
Noise Tolerant Algorithms for Learning and Searching

by

Javed Alexander Aslam

S.M., Electrical Engineering and Computer Science
Massachusetts Institute of Technology

(1992)
B.S.E.E., Electrical and Computer Engineering

University of Notre Dame
(1987)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 1995

(Massachusetts Institute of Technology 1995
APR 13 1995

Signature of Author
Department of Electrical Engineering and Computer Science

January 27, 1995
!

Certified by . . -
Ronald L. Rivest

Professor of Computer Science
is Supervisor

/,-,\ 11 f ~~~~~~~~~) I ~.

Accepted b3T

Freieri4V rganthaler
Chairman, Departmental Committee/on Graduatf Students

MASSACHUSETTS INSTITUTE.... '' ronV

Noise Tolerant Algorithms for Learning and Searching

by

Javed Alexander Aslam

Submitted to the Department of Electrical Engineering and Computer Science

on January 27, 1995,

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Abstract

We consider the problem of developing robust algorithms which cope with noisy data. In the
Probably Approximately Correct model of machine learning, we develop a general technique
which allows nearly all PAC learning algorithms to be converted into highly efficient PAC
learning algorithms which tolerate noise. In the field of combinatorial algorithms, we develop
techniques for constructing search algorithms which tolerate linearly bounded errors and prob-
abilistic errors.

In the field of machine learning, we derive general bounds on the complexity of learning in
the recently introduced Statistical Query model and in the PAC model with noise. We do so
by considering the problem of improving the accuracy of learning algorithms. In particular, we
study the problem of "boosting" the accuracy of "weak" learning algorithms which fall within
the Statistical Query model, and we show that it is possible to improve the accuracy of such
learning algorithms to any arbitrary accuracy. We derive a number of interesting consequences
from this result, and in particular, we show that nearly all PAC learning algorithms can be
converted into highly efficient PAC learning algorithms which tolerate classification noise and
malicious errors.

We also investigate the longstanding problem of searching in the presence of errors. We
consider the problem of determining an unknown quantity x by asking "yes-no" questions,
where some of the answers may be erroneous. We focus on two different models of error:
the linearly bounded model, where for some known constant r < 1/2, each initial sequence of
i answers is guaranteed to have no more than ri errors, and the probabilistic model, where
errors occur randomly and independently with probability p < . We develop highly efficient
algorithms for searching in the presence of linearly bounded errors, and we further show that
searching in the presence of probabilistic errors can be efficiently reduced to searching in the
presence of linearly bounded errors.

Thesis Supervisor: Ronald L. Rivest

Title: Professor of Computer Science

3

I Learning in the Presence of Noise

1 Introduction

1.1 Introduction

1.2 Learning Models.

1.2.1 The Weak and Strong PAC Learning Models

1.2.2 The Classification Noise and Malicious Error Models

1.2.3 The Statistical Query Model

1.3 Boosting in the PAC Model

1.3.1 Boosting via Scheme 1 in the PAC Model

1.3.2 Boosting via Scheme 2 in the PAC Model

1.3.3 Hybrid Boosting in the PAC Model

2 Learning Results in the Additive Error SQ Model

2.1 Boosting in the Statistical Query Model

2.1.1 Boosting via Scheme 1 in the Statistical Query Model

2.1.2 Boosting via Scheme 2 in the Statistical Query Model

2.1.3 Hybrid Boosting in the Statistical Query Model

2.2 General Bounds on Learning in the Statistical Query Model .

2.2.1 General Upper Bounds on Learning in the SQ Model .

25

... 25

... 26

... 30

... 33

... 33

... 34

5

Table of Contents

9

11

... . 11

... . 16

... . 16

... . 17

... . 18

... . 21

... . 21

... . 22

... . 23

6 Table of Contents

2.2.2 A Specific Lower Bound for Learning in the SQ Model .

2.3 Simulating SQ Algorithms in the Classification Noise Model . .

2.3.1 A New Derivation for Px

2.3.2 Sensitivity Analysis.

2.3.3 Estimating ED" [X] and ED[]

2.3.4 Guessing the Noise Rate q

2.3.5 The Overall Simulation

3 Learning Results in the Relative Error SQ Model

3.1 Introduction

3.2 The Relative Error Statistical Query Model

3.3 A Natural Example of Relative Error SQ Learning

3.4 General Bounds on Learning in the Relative Error SQ Model

3.5 Simulating Relative Error SQ Algorithms in the PAC Model ..

3.5.1 PAC Model Simulation

3.5.2 Classification Noise Model Simulation

3.5.3 Malicious Error Model Simulation

3.6 Very Efficient Learning in the Presence of Malicious Errors . .

....... .35

....... .37

....... .38

....... .40

....... .42

....... ..42

. 44

47

....... .47

....... .48

....... .49

....... .50

....... .53

....... ..53

. 55

....... .56

....... .58

4 Extensions

5 Conclusions and Open Questions

A Appendix

A.1 Simplifying the Expression for Query Space Complexity

A.2 Proofs Involving VC-Dimension

A.2.1 Preliminaries.

A.2.2 VC-Dimension of Q' = Q U Q

A.2.3 VC-Dimension of the Query Space of Boosting

61

65

67

.67

.69

69

70

71

II Searching in the Presence of Errors

6 Introduction

6.1 Introduction .

6.2 Searching and Games

7 The Linearly Bounded Error Model

7.1 A Brute-Force Strategy

7.2 Searching with Comparison Questions

7.3 Searching with Membership Questions

7.3.1 Stage 1

7.3.2 Stage 2

7.3.3 Stage 3

7.4 Unbounded Search.

7.4.1 Unbounded Search with Membership Questions . .

7.4.2 Unbounded Searching with Comparison Questions

8 The Probabilistic Error Model

8.1 The Reduction.

8.1.1 Stage 1

8.1.2 Stage 2

8.1.3 The Analysis

8.2 The Unbounded Domain . . .

8.2.1 Stage 1

8.2.2 Stage 2

99

... 9 9

............................. 100

............................. 101

............................. 102

............................. 104
. 104

1............................. 105

9 Conclusions and Open Questions 107

Bibliography

Table of Contents 7

77

79

79

83

85

85

86

89

89

94

95

96

96

97

. .I I

..........................

.............

.............

.............

.............

.............

.............

.............

109

Part I

Learning in the Presence of Noise

9

CHAPTER1

Introduction

The statistical query model of learning was created so that algorithm designers could construct

noise-tolerant PAC learning algorithms in a natural way. Ideally, such a model of robust learning

should restrict the algorithm designer as little as possible while maintaining the property that

these new learning algorithms can be efficiently simulated in the PAC model with noise. In

the following chapters, we both extend and improve the current statistical query model in

ways which both increase the power of the algorithm designer and decrease the complexity

of simulating these new learning algorithms. In this chapter, we summarize our results and

introduce the various models of learning required for the exposition that follows.

1.1 Introduction

Since Valiant's introduction of the Probably Approximately Correct model of learning [34],

PAC learning has proven to be an interesting and well studied model of machine learning. In

an instance of PAC learning, a learner is given the task of determining a close approximation

of an unknown {0, 1}-valued target function f from labelled examples of that function. The

learner is given access to an example oracle and accuracy and confidence parameters. When

polled, the oracle draws an instance according to a distribution D and returns the instance

along with its label according to f. The error rate of an hypothesis output by the learner is the

probability that an instance chosen according to D will be mislabelled by the hypothesis. The

11

12 Introduction

learner is required to output an hypothesis such that, with high confidence, the error rate of the

hypothesis is less than the accuracy parameter. Two standard complexity measures studied in

the PAC model are sample complexity and time complexity. Efficient PAC learning algorithms

have been developed for many function classes [1], and PAC learning continues to be a popular

model of machine learning.

The model of learning described above is often referred to as the strong learning model since

a learning algorithm may be required to output an arbitrarily accurate hypothesis depending on

the accuracy parameter supplied. An interesting variant referred to as the weak learning model is

identical, except that there is no accuracy parameter and the output hypothesis need only have

error rate slightly less than 1/2. In other words, the output of a weak learning algorithm need

only perform slightly better than random guessing. A fundamental and surprising result first

shown by Schapire [28, 29] and later improved upon by Freund [14, 15] states that any algorithm

which efficiently weakly learns can be transformed into an algorithm which efficiently strongly

learns. These results have important consequences for PAC learning, including providing upper

bounds on the time and sample complexities of strong learning.

One criticism of the PAC model is that the data presented to the learner is assumed to

be noise-free. In fact, most of the standard PAC learning algorithms would fail if even a

small number of the labelled examples given to the learning algorithm were "noisy." Two

popular noise models for both theoretical and experimental research are the classification noise

model introduced by Angluin and Laird [2, 21] and the malicious error model introduced by

Valiant [35] and further studied by Kearns and Li [20]. In the classification noise model, each

example received by the learner is mislabelled randomly and independently with some fixed

probability. In the malicious error model, an adversary is allowed, with some fixed probability,

to substitute a labelled example of his choosing for the labelled example the learner would

ordinarily see.

While a limited number of efficient PAC algorithms had been developed which tolerate

classification noise [2, 16, 26], no general framework for efficient learning' in the presence of

classification noise was known until Kearns introduced the Statistical Query model [19].

1Angluin and Laird [2] introduced a general framework for learning in the presence of classification noise.
However, their methods do not yield computationally efficient algorithms in most cases.

1.1 Introduction 13~~

In the SQ model, the example oracle of the standard PAC model is replaced by a statistics

oracle. An SQ algorithm queries this new oracle for the values of various statistics on the

distribution of labelled examples, and the oracle returns the requested statistics to within some

specified additive error. Upon gathering a sufficient number of statistics, the SQ algorithm

returns an hypothesis of the desired accuracy. Since calls to a statistics oracle can be simulated

with high probability by drawing a sufficiently large sample from an example oracle, one can

view this new oracle as an intermediary which effectively limits the way in which a learning algo-

rithm can make use of labelled examples. Two standard complexity measures of SQ algorithms

are query complexity, the maximum number of statistics required, and tolerance, the minimum

additive error required. The time and sample complexities of simulating SQ algorithms in the

PAC model are directly affected by these measures; therefore, we would like to bound these

measures as closely as possible.

Kearns [19] has demonstrated two important properties of the SQ model which make it wor-

thy of study. First, he has shown that nearly every PAC learning algorithm can be cast within

the SQ model, thus demonstrating that the SQ model is quite general and imposes a rather

weak restriction on learning algorithms. Second, he has shown that calls to a statistics oracle

can be simulated, with high probability, by a procedure which draws a sufficiently large sample

from a classification noise oracle. An immediate consequence of these two properties is that

nearly every PAC learning algorithm can be transformed into one which tolerates classification

noise.

Decatur [9] has further demonstrated that calls to a statistics oracle can be simulated, with

high probability, by a procedure which draws a sufficiently large sample from a malicious error

oracle. Thus, nearly every PAC learning algorithm can be transformed into one which tolerates

malicious errors. While Kearns and Li [20] had previously demonstrated a general technique

for converting a PAC learning algorithm into one which tolerates small amounts of malicious

error, the results obtained by appealing to SQ are better in some interesting cases [9].

While greatly expanding the function classes known to be learnable in the presence of noise,

Kearns' technique does not constitute a formal reduction from PAC learning to SQ learning.

In fact, such a reduction cannot exist: while the class of parity functions is known to be PAC

learnable [17], Kearns has shown that this class is provably unlearnable in the SQ model.

Introduction 131.1

14 Introduction

Kearns' technique for converting PAC algorithms to SQ algorithms consists of a few general

rules, but each PAC algorithm must be examined in turn and converted to an SQ algorithm

individually. Thus, one cannot derive general upper bounds on the complexity of SQ learning

from upper bounds on the complexity of PAC learning, due to the dependence on the specific

conversion of a PAC algorithm to an SQ algorithm. A consequence of this fact is that general

upper bounds on the time and sample complexities of PAC learning in the presence of noise are

not directly obtainable either.

We obtain bounds for SQ learning and PAC learning in the presence of noise by making

use of the following result. We define weak SQ learning in a manner analogous to weak PAC

learning, and we show that it is possible to boost the accuracy of weak SQ algorithms to obtain

strong SQ algorithms. Thus, we show that weak SQ learning is equivalent to strong SQ learning.

We use the technique of "boosting by majority" [15] which is nearly optimal in terms of its

dependence on the accuracy parameter e.

In the SQ model, as in the PAC model, this boosting result allows us to derive general

upper bounds on many complexity measures of learning. Specifically, we derive simultaneous

upper bounds with respect to on the number of queries, O(log2), the Vapnik-Chervonenkis

dimension of the query space, O(log k log log), and the inverse of the minimum tolerance,

O(log T). In addition, we show that these general upper bounds are nearly optimal by de-

scribing a class of learning problems for which we simultaneously lower bound the number

of queries by Q(10-d log {1) and the inverse of the minimum tolerance by Q(1). Here d is the

Vapnik-Chervonenkis dimension of the function class to be learned.

The complexity of a statistical query algorithm in conjunction with the complexity of simu-

lating SQ algorithms in the various noise models determine the complexity of the noise-tolerant

PAC learning algorithms obtained. Kearns [19] has derived general bounds on the minimum

complexity of SQ algorithms, and we derive some specific lower bounds as well. Our boosting

result provides a general technique for constructing SQ algorithms which are nearly optimal

with respect to these bounds. However, the robust PAC learning algorithms obtained by sim-

ulating even optimal SQ algorithms in the presence of noise are inefficient when compared to

known lower bounds for PAC learning in the presence of noise [11, 20, 30]. In fact, the PAC

learning algorithms obtained by simulating optimal SQ algorithms in the absence of noise are

1.1 Introduction 15

inefficient when compared to the tight bounds known for noise-free PAC learning [7, 11]. These

shortcomings could be consequences of either inefficient simulations or a deficiency in the model

itself. In this thesis, we show that both of these explanations are true, and we provide both

new simulations and a variant of the SQ model which combat the current inefficiencies of PAC

learning via the statistical query model.

We improve the complexity of simulating SQ algorithms in the presence of classification

noise by providing a more efficient simulation. If r, is a lower bound on the minimum additive

error requested by an SQ algorithm and ib < 1/2 is an upper bound on the unknown noise

rate, then Kearns' original simulation essentially runs (T.(- 12)2) different copies of the SQ

algorithm and processes the results of these runs to obtain an output. We show that this

"branching factor" can be reduced to (log 1 _-), thus reducing the time complexity of the

simulation. We also provide a new and simpler proof that statistical queries can be estimated in

the presence of classification noise, and we show that our formulation can easily be generalized

to accommodate a strictly larger class of statistical queries.

We improve the complexity of simulating SQ algorithms in the absence of noise and in the

presence of malicious errors by proposing a natural variant of the SQ model and providing

efficient simulations for this variant. In the relative error SQ model, we allow SQ algorithms to

submit statistical queries whose estimates are required within some specified relative error. We

show that a class is learnable with relative error statistical queries if and only if it is learnable

with (standard) additive error statistical queries. Thus, known learnability and hardness results

for statistical query learning [6, 19] also hold in this variant.

We demonstrate general bounds on the complexity of relative error SQ learning, and we

show that many learning algorithms can naturally be written as highly efficient, relative error

SQ algorithms. We further provide simulations of relative error SQ algorithms in both the

absence and presence of noise. These simulations in the absence of noise and in the presence

of malicious errors are more efficient than the simulations of additive error SQ algorithms, and

given a roughly optimal relative error SQ algorithm, these simulations yield roughly optimal

PAC learning algorithms. These results hold for all function classes which are SQ learnable

Finally, we show that our simulations of SQ algorithms in the absence of noise, in the

presence of classification noise, and in the presence malicious errors can all be modified to

1.1 Introduction 15

16 Introduction

accommodate a strictly larger class of statistical queries. In particular, we show that our simu-

lations can accommodate real-valued statistical queries. Real-valued queries allow an algorithm

to query the expected value of a real-valued function of labelled examples. Our results on

improved simulations hold for this generalization in both the absence and presence of noise.

The remainder of this work is organized as follows. In Section 1.2, we formally define the

learning models of interest, and in Section 1.3, we describe PAC model boosting results which

are used in later chapters. In Chapters 2 and 3, we present our additive error and relative error

SQ model results, respectively. In Chapter 4, we present some extensions of our results, and

we conclude with a discussion of some open questions in Chapter 5.

1.2 Learning Models

In this section, we formally define the relevant models of learning necessary for the exposition

that follows. We begin by defining the weak and strong PAC learning models, followed by the

classification noise and malicious error models, and finally the statistical query model.

1.2.1 The Weak and Strong PAC Learning Models

In an instance of PAC learning, a learner is given the task of determining a close approximation

of an unknown {0, 1}-valued target function from labelled examples of that function. The

unknown target function f is assumed to be an element of a known function class F defined

over an instance space X. The instance space X is typically either the Boolean hypercube

{0, 1}n or n-dimensional Euclidean space Rn. We use the parameter n to denote the common

length of each instance x E X.

We assume that the instances are distributed according to some unknown probability dis-

tribution D on X. The learner is given access to an example oracle EX(f, D) as its source of

data. A call to EX(f, D) returns a labelled example (x, 1) where the instance x E X is drawn

randomly and independently according to the unknown distribution D, and the label 1 is equal

to f(x). We often refer to a sequence of labelled examples drawn from an example oracle as a

sample.

A learning algorithm draws a sample from EX(f, D) and eventually outputs an hypothesis

Learning Models 17

h from some hypothesis class 7- defined over X. For any hypothesis h, the error rate of h is

defined to be the probability that h mislabels an instance drawn randomly according to D.

By using the notation PrD[P(x)] to denote the probability that a predicate P is satisfied by

an instance drawn randomly according to D, we may define error(h) = PrD[h(x) : f(x)]. We

often think of 7t as a class of representations of functions in X, and as such we define size(f)

to be the size of the smallest representation in Ht of the target function f.

The learner's goal is to output, with probability at least 1 - 6, an hypothesis h whose error

rate is at most e, for the given accuracy parameter and confidence parameter 6. A learning

algorithm is said to be polynomially efficient if its running time is polynomial in 1/e, 1/6, n

and size(f). We formally define PAC learning as follows (adapted from Kearns [19]):

Definition 1 (Strong PAC Learning)

Let F and 71 be function classes defined over X. The class F is said to be polynomially learnable

by 'H if there exists a learning algorithm A and a polynomial p(-.,.,,) such that for any f E TF,

for any distribution D on X, for any accuracy parameter e, 0 < e < 1, and for any confidence

parameter 6, 0 < 6 < 1, the following holds: if A is given inputs e and 6, and access to an

example oracle EX(f, D), then A halts in time bounded by p(1/e, 1/6, n, size(f)) and outputs

an hypothesis h E 'H that with probability at least 1 - 6 satisfies error(h) < e.

As stated, this is often referred to as strong learning since the learning algorithm may be

required to output an arbitrarily accurate hypothesis depending on the input parameter e. A

variant of strong learning called weak learning is identical, except that there is no accuracy

parameter and the output hypothesis need only have error rate slightly less than 1/2, i.e.

error(h) < -7 p(nsize(f) for some polynomial p. Since random guessing would produce

an error rate of 1/2, one can view the output of a weak learning algorithm as an hypothesis

whose error rate is slightly better than random guessing. We refer to the output of a weak

learning algorithm as a weak hypothesis and the output of a strong learning algorithm as a

strong hypothesis.

1.2.2 The Classification Noise and Malicious Error Models

One criticism of the PAC model is that the data presented to the learner is required to be

noise-free. Two popular models of noise for both experimental and theoretical purposes are

1.2

18 Introduction

the classification noise model introduced by Angluin and Laird [2, 21] and the malicious error

model introduced by Valiant [35].

The Classification Noise Model

In the classification noise model, the example oracle EX(f, D) is replaced by a noisy example

oracle EX"N(f, D). Each time this noisy example oracle is called, an instance x E X is drawn

according to D. The oracle then outputs (x, f(x)) with probability 1 - or (x, -f(x)) with

probability , randomly and independently for each instance drawn. Despite the noise in the

labelled examples, the learner's goal remains to output an hypothesis h which, with probability

at least 1 - 6, has error rate error(h) = PrD[h(x) f(x)] at most e.

While the learner does not typically know the exact value of the noise rate , the learner

is given an upper bound Vb on the noise rate, 0 <_ <b < 1/2, and the learner is said to be

polynomially efficient if its running time is polynomial in the usual PAC learning parameters

as well as 1

The Malicious Error Model

In the malicious error model, the example oracle EX(f,D) is replaced by a noisy example

oracle EXPAL(f,D). When a labelled example is requested from this oracle, with probability

1 - 3, an instance x is chosen according to D and (x, f(x)) is returned to the learner. With

probability /, a malicious adversary selects any instance x E X, selects a label 1 E 0, 1}, and

returns (x, 1). Again, the learner's goal is to output an hypothesis h which, with probability at

least 1 - 6, has error rate error(h) = PrD[h(x) f(x)] at most e.

1.2.3 The Statistical Query Model

In the statistical query model, the example oracle EX(f, D) from the standard PAC model is

replaced by a statistics oracle STAT(f, D). An SQ algorithm queries the STAT oracle for the

values of various statistics on the distribution of labelled examples (e.g. "What is the probability

that a randomly chosen labelled example (x, 1) has variable xi = 0 and 1 = 1?"), and the STAT

oracle returns the requested statistics to within some specified additive error. Formally, a

statistical query is of the form [X, T]. Here X is a mapping from labelled examples to {0, 1} (i.e.

1.2 Learning Models 19

X : X x O, 1 -{ (0, 1) corresponding to an indicator function for those labelled examples

about which statistics are to be gathered, while r is an additive error parameter. A call [X, r]

to STAT(f, D) returns an estimate Px of Px = PrD[x(x,f(x))] which satisfies Px - PxJ < r.

A call to STAT(f,D) can be simulated, with high probability, by drawing a sufficiently

large sample from EX(f, D) and outputting the fraction of labelled examples which satisfy

X(x, f(x)) as the estimate Px. Since the required sample size depends polynomially on 1/T and

the simulation time additionally depends on the time required to evaluate X, an SQ learning

algorithm is said to be polynomially efficient if 1/r, the time required to evaluate each X, and

the running time of the SQ algorithm are all bounded by polynomials in 1/e, n and size(f). We

formally define polynomially efficient learning in the statistical query model as follows (adapted

from Kearns [19]):

Definition 2 (Strong SQ Learning)

Let F and 7H be function classes defined over X. The class F is said to be polynomially

learnable via statistical queries by 't if there exists a learning algorithm A and polynomials

P (', ',), P2(,,), and p3(', ,) such that for any f e TF, for any distribution D on X, and for

any error parameter e, 0 < e < 1, the following holds: if A is given input e and access to a

statistics oracle STAT(f, D), then (1) for every query [X, T] made by A, X can be evaluated in

time bounded by p(1/,n, size(f)) and 1/r is bounded by p2 (1/e,n, size(f)), and (2) A halts in

time bounded by p3(1/, n, size(f)) and outputs an hypothesis h e 7'- that satisfies error(h) < e.

For an SQ algorithm A, we may further define its query complexity and tolerance. In a given

instance of learning, the query complexity of A is the number of queries submitted by A, and

the tolerance of A is the smallest additive error requested by A. We let N, = N,(e, n, size(f))

be an upper bound on the query complexity of A, and we let r, = r(e, n, size(f)) be a lower

bound on the tolerance of A. Note that N, < p3(1/e, n, size(f)) and r, > l/p 2 (1/e, n, size(f)).

Since calls to a statistics oracle can be simulated by a procedure which draws a sample from

an example oracle, one can view the statistical query model as simply restricting the way in

which PAC learning algorithms can make use of labelled examples. Kearns has shown that this

restriction is rather weak in that nearly every PAC learning algorithm can be cast in the SQ

model.

1.2 Learning Models 19

20 Introduction

An important property of this model is that calls to a statistics oracle can also be simulated,

with high probability, by a procedure which draws a sample from a classification noise oracle

EXN(f, D) [19] or a malicious error oracle EX AL(f, D) [9]. In the former case, the sample

size required is polynomial in 1/T, 1/(1 - 2b) and log(1/6); in the latter case, the sample

size required is polynomial in 1/7 and log(1/6). While a reasonably efficient simulation of

an SQ algorithm can be obtained by drawing a separate sample for each call to the statistics

oracle, better bounds on the sample complexity of the simulation are obtained by drawing one

large sample and estimating each statistical query using that single sample. If we let Q be the

function space from which an SQ algorithm A selects its queries, then the size of the single

sample required is independent of the query complexity of A but depends on either the size of

Q or the Vapnik-Chervonenkis dimension2 of Q. Q is referred to as the query space of the SQ

algorithm A.

Kearns has shown that an SQ algorithm can be simulated in the classification noise model

using a sample size which depends on Q, 7,, 6, and .7b. Decatur has shown that an SQ

algorithm can be simulated in the malicious error model using a sample size which depends on

Q, 7, and 6. The amount of malicious error which can be tolerated by the latter simulation

depends on T,. Given that nearly every PAC learning algorithm can be converted to an SQ

algorithm, an immediate consequence of these results is that nearly every PAC algorithm can

be transformed into one which tolerates noise. The complexities of these noise-tolerant versions

depend on r, and Q, which themselves are a function of the ad hoc conversion of PAC algorithms

to SQ algorithms. Thus, one cannot show general upper bounds on the complexity of these

noise-tolerant versions of converted PAC algorithms.

We define weak SQ learning identically to strong SQ learning except that there is no accuracy

parameter e. In this case, the output hypothesis need only have error rate slightly less than 1/2,

i.e. error(h) < - -' 2- p(nsze(f)) for some polynomial p. By showing that weak SQ learning

algorithms can be "boosted" to strong SQ learning algorithms, we derive general lower bounds

on the tolerance of SQ learning and general upper bounds on the complexity of the requisite

query space. We are then able to show general upper bounds on the complexity noise-tolerant

PAC learning via the statistical query model. These results are given in Chapters 2 and 3.

2 VC-dimension is a standard complexity measure for a space of {O, 1}-valued functions.

1.3 Boosting in the PAC Model 21~~

1.3 Boosting in the PAC Model

In this section, we describe the PAC model boosting results on which our SQ model boosting

results are based.

Schapire [28, 29] and Freund [14, 15] use similar strategies for boosting weak learning al-

gorithms to strong learning algorithms. They both create a strong hypothesis by combining

many hypotheses obtained from multiple runs of a weak learning algorithm. The boosting

schemes derive their power by essentially forcing the weak learning algorithm, in later runs,

to approximate the target function f with respect to new distributions which "heavily" weight

those instances that previous hypotheses misclassify. By suitably constructing example oracles

corresponding to these new distributions and properly combining the hypotheses obtained from

multiple runs of the weak learning algorithm, a strong learning algorithm can be produced

which uses the weak learning algorithm as a subroutine.

Freund has developed two similar methods (which we call Scheme 1 and Scheme 2) for

boosting weak learning algorithms to a strong learning algorithms. One is more efficient with

respect to while the other is more efficient with respect to -y. Freund develops a hybrid scheme

more efficient than either Scheme 1 or Scheme 2 by combining these two methods in order to

capitalize on the advantages of each. We first describe the two schemes separately and then

show how to combine them.

1.3.1 Boosting via Scheme 1 in the PAC Model

Scheme 1 uses a weak learning algorithm to create a set of k1 = in l weak hypotheses and

outputs the majority vote of these hypotheses as the strong hypothesis. The weak hypotheses

are created by asking the weak learner to approximate f with respect to various modified distri-

butions over the instance space X. The distribution used to generate a given weak hypothesis

is based on the performance of the previously generated weak hypotheses. Hypothesis h is

created in the usual way by using EX(f, D). For all i > 1, hypothesis hi+1 is created by giving

the weak learner access to a filtered example oracle EX(f, Di+l) defined as follows:

Boosting in the PAC Model 211.3

22 Introduction

1. Draw a labelled example (x, f(x)) from EX(f, D).

2. Compute hi(x),..., hi(x).

3. Set r to be the number of hypotheses which agree with f on x.

4. Flip a biased coin with Pr[HEAD] = a.

5. If HEAD, then output example (x, f(x)), otherwise go to Step 1.

When k weak hypotheses are to be generated, the set of probabilities {(a} are fixed according

to the following binomial distribution:

0 if r > L

ifi- [1 r [1
o if r < i -[+ 1

Freund shows that, with high probability, the majority vote of h 1,..., hk1 has error rate no

more than with respect to D if each hj has error rate no more than - - y with respect to Dj.

One pitfall of this scheme is that the simulation of EX(f, Di+1) may need to draw many

examples from EX(f, D) before one is output to the weak learner. Let ti be the probability

that an example drawn randomly from EX(f, D) passes through the probabilistic filter which

defines EX(f, Di+,). Freund observes that if t < c 2 for some constant c, then the majority

vote of h,..., hi is already a strong hypothesis. The boosting algorithm can estimate t, and if

ti is below the cutoff, the algorithm may halt and output the majority vote of the hypotheses

created thus far. The boosting algorithm's time and sample complexity dependence on y is

((1/'y 2), while its dependence on is 0(l/e2). 3

1.3.2 Boosting via Scheme 2 in the PAC Model

Scheme 2 is very similar to Scheme 1. The weak learner is again called many times to provide

weak hypotheses with respect to filtered distributions. This method uses k2 = 2k = 1 In

3For asymptotically growing functions g, g > 1, we define O(g) to mean O(g logc g) for some constant c > 0.
For asymptotically shrinking functions g, 0 < g < 1, we define O(g) to mean O(glog(1/g)) for some constant
c > 0. We define Q2 similarly for constants c < 0. Finally, we define E to mean both O and f2. This asymptotic
notation, read "soft-O," "soft-Omega," and "soft-Theta," is convenient for expressing bounds while ignoring
lower order factors. It is somewhat different than the standard soft-order notation.

1.3

weak hypotheses, while the filtered example oracle remains the same. The main difference is the

observation that if ti <)', then we may simply use a "fair coin" in place of hi+l and still

be guaranteed, with high probability, that the final majority of k2 hypotheses has error rate no

more than c.4 The boosting algorithm estimates ti to see if it is below this new threshold. If so,

a "fair coin" is used as hypothesis hi+, and the algorithm proceeds to find a weak hypothesis

with respect to the next distribution. The boosting algorithm's time and sample complexity

dependence on y is O(l1/y3), while its dependence on is (1/e).

1.3.3 Hybrid Boosting in the PAC Model

An improvement on these two boosting schemes is realized by using each in the "boosting

range" for which it is most efficient. The first method is more efficient in 1/y, while the second

method is more efficient in 1/e. We therefore use the first method to boost from - to a

constant, and we use the second method to boost from that constant to . Let A41 be a learning

algorithm which uses Scheme 1 and makes calls to the weak learning algorithm AI_-. The

strong learning algorithm A, uses Scheme 2 and makes calls to Ai as its "weak learner." The
4

strong hypothesis output by such a hybrid algorithm is a depth two circuit with a majority

gate at the top level. The inputs to the top level are "fair coin" hypotheses and majority gates

whose inputs are weak hypotheses with respect to various distributions. The hybrid's time and

sample complexity dependence on y is (1/'y2), while its dependence on is (1/e).

4A "fair coin" hypothesis ignores its input x and outputs the outcome of a fair coin flip.

Boosting in the PAC Model 23

CHAPTER 2

Learning Results in the
Additive Error SQ Model

In this chapter, we derive a number of results in the additive error statistical query model.

We begin by showing that it possible to boost weak learning algorithms in the SQ model,

and from this we derive general bounds on learning in the SQ model. We then describe a

new method for simulating SQ algorithms in the PAC model with classification noise. Finally,

by combining the aforementioned results, we derive general bounds on PAC learning in the

presence of classification noise which apply to all function classes known to be SQ learnable.

2.1 Boosting in the Statistical Query Model

Boosting is accomplished by forcing a weak learning algorithm to approximate the target func-

tion f with respect to modified distributions over the instance space. Specifically, the boosting

methods described in the previous chapter are based on the observation that, with high probabil-

ity, the majority vote of h, ... , hk has error rate at most e with respect to D if each constituent

h j has error rate at most -y with respect to Dj. In the PAC model, a learner interacts with

the distribution over the instance space through calls to an example oracle. Therefore, boosting

in the PAC model is accomplished by constructing EX(f, Dj) from the original example oracle

EX(f, D). In the SQ model, a learner interacts with the distribution over labelled examples

through calls to a statistics oracle. Therefore, boosting in the SQ model is accomplished by

25

26 Learning Results in the Additive Error SQ Model

constructing STAT(f, Dj) from the original statistics oracle STAT(f, D).

In the sections that follow, we first show how to boost a weak SQ algorithm using either

Scheme 1 or Scheme 2. We then show how to boost a weak SQ algorithm using the hybrid

method. Although it is possible to boost in the SQ model using Schapire's method, we do not

describe these results since they are somewhat weaker than those presented here.

2.1.1 Boosting via Scheme 1 in the Statistical Query Model

We can use Scheme 1 to boost weak SQ learning algorithms by simply answering statistical

queries made with respect to modified distributions. Therefore, we must be able to simulate

queries to STAT(f, Dj) by making queries to STAT(f,D). We first show how to specify the

exact value of a query with respect to Dj in terms of queries with respect to D. We then

determine the accuracy with which we need to make these queries with respect to D in order

to obtain a sufficient accuracy with respect to Dj.

The modified distributions required for boosting are embodied in the five step description

of the filtered example oracle given in Section 1.3.1. Note that Steps 2 and 3 partition the

instance space into i + 1 regions corresponding to those instances which are correctly classified

by the same number of hypotheses. Let X C X be the set of instances which are correctly

classified by exactly r of the i hypotheses. We define the induced distribution Dz on a set Z with

respect to distribution D as follows: For any Y C Z, Dz[Y] = D[Y]/D[Z]. By construction,

for any given Xf region, the filtered example oracle uniformly scales the probability with which

examples from that region are drawn. Therefore, the induced distribution on X" with respect

to Di+l is the same as the induced distribution on Xr with respect to D. (This fact is used to

obtain Equation 2.2 from Equation 2.1 below.)

A query [X, T] to STAT(f, Di+l) is a call for an estimate of PrDi+l [X(x, f(x))] within additive

error r. We derive an expression for PrD,+ [x(x, f(x))] below.

i

PrDo,+ [X(x, f(x))] = PrD,+ [X(x, f(x)) (x X')] PrDj+j [x e X'] (2.1)
r=O

= ZPrD[x(, f(x))I(x E Xf)] PrD,+l[x E X i] (2.2)
r=O

2.1 Boosting in the Statistical Query Model 27

PrD[X(Xf(x)) A (x X) a' PrD(xf()) A (x X)]

r=O 3=0PrD[x E X]=o a * PrD[X E X1.]

Er=O cri PrD[X(X, f(x)) A (x E X)]
(2.3)

EJ=0 a PrD[x E Xj]

Note that the denominator of Equation 2.3 is the probability that an example drawn randomly

from EX(f, D) passes through the probabilistic filter which defines EX(f, Di+l). Recall that

Freund calls this probability ti.

Ignoring the additive error parameter for the moment, the probabilities in Equation 2.3 can

be stated as queries to STAT(f, D) as follows

'.=a'- STAT(f, D)[X X]
STAT(f, Di+)[x] = = oSTAT(f D)[X (2.4)

E =o ai. STAT(f,D)[x}]

where X'(x, l) is true if and only if x E X. Note that query X' is polynomially evaluatable

given h,..., hi, thus satisfying the efficiency condition given in the definition of SQ learning.

We next determine the accuracy with which we must ask these queries so that the final

result is within the desired additive error r. We make use of the following two claims.

Claim 1 If 0 < a, b, c, r < 1 and a = b/c, then to obtain an estimate of a within additive

error r, it is sufficient to obtain estimates of b and c within additive error cr/3.

Proof: We must show that (b + cr/3)/(c - cr/3) < a + r and (b - cr/3)/(c + cr/3) > a - .

The claim is proven as follows.

b + cr/3 a + r/3
c- cr/3 1 - r/3

= (a+ /3) (1 + 1 - -/3)

< (a+r/3) (l+ + 1 1/3)
= (a + r/3)(1 + /2)

= a + a/2 + r/3 + r2/6

< a+r

Boosting in the Statistical Qery Model 272.1

28 Learning Results in the Additive Error SQ Model

b - c7/3 a - T/3
C + CT/3 1 + T/3

(a-r/3)(1 +/3/3
> (a- T/3)(1 - T/3)

= a - ar/3 - /3 + T2/9

> a-7T

Claim 2 If 0 < s,pi, i, < 1, 0 < EiPi < 1 and s = ipizi, then to obtain an estimate

of s within additive error T, it is sufficient to obtain estimates each zi within additive error T

provided that the pi coefficients are known.

Proof: The claim follows immediately from the inequalities given below.

Ei Pi(Zi + T) = Ei PiZi + T EiPi <s + T

Ei Pi(Zi - 7) = Ei PiZi - T Ei Pi > s - T

Applying Claims 1 and 2 to Equation 2.4, we find that it is sufficient to submit queries

to STAT(f, D) with additive error t Tr/3 in order to simulate a call to STAT(f, Di+) with

additive error . There are two problems with this observation. First, if ti is small, then we

are forced to submit queries with small additive error. Second, the value ti is unknown, and in

fact, it is the value of the denominator we are attempting to estimate. We can overcome these

difficulties by employing the "abort" condition of Freund which allows us to either lower bound

ti or abort the search for hi+l.

If ti < ce2, then the majority vote of the hypotheses generated thus far is a strong hypothesis.

Submit each query to STAT(f,D) with additive error 2+3/' Let ti be the estimate for ti

obtained, and note that by Claim 2, ti is within additive error 27/7 of ti. If ti < ce2(1 -2+/T),

then ti < ce2. In this case, we may halt and output the majority vote of the hypotheses

created thus far. If i > CE2(1 _ 2+3/), then ti > cE2(1- 2+3/) = ce2(2 3I7T). In this case, our2+3/estimate is sufficiently accurate since the additive error required by Claim 1 is / and

estimate t is sufficiently accurate since the additive error required by Claim is ti'- r/3, and

2.1 Botn nteSaitclQeyMdl2

ti r/3 > CE2(23/) T/3 = c2 which is the additive error used. Given that the numerator- 2+3/T2+3/-

and denominator are both estimated with additive error ti. -r/3, their ratio is within additive

error r by Claim 1.

We can now bound the tolerance of strong SQ learning algorithms obtained by Scheme 1

boosting. If To0 = ro(n,size(f)) is a lower bound on the tolerance of a weak SQ learning

algorithm, then Q(r0E2) is a lower bound on the tolerance of the strong SQ learning algorithm

obtained by Scheme 1 boosting.

We next examine the query complexity of strong SQ learning algorithms obtained by

Scheme 1 boosting. Let No = No(n,size(f)) be an upper bound on the query complexity

of a weak learner. In Equation 2.4, we note that 2(i + 1) queries to STAT(f, D) are required to

simulate a single query to STAT(f, Di+l). Since kl = 1 In is an upper bound on the number

of weak learners run in the boosting scheme, O(Nok 2) O(N(No log 2 f) is an upper bound on

the query complexity of the strong SQ learning algorithm obtained by Scheme 1 boosting.

We finally examine the query space complexity of strong SQ learning algorithms obtained

by Scheme 1 boosting. There are two cases to consider depending on the nature of the instance

space. If the instance space is discrete, e.g. the Boolean hypercube {O, 1}), then the query space

and hypothesis class used by an SQ algorithm are generally finite. In this case, we can bound

the size of the query space used by the strong SQ learning algorithm obtained by boosting,

and this result is given below. If the instance space is continuous, e.g. n-dimensional Euclidean

space Rn, then the query space and hypothesis class used by an SQ algorithm are generally

infinite. In this case, we can bound the VC-dimension of the query space used by the strong

SQ learning algorithm obtained by boosting, and this result is given in the appendix.

Let Q and 7o be the finite query space and finite hypothesis class used by a weak SQ

learning algorithm. The queries used by the strong SQ learning algorithm obtained by Scheme 1

boosting are of the form X, Xi and XAX' where X E Qo and is constructed from hypotheses in

H/0. The queries X? are defined by i hypotheses and a number j, 0 < j < i. Since the hypotheses

need not be distinct, for fixed i and j, the number of unique Xj queries is (Ilol+i-l).1 For fixed i,

the number of X; queries is (i + 1) (IHol+i-1). Since i is bounded by k, the total number of

'This expression corresponds to the number of unique arrangements of i indistinguishable balls in Hol bins.
Each unique arrangement corresponds to a unique Xj in that the number of balls in bin e corresponds to the
number of copies of the hypothesis associated with bin e used in X

2.1 Boosting in the Statistical Q~uery Model 29

30 Learning Results in the Additive Error SQ Model

X queries is given by L:(i + 1) (til). Given that X E Qo, we may bound the size of

the query space used by the strong SQ learning algorithm obtained from Scheme 1 boosting as

follows:
ki kl

IQBI = IQol + (i + 1) (ol+-1) + IQo I-(i + 1) (IlHol+i-1)
i=l i=1

In the appendix, it is shown that this expression has the following closed form:

BI = (IQoI + 1)(ik1) + IHoI(I Qol + 1)(ol+l 1

Furthermore, it is shown the IQBI is bounded above as follows:

IQBI < 2(IQol + 1)(hltol + 2)k '

The complexity of simulating such an SQ algorithm in the various PAC models will depend on

log IQBI. We note that log IQBI = O(log IQol + kl log Iltol).

Finally, in the appendix it is shown that the VC-dimension of the query space is bounded

as follows:

VC(QB) = O(VC(Qo) + VC(7-o) kl log kj)

Theorem 1 Given a weak SQ learning algorithm whose query complexity is upper bounded by

No = No(n, size(f)), whose tolerance is lower bounded by Tr = TO(n, size(f)), whose query space

and hypothesis class are Qo and -to, respectively, and whose output hypothesis has error rate at

most - y, then a strong SQ learning algorithm can be constructed whose query complexity is

O(No4 log2 3) and whose tolerance is f(moc2). The query space complexity is given by

log IQBj = O(log IQo + 2 log log jol)

when Qo and Hlo are finite, or

VC(QB) = O(VC(Qo) + VC(7-lo) . (1 log) log(log 2))

when Qo and 7-Ho have finite VC-dimension.

2.1.2 Boosting via Scheme 2 in the Statistical Query Model

We can use Scheme 2 to boost weak SQ learning algorithms in a manner quite similar to that

described above. Since the "abort" condition of Scheme 2 introduces "fair coin" hypotheses, we

2.1 Boosting in the Statistical Query Model 31

first rederive the probability that X(x, f(x)) is true with respect to Di+1 in terms of probabilities

with respect to D.

When i hypotheses have been generated, let w be the number of weak hypotheses and

let i - w be the number of "fair coin" hypotheses. The weak hypotheses h, ... , h, partition

the instance space X into w + 1 regions corresponding to those instances which are correctly

classified by the same number of weak hypotheses. Let Xw C X be the set of instances which

are correctly classified by exactly r of the w weak hypotheses. Consider the probability that an

instance x E XrW passes through the probabilistic filter which defines EX(f, Di+1). If none of the

"fair coin" hypotheses agree with f, then this probability is ai. If j of the "fair coin" hypotheses

agree with f, the this probability is ai+j. The total probability is thus A = aj-o - jPi-w

where pj- " = (i-)/2i-w is the probability that exactly j of the "fair coin" hypotheses agree

with f. The following filtered example oracle is equivalent to EX(f, Di+l):

1. Draw a labelled example (x, f(x)) from EX(f, D).

2. Compute hi(x),..., h(x).

3. Set r to be the number of hypotheses which agree with f on x.

4. Flip a biased coin with Pr[HEAD] = A.-

5. If HEAD, then output example (x, f(x)), otherwise go to Step 1.

may now derive an expression for PrD,,, IX(x, f(x))] as before.

w

= EPrD,+l[X(x,f(x))l(x E Xr)] PrDi+[x E Xr]
r=O

w

= PrD[X(x, f(x))I(x E Xr)] PrDi+ [x E Xw]
r=O

PrD[X(x, f(x)) A (x E X)] AT . PrD[X e X-]

r=O PrD[X E X] Ej=0 A PrD[x E Xjw]

E'= 0 Aw . PrD[X(X, f(x)) A (x E Xl)]

Ej=o A .PrD[x E XjW]

EjW=o XA STAT(f, D)[X A XjW]

EjW=o AjW STAT(f, D)[xj]

(2.5)

(2.6)

Note that the denominators of Equations 2.5 and 2.6 again correspond to the probability ti.

Also note that = A = - 1 since the unique terms of the latter sum-- j=O o < 1 since the unique terms of the latter sum

We

2.1 Boosting in the Statistical Qery Model 31

Pr~j; [X(X, f (X)l

STAT(f,Doi+)[x]

32 Learning Results in the Additive Error SQ Model

are all contained in the product (= 0 car)(E7 =/3i-W 1.

Applying Claims 1 and 2 to Equation 2.6, we again find that it is sufficient to submit queries

to STAT(f,D) with additive error ti 7/3 in order to simulate a call to STAT(f, Di+l) with

additive error 7. Again, there are two problems with this observation. First, if ti is small, then

we are forced to submit queries with small additive error. Second, the value ti is unknown, and

in fact, it is the value of the denominator we are attempting to estimate. We can overcome

these difficulties by employing the "abort" condition of Freund which allows us to either lower

bound ti or use a "fair coin" in place of hi+l.

If t < (1 -)y/ ln(1/e), then a "fair coin" can be used in place of hi+l. Submit each query

to STAT(f,D) with additive error (1-E)/n(l/e). Let ti be the estimate for the ti obtained, and

note that by Claim 2, ti is within additive error (1-e)/ln(l/E) of ti. f ti <) (1 1
2+3/-r ln7l/E) 2+3/-'

then t < (1 - e)y/ ln(1/e). In this case, we may use a "fair coin" in place hi+l and proceed to

the next distribution. If t >) (1 - 2+ /) then ti > (1 2+/) = (1E) () InIn(1/ 23/- -In(i//) 2+3/ r '
this case, our estimate ti is sufficiently accurate since the additive error required by Claim I is

ti 7/3, and ti ·T/3 > (1E) (3r) T/3 = E(1-2)1/1/E) which is the additive error used. Given

that the numerator and denominator are both estimated with additive error t . T/3, their ratio

is within additive error T by Claim 1.

We can now bound the tolerance of strong SQ learning algorithms obtained by Scheme 2

boosting. If T0 = ro(n,size(f)) is a lower bound on the tolerance of a weak SQ learning

algorithm, then Q(rToey/log(l/e)) is a lower bound on the tolerance of the strong SQ learning

algorithm obtained by Scheme 2 boosting.

We next examine the query complexity of strong SQ learning algorithms obtained by

Scheme 2 boosting. Let No = No(n,size(f)) be an upper bound on the query complexity

of a weak learner. In Equation 2.6, we note that 2(w + 1) < 2(i + 1) queries to STAT(f, D) are

required to simulate a single query to STAT(f, Di+,). Since k2 = 1 In is an upper bound on

the number of weak learners run in the boosting scheme, O(N0 k 2
2) = O(No 1 log2) is an up-

per bound on the query complexity of the strong SQ learning algorithm obtained by Scheme 2

boosting.

We finally note that the query space complexity results for Scheme 2 boosting are identical

to those for Scheme 1 boosting when k is replace by k2.

General Bounds on Learning in the Statistical Query Model 33

Theorem 2 Given a weak SQ learning algorithm whose query complexity is upper bounded by

No = No(n, size(f)), whose tolerance is lower bounded by r0 = To(n, size(f)), whose query space

and hypothesis class are Qo and 7Hlo, respectively, and whose output hypothesis has error rate at

most - y, then a strong SQ learning algorithm can be constructed whose query complexity is

O(N0 log 2) and whose tolerance is Q(roTy/ log(1/e)). The query space complexity is given

by

log IQBI = O(log IQol + l2 .�l 1 og 1o1)

when Qo and Ho are finite, or

VC(QB) = O(VC(Qo) + VC(-) . (log log 1 log 1g(log))

when Qo and lo have finite VC-dimension.

2.1.3 Hybrid Boosting in the Statistical Query Model

We obtain a more efficient boosting scheme in the SQ model by combining the two previously

described methods. As in the PAC model, we use Scheme 1 to boost from -y to and

Scheme 2 to boost from to e. By combining the results of Theorem 1 and Theorem 2, we

obtain the following improved boosting result.

Theorem 3 Given a weak SQ learning algorithm whose query complexity is upper bounded by

No = No(n, size(f)), whose tolerance is lower bounded by ro0 = ro(n, size(f)), and whose output

hypothesis has error rate at most - y, then a strong SQ learning algorithm can be constructed

whose query complexity is O(No log2) and whose tolerance is Q(roe/log(1/e)).

Note that the tolerance of the strong SQ learning algorithm constructed has no dependence

on y in this hybrid boosting scheme.

2.2 General Bounds on Learning in the Statistical Query Model

In this section, we derive general upper bounds on the complexity of statistical query learning.

These results are obtained by applying the boosting results of the previous section. We further

show that our general upper bounds are nearly optimal by demonstrating the existence of a

function class whose minimum learning complexity nearly matches our general upper bounds.

2.2

34 Learning Results in the Additive Error SQ Model

2.2.1 General Upper Bounds on Learning in the SQ Model

Just as the sample complexity of boosting in the PAC model yields general upper bounds on the

sample complexity of strong PAC learning, the query, query space and tolerance complexities

of boosting in the SQ model yield general bounds on the query, query space and tolerance

complexities of strong SQ learning.

We can convert any strong SQ learning algorithm into a weak SQ learning algorithm by

"hardwiring" the accuracy parameter e to a constant. We can then boost this learning algo-

rithm, via Scheme 2 for instance, to obtain a strong SQ learning algorithm whose dependence

on is nearly optimal.

Theorem 4 If the class F' is strongly SQ learnable, then .F is strongly SQ learnable by an al-

gorithm whose query complexity is O(No log2), whose tolerance is Q(Toe/ log(1/e)), and whose

query space complexity is O(p3(n) log) when the query space is finite or O(p4 (n) log log log i)

when the query space has finite VC-dimension, where No = pi(n, size(f)), T = /p 2(n, size(f))

and pi, P2, P3 and p4 are polynomials.

While we have focused primarily on the query, query space and tolerance complexities of

SQ learning, we note that our boosting results can also be applied to bound the time, space

and hypothesis size complexities of SQ learning. It is easily shown that, with respect to e, these

complexities are bounded by O(log2) O(log l) and O(log 1) respectively.

For any function class of VC-dimension d, Kearns [19] has shown that learning in the SQ

model requires Q(d/l log d) queries each with additive error O(e). Whereas Kearns simultane-

ously lower bounds the query complexity and upper bounds the tolerance, we have simultane-

ously upper bounded the query complexity and lower bounded the tolerance. Note that the

tolerance we give in Theorem 4 is optimal to within a logarithmic factor. While Kearns' gen-

eral lower bound leaves open the possibility that there may exist a general upper bound on the

query complexity which is independent of e, we show that this is not the case by demonstrating

a specific learning problem which requires fQ(o-d log) queries each with additive error O(e) in

the SQ model. Thus, with respect to e, our general upper bound on query complexity is within

a log(1/e) factor of the best possible general upper bound.

General Bounds on Learning in the Statistical Query Model 35

2.2.2 A Specific Lower Bound for Learning in the SQ Model

In this section, we describe a function class whose minimum learning complexity nearly matches

our general upper bounds. We begin by introducing a game on which our learning problem is

based.

Consider the following two player game parameterized by t, d and N where t < d < N. The

adversary chooses a set2 S C [N] of size d, and the goal of the player is to output a set T C [N]

such that IS A TI < t. The player is allowed to ask queries of the form Q C [N] to which the

adversary returns IQ n SI.

Lemma 1 For any d 4, t < d/4 and N = Q(dl +a) for some > 0, the player requires

Q(lod log N) queries of the oracle, in the worst case.

Proof: Any legal adversary must return responses to the given queries which are consistent

with some set S C [N] of size d. We construct an adaptive, malicious adversary which works

as follows. Let S C 2 N] be the set of all (N) subsets of size d. When the player presents

the first query Q1 C [N], the adversary calculates the value of IS n Q1I for every S E So and

partitions the set So into d + 1 sets SO, Sol,..., S where each subset S e S has IS n Q1l = i.

For i = arg maxj So 1), the adversary returns the value i and lets S1 = S. In general, Sk is

the set of remaining subsets which are consistent with the responses given to the first k queries,

and the adversary answers each query so as to maximize the remaining number of subsets. Note

that ISkI > ISol/(d + 1)k = ()/(d + 1)k.

For any S C 2[N], we define width(S) = maxs,,s 3es {Si A Sjl}. Note that if width(Sk) > 2t,

then there exist at least two sets S, S2 E Sk such that IS1 A S21 > 2t. This implies that there

cannot exist a set T which satisfies both S1 A TI < t and IS2 A TI < t (since A is a metric over

the space of sets which satisfies the triangle inequality property). If the player were to stop

and output a set T at this point, then the malicious adversary could always force the player to

lose. We now bound width(Sk) as a function of Ski. This, combined with our bound on Sk as

a function of k, will effectively bound the minimum number of queries required by the player.

2We use the standard combinatorial notation [N] = {1,..., N).

2.2

36 Learning Results in the Additive Error SQ Model

We make use of the following inequalities: 3

(r (r) r r

For any S C 2[N] of width at most w, one can easily show that]SI < ((N)). Thus, if

ISk > ((2t)), then width(Sk) > 2t. We now note that any k which satisfies the following

inequality will guarantee that width(Sk) > 2t:

N < (N < < < d ISk ~d2t - d/2 -f < (d +)k - (d +)k
Solving the third inequality for (d + 1)k, we obtain:

N d d/2 d/2 N d/2
(d + 1) k <

\d eN = 2ed

Thus, a lower bound on the number of queries required by the player is

log N (d

log(d + 1) log N)

for N = Q(dl+a). El

Now consider a learning problem defined as follows. Our instance space X is the set of

natural numbers Af, and our function class is the set of all indicator functions corresponding to

subsets of A of size d. This function class is easily learnable in the SQ model. In what follows,

we show that any deterministic SQ algorithm for this class requires Q2(od log -) queries with

additive error O(e).

Theorem 5 There exists a parameterized family of function classes which require Q(d log 1)

queries with additive error O(e) to learn in the SQ model.

Proof: Consider the two-player game as defined above. For an instance of the game specified

by t, d and N (where d > 4, t < d/4 and N = Q(dl+a)), we create an instance of the learning

problem as follows. We define our distribution D over A to place weight 4/Nd on each point

3We use the standard combinatorial notation ((n)) = E=0 (n).

Simulating SQ Algorithms in the Classification Noise Model 37

1,..., N and to place weight 1 - 4/d on the point N + 1. All other points have zero weight. We

set = 1/N and call the deterministic SQ learning algorithm. Note that the target subset has

weight 4/N, so if the SQ algorithm submits a query with additive error greater than 4e = 4/N

we may answer the query ourselves (as if the target subset were "empty"). For any query X

submitted with tolerance less than 4, we determine the exact answer as follows. Begin with

an answer of 0. If X(N + 1, 0) = 1, then add 1 - 4/d to the answer. Determine the following

three subsets of [N]: X', X1 and X2 where x X ° if X(x, 0) = and X(x, 1 - 0, x X if

(x, 0) = O and X(, 1)= 1, and x E X2 if X(x, 0) = 1 and X(x, 1) = 1. Add IX2 1L4/Nd to the

answer. Submit the query X° to the adversary, and for a response r add (IX °I - r). 4/Nd to

the answer. Submit the query X1 to the adversary, and for a response r add r · 4/Nd to the

answer. Return the final value of the answer to the SQ algorithm.

Note that we are able to answer each SQ algorithm query by submitting only two queries

to the adversary, and we need not submit any queries to the adversary if the requested additive

error is greater than 4. Since Q(l d logN) queries of the adversary are required, the SQ

algorithm must ask fQ(id log N) = Q(Id log) queries with additive error 0(e). 0

Using techniques similar to those found in Kearns' lower bound proof [19], the above proof

can easily be modified to show that even if the adversary chooses his subset randomly and

uniformly before the game starts, then there exists some constant probability with which any

SQ algorithm (deterministic or probabilistic) will fail if it asks o(j- d log) queries with additive

error 0(e).

2.3 Simulating SQ Algorithms in the Classification Noise Model

In this section, we describe an improved method for efficiently simulating a statistical query

algorithm in the classification noise model. The advantages of this new method are twofold.

First, our simulation employs a new technique which significantly reduces the running time of

simulating SQ algorithms. Second, our formulation for estimating individual queries is simpler

and more easily generalized.

Kearns' procedure for simulating SQ algorithms works in the following way. Kearns shows

that given a query X, Px can be written as an expression involving the unknown noise rate q

2.3

38 Learning Results in the Additive Error SQ Model

and other probabilities which can be estimated from the noisy example oracle EXCN(f, D). We

note that the derivation of this expression relies on X being {O, 1l-valued. The actual expression

obtained is given below.

1
PI 1_ 2 rPX + I 1 _2r P2Px 1 _2 Pi (2.7)1 - X_2 -- 1 -2 7

In order to estimate Px with additive error r, a sensitivity analysis is employed to determine

how accurately each of the components on the right-hand side of Equation 2.7 must be known.

Kearns shows that for some constants cl and c2, if 7 is estimated with additive error ciT(1 - 277)2

and each of the probabilities is estimated with additive error c2T(1 - 27b), then the estimate

obtained for Px from Equation 2.7 will be sufficiently accurate. Since the value of is not

known, the procedure for simulating SQ algorithms essentially guesses a set of values for ,

{170,7,. .. ,7}, such that at least one 7j satisfies l7j - 7 < cT(1 - 27)2 where Tr is a lower

bound on the tolerance of the SQ algorithm. Since cr(l - 277b)2 < c*(l - 27)2, the simulation

uniformly guesses O(T(1 12)2) values of between 0 and rib. For each guess of , the simulation

runs a separate copy of the SQ algorithm and estimates the various queries using the formula

given above. Since some guess at 7 was good, at least one of the runs will have produced a

good hypothesis with high probability. The various hypotheses are then tested to find a good

hypothesis, of which at least one exists. Note that the 7-guessing has a significant impact on

the running time of the simulation.

In what follows, we show a new derivation of Px which is simpler and more easily gener-

alizable than Kearns' original version. We also show that to estimate an individual Px, it is

only necessary to have an estimate of 7 within additive error cT(1 - 27q) for some constant c.

We further show that the number of 7-guesses need only be O(l log), thus significantly

reducing the time complexity of the SQ simulation.

2.3.1 A New Derivation for Px

In this section, we present a simpler derivation of an expression for Px. In previous sections,

it was convenient to view a {0,1}-valued X as a predicate so that Px = PrD[x(x,f(x))]. In

this section, it will be more convenient to view X as a function so that P, = ED[X(x, f(x))].

Further, by making no assumptions on the range of X, the results obtained herein can easily be

Simulating SQ Algorithms in the Classification Noise Model 39

generalized; these generalizations are discussed in Chapter 4.

Let X be the instance space, and let Y = X x {0, 1} be the labelled example space. We

consider a number of different examples oracles and the distributions these example oracles

impose on the space of labelled examples. For a given target function f and distribution D

over X, let EX(f, D) be the standard, noise-free example oracle. In addition, we define the

following example oracles: Let EX(f, D) be the anti-example oracle, EX"N(f,D) be the noisy

example oracle and EX"N(f,D) be the noisy anti-example oracle. Note that we have access

to EX"N(f, D) and we can easily construct EX7N(f, D) by simply flipping the label of each

example drawn from EXN N(f, D).

Each of these oracles imposes a distribution over labelled examples. Let Df, Di, D7 and

D be these distributions, respectively. Note that P, = ED[X(, f(z)) = ED, [X]

Finally, for a labelled example y = (x, 1), let y = (x, 1). We define X(y) = X(Y). Note that

X is a new function which, on input (,l), simply outputs X(x,l). The function X is easily

constructed from X.

Theorem 6

P = EDf [X] =) D (2.8)

Proof: We begin by relating the various example oracles defined above. Recall that the noisy

example oracle EXN(f,D) is defined as follows: Draw an instance x E X according to D

and output (x, f(x)) with probability 1 - or (x, -if(x)) with probability Ar. The draw of x

is performed randomly and independently for each call to EX(f,D), and the correct or

incorrect labelling of x is performed randomly and independently for each call to EX (f, D).

In particular, the correct or incorrect labelling of x is not dependent on the instance x itself.

Given the independence described above, we may equivalently define EXCN(f,D) (and

EXN(f, D)) as follows:

EX/N(f, D) = EX(f,D) with probability 1 -
EX(f, D) with probability 7

1EX7,(fD) = EX(f,D) with probability 1-

EX(f, D) with probability rl

2.3

40 Learning Results in the Additive Error SQ Model

We may use these equivalent definitions to deduce the following:

ED`[X] = (1-1)ED,[XI+1EDF[X] (2.9)

ED[X] = (1 -?)EDf[X] +nEDf[X] (2.10)

Multiplying Equation 2.9 by (1 - .) and Equation 2.10 by , we obtain:

(1 -)ED [XI = (1 -)2 ED[XI + (1 -)ED[X] (2.11)

.ED[X = (1 -)ED[X + 2 EDf[X] (2.12)

Subtracting Equation 2.12 from Equation 2.11 and solving for ED, [X], we finally obtain:

(1 -)ED" [X] - ED [X]
EDf [XI= 1-

1 - 21

To obtain Equation 2.8, we simply note that ED" [X] = ED" []. [

Note that in the derivation given above, we have not assumed that X is {0, 1}-valued. This

derivation is quite general and can be applied to estimating the expectations of real-valued

queries. This result is given in Chapter 4.

Finally, note that if we define

Xn(Y) = (1 -)X(Y) - (Y)
1- 2,

then Px = EDf [X] = ED" [Xn]. Thus, given a X whose expectation we require with respect to

the noise-free oracle, we can construct a new X whose expectation with respect to the noisy

oracle is identical to the answer we require. This formulation may even be more convenient if

one has the capability of estimating the expectation of real-valued functions; we discuss this

generalization in Chapter 4.

2.3.2 Sensitivity Analysis

In this section, we provide a sensitivity analysis of Equation 2.8 in order to determine the

accuracy with which various quantities must be estimated. We make use of the following claim.

Simulating SQ Algorithms in the Classification Noise Model 41

Claim 3 If 0 < a, b, c, T < 1 and {a = b/c, a = b c, a = b - c}, then to obtain an estimate of

a within additive error 7, it is sufficient to obtain estimates of b and c within additive error

({c/3, 7T(Vf2- 1), /2}, respectively.

Proof: The a = b/c case is proven in Claim 1. The a = b c case is proven as follows.

(b + -(v/2 - 1)) (c+ (+ V2- 1)) = b .c + b(2 - 1) +c7(- 1) + 2(2 - 1)2

= a + b(V - 1) + cr(x/- 1) + 2(3 - 2V2)

< a + (V2 - 1) + 7r(V2- 1) + 7(3 - 22)

= a+7

(b - 7r(V - 1)). (c - 7(V2 - 1)) = b. c - b7r(v2- 1) - c(V - 1) + 2(2 - 1)2
= a - b7r(V2- 1) - cr(V2/- 1) + 2(3 - 22)

> a - (/- 1) - (vf2- 1)

> a--7T

The a = b - c case is trivial. O

Lemma 2 Let I7, ED" [X] and ED [] be estimates of r, ED" [X] and ED" [X] each within additive

error (1 - 2r)(v/2- 1)/6. Then the quantity

(1 -)ED [X] - ED' [X]
1 - 2r

is within additive error of Px = EDf [X]-

Proof: To obtain an estimate of the right-hand side of Equation 2.8 within additive error ,

it is sufficient to obtain estimates of the numerator and denominator within additive error

(1 - 2)7/3. This condition holds for the denominator if is estimated with additive error

(1 - 2)-/6.
To obtain an estimate of the numerator within additive error (1 - 2)7r/3, it is sufficient to

estimate the summands of the numerator with additive error (1 - 2)7r/6. Similarly, to obtain

accurate estimates of these summands, it is sufficient to estimate 7, ED];[X] and ED[] each

with additive error (1 - 2)7T(V - 1)/6. 0

2.3

42 Learning Results in the Additive Error SQ Model

Estimates for ED [X] and ED [] are obtained by sampling, and an "estimate" for 1 is

obtained by guessing. We address these issues in the following sections.

2.3.3 Estimating ED' [X] and ED [X]
f f

One can estimate the expected values of all queries submitted by drawing separate samples

for each of the corresponding X and x's and applying Lemma 2. However, better results are

obtained by appealing to uniform convergence.

Let Q be the query space of the SQ algorithm and let Q = {X: X E Q}. The query space of

our simulation is Q' = Q U Q. Note that for finite Q, IQ'I < 21 Q. One can further show that

for all Q, VC(Q') < c VC(Q) for a constant c 4.66. This result is given in the appendix.

If r, is a lower bound on the minimum additive error requested by the SQ algorithm and

rib is an upper bound on the noise rate, then by Lemma 2, (1 - 2]b)T,(/2- - 1)/6 is a sufficient

additive error with which to estimate all expectations. Standard uniform convergence results

can be applied to show that all expectations can be estimated within the given additive error

using a single noisy sample of size

ml = O (2(1 - 2/b)2 log Q

in the case of a finite query space, or a single noisy sample of size

T(n VC (Q) log + log
T2(1 - 2qb)2 T (1 - 2b) + 2(1 - 26) 2 6

in the case of an infinite query space of finite VC-dimension.

2.3.4 Guessing the Noise Rate r

By Lemma 2, to obtain an estimate for P,, it is sufficient to have an estimate of the noise rate

/l within additive error (1 - 27)r,(V2 - 1)/6. Since the noise rate is unknown, the simulation

guesses various values of the noise rate and runs the SQ algorithm for each guess. If one of the

noise rate guesses is sufficiently accurate, then the corresponding run of the SQ algorithm will

produce the desired accurate hypothesis.

To guarantee that an accurate 7-guess is used, one could simply guess (r (1'_1 2)) values

Simulating SQ Algorithms in the Classification Noise Model 43

of spaced uniformly between 0 and 7b. This is essentially the approach adopted by Kearns.

Note that this would cause the simulation to run the SQ algorithm O(.(12,7b)) times.

We now show that this "branching factor" can be reduced to O(1 log lL_) by constructing

our 7a-guesses in a much better way. The result follows immediately from the following lemma

when y = (- 1)/6

Lemma 3 For all y7, b < 1/2, there exists a sequence of 7-guesses {(7o, 771, ... ,7i} where i =

O(, log 1_) such that for all 7 E [0, Nb], there exists an 7j which satisfies I -j < yI (1-27).

Proof: The sequence is constructed as follows. Let 0 = 0 and consider how to determine 7j

from 7rj-1- The value rj- 1 is a valid estimate for all 7 > 7j-l which satisfy 7 - y(l - 2 7) < %7j-1.

Solving for , we find that 7j-1 is a valid estimate for all E [71j-1, '7]. Consider an

7j > '7'+ The value rlj is a valid estimate for all 1 < j which satisfy 1 + y(l - 27r) > j.

Solving for 7, we find that 7j is a valid estimate for all l E [_, 7j]. To ensure that either 7j-l

or rj is a valid estimate for any E [7j-1, rj], we set

?rj-l+y_- 7 -
1+ 2y 1 - 2y

Solving for 7j in terms of 7j-,, we obtain

1 - 2y 2-y
7=1 + 2 j- 1 + 27

Substituting y' = 2 y/(1 + 2y), we obtain the following recurrence:

i7j = (1 - 2y') r_7j- + y'

Note that if y < 1/2, then y' < 1/2 as well.

By constructing 7-guesses using this recurrence, we ensure that for all r7 E [0, 7i], at least

one of {O70,.. . i} is a valid estimate. Solving this recurrence, we find that

i-1
r7i = 7Y' (1 - 2-y')j + ro(1 - 2y')i .

j=o

Since ro = 0 and we are only concerned with 77 < b, we may bound the number of guesses

2.3

44 Learning Results in the Additive Error SQ Model

required by finding the smallest i which satisfies

i-1

y' (1 - 2y')j > 7b-

Given that
i-i (1 - (1 - 2') '

j=0o

1 - (1 - 2y')i

2

we need (1 - 2y') i < 1- 2 . Solving for i, we find that any i > In l l /ln 1 is sufficient.

Using the fact that 1/x > 1/x n 1 for all x E (0, 1), we find that

1 1i = - ·In
27' 1 - 2rib

1 + 2 -y
4 y

1
· ln- 1 - 2 b

is an upper bound on the number of guesses required. 0

2.3.5 The Overall Simulation

We now combine the results of the previous sections to obtain an overall simulation as follows:

1. Draw ml labelled examples from EXcN(f,D) in order to estimate the expectations in

Step 2.

2. Run the SQ algorithm once for each of the O(log lI) 7r-guesses, estimating the various

queries by applying Lemma 2 and using the sample drawn.

3. Draw m 2 samples and test the O(1 log 1-) hypotheses obtained in Step 2. Output one

of these hypotheses whose error rate is at most e.

Step 3 can be accomplished by a generalization of a technique due to Laird [21]. The sample

size required is

m le(1-2)2og(
1

log
6,r* i - 2b

Since 1/r, = Q(1/e) for all SQ algorithms [19], we obtain the following theorem on the total

sample complexity of this simulation.

Theorem 7 If F is learnable by a statistical query algorithm which makes queries from query

space Q with worst case additive error r,, then F is PAC learnable in the presence of classifica-

Simulating SQ Algorithms in the Classification Noise Model 45

tion noise. If Yb < 1/2 is an upper bound on the noise rate, then the sample complexity required

is

(g1-27b)2 + log log l__2)
when Q is finite or

(vc(Q) '1 log)
((1-2,b)2 log (1-2nb) - .2(1-2n,)2 log a

when Q has finite VC-dimension.

By combining our results on general bounds for SQ learning and classification noise simu-

lation, we immediately obtain the following corollary.

Corollary 1 If FT is SQ learnable, then . is PAC learnable in the presence of classification

noise. The dependence on e and Yb of the required sample complexity is O(E2(12i)2)).

To determine the running time of our simulation, one must distinguish between two different

types of SQ algorithms. Some SQ algorithms submit a fixed set of queries independent of

the estimates they receive for previous queries. We refer to these algorithms as "batch" SQ

algorithms. Other SQ algorithms submit various queries based upon the estimates they receive

for previous queries. We refer to these algorithms as "dynamic" SQ algorithms. 4 Note that

multiple runs of a dynamic SQ algorithm may produce many more queries which need to

be estimated. Since the vast majority of the time required to simulate most SQ algorithms

is spent estimating queries using a large sample, the time complexity of simulating dynamic

SQ algorithms is greatly affected by the "branching factor" of the simulation. By reducing

the "branching factor" of the simulation from O((1 2)) to (log), the asymptotic

running time of our simulation is greatly improved.

With respect to q, the running time of our simulation is O((1_)2). Simon [30] has shown

a sample and time complexity lower bound of Q((i)) for PAC learning in the presence of

classification noise. We therefore note that the running time of our simulation is optimal with

respect to the noise rate (modulo lower order logarithmic factors). For dynamic algorithms,

the time complexity of our new simulation is in fact a O6((i1)') factor better than the current

simulation.

4 Note that we consider any SQ algorithm which uses a polynomially sized query space to be a "batch"
algorithm since all queries may be processed in advance.

2.3

CHAPTER 3

Learning Results in the
Relative Error SQ Model

In this chapter, we propose a new model of statistical query learning based on relative error.

We show that learnability in this new model is polynomially equivalent to learnability in the

standard, additive error model; however, this new model is advantageous in that SQ algorithms

specified in this model can be simulated more efficiently in some important cases.

3.1 Introduction

In the standard model of statistical query learning, a learning algorithm asks for an estimate

of the probability that a predicate X is true. The required accuracy of this estimate is specified

by the learner in the form of an additive error parameter. The limitation of this model is

clearly evident in even the standard, noise-free statistical query simulation [19]. This simula-

tion uses Q(1/-, 2) examples. Since 1/r, = Q(1/e) for all SQ algorithms [19], this simulation

effectively uses Q(1/e2) examples. However, the -dependence of the general bound on the

sample complexity of PAC learning is e(1/e) [7, 11].

This Q(1/T,2) = Q2(1/e2) sample complexity results from the worst case assumption that

large probabilities may need to be estimated with small additive error in the SQ model. Either

the nature of statistical query learning is such that learning sometimes requires the estimation of

large probabilities with small additive error, or it is always sufficient to estimate each probability

47

48 Learning Results in the Relative Error SQ Model

with an additive error comparable to the probability. If the former were the case, then the

present model and simulations would be the best that one could hope for. We show that the

latter is true, and that a model in which queries are specified with relative error is a more

natural and strictly more powerful tool.

We define such a model of relative error statistical query learning and we show how this

new model relates to the standard additive error model. We also show general upper bounds

on learning in this new model which demonstrate that for all classes learnable by statistical

queries, it is sufficient to make estimates with relative error independent of e. We then give

roughly optimal PAC simulations for relative error SQ algorithms. Finally, we demonstrate

natural problems which only require estimates with constant relative error.

3.2 The Relative Error Statistical Query Model

Given the motivation above, we modify the standard model of statistical query learning to allow

for estimates being requested with relative error. We replace the additive error STAT(f, D)

oracle with a relative error Rel-STAT(f, D) oracle which accepts a query X, a relative error

parameter fi, and a threshold parameter 0. The value P, = PrD[x(x, f(x))] is defined as before.

If Px is less than the threshold 0, then the oracle may return the symbol . If the oracle does

not return I, then it must return an estimate P% such that

Px(-) <X < P(1 +)

Note that the oracle may chose to return an accurate estimate even if Px < 0. A class is said

to be learnable by relative error statistical queries if it satisfies the same conditions of additive

error statistical query learning except we instead require that 1/u and 1/0 are polynomially

bounded. Let t,, and 0, be the lower bounds on the relative error and threshold of every query

made by an SQ algorithm. Given this definition of relative error statistical query learning, we

show the following desirable equivalence.

Theorem 8 FZ is learnable by additive error statistical queries if and only if f is learnable by

relative error statistical queries.

3. aua xml fRlaieErrS erig 4

Proof: One can take any query X to the additive error oracle which requires additive error r

and simulate it by calling the relative error oracle with relative error r and threshold r. If

Px = I, then return 0; else, return Px.

Similarly, one can take any query to the relative error oracle which requires relative error I

and threshold 0 and simulate it by calling the additive error oracle with additive error /1 0/3. If

Px < 0(1 - /3), then return I; else, return Px.

In each direction, the simulation uses polynomially bounded parameters if and only if the

original algorithm uses polynomially bounded parameters. [1

Kearns [19] shows that almost all classes known to be PAC learnable are learnable with

additive error statistical queries. By the above theorem, these classes are also learnable with

relative error statistical queries. In addition, the hardness results of Kearns [19] for learning

parity functions and the general hardness results of Blum et al. [6] based on Fourier analysis

also hold for relative error statistical query learning.

3.3 A Natural Example of Relative Error SQ Learning

In this section we examine a learning problem which has both a simple additive error SQ

algorithm and a simple relative error SQ algorithm. We consider the problem of learning a

monotone conjunction of Boolean variables in which the learning algorithm must determine

which subset of the variables {xl,..., x,} are contained in the unknown target conjunction f.

We construct an hypothesis h which contains all the variables in the target function f, and

thus h will not misclassify any negative examples. We further guarantee that for each variable

xi in h, the distribution weight of examples which satisfy "xi = 0 and f(x) = 1" is at most e/n.

Therefore, the distribution weight of positive examples which h will misclassify is at most e.

Such an hypothesis has error rate at most e.

Consider the following query: Xi(x, I) = [(xi = 0) A (1 = 1)]. Px, is simply the probability

that xi is false and f(x) is true. If variable xi is in f, then Px, = 0. If we mistakenly include a

variable xi in our hypothesis which is not in f, then the error due to this inclusion is at most

P,. We simply construct our hypothesis by including all target variables, but no variables xi

for which Px, > e/n.

A Natural Example of Relative Error S Learning 493.3

50 Learning Results in the Relative Error SQ Model

An additive error SQ algorithm queries each Xi with additive error e/2n and includes all

variables for which the estimate Pi, < e/2n. Even if P, = 1/2, the oracle is constrained to

return an estimate with additive error less than e/2n. A relative error SQ algorithm queries each

Xi with relative error 1/2 and threshold e/n and includes all variables for which the estimate

P. is 0 or .

The sample complexity of the standard, noise-free PAC simulation of additive error SQ algo-

rithms depends linearly on l/,2 [19], while in Section 3.5, we show that the sample complexity

of a noise-free PAC simulation of relative error SQ algorithms depends linearly on 1/20 ,. Note

that in the above algorithms for learning conjunctions, 1/T,2 = (n2/e2) while 1//20*, = (n/e).

We further note that p, is constant for learning conjunctions. We show in Section 3.4 that no

learning problem requires ,* to depend on e and in Section 3.6 that ,u, is actually a constant

in many algorithms.

3.4 General Bounds on Learning in the Relative Error SQ Model

In this section, we prove general upper bounds on the complexity of relative error statistical

query learning. We do so by applying boosting techniques [14, 15, 28] and specifically, these

techniques as applied in the statistical query model. We first prove some useful lemmas which

allow us to decompose relative error estimates of ratios and sums.

Lemma 4 If 0 < a, b, c, p, 0, _ < 1 and a = b/c, then to estimate a with (, 0) error provided

that c > 1, it is sufficient to estimate c with (/3, D) error and b with (/3, 0'T/2) error.

Proof: If the estimate c is or less than D(1 - //3), then c < D. Therefore an estimate for a

is not required, and we may halt. Otherwise c > 1(1 - /3), and therefore c > -~'3/ > /2.

If the estimate b is I, then b < 0(/2. Therefore a = b/c < , so we may answer a = 1.

Otherwise, b and are estimates of b and c, each within a 1 ± 1/3 factor. The theorem follows

by noting the following facts.

General Bounds on Learning in the Relative Error SQ Model 51

1+/./3
1-//3

=- a.(1+/3)(+ 1-/3
< a (1 + /3)(1 + /2)

= a (1 + /3 + /2 + 2/6)

< a (1 +)

b (1 + /3)

c (1 - A/3)

b (1- 1 p/3)
c (1 + /3)

1 - /3
= a-

1 + A/3

= a (1 -L/3) (1 1 + /3)

> a. (1 -/3)(1 -/A3)

= a (1 - 2/3 + 2 /9)

> a.(1-j)

Lemma 5 If 0 < s,pi,zi, < 1, Eipi < 1 and s = ,ipizi, then to estimate s with (,O)

error, it is sufficient to estimate each zi with ([L/3, .0t/3) error provided that the pi coefficients

are known.

Proof: Let B = {i: estimate of zi is I}, E = {i: estimate of zi is i}, s, = EPiZi and

s, = pizi. Note that s, < O/3. Let , = E pii. If SE < (1 - /3)2 then we return I,

otherwise we return s,.

If S < 0(1-t/3) 2 , then s < (1-/i/3). But in this case s = SE+s, < 0(1-l/3)+0/1/3 = 0,

so we are correct in returning .

Otherwise we return which is at least 0(1- /3)2. If B = 0, then it is easy to see that

SE is within a 1 + /3 (and therefore 1 p) factor of s. Otherwise, we are implicitly setting

zi = 0 for each i E B, and therefore it is enough to show that 9sE > s(1 -).

3.4

52 Learning Results in the Relative Error SQ Model

Since E, 0(1 - /3)2, we have sE > (1 - //3)2/(1 + /3). Using the fact that for all

|I < 1, (1 - [1/3)/(1 + Aj/3) > 1/2, we have sE > 0(1 - [/3)/2. If SE > (1L/3 + sE)(1 -), then

SE > s(1 -) since s, < 0u/3 and s = s, + s,. But since SE > S(1 - j/3), this condition

holds when sE(l - /3) > (0[/3 + s,)(1 - g). Solving for s, this final condition holds when

sE > 0(1 - Al)/2 which we have shown to be true whenever an estimate is returned. o

Theorem 9 If the concept class F is strongly SQ learnable, then F is strongly SQ learnable by

an algorithm whose query complexity is O(No log2), whose minimum requested relative error is

Q(Ao) and whose minimum requested threshold is Q(toe o/ log(1/e)) where No = pl (n, size(f)),

/Io = 1/p2(n, size(f)) and 0o = l/p3 (n, size(f)) for some polynomials pl, P2 and P3.

Proof: If F is strongly SQ learnable, then there exists a relative error statistical query algo-

rithm A for learning F. Hardwire the accuracy parameter of A to 1/4 and apply Scheme 2

boosting. The boosting scheme will run 16 ln(1/e) copies of A with respect to 16 ln(l/e) different

distributions over the instance space. Each run makes at most No = N,(1/4, n, size(f)) queries,

each with relative error no smaller than t0o = ,,(1/4, n, size(f)) and threshold no smaller than

o = 0,(1/4, n, size(f)). In run i+ 1, the algorithm makes queries to STAT(f, Dj+1) where Di+1

is a distribution based on D. Since we only have access to a statistics oracle for D, queries to

STAT(f, Di+1) are simulated by a sequence of new queries to STAT(f, D) as follows:

STAT(f, Di+)[x(x, f(x))] - STAT, D)x A41(3.1)
j= 0 AV · STAT(f, D)[x] (3.1)

In the above equation w < i, the values A' E [0, 1] are known, and Ej AV < 1. Also note

that if the denominator of Equation 3.1 is less than = 4(then the query need not be

estimated (this is the "abort" condition of Scheme 2). Applying Lemmas 4 and 5, we find that

the queries in the denominator can be estimated with (o0/9,[o/(/9) error, and the queries in

the numerator can be estimated with (uo/9, /1-o0o(/18) error. Since a query to STAT(f, Di+1)

requires O(i) queries to STAT(f, D), the total number of queries made is O(No log2(1/e)).

We finally note that the query space complexity obtained here is identical in form to the

query space complexity obtained in Section 2.1.2.

Simulating Relative Error SQ Algorithms in the PAC Model 53

3.5 Simulating Relative Error SQ Algorithms in the PAC Model

In this section, we derive the complexity of simulating relative error SQ algorithms in the PAC

model, both in the absence and presence of noise. We also give general upper bounds on the

complexity of PAC algorithms derived from SQ algorithms based on the simulations and the

general bounds of the previous section. Note that there do not exist two-sided bounds for

uniform convergence based on VC-dimension, so some of our results are based on drawing a

separate sample for each query.

3.5.1 PAC Model Simulation

The simulation of relative error SQ algorithms in the noise-free PAC model is based on a

Chernoff bound analysis. Let GE(p, m, n) be the probability of at least n successes in m

Bernoulli trials, where each trial has probability of success p. Similarly, let LE(p, m, n) be the

probability of at most n successes in m Bernoulli trials, where each trial has probability of

success p. Chernoff's bounds may then be stated as follows [3]:

GE(p,m, mp(1 + a)) empa2/3

LE(p,m, mp(-a)) emp a 2/ 2

Furthermore, we often make use of the following properties of GE and LE:

p _ p' = LE(p, m, n) _ LE(p', m, n) (3.2)

p _ p' = GE(p, m, n) < GE(p', m, n) (3.3)

We may now prove following theorem.

Theorem 10 If .TF is learnable by a statistical query algorithm which makes at most N. queries

from query space Q with worst case relative error l,, and worst case threshold 90, then is

PAC learnable with sample complexity 0(. log _QI) when Q is finite or O(- log -) when

drawing a separate sample for each query.

3.5

54 Learning Results in the Relative Error SQ Model

Proof: We first demonstrate how to estimate the value of a single query, and we then extend

this technique to yield the desired result. Let [X,l , 0] be a query to be estimated, and let

p = Px. For a given sample of size m, let p be the fraction of examples which satisfy X. In order

to properly estimate the value of this query, we choose m large enough to ensure that each of

the following hold with high probabilty:

1. If < 0/2, then p < 0.

2. If > 0/2, then p > 0/4.

3. If p > 0/4, then > (1 -)p.

4. If p > 0/4, then i < (1 +)p.

Thus, if P < /2, we may output I, and if P > 0/2, we may output P. To ensure a failure

probability of at most 6, we choose m large enough to guarantee that each of the properties

fails to hold with probability at most 6/4. Let m = In 4.

Suppose that p > 0. Then the probability that P < 0/2 is bounded by:

LE(p, m, 0/2) < LE(, m, 0/2)

< e-mO/8

Since m > 8 n , this probability is less than 6/4. Therefore, the probability that P > 0/2 is at

least 1 - 6/4. Thus, we have shown the following: With probabilty at least 1 - 6/4,

p > 0 -. P > 0/2.

Since Property 1 is the contrapositive of the above statement, we have shown that it will fail

to hold with probability at most 6/4.

Property 2 is shown to hold in a similar manner, and Properties 3 and 4 are direct conse-

quences of Chernoff bounds.

Now, by choosing m = 12 In 4., we can ensure that all four properties will hold for all

X E Q, with probability at least 1 - 6. If, on the other hand, we draw N. separate samples

Simulating Relative Error SQ Algorithms in the PAC Model 55

each of size m = ,12 In 4 N, we guarantee that all four properties will hold for each of the N,

queries estimated, with probability at least 1 - 6. D

Corollary 2 If F is SQ learnable, then F is PAC learnable with a sample complexity whose

dependence on e is e(1/e).

Although one could use boosting techniques in the PAC model to achieve this nearly optimal

sample complexity, these boosting techniques would result in a more complicated algorithm and

output hypothesis (a circuit whose inputs were hypotheses from the original hypothesis class).

If instead we have a relative error SQ algorithm meeting the bounds of Theorem 9, then we

achieve this PAC sample complexity directly.

3.5.2 Classification Noise Model Simulation

For SQ simulations in the classification noise model, we achieve the sample complexity given

in Theorem 11 below. This sample complexity is obtained by simulating an additive error SQ

algorithm with = 01/3 as in Theorem 8. Although this result does not improve the sample

complexity of SQ simulations in the presence of classification noise, we believe that to improve

upon this bound requires the use of relative error statistical queries for the reasons discussed

in Section 3.1.

Theorem 11 If F is learnable by a statistical query algorithm which makes queries from query

space Q with worst case relative error /*, and worst case threshold 0,, then F is PAC learnable

in the presence of classification noise. If 7b < 1/2 is an upper bound on the noise rate, then the

sample complexity required is

O((1- 2 n) 2 log 1 + (127b)2 log log l_2,,)

when Q is finite or

i 1vc(Q) log log ½)
°(202(1--2rb)2 log *(1- 2 *b) + '0.2(1_2/b)

2 g)
when Q has finite VC-dimension.

Corollary 3 If F is SQ learnable, then F is PAC learnable in the presence of classification

noise. The dependence on and rib of the required sample complexity is 0(E2(12 ,b)2)

3.5

56 Learning Results in the Relative Error SQ Model

3.5.3 Malicious Error Model Simulation

We next consider the simulation of relative error SQ algorithms in the presence of malicious

errors. Decatur [9] has shown that an SQ algorithm can be simulated in the presence of malicious

errors with a maximum allowable error rate which depends on -,, the smallest additive error

required by the SQ algorithm. In Theorem 12, we show that an SQ algorithm can be simulated

in the presence of malicious errors with a maximum allowable error rate and sample complexity

which depend on ,, and 0,, the minimum relative error and threshold required by the SQ

algorithm.

The key idea in this simulation is to draw a large enough sample such that for each query,

the combined error in an estimate due to both the adversary and the statistical fluctuation on

error-free examples is less than the accuracy required. We formally state this idea in the claim

given below.

Claim 4 Let P* be the fraction of examples satisfying X in a noise-free sample of size m, and

let Px be the fraction of examples satisfying X in a sample of size m drawn from EX A(f, D).

Then to ensure tP-Px-, _ < T + 2, it is sufficient to draw a sample of size m which simultaneously

ensures that:

(1) The adversary corrupts at most a T1 fraction of the examples drawn from EXPAL(f,D).

(2) Px - Px < T2.

Theorem 12 If F is learnable by a statistical query algorithm which makes at most N* queries

from query space Q with worst case relative error I,* and worst case threshold 0,, then F is

PAC learnable in the presence of malicious errors. The maximum allowable error rate is P, =

Q(,*0), and the sample complexity required is O(1 log]Q) when Q is finite or (- log -)

when drawing a separate sample for each query.

Proof: We first analyze the tolerable error and sample complexity for simulating a single query

and then determine these values for simulating the entire algorithm.

For a given query [X, , 0], Px is the probability with respect to the noise-free example oracle

which needs to be estimated with (, 0) error. Assume that / < ttO/16 and let 3 be the actual

fraction of the sample corrupted by the malicious adversary. We choose m large enough to

ensure that the following hold with high probability:

Simulating Relative Error SQ Algorithms in the PAC Model 57

1. If p < /0/16, then p < t10/8.

2. If Px < 50/8, then Px < 0.

3. If Px > 30/8, then P > 0/4.

4. If Px > 0/4, then Px > (1 - /2)Px.

5. If Px > 8/4, then Px < (1 + /2)Px.

Suppose that Properties 1 through 5 all hold. If Px < 80/2, then by Property 1,

by Property 2, Px < 0. Thus, we may return .

If, on the other hand, Px > 0/2, then by Property 1, Px > 30/8, and

P :> 0/4. Property 4 then implies that Px > (1 - /2)Px, and by Property

following:

P < 50/8, and

by Property 3,

1, we have the

Px > (1 - ,t/2)Px - /i0/8 > (1 - p/2)Px - IPx/2 = (1 - p)Px

By applying Property 5, we may similarly show the following:

PX < (1 + A1/2)Px + A0/8 < (1 + A/2)Px + AiPx/2 = (1 + p)Px

Thus, we may return Px.

We can ensure that Properties 1 through 5 collectively hold with probability at least 1 - 6

by letting m = l4 n 5. The proofs that each of these properties hold with high probability

given this sample size are analogous to the proofs for the similar properties used in Theorem 10.

Now, by choosing rm = In 5 Q, we can ensure that all five properties will hold for all

X E Q, with probability at least 1 - 6. If, on the other hand, we draw N. separate samples

each of size m = 4 In 5N, we guarantee that all five properties will hold for each of the N

queries estimated, with probability at least 1 - . O

Corollary 4 If F is SQ learnable, then F is PAC learnable in the presence of malicious errors.

The dependence on of the maximum allowable error rate is Q(e), while the dependence on

of the required sample complexity is e(1/e).

Note that we are within logarithmic factors of both the O(e) maximum allowable mali-

cious error rate [20] and the Q(1/e) lower bound on the sample complexity of noise-free PAC

3.5

58 Learning Results in the Relative Error SQ Model

learning [11]. In this malicious error tolerant PAC simulation, the sample, time, space and

hypothesis size complexities are asymptotically identical to the corresponding complexities in

our noise-free PAC simulation.

3.6 Very Efficient Learning in the Presence of Malicious Errors

In previous sections, we have shown general upper bounds on the required complexity of relative

error SQ algorithms and the efficiency of PAC algorithms derived from them. In this section,

we describe relative error SQ algorithms which actually achieve these bounds and therefore

have very efficient, malicious error tolerant PAC simulations. We first present a very efficient

algorithm for learning conjunctionsl in the presence of malicious errors when there are many

irrelevant attributes. We then highlight a property of this SQ algorithm which allows for its

efficiency, and we further show that many other SQ algorithms naturally exhibit this property

as well. We can simulate these SQ algorithms in the malicious error model with roughly optimal

malicious error tolerance and sample complexity.

Decatur [9] gives an algorithm for learning conjunctions which tolerates a malicious error

rate independent of the number of irrelevant attributes, thus depending only on the number

of relevant attributes and the desired accuracy. This algorithm, while reasonably efficient, is

based on an additive error SQ algorithm of Kearns [19] and therefore does not have an optimal

sample complexity.

We present an algorithm based on relative error statistical queries which tolerates the same

malicious error rate and has a sample complexity whose dependence on e roughly matches the

general lower bound for noise-free PAC learning.

Theorem 13 The class of conjunctions of size k over n variables is PAC learnable with ma-

licious errors. The maximum allowable malicious error rate is (), and the sample com-

plexity required is (log2i logn + k log log).

Proof: We present a proof for learning monotone conjunctions of size k, and we note that this

proof can easily be extended for learning non-monotone conjunctions of size k.

1By duality, identical results also hold for learning disjunctions.

Very Efficient Learning in the Presence of Malicious Errors 59

The target function f is a conjunction of k variables. We construct an hypothesis h which

is a conjunction of r = O(k log) variables such that the distribution weight of misclassified

positive examples is at most e/2 and the distribution weight of misclassified negative examples

is also at most e/2.

First, all variables which could contribute more than /2r error on the positive examples

are eliminated from consideration. This is accomplished by using the same queries that the

monotone conjunction SQ algorithm of Section 3.3 uses. The queries are asked with relative

error 1/2 and threshold /2r.

Next, the negative examples are greedily "covered" so that the distribution weight of mis-

classified negative examples is no more than e/2. We say that a variable covers all negative

examples for which this variable is false. We know that the set of variables in f is a cover of

size k for the entire space of negative examples. We iteratively construct h by conjoining new

variables such that the distribution weight of negative examples covered by each new variable

is at least a fraction of the distribution weight of negative examples remaining to be covered.

Given a partially constructed hypothesis hj = xi, A xi, A... A xij, let X;, be the set of

negative examples not covered by hj, i.e. X, = {x: (f(x) = O) A (hj(x) = 1)}. Let D be the

conditional distribution on X induced by D, i.e. for any x X7, Dj(x) = D(x)/D(X,). By

definition, X; is the space of negative examples and Do is the conditional distribution on Xo.

We know that the target variables not yet in hj cover the remaining examples in X7.; hence,

there exists a cover of XX of size at most k. Thus there exists at least one variable which covers

a set of negative examples in X whose distribution weight with respect to D is at least 1/k.

Given hj, for each xi, let Xj,i(x,l) = [AIB] = [xi = 01(1 = O) A (hj(x) = 1)]. Note that

PXj,, is the distribution weight, with respect to D;, of negative examples in X covered by

xi. Thus there exists a variable xi such that Pj,,i is at least 1/k. To find such a variable, we

ask queries of the above form with relative error 1/3 and threshold 2/3k. [Note that this is a

query for a conditional probability, which must be determined by the ratio of two unconditional

probabilities. We show how to do this below.] Since there exists a variable xi such that

Px,,i > l/k, we are guaranteed to find some variable xi, such that the estimate Pxj,,, is at least

(1 --) = 2. Note that if Pxj,,, > , then Pj, > /(1 +) = 2L. Thus, by conjoining xi, to

hi, we are guaranteed to cover a set of negative examples in X whose distribution weight with

3.6

60 Learning Results in the Relative Error SQ Model

respect to D is at least 1/2k. Since the distribution weight, with respect to Do, of uncovered

negative examples is reduced by at least a (1- 1) factor in each iteration, it is easy to show that

this method requires no more than r = O(k logl) iterations to cover all but a set of negative

examples whose distribution weight, with respect to Do (and therefore with respect to D) is at

most /2.

We now show how to estimate the conditional probability query [AIB] with relative error

/ = 1/3 and threshold 0 = 2/3k. We estimate both queries which constitute the standard

expansion of the conditional probability. Appealing to Lemma 4, we first estimate [B], the

probability that a negative example is not covered by h, using relative error t/3 = 1/9 and

threshold e/2. If this estimate is I or less than (1 -) = , then the weight of negative

examples misclassified by h is at most /2, so we may halt and output h. Otherwise, we

estimate [A A B] with relative error L/3 = 1/9 and threshold 0(e/2)/2 = . If this estimate

is I, then we may return I, and if a value is returned, then we can return the ratio of our

estimates for [A A B] and [B] as an estimate for [AIB].

For this algorithm, the worst case relative error is Q(1), the worst case threshold is (),

and log Q = O(k log' logn). Therefore, the theorem follows from Theorem 12.

An important property of this statistical query algorithm is that for every query, we need

only to determine whether Px falls below some threshold or above some constant fraction of this

threshold. This allows the relative error parameter to be a constant. The learning algorithm

described in Section 3.3 for monotone conjunctions has this property, and we note that many

other learning algorithms which involve "covering" also have this property (e.g. the standard

SQ algorithms for learning decision lists and axis parallel rectangles). In all these cases we

obtain very efficient, malicious error tolerant algorithms.

CHAPTER 4

Extensions

Throughout this thesis, we have assumed that queries submitted to the statistical query oracle

were restricted to being {0, 1}-valued functions of labelled examples. In this case, the oracle

returned an estimate of the probability that X(x, f(x)) = 1 on an example x chosen randomly

according to D.

We now generalize the SQ model to allow algorithms to submit queries which are real-

valued. Formally, we define a real-valued query to be a mapping from labelled examples to the

real interval [O, M], X : X x 0, 1} - [0, M].1 We define Px to be the expected value of X,

P: = ED[X(x,f(x))] = ED [X].

This generalization can be quite useful. If the learning algorithm requires the expected value

of some function of labelled examples, it may simply specify this using a real-valued query. By

suitably constructing new queries, the learning algorithm may calculate variance and other

moments as well. This generalization gives the algorithm designer more freedom and power.

Furthermore, the ability to efficiently simulate these algorithms in the PAC model, in both the

absence and presence of noise, is retained as shown below.

The results given below are proven almost identically to their counterparts by simply ap-

plying Hoeffding and Chernoff style bounds for bounded real random variables. The following

is a simple extension of results contained in McDiarmid [23]:

1The range [0, MI is used so that we can derive efficient simulations of relative error SQ algorithms. For
additive error SQ algorithms, one may consider any interval [a, b] where M = b - a.

61

62 Extensions

Theorem 14 Let X 1, X2 ,... , Xm be independent and identically distributed random variables

where O < Xi < M and p = E[Xi], and let P = 1 Xi. For any a > O,

Pr[f > p + 0c] < e-2ma2/M 2

Pr[P < p-] < e-2m a 2/M2

For any y, 0 < y < 1,

Pr[> p(l + 7)] < e-'p2/3M

Pr[j < p(l -)] < e-mp2/2M.

Note that when M = 1, the following sample complexities and noise tolerances are essentially

identical to those for {0, 1}-valued queries.

Theorem 15 If Y is learnable by a statistical query algorithm which makes at most N. [0, M]-

valued queries from query space Q with worst case additive error r,, then Y is PAC learnable

with sample complexity O(M2 log IQI) when Q is finite or O(N M2 log N-) when drawing a sep-

arate sample for each query.

Theorem 16 If F is learnable by a statistical query algorithm which makes at most N, [0, M]-

valued queries from query space Q with worst case relative error IL, and worst case thresh-

old 0*, then F is PAC learnable with sample complexity O(log A) when Q is finite or

O(N' log -) when drawing a separate sample for each query.

Theorem 17 If F is learnable by a statistical query algorithm which makes at most N, [0, M]-

valued queries from query space Q with worst case additive error Tr, then Y is PAC learnable

in the presence of classification noise. If rlb < 1/2 is an upper bound on the noise rate, then the

sample complexity required is

o 2 2)2 log + log log 1)

when Q is finite or

((l-)2 log N + 1(-)2 log log 1-2lb)0 r.2(1-277,)2 6 -(1-277b)

Extensions 63

when drawing a separate sample for each query.

Theorem 18 If F is learnable by a statistical query algorithm which makes at most N, [0, M]-

valued queries from query space Q with worst case relative error I, and worst case threshold 0,,

then .F is PAC learnable in the presence of classification noise. If Tib < 1/2 is an upper bound

on the noise rate, then the sample complexity required is

Ms log log o
O (/2. .2(1_2,,)2 log + E(l_27b)2 log log 12)

when Q is finite or

2. M2(_22 log + log log 1).02(1-2,71)2 8 e() l lg(1-21 271

when drawing a separate sample for each query.

Theorem 19 If F is learnable by a statistical queries algorithm which makes at most N, [0, M]-

valued queries from query space Q with worst case additive error r,, then F is PAC learnable

in the presence of malicious errors. The maximum allowable error rate is £Q(r,/M) and the

sample complexity required is O(2 log IQI) when Q is finite or O(N. M2 log N,) when drawing

a separate sample for each query.

Theorem 20 If F is learnable by a statistical queries algorithm which makes at most N, [0, M]-

valued queries from query space Q with worst case relative error p1, and worst case threshold

0,, then F is PAC learnable in the presence of malicious errors. The maximum allowable error

rate is Q(1,O,g/M) and the sample complexity required is O(log I1) when Q is finite or

O(log N) when drawing a separate sample for each query.

CHAPTER 5

Conclusions and Open Questions

We have examined the statistical query model of learning and derived the first general bounds

on the complexity of learning in this model. We have further shown that our general bounds are

nearly optimal in many respects by demonstrating a specific class of functions whose minimum

learning complexity nearly matches our general bounds. We have also improved the current

strategy for simulating SQ algorithms in the classification noise model by demonstrating a new

simulation which is both more efficient and more easily generalized.

The standard statistical query model of learning has a number of demonstrable deficiencies,

and we have proposed a variant of the statistical query model based on relative error in order to

combat these deficiencies. We have demonstrated the equivalence of additive error and relative

error SQ learnability, and we have derived general bounds on the complexity of learning in this

new relative error SQ model. We have demonstrated strategies for simulating relative error SQ

algorithms in the PAC model, both in the absence and presence of noise. Our simulations in

the absence of noise and in the presence of malicious errors yield nearly optimal noise-tolerant

PAC learning algorithms.

Finally, we have shown that our results in both the additive and relative error SQ models

can be extended to allow for real-valued queries.

The question of what sample complexity is required to simulate statistical query algorithms

in the presence of classification noise remains open. The current simulations of both additive

65

66 Conclusions and Open Questions

and relative error SQ algorithms yield PAC algorithms whose sample complexities depend

quadraticly on 1/e. However, in the absence of computational restrictions, all finite concept

classes can be learned in the presence of classification noise using a sample complexity which

depends linearly on 1/e [21]. It seems highly unlikely that a 0(1/e) strategy for simulating

additive error SQ algorithms exists; however, such a strategy for simulating relative error SQ

algorithms seems plausible. This line of research is currently being pursued.

As discussed in Section 3.6, many classes which are SQ learnable have algorithms with a

constant worst case relative error /L,. Can one show that all classes which are SQ learnable

have algorithms with this property, or instead characterize exactly which classes do?

CHAPTER A

Appendix

In this chapter, we prove a number of technical results used in the previous chapters.

A.1 Simplifying the Expression for Query Space Complexity

In this section of the Appendix, we show how to simplify the expression for the query space

complexity derived in Section 2.1:

k

IQB = IQo + (i +
i=1

1). (Iol + i

where k is kl or k2 depending on the type of boosting used.

We begin by simplifying the expression Ek=l (i + 1) · (N+-1).

form for this sum, we first eliminate the (i + 1) factor.

= i. (N+i-1)!
(N- 1)!i!

- N. (N+i-1)
N! (i- 1)!

N (N+i-1
V i-1

In order to obtain a closed

+ (N+i-1)
!+ (N+i-1)

) (N-1+i)

67

k

I(i
i=1

(A.1)+ 1) - I-Ho I i - 1

i

(i + 1) -N+i-1
i

- 1 + IQO

68 Appendix

Using the fact that Em (n+i) = (n+m+1), we now have the following:

1). (N+i-1)
k

= NE
i=l

(N+i-1)
i-l + (N-1+ii

i=1
k--1

= N (
j=O

N+j
J i=) i

+k

Applying this fact to Equation A.1 above, we obtain the following closed form expression:

IQB =(IQol+)()I-) + kIlo(l(lQ + 1)(lol + k) 1k k - 1

In order to bound the above expression, we make use of the following inequality:

nm)
_ (n + m)(n + m- 1)... (n + 1)

m(m- 1)... 1

(1+-)(1 m-1
< (1 +n) '

Applying this inequality, we now have:

IQBI < (IQol + 1)(I 1+ol + 1)k + Iol(IQol + 1)(17|ol + 2)k -1
- 1

< (IQ ol + 2) + (Io 1)(loIol + 2)k

= 2(Qo01 + 1)(I7iol + 2)k

The complexity of simulating an SQ algorithm depends on log I QB I. We have effectively shown

the following:

log IQB1 = O(log IQol + k log 17hol)

k

E(i +
i=l

(A.2)

(A.3)

= N- N+kk -

. +n)

A.2 Proofs Involving VC-Dimension 69~~~

A.2 Proofs Involving VC-Dimension

In this section of the Appendix, we prove a number of technical lemmas which involve the

concept of Vapnik-Chervonenkis dimension [36]. We begin by defining VC-dimension and in-

troducing a number of preliminary results.

A.2.1 Preliminaries

Let g be a set of {0, 1}-valued functions defined over a domain X. For any countable set S =

{x1,... ,Xm} C X and function g E G, g defines a labelling of S as follows: (g(x 1),... ,g(Xm)).

S is said to be shattered by if S can be labelled in all possible 2m ways by functions in 5.

The VC-dimension of 5, VC(g), is defined to be the cardinality of the largest shattered set.

VC-dimension is often defined in terms of set-theoretic notation. One can view a function

g E as an indicator function for a set Xg C X where Xg = {x E X : g(x) = 1}. For any set

S C X, let iHg(S) = {S n Xg :9 E 6}. One can view Ig(S) as the set of subsets of S "picked

out" by functions in . Note that if Ig(S) = 2, then S is shattered by . For any integer

m > 1, let IIg(m) = max {1Ig(S)l : S C X, ISI = m}. One can view HIg(m) as the maximum

number of subsets of any set of size m "picked out" by functions in G. Note that if HIg(m) = 2,

then there exists a set of size m shattered by A. One may define VC-dimension in terms of

rig(m) as follows: VC(5) = max{m : IIg(m) = 2}.

We next prove a lemma concerning IIg(m) which is used extensively in the sections that

follow.

Lemma 6 If = 1 U Q2, then rig(m) < ig1 (m) + IIg2 (m).

Proof: For any m, let S, be a set of size m such that IIg(S,)l = Hg(m). Note that such a

set is guaranteed to exist by the definition of iHg(m). We next note that Ig(Sm) = g, (Sm) U

Hig2 (Sm), and therefore IIg(Sm) < Ig(Sm)I + IIH2(Sm). The proof is completed by noting

that IIIg(Sm)l < rIg1(m) and Iig 2(Sm)1 < Ig 2(m). L

The growth of the IIg (m) function plays an important role in proving a number of results

in PAC learning. Note that for any m < VC(g), IHg(m) = 2m. The following result due to

Sauer [27] upper bounds the growth of IIg(m) for all m > VC(G).

A.2 Proofs Involving VC-Dimension 69

70 Appendix

Lemma 7 (Sauer's Lemma) Let 6 be a set of {O, l}-valued functions, and let d = VC(G).

For all integers m > d, Ilg(m) < E=0 (T).

Blumer et al. [7] have shown that for all integers m > d > 1, Ed= (m) < ()d where e is

the base of the natural logarithm. We present a new and simpler proof of this result below.

Lemma 8 For all integers m > d > 1, i=o (i) < ()d

Proof: Since 0 < dim < 1, we have:

d d r m\

i=Omj i!
, d

i=O

co di

= ed

Dividing both sides by (d/m)d yields the desired result. C

We may now characterize the growth of the IIg(m) function as follows: Ig(m) grows expo-

nentially up to m = VC(G), and IIg(m) grows at most polynomially after that. We may use

this fact to obtain an upper bound on the VC-dimension of g in the following way. Suppose that

for some m, we could show that IIg(m) < 2m . Then m must be larger than the VC-dimension

of G.

A.2.2 VC-Dimension of Q' = Q U Q

We now prove a result used in Section 2.3 concerning the VC-dimension of the query space used

by our simulation of an SQ algorithm in the classification noise model. Recall that X is our

instance space, and Y = X x {0, 1} is our labelled example space. For any labelled example

y = (x, 1), we define = (x, 1), and for any query X, we define X(y) = X(Y). Finally, for any set

of queries Q, we define Q = {X: X e Q}.

A.2

If Q is the query space of an SQ algorithm, then Q' = Q U Q is the query space of our

simulation of this SQ algorithm. We may bound the VC-dimension of Q' as follows.

Lemma 9 If Q' = Q U Q, then VC(Q') < c VC(Q) for a constant c - 4.66438.

Proof: We first claim that VC(Q) = VC(Q). This fact can be shown as follows. For any

X E Q, we have that X(Y) = X(Y). Note that if X E Q, then X E Q. For any countable set

T = {Yl,... ,Ym), the labelling of T induced by X is identical to the labelling of T induced

by X where T = (Yl,.. Y,). Therefore, if there exits a set of size m shattered by Q, then

there exists a set of size m shattered by Q. This implies that VC(Q) > VC(Q). The fact that

VC(Q) > VC(Q) is shown similarly, and thus VC(Q) = VC(Q).

Let d = VC(Q) = VC(Q). For any m > d, we have IIQ(m) < ()d and H-(m) < (e)d.

Thus, for any m > d, we have IIQ,(m) < (m) ± II l(m) < 2 (e)d.

If HIQ,(m) < 2m for some m, then m > VC(Q'). Thus, any m > d which satisfies

2 (m) d < 2m

is an upper bound on VC(Q'). Setting m = c d and solving for c, we obtain:

2 (ecd < 2cd

2 (ec)d < (2c)d

(2ec)d < (2c)

2ec < 2c

c > 4.66438

Thus, VC(Q') c VC(Q) for a constant c ~ 4.66438 0

A.2.3 VC-Dimension of the Query Space of Boosting

We now prove a result used in Section 2.1 concerning the VC-dimension of the query space of

boosting. Let Q and 'Ho be the query space and hypothesis class used by a weak SQ learning

algorithm. The queries used by the strong SQ learning algorithm obtained by either Scheme 1

or Scheme 2 boosting are of the form X, X and X A X where X E Q and Xi is constructed from

hypotheses in o.

Proofs Involving VC-Dimension 71

72 Appendix

A particular query X7 is defined by i hypotheses and an integer j, 0 < j < i. X(x,) is 1

if exactly j of the i hypotheses map x to 1, and X}(x,) is 0 otherwise. Note that i is bounded

by k = In in Scheme 1 boosting, and i is bounded by k2 = 1 In in Scheme 2 boosting.

Also note that the hypotheses used to construct a particular X7 need not be distinct.

For fixed i and j, let be the set of all XX queries. In addition, we make the following two

definitions:

ri = U r;

r[k] = U ri
1<i<k

For any two sets of {0, 1}-valued functions A and B, we define

A A\ B = {fA fb : fa E A, fb E B}.

The query space of boosting, QB, may then be given as follows:

QB = Q U [k] U QO A r[k]

Note that k = k in the case of Scheme 1 boosting, and k = k2 in the case of Scheme 2 boosting.

We may bound the VC-dimension of QB in terms of the VC-dimensions of Qo and 7o in a

manner similar to that used in the previous section. In particular, we bound IlQO(m), Irk] (m)

and HIQoAr[(m). By applying Lemma 6, we obtain a bound on 1 1
QB (m). From this bound, we

obtain a bound on the VC-dimension of QB. We begin by examining I7.

For any hypothesis h E H0o, we define h: X x {0, 1} - {0, 1} as follows

h(x,) = (h(x) -1)

where - is the binary equivalence operator. Thus, h(x, 1) is true if and only if the hypothesis

h maps x to 1. Let Ho = {h: h c Ho0 }. We may now define a query X E rFj as follows. Let

A.2 Proofs Involving VC-Dimension 73

hi,..., hi be the i hypotheses used to construct Xj

1 if exactly j of h1(y),. .. , hi(y) are 1
X, (Y)

0 O otherwise

From a set-theoretic perspective, we can view X and h as indicator functions for subsets of Y.

Wte then have the following:

Yx = {y E Y : y is an element of exactly j of the sets Yhl,..., Yh }

In order to bound IIQ (m), we must relate the VC-dimension of 7%O with the VC-dimension

of 7-0.

Claim 5 VC(lo) = VC(lo)

Proof: We begin by noting that for any instance x E X, h(x) = 1 if and only if h(x, 1) = 1.

For any countable set S = {x,... ,x,m} and hypothesis h E 7Ho, the labelling of S induced by h

is identical to the labelling of T induced by h where T = {(x, 1),. .. , (m, 1)}. Thus, if there

exists a set of size m shattered by o, then there exists a set of size m shattered by io. This

implies that VC(Flo) > VC(o).

We next note that for all functions h E Fo, h(x,l) = -h(x,l). Now let

T = (x,1),..., (Xm,l m)}

be any countable set shattered by Ho. If (x, 1) E T, then (x,) f T since (x, 1) and (x,) cannot

be labelled identically, which is required for shattering. Thus, S = {Xl,..., xm} is of size m.

Now note that h(x) = b if and only if h(x, 1) = (b 1). Consider any labelling (b,..., b,)

of S. This labelling of S would be induced by the hypothesis h E IHo corresponding to the

function h E io which labels T as follows: ((bl - 11),..., (bm 1m)). Since T is shattered by

)io, such a function and corresponding hypothesis must exist. Thus, if there exists a set of

size m shattered by /0O, then there exists a set of size m shattered by 7 0o. This implies that

VC(o) > VC('-o). °

A.2 Proofs Involving VC-Dimension 73

74 Appendix

We next relate Hr (m) with IR (m) as follows.

Claim 6 Hri(m) < (Hii(m)+i-1)

Proof: Consider a particular XX. We can view Xj as either a mapping from Y to {0, 1} or as an

indicator function for a set Yx, C Y. In the discussion that follows, it will be more convenient

to view X as an indicator function.

Let T be any subset of Y of size m. II (T) is the set of subsets of T picked out by

functions h E 0io, and IHri (T) is the set of subsets of T picked out by functions X; in ri . By the

definition of X7, note that each unique set in HIr (T) must correspond to a unique collection of i

sets in II (T). However, the i sets in each unique collection need not be distinct. Therefore,

the number of unique collections is given by the number of arrangements of i indistinguishable

balls in JIho(T)I bins. We thus have

r (T) I_< (IIo ,(T) + i - 1)

which implies the desired result. O

By Lemma 6 and the definition of F', we now have

Hri (m) < (i + 1) .((m) + i-1)

Furthermore, by Lemma 6 and the definition of r[k], we have

(H (m) +i-(m) < i + 1). (H(m)+ i -1).i=l1

By applying the well known fact that IIAAB(m) < IIA(m) .IHB(m) [4, pg. 104], we now have

nIQoAr](m) < HQ Q(m) (i + 1) i1=1H~~~iil
Finally, by Lemma 6 and the definition of QB, we have

A.2 Proofs Involving VC-Dimension 75

k

nQ(m) < HQO(m)+ (i+
i=l

k

nQ(m) Z(i + 1)
i=l

Note that Equation A.4 is of the same form as

Equation A.4 in a similar manner to obtain:

1) (HII(m)+i-) +

.(IIo(m)+ i - 1)

Equation A.1. We can therefore simplify

IIQ.(m) < 2(LIQ.o(m) + 1)(IIo (m) + 2)k

We are now in a position to prove the main result of this section.

Lemma 10 VC(QB) = O(VC(Qo) + VC(H7o) klog k)

Proof: In order to bound the VC-dimension of QB, we need only find an m which satisfies

IIQ, (m) < 2m. We begin by further simplifying the expression for IIQB (m).

Assume that IIQO(m) > 1 and Iji(m) > 2. Each of these assumptions is assured when

m > 1 and the VC-dimensions of Q0 and o are at least 1. We then have the following:

HQB() • 2j(Q0(m) + 1)(Inl(m)+ 2)k

< 2(2IIQo(m))(2IIo (m))k

= 2k+2 nQO (m)(njo (m))k

Let qo = VC(Qo) and let do = V = VC(o= V(). For any m > max{qo,do}, we have both

IQ0O(m) < (em)qo and HIj (m) < (em do. We now have:

k+2 em (em) do k

\o d 0

To bound the VC-dimension of QB, we need only find an m which guarantees that the right-

hand side of the above equation is at most 2 .

(A.4)

A.2 Proofs Involving VC-Dimension 75

76 Appendix

(qo ° (do)2k+2 (')o ()o / < 2

4= (k + 2)+qlg () +dok lg () < m

For fixed do, q and k, the above inequality has the form m > g(m) + g2 (m) + g3(m) where

each function g(m) "grows" more slowly than m. In particular, each function gi satisfies the

following property (recall that we are restricted to values m > max {qo, do}): If mi > gi(3mi),

then m > gi(3m) for all m > mi. Our strategy is as follows. Find appropriate values of mi

which satisfy mi > gi(3mi), and let m = 3max{ml,m 2,m 3}. Then m must satisfy m >

91 (m) + g2(m) + g3(m). The reasoning is as follows. Suppose, without loss of generality, that

ml = max{ml,m 2 ,m 3}. We then have m = 3m1. Furthermore, ml > gl(3ml), and since

mi > m2 and ml > m3 , we also have ml > g2(3ml) and ml > g3(3ml). Combining these

inequalities, we have 3ml > g1(3ml) + g2(3ml) + g3(3ml) which implies the desired result.

For g(m) = k + 2, we may simply choose ml = k + 2. For g2(m) = q0 lg() , we chose

m2 = 6q0, which is verified as follows:

6qo > qo lg ((3_6qo)
qo]

6 > lg(18e) - 5.613

For g3(m) = dok lg(o), we choose m3 = 9dok lg k, which is verified as follows:

9doklgk > dok lg (e(39d k))

9 lgk > lg(27ek lg k)

k9 > 27ek lg k

k 7 > 27e

This final inequality is true for any k > 2. We have effectively shown the following, which

completes the proof: m = 3 max {k + 2, 6qo, 9dok lg k} = O(qo + dok lg k). []

Part II

Searching in the Presence of Errors

77

CHAPTER 6

Introduction

Coping with errors during computation has been a subject of long-standing interest. It has

motivated research in such areas as error-correcting codes, fault-tolerant networks, boolean

circuit evaluation with faulty gates, and learning in the presence of errors. In the following

chapters, we focus on the problem of searching in the presence of errors.

6.1 Introduction

Our goal is to find an unknown quantity x in a previously specified, discrete, but not necessarily

finite, domain by asking "yes-no" questions, when some questions are answered incorrectly.

We show that it is possible to cope with errors whose number may grow linearly with the

number of questions asked, and, depending on the class of questions allowed, to do so with an

asymptotically optimal number of questions. Examining both adversarial and random errors,

we find that even in a fairly restricted adversarial error model, searching is at least as difficult

as in the random error model.

The problem can be further qualified by:

* Kinds of questions that may be asked.

- Comparison questions: "Is x less than y?"

79

80 Introduction

- Membership questions: "Is x in the set S?", where S is some subset of the

domain.

* Kinds of errors possible.

- Constant number: It is known a priori that there will be at most k errors, where

k is some fixed constant.

- Probabilistic: The answer to each question is erroneous independently with some

probability p, 0 < p <

- Linearly Bounded: For some constant r, 0 < r < , any initial sequence of i

answers has at most ri errors. This model allows the answers to be erroneous in a

malicious way. Unlikely scenarios in the probabilistic model (such as a long sequence

of correct answers followed by a short sequence of false ones) must be dealt with here.

* Domain of the quantity being sought.

- Bounded: x E 1,. .. , n}, for some known n.

- Unbounded: x may be any positive integer.

Much research has been devoted to the subject of searching in the presence of errors.

Rivest et al. [25] have shown that in the bounded domain with at most k errors, x can be

determined exactly with lg n + k lg lg n + O(k lg k) comparison questions.' Here k can be a

function of n, but not of the number of questions asked. When k is a constant, this is an

asymptotically optimal bound since [lg nl is a lower bound on the number of questions needed

to search even without errors. Naturally, this bound also applies to searching with membership

questions, since comparison questions are a restricted version of membership questions.

In the probabilistic error model, where errors occur randomly and independently with prob-

ability p, we must find the correct x with probability of failure at most 6. Since 6 is previously

known and fixed, we consider 6 a constant for the purpose of measuring the complexity of the

searching algorithm.2 Pelc [24] showed that in the probabilistic error model, with error proba-

bility p < 1/2, O(lg2 n) questions are sufficient to search in the bounded domain. Frazier [13]

1The term Ig n denotes log2 n throughout this thesis.
2Typically, the complexity of such algorithms depends on log(1/6), as does the complexity of our algorithm.

6.1 Introduction 81

Pelc

Thesis

Figure 6.1: Bounds for searching in the bounded domain with linearly bounded errors. Here
n is a bound on the number being sought.

improved the bound to O(lg n lg lg n) questions using a somewhat complicated analysis. Finally,

using standard Chernoff bound techniques, Feige et al. [12] showed that O(lg n) questions are

sufficient for any p < 1/2. Our contribution here is a formal reduction from the problem of

searching in the probabilistic error model to that of searching in the linearly bounded error

model. To state this result informally, we show that an algorithm for searching in the presence

of linearly bounded errors can be transformed into an algorithm for searching in the presence

of random errors. In this sense, searching with linearly bounded errors is at least as difficult as

searching with random errors. When we are allowed to ask membership questions, this reduc-

tion together with the results from the linearly bounded error model mentioned below matches

the Feige et al. O(lg n) bound in the bounded domain. We also generalize this bound to the

unbounded domain. 3

In the linearly bounded error model, Pelc [24] showed that x can be determined exactly in

O(lg n) questions in both the bounded and unbounded domains. However, these bounds only

hold for r < 1/3. The best known bound using comparison or membership questions in the

bounded domain for 1/3 < r < 1/2 was O(nlg l--). Note that the degree of the polynomial

in this bound is unbounded as r approaches 1/2. This bound comes from an analysis of a

"brute-force" binary search, where each question of the search is asked enough times so that

the correct answer can be determined by majority. A simple argument [13, 32] shows that the

search problem cannot be solved (with either membership or comparison questions) if r > 1/2.

We show significantly improved bounds in the linearly bounded error model which hold for

the entire range 0 < r < 1/2. With memberships questions, we show that x can be determined

exactly in O(lgn) questions in both the bounded and unbounded domains. These bounds are

3In the unbounded domain, n now refers to the unknown number.

Membership Questions Comparison Questions
0 < r < <r< 0 < r < 3 < r <

O(lgn) O(nl 1-2r) O(lgn) O(n" 12r)

O(lg n) O(n lg 1-)

6.1 Introduction 81

82 Introduction

Pelc

Thesis

Membership Questions Comparison Questions

O(lgn) < < O(n 1 < < g 1<r 2

O(g n) (-) O(lgn) O(n1-2)

O(lgn) O([n lg2g 1 1-)

Figure 6.2: Bounds for searching in the unbounded domain with linearly bounded errors. Here
n is the unknown number.

tight since searching has a trivial Q(lg n) lower bound. With comparison questions, we improve

the bounds to O(nlg -) = o(n) questions for the bounded domain and O([n lg2 n]lg 1-) = o(n)

in the unbounded domain. A comparison of this work with the best known previous results

can be found in Figures 6.1 and 6.2. Our results are obtained by looking at the search problem

in the framework of chip games. These chip games have also proved useful in modeling a

hypergraph 2-coloring problem [5]. In general, chip games model computational problems in

such a way that winning strategies for the players translate into bounds on the critical resource.

This critical resource is represented by some aspect of the chip game, such as number of chips

used or number of moves in the game.

Spencer and Winkler [32] have also examined this problem. They have arrived independently

at one of the theorems in this paper using different proof techniques. Their paper as well as

one by Dhagat, Gics, and Winkler [10] considers another linearly bounded model of errors.

We begin in Section 6.2 by developing the framework of chip games within which we solve the

search problem. Chapter 7 begins with a simple strategy for solving our problem in the linearly

bounded model in the bounded domain which works with either comparison or membership

questions, but whose obvious analysis gives an inefficient bound on the number of questions.

We then improve this bound by analyzing this strategy using chip games. Chapter 7 continues

by focusing on membership questions and proving an O(lg n) question bound for this class. The

chapter ends with a generalization of the above bounds for the unbounded domain. Chapter 8

contains the aforementioned reduction between the probabilistic and linearly bounded error

models in the bounded domain, and the O(lg n) question bound for the probabilistic error model

which follows from it. These results are also generalized to the unbounded domain. Chapter 9

concludes the paper with a summary of the results and mention of some open problems.

6.2 Searching and Games 83~~~~~~~~~

---- boundary line

0 1 2 3 4 ... Lrkj ...

Figure 6.3: Chip Game

6.2 Searching and Games

Searching for an unknown number x in {1,..., n} by asking "yes-no" questions can be restated

in terms of the game of "Twenty Questions". In this game between two players, whom we

denote Paul and Carole,4 Carole thinks of a number between 1 and n. Paul must guess this

number after asking some number of "yes-no" questions which is previously fixed. Our goal

in this game is to determine how many questions Paul must be allowed in order for him to

have a winning strategy in the game. Clearly, [lgnl questions are sufficient if Carole always

answers truthfully. The problem of searching with errors thus translates into playing "Twenty

Questions" with a liar [33]. Corresponding to the aforementioned error models, we consider

both a probabilistic and an adversarial linearly bounded liar.

The game against a linearly bounded liar can now be further reformulated as a Chip Game

between two players: the Pusher and the Chooser. Pusher-Chooser games were first used by

Spencer [31] to solve a different problem in his notes on the probabilistic method. The Chip

Game starts with a unidimensional board marked in levels from 0 on upwards (see Figure 6.3).

We start with n chips on level 0, each chip representing one number in ({,...,n). At each

step, the Pusher selects some chips from the board. These chips correspond to the subset S of

{1,..., n that Paul wants to ask about. In other words, selecting S is tantamount to asking

"Is x S?". The Chooser then either moves the set of chips picked by the Pusher to the next

level, indicating a "no" answer from Carole (x is not in S), or it moves the set of chips not

picked by the Pusher, indicating a "yes" answer from Carole. Therefore, a chip representing

the number y is moved to the right if and only if Carole says that y is not the answer. The

4An anagram for the word "oracle," as this is her role in the game.

6.2 Searching and Games 83

84 Introduction

presence of a chip representing the number y at level i says that if y is the unknown number

x, then there have been i lies in the game. After some k steps, if a chip is at any level greater

than LrkJ, then it may be thrown away since the corresponding number cannot possibly be the

answer (too many lies will have occurred). To win, the Pusher must eliminate all but one chip

from the board.

To clarify which chips may be thrown away, we maintain a boundary line on the board.

After k steps, the boundary line will be at level rk]. Thus the Pusher may dispose of the chips

at levels to the right of the boundary line at any time. Note that the boundary line moves one

level to the right after approximately 1/r steps. The number of questions that we need to ask

to determine x exactly is the same as the number of steps needed for the Pusher to win the

above Chip Game.

CHAPTER 7

The Linearly Bounded Error Model

In this chapter, we show an O(nlg 1-) question bound for searching with comparison questions

and an O(lg n) question bound for searching with membership questions. We first show an

Q(nlg r) lower bound for a "brute-force" strategy. Strategies similar to this "brute-force"

method are given by Pelc [24] and Frazier [13], and these were the best known results for

1/3 r < 1/2 prior to this work.

7.1 A Brute-Force Strategy

To determine an unknown number x E {1,..., n), a "brute-force" strategy simply performs a

binary search, repeating each question enough times so that majority gives the correct answer.

Let q(i) be the number of times question i is repeated, and let Q(i) be the total number of

queries through question i (Q(i) = =1 q(j)). To guarantee that majority gives the correct

answer, we insure that the number of lies the malicious oracle can tell is less than half the

number of times question k is repeated. We thus obtain the following:

r(Q(k - 1) + q(k))

q(k)

< q(k)/2
2r

1- 2r Q(k- 1)1 - 2r

85

86 The Linearly Bounded Error Model

We now use the fact that Q(k) = Q(k - 1) + q(k):

Q(k) = Q(k -1) + q(k)
2r

> Q(k -1)+ 1 Q(k-1)1 - 2r

1- 2 Q(k - 1)

Thus, Q(k) = Q((1 2)k). Since the correct answers to [lg n binary search questions must be

obtained, we obtain the following lower bound for the "brute-force" strategy:

(()Ign) = I((1lgn)

Q(g 1-2r)

A similar upper bound can also be shown for this strategy. While this strategy is sound, its

naive analysis yields an unsatisfactory bound. We can improve on this significantly through

the use of chip games.

7.2 Searching with Comparison Questions

We now consider an essentially identical strategy in the chip game. The Pusher plays this game

in phases. Each phase corresponds to getting the correct answer to a single question. At the

beginning of each phase there is a single stack of chips somewhere on the board. The Pusher

picks a subset of these chips, generally some half of them which corresponds to a comparison

question whose correct answer he wishes to determine. He continues picking the same half-stack

throughout this phase until either it or the other half-stack moves beyond the boundary line.

Then he begins the next phase with the remaining half-stack. This continues until there is only

one chip remaining on the board to the left of the boundary line. Note that if there are m chips

on the board initially, [lg ml questions need to be answered correctly.

Now consider the board before and after some phase j. At the beginning of phase j, there

is a stack of chips at a level some distance Ij away from the boundary line (see Figure 7.1). At

the end of phase j, one half-stack has moved some distance i from its original position and the

other half-stack has moved one position past the boundary line. The boundary line is now at

7.2 Searching with Comparison Questions 87

Before phase j After phase j

Ij

: :
Ij+

L
i

Figure 7.1: Chips before and after phase j.

some distance lj+l from the first half-stack.

Let T(d,) be the number of steps the Pusher takes to have d questions answered correctly

when a single stack of chips on the board is a distance away from the boundary line. We then

have

T(d, 1j) = T(d - 1, lj+) + (steps during phase j).

We next bound the number of steps in phase j as a function of r, lj and lj+l.

Lemma 11 The total number of steps during phase j is less than 2 r4-l++3

Proof: The total number of steps during phase j is equal to the total number of levels the two

half-stacks move. One half-stack moves i levels and the other moves i + lj+l + 1 levels, and thus

the total number of steps in phase j is 2i + lj+l + 1.

Let sj be the total number of steps prior to phase j, and let pj be the position of the

boundary line prior to phase j. Note that pj = LrsjJ. Using the fact that x - 1 < LxJ < x, we

have the following:

Pj+l < rsj+l

pj > rsj -1

Subtracting these two inequalities, we obtain:

j+l - pj < r(sy+l - sj) + 1

Now, sj+l - sj is the total number of steps during phase j, and pj+l - pj is the number of levels

7.2 Searching with Comparison Questions 87

88 The Linearly Bounded Error Model

the boundary line moves. We therefore have the following inequality

i + lj+l - lj < r(2i + lj+l + 1) +1 (7.1)

which implies that
lj - (1 - r)/~+l + 1 + r

- 2r

Substituting this bound on i into the expression 2i + lj+l + 1, we obtain the desired result.

Now we are ready to show that:

Theorem 21 T(d, lo) = { O(lo()l-r) iflo > 0

O((1r)d) if lo = 0

Proof: We first show that Vj, j+l < lt+l+r. Solving Inequality 7.1 for j+l, we obtain:

1j + 1+r+i(2r- 1)
Ij+l < 1-r

lj + 1 + r
- -r

This last inequality holds due to the fact that 2r - 1 < 0 and i > 0. Successively applying this

inequality, we obtain the following:

1-r
(10 l1r< (1 - r)j + (1 + r)i -r

- + I +-r(1-r)J r 1-r
= l+ _ 1 + r

r r

We can now use this fact to obtain a bound on T(d, lo):

21o - 11 + 3
T(d,lo) < T(d- 1,11)+ 1-rI - 2r

210 - 11 + 3 211 - 12 + 3 2 1d-1 - ld + 3=1 + 2r 1-2r1 - 2r 1- 2r I - 2r

7.3 Searchng with Mmbership Qestions 8

1
< -2r [21o + 11 + 12 + + Id_1 + 3d]

< l 2102 + 3d + i lo +]1- 2rr r

- 2r r)d) if = .

For any constant r, this expression is O(10(11-) d) if l0 > 0 or O((1~-) d) if Io = 0. 0

This result will be used throughout this thesis. In particular, consider the problem of

searching in the bounded domain with comparison questions. The corresponding chip game

begins with n chips and the boundary line at level 0. Using binary search, we require the

correct answers to [Ig nl questions. Employing Theorem 21, we immediately obtain:

Theorem 22 The problem of searching in the linearly bounded error model in the bounded

domain {1,..., n} with comparison questions and error constant r, 0 < r < 1/2, can be solved

with O(n lg 1-) questions.

7.3 Searching with Membership Questions

We show a winning strategy for the Pusher which requires O(lg n) steps. The strategy works in

three stages. In Stage 1, the Pusher eliminates all but O(lg n) chips from the board in O(lg n)

steps. In Stage 2, the Pusher eliminates all but 0(1) chips from the board in an additional

O(lg n) steps. In Stage 3, the Pusher removes all but one chip from the board in the final

O(lg n) steps.

7.3.1 Stage 1

The strategy employed during Stage 1 is simple. We describe it inductively on the number of

steps as follows. Let h,(i) be the height of the stack of chips at level i after m steps. In the

(mr + 1)-st step, the Pusher picks [hg(i)J from each stack of chips at all levels i. He continues

this way for cl lg n steps (where cl is a constant that will be determined in the analysis).

Before we can analyze this strategy, we will need a few definitions. Define normalized

binomial coefficients b(i) as

b () =
n-mi

7.3 Searching with Membership Qestions 89

90 The Linearly Bounded Error Model

and let

Z~m(i) = hm(i) - bm(i).

The normalized binomial coefficient b(i) will approximate hm(i), the height of the stack at

level i after m steps, while Am(i) will account for any discrepancy.

In order to analyze the given strategy, we need to be able to determine the number of chips

which are to left of the boundary line after some number of steps in our strategy. After m steps,

this is equivalent to Ei<Lrmj hm(i) (since r is the rate at which the boundary line moves). This

sum is difficult to determine exactly. Instead, we will derive an upper bound for it by using the

fact that Ei<[rmJ hm(i) = i<Lrm bm(i) + Ei<LrmJ Am(i). In particular, we will show an upper

bound for Ei<LrmJ Am(i).

For the strategy given above, we now bound the discrepancy between the actual number of

chips in any initial set of j stacks and the number of chips predicted by the normalized binomial

coefficients. We will need three lemmas. The first two lemmas handle boundary conditions,

while the third is required in the proof of the main theorem.

Lemma 12 (Vm > 0), Am(O) < 1.

Proof: The proof is by induction on m.

* base case: For m = 0, ho(0) = n = bo(O) =- A0(O) = 0.

* inductive step: Assume Am-_(0) < 1. We now have the following:

hm(O) • [hm(0) 1

hm_l (0) 1
2 2

bm_1 (0) m-(0) + 1
+ q

2 2 2

Aml (0) 1

< bm(O) +

Thus, Am() = hm(0) - bm(0) < 1. [1

7.3 Searching with Membership Questions 91-

m
Lemma 13 (m > 0), E Am() = 0.

i=O

Proof:
m m m

E hm(i) = n = E bm(i) 'Y E ALm(i) = 0
i=O i= i=O

j-1 J
Lemma 14 bm-l(i)+ 2 = b(i).

i=O i=O

Proof: We first note the fact that (ba) + (a) = (a+1). The proof proceeds as follows:

,i b m_ (j) =i2n (m-l) n (m-1
i=2 '= L. 2- 1 i 2m j)2 i=

n [(m-1 m-1 +

[(-1) (J)]]2 + (j

= m i=O i i=O

Theorem 23 (m >) (j m), Z Am(i) < j + 1.
i=O

Proof: The proof of the theorem is by induction on m. The base case of m = 0 is trivial. In

the inductive step, we show that if the theorem holds for m - 1, then the theorem holds for m.

The boundary conditions j = 0 and j = m are handled by Lemmas 12 and 13. We concentrate

on the case 0 < j < m below. Consider the following (see Figure 7.2):

hm(i)
i=O

< E h_-l() + 2
i=O 2
3-1 hmi(j)- E h-(i) -
i=O 2 2

7.3 Searching with Membership uestions 91

92 The Linearly Bounded Error Model

After step m-l

I
0 1 2 3 ... j-1 j ...

El - chips that move

* - chips that do not move

0 1 2 3 ... j-1 j

Note: shaded chips are the same

Figure 7.2: Chips before and after step m

j-1

= E b-l(i)
i-=O= Jb~i~

j-1
2+(j) L (i

i=0
j-1

= bm(i) + m-l(i)
i=O - i=O

m-1 (j)
2

+Am-() +1
2 2

We now bound the quantity Eij-1 ._(i) + "-) + . There are two cases, depending upon

whether A m l(j) < 1 or Aml(j) > 1. If Am_-l(j) < 1, we have the following:

j-1

E ,,-(i)
i=O

+ Am_(j) 1
2 2

j-1
Ca E (i) +
i=0

• j+1

If A,-,(j) > 1, then ';L') + - < Am-,(j). We thus obtain the following:

j-1
E Am-(i) +
i=O

Am-1(j)
2

1 j
+ < m1 (i)

i=O

< j+

We therefore have

j

i=O

b j-(i) Am a (i(j+ 2)
bm(i)+ZAm-()i=O

i=0

After step m

1

2

Z hm(i)
i=O

1

2

. . .

7.3 Searching with Membership Questions 93

i
< Zb,(i)+j+l

i=O

which implies that Z A.m(i) < j + 1.
i=O

Now we will bound Ei<L[rm bm(i). We will find a constant cl such that for m = c lgn,

L-mJ bm(i) is a constant. If we can do this, then it follows from the theorem above that

EL`o hm(i), the number of chips remaining to the left of the boundary line, is O(lgn). The

reasoning is as follows:

Lrmj Lrmj Lrmj

E hm(i) = E bmn(i) + E Am(i)
i=O i=O i=O

LrmJ

< E bm(i)+ Lrm + 1
i=O

c2 Lr.c lg n

< c3 lg n

for appropriate constants c2 and C3.

In order to determine cl, we make use of the following bound [22]:

k kH()

Ei=O (i) < 2 k (u)

where 0 < p < 1/2 and H(r) is the binary entropy function.1 We now have:

Lrmj n Lrmj

E bm(i) = 2 ()
i=O i=O

< 2mH(r)

2m

= n2m(H(r)- 1)

This last quantity is 0(1) when m = 1 (r) Thus if we pick cl - 1 then after

m = c lg n steps, there will be at most c3 lg n chips remaining on the board to the left of the

11[(r) = -rlgr -(1- r)lg(1 - r)

94 The Linearly Bounded Error Model

boundary line. The strategy in this stage can also be applied to the game where the boundary

line starts out at level I = O(lg n) instead of at 1 = 0. One can show directly or through the

use of the techniques given in Sections 8.1.1 and 8.1.2 that Stage 1 still ends in O(lg n) steps

with at most O(lg n) chips to the left of the boundary line. This fact will be useful when we

examine the unbounded domain.

7.3.2 Stage 2

At the end of Stage 1 we are left with some c2 lg n chips on the board with the boundary line

at level cl lgn (for appropriate constants cl and c2). After Stage 2, there are 0(1) chips on the

board to the left of the boundary line after O(lg n) additional steps.

Before starting Stage 2, we alter the board by moving everything on the board (chips and

boundary line) to the right by c2 lg n, so that the boundary line is now at level (cl + c2) lg n =

c lg n. While this new board corresponds to a different game than the one we have played until

now (it corresponds to a game in which many more questions and lies have occurred), these

two boards are equivalent in the sense that the Pusher can win from the first board within k

extra moves if and only if he can win from the second board within k extra moves.

Now move the chips to the left in such a way that there is exactly one chip on each of the

first c2 lg n levels. Note that the Pusher does not help himself by doing this, since moving chips

to the left is in effect ignoring potential lies which he has discovered.

At each step in this stage, the Pusher first orders the chips from left to right, ordering chips

on the same level arbitrarily. He then picks every other chip according to this order; that is, he

picks the 1st, 3rd, 5th, ... chips. We say that the board is in a nice state if no level has more

than two chips.

Lemma 15 Throughout Stage 2, the board is in a nice state.

Proof: We show this by induction on the number of steps in Stage 2. Certainly at the beginning

of Stage 2, the board is in a nice state since each level is occupied by at most one chip. Now

suppose that the board is in a nice state after i steps. Consider any level j after the (i + 1)-st

step. Since both levels j - 1 and j had at most two chips before the (i + 1)-st step, after this

step level j retains at most one chip and gains at most one chip, thus ending with at most two

chips. °

7.3 Searching with Membership Questions 95

We now show that after O(lg n) steps, there are at most 2k chips remaining to the left of

the boundary line. Here k is a constant (depending only on r) which will be determined later.

If there are fewer than 2k chips to the left of boundary line, Stage 2 terminates. Let the weight

of a chip be the level it is on, and let the weight of the board be the weight of its 2k leftmost

chips.

Lemma 16 After each step in Stage 2, the weight of the board increases by at least k - 1.

Proof: Of the 2k leftmost chips after step i, at least (2k - 1) chips remain in the set of leftmost

2k chips after step i + 1. (The 2k-th chip may be on the same level as the (2k + 1)-st chip. In

this case, if the 2k-th chip moves in step i + 1, then the (2k + 1)-st chip becomes the new 2k-th

chip in the revised ordering.) At least [2k l = k - 1 of these chips move to the right one level

during step i + 1, thus increasing the weight of the board by at least k - 1. L[

Let S be the number of steps taken during this stage and let W be the weight of the board

at the end of these S steps. Since the weight of the board goes up by at least k - 1 in each step,

and since the initial weight of the board was non-negative, W > (k - 1)S. At the end of the S

steps, the boundary line is at c lg n + LrSJ. Since this stage ends when there are fewer than 2k

chips to the left of the boundary line, we certainly have W < 2k(clg n + rS). Combining these

two inequalities, we obtain:

2k(clgn+rS) > S(k-1)
2kc

S < 2kc lk-l- 2kr

If we let k 2 then S < j4 lgn = O(lgn). Thus after O(lgn) steps, Stage 2 ends1-2r - r

leaving at most 2k chips to the left of the boundary line.

7.3.3 Stage 3

At the beginning of Stage 3, the Pusher moves all of the remaining chips to level 0. Again this

is legal, since he is essentially choosing to ignore some information he has gathered. We now

have some 2k chips a distance c Ig n away from the boundary line (for appropriate constants c

and k). By applying Theorem 21 from Section 7.2, the Pusher can win this game in O[(clg n).

7.3 Searching with Membership uestions 95

96 The Linearly Bounded Error Model

(1) g 2k] = O(lg n) steps. Since each of the three stages takes O(lg n) steps, we now have the

following:

Theorem 24 The problem of searching in the linearly bounded error model in the bounded

domain 1,... , n with membership questions and error constant r, 0 < r < , can be solved

with O(lg n) questions.

7.4 Unbounded Search

Now consider the problem of searching for a positive integer in the presence of errors as before,

but where no upper bound on its size is known. Let this unknown integer be n. Using strategies

developed in this paper already, we show that n can be found with O(lg n) membership questions

and O([n lg 2 n]lg
1-) = o(n) comparison questions.

The search occurs in two stages. First, we determine a bound for the unknown number n.

Second, given a bound on n, we employ the techniques for bounded searching given above.

7.4.1 Unbounded Search with Membership Questions

Consider the problem of bounding the unknown number n if all of the answers we receive are

known to be correct. We could ask questions of the form "Is x < 22 ?". We would begin by

asking "Is x < 22 ?,. If the answer were "no", we would follow with "Is x < 22'?", and so on.

Since n < 22 r gL g'd , we will obtain our first "yes" answer (and thus have a bound on n) after at

most [lg g nl questions. We further note that our bound is not too large:

2 2
rrlIg' l < 2 2

1g lg " + l = 2 21gn = n2

Employing the techniques and results of Section 7.2, we can use the above strategy in the

presence of errors. We need the correct answers to [lg Ig nl questions. By Theorem 21, we can

obtain these answers in

O((1-)[lglgnl) = O((lg n)l g1-r) = o(lg n)

questions.

7.4 Unbounded Search 97

Having found a bound for n, we have reduced our unbounded search problem to a bounded

search problem. We can now apply our bounded search strategy of Section 7.3. It is important

to note that since we have already asked o(lg n) questions, the boundary line will have moved

to o(lg n). But recall that Stage 1 of our bounded search algorithm can tolerate the boundary

line starting at O(lg n). Thus the Pusher can now start with all relevant chips at level 0 and

boundary line at level o(lg n) and apply the bounded search strategy of Section 7.3. Since our

bound on the unknown number n is at most n2 , we will finish this stage after O(lg(n 2)) = O(lg n)

questions. We can now claim the following:

Theorem 25 The problem of searching in the linearly bounded error model in the unbounded

domain with membership questions and error constant r, 0 < r < , can be solved with O(lgn)

questions, where the number being sought is n.

7.4.2 Unbounded Searching with Comparison Questions

We can employ techniques similar to those used above to solve the unbounded search problem

using comparison questions. We first determine a bound on the unknown integer n using

the strategy developed above. We thus bound the unknown number n by at most n2 using

O((lg n)'g 1) questions. Note that the boundary line will now be at O((lgn) lg).

Having bounded the unknown number n by at most n2 , we could simply use Theorem 21

directly. By performing a simple binary search, we will need correct answers to at most lg(n2)

questions. Using Theorem 21, we obtain an overall question bound of

0((lg n)g 1-T (1) [lg(n)) = O([n2 Ig n]9g).

This can be improved, however, by adding an extra stage. After bounding the unknown

number n by at most n2, partition this bounded interval into exponentially growing subintervals

Ij = [2 i,2 j + - 1] Vj > 0. Note that there will be at most [lg(n2)] such subintervals. To

determine the correct subinterval, we perform a simple binary search on these subintervals

requiring correct answers to [lg [lg(n2) 1 questions. By Theorem 21, we will need

O((lg n)'g t; . () r1i lg(n)11) = O([lg2 n]lg i-)

7.4 Unbounded Search 97

98 The Linearly Bounded Error Model

additional questions. Since our subintervals grew exponentially, the subinterval containing the

unknown number n will be of size at most n. We can thus perform a final binary search on this

subinterval and employ Theorem 21 to obtain an overall question bound of

o([lg2]lg 1-. (1_)1 =n) = O([n lg2n]g I) = o(n).

Theorem 26 The problem of searching in the linearly bounded error model in the unbounded

domain with comparison questions and error constant r, < r < , can be solved with

O([n lg2 n]lg 1-) = o(n) questions, where the number being sought is n.

CHAPTER 8

The Probabilistic Error Model

Recall that in the probabilistic error model, Carole lies randomly and independently with

probability p, and Paul must determine the unknown number x correctly with probability at

least 1 - 6, for a given 6 > 0. In this chapter we give a reduction to show that searching in

the probabilistic error model is no more difficult than searching in the linearly bounded model.

Formally, we show that if A4 is an algorithm which, given n and r, solves the linearly bounded

error problem in f(n, r) questions, then we can construct an algorithm Ap which solves the

probabilistic error problem in f(cn, 1+2p) questions where c is a constant depending on p and 6.

An O(log n) bound for the probabilistic error model with membership questions follows easily

from the results of the previous chapter. We also generalize our results to the unbounded

domain.

8.1 The Reduction

The terms "algorithm" and "strategy" will be used somewhat interchangeably, since a winning

strategy for the Pusher in the Chip Game corresponds to an algorithm to solve the search

problem with errors, and vice versa.

We now construct an algorithm which solves the probabilistic error problem from an algo-

rithm which solves the linearly bounded error problem. Let Ae be an algorithm which solves

the linearly bounded error problem. Ae requires values for n and r, as well as access to an

99

100 The Probabilistic Error Model

oracle whose errors are linearly bounded (an oracle which gives at most ri errors to any initial

sequence of i questions). Algorithm A will ask f (n, r) questions and will return the correct

element x E {1,... , n with certainty. Let Ap be an algorithm which solves the probabilistic

error problem. Ap requires values for n, p and 6, as well as access to an oracle whose errors are

random (an oracle which lies randomly and independently with probability p). Algorithm Ap

will ask g(n, p, 6) questions and will return the correct element x E 1, ... , n} with probability

at least 1 - .

In order to solve a probabilistic error problem with a linearly bounded error algorithm, we

must insure that the errors made by the probabilistic oracle fall within those allowed by the

linearly bounded error algorithm (with high probability). One method to accomplish this is to

set r > p. This assures that in the long run, with high probability, the number of lies told by the

probabilistic oracle will be fewer than the number of lies the linearly bounded error algorithm

can tolerate. The danger here lies at the beginning of the game where it is relatively likely

that too many lies will be told, and hence the correct chip will be thrown out by the linearly

bounded error algorithm. To overcome this difficulty, we must prevent the linearly bounded

error algorithm from throwing out the correct chip in this critical stage.

We proceed in two stages. In the first stage, we play a modified game with excess chips in

such a way as to guarantee that the correct chip is not thrown out until at least m questions

have been asked of the probabilistic oracle. In the second stage, we find the correct chip among

those remaining with high probability.

8.1.1 Stage 1

We begin the game by setting r midway between p and 1/2. Thus, r = 2+ = 1+2 This2 4

insures that the number of errors given by the probabilistic oracle will be fewer than the number

of errors which can be tolerated by the linearly bounded error algorithm in the long run with

high probability. To insure that the correct chip does not cross the boundary line before the

m-th step, we begin the game with n2- . "
m chips.

In the first critical Lrm steps, we intercept algorithm Ae's queries to the oracle and answer

them so as to maximize the number of chips which are left at level 0. We first note that after

these rm steps, the boundary line will be at (1 - r)m. Second, since the number of chips at
7'

8.1 The Reduction 101~~~~~~~~~~~~~~~~

(I-r) m
n2r n

(1 -r)m/r steps m steps

0 1 2 3 ... 0 1 2 3 ... (1-r)m 0 1 2 3 ... (1-r)m m

We answer questions -- o .- Oracle answers questions b

Figure 8.1: Stages of the Reduction

level 0 are reduced by at most half in each step, there will be at least n chips remaining after

these lm steps. See Figure 8.1.

8.1.2 Stage 2

Associated with each chip in the current game is an element of the set (1,..., n2 -"m}. For

a chip u, let this be the OldValue(u). We now establish a new correspondence between n

of the remaining chips at level 0 and the set 1,...,n}. For a chip u, this will be New-

Value(u). This new correspondence is order-preserving in the following sense: for chips u

and v, OldValue(u) < OldValue(v) iff NewValue(u) < NewValue(v). The necessity for estab-

lishing an order-preserving correspondence stems from the need to have this reduction apply to

the searching problem where only comparison questions are allowed. We now continue running

algorithm A4e, sending his queries to the probabilistic oracle after translating them thus: Let

C = {u : Ae picks u and NewValue(u) E {1,...,n}}. That is, C is the set of selected chips

which have defined NewValues. Let Sc = NewValue(u) : u E C}, that is, Sc is the set of

associated NewValues. If Sc = 0, then we ask the probabilistic oracle about Sc and return the

oracle's answer to Al. If Sc = 0, then we could ourselves immediately answer "no". However,

it is more convenient in the analysis to have the probabilistic oracle answer all questions in

this stage. Thus, when Sc = 0, we ask the probabilistic oracle about {1, ... ,n, and return

the opposite of its answer to Al. Suppose that Ae finishes and returns chip u. We then return

NewValue(u) or "fail" if NewValue(u) is not defined.

8.1 The Reduction 101

102 The Probabilistic Error Model

8.1.3 The Analysis

We now claim that for an appropriate m, the above procedure will terminate with the correct

value with probability at least 1 - 6. We in fact show that the probability that the "correct

chip" ever crosses the boundary line is at most 6. If the correct chip never crosses the boundary

line, then the linearly bounded error algorithm must return the correct chip when it terminates,

and hence the correct answer will be obtained.

Our analysis makes use of Hoeffding's Inequality [18] to approximate the tail of a binomial

distribution. Let GE(p, m, n) be the probability of at least n successes in m Bernoulli trials,

where each trial has probability of success p. Hoeffding's Inequality can then be stated as

follows:

GE(p, m, (p + o)m) < e- 2 2M

After the first -~m steps, the correct chip will be at level 0, and the boundary line will be

at level (1 - r)m (see Figure 8.1). Since a chip can move at most one level per question and

the boundary line moves at a rate r, none of the n remaining chips at level 0 will cross the

boundary line until at least m questions have been asked of the probabilistic oracle. For any

j > m, the probability that the correct chip is past the boundary line after j questions have

been asked of the oracle is given by GE(p, j, jr + (1 - r)m). The probability that the correct

chip is ever past the boundary line is therefore at most

Z GE(p,j, jr + (1 - r)m).
j=m

Given that:

* If n > n' then GE(p, m, n) < GE(p, m, n')

* r= 4 P 4

we can apply Hoeffding's Inequality:

GE(p,j,jr + (1 - r)m) < E GE(p,j,jr)
j=m j=m

oo

= E GE(p,j, (p + 1)j)
j=m

8.1 The Reduction 103

00

_ E e_2(1)2j

j=m

Since we would like this sum to be at most 6, we can now solve for m. Let y = e-2(i)2 Note

that y < 1.

E j< 6
j=m

<- 61-- y

ln + ln
In 1

-y

-2(1-2)2 _(1-2p?2
For7/=e - 2 () 2 = 4 e 8 ,we obtain

m>
- (1 - 2p) 21-- 1 1e 8Noting that for 0 < p <1 0< 2p

2 < 1 wecan use the fact that for 0<x < x < 16/15 >8 8' 1e-.

to pick
81n 1 + 8n 128/15

6 (1-2p) 2

(1 - 2p)2

We can now conclude the following theorem:

Theorem 27 Let Ae be a linearly bounded error algorithm which requires f(n, r) questions.

Then Ae can be used to solve a probabilistic error problem specified by n, p, and 6 in f(cn, l+ 2
p

)

questions where c = 2+21m and m is as given above.

An O(log n) bound for the probabilistic error model with membership questions now easily

follows from the results of the previous section.

Theorem 28 The problem of searching for an unknown element x E {1,... ,n} with confidence

probability 6 in the presence of random errors (occurring randomly and independently with fixed

probability p < 1/2) can be solved with O(log n) membership questions. The dependence of these

bounds on p and 6 is polynomial in 1 2p and logarithmic in 1/6.

104 The Probabilistic Error Model

8.2 The Unbounded Domain

We now consider the problem of searching for an unknown integer in the presence of random

errors where no bound on the unknown number is known. Let this unknown integer be n. Our

strategy proceeds in two stages. In the first stage, we obtain a bound for the integer n. In the

second stage, we apply our techniques for searching in the bounded domain given above. To

insure that our overall procedure fails with probability at most 6, we require that each of these

two stages fails with probability at most 6' = 6/2.

8.2.1 Stage 1

By obtaining the correct answers to [lglg nl questions of the form "Is x < 22'?" as in sec-

tion 7.4.1, we can bound the unknown number n by at most n2.

We might now imagine determining the correct answers to these [lg lg nl questions by asking

each one sufficiently often so that majority is incorrect with some sufficiently small probability.

Unfortunately, to determine how much error is "sufficiently small" requires that we know the

value of n. Since n is unknown here, we will require a more subtle querying algorithm.

To insure that our procedure fails with probability at most ', we require that the correct

answer to question i is obtained with error at most f'/2i. Consider asking the i-th question m(i)

consecutive times and taking the majority vote of the responses to be the "correct" answer.

The probability that our posited answer is incorrect can be calculated as follows:

Pr[majority vote is wrong] = Pr[at least half errors]

= GE(p, m(i), m(i)/2)

= GE(p, m(i), (p + [1/2 - p]) m(i))

< e-2(1/2-p)2 m(i)

_ (1-2p)2?,(i)
e 2

Since we require this probability to be at most 6'/2t, we obtain the following:

-(-2p)2(i)'/2ie 2 <

8.2 TeUbuddDmi 0

m(i) (1 - 2p)2 [lg a + i]

Now, since our procedure will terminate (with probability at least 1 - 6') after the correct

answers to fg g nl questions have been obtained, we arrive at an overall question bound of

m(i) =E (1- 2p)2 L 6']

gn 4 I 1 2g g n (lg g n] + 1)]
(1 - 2p)2 ig [ngg ([2gn

= O([g Ig n] 2)

WTe thus bound the unknown number n by at most n2 using O([lg lg n]2) (comparison) questions.

8.2.2 Stage 2

We can now simply apply the bounded searching techniques for membership questions described

in previous section or the bounds of Feige et al. [12] for comparison questions. We can thus

obtain the correct answer (with high probability) in an additional O(lg n2) = O(lg n) comparison

or membership questions. Thus, we can conclude the following theorem:

Theorem 29 The problem of searching for an unknown element n in the unbounded domain

of all positive integers with confidence probability 6 in the presence of random errors (occur-

ring independently with fixed probability p < 1/2) can be solved with O(lgn) comparison or

membership questions. The dependence of these bounds on p and 6 is polynomial in 1 -2p and

logarithmic in 1/6.

8.2 The Unbounded Domain 105

CHAPTER 9

Conclusions and Open Questions

We have examined the problem of searching in a discrete domain under two different error

models: the linearly bounded error model and the probabilistic error model.

In the linearly bounded error model, we have shown that O(lg n) membership questions are

sufficient to search in both the bounded and unbounded domains. With comparison questions,

we show bounds of O(nl g -) and O([n lg2 n]lg -) in the bounded and unbounded domains,

respectively.

Our reduction from the probabilistic to the linearly bounded error model shows that the

searching problem is at least as difficult to solve in the linearly bounded error model as in the

probabilistic error model. This gives evidence that the linearly bounded error model deserves

further investigation. A corollary of this reduction gives another proof of the O(lg n) bound on

membership questions required to search with probabilistic errors. Previously known bounds

are also extended to the unbounded domain.

Two questions arise directly from this work:

1. In the linearly bounded error model, can we show a logarithmic upper bound on the

number of comparison questions required when the error rate is between 1/3 and 1/2?

Using techniques similar to ours, Borgstrom and Kosaraju [8] have recently shown that

this is the case.

2. Can a strict inequality be shown between the probabilistic and linearly bounded models

107

108 Conclusions and Open Questions

with respect to the problem of searching? That is, can it be shown that searching in the

presence of linearly bounded errors with some question class requires an asymptotically

greater number of questions than searching in the presence of random errors with the

same question class? This problem remains open.

Bibliography

[1] Dana Angluin. Computational learning theory: Survey and selected bibliography. In

Proceedings of the Twenty-Fourth Annual A CM Symposium on Theory of Computing, pages

351-369, May 1992.

[2] Dana Angluin and Philip Laird. Learning from noisy examples. Machine Learning,

2(4):343-370, 1988.

[3] Dana Angluin and Leslie G. Valiant. Fast probabilistic algorithms for Hamiltonian circuits

and matchings. Journal of Computer and System Sciences, 18(2):155-193, April 1979.

[4] Martin Anthony and Norman Biggs. Computational Learning Theory. Cambridge Tracts

in Theoretical Computer Science (30). Cambridge University Press, 1992.

[5] Javed A. Aslam and Aditi Dhagat. On-line algorithms for 2-coloring hypergraphs via chip

games. Theoretical Computer Science, 112(2):355-369, May 1993.

[6] Avrim Blum, Merrick Furst, Jeffery Jackson, Michael Kearns, Yishay Mansour, and Steven

Rudich. Weakly learning DNF and characterizing statistical query learning using fourier

analysis. In Proceedings of the Twenty-Sixth Annual ACM Symposium on the Theory of

Computing, 1994. To Appear.

[7] Anselm Blumer, Andrzej Ehrenfeucht, David Haussler, and Manfred K. Warmuth. Learn-

ability and the Vapnik-Chervonenkis dimension. Journal of the ACM, 36(4):929-965, 1989.

109

110 Bibliography

[8] Ryan S. Borgstrom and S. Rao Kosaraju. Comparison-based search in the presence of

errors. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Com-

puting, pages 130-136, 1993.

[9] Scott E. Decatur. Statistical queries and faulty PAC oracles. In Proceedings of the Sixth

Annual ACM Workshop on Computational Learning Theory. ACM Press, 1993.

[10] Aditi Dhagat, Peter GAcs, and Peter Winkler. On playing twenty questions with a liar. In

Proceedings of the Third Annual ACM-SIAM Symposium on Discrete Algorithms, 1992.

[11] Andrzej Ehrenfeucht, David Haussler, Michael Kearns, and Leslie Valiant. A general lower

bound on the number of examples needed for learning. Information and Computation,

82(3):247-251, September 1989.

[12] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Computing with unreliable information.

In Proceedings of the Twenty-Second Annual ACM Symposium on Theory of Computing,

pages 128-137, 1990.

[13] Michael Frazier. Searching with a non-constant number of lies. Unpublished manuscript,

1990.

[14] Yoav Freund. Boosting a weak learning algorithm by majority. In Proceedings of the Third

Annual Workshop on Computational Learning Theory, pages 202-216. Morgan Kaufmann,

1990.

[15] Yoav Freund. An improved boosting algorithm and its implications on learning complexity.

In Proceedings of the Fifth Annual ACM Workshop on Computational Learning Theory,

pages 391-398. ACM Press, 1992.

[16] Sally A. Goldman, Michael J. Kearns, and Robert E. Schapire. On the sample complexity

of weak learning. In Proceedings of COLT '90, pages 217-231. Morgan Kaufmann, 1990.

[17] David Helmbold, Robert Sloan, and Manfred K. Warmuth. Learning integer lattices. SIAM

Journal on Computing, 21(2):240-266, 1992.

[18] W. Hoeffding. Probability inequalities for sums of bounded random variables. Journal of

the American Statistical Association, 58:13-30, 1963.

Bibliography 111

[19] Michael Kearns. Efficient noise-tolerant learning from statistical queries. In Proceedings of

the Twenty-Fifth Annual A CM Symposium on Theory of Computing, pages 392-401, 1993.

[20] Michael Kearns and Ming Li. Learning in the presence of malicious errors. In Proceedings of

the Twentieth Annual ACM Symposium on Theory of Computing, pages 267-280, Chicago,

Illinois, May 1988.

[21] Philip D. Laird. Learning from Good and Bad Data. Kluwer international series in engi-

neering and computer science. Kluwer Academic Publishers, Boston, 1988.

[22] F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes, volume 1,

page 310. North Holland Publishing Company, 1977.

[23] Colin McDiarmid. On the method of bounded differences. In J. Siemons, editor, Surveys

in Combinatorics, pages 149-188. Cambridge University Press, Cambridge, 1989. London

Mathematical Society LNS 141.

[24] Andrzej Pelc. Searching wih known error probability. Theoretical Computer Science,

63:185-202, 1989.

[25] R. L. Rivest, A. R. Meyer, D. J. Kleitman, K. Winklmann, and J. Spencer. Coping with

errors in binary search procedures. Journal of Computer and System Sciences, 20:396-404,

1980.

[26] Yasubumi Sakakibara. Algorithmic Learning of Formal Languages and Decision Trees.

PhD thesis, Tokyo Institute of Technology, October 1991. (International Institute for

Advanced Study of Social Information Science, Fujitsu Laboratories Ltd, Research Report

IIAS-RR-91-22E).

[27] N. Sauer. On the density of families of sets. Journal of Combinatorial Theory Series A,

13:145-147, 1972.

[28] Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197-227,

1990.

[29] Robert E. Schapire. The Design and Analysis of Efficient Learning Algorithms. MIT Press,

Cambridge, MA, 1992.

112 Bibliography

[30] Hans Ulrich Simon. General bounds on the number of examples needed for learning prob-

abilistic concepts. In Proceedings of the Sixth Annual ACM Workshop on Computational

Learning Theory. ACM Press, 1993.

[31] Joel Spencer. Ten Lectures on the Probabilistic Method, chapter 4, pages 32-35. SIAM,

1987.

[32] Joel Spencer and Peter Winkler. Three thresholds for a liar. Combinatorics, Probability

and Computing, 1:81-93, 1992.

[33] S. M. Ulam. Adventures of a Mathematician. Charles Scribner's Sons, 1 edition, 1976.

[34] Leslie G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-

1142, November 1984.

[35] Leslie G. Valiant. Learning disjunctions of conjunctions. In Proceedings IJCAI-85, pages

560-566. International Joint Committee for Artificial Intelligence, Morgan Kaufmann, Au-

gust 1985.

[36] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications, XVI(2):264-280,

1971.

