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ABSTRACT

This study develops a methodology to evaluate the safety of foundations against
liquefaction, taking into account (1) the fraction of liquefied area to total area and its
variability, (2) the spatial variation of liquefied area, and (3) the vulnerability of the
foundation.

The variability in the fraction of liquefied area depends on many unknown
parameters. The spatial variation of liquefied area is also complicated and hard to obtain
deterministically. Therefore, we describe the spatial pattern of liquefaction/non-
liquefaction through a binary (0-1) random field. Two random field models are
considered: (1) a spatially continuous model, and (2) a spatially discrete model. Since the
vulnerability of foundations to liquefaction varies from foundation to foundation, it is
difficult to obtain analytical solutions concerning the safety of foundations. Thus, we
rely on numerical simulation. Failure or survival in each simulation is determined by the
spatial pattern of liquefied area and the failure criterion of the foundation. By iterating
this procedure a number of times, we evaluate the safety of the foundation against
liquefaction.

Four one-dimensional cases (two different types of foundations and two different
criteria for each foundation) are considered. Generation to two dimensions is also
discussed.

Thesis Supervisor: Dr. Daniele Veneziano

Title: Professor of Civil and Environmental Engineering
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CHAPTER I. INTRODUCTION

Since the 1969 Niigata earthquake, an event which caused catastrophic failures of

buildings and bridges and the consequent loss of lives due to liquefaction, a great deal of

effort has been devoted to understanding the mechanism of liquefaction and to evaluating

liquefaction susceptibility. Several approaches have been established to deal with

common engineering problems. However, since the research completed so far has

focused mainly on liquefaction susceptibility at a single point in the ground, we cannot

directly predict a failure or survival of laterally extended foundations using the research

results. The safety of large foundation systems depends on the two or three-dimensional

distribution of liquefied portions in a soil deposit. The engineer's goal is to determine

whether a planned structure' is safe or not and to evaluate its safety in terms of

probability. In this sense, the engineer's demand has not been satisfied completely.

Liquefaction is affected by a number of factors, such as characteristics of the

ground (e.g. soil properties, water table), and characteristics of earthquake (e.g. duration

of shaking, peak ground acceleration). It is obvious that these factors vary horizontally

and with depth. The safety of laterally extended foundations, in general, depends on:

1) the fraction of liquefied area and its variability

2) the spatial variation of liquefied area

3) the vulnerability of foundations

This research examines these factors and proposes a methodology to evaluate the safety

of foundations in terms of probability.

The fraction of liquefied area is generally uncertain. Since characteristics of

ground and earthquake are also uncertain and few data have been collected in terms of

1 The ground beneath it is subjected to liquefaction.
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liquefied area in actual earthquakes, it is hard to specify the fraction of liquefied area and

its variability. We cannot but count on engineering judgments at present.

Sounding data at a given site are usually very limited and knowledge concerning

the spatial variability of ground and earthquake characteristics is uncertain. In addition,

the failure criteria of foundations differ from foundation to foundation. Therefore, we

cannot avoid resorting to numerical simulation treating these uncertain factors as random

variables.

We need to know the spatial distribution of liquefied area in order to judge

whether a foundation will fail or survive. To describe the spatial pattern of

liquefaction/non-liquefaction, we consider a binary random field, either 1 (liquefaction)

or 0 (non-liquefaction), using a spatially correlated binary function. Two random field

models are employed: (1) a spatially continuous model and (2) a spatially discrete model.

The former model generates the safety margin2 in space for a given fraction of liquefied

area3. A negative safety margin indicates the occurrence of liquefaction, whereas a

positive safety margin means the non-occurrence. The stability of the foundation is

judged in each simulation of safety margin considering the simulated distribution of

liquefied area and the failure criteria applicable to the foundation. A number of

simulation trials enable us to obtain the conditional failure probability of the foundation

given a fraction. In the case when the fraction of liquefied area is uncertain, the failure

probability is calculated from the conditional probabilities of all the possible fractions

and their probability density. In this model, the spatial dependence in the safety margin is

taken into account in the form of a correlation distance. As an alternative, a spatially

discrete (autoregressive) model is used to directly represent the spatial distribution of

2 (Safety Margin) = (Soil Resistance) - (Earthquake Load)
3 (Fraction of the liquefied area) = (Area of the liquefied region)/(Total area of the site)
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liquefaction. A set of autoregressive coefficients express the degree of spatial

dependence. The basic procedure for evaluating the failure probability is the same as that

mentioned for the spatially continuous model.

To summarize, the main point of this research is to establish a methodology to

evaluate the safety of foundations against liquefaction. A discussion about model input

parameters, such as the fraction of liquefied area and autoregressive coefficients, are

found in other research (e.g. Liao (1986)).

The thesis is organized as follows.

Chapter II presents a brief review of previous studies regarding the methods of

liquefaction evaluation. The deterministic methods, and the probabilistic and statistical

methods are reviewed.

In Chapter III, the problem considered in this study is described and a general

approach is presented. Foundations are classified according to shape and size, and

criteria for evaluating their stability are given. A large footing, such as the foundation of

an oil tank, and scattered footings of building foundations are examples of different types.

The vertical extent of liquefaction will occasionally be a problem in deep foundations,

especially for structures supported by piles.

Chapter IV considers the liquefaction evaluation before discussing the spatial

distribution of liquefied area. We introduce the fraction of liquefied area to total area.

This quantity is used as a basis in simulating the spatial distribution of liquefied area. In

addition, its variability and influential factors are briefly discussed.

Chapter V describes a methodology to evaluate the probability of foundation

failure. Two alternative random models are employed: (1) the spatially continuous model

and (2) the spatially discrete model, so that we simulate the spatial distribution of

liquefied area, taking into account the correlation and uncertainties in soil resistance and

12



earthquake load. In the spatially continuous model, we introduce the concept of a safety

margin. From the simulation of safety margins, a possible distribution pattern of

liquefaction is obtained. Alternatively, the spatially discrete model generates a possible

distribution pattern for a given fraction of liquefied area and a given set of autoregressive

coefficients. A number of simulations of distribution pattern give the conditional failure

probability given the fraction of liquefied area. The probability of foundation failure is

calculated based on the conditional failure probability and the uncertainty of the fraction.

Chapter VI deals with some simplified but important problems to illustrate the

proposed methodology. For a one-dimensional problem, the safety of two types of

foundations, i.e. a single large foundation mat and a foundation made up of several

scattered footings, is studied through numerical simulation. As for two-dimensional

problems, simulations of the spatial distribution of liquefaction are presented. The results

of simulations are examined and a comparison of the two models is made.

Conclusions and recommendations for future work are stated in Chapter VIII.

13



CHAPTER II. REVIEW OF STUDIES ON LIQUEFACTION EVALUATION

2.1 Overview

Figure 2.1 presents the currently available methods of liquefaction evaluation.

They are classified into two groups: 1) the deterministic methods and 2) the probabilistic

and statistical methods. The deterministic methods either determine the occurrence of

liquefaction or give an answer in the form of a safety factor, while the probabilistic and

statistical methods take into account a variety of uncertainties in the following areas:

1) magnitude and location of earthquakes

2) acceleration and duration of ground shaking

3) basic physical models of soil liquefaction

4) soil resistance parameters input to the model

They give an evaluation of the liquefaction susceptibility in terms of probability.

Moreover, the deterministic methods are grouped into (1) the simplified methods

and (2) the detailed methods. The simplified methods are based mainly on widely

collected liquefaction/non-liquefaction records in past earthquakes and a number of

laboratory tests. They construct the boundary between liquefaction and non-liquefaction,

focusing on the critical characteristics of ground (e.g. soil properties, water table) and/or

of earthquake (e.g. peak ground acceleration, duration of shaking). Four approaches are

grouped in the simplified methods depending on which parameters are chosen (see Figure

2.1). On the other hand, the detailed methods deal with the theoretical behavior of soil

subjected to shaking. Constitutive laws' and models expressing the buildup of pore-

water pressure are employed to compute the soil behavior. Four approaches are presented

depending on the interpretation of stress (total stress or effective stress) and drained or

1 Relationships between the stress and the strain of soil
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undrained conditions.

The probabilistic methods deal with the conditional probability of liquefaction,

given that an earthquake of specified location and magnitude or a ground shaking with

specified acceleration and duration occurs. They involve the use of deterministic models

to analyze for liquefaction at a site, estimating the inherent uncertainties in the

characteristics of ground and earthquake. The statistical methods deal with how to draw

the best boundary separating field observations of liquefaction and non-liquefaction

records. The objective of the statistical methods is to extract useful information from

data in terms of probability.

Each method of liquefaction evaluation mentioned above will be briefly discussed

next.

2.2 Deterministic Methods

Simplified Methods

Simple geotechnical criterion

Kuwano (1992) evaluated liquefaction susceptibility at a given site using the grain

size characteristics or fine content. The critical N-value method, in which the N-value is

related to depth or maximum ground acceleration on the basis of several liquefaction

records, is also one of the simplest criteria. Because of their low accuracy, these

methods are commonly used only in a primary evaluation stage to determine whether or

not a layer will be susceptible to liquefaction. Thus, more detailed evaluation methods

need to be used in actual design projects.

15



Stress-based approach

A number of field observation data form a basis for establishing empirical

correlation relating the occurrence and non-occurrence of liquefaction. This approach is

basically the comparison of the soil resistance to the intensity of ground motion. The

former is represented by a function of the N-value which is based on field experience

during actual earthquakes and a number of laboratory tests, and the latter is the ratio of

the average peak shear stress to the initial vertical effective stress. The ratio between

such resistance and load variables is called the liquefaction resistance factor FL. The

effects caused by (1) the irregularity of earthquake motion, (2) the duration of the ground

shaking corresponding to the magnitude of the earthquake, and (3) the prevailing period

of the earthquake are taken into account by correction coefficients in order to simplify the

model. This approach can be traced back to Seed and Idriss (1971). Many researchers

have improved their original criterion as more data have become available and as the

interpretations of the data have been refined. The criteria proposed by Iwasaki and

Tatsuoka (1978), Tokimatsu and Yoshimi (1983), and Seed et al. (1985) are this type and

are widely used in practice. Iwasaki and Tatsuoka added medium grain size D5o as an

explanatory variable in the resistance term to the Seed and Idriss model (1971), and they

also modified the correlation factors based on their laboratory tests. Tokimatsu and

Yoshimi employed fine content (FC) in place of medium grain size. Seed and Idriss

revised the measured SPT N-value and introduced another coefficient in the resistance

term to modify the earthquake magnitude.

This approach has two problems in the evaluation of model input parameters:

(1) the uncertainty2 in measured N-value and (2) the difficulties of performing enough

2 It is a widely known fact that the measurement of SPT N-value depends greatly on who measures it and
how it is measured.
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number of SPT and grading test regarding cost and time in actual projects. To overcome

them, the shear wave velocity by means of the Spectrum-Analysis-of-Surface-Wave

(SASW) method has been utilized. Since the SASW method is less dependent on the

tester than the SPT and does not require bore holes, it is feasible in the field due to its low

cost. It is also well-suited for hard-to-sample materials. There are two liquefaction

assessment methods based on the shear wave velocity. The first one was proposed by

Stokoe and et al. (1988). They evaluated the relationship between the shear wave

velocity of the liquefiable layer and the peak ground surface acceleration causing initial

liquefaction. The other method uses the stress-based criteria by converting the shear

wave velocity into the equivalent N-value (Takaya et al., 1991). In this method, the

critical shear wave velocity, which gives FL=1, is compared with the measured shear

wave velocity in the field in order to evaluate the liquefaction potential. In other words,

liquefaction is assumed to occur when Vs < Vscruical. Both methods show good

agreement with previous research and with past liquefaction records. Another advantage

is that we can construct the liquefaction potential map easily by means of the SASW

method (Takaya et al., 1991).

The Cone Penetration Test (CPT) is also considered as a simpler and faster

sounding method than SPT. Robertson(1986), Tanisawa and et al. (1988) investigated

the relationship between the cyclic stress ratio (Seed and Idriss, 1985) and cone

resistance.

Although the FL value can give a liquefaction potential at an arbitrary point in a

soil column, it does not indicate the spatial extent and degree of liquefaction severity,

which are very important characteristics when dealing with spatially extended or

distributed structures. Iwasaki et al. (1982) quantified its severity by the liquefaction

potential index PL expressed as:

17



20

PL = ( I - FL) ( 10 - 0. Sz) dz (2.1)
0

where z: depth (m)

The liquefaction potential of a site is classified as no liquefaction (PL = 0), minor

liquefaction ( < PL 5 ), moderate liquefaction (5 < PL 15 ), or major

liquefaction (15 PL), respectively. Kishimoto (1989) and Ohtomo (1990) constructed

the fragility curve, which gives probability of each degree of the liquefaction severity

against peak ground acceleration, using this index.

Strain-based approach

Since the stress-based approach is concerned with the occurrence of initial

liquefaction, it cannot predict the soil behavior subsequent to initial liquefaction. The

strain-based approach, in which the liquefaction parameters include the strain amplitude

and the number of cycles, encompasses the liquefaction process completely. Talagnov

(1992) performed the cyclic strain tests, and concluded that the process of liquefaction

develops even after the initial liquefaction and, in that phase, the pore-water pressure has

a tendency of transforming from cyclic to a constant, while the shear resistance of the soil

tends toward a complete reduction. No model for analysis has yet been developed at this

stage.

Energy-based approach

This approach is relatively new. The stress-based approach does not give accurate

answers because:

1) the cyclic stress ratio depends on the type of loading and the correction

coefficients for irregular loading contains a certain degree of error

18



2) it does not directly deal with the ratio of the pore-water pressure to the effective

overburden stress

The energy-based approach will serve as a general and rational alternative to the stress-

based approach. The procedure uses a nearly unique relation between the pore-water

pressure and the absorbed energy, which meets the basic mechanism of liquefaction.

Two studies should be mentioned. One is an experimental approach studied by Kagawa

(1988). The other is a theoretical approach done by Igarashi (1992).

Kagawa (1988) established two relationships based on laboratory tests and past

liquefaction records: 1) a relationship between pore-water pressure and normalized

energy, and 2) a relationship between maximum ground acceleration and normalized

energy. Once a design earthquake is given, the liquefaction potential can be estimated by

using one of these relationships.

Igarashi (1992) expressed the factor of safety against liquefaction as the ratio of

the energy accumulated in the pore-water to the work (the elastic strain energy)3 done to

the pore-water by the ground motion during an earthquake. In calculating the latter one,

he adopted the dislocation energy concept. Compared to the other method, his approach

is so theoretical that it requires detailed information about ground motions, such as the

RMS velocity and RMS acceleration of the earthquake, the strong motion duration, and

the bandwidth index of the ground velocity. Judging from the rapid progress of

experiment and observation apparatus, this method may come to be used as widely as the

existing stress-based methods.

3 The elastic strain density at pressure p can be E - 2 n C p , where n is the porosity and C is the

compressibility of the pore-water.
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Detailed Methods

The most important mechanism leading to liquefaction is the increment of pore-

water pressure. In detailed evaluation methods, the pore-water pressure during

earthquake motion is directly evaluated using numerical procedures. Four kinds of

methods are listed in Figure 2.1. Roughly speaking, the analysis consists of two steps.

Step-1 Dynamic analysis to compute time histories of stress and/or strain within

a soil mass.

Step-2 Computation of generation or dissipation of pore-water pressures

In D-1) and D-2) in Figure 2.1, these two steps are carried out separately, while they are

performed simultaneously in D-3) and D-4) by taking the change of the pore-water

pressure during cyclic loading into the stress-strain relationship (constitutive laws). This

means that the effective stress analysis is superior to the total stress analysis in theory,

and it also yields the deformation during the motion. However, there are two drawbacks

in effective stress analysis:

1) the computer code tends to be very complicated

2) sophisticated engineering judgment is often necessary in defining the required

material constitutive parameters from experiments

By contrast, the total stress analysis is easy to perform and can be interpreted in the same

way with the stress-based FL type analysis. At present, it is considered appropriate to use

total stress analysis as a primary method and to use effective stress analysis if more detail

evaluations are needed.

Many researchers have worked on improving the effective stress method. Prevost

(1981) developed the finite element code called "DYNAFLOW" and Abe (1992)

developed a code called "EFFECTD" for two- or three-dimensional problems by

combining available constitutive models. Prevost (1992) also compared the numerical
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results obtained by his code to experimental results, which confirms the validity of his

approach. Incidentally, "SHAKE", "FLUSH" and "MASH" are often used for the total

stress method, while "DESRA", "APOLLO" and "YUSA-YUSA" are used for the

effective stress method. Each code has merits and limitations. Currently, none is

universally accepted . Further development may be expected in the near future. For

example, Oka (1988) proposed an elasto-plastic model for sand, and an elasto-

viscoplastic model for natural soft clay as a constitutive law in terms of shear

deformation. Canou (1992) proposed the concept of collapse surface in ( q, , e )

space, where static liquefaction is initiated.

2.3 Probabilistic and Statistical Methods

While the deterministic methods predict whether or not liquefaction will occur,

probabilistic and statistical methods can assess liquefaction risk, which is the information

needed for making decisions under uncertainty. Halder (1979) applied a first-order

second-moment (FOSM) method to a deterministic method proposed by Seed and Idriss

(1971). A more sophisticated approach was presented by Fardis and Veneziano (1982) to

include the effects of pore-water pressure diffusion and soil stiffness reduction, and

variation of soil properties within a stratum. Chameau (1983) proposed probabilistic

analyses based on pore-water pressure generation models that is combined with a

stochastic description of the earthquake motion. The accumulation of pore-water

pressure is calculated using a nonlinear formulation. In either approach, distributions of

load and resistance parameters are modeled as a certain distribution form in estimating

the conditional probability of liquefaction.
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Statistical methods deal with the extraction of information from past

liquefaction/nonliquefaction records. Christian (1975), and Davis and Berrill (1982) used

a method of statistical classification known as the linear discriminate analysis. Yegian

and Whitman (1978) found the line that best separates liquefaction from non-liquefaction

points by minimizing the sum of squared distances to the misclassified points. Liao

(1986) used a method of statistical binary regression rather than classification to quantify

the probability of liquefaction as a function of given parameters. This approach is

illustrated here because it will be used later in this research. Liao developed statistical

models to express the probability of liquefaction as a function of earthquake load and soil

resistance parameters. Results were obtained based on 278 cases of historic data catalog

concerning liquefaction/nonliquefaction occurrences. A method of binary regression,

called logistic regression, was used to derive two types of models for use in the

assessment of liquefaction probability. One of them, called the "local model," uses the

cyclic stress ratio as the earthquake load parameter. Liao obtained the following

equations :

PLL 1 / (1 + exp(-QL)} (2.2)

where PLI, : conditional probability of liquefaction given CSRN and (NJ )60

QL = 10. 167 + 4.1933 In (CSRN) - 0. 24375(NI )60 (no differentiation between

clean and silty sand) (2.3)

QL - 16.447 + 6.46031n(CSRN) - 0.39760(N) 60 (clean sand FC<12%) (2.4)

QL = 6.4831 + 26854 ln(CSRN)- 0. 18190(N) 60 (silty sand FC>12%) (2.5)

CSRN : normalized cyclic stress ratio

(N,) 60 : corrected SPT resistance
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The other, so called "source model," uses explicit functions of earthquake magnitude and

distance as load parameters. In this case, PLIQL is the same as the above, with QL given

by:

QL = -12.922 + 0.87213 ln(AEp) - 0.21056(NI ) 6

where

(2.6)

(2.7)QL = -15.143+ 1.08371n(A, ) - 0.22656(N) 60

A A ,H : earthquake-load functions

Jol 0.SM
A ,B = (RB )2 ()1.5 AHY

10.SM

(RHY) (O
(2.8)

M : Richter magnitude

av : effective vertical stress (kg / cm 2 )

RE : epicentral distance (km)

Rm, : hypocentral distance (km)

An advantage of this method is that the probability distribution of soil resistance

parameter (i.e. (N,)60) and earthquake load parameters (e.g. CSRN) do not need to be

estimated. That is, the conditional probability for a given soil resistance parameter and

earthquake parameters is directly evaluated.
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CHAPTER III. PROBLEM DEFINITION AND GENERAL APPROACH

3.1 Problem Definition

It is clear that the size and shape of liquefied areas vary in the horizontal

geographical plane and in depth. Sometimes large isolated liquefied areas are observed,

while in others many small liquefied regions may be seen. Even if one knows the mean

value of the soil resistance to liquefaction and the earthquake load at a site so that the

fraction of liquefied area to total area can be somehow evaluated, the spatial distribution

of liquefied area will still vary in a manner which is hard to predict. The spatial

distribution of liquefied area greatly depends on the horizontal and vertical correlation in

soil resistance such as soil properties and water table, and in earthquake load such as the

magnitude and peak ground acceleration. Although it is extremely hard to reveal their

correlation structures accurately, predicting the distribution of liquefied region is

crucially important to evaluate the safety of laterally extended foundations that are

constructed on the liquefiable ground.

Moreover, the safety of foundations is concerned with the criterion applied to the

foundation regarding its stability. A big foundation, such as the foundation of an oil tank,

may have a criterion totally different from that of small foundations such as footings of a

building. In the former foundation, the size of liquefied region beneath the foundation

may be a problem, while the location of liquefied region may be critical in the latter.

Therefore, the safety of foundations has to be examined in association with the type of

foundation and their vulnerability as a function of the spatial and vertical pattern of

liquefaction, which is discussed in this chapter. The following three types in Table 3.1

are considered.
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Table 3.1 Types of Foundation and the Liquefied Region

Type Main concern Structures

Type-A Extent of liquefied region a tank foundation,

an underground pipeline

Type-B Location of liquefied region footings of building and bridges

towers of power cables

Type-C Vertical extent of liquefied layer an offshore platform supported

by piles

Figures 3.1 and 3.2 are provided as references regarding the distribution pattern of

liquefaction and the possible failure mode of each structure.

Type-A

The foundations belonging to Type-A lose their stability when the liquefied

region beneath the foundation is larger than the area necessary to support the structure.

The size of the liquefied region is of primary concern. The failure probability Pf can be

expressed as:

P = P [ AL > A,, I (3.1)

where AL : area of liquefied region

A, : area of non-liquefied ground needed to support the

superstructure.

In general, the degree of damage will depend on the size of liquefied region.
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Type-B

A building is usually supported by many footings, which are connected to

columns. Often, the area of each footing is not large. However, liquefaction under any

footing may result in serious damage or even collapse of the structure. In this case, we

must be concerned with the location of liquefied region rather than the extent of such

region. The failure probability is as follows:

Pf = P[ A, C AL] (3.2)

where Af : location of non-damage footings needed to support the

superstructure

AL : location of liquefied region

Note that " A C B" denotes A encompasses B.

Tvpe-C

Up to now, we have considered the lateral extent of liquefaction. Indeed for

shallow foundations, the thickness of the liquefied layer is of secondary importance.

However, such thickness may greatly affect the stability of deep foundations. Consider,

for example, an offshore platform supported by piles. If liquefaction with a certain

thickness occurs, we cannot count on the lateral resistance provided by the liquefied soil.

This situation may cause failure of the piles and excessive lateral deformation because of

the increased free length of the piles above the embedded part. In foundations of Type-C,

the thickness of the liquefied layer affects the behavior of the foundation in terms of its

stability. Hence,

Pf = P [ LL > L ] (3.3)
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where L : thickness of liquefied layer

LN : length to be embedded into the ground needed to support the

superstructure

The above classification is very schematic. The safety of actual foundations engineers

deal with is controlled by many factors. One may sometimes encounter a situation where

controlling factors need to be combined. In reality, both lateral and vertical extent may

be important.

3.2 General Approach

Type-A and Type-B foundations are sensitive to the horizontal distribution pattern

of liquefied area, while Type-C is concerned mainly with the vertical extent. In this

research, the safety of Type-A and Type-B foundations is studied, and that of Type-C

foundation will remain a future task. Thus, our goal is to estimate the spatial distribution

pattern of liquefied area in terms of its extent and location, and to evaluate the safety of

foundations in terms of probability.

Figure 3.3 shows the general approach employed here, which consists of five

steps. Each step is briefly described.

Step-I

Liquefaction depends on many characteristics of ground such as soil strength, soil

type, grain size, age, water table. It is necessary to choose the most critical property of

ground among the available sounding data. N-value is widely used in the evaluation

methods of liquefaction, and superior to other parameters with respect to availability. In

order to mathematically characterize a given ground, the distribution of soil properties as

well as their correlation needs to be investigated.

28



Step-HII

As parameters of earthquake loads, either M and R in the source model or PGA

and duration of shaking in the local model may be utilized. The choice of parameters

depends on the method used to evaluate the liquefaction susceptibility. PGA, for

example, will be used if the possibility of occurrence is estimated by the Seed-Idriss

model (1985). It is possible to combine them, that is, we can evaluate the probability of

liquefaction based on the PGA that is obtained from M and R by using an attenuation

equation. In this research, the local model is employed. The variability in PGA should

be taken into consideration similarly in Step I.

Step-III

Before considering the spatial distribution pattern of liquefied area, we need to

specify the fraction of liquefied area, which is used later. It may be estimated by

assessing uncertainty in influential factors to liquefaction or statistical analysis of damage

reports (observed data) recorded in the past earthquakes. However, since characteristics

of ground and earthquake differ from earthquake to earthquake, and most of the reports

have not stated the liquefied area accurately due to the difficulty in its survey, we cannot

utilize these means. Therefore, we estimate the expected value.of the fraction based on

results in Liao (1986), and we determine some mathematical form judgmentally to

express the variability of the fraction in the case when the fraction is uncertain. A

detailed discussion will follow in Chapter V.

Step-IV

The spatial correlation in soil resistance and earthquake load has to be taken into

account in order to simulate the spatial distribution pattern of liquefied area. Two
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alternative random models are employed as mentioned before: (1) the spatially

continuous model and (2) the spatially discrete model.

In the approach based on the spatially continuous model, first, we introduce a

concept of safety margin (SM), which is equal to the soil resistance minus earthquake

load. A negative value of the safety margin means that liquefaction will occur, while a

positive value means that liquefaction will not. We assume that the safety margin is a

Gaussian random field. The ratio of the area where safety margin is smaller than zero to

total area corresponds to the fraction of liquefied area discussed in the previous step. The

simulation of the safety margin is performed on the basis of the spatially continuous

model, in which the correlation is expressed in the form of a correlation distance. The

mean value and the standard deviation of the safety margin are necessary for the

simulation. The mean value is determined in terms of the fraction of liquefied area

obtained in Step-III, and the standard deviation is assumed without loss of generality.

In the spatially discrete model based approach, the occurrence of liquefaction at a

point depends on the fraction of liquefied area and the information at adjacent points

expressed in the form of a binary variable (0: non-liquefaction, 1: liquefaction). The

correlation structure is expressed by the autoregressive coefficients.

Step-V

A single simulation performed in the previous step can only give a possible

distribution pattern of liquefaction, and it cannot be interpreted as a deterministic answer.

Instead, a number of simulation results enable us to obtain a conditional failure

probability given a fraction on liquefied area. That is, in every simulation, we judge

whether the foundation will fail or survive in consideration of the simulation result and

the design criterion applicable to the foundation concerning its stability. By dividing the
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total number of simulation trials by the number of "fail" trials, we can obtain the

conditional failure probability of the foundation for a given fraction. In the case when the

fraction has some variability, we need to perform this simulation for all the fractions to

obtain the failure probability. More details will be presented in Chapter-V.

In summary, the three important factors influencing the failure probability of

foundations are as follows:

1) the fraction of liquefied area and its variability (Step-II)

2) the spatial variation of liquefied area (Step-IV)

3) the vulnerability of foundations (Step-V)

These are combined and taken into account in the proposed methodology. In the next

chapter, we consider the fraction of liquefied area and its variability, which are followed

by a discussion on the other two factors.
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CHAPTER IV. EVALUATION OF THE FRACTION OF LIQUEFIED AREA

As mentioned in the previous chapter, the fraction of liquefied areal must be

examined first before investigating the spatial distribution of liquefied area.

4.1 Definition of the Fraction of Liquefied Area

The fraction of liquefied area, y , is defined as:

Y AL (4.1)

A

where A : area of region around the site with statistically homogeneous soil

properties and statistically homogeneous ground shaking

AL: area of liquefied subregion (= I A, see Figure 4.1)

One of the characteristics of the fraction y is that, for a given region, the fraction y

varies not only with M and R but also from earthquake to earthquake. In addition, the

fraction y varies from site to site for a given earthquake (e.g., a given set of M and R ).

Because of their variability, it would be inappropriate to deal with the fraction y as a

deterministic quantity. Influential factors to the fraction of liquefied area will be

discussed next and then the variability of the fraction y will be examined.

4.2 Influential Factors to the Fraction of Liquefied Area

The liquefaction potential of a soil deposit depends on a combination of soil

properties, geologic factors and characteristics of the earthquake to which the deposit is

subjected. Seed and Idriss (1982) indicate the following as important factors in

1 The fraction of liquefied area is equivalent to the liquefaction probability in the site with statistically
homogeneous soil properties and statistically homogeneous ground shaking.
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evaluating liquefaction potential. The factors with an asterisk are used in the

deterministic methods, either directly or in modified form.

Soil Properties:

Dynamic shear modulus

Damping characteristics

Unit weight*

Grain characteristics* (median grain size, fine content, gravel

content)

Relative density*

Soil structure

Geologic Factors:

Method of soil formation

Seismic history

Geologic history (aging, cementation)

Depth of water table*

Effective confining pressure

Earthquake Characteristics:

Intensity of ground shaking*

Duration of ground shaking*

Yasuda (1988) added some other factors:

Soil Properties:

Plasticity index

Degree of saturation

Geologic Factors:

Anisotropy of stress

Initial shearing stress

Over consolidation ratio

Time of consolidation
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Earthquake Characteristics:

Direction of shaking

Shape of shaking wave

Drain condition

Others:

Degree of disturbance of test specimen

Test equipment

The fact that all of the factors listed above are involved complicates the evaluation of the

liquefaction potential at a site. Some factors have a great impact on the liquefaction

potential, while others do not.

4.3 Expected Fraction of Liquefied Area

It is difficult to predict the fraction y because of the complexity of its dependence

on many unknown factors. Instead, we can estimate the expected fraction of liquefied

area using results in Liao (1986). Liao developed statistical models to express the

probability of liquefaction as a function of soil resistance and earthquake load parameters

on the basis of 278 cases of liquefaction and non-liquefaction occurrences. Four

liquefaction probability models were derived through binary regression analysis. The

probability obtained by these models will be used here as the expected fraction of

liquefied area. The following logistic equation is adopted here (see Figure 4.2).

E [ y E [ = E[ PQL ] + exp(-Q )} (4.2)

QL = 10.167 + 4.1993 In (CSRN) - 0.24375 (N,)60 (4.3)
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where PLl, : conditional liquefaction probability for a given QL that

is a function of CSRN and (N,)60

CSRN: the normalized cyclic stress ratio,

(N, )60: the corrected/normalized blow count

Figure 4.3 shows the relationship between CSRN and the expected fraction y for

different values of the blow count number. In this case, a magnitude M = 7.5, depth

z = 0, and ratio of total stress to effective stress r = 0 are assumed. If soil properties and

earthquake characteristics are different from these, the curves will change.

4.4 Variability of the Fraction of Liquefied Area

Figure 4.3 shows only the expected value of the fraction of liquefied area.

However, the fraction y will display some variability both from site to site and from

earthquake to earthquake around this expected value. Site-to-site variability is due

mainly to the variability of soil properties. For example, the grain size distribution and

the geologic history of the site are not entirely determined by CSRN, (N, )60,,, and the soil

class should be expected to have some residual effect on the fraction y. Earthquake-to-

earthquake variability is due mainly to the variability of the intensity and duration of

ground shaking.

The variability of the fraction of liquefied area could be evaluated in different

ways:

(1) by considering the effect of other influential factors, assessing uncertainty in

the factors, and propagating the uncertainty,

(2) by using historical liquefaction data reported in terms of the fraction y , or

(c) judgmentally.
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Since the effects of all influential factors needed in Approach (1) are not well known and

the historical data required by Approach (2) is also unavailable, here we follow Approach

(3) and express the distribution of y based on engineering judgment. The fraction of

liquefied area must take some value between 0 and 1: y = 0 means that liquefaction will

not occur anywhere in the region and y = 1 indicates that the entire area under

consideration will liquefy. A convenient model to represent uncertainty in y is the Beta

distribution (see Figure 4.4). In terms of the mean value and variance, the density of the

Beta distribution is:

fL(x) - x (I- x)' ( x 1 ) (4.4)
B

where the normalizing constant is:

B = (r- 1)!(t-r- 1)! 
(t-J)!

The mean and variance of the distribution are:

r
mx = - (4.6)

t

2 mx ( - m ) = r (t-r) (4.7)
t+l t2 (t + )

We need to estimate the mean and variance to specify the density of the Beta distribution.

The mean can be determined using results in Liao (1986) as discussed in the previous

section. Also, the variance could be estimated following three approaches mentioned

earlier in this section.
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So far we have considered the variability of the fraction of liquefied area. In order

to evaluate the safety of foundations, we also need to know the spatial variation of the

liquefied area (see Chapter III). A discussion of methods to represent and simulate the

spatial variation of liquefied areas for a given fraction y is given in the next chapter.
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CHAPTER V. SPATIAL DISTRIBUTION OF LIQUEFIED AREA AND

PROBABILITY OF FOUNDATION FAILURE

5.1 General Description

As discussed in Chapter III, in order to evaluate the state of failure or survival of a

foundation, we need to know the spatial distribution of liquefied area. For this purpose,

we introduce an indicator random field Z (x, y), defined as follows:

Z (xy) I{[ 1 : If liquefaction occurs at location (x, Y) (5.1)
( ,i y0: otherwise

One property of the function Z (x, y) is that:

E[ Z(x, y) ] = y PL (5.2)

where y : fraction of liquefied area

PL : liquefaction probability

The liquefaction potential depends on the soil resistance and earthquake load,

both of which have, in general, some degree of spatial correlation. This spatial

correlation should be reflected in spatial dependence for the random field Z (x, y).

The spatial variation of liquefied area for a given value of the fraction y is

represented here by two alternative random models, which we refer to as : (1) the

spatially continuous model, and (2) the spatially discrete model. These models and their

properties are presented first and then their application to the problem of liquefaction risk

is discussed.

In the spatially continuous model, we consider a level-crossing problem of

continuos random function to generate the correlated 0-1 patterns of Z (x, y). We
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introduce the concept of a safety margin, SM, defined as follows:

SM (x, y) = R (x, y)- L(x, y) (5.3)

where SM (x, y) : safety margin at location (x, y)

R (x, y) : measure of soil resistance

L (x, y) : corresponding measure of earthquake load

Here, we assume that a random field SM (x, y) is Gaussian. The indicator random

function Z (x, y) is related to the safety margin SM (x, y) as:

Z (x, y) = 1 wherever SM (x, y) 0
(5.4)

Z (x, y) = 0 wherever SM (x, y) > 0

Figure 5.1 illustrates this relation in a one-dimensional case. Simulation procedures for

the safety margin are discussed in APPENDIX. A detailed description of the spatially

continuous model will follow in Section 5.2.

As an alternative to the spatially continuous model, we can employ a spatially

discrete model, which gives a direct discrete representation of the pattern of liquefaction

or non-liquefaction. Discretizing a given space into a rectangular grid, we assign a value

either 1 (liquefaction) or 0 (non-liquefaction) to each grid point using the autoregressive

model. Figure 5.2 shows the scheme of generating the 0-1 patterns of Z (x, y) in a one-

dimensional problem. A set of autoregressive coefficients, which express the spatial

correlation of liquefaction potential, and the fraction of liquefied area is necessary for the

completion of this model. Section 5.3 describes this model in detail.
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5.2 Spatially Continuous Model

The spatially continuous model is used to represent the spatial variation of the

safety margin which, through its region, gives information concerning the occurrence of

liquefaction.

Generation of the Safety Margin (SM)

Since we assumed that the safety margin is a Gaussian random field, complete

characterization of SM (x, y) requires the following parameters:

1) Mean value

2) Variance (or standard deviation)

3) Correlation function

The zero-crossing set of a safety margin does not depend on the magnitude of the

variance, which acts simply as a scaling factor ( see Figure 5.3). Thus, we assume

without loss of generality that the variance is 1. Accordingly, the mean value mSM must

satisfy:

I - y = ( mSM ) (5.5)

thus,

MSM = '(1- y) (5.6)

where · : the standard normal CDF (see Figure 5.4)

The character of the spatial variation of liquefied and non-liquefied area depends on the

correlation function, which in the case of isotropic variation is a function p (r) 1 of the

separating distance r. Here, we employ the exponential correlation model:

1 Since we already assumed that the variance of the safety margin is equal to one, the correlation function is
equivalent to the covariance function (see Equation (A.8) in APPENDIX).
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p (r) = e-(rlro) (5.7)

where ro : correlation distance

The smaller the correlation distance is, the closer to white noise the simulated safety

margin becomes. Conversely, the greater the distance is, the less fluctuation the

simulated safety margin shows.

Once the fraction y and correlation distance r are given, we can under the above

assumptions simulate the safety margin process. A basic procedure to do so is described

in APPENDIX.

Numerical Simulation for Evaluating the Failure Probability

As mentioned before, the fraction y is often highly uncertain, even for given

values of CSRN and (N,)60. Therefore, the failure probability of the foundation given

CSRN and (N, )60 is expressed as:

P ( CSRN, (N,) 60) = f Ply f( Y CSRN, (N,)60 ) dy (5.8)

where Pflr: conditional probability of the foundation failure given y

fy(Y I CSRN,(NI) 60) : probability density function of the fraction y for a given CSRN

and a given value of the modified blow count number (N,)60

The probability density function fy(y I CSRN, (N,) 60) can be estimated as discussed in

Chapter IV. However, since the vulnerability differs from foundation to foundation2 , it is

impossible to give a general expression for the conditional failure probability Ply . It is

2 Foundations vary in size and shape, and failure criteria depend on the type of structure.
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also typically difficult to obtain analytical results for any given system. Therefore, we

rely on numerical simulation.

The basic procedure for evaluating the probability of foundation failure for a

given y is summarized below.

Step-1 Define f (y CSRN,(N,)60) and correlation distance ro3

Step-2 Discretize fr(Y CSRN,(N,) 60 ) and set y = y ( i= 1,- -- , n) 4

Step-3 Compute the mean value mSM for the given y by Equation (5.6)

Step-4 Generate a safety margin at every point (see APPENDIX)

Step-5 Assign liquefaction or non-liquefaction to every point by Equation (5.4)

based on the results in Step-4

Step-6 Determine the stability of the foundation, considering the design criteria

applicable to the foundation

Step-7 Assign a binary value either P = 1 (failure) or P = 0 (non-failure)

Step-8 Iterate Steps -4 to -7 a number of times

Step-9 Take the mean of P as the conditional failure probability given y, (= Pfly )

Step- 10 Iterate from Step-2 through Step- 9 for all n

Step-1 Calculate the failure probability of the foundation by Equation (5.8) (= P )

The evaluation of the conditional failure probability PI,r is exemplified in Chapter VI

for some simple problems.

3 The correlation distance r is determined either by statistical means or judgmentally

4 f( Y I CSRN,(NI) 60) is discretized into n portions. i is the representative value of i -th portion.
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5.3 Spatially Discrete Model

As an alternative, we may use a discrete autoregressive model to describe directly

the spatial variation of Z (x, y). Honjo (1985) has described some binary models,

including autoregressive models.

Basic Model

The homogeneous autoregressive model derived by Bartlett and Besag (1969) on

a rectangular grid has the property that (see Figure 5.5):

E [ x | xij, xj ] - a + - ( ,x,_l. + 3,2xij_ ) (5.9)
2

where x, : binary random variable (i.e. 1 or 0)

a, P,, 2 : autoregressive coefficients.

All the autoregressive coefficients (a, P,, and 2) are bounded between zero and one.

Taking expectation,

I
E[x ] = a + - (P, E[xi-,j]+ 2 E[xij_,]) (5.10)

2

Under the condition of homogeneity, the expectation of xij is:

E [ xj ] = y = const. (5.11)

So that, from Equation (5.10),

1
y = a + 2(p + 2) y (5.12)

2
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Therefore,

ax I 2 (PI + 1P2)} (5.13)

If /, and P 2 are estimated by either statistical or judgmental means and y is given, we

can obtain a from Equation (5.13). Substituting Equation (5.13) into Equation (5.9), the

model is:

E [ xj lXi-, j , xi j, ]

- { 2(P + 2)} Y + (P + ( l.j 2Xi,j ) (5.14)

The autoregressive coefficients , and P2 give the one-step correlation of the process in

each direction.

Application

We consider that xj takes a value of either 1 (liquefaction) or 0 (non-

liquefaction). The fraction of liquefied area y is obtained using results in Liao (1986).

Thus, if the autoregressive coefficients are given, we can generate the probability of

liquefaction at every point on the basis of the information from previous points in any

direction. In this approach, the correlation with respect to liquefaction susceptibility

among adjacent points is expressed by the autoregressive coefficients. If a high degree of

correlation exists, greater coefficients would be chosen. Uncorrelated fields can be

generated by assuming that the autoregressive coefficients are equal to zero.
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Numerical Simulation for Evaluating the Failure Probability

The failure probability of a foundation given CSRN and (N, )60 is expressed by

Equation (5.8) in the case when the fraction y is uncertain. A numerical simulation for

evaluating the failure probability of a foundation is as follows.

In using this model, we discretize a given site into a rectangular (m x n) grid.

Step-i Define f(y CSRN,(N,) 60) and iB,, I2, m and

Step-2 Discretize f(y CSRN,(N,) 60) and set y = 

Step-3 Simulate x(1, 1):

If a generated random number in [0, 1] > y 5, then

Otherwise , then

Step-4 Simulate the values of x ( i = 1, ... , m, j= 1 )

n

( i, , n)

x(1, 1) = 0

x(1, 1) = 1

along the horizontal

boundary based on the one-dimensional model:

Pm = (1-Pl,) + , x(i-1, 1)

If a generated random

Otherwise

Simulate the values of

number in [0, 1] > Pa, then x(i, 1) = 0

,then x(i, 1) = 1

xj ( i= 1, j = 1, -, n, ) along the vertical

boundary using

P -= (1-Pf2) Y + 2 x(1, j-1)

If a generated random

Otherwise

number in [0, 1] > P, then x(1, j) = O

, then x(1, j) = 1

5 Since the liquefaction probability does not give a binary number either 0 or 1 directly, we make use of the
Monte Carlo simulation, in which we compare the generated probability to a random number between 0 and
1.
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Step-6 Simulate the values of xij ( i = 2, *-. , m, j = 2, ... , n, ) in the interior

of the rectangle using

Pf = { 1- (fi + 2)} + {P,x(i-l,j) + 2x(i,j-1)} (5.17)

If a generated random number in [0, 1] > Pf, then x(i, j) - 0

Otherwise , then x(i,j) = 1

Step-7 Judge the stability of the foundation, considering the design criteria

applicable to the foundation. Let P = 1 in the case of failure and P = 0 in

the case of non-failure.

Step-8 Iterate Steps -3 to -7 a number of times

Step-9 Take the mean of P as the conditional failure probability given y (= Pfl )

Step- 10 Iterate from Step-2 through Step- 9 for all n

Step-11 Calculate the failure probability of the foundation by Equation (5.8) (= P )

Step-i through Step-6 give a spatial distribution of liquefied area given a fraction y.

We have introduced an indicator random field Z (x, y) in this chapter and we

have discussed the spatial distribution of liquefied area and numerical simulation for

evaluating the probability of foundation failure using two alternative random models. An

application of the numerical simulation to some simple situations are described in the

next chapter. Four example cases for evaluating the failure probability in a one-

dimensional problem and some examples for simulating the spatial distribution of

liquefied area in a two-dimensional problem are given next.
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Xi-,j

1

Figure 5.5 Scheme of the Autoregressive Model in A Two-Dimensional Case 6

6 A simulation result at each grid point represents liquefaction or non-liquefaction in a corresponding
square. In this figure, the scheme of the autoregressive model is illustrated in terms of a corresponding
square.
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CHAPTER VI. SIMULATION RESULTS

In this chapter, we deal with evaluating the conditional failure probability for a

given fraction of liquefied area P. This step takes into account the spatial variation of

liquefaction and its relation to the behavior of the foundation. Simulation results are

presented. Foundations vary in size and shape, and failure criteria depend on the type of

structure. Since it is impossible to cover all possible cases, we have focused on a few

typical situations. The one-dimensional case is considered first and then some simulation

results of the distribution of liquefied area in space are illustrated (that is, only Step-IV

mentioned in Chapter III is performed for the two-dimensional cases).

6.1 Four One-Dimensional Cases

We consider two types of foundations, Type-A and Type-B, as mentioned in

Chapter III. For each foundation type, we consider two situations:

Type-A foundations

Type-A foundations are continuous as defined in Chapter III. The safety of a

continuous foundation depends either on the extent of the liquefied region beneath the

foundation, or on the length of the foundation. In general, the larger extent liquefies, the

less safe the foundation system becomes for a given foundation. Similarly, the larger the

foundation is, the safer the foundation system becomes for a given extent of liquefied

region. The following two cases are considered for this type of foundation:
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Case-A.l

It is assumed that the foundation fails if a certain fraction of the ground beneath the

foundation liquefies. We consider the critical fraction as a parameter, which we vary in

different calculations. Figure 6.1 shows the simulation model. The failure probability

will be evaluated for critical fractions of liquefied length between 0 and 1.

Case-A.2

In this case, we assume that the fraction of liquefied area necessary to support the

superstructure is given. We consider the minimum length (critical length) of the

foundation needed to prevent a foundation failure. The critical length of the foundation is

treated as a parameter. Figure 6.2 shows the simulation model of Case-A.2. It is

assumed in this case that the necessary fraction of liquefied area is 50 percent of

foundation length.

Type-B foundations

Type-B foundations consist of several discrete footings. Figure 6.3 shows the

simulation model, in which the superstructure is supported by ten equally spaced

footings. The stability of the foundation will depend on the number of footings that lose

their stability due to soil liquefaction beneath the footings, and on their location. The

following two cases are considered for this type of foundation:

Case-B.1

We assume that the stability of the foundation depends only on the total number of the

"liquefaction footings" l. Stability is independent of the order of the "liquefaction

1 "Liquefaction footings" means the footings such that soil at the center point of each footing liquefies.
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footings". It is also assumed that the foundation fails if a certain number of footings turns

into "liquefaction footings". We consider the critical number of "liquefaction footings" as

a parameter.

Case-B.2

In many practical cases, the order as well as the number of "liquefaction footings" counts

for stability of the foundation. In Case-B.2, we assume that the number of the successive

"liquefaction footings" determines the foundation stability. The model is otherwise the

same as that in Figure 6.3. A parameter that is varied is the maximum number of the

successive "liquefaction footings" needed to induce foundation failure.

Simulation Using the Spatially Continuous Model

In this approach, we determine whether or not liquefaction occurs at each point

from simulations of the safety margin, as defined in Chapter IV. Figure 6.4 shows

example simulations of the safety margin for three different values of the correlation

distance (r o = 0.01, 0. 1, and 1.0). In all these cases, the mean safety margin is zero. This

figure illustrates the effect of correlation distance. If the mean safety margin is not zero,

the plots shift upward or downward by the magnitude of the mean value. Mean values of

the safety margin from -1.25 to 1.25 at 0.25 increments are considered below.

Simulation Results

Case-A.1

Simulation results are presented in Figure 6.5 for three values of the ratio between the

length of the foundation and the correlation distance (0.1, 1.0 and 10.0). Figure 6.5 (a)

corresponds to a high correlation case, whereas Figure 6.5 (c) shows a low correlation
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case. The figure illustrates that the mean safety margin and the critical fraction of

liquefied length affect the safety of the foundation.

Case-A.2

Simulation results are shown in Figure 6.6. Since it is assumed that the foundation fails

when more than half of its length liquefies, the failure probability is 0.5 in the case of

zero mean safety margin, regardless of the ratio of the foundation length to the correlation

distance. Also, it is concluded that the failure probability is less sensitive to the length of

foundation. As the ratio of the foundation length to the correlation distance increases, the

failure probability approaches 0, 0.5, or 1.0. These curves will change if a different

critical length is selected.

Case-B.1

Figure 6.7 shows simulation results for the following three situations.

Figure 6.7 (a) (Spacing of footings) / r =0.1 and 10 footings

Figure 6.7 (b) (Spacing of footings) / ro =1.0 and 10 footings

Figure 6.7 (c) (Spacing of footings) / r =10.0 and 10 footings

In addition, Figure 6.7 (d) shows theoretical results under the condition that the safety

margins at the various points are mutually independent. Figure 6.7 (a) corresponds to a

high correlation case, whereas Figure 6.7 (c) exhibits a low correlation case. This

condition is eventually equivalent to that in Figure 6.7 (d).

Case-B.2

Figures 6.8 shows simulation results for the same three situations as in Case-B. 1. A

comparison between the two cases (Cases -B. 1 and -B.2) indicates that the safety of the

58



foundation is greatly affected by the criterion of foundation stability. In particular,

redundancy in the system improves considerably the level of safety.

Comments on the Simulation Results

Some comments that are common to Case-A and Case-B are made here.

1) Sensitivity of the failure probability to the critical fraction of liquefied foundation

area and the critical number of "liquefaction footings" (effect of the spatial correlation):

Figures 6.5 (a), 6.7 (a), and 6.8 (a) show that the failure probability of the foundation has

a low sensitivity to the fraction of liquefied area (Case-A) and critical number of

"liquefaction footings" (Case-B). This fact indicates that, if the spatial correlation in

terms of the foundation length and the spacing of footings is large, a change in the critical

fraction and the critical number will not affect the safety of the foundation. This is due to

the high correlation in the safety margin. Therefore, either the entire foundation

experiences liquefaction or the entire foundation is free of liquefaction. As the ratio of

the foundation length to the correlation distance (Case-A) and of spacing to correlation

distance (Case-B) becomes larger, the failure probability becomes more sensitive to the

critical fraction and critical number.

2) Measures to improve foundation safety : We can improve the safety of the

foundation by increasing the mean safety margin, or by increasing the critical fraction of

liquefied area and the critical number of "liquefaction footings". Figures 6.5 through 6.8

illustrate the effects of these measures. For example, comparison between parts (a) and

(c) of Figures 6.5, 6.7, and 6.8 suggests that, if the spatial correlation in terms of the

length of foundation and the spacing of footings is high, increase in the critical fraction

and the critical number will not improve the safety of the foundation. In this case,

enhancement of the mean safety margin, by improving soil for instance, will be more
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effective. In brief, we can use these figures to choose optimum measures, by considering

their cost and effectiveness.

Simulations Using the Spatially Discrete Model

As already discussed in Chapter V for the one-dimensional case, this model is

completely specified in terms of the fraction of liquefied area y and the autoregressive

coefficient f3. We consider a discretized ground with 100 grid points. The following

cases are considered.

Fraction of liquefied area y = 0.1 to 0.9 at increments of 0.1

Autoregressive coefficient P = 0.1, 0.5 and 0.9

Simulation results for the failure probability are shown in Figures 6.9 (Case-A. 1), Figure

6.10 (Case-A.2), Figures 6.11 (Case-B.1), Figure 6.12 (Case-B.2).

A small failure probability corresponds to a large mean safety margin in the

spatially continuous model. Also, a small autoregressive coefficient corresponds to a

small correlation distance. For example, the plots in Figure 6.11 (a) (Case-B.1,

P = 0.1) agree with theoretical results in Figure 6.7 (d) where the safety margins at

various points are mutually independent.

Comments on the Simulation Results

The conclusions drawn from these simulation results are similar to those for the

spatially continuous model. We, therefore, focus on the difference between the two

models.

Ease of computation : In general, the spatially discrete model is much superior to the
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spatially discrete model in terms of computation time2 and simplicity of the computer

code. If the autoregressive coefficients can be determined from given field observation

data, the use of the spatially discrete model is recommended.

6.2 Two-Dimensional Cases

The two probabilistic models of spatial liquefaction are applied here to two-

dimensional problems. We consider a one-by-one square region which consists of 51 x51

simulation points. We focus on two points: (1) effect of the spatial correlation and (2)

effect of anisotropy. Example simulations of liquefied patterns in the following cases are

shown.

Simulation Using the Spatially Continuous Model

Four different values of correlation distance shown below are selected in Case-1.

It is assumed that the mean safety margin is zero.

Case-1 Correlationdistance r = 0.01, 0.1, 0.3, and 0.6

(for simulation results of liquefied patterns, see Figures 6.13 (a)

through 6.13 (d))

Simulation Using the Spatially Discrete Model

In Cases -2 and -3, we deal with an isotropic field (, = f32 ). Two different

values of the fraction of liquefied area ( y = 0.1 and 0.5) are considered and then two

different set of autoregressive coefficients (, = 52 = 0.1 and 0.9) are selected for each

value of the fraction. The value of the fraction y = 0.1 represents a low correlated case,

whereas y - 0.9 stands for a highly correlated case.

2 Generation of X(t) using Equations (A.42) and (A.43) requires a number of iteration.
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Case-2 y = 0.1, i, = 82 =0.1, and 0.9 (see Figure 6.14, (a) and (b))

Case-3 y = 0.5, 3, = 32 =0.1, and 0.9 (see Figure 6.15,.(a) and (b))

In order to consider an anisotropic field, we choose different values for B, and P2. A set

of autoregressive coefficients ( 3, , 2 ) = (0.9, 0.1) models a vertically highly

correlated and horizontally low correlated case. A reverse situation is given by

( , 2 ) - (0.1, 0.9). Two different values of the fraction y for these two situations

are also considered.

Case-4 y = 0.1, ( I , P2 ) = (0.9,0.1), and (0.1,0.9)

(see Figure 6.16, (a) and (b).)

Case-5 y = 0.5, ( ,, / 2 ) = (0.9,0.1), and (0.1,0.9)

(see Figure 6.17, (a) and (b).)

From Figures 6.13, 6.14 and 6.15, we can see that the liquefied regions tend to

flock together as the correlation distance (equivalent to the autoregressive coefficients)

increases. Also, Figures 6.16 and 6.17 show the effect of anisotropy explicitly.

Liquefied regions tend to form longitudinally in Figures 6.16 (a) and 6.17 (a), whereas

Figures 6.16 (b) and 6.17 (b) exhibit a horizontal succession of liquefaction/non-

liquefaction regions. It is obvious that the fraction of liquefied area affects the number of

liquefaction points in Figures 6.14 through 6.17. That is, the larger the value of the

fraction is, the more liquefaction points we have. The fraction of liquefied area

corresponds to the mean safety margin in Case-1 (Figure 6.13).
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CHAPTER VII. CONCLUSIONS

A methodology for evaluating the safety of spatially extended foundations against

liquefaction has been presented. The objective is to extend the usual analysis of

liquefaction risk at a point to account for the spatial variability of the phenomenon and

for the failure criterion of the system at risk.

First, the uncertainty in the fraction of liquefied area, y , was examined. For a

given region, the fraction y varies not only with M and R but also from earthquake to

earthquake. In addition, the fraction y varies from site to site for a given earthquake. It

is important to quantify this variability; however, we can only resort to engineering

judgment at this stage. Spatial variability is also crucial to the evaluation of safety. To

describe the spatial pattern of liquefaction, we assigned a binary value, either 1

(liquefaction) or 0 (non-liquefaction), as a spatial correlated binary function. Two

random field models are used: (1) the spatially continuous model (Model-1) and (2) the

spatially discrete model (Model-2). Spatial dependence of liquefaction was taken into

account in the form of correlation distance in Model-i and autoregressive coefficients in

Model-2. Since foundations vary in size and shape, and failure criteria depend on the

type of structure, no analytical method can cover all possible situations. Therefore, we

here illustrated the evaluation of safety for a few foundation systems through numerical

simulation. The probability of foundation failure is obtained by taking the integral of the

product of the conditional failure probability for a given fraction y and the probability

density function of the fraction y .

Applying the proposed methodology to several simple one and two-dimensional

problems, some numerical experiments were performed and the safety of the foundations

was expressed in terms of the failure probability. The sensitivity of the failure probability
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to the critical fraction of liquefied area and the critical number of "liquefaction footing"

was examined based on the results. If the spatial correlation is large, the failure

probability is less sensitive to the two parameters, namely, the critical fraction of

liquefied area and critical number of "liquefaction footings". Also, these simulation

results can give information about the measures to improve the foundation safety. In

general, a simulation based on Model-2 requires much less time than that based on

Model-1. If the autoregressive coefficients can be determined from given field

observation data, the use of Model-2 is recommended.

A few future extensions and refinements of the proposed methodology are

desirable. These include:

1) Variability of the Fraction of Liquefied Area : As mentioned in Chapter IV

(Section 4.4), the fraction of liquefied area has some variability. This is important

because it affects the evaluation of foundation safety. However, since no research

is available at present, future work is essential. This variability may be seen by

analyzing past liquefaction records. We suggest that data concerning the liquefied

area be collected.

2) Propagation of the Liquefied Region: The propagation of the liquefied region

should be taken into account. However, the phenomenon is so complicated that its

mechanism is not fully understood. It would be acceptable to consider that the

propagation of liquefaction easily happens when a soil deposit has a small

liquefaction resistance. In such a situation, we may adjust the magnitude of spatial

correlation to some extent (in this particular case, use a larger value of spatial

correlation than originally estimated) in order to take into account the propagation

effect.
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3) Non-Homogeneous Grounds: Since we often encounter non-homogeneous

grounds in actual engineering situations, dealing with them is important (non-

homogeneity means that the fraction of liquefied area depends on location). We

can simulate the spatial pattern of liquefaction in a non-homogeneous ground by

varying the fraction of liquefied area (the mean safety margin) in the spatially

continuous model or the autoregressive coefficients in the spatially discrete model

according to its non-homogeneity.

4) Three-Dimensional Problems (Type-C Foundations in Chapter III): In this

research, only horizontal problems have been considered. As discussed in Chapter

III, the vertical problems also need to be dealt with. This problem can be handled

by applying the proposed methodology to a vertical direction as well as a horizontal

direction.
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APPENDIX CORRELATION THEORY OF RANDOM FIELDS

The theoretical background of the correlation theory of random fields is briefly

described. Yaglom (1963), Veneziano (1978), and Vanmarcke (1983) present its theory

in a much deeper and broader context.

Definition and Complete Representation of A Random Field

Consider a real valued function x ( w, t ) where t belongs to R, the n-

dimensional space, and w belongs to the set f2 of the possible outcomes of a random

experiment. The values of the function are random numbers due to their dependence on

w. Therefore, this function is called a random field in Rn ( in particular, a random

process in R'). We are usually interested either in the deterministic field resulting from

fixing Cw, or in the random variable resulting from fixing t. Hereinafter, the former is

denoted by x(t) and the latter is denoted by X(t).

A random field is considered to be completely specified if we are given the

cumulative distribution function:

F, (x) = P [ X (t < x ] (A.1)

of the random variable X(t) for each t in R", and in general if we are given the joint

cumulative distribution function:

Ft . . . ,Lk( XI, -, Xk) = P [ X(t) < x,", X(tk) < xk I (A.2)

of X(t,), , X(k) forany k points t, · ' , tk in Rn.
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Homogeneity and Isotropy

A random field is said to be homogeneous if all its cumulative distribution

functions are invariant with respect to identical translation (not rotation) of the parameters

t,, , t, in other words, if all the distribution functions depend only on the relative

location of the points and not on absolute location. Incidentally, the term "stationary"

instead of the term "homogeneous" is used for a random process, i.e. a one-dimensional

random field. As for isotropy, a random field is said to be isotropic if all its cumulative

distribution functions are invariant with respect to rigid-body motions, including

translation and rotation, and with respect to mirror reflections.

Mean Value and Autocovariance Function

In most practical situations, few properties of the random fields dealt with are

known to us. Instead, all we know (or assume) are the mean and covariance function of

the random field.

Mean: m(t) = E[X(t)] (A.3)

Covariance:

B (t_,t) = E [ (X(t,)-m(t,)) (X(t 2) -m(t 2)) ] (A.4)

= E [ X(t,) X(t 2) ] - m(t) (t 2)

B(tl,t2) is called the autocovariance function of X(t). The theory of random fields that

make use only of the mean value function and of the autocovariance function is called

correlation theory. The normalized autocovariance function:

p(t,, t2) = B(t,,t2) / (t,) r(t2 ), (A.5)

is called the autocorrelation function of X(t). Hence, p(t,,2) is the correlation
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coefficient between X(t,) and X(t 2) and is bounded between -1 and 1. When we deal

with homogeneous fields, we can write m instead of m(tO, i.e. the mean value is

constant, and B(x) instead of B(t,,t 2), i.e. the autocovariance depends only on the

vector:

t2 L t- (A.6)

and not on the location of the points t, and t2. For isotropic fields, the covariance

depends only on the distance between the two points.

r = I = I Lt- I (A.7)

The following autocovariance functions are widely used for isotropic random

fields. These covariance functions are valid in one, two, and three-dimensions. See

Figure A. 1.

1) Simple exponential

B(r) = a2 e Tro

where ro : correlation distance

(A.8)

This is a proper autocovariance function in spaces of any dimension; it has been

frequently used to model spatial variation of soil properties.

2) Exponentially damped cosine function

B(r) = a2 e-rl cos r, r < J 1 33 (A.9)

3) Double exponential

B(r) = a2e- (r' r ) (A.10)
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Gaussian Random Fields

The mean and autocovariance functions are not sufficient information to

completely specify a random field. However, if the field is Gaussian, these two functions

are enough information for the complete specification.

Ergodicitv

We define the operator < > as shown belowl:

ID

where Dn is a subset of the space R, i.e. its length, area, or volume whichever is

appropriate, and f (t) is a function. This operator produces spatial averages, whereas, by

comparison, the operator E produces statistical averages across the ensemble

(expectations). A homogeneous random field is called ergotic if these two operators

produce the same results. Note that although ergodicity in some property implies

homogeneity in that same property, the reverse is not necessarily true. For an ergotic

random field, we will have:

m = < x((t > (A.12)

B() = < (x(t)-m) (x(t +T)-rn) > (A.13)

for any realization x(t) of the random field X(t. In most cases, random fields occurring

in practice are assumed to be ergotic.

1 The symbol f is used instead of f J and the symbol dt is used instead of dt,.....dt
D" n times

Also, Dn stands for both the region and its measure.

82



Spectral Representation of Random Fields

Let X(t) be a homogeneous Gaussian random field with mean zero. X(t) may be

represented as the real part of a complex random field X (t) :

X(t) = Re { X*(t) } = Re { el-T Z(dwo) (A.14)

where to t_ denotes the dot product of the two vectors to and t, and Z(dov) is an

uncorrelated random function with the following properties.

1) For all intervals A o,

E [Z(Ato)] = 0. (A. 15)

2) For any disjoint intervals A w and A 2to,

Z (A,t+ A2 ) = Z (A,) + Z (A2 _) (A.16)

and

E [ Z(A, to) Z(Ao)] = 0 (A.17)

Equation (A. 14) expresses X (t) as the sum of many uncorrelated component functions

of the form e'" = cosot + isintot, each associated with a small interval do on the

frequency axis and each multiplied by a complex random amplitude Z(do) with mean

zero. Thus, we may write X(t) as:

X(t) = fcos( ort) Z(dto) . (A.18)
Rn

The variance of X(t) is:

Var [ X(tO] = E[I Z(dJ) ] i= fS() do . (A.19)
WI R.
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The function S(_.) is called the two-sided spectral density function of the random field.

In order to evaluate the covariance function of X(t), we insert X(O) and X(T) into the

definition, and interchange the operations of integration and expectation. Then, we

obtain:

B () = Cov [ X(O), X(T) ] = E f Z(d) fcos( T . 0 Z(dc 

-= cos( T t) E [ I Z(dfo) I 2 ] (A.20)
Rn

Combining the equations (A. 19) and (A.20) generates the Wiener-Khinchine relations:

B(_r) = f cos ( T ) S(a) dw (A.21)
Rn

and

S( 1) TSW) = (2) n cos (CX) B() d . (A.22)

Since B( ) = B(-_), the function S(w) is symmetric about w = 0. There is only one

function satisfying equations (A.21) and (A.22) for each function B(-!). For isotropic

fields, S(c) depends only on c( = c . Thus, we can write S(w) instead of S(_).

We can interpret X()O as the result of superimposing, to its mean value, many functions

of the form cos(wT 't_), each of which has a different wc ,and each of which is multiplied

by a random amplitude Z(dw) with zero mean and variance S()d .

As an example, if the correlation function has the exponential form,

p(r) = e- r/ ' , then the spectral density functions in R', R 2, and R3 are as follows:

S,(ct9) = ro for R' (A.23)
O(O+W ro)

84



a 1
S2 (2a) = 3122a= I 3/2(=for R2 (A.24)

2x(a + co ) ro

3

S3() = 2( 2r2)2 for R3 (A.25)

Figure A.2 illustrates the spectral density functions S,(cu) and S2(c).

Simulation of Homogeneous Gaussian Random Fields

Again, let X(t) be a n-dimensional homogeneous Gaussian random field with

zero mean, covariance function B(!) and spectral density function S(). According to

(A.18), X(t) is:

X(t) = cos (T t) Z(do). (A.26)

A homogeneous random field X(t with mean zero can be expressed as a sum of

sinusoids with random amplitudes C(d_) and phase angles 0(to).

X(t f C(d) co= C (di T + ()) (A.27)
Rn

The variance of X(O is:

[ X(t)] = fE [ X2(t)] fE[ C2(dto) ] E[ cos2(wr t + 0()) ]

= f E[ C2(dgo) I (A.28)
2 w
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(the expectation E [ cos2(co' t + (m)) ] is with respect to (to)). From (A. 19) and

(A.28), we obtain:

1
S(c d = - E [ C2(dc) ]

2
(A.29)

Therefore, we may write X(tO as:

X(Q) = /- Ccos [rt + +(c] JS() da (A.30)

where (to) is a random phase angle distributed uniformly and independently between 0

and 2. We can verify that the random field X(t expressed by equation (A.30) has the

assumed properties, i.e. X(tO has zero mean and covariance function B(), using the

following two equations:

E[cos (T t + (co)) ] = 0 (A.31)

El cos \(, t, + (,)) COS ( t2 + 4(2))

11 2 cosoT (t - 2 )_{~~ Q 

E[X(to] = 

E[ X(t 2 ) X(_t,) ]

= 2 f fE[cos(,' T, t+c(_2))cos()2 t2 + ()2))]/S(,)d_.l),S(_2)d(2

= f cos( T (t2 -t)) S(to) d = B(t2-t,)
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'f £2I ( !22~ (

and

(A.32)

(A.33)
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We now consider a practical scheme of the numerical simulation based on the

above theoretical background. For the convenience of numerical simulation, it is

assumed that the spectral density function S(w ) has negligible magnitude outside the

rectangle defined by:

- 2, W, < ! , (A.35)

and we denote a discrete interval in the i-th frequency direction by:

Awti =20 i= , n. (A.36)
N,

Then, we obtain the following approximation X(t) of X(t) from equation (A.30):

Ni N1
( = IS(olk,' , WOnk) AWol ... ADn] COS(Wlkltl+"+ wnt + k, A-. k)

(A.37)

where the phase angles k,,..-, kn are independent and uniformly distributed between 0 and

2;r, and

w(ik = -2,i + (ki - 4) Aw)i , k = 1, --, Ni, i = 1, -, n. (A.38)

As defined above, X(t) is a homogeneous periodic random field with period

T = r / Awi, in the i-th direction. Equation (A.37) can be used directly for simulating

X(t) by generating a series of random angles 6 k, - k,n . The random fields generated by

this equation are ergotic, and have zero mean. Also, they have covariance function

B(-) = S(w),k,, , k) Aw," Ao, ] Cos (okl, + + (nkrn)

(A.39)
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The generated random field X(tJ has the same structure as the field X(O when

2, - o, Aco ,- O, i= 1, "*, n.

For one-dimensional and two-dimensional random fields, equation (A.30)

becomes:

· one-dimensional fields

X(t) = 2 f cos(ot + d,fJS(i)di (A.40)

* two-dimensional fields

+x +x

X(t,,t2) = X f fcos[wt, + w2t2 + (0,, tw2 )]S(w,, w2)dco, d 2
-- -0

(A.41)

and equation (A.37) becomes :

* one-dimensional fields

X(t) = X2 f; JS(ok,) , kcos [cot+4]

* two-dimensional fields

X(t ,t 2)

N,

l

N2

2 JS(Ik, ,W 2k2 )A A 2 CoS[Wlk,t I + (02k 2t2 + Ok,,k2 ]

(A.42)

(A.43)
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(a) Simple exponential
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(b) Exponentially damped cosine function
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(c) Double exponential

Figure A. 1 Autocovariance Functions for Isotropic Fields

89

r

r

-orI



S,(ow)

I , , , , , , I I I I t

(a) S,(O)

SZ(m)

(lJZ

(I

(b) S,2(a)

Figure A.2 Spectral Density Functions
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