solution: to wit, the nodes on the rollers

are moved in the radial direction to the desired gap during step R4 of the remeshing

procedure. An example of a continuation remeshing instigated by a change in the

gap between rollers is shown in Fig. 4-10.

69



70



Chapter 5

Numerical Methods for

Three-dimensional Flows

In the previous chapter, we presented the methods used to generate the steady two-

dimensional base states required as a point of departure for the three-dimensional

simulations. We now present the methods used to obtain the three-dimensional steady

ribbed states. We again summarize the numerical methods adopted, discuss the

treatment of any non-conventional boundary conditions, and present the remeshing

and continuation algorithms developed.

5.1 Numerical Methods

The numerical methods adopted for the simulation of the unsteady three-dimensional

free surface fluid flow problem comprise: variational description of the curvature in

three space dimensions[37]; arbitrary Lagrangian-Eulerian description of the time-

dependent domain[18, 36]; spectral element spatial discretization [36, 49, 53]; semi-

implicit[36] fractional time-stepping[54]; and parallel solution [25, 26] of the implicit

(pressure and viscous) operators by a preconditioned [54] conjugate gradient[53, 54]

algorithm. As mentioned previously, the variational description of the curvature

provides a surface-intrinsic natural (weak) condition for continuity of the surface tan-

gent across elemental boundaries, and does not require either a global coordinate
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system, orthogonal local coordinate systems, or a C' free-surface description. The

spectral element spatial discretization allows for simplified domain decomposition and

a high-order representation of both the fluid flow and flow geometry which exploits

regularities in the solution. The spectral element spatial discretization coupled with

the semi-implicit treatment has a reduced overall workload (even greater than in

two-dimensions) than a low-order finite element discretization for a fixed error re-

quirement. In addition, the semi-implicit approach allows for the implicit treatment

of those components of the governing equations amenable to fast iterative solution

via preconditioned conjugate gradient iteration (to wit, the Stokes problem, which is

further implicitly split into viscous and pressure sub-steps), while permitting explicit

treatment of those terms not readily amenable to fast iterative solution, in our case

the free-surface kinematic condition and geometry-evolution operator. An important

limitation, as described below, is that the explicit treatment of the domain evolution

does, however, place restrictions on the maximum allowable step size that can be used

in the time integration of the governing equations[35, 36]. The time step criterion

proposed by Ho[35] is too restrictive for the creeping flows (Re << 1) considered, since

the criterion is based on the accurate description of free-surface inertial waves. It was

determined that for most of the three-dimensional cases considered, the time step

can be increased by a factor of 10 without loss of stability (generation of free-surface

wiggles). To accurately track the evolution from the unstable two-dimensional steady-

states to the stable three-dimensional steady ribbed states requires a great number

of time steps, on the order of 105 in some cases.

The numerical methods described above were implemented in a commercial fluid-

dynamics code, NEKTON T M , by Nektonics Inc. The commercial coded served as

the starting point for the methods we used and developed.

5.1.1 Treatment of Boundary Condition at Inflow

The boundary condition at inflow, 01, is applied in a similar fashion to the two-

dimensional case; in effect, we assume that the total volumetric flowrate, Q, is not

greatly affected by the downstream appearance of ribs[14] and thus the pressure at

72



the inflow is kept constant and equal to the two-dimensional case. The boundary

condition allows for changes in the flow rate which would signal problems with the

assumption; great changes in the flow rate were not observed for most of the range

of parameters considered confirming the validity of our assumption.

5.1.2 Treatment of Boundary Condition at Outflow

The boundary condition at outflow, however, presents several difficulties in the three-

dimensional case. In particular, in three space dimensions, the sliding mesh, de-

scribed in step S3, and the uniform pressure condition, Eq. (2.4), imposed in the

two-dimensional case is no longer stable; a spanwise perturbation to the free surface

near the outflow will grow. The constant pressure imposed in the spanwise direction

creates a positive pressure gradient normal to the free surface just upstream of outflow

which was shown to be enough for the growth of the perturbation. More complex

outflow boundary conditions must be pursued. For lack of a better approach, we

impose the more Draconian - but stable - condition that the free surface thickness at

outflow, fn 3, is uniform in z and equal to the two dimensional leveled film thickness,

fiv (in the limit D - oo).

The deleterious effect of this boundary condition is limited to a small region (in

fact, one spectral element) upstream of the outflow boundary, as will be shown in

Chapter 7. The free surface transforms from the possibly ribbed geometry to the uni-

form geometry in this last spectral element. This change in geometry is accompanied

by a change in the spanwise velocity profile which can extend up to the second spec-

tral element upstream of the outflow for the cases where ribs are of great amplitude

near outflow. As observed in Chapter 3, the flow fields of the meniscus and leveling

regions are matched over what we termed the transition region which has an extent

of the same order of the film thickness. Similarly, we argue that the outflow condition

implemented imposes another velocity field with which the leveling flow field must be

matched. Since the outflow condition used also imposes a non-zero downstream pres-

sure gradient near outflow, due to the changing free-surface geometry, the matching

takes place over a distance greater than the film thickness.
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5.1.3 Domain Decomposition and Downstream Extent

A typical discretization of the three-dimensional domain is shown in Fig. 5-1. The

three-dimensional mesh is an extruded two-dimensional mesh with several levels of

elements and depth A in the extrusion direction, z. This particular mesh has 4

levels, 60 spectral elements, and elemental interpolants of order 5 (in each spatial

direction), resulting in approximately 50000 degrees-of-freedom (velocity, pressure,

and geometry unknowns). To identify the discretization of the domain, we use the

triad {number of elements per level, number of levels, order of the interpolant},

which for Fig. 5-1 is {15, 4, 5}. After the extrusion of the two-dimensional mesh, the

downstream extent of the domain considered is modified according to the wavelength

of the rib that is studied following procedures similar to those described in step R2

of the two-dimensional remeshing procedure. The leveling of ribs is a function of

the wavelength of the rib and in order to guarantee sufficient extent of the leveling

region we set the position of outflow given by 0aQ3 based on the A of the domain

considered: if 09a < 2 A/D we set 08n3 = 2 A/D in order to cover some of the

leveling region. If 0893 > 2 A/D, we do not modify the downstream extent of the

domain. The above criterion proved adecuate for all the cases considered except for

the cases of great amplitude ribs in large spanwise domain for which the decay of the

slowest wavenumber of the rib profile did not agree with the theoretical predictions.

5.2 Remeshing Procedure

The arbitrary Lagrangian-Eulerian description of the time-dependent three-dimensional

domain avoids frequent remeshing, which, in the three-dimensional case, is rather

expensive. However, global remeshing procedures become necessary when the free

surface deforms greatly, as can be the case when tracking the complete evolution

from an unstable two-dimensional steady state to a stable three-dimensional steady

state for Ca > Ca,. The three-dimensional remeshing procedure is a direct extension

of the two-dimensional procedure, but now involves an additional template for the

discretization in the z direction. An overview of the procedure, R3 D, follows:
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z

Figure 5-1: Typical three-dimensional discretization of an extruded two-dimensional
domain: sixty spectral elements arranged in four levels.

R13D Extract necessary information from the current three-dimensional mesh: the

piecewise polynomials that define aQ4 n0Q5; the position, (XD, 3D), of the

mesh nodes on aQ4 n 0Q5; and the position, (x3D, z3D), of the mesh node on

-9Q4 n &Q5 where a change of curvature arises. We calculate from this informa-

tion a measure of the steepness of the ribs,

aZ3D = 2 arg maxz3De[o ] x3D (z3D) 3D (5.1)

We later use this information to determine the relative sizes of elements in the

spanwise direction.

R231 Discretize the domain in the z direction based on the spanwise template and

Az3D; different templates are used for different number of spanwise levels. The

template determines the z position of the element boundary sides normal to the

extrusion direction. An example of a spanwise template is shown in Fig. 5-2.

The other templates used are presented in Table 5.1 where the relative spanwise

sizes of the! elements are presented as a function of Az 3D .
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Figure 5-2: Discretization template for mesh consisting of 7 levels in the spanwise
direction.
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Table 5.1: Templates for the z position of the element-edge boundary nodes as a
function of the number of levels: (a) 2 levels, (b) 3 levels, (c) 4 levels, (d) 5 levels, (e)

6 levels, (f) 7 levels, (g) 8 levels.

77



(a)

(b)

re s oending template slices (6) of theFig-aye 5-3. Thr 15 eieme itdomai timein l iterPoerIts of 5th order 

33D Discretize the individual levels based on the position of the elemental nodes is
sides normal to the extrusion direction; the z position of the internal nodes isdetermined using a template similar to that of Fig. 4-5 using the z coordinate

teimanparaeter 
.

as the parameterization ameter

Slice the three dmenSn domain into z planes corresponding to the discretizai nald a s io olog Y equivalent to the two-
tion performed in step described i Chapte 4 but include the spanwise velocitYdimenSional dom ans it
as an additional field quantitY.
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R43D Apply the two-dimensional remeshing procedure R to each two-dimensional slice

without changing the position of the outflow boundary (step R2). The spanwise

velocity is also mapped onto the new mesh. In this step, more elements per level,

or higher order interpolants can be used to increase the resolution.

R53D Reconstruct three-dimensional mesh based on the two-dimensional remeshed

slices and the template used in step R3.

Limitations

The remeshing procedure R3D does not allow for the study of re-entrant[67] ribs

since, as shown in Fig. 5-4, slices with planes (constant z) of the three-dimensional

domain are not topologically equivalent, since the rib geometry is not a single value

function of z. Since the slices are not topologically equivalent, the two-dimensional

remeshing procedure R is not applicable. The decoupled template scheme, consisting

of a two-dimensional template and a spanwise template, obviously, cannot be extended

to study re-entrant ribs. Global domain decomposition and field quantity mapping

algorithms must be implemented in order to perform the remeshing of domains that

have re-entrant ribs[67].

5.3 Numerical Procedure

To study the three-dimensional ribbed states, the two-dimensional steady flow field

is first obtained using the procedures described in Chapter4 . The geometry is then

extruded in the spanwise direction to the desired domain depth A and domain extent

in the downstream direction. The free surface is then perturbed sinusoidally, with

amplitude A3D in the direction of the local free surface normal (which lies in the x x y

plane since there is no spanwise curvature yet), and spanwise wavelength A. The

(nondimensional) initial amplitude of the perturbation AoD is taken to be .01 in most

cases. In some cases, a smaller amplitude for the perturbation was considered in order

to study in detail the initial evolution from the unstable two-dimensional steady state.

A blending interpolation is then performed in the last element in order to satisfy the
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Figure 5-4: Schematic of re-entrant rib geometry for which the remeshing procedure
can not be used since the rib geometry is not a single valued function of z.

boundary condition of A3D -+ 0 as 0 -+ 8n,3. This geometry is then integrated in

time. The stopping criterion is critical since rib growth can be relatively slow. If

the perturbed geometry is integrated in time until the maximum velocity normal to

the free-surface falls below a preset tolerance, say when maxa 4fnaon uini < .0025,

the geometry in most cases can be deemed to be close enough to the actual steady

state. This criterion fails for slightly supercritical Ca for which very small amplitude

ribs are obtained since the magnitude of the velocity components on the free surface

are small due to the large time constants associated with the rib growth. A better

stopping criterion can be implemented based on Eq. (3.16). If an error of magnitude

E (e. g. e = .01), is acceptable for the rib amplitude measured by A,, since the time

scale for approaching the steady state is known from Eq. (3.16), the corresponding

limit on the normal velocity at the midplane can be estimated and scales as:

E E
max uini < x As < lim A, (5.2)

ao4 n a 5 2Ca t-oo 2 Ca- 8(2r '
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where A8 is used as an estimate of the final total disturbance amplitude since this

quantity is not known a priori. Another way to determine the stopping criterion

is through an eigenvalue interpretation. The approach to the steady state can be

considered as governed by a linear operator, L such that

Uit = Cij u (5.3)

£ij uj = A ui (5.4)

C ui = fi (5.5)

Aui < - fi, (5.6)
Amin

where Aui can be considered as the error in the velocity, Amin is the smallest eigenvalue

of the linear operator £ij and is equal to the time scale given by Eq. (3.16), and Afi

is the residual that from the steady state.

The computational time required to achieve a steady state, starting with the initial

two-dimensional perturbed domain, is on the order of 50-600 hours on 16 nodes of an

Intel i860 Hypercube and is a function of the capillary number Ca and the domain

depth A studied. The high computational cost is a direct consequence of the explicit

treatment of the domain evolution and the resulting restrictive time step. In order

to decrease the computational costs, semi-implicit procedures similar to those used

in two dimensions should be pursued.

5.4 Extensions of Remeshing Procedure

Due to the modular nature of the remeshing procedure and the decoupling of the z

direction template from the two-dimensional template several extensions or uses of

the procedure can readily be effected.

5.4.1 Mesh Adaptation

Initially, when the free surface is not greatly deformed, relatively few levels of ele-

ments in the spanwise direction suffice; as the free surface deforms, more resolution
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is required. With this in mind, few levels can be used while the free surface is not

greatly deformed and when the geometry requires it, the number of levels can be in-

creased. This increase in resolution is readily effected by introducing a new template,

with more levels, in step R23D of the remeshing procedure R3 D. An example of this

evolution, with time-varying spanwise resolution, towards the steady ribbed state is

shown in Fig. 5-5.

In several cases, the simulations that required higher resolution to resolve the

steady state were repeated starting from the initial extruded geometry with the in-

finitesimal spanwise perturbation, but using the high resolution throughout. The

same steady states were achieved, and example is shown in Fig. 7-4, though at a pro-

hibitively high computational cost. The ratio of the computational times required to

achieve the steady states shown in Figs. 5-5 and 7-4, was on the order of 10.

5.4.2 Continuation

Once a steady ribbed state is obtained for a given geometry, capillary number,

and wavelength, {D, Ca, A}, instead of starting from the perturbed extruded two-

dimensional geometry to obtain the steady ribbed state at a different A, continuation

schemes and proper remeshing procedures reduce the computational cost to obtain

a new steady ribbed state (different A) to on the order of 50-200 hours of computer

time. The simplest, yet effective, continuation method is to stretch (compress) the

domain in the spanwise direction by scaling the z position and the spanwise veloc-

ity, U 3 , by the ratio Anew/Aold where Anew is the desired wavelength and Aold is the

wavelength of the steady state already obtained as shown in Fig. 5-6. This approach

is successful since ribs do not radically change topology, and due to the creeping na-

ture of the flow, any incompatibilities between the free surface geometry and the flow

field will be eliminated rapidly. In addition to stretching, an efficient method for the

study of ribbed states is that of replication. The steady ribbed state obtained for

A/2 (or thereabouts and then properly stretched) is replicated in order to create an

initial condition (ribbed) that now has a spanwise length of A and twice the degrees

of freedom as shown in Fig. 5-7.
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threedimenSio ribbed-state displayin the adaP-
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(a)

(b)

(c)

Figure 5-6: Example of continuation scheme to generate initial condition for A = 15
(b) based on the steady-state for A = 10 (a). The initial condition was integrated
until a steady-state was achieved (c), for A = 15, D = 200 and Ca = 3.14.
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(a)

(b)

Figure 5-7' Exampie Of coti~nuatio scheme to generate initial codition with tworibs of total spanWise ength X (b) based on the replication of the steady ribbed state
for spanwise length X/2 (a) for D = 200 and Ca 3 16for spajjqvise lnt / a
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the remeshing methods used cannot study ribs that evolve into a re-entrant topology.

5.5 Limitations of Numerical Methods

In summary, the methods described above allow for the study of the evolution from

the unstable two-dimensional steady-states to the stable three-dimensional ribbed

steady-states via a time marching approach. The time marching scheme and the

stopping criterion used allow for the possibility that after forming the steep ribs, an

even "slower" process might begin not described by the mechanisms presented above

and thus not captured by the stopping criterion implemented. We have developed

remeshing algoritms to allow for the study of the greatly deformed geometries that

arise but due to the limitations of the remeshing schemes re-entrant geometries can-

not be studied which ave been observed experimentaly for certain flow conditions

with non-Newtonian fluids. In order to decrease the excesive computational time, re-

sulting from the explicit treatment of the kinematic condition of the free-surface, we

developed a time-dependent spanwise resolution scheme that allows for the use of low-

resolution (lower computational cost) when the free-surface is not greatly deformed

and high-resolution only when required. An implicit treatment of the kinematic con-

dition will relax the stability limitations on the time-step but on the other hand

will increase the problem size and will not allow for the fast iterative solution via

preconditioned conjugate gradient iteration.
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Chapter 6

Two-dimensional results

In this chapter we first present qualitative results for the two-dimensional problem,

and then perform quantitative comparisons with results reported by Coyle et al[12].

Our discussion is brief, intended only as a point of departure for the three-dimensional

considerations.

We first discuss, qualitatively, the dependence of the flow geometry and flow field

on the two governing parameters, the roll diameter to gap ratio, D, and the capillary

number Ca. Figure 6-1 (a-c) shows the dependence of meniscus geometry on the

capillary number Ca as the rollers are brought closer together, from D = 40 (a), to

D = 200 (b), and to D = 1000 (c), respectively. Figure 6-2 (a-c), on the other hand,

shows the dependence of the meniscus geometry as the rollers are changed keeping

the gap constant, for D = 40 (a), D = 200 (b), and D = 1 000 (c), respectively. In

both cases, increasing Ca, brings the meniscus closer to the nip. This movement is

only gradual for high Ca while it is dramatic in the low Ca range. This last effect is

more pronounced for larger gap separations (smaller D). The downstream migration

of the meniscus with decreasing capillary number is accompanied by a qualitative

change in the flow field: for low Ca, a recirculation region appears near the meniscus,

as shown in Fig. 6-3 (a-c).
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(a)

(hb

Figure 6-1: Two-dimensional steady meniscus geometries as the rollers are brought
closer together: for (a) D = 40, (b) D = 200, and (c) D = 1000, as a function of
capillary number: Ca = .0316, .1, .316, 1, 3.16, 100.
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(b)

(c) 

Figure 6-2: Two-dimensional steady meniscus geometries for equal gaps using differ-
ent rollers: for (a) D = 40, (b) D = 200, and (c) D = 1000, as a function of capillary
number: Ca = .0316, .1, .316, 1, 3.16, 100.
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a(i)

a(ii)

b(i)

b(ii)

c(i)

c(ii) m

Figure 6-3: Characteristic flow fields: (i) Ca = .1 - recirculation zone, (ii) Ca = 1 -
no recirculation zone, for (a) D = 40, (b) D = 200, and (c) D = 1000.
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Ca

Figure 6-4: Two-dimensional steady meniscus geometry for full domain - no imposed
symmetry - as a function of the capillary number Ca = .05 -+ 100 and D = 200.

As described in Chapter 4, we also performed calculations using the full domain,

not considering the symmetry of the flow fields. Representative results are shown in

Fig. 6-4, the two-dimensional steady meniscus geometry for D = 200 as a function of

Ca. The meniscus geometry obtained for the full domain does not exhibit noticable

differences compared to the results for the symmetrized domains (always less than the

tolerance used to determine the steady state). The computational time to obtain the

steady state, on the other hand, was on the order of 2 to 8 times longer compared to

the symmetric case and was a function of the Ca: more gains in computational time

we obtained for the higher Ca which is in agreement with the fact that the solver is

more efficient for smaller Ca.

We now turn to three quantitative measures of the flow field and geometry: the

volume flowrate through the nip, Q; the location of the stagnation point on the

splitting meniscus, x2D; and the location of the first stagnation point downstream

from the nip along the symmetry plane, x2D. The dependence of the flowrate Q on

the capillary number Ca, for D = 40, 200 and 1000, is shown in Fig. 6-5. Figure

6-5 shows the weak dependence of the flowrate, and thus the nip pressure, through

Eq. (2.11), on the capillary number Ca and on the geometric parameter D. With

increasing capillary number Ca there is a monotonic decrease in the flowrate Q. This
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property is also observed with increasing D, though it is not as great.

The location of the splitting meniscus is shown in Fig. 6-6 as a function of the

capillary number Ca for D = 40, 200, and 1000. The position of the meniscus, x D,

is scaled by the geometric factor V2 D, which appears in lubrication theory analysis.

For most of the range, this factor represents the effect of D. When the recirculation

sets in, the three curves no longer collapse. This can be explained by observing that

the one-dimensional assumption used in lubrication theory analysis breaks down.

Figure 6-7 shows the location of the first stagnation point downstream from the

nip along the symmetry plane, x2D, as a function of the Ca and different geometries

D. To determine the onset of the recirculation zone in the flow field, Fig. 6-7 need just

be compared with Fig. 6-6. When the two plots overlap, no recirculation is present,

and while the two plots do not coincide, a recirculation zone is present. For high

Ca, only one stagnation point is observed along the symmetry plane, Q5, that is,

the stagnation point observed on the splitting meniscus is the first stagnation point

observed downstream of the nip. As the capillary number is decreased, near Ca .8,

a second stagnation point arises, signaling the presence of a recirculation zone. The

location of the first stagnation point downstream of the nip is weakly dependent on

Ca indicating that it is mainly determined by the viscous pressure gradient in the

fluid. Once a recirculation zone appears, the position of the first stagnation point is

slightly altered though not greatly as a function of the Ca.

Finally we validate our results by comparing them with those reported by Coyle

et al[12]. Coyle et al[l12] compare their results based on finite element analysis with

results based on asymptotic analysis. Qualitatively our results are in agreement, and

as can be seen in Table 6.1 and Fig. 6-8, there is quantitative agreement as well.
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Figure 6-5: Non-dimensional volume flowrate,
D = 200 (), and D = 1000 (o).
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Figure 6-6: Film split location, x2D, as a function of Ca = .0316, .1, .316,
for D = 40 (), D = 200 (D), and D = 1000 (o).
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Figure 6-7: Position of first stagnation point downstream from nip, xoD, as a function
of Ca for D = 40 (), D = 200 (),and D = 1000 (o).

Current Coyle et al[12]
D = 500 Asymptotic Finite

Analysis Elements
Q 1.2955 1.290 1.293

x2D .729031 .7230 .7290

Table 6.1: Flowrate, Q, and position of the splitting meniscus, xD, in the limit of
Ca 1.
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Figure 6-8: Film split location, x2D, as a function of Ca for D = 200: this study O;
Coyle et al[12] x. First stagnation point downstream from nip, x2D: this study O,
Coyle et al[12] +.
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Chapter 7

Three-dimensional results

In this chapter we present simulation results for the unsteady three-dimensional free-

surface fluid flow problem. The calculations serve the purpose of validating and

quantifying the model of Chapter 3, and of demonstrating our three-dimensional sim-

ulation methodology. We first compare the short-time behavior predicted by our sim-

ulations with the results based on linear stability theory reported by Coyle et al[14].

We then present the evolution from a perturbed unstable two-dimensional steady

flow geometry to a stable three-dimensional steady ribbed state, and compare these

results with the "predictions" of the analysis of Chapter 3. Finally, we present steady

ribbed results for selected spanwise periodicity lengths, A, and supercritical capillary

numbers, Ca > Ca,.

7.1 Nonlinear Evolution to Steady Ribbed States

7.1.1 Comparison with Linear Stability

Coyle et al[14], based on linear stability analysis of symmetric forward-roll coating,

report the critical capillary number, Ca,, and the critical wavelength, A, for different

geometries, as defined by D. In addition, for a limited combination of D and Ca, they

present the growth-rates, y, of the infinitesimal perturbations as a function of their

wavenumber = r/A. Coyle et al[14] mention that there are some limitations on the
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accuracy of the growth-rates predicted far from marginality (y = 0) due to approxima-

tions performed in their fiumerical procedure; terms arising from the time derivatives

from the momentum equations were neglected. The procedure implemented by Coyle

el al[14] follows closely that of Ruschak[58]. Both Coyle el al[14] and Ruschak[58]

claim that the approximations are valid as long as the resulting time constant for

the growth of the disturbance is long compared to that of the base flow. As will be

confirmed below, this approximation is valid for the cases we considered (Re << 1)

since the time constants associated with disturbance growth (or decay) are relatively

large and thus, the reported growth-rates should be small and relatively accurate. We

use the information presented by Coyle et al[14] to compare the short-time behavior

of our non-linear simulations with predictions of the short-time behavior based on

linear stability analysis. We note that our methods are not an efficient means to de-

termine marginal stability or growth-rates due to the fact that the time constants get

larger ( and thus more computation) as marginality is approached; this phenomena

is commonly refered to as critical slowing.

We present results for D = 40, Ca = 15, and A = A~ = 9 which Coyle et al[14]

report to be unstable (Ca = 15 > Ca, = 7 and P = r/A, = r/9 for D = 40); the

reported growth rate (appropriately scaled) for the spanwise periodic disturbance of

wavenumber p = p, = r/9 is approximately y .01 (see Fig. 5 of Coyle et al[14]).

The initial geometric (and velocity) perturbation we impose on the extruded two-

dimensional steady state geometry (see Chapter5) does not correspond to the eigen-

function with wavenumber p = -,, but rather to a linear combination of eigenfunc-

tions of wavenumber p = m p/ for m = 1,..., o. Due to this, the initial growth of

the imposed perturbation will not correspond to that given by linear stability analy-

sis. However, the eigenfunction with P = P/ will be preferentially amplified and thus

we should observe, after some time, growth rates relatively close to that predicted by

linear stability.

We look at the evolution of the disturbance at the midplane as measured by the

"total" disturbance amplitude given by A8 = (max D -min xD) /2 (this is possible

since the profile at the midplane remains mostly monochromatic). We plot in Fig. 7-1
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the evolution of the amplitude A8 as a function of time. Initially, the disturbance

exhibits growth greater than that indicated by linear stability analysis. As mentioned

above, this can be attributed to the fact that the initial disturbance is not spatially

equal to the eigenfunction of wavenumber c; it does not exhibit the exponential decay

of amplitude in the downstream direction described by Coyle et al[14], but rather it is

of constant, and finite, amplitude (initially). The initial "corrective" growth saturates

and we observe slower growth with a second change in the growth-rate near t = 16.

We determined the quantity dAB/dt in the two sub-intervals by performing a least-

squares fit to the data in the intervals t E [2, 18] and t E [15, 40], respectively. We did

not estimate using more advanced techniques the appropriate intervals, but rather

determined them by inspection. The growth-rate in what would be the interval for

linear growth is determined to be y = .0107 which is in good agreement with the

growth-rate predicted by linear stability. As mentioned above, after the initial linear

growth, the disturbance continues to grow but at a different rate until it eventually

reaches a steady state as shown in Fig. 7-1. The final approach to the steady state

geometry, given by dA 8/dt, can be estimated using Eq. (3.16) as .0233. This is in good

agreement with our simulation result for the interval t E [15, 40] which is determined

to equal .0292, again by a least squares fit. The two-regime growth is observed in

most of the simulations performed (see also Fig. 7-3) as was "predicted" in Chapter

3.

In order to remove the discrepancy with in linear growth interval, specially near

t = 0, the initial spatial and velocity perturbations to the two-dimensional geometry

and flow field respectively, should equal the eigenfunctions corresponding to linear

stability analysis (which are unknown to us).

7.1.2 Meniscus Evolution Towards the Steady State

To allow for adequate visualization of the meniscus and the ribs during the evo-

lution towards the steady state, we now present results for D = 200; the criti-

cal conditions for this geometry reported by Coyle et al[14] are Ca = .32 and

p = 7r/Ac = 7r/30. We first present results for the following set of parameters:
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Figure 7-1: Evolution of the meniscus amplitude at the midplane, measured by A8
(o) for D = 40, Ca = 15, and A = 9, from the slight perturbation to the unstable two-
dimensional steady state geometry. A least squares fit of the data for t E [2, 18] results
in a growth rate of -y = .0107 as indicated by the solid line which is in agreement
with that reported by Coyle et al[14]. The growth of the disturbance as it approaches
the steady state determined using a least squares fit is given by .0292 in the interval
t E [15,40] and is in agreement with the value of .0233 given by Eq. (3.16). The
resolution used to obtain this result was {15, 4, 5).
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D = 200, Ca = 5 > Cac = .32, and A = Ac/2 = 15 (note that P = 2, is presumed

to be, and is in fact, an unstable mode). The result presented below was originally

obtained considering the full non-symmetrized domain and subsequently repeated for

the symmetric domain. The results for the evolution of the meniscus profile are vir-

tually indistinguishable. The downstream evolution, in what we term the film region,

due to the imperfect symmetry of the initial condition, exhibited non-symmetric tran-

sients (of small magnitude) while the original fluid was washed out by the action of

the rollers but after this time the flow geometry was symmetric. When the steady

states were attained, in other words when the stopping criteria were first satisfied, the

two geometries (unsymmetric and symmetric) where again virtually identical. The

gain in computational time considering the symmetric domain, for equal resolution,

was on the order of 4 for this particular simulation. This gain can be attributed to a

decrease in the degrees of freedom, and the improvement in the conditioning of the

problem. Since the two results do not differ greatly, we concentrate on discussing the

symmetric domain results.

The evolution of the meniscus geometry from the unstable two-dimensional steady

state to the stable three-dimensional ribbed steady state is shown in Fig. 7-2. The

profiles correspond to the intersection of the free surface with the symmetry plane,

0Q4n05, for different times. For the resolution {15,7,5}, with approximately

150 000 degrees-of-freedom, the free-surface-velocity-based stopping criterion is satis-

fied near t = 64.2, and thus we deem the geometry to have achieved a steady state. To

verify the steady three-dimensional geometry obtained, this solution is then mapped

(see Chapter 5) onto a finer mesh {15, 8, 7} with approximately 350 000 degrees-of-

freedom, and further integrated in time until the stopping criterion was again satisfied,

and thus a new steady state is achieved, at t = 66; the two geometries differ only

slightly, leading us to hazard that the results are, indeed, correct. The relaxation time

constant associated with finding the new steady state after the mapping onto the fine

mesh is large due to the steepness of the ribs. Noise is introduced during remeshing,

predominantly at the higher wavenumbers. For ribs that are smaller in amplitude,

and thus not as steep, the higher resolution steady state is readily obtained after the
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Figure 7-2: Evolution of the meniscus profile at the midplane, al4 n 'd 5, for D = 200,
Ca = 5, and A = 15, from the slight perturbation to the unstable two-dimensional
steady state position x2D, to the three-dimensional stable steady state: t = 0, 20, 30,
40, 50, 58.4, 61.6, 64.2.

mapping.

During the evolution to the three-dimensional ribbed state, the average position of

a4 n aQ5, D = O x 3Ddz/A, does not differ significantly from the meniscus position

for the two-dimensional problem, x2D; furthermore, the flowrates through the nip

for the two-dimensional and three-dimensional flows differ only slightly, less than

1% (note that we do not impose the flowrate through the nip, but rather, impose

the pressure at the nip and let the solution procedure determine the flowrate for the

value of the imposed nip pressure). Negligible differences between the two-dimensional

flowrate and that of the ribbed states is observed in all the results obtained, confirming

that, for the range of D, Ca, and A considered, the total volume flowrate through the

nip is not greatly affected by the presence of ribs. The greatest change in flowrate (<

1%) was observed when the ribs present were of great amplitude, A8 > 3, indicating

that possibly for even more supercritical Ca, ribs can have an effect on the total

flowrate and thus the resulting film thickness.

104



For highly supercritical Ca, as the rib achieves finite amplitude the higher spanwise

harmonics will achieve significant amplitude (they initially have a very small ampli-

tude), giving rise to the steepening of the ribs as the steady state is approached. The

evolution of the profile 0Q4 n aQ 5 can be used to quantify the growth of the various

components of the disturbance to the free surface. Figure 7-3 shows the evolution of

several amplitudes: the disturbance amplitude given by A8 = (max xD - min xD) /2;

and the amplitudes of the first three Fourier modes, A1, A2, A 3, respectively, obtained

by performing a Fourier transform of the profile aQ4 n 9Q5. During most of the evolu-

tion toward the steady state, the higher wavenumber modes are not noticeable; they

do become important, however, when approaching the steady state, in agreement

with the steepening of the rib observed in Fig. 7-2. The "fluctuation" after t = 58.4

is a direct consequence of a change in the template for the z direction from 6 levels

to 7 levels; the increase in resolution filters higher wavenumbers from the profile and

this has but a transient effect. The remeshing procedure results in a discrete jump of

small magnitude that should be observed in Fig. 7-3 after every new mesh. To avoid

confusion, the geometry used to generate the plots was the one before the remeshing

procedure. The effects of remeshing are observed during the transient which fol-

lows the remeshing; for example, after t = 58.4 there is a transient increase in the

amplitude of the main low-wavenumber mode and a decrease in the corresponding

amplitudes of the higher wavenumber modes which is clearly observed in Fig. 7-2.

Similar changes in the high wavenumber content are associated with remeshing and

become important when the rib profile is steep, in other words, when the rib profile

contains higher wavenumbers. The shown in Fig. 7-2 is

For our initial condition, many of the possible wavenumbers, / = m 2 , = m ir/15

for at most m = 1,.. ., 32, are linearly unstable. Since we expect that for short times

the nonlinear interaction is small, the unstable modes will each grow at approxi-

mately the rate determined by linear stability analysis. The fastest growing mode

will, initially, not necessarily correspond to m = 1 which is the case in Fig. 7-3 where

the growth-rate for the mode corresponding to m = 3 is greatest. Despite the faster

initial growth of higher wavenumber modes, due to the nonlinear interaction between
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Figure 7-3: Time evolution from the perturbed unstable two-dimensional steady state
profile to the three-dimensional stable steady state, for D = 200, Ca = 5, and A = 15,
of the meniscus profile amplitude at the mid-plane, A8 = (max x3D - min xD) /2, and

of the first three Fourier modes of the profile Am, associated with P = m 23C, = m 7r/A
for m = 1, 2, 3. (Note the fluctuation near the steady state is due to a remesh from
six to seven levels.)
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the modes when they achieve finite amplitude, for this particular highly supercrit-

ical Ca we obtain great harmonic content in the steady-state. In the steady-state,

the m = 1 mode is dominant; by this we mean that the amplitude of this mode is

greatest compared to the amplitudes of the other modes. This, as will be seen below

in Figs. 7-13 and 7-14, is not always the case, it depends on the value of Ca and the

history of the flow, to name a few of the determining factors.

As mentioned in Chapter 5, in order to verify the independence of the evolution

towards the steady-state with regard to resolution, selected cases were repeated using

the final (high) resolution throughout. An example of such a high resolution simu-

lation is shown in Fig. 7-4 which is a repetition of the simulation shown in Fig. 5-5.

The ratio of the computational time required to perform the simulation shown in

Fig. 7-4 compared to the time to perform the simulation shown in Fig. 5-5 obtained

using adaptive spanwise resolution was on the order of 10; the supercomputer (16

nodes of an Intel i860 hypercube) time required for the high resolution simulation

was approximately 800 hours compared to approximately 80 hours for the adaptive

resolution simulation. It is worthwhile to remember, that without the remeshing

techniques presented in Chapter 5 neither simulation could of followed the complete

evolution to the steady-state since the mesh distorts greatly near the meniscus. The

remeshing was performed on a serial workstation and required on the order of 100

additional hours for both the high and adaptive resolution simulations.

7.2 Properties of the Steady Ribbed State

With the previous results, we confirmed the unstable nature of the two-dimensional

steady flow geometry for the supercritical Ca considered, and followed the evolution

to the three-dimensional steady ribbed state. We now concentrate on the structure of

the stable three-dimensional steady ribbed state in order to observe and quantify the

coupling between the meniscus instability and the ribs downstream, and to compute

the lengths of the regions identified in Chapter 3.
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Figure 7-4: Evolution to a steady three-dimensional ribbed-state for A = 10, D = 200,
and Ca = 3.14 obtained using "high" resolution throughout the simulation, {15, 7, 7}.
The steady state is identical to the steady ribbed-state shown in Fig. 5-5 obtained
using adaptivity in the z direction allowing for lower resolutions during the transients.
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Figure 7-5: View of spanwise periodic stable three-dimensional steady ribbed free-
surface geometry for D = 200, Ca = 5, and A = 15.

7.2.1 Meniscus Geometry and Downstream Ribs

In Fig. 7-5 we present a view of the stable three-dimensional free-surface steady-state

geometry obtained for the previous set of parameters; to aid visualization, the compu-

tational domain Q of spanwise wavelength A = 15 is replicated threefold in z and then

reflected along the symmetry plane 9Q5 in order to simulate two rollers. Note the

fluid is opaque, thus making only the free-surface visible. The ribs are seen to be very

steep, and of very large amplitude in the meniscus region; experimental observations

of such steep ribs are commonplace (e.g. Dowson and Taylor[19], Fig. 16).

As described in Chapter 3, the meniscus geometry controls the free surface profile

everywhere, and thus we expect to observe ribs downstream from the meniscus. As the

view and lighting in Fig. 7-5 do not clearly show the ribs downstream on the rollers,

we show in Fig. 7-6 profiles of the steady three-dimensional free-surface at different

downstream locations 0. Figure 7-7 shows how the amplitude of the rib, given by

A = (max f - min f) /2, decreases with distance from the nip; note the significant,

but localized, effect of the outflow boundary condition on the flow geometry (A - 0

as 0 -+ 08n3-22.63°). The localized outflow effect suggests that other (incorrect)

outflow conditions could be used with similar localized results.
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7.2.2 Transition of Flow Fields: Helical to Leveling

The decrease in amplitude of the ribs for increasing 0 indicates the transformation of

the spanwise fluid flow pattern from a rib-sustaining helical flow field to the convergent

field of the leveling film. Figure 7-8 shows the dependence of the free-surface spanwise

velocity on the downstream position; clearly, between 0 = 13° and 0 = 15° the nature

of spanwise velocity profile changes - the spanwise velocity no longer feeds the crest

of the rib, but rather, begins to drain fluid from it. This change occurs in what we

term the transition region, which is seen to be of a characteristic length Lt = .75

for the complete flow field; this estimate for Lt was determined by tracking the max

(min) of the free-surface spanwise velocity profile as the fluid moves downstream and

performing a least squares fit in the interval 0 E [130, 15°]. If instead, we concentrate

on the length scales associated with the transformation of the flow characteristics of

the individual Fourier modes of the spanwise velocity profile, they occur at different

approximate locations within the interval 0 E [11°, 170]. We can extract the length

scale associated with each transition by following the amplitude (keeping track of the

appropriate sign) of the spanwise velocity mode as it goes through its corresponding

transition and by performing a least squares fit on the extracted data. We present

the results in Table 7.1; we observe that the quantity Lt is of order 1 and that lower

wavenumbers exhibit longer transition lengths, Lt,, than the higher wavenumbers in

agreement with our discussion in Chapter 3.

After the transition (of the complete flow-field), the spanwise velocity rapidly

converges to the flow profile of a leveling film. This is observed in Fig. 7-9, in which

slices of the domain Q corresponding to the meniscus, transition, and leveling regions

show the different flow fields "predicted" by the schematic in Fig. 3-6. Downstream of

Lt Ltl Lt2 Lt3 Lt4 Lt5
.75 1.21 1.96 1.27 1.01 1.10

Table 7.1: Transition length, Lt, for the spanwise velocity profile and that of the
individual Fourier modes of the spanwise velocity profile, Lt,, of wavenumber / =
mir/15 and m = 1,...,5 for D = 200, Ca = 5, and A = 15.
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Figure 7-6: Steady free-surface profiles for D = 200, Ca = 5, and A = 15, as a
function of downstream position: 0 = 12°, 13°, 14°, 15°, 16°, 17°, 18°, 19°. (Note
that the sharp profile for 0 = 12° is an artifact of the radial projection.)

0 = 15, in what we called the leveling region, the ribs exhibit a flow that drains fluid

from the crest of the rib but, in some cases, the flow near the bottom of the trough still

corresponds to a flow that drains fluid from the trough as shown in Fig. 7-9. This is due

to the fact that the transition regions for the individual velocity Fourier components

ocurr at different downstream locations, and though the flow field no longer sustains

the rib, depending on the wavenumber content of the spanwise velocity profile, regions

where fluid is drawn from the trough of the rib can be observed downstream of the

transition region.

7.2.3 Leveling of Ribs

We now turn to the leveling region and study the leveling of the nonlinear ribs (not

monochromatic) as a final measure of confirmation of the behavior described in Chap-

ter 3. The leveling problem to first order is linear, at least for small amplitude ribs,

and thus the interaction between wavenumbers can be overlooked. We thus extract
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Figure 7-7: Evolution of rib amplitude A (0) for D = 200, Ca = 5, and A = 15, as a
function of the roller angle 0. The effect of the outflow boundary condition is clear:
A - 0 as 0 -+ an3-22. 63 ° .
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Figure 7-8: Steady free-surface (or on aQ5) spanwise velocity, U 3 , profiles at different
downstream positions for D = 200, Ca = 5, and A = 15: 0 = 90, 100, 110, 130, 15°.
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Figure 7-9: Characteristic spanwise velocity, u 3, contours for D = 200, Ca = 5, and
A = 15, for: (a) Meniscus region, = 11°; (b) Transition region, = 13°; (c) Leveling
Region, 0 = 15. Legend: Grey u 3 > 0; Black u 3 < 0; arrows indicate direction of
flow.
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Figure 7-10: Dependence of rib amplitude A (0), and of the amplitude of the profile
Fourier modes with wavenumber /fiv = m 2 r fvA = m 2 fv 2 c0, m = 1 (O) , 2 (0)
,3 (A) , and 4 () , as a function of roller angle 0 for D = 200, Ca = 5, and A = 15.

the wavenumber decay from the sequence of free-surface profiles in Fig. 7-6; this is

achieved by performing the Fourier transform of the film profiles, and following the

amplitude of each wavenumber individually as the ribs move downstream. Figure 7-10

shows the dependence of the rib amplitude, A, and that of individual wavenumbers,

Am, m = 1,... , 4, as a function of the roller angle, 0.

In Fig. 7-10, the absolute value of the slopes are a measure of the distance over

which the individual mode amplitudes will persist. As the ribs move downstream,

the total rib amplitude asymptotically approaches, from above, that of the lowest

wavenumber since, as predicted by the model, higher wavenumbers decay at a faster

rate. This is better observed in Fig. 7-11, in which the magnitudes of the individ-

ual slopes, Le, calculated in the leveling region sufficiently upstream of outflow (to

avoid intrusive outflow effects), are plotted as a function of the corresponding film

wavenumber, Pfiv = m 27r fv/A = m 2 fIv 2 p3. The results are in good agreement

with the prediction of Eq. (3.7). The distance over which the ribs persist, if measured
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Figure 7-11: Leveling region length, Le, for the rib, (0), and the first four Fourier
modes of the rib profile associated with wavenumbers Ofv = m 2fi = m 2 fiv 2 Pc,
m = 1 () , 2 () , 3 (A), and 4 (V) for D = 200, Ca = 5, and A = 15.

by considering the decay of the total rib amplitude, is obviously smaller than that of

the lowest wavenumber component of the profile since it is the result of a "weighted

average" of the individual distances of the wavenumbers that are present. This needs

to be taken into account, since using the decay of the total amplitude of the ribs

could lead to erroneous results (showing greater decay rates and thus less persisting

ribs) if the rib profile were not monochromatic. For correct experimental verifica-

tion of these predictions, the complete rib profile would have to be determined at

different downstream locations, or measurements of the total amplitude would have

to be made sufficiently downstream in order for the rib profile to be monochromatic.

Hasegawa and Sorimachi[33] report measurements of the amplitudes of ribs assuming

a specific rib profile but do not specify the downstream location of the measurement.

Without this critical piece of data, comparisons cannot be made with theory nor with

our simulation results. The rib amplitude reported by Hasegawa and Sorimachi[33]

is a lower bound of the magnitude of the mid-plane rib profile amplitude and can

115



serve as a check (at least as an order of magnitude check) of the amplitude on the

rollers. Our numerical results do not contradict the reported experimental results of

Hasegawa and Sorimachi[33].

7.3 Steady Ribbed States

The results presented above are all for one combination of the governing parameters,

D = 200, Ca = 5, and A = 15. We now illustrate parametric trends by presenting

representative results for steady ribbed flow geometries for Ca = .5, .75, 1, 1.77,

3.16, and 5, and A E (0, Ac] (recall that for D = 200 Cac = .32 and Ac = 30). Note

that when considering A = A we are ensured, at least for slightly supercritical Ca,

that the most unstable mode (in the linear sense) will have wavenumber ,c = 7r/Ac

and will be the only mode present in the steady state (due to the lack of non-linear

excitation of the higher wavenumber modes). For Ca much greater than Cac, the

fastest growing mode will have a greater wavenumber than fe, various wavenumbers

will be present in the steady state (since they are linearly unstable or are excited

by the mode of wavenumber i) and, in addition, the wavenumber of the dominant

mode in the steady state (measured by the amplitude of the corresponding Fourier

component) will not necessarily correspond to /,.

As mentioned previously, for most of the results obtained, the average position of

aQ4 n aQ 5 , 3D = fo xSDdz/A, does not differ significantly from the meniscus position

for the two-dimensional problem, x2D; furthermore, the flowrates through the nip

for the two-dimensional and three-dimensional flows differ only slightly, less than

1%. This confirms, that for the range of D, Ca, and A considered, the total volume

flowrate through the nip is not greatly affected by the presence of ribs. The greatest

change in flowrate (1%) was observed when the ribs present were of great amplitude,

A8 > 3 H, indicating that possibly for even more supercritical Ca, ribs can have an

effect on the total flowrate and thus the resulting film thickness.

We first present in Fig. 7-12 results for for D = 200 and A = A, as a function of in-

creasing supercritical Ca. The increase in Ca can be interpreted as an increase in the
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speed of the rollers maintaining constant fluid properties. As the speed is increased,

in addition to the migration of the mean location of the meniscus towards the nip as

described in Chapter 6, there is a monotonic increase in rib amplitude. The increase

in rib amplitude with greater Ca is observed in all of the domain widths studied. Par-

allel to the increase in amplitude, there is an increase in harmonic content of the rib

profile demonstrated by the steepening of the ribs. A good way of visualizing the har-

monic content of the rib profiles is by extracting the amplitudes of the Fourier modes

of each profile. Figures 7-13 and 7-14 show the amplitudes of the Fourier modes as a

function of their corresponding wavenumber for moderately supercritical and highly

supercritical Ca, respectively. The rib profiles for the moderately supercritical Ca are

predominantly monochromatic (Fig. 7-13), few Fourier modes have finite amplitude

while the profiles for highly supercritical Ca (Ca > Ca,) exhibit greater harmonic

content (Fig. 7-14), many Fourier modes have finite amplitudes in the steady-state.

We observe convergence of the meniscus profiles as Ca is increased to a very steep ge-

ometry similar to the convergence observed in the two-dimensional meniscus position

shown in Fig. 6-6. This is confirmed in Fig. 7-14 where the difference in harmonic

content is mostly in the higher wavenumbers while the two profiles exhibit almost

identical low wavenumber content. We suspect that for even greater Ca the profile

will not differ much for that of Ca = 5 but may exhibit greater overall amplitude as

a result of the increase in the high wavenumber modes present in the steady-state.

However, we do expect differing characteristics of the steady state geometries as the

Ca is increased from criticality for values less than Ca = 5. We now present the

influence of the domain width on the ribbed geometry for various supercritical Ca.

7.3.1 Moderately Supercritical Steady Ribbed States

We refer to moderately supercritical Ca as those Ca for which the steady state ge-

ometries are mostly monochromatic and thus do not exhibit great harmonic content.

Figure 7-15 shows, for D = 200 and Ca = .5, the steady state profiles of dQ4 n 9Q5

as a function of spanwise periodicity A = A,/2 n- 1 for n = 1,..., 3. First, we observe

that the high-wavenumber cutoff is less than 4 ,c = r 4/30 since the rib amplitude for
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Figure 7-12: Steady state profiles of dQ4 nQ5 for D = 200, A = A = 30 and
Ca = .5, .75, 1, 1.77, 3.16, and 5. The ribs exhibit increasing amplitude, A, and
harmonic content with increasing Ca (roller velocity).
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Figure 7-13: Amplitude of the Fourier modes of the steady-state profiles of a24 n aQ5
for D = 200, A = 30, and Ca = .5 (0), .75 (O), 1 (0), and 1.77 (V) as a function of
the corresponding Fourier mode wavenumber P = m tc.
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Figure 7-14: Amplitude of the Fourier modes of the steady-state profiles of f2l4 n 905

for D = 200, A = 30, and Ca = 3.16 (o) and 5 (0) as a function of the corresponding
Fourier mode wavenumber 3 = m/,c.

A = Ac/4 vanishes. Second, we note that in the interval A E (0, Ac], there is an increase

rib amplitude with increasing A as is expected since for such a mildly supercritical Ca,

/, should still be the wavenumber of the fastest growing mode over all wavenumbers.

To observe the low-wavenumber cutoff, a domain larger than A, must be considered.

First, a domain with A = 2 Ac was integrated in time from the perturbed (one-rib of

wavelength A = 2 Ac) two-dimensional geometry. Instead of observing a growing dis-

turbance with wavenumber C/2, the amplitude of this disturbance mode decayed and

other wavenumbers were observed to grow. As a second attempt to find the steady

"one-rib" geometry with A = 2 A, the steady ribbed geometry for A, was stretched to

the right length and integrated in time; again, the "one-rib" geometry disappeared

and gave way to several ribs of varying amplitude. Given these "failures", a domain

for which A = 2 A, was constructed by replicating the (near) steady-state obtained for

A = A and translating it in the spanwise direction a distance equal to A to obtain

a domain with two ribs and a total spanwise dimension of A = 2 A, following proce-
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Figure 7-15: Steady state profiles of aQ4 n1 Q5 for Ca = .5, D = 200, A = 2301, and
z E [0,A] for n =1,...,3.

dures described in Chapter 5. This domain was then integrated in time resulting in

negligible changes in the geometry. This new steady-state geometry is presented in

Fig. 7-16. The steady state rib profile contains negligible amounts of the wavenumber

p = r/60 (present through non-linear interactions) leading us to conclude that the

low-wavenumber cutoff for Ca = .5 is greater than P = /c/2 = r/60 and that the

non-linear interaction of the modes present with the mode of wavenumber Pc/2 is

small. The procedure was repeated, but now instead of starting from the replicated

steady-state for A = Ac, a state from the evolution to the steady geometry was used

to construct the initial condition (shown in Fig. 7-16) and integrated in time. The

same "two-rib" steady-state was again obtained.

Similar results to those presented in Fig. 7-15 are shown in Figs. 7-17, 7-18, and 7-

19 for A E (0, Ac] and Ca = .75, 1, and 1.77, respectively. In Fig.7-17, that is for Ca =

.75, we do not observe the monotonic increase of total rib amplitude for increasing A

throughout. This indicates the shifting of the fastest growing wavenumber towards

higher values as reported by Coyle et al[14]. The profiles are mostly monochromatic
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Figure 7-16: Steady state profile of aQ24 naQ 5 for D = 200 and Ca = .5 for A =
2 A = 60 (solid line) and initial condition based on an intermediate unsteady-state
for A = A = 30 (dashed line). The profile was obtained by replicating the A = A = 30
geometry and translating it to fit the domain of depth A = 60.
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and the dominant wavenumber of the steady-state profile still corresponds to p = r/A

(by dominant we mean that the corresponding profile Fourier mode has the greatest

amplitude). In Fig. 7-13 we confirm that the steady-state profile for A = A = 30

and Ca = .75 () is monochromatic consisting of mostly the mode of wavenumber

pc and only slightly of the mode of wavenumber 2 . There is very little nonlinear

interaction between modes and no nonlinear excitation of linearly stable modes by

the linearly unstable that have finite amplitude.

If the Ca is increased further, say to Ca = 1, the profile corresponding to A = A,

shown in Fig. 7-18, exhibits two crests of differing amplitudes. We conjecture that

this phenomena is observed due to the shifting of the fastest growing mode to higher

wavenumbers and the lack of nonlinear interaction between the modes. The mode

corresponding to /, is still the dominant mode in the steady-state as observed in

Fig. 7-13 () but now the amplitude of the modes of wavenumbers A/B and 2 , are

comparable. The mode of wavenumber 3 c has but a slight contribution to the

profile. There are still very few modes present in the profile and all that are present

are linearly unstable.

Figure 7-19 shows the steady-state profiles for Ca = 1.77. Again we observe two

crests of differing amplitudes for the steady-state profile corresponding to A = A,.

However, now the mode corresponding to 2 is dominant in the steady-state as

shown in Fig. 7-13; the amplitude of the mode of wavenumber 2 is greater than

that of the mode of wavenumber p,. We observe that there is a little nonlinear

excitation of the linearly stable modes since they are present, though in a very small

amount in the steady-state profile (in this case we speak of the mode of wavenumber

8c).

7.3.2 Multiplicity of Steady Ribbed States

In the previous section we observed how difficult (impossible) it was to obtain a one-

rib steady-state for A = 2 A, Ca = .5 and D = 200, and the ease with which a

two-rib geometry was obtained. The obvious question should arise, is it possible to

obtain a two-rib steady-state in a domain (or "box" size) with A = A,? This would
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indicate if multiple steady-states are possible or if the solution we obtain for At/2, by

artificially excluding the wavenumber /c, suffers from a sub-harmonic instability to the

disturbances of wavenumber /c. We concentrate, mostly due to lack of computational

resources, on studying the case mentioned above for Ca = .5. Following the same

sequence used above to obtain a two-rib steady-state we observed the following:

1. Starting with the two-dimensional (infinitesimally) perturbed steady state, now

with a two-rib initial disturbance (each rib of wavelength A,/2), the geometry

does not always evolve into a two-rib steady-state (depending on the magnitude

of the initial disturbance) but in most cases reaches the one-rib steady-state

shown in Fig. 7-15 for A = A,.

2. When a steady ribbed state at a A - Ac is stretched (compressed) to construct

an initial condition with A = A and is integrated in time, the same one-rib

steady-state for A = Ac shown in Fig. 7-15 is obtained.
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A = Ac/2 = 15 (dashed line). The profile was obtained by replicating the A = A, = 15
geometry and translating it to fit the domain of depth A = 30.

3. If the steady-state for A = A/2 is replicated to construct a finite amplitude

two-rib initial condition in a "box" of A = Ac and integrated in time, a two-rib

steady-state is obtained as shown in Fig. 7-20.

4. If instead, the initial condition is not the exact one-rib steady-state geometry

for A = Ac/2, but rather, the geometry obtained when the free-surface velocity

stopping criterion is satisfied, the same two-rib steady-geometry is obtained as

is the case in Fig. 7-20. In fact, a state far from the steady-state, but far from

the perturbed two-dimensional geometry, proved to be sufficient.

The previous observations indicate that multiple steady ribbed geometries can be

obtained numerically depending on the initial conditions, at least for Ca = .5. This

would seem to indicate that the history of the flow will have an important effect on

the observed ribbed states in physical setups and in addition that it may be possible

to observe differing wavelengths of ribs in a long enough (in the spanwise direction)
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coating apparatus. For more supercritical Ca, multiple steady-states might exist but

as we hint below, they should not be observed for highly supercritical Ca.

7.3.3 Highly Supercritical Steady Ribbed States

We refer to highly supercritical steady ribbed states as those that exhibit great har-

monic content. The great harmonic content is a consequence of the increase in linearly

unstable modes, the nonlinear interaction between modes and of the nonlinear excita-

tion of linearly stable modes by the finite amplitude linearly unstable modes. Figures

7-21, and 7-22 show the steady-state profiles for Ca = 3.16 and Ca = 5, respectively.

We observe that the steady ribbed profiles are steep; Fig.7-14 shows that the

profiles are not monochromatic, many modes of increasing wavenumbers are present

in the steady-state, even a great number of modes that are linearly stable ( > H).

If we investigate the amplitude of the Fourier modes of the profile, we observe that

the spectrum is full as shown in Fig. 7-14, with a continuous decay with increasing

wavenumber with, again, a dominance of the mode corresponding to Pc and the

presence in the steady-state profile of linearly stable modes since we observe finite

amplitude Fourier modes with wavenumber greater than the high wavenumber cutoff

PH < 16 Pc which we determined from Fig. 7-22. The fact that most modes present

have great amplitude is indicative of great nonlinear interaction between modes.

7.3.4 Nonlinear Mode Interaction

For moderately supercritical Ca we observed very little nonlinear interaction between

modes and no excitation of linearly stable modes. As the Ca was increased, a shifting

towards higher wavenumbers was observed, still with very little nonlinear wavenumber

interaction. This resulted in the two crest steady-state profiles that were observed

for A = A for Ca = 1 and Ca = 1.77, which consisted mostly of the modes that

correspond to /c and 2 c. For even more supercritical Ca, the nonlinear interaction

between modes and the nonlinear excitation of linearly stable modes was clearly

observed. We also observed multiple stable steady states for slightly supercritical Ca.
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We conjecture that there are two competing phenomena that determine the three-

dimensional ribbed geometry in the steady-state: the increase in the interval of lin-

early unstable modes [L, PH] and the shifting, within this interval, towards higher

wavenumber of the fastest growing mode, and the increase of the nonlinear interaction

between modes. The phenomena competition results in the following:

1. The rib amplitude for A = Ac will be larger compared to that of smaller A, for

slightly supercritical Ca due to the lack of nonlinear interaction and the fact

that the mode with 3 = 7r/A, is the fastest growing mode.

2. As the Ca is increased, due to the shifting of the fastest growing mode to

higher wavenumbers, the almost negligible increase of the interval of unstable

wavenumbers, and the lack of nonlinear interaction between modes, we should

(and do) observe monochromatic ribs which have a greater amplitude for a

A < A (A = Ac/2 as shown in Figs.7-18 and 7-19).

3. For sufficiently supercritical Ca, nonlinear mode interaction (and nonlinear ex-

citation of linearly stable wavenumbers) should become important. The rib

profiles should exhibit great harmonic content due to the excitation of the lin-

early stable modes. The nonlinear mode interaction should also begin to exhibit

"back-scatter", excitation of lower wavenumber modes by high wavenumber

modes, for sufficiently great Ca.

4. With sufficient nonlinear interaction between modes, more precisely due to the

increase of cross-excitation between high and low-wavenumber modes, the total

rib amplitude for A = A should again be greater than that of ribs of A < A,.

The nonlinear interaction should overcome the shifting of the most unstable

wavenumber. The above mentioned crossover is observed for Ca = 3.16 in

Fig. 7-21, for which the rib amplitude for A = A/2 = 15 is almost equal to that

of A = A = 30.

5. The crossover is confirmed in Fig. 7-22 which shows that the amplitude for

A = A = 30 is again greater than that the amplitude for A < 30.
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6. For Ca beyond the crossover, we believe that the ribs for A slightly larger than

Ac should be of greater amplitude and steeper than those observed in Fig. 7-22

due to the high harmonic content and nonlinear interaction between modes.

7. We observed that the steady state for Ca = .5 and Ac/2 was stable and does

not exhibit a sub-harmonic instability (to disturbances of wavenumber Lc). We

believe that this is due to the limited non-linear interaction between the different

modes. This indicates that for slightly supercritical Ca, multiple steady-states

can be attained. On the other hand highly supercritical Ca, should not exhibit

multiple steady states due to the great nonlinear interaction between modes.

The nonlinear interaction should give rise to sub-harmonic instabilities, thus

only allowing for one possible steady state.

8. The mode corresponding to P = P,3/2 is linearly stable for moderately super-

critical Ca. This mode will eventually become unstable for sufficiently large

Ca. Before this Ca is reached we believe that through nonlinear excitation

from the mode of wavenumber = /,, the mode of j3 = Pc/2 will be present

in the steady-state geometry similar to what occurs to the linearly stable high

wavenumber modes that exhibit finite amplitudes in the steady states.

7.3.5 The Limit A -+ oo and End Effects

We have observed differing steady-state geometries as a function of the Ca, the span-

wise periodicity A, and the number of ribs present in this "box". We have artificially

filtered low-wavenumber modes and not included end effects by imposing (numeri-

cally) a spanwise periodicity A. When we considered a spanwise periodicity greater

than At, say A = 2 A, we observed the effects of the low wavenumber cutoff predicted

by linear-stability. We attempt in this section to answer the following questions: what

wavelength of ribbing is observed in a real coating apparatus? and what, if any, role

does finite roll length play in the wavelength selection process?

For slightly supercritical Ca, more specifically Ca = .5, we have shown the exis-

tence of multiple stable steady-states, though in order to find the lower-wavelength
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state, we required a non-physical procedure (non-inclusion of low-wavenumbers in

order to initialize the flow field). This leads us to hazard that two (or possibly more)

types of flow geometries could be observed in the steady-state:

1. Starting from a rib free flow field, that is Ca < Cac, if the speed of the rollers

is increased gradually, we should observe the onset of ribbing with the critical

wavenumber pc and should result in ribs of wavelength A, (that is for an infinitely

long roller pair). Since the increase in the speed of the rollers is only gradual,

the geometries observed should resemble those observed in the main bifurcation

for A = A,. If the end of the rollers serve as barriers to the spanwise flow, that

is, flow cannot flow off the rollers, the flow will try to accommodate an integer

number of ribs (the ribs near the roller ends will be slightly distorted as reported

by Coyle et al[14]). This will force a rib wavelength near A, but not necessarily

equal to A,. End effects thus play a secondary role in this case.

2. If on the other hand, the increase of the speed of the rollers (Ca) is per-

formed drastically, the resulting initial condition will be sufficiently different

from the steady-state and enough disturbances will be present in the flow, that

the smaller wavelength steady-states (what we termed two-rib) could be ob-

served, at least over some of the extent of the rollers. In addition, the lower

wavelength is already observed for Ca = 1 and 1.77 since the ribbed states for

this set of parameters exhibits two-crests of differing amplitude.

3. If the speed of the rollers is decreased slowly from a value that exhibits a ribbed

flow field (but only slightly supercritical), to another supercritical Ca, the wave-

length should not change dramatically if the rollers have end-stops. If on the

other hand fluid is not restricted from flowing in the spanwise direction, the

wavelength should increase slowly following the increase in the fastest growing

wavelength with decreasing Ca determined from linear stability analysis.

4. The local stability of the steady-state flow geometries lead us to believe that the

different family of solutions can be accurately tracked. This indicates that if a
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two-rib geometry is obtained and the speed of the rollers is decreased gradually,

the two-rib geometry should still be observed (if the corresponding mode is still

linearly unstable).

We conjecture that when considering domains of great extent, A > Ac, depending on

the history of the flow geometry, multiple steady states can be observed, not necessar-

ily occupying the complete domain, but possibly coexisting side by side. This should

possible since the differences between the flow fields and the free-surface geometries

are not great. The length of the rollers will play a weak role in determining the

overall wavelength of the ribbing, decreasing in importance with increasing length of

the rollers.

7.3.6 Transition Region and Leveling of Ribs: Revisited

The transition region length was determined for some of the ribbed geometries pre-

sented above and was observed to be of order one with similar wavenumber depen-

dence to that observed in Table 7.1.

Following procedures similar to those used to construct Fig. 7-10, we collect in

Fig. 7-23 the quantity Lt/ (Ca fIv) for some of the ribbed geometries obtained. The

quantity L1/ (Ca fIv) should now only be a function of Fourier mode film wavenumber

/fiv = 2r fIv m/A, as confirmed in Fig. 7-23. We note that there is very good agree-

ment with the predictions of Eq. 3.7, save at very low wavenumbers. We conjecture,

but do not yet have conclusive evidence, that the latter is due to either poor signal

to noise ratio (since the decay rates are very small) or outflow effects.
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Chapter 8

Conclusions

We have proposed a framework for understanding the formation, evolution, and spa-

tial persistence of ribbing in symmetric forward roll coating,. and have presented

companion justificatory, quantifying parallel spectral element simulations of the full

unsteady three-dimensional nonlinear free-surface fluid flow problem. The simulations

corroborate all aspects of the proposed model, both as regard qualitative structure

(the meniscus, transition, leveling, and leveled regions), and quantitative measures

(initial growth given by y, approach to the steady state, transition region length Lt

and the length scale associated with leveling LI).

The relationship between downstream rib amplitude and the flow parameters is

complex. As Ca increases, the meniscus region rib amplitude and harmonic content

increase. For mildly supercritical Ca, the meniscus rib profiles (and thus the down-

stream rib profiles) are monochromatic while the ribs for highly supercritical Ca

exhibit great harmonic content. In addition, linear stability results indicate that the

dangerous wavenumber range, [L (Ca), H(Ca)], grows to include higher wavenum-

bers - in particular, the wavenumber for the fastest growing mode shifts to greater

values.

We have seen that rib persistence, L, is an increasing function of Ca but a

decreasing function of 3. It is possible (e.g. for particular roller separations, D)

that certain supercritical - high-velocity - operating conditions will yield viable

product, that is, coatings with no significant ribbing on the downstream webs. Proper
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understanding of the instability-leveling competition, and of the process of wavelength

selection, could suggest such operating conditions. For example, we observed that for

moderately supercritical Ca (Ca 1), the dominant wavenumber of the steady state

profile did not correspond to Pc but rather to 2 c. In addition, we presented results

of states for which linearly unstable low wavenumber modes are not present in the

steady state. Selecting such operating conditions would result in ribs that persist less

(faster decay as the ribs move downstream), say, than a slightly lower Ca for which

the wavenumber content of the rib profile exhibited dominance of lower wavenumbers.

Such operating conditions would be useful when a tolerance on the amplitude of the

ribs on the downstream webs is specified at a given downstream location since the

amplitude of the downstream ribs at a particular downstream location is a function of

Ca, the wavenumber content of the ribs, and the amplitude of the ribs in the meniscus

region.

Finally, the coupling of meniscus instability with the downstream appearance of

ribs also suggests various near-meniscus strategies, such as the nylon-string prophylac-

tic of Hasegawa and Sorimachi[33] or any other knife or blade coating equivalent[52].

8.1 Guidelines for Future Work

Future work should address certain shortcomings of our computational methods such

as:

1. The explicit free-surface update, in order to decrease computational costs. Im-

plicit methods for the treatment of the kinematic condition could be considered.

Mixed methods such as extensions to three-dimensions of the two-dimensional

methods used could provide for an increase in time-step size without a great

increase in problem size.

2. The overly intrusive outflow boundary condition, in order to be able to more

precisely quantify leveling.

134



3. The restrictive remeshing procedures, in order to study the evolution from one

three-dimensional steady-state to another during which the meniscus geome-

try deforms even more. We observed during some of the transients re-entrant

geometries for which our remeshing techniques failed. Elliptical domain decom-

position techniques[67, 9, 7], could allow for automatic remeshing of re-entrant

geometries. The use of such techniques would also require efficient algorithms

for the mapping of the old field quantities onto the new mesh.

From the physical standpoint, several unresolved issues stand out:

1. We have shown that experimental measurements such as those performed by

Hasegawa and Sorimachi[33] are, perforce, inaccurate since they assume a spe-

cific rib profile. In addition, when such measurements are reported, the down-

stream location of where the profile was measured must be included since with-

out this information the data is almost useless.

2. We showed that history effects are important as is the case for nonlinear systems

that can exhibit hysteresis [44]. A more thorough investigation of the nonlinear

evolution between three-dimensional ribbed states and better understanding of

the process of wavenumber selection in finite spanwise domains, say several

multiples of Ac[3], could provide insight into the selection of useful operation

conditions that could otherwise not be observed.

3. The influence of non-Newtonian effects on the meniscus instability coupled with

rib leveling.

4. The determination of the necessary conditions for the appearance of re-entrant

ribs in symmetric forward-roll coating. We suggest in Chapter 5 that re-entrant

ribs might arise without non-Newtonian effects even in the range of Ca that we

consider, but due to the limitations of our remeshing procedures we could no de-

termine if this is the case. In addition, the physics of the growth of the reentrant

ribs could be too slow for our stopping criterion and thus this, too, might need

revision. Re-entrant ribs are readily observed for other coating techniques[27]
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thus their study in forward-roll coating might benefit from knowledge gathered

in other geometries. Re-entrant geometries are characteristic of other types of

defects observed in higher speed coating procedures.
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