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Abstract

This investigation studies the learning dynamics of artificial feedforward neural net-
works for the purpose of designing new algorithms and architectures with increased
learning ability and computational efficiency. The concept of a system matrix for the
learning algorithm is developed and the condition number of this matrix is shown
to be a good indicator of convergence in backpropagation. The concept of a linearly
independent internal representation is developed and used to derived the minimal
number of hidden units required for exact learning. The minimization of the sum of
squared error is shown to enhance the linear independence of the internal represen-
tation, thereby increasing the likelihood of exact learning. A family of architectures,
the Tree-Like Architectures, are studied for potential efficacy in learning and com-
putational efficiency. The Tree-Like Perceptron network, a member of the Tree-Like
Architecture family, is useful in the context of resource limited training when com-
pared to the Multilayer Perceptron. In addition, preliminary results show that the
Tree-Like Perceptron network may enhance convergence in large-scale applications.
The Tree-Like Shared network, another member of the Tree-Like Architecture family,
combines the Tree-Like Perceptron with the concept of a linearly independent in-
ternal representation. The Tree-Like Shared network allows communication between
decomposed subnetworks to increase convergence at the expense of parallelism. A
novel two hidden layer network with a reduced parameter representation is proposed
and analyzed by numerical simulation. Preliminary results indicate a dependence on
the available dynamic range and precision of the computing platform.

Thesis Supervisor: Chi-Sang Poon
Title: Principal Research Scientist
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Chapter 1

Background

Artificial neural networks (ANNs) have enjoyed a great deal of success in recent
years [29, 28]. They have been useful in a wide variety of tasks that require pattern
recognition or feature extraction capabilities. Examples include optical character
recognition, speech recognition and adaptive control, to name a few. In particular,
artificial feedforward neural networks (AFNNs) have enjoyed special success because
of their universal approximation capability [33] and simple and effective training
algorithms [62].

Early AFNNs took the form of the single layer perceptron, originally conceived by
Rosenblatt [32] in 1962. The single layer perceptron has a simple and efficient learning
algorithm and a parallel computational structure (Figure 1-1), making it an excellent
substrate for biological models of learning and as a tool in pattern recognition tasks.

The single layer perceptron, however, is limited in its applicability. Work by
Minsky and Papert [47] and Nilsson [52] describe the requirement of linear separa-
ble input-output patterns for the single layer perceptron to successfully learn a set
of patterns. This limitation could be circumvented by the addition of intermediate
elements which could transform the data into a linearly separable form. It was conjec-
tured at the time (Minsky and Papert [47], 1969) that such a multilayer perceptron, a
perceptron with intermediate units, could, in principle, learn any set of input-output
patterns providing the appropriate intermediate coding existed. However, the lack

of an appropriate learning algorithm caused a marked decrease in neural network
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Figure 1-1: Single Layer Perceptron

research for almost 20 years [32].

In 1986, Rumelhart, Hinton and Williams [62] discovered the backpropagation
of errors algorithm. This algorithm has proved to be effective in training Multi-
layer Perceptrons (Figure 1-2) for a variety of tasks. Unfortunately, the backprop-
agation algorithm does not have the guaranteed convergence results that could be
shown for the single layer perceptron. Thus, training via the backpropagation al-
gorithm can result in suboptimal solutions [11, 24, 12]. In addition, the problems
of initial condition sensitivity [43, 38], long training time [72] and computational
complexity [42, 71] were identified. To overcome some of these problems, such as
long training time, many modifications to the backpropagation algorithm have been
proposed [6, 63, 73, 17, 59, 69, 58, 10, 67].

Further work in specialized hardware (27, 35, 50, 44, 37, 46] and parallel algo-
rithms [78, 45, 40, 21, 57|, designed especially for the implementation of backprop-
agation, have seemingly eliminated many of the problems outlined. By having fast
VLSI or parallel computer resources, the computations are faster and can be run mul-
tiple times from a variety of initial conditions to overcome the problem of suboptimal
solutions and initial condition sensitivity.

Unfortunately, as the size of applications increases the computational advantages

11
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Figure 1-2: Multilayer Perceptron with one layer of hidden units with sigmoidal
activation functions.
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of specialized hardware and parallel algorithms are likely to become smaller because
of the problems fundamental to the backpropagation algorithm and the MLP. The
development of new training strategies and architectures will be required to solve
these large problems within the available computational resources.

The present investigation deals with identifying important aspects of MLP learn-
ing dynamics. Using this analysis new algorithms and architectures can, in principle,
be developed with faster training, smaller likelihood of suboptimal solutions and
smaller computational requirements, making the available computational resources

more effective at solving large AFNN tasks.
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Chapter 2

Condition Number as a
Convergence Indicator in

Backpropagation

2.1 Introduction

Backpropagation of errors [76, 62| is the most popular training algorithm for feedfor-
ward artificial neural networks [29]. Its popularity is a result of its simplicity and easy
implementation on digital computers. A major disadvantage of backpropagation is its
slow convergence [42]. Presently, there exists a myriad of algorithms which increase
the convergence rate of backpropagation [67, 6, 63, 73, 17]. However, many are based
on ad hoc modifications which perform well under simulation of specific examples, but
offer little in the way of analysis. To design algorithms which have better convergence
rates it is important to understand the factors underlying learning dynamics.

This investigation reformulates the backpropagation training algorithm into a lin-
ear algebraic framework. As a result, analysis of training dynamics is simpler and
linear techniques can be used to predict algorithm performance.

In section 2.2 the system matriz, A(W), is defined. It represents the core of this

analysis. In section 2.3 the use of the condition number of a matrix as a related notion
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of linear independence is discussed. The condition number of the system matrix is
used to quantify the training process. Simulation results in section 2.4 illustrate the
use of condition number as a convergence indicator.

In section 2.5, the matrix formulation is used to predict the performance of various
algorithms. These include the use of derivative noise [17] and the use of the cross
entropy cost function [67, 73]. The addition of hidden units is also analyzed for

convergence performance.

2.2 Construction of the System Matrix, A(W)

This section outlines the construction of the system matrix from the basic backprop-
agation of errors [62] weight update formulae.

Consider a multilayer perceptron with N; inputs, Ny hidden units and one output
unit. The training set consists of Np patterns and the training cost function is chosen
to be the sum of squared error, i.e. E(W) =15 (¢ — 2))®. where ¢ is the target
output for the input pattern v!, and z! the corresponding network output. The
superscripts denote the pattern number. The vector w represents the weight vector
of the network. It is comprised of Wgq, the weights from the hidden units to the
output unit and W,, the weights from input to hidden nodes. Individual weights
in Wq are denoted Wy,,i = 1,..., Ny + 1. Weights in W, are further divided
into Wy,,4 = 1,..., Ng, the weight vectors from the input nodes to the i** hidden
unit. A particular weight that connects hidden node 7 and input j is denoted W), ;.
The Wq,, ., and W), , ., weights in W represent the bias weights which have an
activation of unity.

As prescribed by the backpropagation algorithm the weight vector w is updated
according to the gradient descent rule i.e. AW = —nVwE(W). where 7 represents
the step size or learning rate.

The weight update rules can be written explicitly as
P e
AWo, = Y fult' - 2) (2.1)
=1
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AWy = n 3 f - SR Wa(t ~ 2 (22)
where v! is the activation for hidden node i and y}, is the activation for the output node.
y: is the output of hidden node ¢ and v} is the j** component of the input pattern.
The terms yk, ,, and vy ., are unity, for the update of the bias weights. In addition,
f(-) is the nodal activation function and f’(-) its first derivative. Throughout this
discussion it is assumed that f(-) is at least once continuously differentiable, bounded
and monotonically increasing. The sigmoid function f(z) = 1/(1+e) is an example
of such a function. This function is used in all simulations presented.

The update equations can be interpreted as a set of linear equations in the term
(t — 2'). Let &/(W) = t! — 2! and (W) = [e}(W)...eP(W)]T. ¢(W) is the error

vector. The weight update equations can now be rewritten as

AWo = nAa(W)e(W) (2.3)
where [A(W)],, = [F'GE), (2.4)

AWy, = 7Ax (W)e(W) (2.5)
where [Ax (W), = [/'@])v; ' @)Wa,),, (26)

[A]gr = [agr)qr is used to denote a matrix A, with element a, at row g and column 7.
These equations can be further accumulated into one matrix equation for the simul-
taneous update of all the weights in W. When equations 2.4 and 2.6 are combined,

the result is

Aq(W)
AW = nA(W)e(W), where A(W) = AAI‘(W) = ingz; } (2.7)
A
| Apy, (W) |

A(W) is the system matrix.
We assume that Np < (Ny + 1) + Ny(N; + 1), that is, the number of training
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patterns is less than the number of weights and biases in the network. This assumption

holds for many applications in which artificial neural networks have been used.

2.3 Condition Number of A(W) and Network Con-
vergence

This section discusses the use of the condition number as a relative measure of rank
in a matrix. The result is an interpretation of the system matrix which is illustrated
through simulation.

The condition number of a matrix is the ratio of the largest and smallest singular
values of a matrix [39]. A large condition number corresponds to a matrix which has
columns which are nearly linearly dependent. This implies that rank of the matrix is
nearly deficient. The condition number provides relative information about the linear
dependence of the columns of a matrix rather than the absolute information given by
the rank (i.e. either dependent or independent).

Using this linear dependence approach equation 2.7 can be rewritten as

AW = EP:a’(W)e’(W) (2.8)
I=1
where a!(W) is the I** column of A(W) and /(W) is the scalar error for the I**
pattern. The term a'(W)e!(W) represents the gradient of the cost function for the
I*h pattern. Thus equation 2.8 is the vector sum of Np gradient vectors.

The linear dependence of the columns of A(W) (i.e. the rank) determines the
number of directions that AW can take. If the rank of A(W) is deficient, then
the directions of AW are restricted, in fact there exists a subspace of error vectors,
e(W) # 0, which will result in AW = 0. The algorithm has become stuck in a local
minimum. If, however, the rank of A(W) is full, then AW # 0 is guaranteed for
e(W) # 0 and the training error continues to decrease. Note that if e(W) = 0 the
global solution has been reached. For this analysis strict gradient descent is always

guaranteed, thus there is no possibility of limit cycle behaviour.
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Because of the continuous nature of the activation functions, it is unlikely that
the system matrix will lose rank. However in the neighbourhood of a local minima,
the columns of A(W) will become nearly linearly dependent. Thus it is appropriate
to use the condition number as a measure of the linear dependence of the columns of

A(W).

2.4 Simulation Examples

To study the linear dependence of the columns of A(W), the condition number of
the system matrix and the training error of an Exclusive-Or (one layer of two hidden
units) network were tracked (Figure 2-1). The graphs show that the condition number
and error fall together. This is a result of the columns of A(W) becoming more
linearly independent. In trials where convergence was not attained the condition
numbers remained higher than those of the converged trials. Extended simulation
runs revealed that high condition numbers may be associated with local minima.
Note that one of the trials showed an increase in condition number with continued
training and thus may be stuck in a local minimum.

Final solution optimality was also characterized using the condition number. A
set of trials were run for a fixed duration. The condition number of the system matrix
was then calculated for each trial. The convergence criteria was a sum of squared
error less than 0.05. Five hundred Exclusive-Or networks (as above) were simulated.
Figure 2-2 shows the results of the simulation. Of the 500 trials, 299 converged and
201 did not. The bars represent the mean condition number of the final system matrix.
Note that for the converged trials the final condition number of the system matrix is
much smaller. This indicates a strong correlation between network convergence to a

globally optimal solution and a low system matrix condition number.

18
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2.5 Enhancing Convergence by Conditioning A (W)

Simulation results have indicated that there is a strong correlation between a low
condition number and final solution optimality. In this section algorithms that exploit

this relationship for better training performance are discussed.

2.5.1 Decreasing the Condition Number of A(W)

Before examining the algorithms, it is useful to outline some of the properties of the
system matrix that they exploit.

In examining the rank of the system matrix only the columns were considered
for linear independence. The rank calculation can also be viewed as an examination
of linearly independent rows of the system matrix. In particular, many of the rows
of the submatrix Ap(W) are linearly dependent. To see this note Equation 2.6.
The I column of Ay (W) shares the term f'(v})f'(y})Waq,. Since f'(-) > 0 for
any finite argument, f'(v!)f'(yl)Wq, can be eliminated from each column without
changing the rank of A, (W). Thus R(A,(W)) = R([vg]qr) where R(-) is the rank
operator. Note that the simplified matrix is independent of ¢, implying R(AA (W)) =
R(AA,(W)). Thus, many of the rows of R(AA(W)) do not contribute to increasing
the condition number of A(W). This is an inherent redundancy in backpropagation
that can be exploited to increase convergence performance.

This simplification can also be performed for Aqg(W). However, the resulting
rank is the same as that of Aq(W). This is because the terms of the simplified
matrix are functions of the network weights which change over the training period.

Thus no rows can be eliminated due to linearly dependency.

2.5.2 Derivative Noise

One ad hoc method of achieving the modulation of the elements of Ay (W) is to
randomize them by adding noise. If the terms in the matrix are disturbed using noise
more rows can potentially contribute to the condition number. At the same time,

however, the guarantee of strict gradient descent is lost. As a result this method can
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be very sensitive to the magnitude of noise used. In spite of this, the noise method
has been shown to prove effective by Fahlman [17] who used the noise to prevent
saturation of the derivative of the activation function. When a small amount of noise
was added to the derivatives, the networks converged faster and were less likely to get
stuck in local minima. In other words, by keeping more rows linearly independent,

the algorithm could proceed without being impeded by local minima.

2.5.3 Cross Entropy versus Sum of Squared Error

Another method of increasing convergence performance is to increase the magnitude
of the weight update vector. Thus a larger step is taken down the error surface during
each weight update, resulting in faster convergence.

The system matrix, A(W), can be simplified by eliminating the term f'(y!) from
each column. This is in direct analogy with the simplification of R(A4,(W)). The
sigmoidal activation function, f(z) = 1/(1 + e~*), has the property that 0 < f'(z) <
1. That is f'(y!) has the effect of attenuating the matrix elements and thus the
magnitude of the weight update vector. The removal of this term should accelerate
convergence.

This approach has been used in training algorithms that have a cross entropy [67]

type cost function. The cross entropy cost function has the form

W =S Limt sy L=t
E( )_g{tl ol+(1 )1 (1—01)} (2.9)

for a single output network.
When weight update equations are calculated for this cost function, the result is
a system matrix without the f'(3!) term. These algorithms yield faster convergence

when compared with the sum of squared error cost function as shown in [67] and [73].

2.5.4 Increasing the Number of Hidden Units

The condition number of A(W) can also be increased by increasing the number of

rows. In particular, adding rows to A (W) is equivalent to adding more hidden units
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Figure 2-3: Effect of Number of Hidden Units on Network Convergence

to the network. It follows that more hidden nodes should increase the possibility of
obtaining a better conditioned system matrix. A similar redundancy approach is
taken by Izui and Pentland [36]. They show that when redundant nodes (input
and hidden) are added to the network they speed up convergence. In figure 2-3 the
number of converged networks is plotted for the Exclusive-Or example with varying
hidden layer sizes. Note the increase in the percentage of converged networks as the
number of hidden units is increased. In fact, with four or more hidden units all the
trials converged. Figure 2-3 also shows the number of epochs required to achieve the
convergence criterion. As the number of hidden units increases the number of epochs

needed to achieve convergence decreases.

2.6 Discussion

In this investigation, a linear algebraic formulation has been described that is useful

in predicting the convergence performance of algorithms that are based on backprop-
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agation of errors.

Simulations showed the correlation between the training error and system matrix
condition number trajectories.

The enhanced performance of algorithms with derivative noise [17] and cross en-
tropy cost functions [67, 73] were predicted using the matrix formulation. In addition,
improved performance due to additional hidden units was predicted by the formu-
lation and illustrated through simulation. The approach is similar to that found

in [36].
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Chapter 3

Linear Independence of Internal
Representations in Multilayer

Perceptrons

3.1 Introduction

The shortcomings of the single layer perceptron were well described by Minsky and
Papert [47] and Nilsson [52]. But these investigators were also aware that a recoding
of the inputs could result in a set of patterns that was learnable. That is, by trans-
forming the input patterns into some intermediate values, the input patterns could
be augmented to give a new set of patterns which the single layer perceptron could
learn. Hence, the notion of an internal representation was established.

In current terminology the internal representation refers specifically to the outputs
of the hidden units of a multilayer network. In analogy with Minsky and Papert [47]
and Nilsson [52], the internal representation is considered a coding of the input pat-
terns into a form which is easily learnable [62].

The role of the internal representation is seemingly to increase the learnability of
the training patterns. Unfortunately, although the notion of internal representation

is widely recognized, the underlying mechanism of the increased learnability is not
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completely understood.

Investigations into threshold MLPs (i.e. having threshold hidden unit activation
functions) have identified important features of the internal representation, such as
linear separability, which are necessary for successful training (i.e. exact learning)
of a set of input-output patterns [52, 47, 48, 34, 70]. Followup work has resulted in
algorithms that train threshold MLPs by modifying the internal representation of a
threshold MLP directly to achieve exact learning [70, 26].

Unfortunately, threshold MLPs are not widely used in practice. This is because
threshold activation functions are not continuously differentiable — a condition that is
necessary in many training algorithms (e.g. backpropagation). The sigmoid function,
or soft threshold, is a differentiable approximation to the threshold activation. Results
due to Sontag [68] show that MLPs with sigmoidal activation functions have increased
capacity over threshold MLPs. As a result, sigmoidal activation functions are used
widely in MLP applications.

The focus of this investigation is to identify important features of internal repre-
sentations of sigmoidal MLPs (i.e. having sigmoidal hidden unit activation functions)
necessary for successful training. In particular, the linear independence of the internal
representation is studied. Work by Webb and Lowe [75] and Fujita [22, 23] have noted
that linear independence is important in the internal representation of successfully
trained MLPs.

In addition, the linear independence of the internal representation decreases the
condition number of the system matrix, A(W), introduced in Chapter 2. The de-
crease in the condition number of the system matrix is correlated with convergence
to zero error.

This investigation describes rigorously the ability of sigmoidal activation functions
to produce a linearly independent internal representation. This result is used to
derive the minimum number of hidden units required for successful training of an
arbitrary set of patterns. Furthermore, a relationship between linear independence
and current strategies for MLP training is discovered. The relationship indicates that

current training strategies implicitly modify the linear independence of the internal
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representation to increase the likelihood of achieving exact training.

3.2 Internal Representation in Sigmoidal MLPs

This section outlines a structural definition of the internal representation that will be
used in this investigation. The formulation of the MLP and its internal representation
in vector form is important in understanding the necessity of linear independence for
successful training.

Consider an MLP network having N; input units, one layer of Ny hidden units
and one output unit. Let the hidden unit activation functions be hyperbolic tangent
(tanh) sigmoidal nonlinearities and the output units be linear. Work by Hornik [33]
shows that one layer of sigmoidal hidden units is sufficient to approximate any con-
tinuous function. The hyperbolic tangent activation function is used throughout this
investigation because of its symmetric properties which makes the results less tedious.
All results, however, can be extended to any sigmoidal function. Linear output units
are used in this investigation to make explicit use of the linear combination of the
vectors of the internal representation. However, the results can be extended to any
bijective (i.e. 1:1) output activation function. The use of sigmoidal output units in
practice may be due to the use of binary target patterns and the limited dynamic
range of many computer platforms. Note that the use of a linear output node does
not bound the output of the network, thereby making the output difficult to represent
on machines with a finite dynamic range. Note that networks with a single output
are considered for the bulk of the investigation for simplicity of exposition. Important

results are extended to multi-output networks.

3.2.1 Computation of Internal Representation from Input

Let the training data for the MLP be a set of Np input-output patterns. Assume
that the training set has distinct input patterns. That is, for each input pattern there
is only one corresponding output pattern. This condition prevents the possibility of

conflicting input-output patterns, which makes exact learning impossible.
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The internal representation is the output of the hidden units over the presentation
of the training input patterns. The transformation of the inputs to the associated

hidden outputs over the entire set of training patterns can be represented as :

[input,}, ... [input,]y
[input Np] Lo [input NP] N,
! (3.)
[hidden;|; ... [hidden;]y,
[hiddeny,]; ... [hiddeny,]y,

where [inputp]i is the i" element of the p* input pattern and [hidden,) j» the gt
element of the transformed input pattern.

Equation 3.1 shows the transformation of every element of the input data into the
internal representation. This matrix is similar to the constructions used in Fujita [22]
and Webb and Lowe [75].

The matrix of hidden units outputs in Equation 3.1 can be interpreted in two
directions, pattern-wise (i.e row-by-row) or node-wise (i.e. column-by-column).

The pattern-wise analysis isolates one input pattern and the corresponding hidden

unit outputs. For example, the p** input pattern is transformed as :

[ [inputp]1 [inputp] N, ]
! i (3.2)
[ [hidden,|, ... [hidden,], ]

Thus, the transformation on each input pattern can be studied in detail. This method
of analysis is used frequently to study what features a network has extracted from an
input data set [64, 25]. That is, by studying the transformation due to a previously
trained network on each input pattern, the elements of the input which are important

in producing the target can be isolated. This is essentially the notion of an internal

27



representation described by Minsky and Papert [47] — a recoding of the input patterns
for easier learnability.
The node-wise analysis differs from the pattern-wise analysis in that it uses all the

input patterns and isolates each hidden node output. That is,

[input,], ... [input,]y, [hidden,|;
: : — : (3.3)

[input,\,},]1 [inI’UtNP]N, [hiddeny, ],

is the transformation of the input patterns to the output of the j** hidden unit. By
studying all the patterns at once, all the output patterns can be generated simul-
taneously. Moreover, all the output patterns can be checked against all the target
patterns simultaneously to see if the network has learned the patterns exactly. The
node-wise analysis simplifies the study of exact learning.

Note that the vector of the hidden unit outputs, i.e. the internal representation,
combine linearly to form the output patterns. Since the hidden unit outputs (or
vectors) combine linearly, the study of their linear independence is important. This
node-wise method is similar to analyses found in many other investigations [75, 22,
24, 11, 55, 54, 5]. These investigations do not directly address the production of
linear independence in the node-wise internal representation. Although, Webb and
Lowe [75], Fujita [22] and Blum [11] discuss the presence of linearly independent
node-wise vectors in networks achieving exact learning.

Define the vector,
[hidden,] p

Yi
[hiddenNP] i
to be the j** node-wise vector of the internal representation. As will be shown, the

vectors of the internal representation determine the space of possible outputs of the

MLP, and the larger the space, the greater the likelihood of having achieved exact

learning.
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To consider the computation of the MLP using the node-wise internal representa-
tion, the input and output patterns must also be changed into a node-wise orientation.

Define the i** node-wise input vector to be:

[input,),

[input Np]

i

That is, the :** node-wise input vector is the input to the :** input node over the
training set. Similarly, define the j** node-wise hidden vector, denoted X;, to be the
input to the j** hidden unit over the training set. The node-wise hidden vectors are

linear combinations of the node-wise input vectors. That is,

ng:[vl‘...‘vm 1]-WAJ. (3.4)

where W), is the column vector of weights associated with the j** hidden unit and 1
is the Np-dimensional vector of ones representing the thresholds. A7 is the transpose
of the matrix A. Equation 3.4 represents the first layer of computation in the MLP.

The application of the sigmoidal activation functions to the node-wise hidden
vectors results in the vectors that form the node-wise internal representation. That
is,

yj = tanh(xj) (35)

where the vector function tanh is the element-by-element hyperbolic tangent. The

set of vectors {y1i,...,yny} form the node-wise internal representation.

3.2.2 Computation of Output from Internal Representation

The final layer of computation in the MLP is the production of the output. The
node-wise output vector, denoted z, is the output of the single output unit of the
MLP over the training set. Define T to be the column vector of target outputs from

the training set, the node-wise target vector. Exact learning is achieved when z = T.
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Let the activation vectors be those vectors which contribute to the output vec-
tor, z. As noted in the three cases below, the activation vectors can consist of the
input vectors, vectors of the internal representation or both. For exact learning to
be achieved, the activation vectors must span a subspace which includes the target
vector, T. Each of the three cases shown below describe the output computation for
a specified architecture. Each architecture contributes different vectors to the com-
putation of the output and therefore will have different spaces spanned at the output.
As a result, conditions on exact learning can be described for each architecture.
Case I: No Hidden Units (i.e. Ny = 0)

Consider the case when Ny = 0, that is, the single layer perceptron (Figure 3-1).

The computation for the output is :

2= vi|...|vw |1] Wa (3.6)

where Wy, is the column vector of hidden to output weights. If the training patterns

are to be learned exactly then,

TGR.A([VI)...‘VNI

1 D (3.7)

must hold, where R.A(A) is the range space of the matrix A. If there are nonlinear
relationships in the input-output data, however, Equation 3.7 will not hold and the
single layer perceptron cannot learn the patterns exactly [47, 52]. Thus, the archi-
tecture is restricted to learning linearly separable patterns [47, 52]. The next case
shows how the addition of hidden units can allow the network to learn even nonlinear
relationships.

Case II : Ny Hidden Units

By adding hidden units between the input nodes and output unit, Equation 3.6

becomes :
zT=[y1‘...|yNH}1J-Wn. (3.8)

This computation corresponds to the conventional MLP (Figure 3-1). The condition
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of exact learning now becomes:

TeRA([yi|...|ym|1])- (39)

Under the condition given in Equation 3.9 the internal representation must produce
the required vectors to span a subspace that includes the target vector, T, as a subset.
If Equation 3.7 does not hold, i.e. there are nonlinear relationships in the data, then
some of the y;’s must be linearly independent of the input vectors. In fact, even if the
relationship is linear, i.e. Equation 3.7 holds, the y;’s may be linearly independent
since the v;’s do not contribute to the output. Section 3.3 shows that the sigmoidal
hidden unit can produce vectors that are linearly independent of the input vectors.
In principle, this architecture can learn the training patterns exactly. If the required
space can be constructed from linear and nonlinear relationships, this architecture has
the potential disadvantage of having to reproduce linear combinations of the input
vectors, redundantly. The next case discusses the situation when the direct input to
output connections are added to the architecture.
Case III : Ny Hidden Units, with direct input to output connections

By adding the direct input to output connections to the architecture (Figure 3-1),

the computation of the output becomes :

Vi

ZTZ[}’1‘---'}’NH "vNI ]_:IWQ (310)

Note that now Wy, consists of both hidden to output and input to output weights.

The condition for exact learning now changes to :

TGRA({YII---IYNHlvll---lVNz

1 ]) (3.11)

As in Case II, if there is some underlying nonlinear relationship (i.e. Equation 3.7
does not hold), some of the y;’s must be linearly independent of the input vectors for
Equation 3.11 to hold. This architecture has an advantage over Case II, in that any

linear relationship in the data can be produced via the direct connections, potentially
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reducing the number of hidden units required. This is shown formally in Section 3.3
where the minimum number of hidden units required for successful training is derived.
These three cases considered above demonstrate that exact learning for nonlinear

relationships is guaranteed only when:

1. Some of the vectors of the internal representation are linearly independent of

the input vectors

2. The vectors of the internal representation are included in the computation of

the output space.

3. The target vector, T, is a subset of the space spanned by the vectors of the

internal representation (and the input vectors, for Case III).

These conditions establish the necessity of a linearly independent internal represen-
tation for exact learning in an MLP. Note that these conditions also hold for multi-
output systems. In the multi-output case, the target vector for each output must lie
in the subspace spanned by the activation vectors.

The next section describes the ability of the MLP to produce the required linearly
independent vectors of the internal representation and the number of vectors needed

for exact learning.

3.3 Minimum Number of Hidden Units

In this section the ability of sigmoidal hidden units to produce linearly independent
vectors is described. The mathematical foundation for such a description is developed
rigorously. These results are fundamental to establishing the minimum number of
hidden units required for successful training of an arbitrary set of patterns.
Sigmoidal MLPs are generally more difficult to analyze than threshold MLPs. Due
to the discrete nature of threshold units, analysis is combinatorial [48] or in terms of
convex polyhedra {34] created by the threshold MLP’s separating surfaces. Sigmoidal
units have a continuum of possible outputs between two real numbers. The sepa-

rating surfaces created by the sigmoidal MLP are highly irregular and thus counting
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Case 111

Figure 3-1: Architectures of a Multilayer Perceptron. The figure shows the three
architectures corresponding to the cases described in the text. Case I is a single layer
perceptron, Case II is a conventional multilayer perceptron and Case III is an MLP
with direct input to output connections.
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arguments fail. The result is that proofs for the continuous activation functions tend
to be more subtle and tedious.
Main results appear in the text of this investigation; however, many of the proofs

are placed in Appendix A.

3.3.1 Linearly Independent Vectors from a Sigmoidal Acti-

vation Function

Studying the properties of a single sigmoidal hidden unit is an important step in
understanding the functional role of hidden units in MLP networks. From Equa-
tion 3.11 it is clear that in order to learn an arbitrary target vector, the hidden units
must produce vectors which are linearly independent of the input vectors. The fol-
lowing technical result shows that a single tanh nonlinearity can produce the vectors
required to form a complete basis from a single vector. In other words, the nonlinear

transformation can span an N-dimensional space with a single N-dimensional vector.

Lemma 3.1 Let u € RN be any non-zero vector of distinct elements, i.e.
[u], # [u];, i#4,i=1,...,N,j=1,...,N,
Then for each nonzero vector s € RY,3a,b € R such that
s”tanh(au + b1) > 0.

Specifically, Lemma 3.1 shows that the vectors generated by the tanh function
as a and b vary over R are not confined to a lower dimensional subspace of R”.
Equivalently, there is a group of N vectors from the image space of the tanh function
that form a complete basis for ®Y. This is stated more formally in the following

corollary.
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Corollary 3.1 For every nonzero vector u € RV of distinct elements, 3 ordered pairs

(@i, bi), a; e R, b; € R,i=1,..., N such that
{tanh(a;u+ b;1),...,tanh(ayu + by1)}

forms a complete basis of RV,

Lemma 3.1 is analogous to results due to Oh and Lee [53]. Oh and Lee show that
the nonlinear function of the sum of two random variables is less linearly correlated
with respect to the original random variables. That is, the output is more linearly
independent of the input random variables. Lemma 3.1 shows a similar result for

deterministic inputs.

3.3.2 Minimum Number of Hidden Units

In this section, the ability of the sigmoidal activation function to produce linearly
independent vectors is used to establish the minimum number of hidden units required
for successful training of an arbitrary training set.

In the context of MLP networks, Corollary 3.1 can be used to show that a one-
hidden layer MLP with Np — 1 sigmoidal hidden units and without direct input to
output connections can learn any set of Np one-dimensional input-output patterns
with distinct input patterns (discussed in Section 3.2 Case II). This is stated formally

in Theorem 3.1, which corresponds the worst case in hidden vector diversity.

Theorem 3.1 Given a set of Np single input, single output patterns with distinct
input patterns there exists a network with Np — 1 hidden units without direct input

to output connections which can learn the patterns ezxactly.
Proof:

The input patterns form a vector of distinct elements, u, and the bias
inputs to each hidden unit form a vector of unit elements, 1. From Corol-

lary 3.1 a complete basis of vectors can be generated. One of these vectors
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can be replaced with the threshold vector of the output unit preserving
the complete basis. Thus, there are Np — 1 vectors generated by hidden
units and one supplied by the threshold of the output unit that form a
complete basis. As a result, there exist some linear combination of these

basis vectors which will yield the target.
O

The one input case represents the worst case for linear independence generation.
That is, with multiple input vectors the input space from which to extract the com-
plete basis is larger. Lemma 3.2 guarantees that by using multiple input vectors, a

vector of distinct elements can be generated.

Lemma 3.2 Given a set of input vectors, {v,...,Vr}, from distinct input patterns,

3 {ay,...,ar} such that

k
u= Zaisi

i=1

has distinct elements.

A similar result is due to Sontag [68] in which the equivalence of single input and

multiple input systems is shown.

Using Lemma 3.2, Theorem 3.1 can be extended to networks with multiple inputs.

Theorem 3.2 Given a training set of Np multi-input, single output patterns
(with distinct input patterns), a one-hidden-layer perceptron with Np — 1 tanh hidden
units and without direct connections from input to output can learn the patterns

ezactly.
Proof:

Lemma 3.2 states that there is some linear combination of the input
vectors that result in a vector of distinct elements. Since each hidden
vector, x;, is simply a linear combination of the input vectors (Equa-

tion 3.4), each x; can be trivially constructed to be the same vector of
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distinct elements. As a result, the multi-input system has been reduced
to a single input system and can be solved using Np — 1 hidden units as

per Theorem 3.1.

O

It is important to note that Theorem 3.2 applies to MLP networks without input
to output connections. The computation of the output for this type of network is a
function of the vectors of the internal representation only (Equation 3.9) as opposed to
Equation 3.11 where the input vectors are also present. If direct connections between
input and output are present (as described in Section 3.2.2 Case III) the number
of linearly independent vectors of the internal representation required to produce a
complete basis is smaller. Thus fewer hidden units will be required. In fact, the
number of hidden units drops by the number of linearly independent input vectors.

With this in mind the following proposition is proven.

Proposition 3.1 To learn an arbitrary set of Np multi-input single output pat-

terns with distinct input patterns with an MLP network with direct input to output

1))

tanh hidden units are required. R(A) is the rank of the matriz A.

connections,

NP"R([Vll---lVNz

This proposition is also presented by Wang and Malakooti [74]. However, it is
derived based on an incorrect theorem [66] (see Appendix B). Proposition 3.1 extends
results due to Huang and Huang [34] and Arai [4] from threshold to tanh hidden units.

Proposition 3.1 can be extended to multi-output systems. Since a complete basis
is guaranteed for one output node by Proposition 3.1, each subsequent output node
can form a linear combination of the basis to generate the required target vector.

This result is formalized in Corollary 3.2.

Corollary 3.2 To learn an arbitrary set of Np multi-input multi-output pat-

terns with distinct input patterns with an MLP network with direct input to output
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connections,

NP-R([VI1.,..’VN,

1])

tanh hidden units are required.

The number of hidden units required in Corollary 3.2 is an upper bound derived
based on the worst case scenario. The worst case scenario is based on a network
with Np outputs and where the set of target vectors form a complete basis. In this
situation, all the linearly independent activation vectors are needed to span all Np
1 D hidden

units are necessary to insure exact learning. Because of this necessity, the bound

linearly independent target vectors. Thus all Np — R ([ \2) ‘ ... ‘ Vi,

derived in Corollary 3.2 is the least upper bound on the number of hidden units
required for a network with Np outputs.

In this investigation, the emphasis has been on producing a complete basis of
vectors to guarantee that all targets can be approximated. In describing the ability
of the hyperbolic tangent to produce a complete basis, i.e. Corollary 3.1, the choice
of vectors to form the complete basis was not unique. In fact, there is a tremendous
diversity of linearly independent vectors that the hyperbolic tangent function can
produce over the parameters a and b.

Because of the diversity of possible outputs of the hyperbolic tangent it is conceiv-
able that in some instances a complete basis may not be necessary for exact learning.

Consider the problem of a single-input, single-output MLP network with no direct
connections from input to output. Note that according to Lemma 3.2 single-input
and multi-input networks are equivalent. According to Theorem 3.1, the single-input
single-output MLP requires Np — 1 hidden units for exact learning. This method
creates a complete basis of linearly independent vectors of the internal representation
to guarantee exact learning.

If instead of producing a complete basis, the linearly independent vectors are
chosen to span the subspace which the given target vector spans, the number of
vectors may be greatly reduced. For example, in the best case, there may be a

mapping directly from the input vector through one tanh hidden unit to give the
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output vector. The more important bound is the worst case number of hidden units.
That is, for some target vector, the diversity of the tanh units, limited by the two
parameters a and b, may be streiched so that a maximum number of hidden units
is required. By Theorem 3.1, the maximum number is < Np — 1. This maximum
number has been derived by Sontag [68]. Sontag shows that for a one output network
a least upper bound on the number of hidden units required for exact learning is
[%2] +1.

This bound corresponds to approximately half the number of required hidden units
when compared to the results of Theorem 3.1. The discrepancy lies in the choice of
vectors from the diverse hidden unit output created by tanh(au + b1), as opposed to
the brute force method of constructing a complete basis. That is, by simply producing
a set of linearly independent vectors the target being learned is not important; after
the basis has been assembled, the target can be learned exactly. However, because of
the diversity allowed by the parameters a and b the vectors can be chosen judiciously
so that they span only a subspace that covers the target vector. By describing the
worst case bound for the single output network, Sontag has shown that the diversity
of the hidden unit output can be exploited to surpass simple brute force techniques
of generating a complete basis.

Moreover, the Sontag result also shows the limitation of the hidden unit output.
The limitation of the hidden unit outputs is as important as the diversity of the
output, since it determines the number of hidden units required in the worst case
scenario. The important factors in this limitation may be the number of parameters
by which the activation function of the unit is defined. With a greater number of
parameters in the activation function, the activation function could generate a wider
variety of hidden unit vectors. Unfortunately, a single hidden unit, irrespective of the
number of parameter, can only be responsible for one vector in the computation of the
network. It is shown below that increasing the number of output nodes reduces the
relative effectiveness of the hidden unit diversity versus a simple brute force ”build a
complete basis” method.

The results presented in this section, have all been based on a brute force approach,
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i.e. generating a complete basis. Choosing the vectors of internal representation from
the diversity of the hidden units outputs can reduce the number of required hidden
units as described by Sontag. In comparing the worst cases, the number of required
hidden units is approximately halved by using the Sontag result.

However, if the number of output units is increased, the discrepancy between the
brute force method and an analogous worst case Sontag results decreases. This is a
result of the fact that the brute force method is useful for multi-output systems where
there is a large diversity of target vectors. In fact, when the number of output nodes
of the network is equal to the number of patterns, the worst case of the analogous
Sontag result would result in the same bound as Corollary 3.2.

The study of the diversity and limitations of a hidden unit output will be an
important aspect of describing the least upper bounds for networks with number of
output nodes between the result of Sontag (i.e. single) and Corollary 3.2 (i.e. Np
output nodes).

The ultimate goal of investigations into the hidden unit diversity is a predictor of
the minimal number of hidden units for a particular pattern set. This would result in
the optimal architecture for the MLP, thereby minimizing the size and computational
requirements of training the network. As yet, an algorithm to determine this minimal
number of hidden units is an open question.

Linear independence is a necessary property of the internal representation when
considering successful training. The results shown indicate that the weights ezist for
exact learning to take place. However, the efficacy of the chosen training algorithm
determines if exact learning can be achieved. The next section shows that a common
strategy of most training algorithms implicitly increases the number of linear inde-
pendent vectors in the internal representation, thereby increasing the space of target

vectors that can be produced. and hence the likelihood of achieving exact learning.
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3.4 Minimizing the Sum of Squared Error En-
hances Linear Independence

This section describes how a common strategy for network training implicitly increases
the number of linear independent vectors in the internal representation.

Popular strategies in training MLPs formulate training as a nonlinear optimization
problem. An objective function representing the performance error of the MLP is
minimized over the parameters (i.e. weights) of the MLP. The most common objective
function used for MLP training is the sum of squared error. The backpropagation of
errors algorithm [62], a widely used training algorithm, minimizes a sum of squared
error objective function using a steepest descent algorithm. Other algorithms use
other nonlinear optimization techniques or ad hoc modifications thereof [6, 63, 73,
17, 59, 56, 69, 58, 10].

Formally, the sum of squared error function for a one output network is written

as

1N
J = 5;([TL~—[ZL-)2

1
= SIT—a).

The sum of squared error function can be expanded using the vector form of the
MLP computation. This expansion shows that minimization of the sum of squared
error implicitly increases the number of linear independent vectors in the internal
representation. From Section 3.3 it is clear that with a larger number of linearly
independent vectors in the internal representation the network can produce a larger
dimension of target vectors and thereby increase the likelihood of achieving exact
learning. The derivation presented in this investigation is an extension of a formula-
tion due to Webb and Lowe [75]. Webb and Lowe show that the maximization of a
complex nonlinear discriminant function is equivalent to the minimization of the sum
of squared error objective function. Using the concepts of linear independence and

singular value decomposition, the results of Webb and Lowe can be further simplified
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so that the quantities being maximized are related directly to the number of linearly
independent vectors in the internal representation and the direction of those vectors

with respect to the target vector. This is stated formally in Proposition 3.2.

Proposition 3.2 Consider an MLP of the form described in Section 3.2, Case III.
Let the hidden to output and input to output weights, Wgq, minimize the sum of
squared error at all times, as prescribed by Webb and Lowe [75]. Let J* be equal to J

with Wq chosen to minimize the sum of squared error at all times. Then,

min  J* (3.12)
Wy,
i=1,...Ng

mazimizes the number of linearly independent vectors in the internal representation.
Proof:

Substituting from equation 3.11,
1 2
J = EHT - YWq|| (3.13)

where Y is the matrix formed by the column vectors in the set of activation
vectors, {¥1,...,¥YNgsViy--->VNys 1}

As prescribed in Webb and Lowe [75], let W be the least squares
solution of T = YWjgq + e, thereby eliminating the dependence of the
cost, J, on Wgq. The general solution to the least square problem is given
by:

Wo=YT-(I-YY)u (3.14)

where Y7 is the Moore-Penrose inverse and u is an arbitrary vector [9].
This family represents the most general set of solutions, often the solution,

Wgq = Y'T, is chosen in practice. Equation 3.13 can be expanded to :

1
J= 5(TTT —2TTYWq + WIYTYWg)
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subsequent substitution of Equation 3.14 gives :

J* = %(TTT —2TTY(YI'T - (I-Y'Y)u) +
(YT — (I-Y'Y)u)TYTY(Y'T - (I - Y'Y)u)) (3.15)

It is important to note that YT satisfies the following Moore-Penrose equa-

tions [9].
YYY = Y (3.16)
YYYH = Y (3.17)
Y'Y)T = Y'Y (3.18)
(YYHT = YY! (3.19)

Expanding equation 3.15 with generous use of equations 3.16 through 3.19
gives,

J* = %(TTT —2TTYY'T + TTYV YTYY'!T)
which can be simplified by using the Moore-Penrose equations as :

J* = %TT(I -YYHT (3.20)

Minimizing J* over the remaining free weights (i.e. the input to hidden

weights) is equivalent to:

arg min J*=arg max TTYY'T (3.21)

1
i=1,...,Ng i=1,..., Ny

A singular value decomposition [9] yields:

Y = Urvt (3.22)
Y' = vriu? (3.23)

43



rrt = |20 (3.24)
0 |0

where U and V are orthonormal matrices, I' is a diagonal matrix and 7
is the number of linearly independent columns of Y. The assumption has
been made that the first 7 columns of Y are linearly independent of each
other, to simplify the exposition. This assumption can be made without
loss of generality. Moreover, the first 7 columns of U form an orthonormal
basis for the space spanned by the linearly independent columns of Y [14].
Thus the first ¥ of U form an orthonormal basis for the output space of

the network.

Using equations 3.22 to 3.24, the right-hand side equation 3.21 can be

written as :
1.
arg max TTU |[—1 | UTT (3.25)
Wi, 0 |0
1=1,...,Ny
Expanding Equation 3.25 results in :
T
arg max Y (TTu;)? (3.26)
wAi j=1
i=1,...,Ny

where u; is the j%* column of U.

In studying the summation in Equation 3.26, the parameters which
influence the maximization are directions of the columns of U and the
number of linearly independent vectors in the columns of Y, 7.

The first 7 columns of U span the output space as a result of the sin-
gular value decomposition of Equation 3.22. Thus T7u; represents the
projection of the target vector onto an orthonormal basis of the output
space. That is, the maximization term in Equation 3.26 represents the
norm of the projection of the target vector onto the output space. Ef-
fectively, this measures how much of the target has been spanned by the

columns of Y. When this norm in Equation 3.26 is equal to the norm of
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T in R then the network has learned the target exactly.
In the worst case when a complete basis of vectors forms from the inter-

nal representation, 7 = Np, and the number of linearly independent vec-
1))

In the worst case scenario, the most important quantity in Equa-

tors of the internal representation would be Np—R ([ Vi | e | \4 7

as described in Proposition 3.1.

tion 3.26 is 7. Without the required number of linearly independent vec-
tors, the target cannot be learned exactly. In fact, if the target is learned
via smaller number of linearly independent vectors (i.e. not worst case),
this may indicate an inherent redundancy in the input-output patterns.
As a result, some of the patterns can be eliminated and the resulting set
of patterns will have this worst case requirement of linear independence.

Via the equivalence of Equation 3.26 and Equation 3.21, the mini-
mization of the sum of squared error with Wgq chosen as a least squares
solution increases the number of linearly independent vectors in the inter-

nal representation to achieve exact learning.
a

The above proof, although rather technical, uses simple concepts to reveal the
relationship between the internal representation and the sum of squared error. The
concept of a pseudoinverse is used to eliminate the dependence of the error function
on the output to hidden weights, Wgq. These weights, although important for the
calculation of the output (Equation 3.10), do not affect the internal representation
(Equations 3.4 and 3.5). In fact, these weights are chosen to minimize the squared
error based on the internal representation. The result of the pseudoinverse analysis
is an equivalent objective function which depends only on the internal representation
and the target vector.

To further simplify the objective function, a singular value decomposition (SVD)
is used. This technique allows a matrix to be expressed as the product of orthonormal

and diagonal matrices. The number of non-zero elements in the diagonal matrix is
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the number of linear independent columns of the original matrix. Using an elegant
relationship between the SVD of a matrix and the SVD of its pseudoinverse, the
minimization of the objective function can be manipulated into the maximization of
the weighted norm of the target vector. The weights for the norm are dependent
on both the direction and number of the linearly independent vectors in the internal
representation. However, if the worst case scenario is considered, that is all the lin-
early independent vectors are required, then the direction of the linearly independent
vector becomes immaterial. Exact learning cannot take place without all the vec-
tors present, thus the number of linearly independent vectors is the more important
maximization than the directions of the linearly independent vectors.

Thus, the minimization of the sum of squared error objective function (with least
squares error Wq) maximizes the number of linear independent vectors in the internal
representation.

As seen in the previous section, a larger number of linearly independent vectors
in the internal representation also increases the dimension of the target space that is
representable. Thus, reduction of the sum of squared error increases the dimension
of target vectors that can be produced and tunes those vectors to span the subspace
spanned by the target vector. In the context of training, the increase in dimension

increases the likelihood that the MLP will learn the required target vector exactly.

3.5 Discussion

This investigation examines the role of a linearly independent internal representation
in the successful training of sigmoidal MLPs. Although results exist for threshold
MLPs, sigmoidal activation functions are widely used because of the increased storage
capacity and differentiability. Ironically, sigmoidal MLPs pose a difficult problem in
training analysis because of the continuous nature of their activation functions.

By manipulating the internal representation into a node-wise vector form, the
computation of the MLP output can be chosen to be a linear combination of the

vectors of the internal representation and the input vectors (Equation 3.10). As such,

46



the linear independence of vectors of the internal representation with respect to the
input vectors increases the dimension of possible outputs of the MLP. The increase
in dimension of possible output increases the likelihood of achieving exact learning.
The results in this investigation suggest the important roles of the activation function,
architecture and training algorithm in exact learning through the linear independence
of the internal representation.

First, the sigmoidal activation function has the ability to produce the required
linearly independent vectors (see Lemma 3.1). This result is analogous to statistical
results due to Oh and Lee [53]. The ability of producing linearly independent vectors
is a fundamental result in describing their role in exact learning.

Secondly, the architecture must allow for the required number of sigmoidal hidden
units to be present. Without enough hidden units, the number of linearly independent
vectors that can be produced will be limited thereby limiting the dimension of the
output space of the MLP.

To guarantee exact learning of an arbitrary set of patterns, a complete basis of
vectors must contribute to the computation the output. A complete basis will be able
to generate any possible target vector. Proposition 3.1 defines the minimum number
of hidden units required to guarantee a complete basis and therefore exact learning.
Proposition 3.1 extends the results due to Huang and Huang [34] and Arai [4] from
threshold units to sigmoidal units.

Work by Sontag [68] has shown that for a given set of single-output patterns the
least upper bound on the number of hidden units is smaller than the minimum number
for an arbitrary set (Proposition 3.1). This follows from the fact that the vectors of
the internal representation can be modulated through the diverse output of the tanh
function to span the subspace spanned by the single target vector rather that creating
a complete basis. The properties of the tanh function allow enough diversity, as shown
by Sontag, to require about half the number of units for a single output network in the
worst case, when compared to Theorem 3.2. For multiple output networks, the goal of
specificity, seen in the Sontag result and the goal of a complete basis, are combined to

ensure exact learning. Moreover, the discrepancy between the number of worst case
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hidden units required for the Sontag approach versus the complete basis decreases
with the increasing number of output units. When the number of outputs equal to
the number of pattern the worst case of the Sontag method and the complete basis
method intersect — the activation vectors must form a complete basis (Corollary 3.2)
irrespective of the method used in choosing the vectors.

Computation of the minimum number of hidden units for a given set of input-
output patterns would produce an optimal architecture. Unfortunately, such results
do not exist. The possible role of linear independence and hidden unit diversity in
developing results for optimal architecture prediction is, as yet, unclear.

Having established both the ability and architecture for the linearly independent
internal representation, the production of these vectors is the last requirement for
exact learning. The production of a linearly independent internal representation is
shown to be a direct result of training. The minimization of the sum of squared error,
a common training strategy, implicitly increases the number of linearly independent
vectors in the internal representation. This relationship was shown by extending a
result due to Webb and Lowe [75]. The practical fallout of this results is that common
training algorithms such as backpropagation of errors [62] implicitly increase the linear
independence in an MLP network thereby increasing the likelihood of exact learning.
Work by Orfanidis [55] ezplicitly increases the linear independence of the hidden unit
outputs by using a Gram-Schmidt processor. The result is accelerated convergence,
as expected.

The linear independence of the internal representation is a necessary property for
exact learning. This feature of learning may be a potentially useful substrate for
the design of new algorithms. Further investigations in this area will hopefully show
that linear independence can be used effectively to increase neural network training

performance and reduce the computational burden currently required to train MLPs.
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Chapter 4

Tree Structured Neural Network
Architectures - The Tree-Like

Perceptron Network

4.1 Introduction

The design of neural network architectures has, historically, been divided into two
strategies. The engineering perspective prescribes that neural network architectures
must be effective and computationally efficient. Designs range from radically new
computational structures [31, 1, 18] to reformulation of existing architectures to make
more efficient use of computational resources such as VLSI implementations or parallel
computers [44, 78, 27, 45, 51, 37, 18, 46, 35, 50]. The hope is that such designs will
yield strategies to learn faster and to a high degree of accuracy.

Another strategy in designing neural network architectures is biological relevance.
That is, designing architectures that are faithful to the computation and organization
of the brain. The working assumption in this biological strategy is that the brain
functions in a manner that can be modeled on existing computational structures.
The earliest models of artificial neural networks, such as the single layer perceptron,

have taken inspiration from the human brain. And now as the field of neurobiology
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is uncovering important mechanisms in the learning process, new models have even
a greater advantage in addressing the need for biological plausibility.

These design strategies are not mutually exclusive. The efficiency and efficacy
of the human brain for learning is a paradigm for the design of biologically relevant
and computationally efficient architectures. Moreover, as the size of artificial neural
network applications increases and surpasses the available computational resources,
this dual strategy becomes increasingly attractive.

In this investigation, spanning this chapter and the next, a novel family of neural
network architectures, the Tree Structured architectures, is described. The design
of this family of architectures uses both biological evidence and analysis of existing
training strategies to create a highly parallelizable learning model.

This investigation describes two Tree Structured architectures derived from the
Multilayer Perceptron: The Tree-Like Perceptron network described in this chapter
and the Tree-Like Shared network described in Chapter 5. The motivation and im-
plementation details of each architecture are described and simulations demonstrate

their performance when compared to the conventional Multilayer Perceptron (MLP).

4.2 The Tree Structured Architectures

The Tree Structured architectures are a family of modularized neural network models
based on a divide and conquer approach to training. That is, a task is partitioned
into a group of subtasks and each subtask is solved individually.

For example, consider a multi-output MLP with one hidden layer (one hidden layer
is sufficient for any continuous task [33]). Using the decomposition strategy, the MLP
network is subdivided into a set of single output subnetworks. Each single output
subnetwork has one hidden layer, independent of other subnetworks; and the same
number of inputs as the original MLP. Each subnetwork is trained with one element
of all the output patterns, and all the input patterns. That is, each subnetwork learns
the relationship between the input, and one feature of the output. Immediate benefits

include the possibility of parallel training and the subdivision of application size.
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The divide and conquer approach forms the basis of a group of neural network
models called modular networks [31, Chapter 12]. Modular networks represent a
class of networks in which a large task is decomposed into a set of smaller subsystems
in some application dependent fashion. For example, work by Rueckl et al [61] shows
how a single MLP network used for shape and location identification can be improved
by decomposing the single MLP network into two MLP subnetworks, one responsible
for the shape task and the other responsible for the location task. This type of
modularization strategy is useful when the task can be decomposed along functional
relationships.

The Tree-Like Architectures differ from conventional modular networks in that
each output of the system, irrespective of its function relative to other outputs, is
decomposed into a module. As will be shown, this type of modularization has com-
putational advantages. In addition, the Tree-Like decomposition strategy is not ap-
plication dependent and thus can be used even when a functional decomposition is

not obvious.

4.2.1 Motivation

This section describes some of the motivations, both biological and computational,

for the decomposition strategy of the Tree Structured architecture.

The Credit Assignment Problem in the MLP

Credit assignment [31, 47| refers to the allocation of blame within a learning repre-
sentation. Each parameter in a learning representation is updated according to some
error signal indicating that the learning process has not reached an adequate level.
Credit assignment can become a problem when a parameter must respond to several
error signals simultaneously. In this case, the error signals can all be non-zero, but
the combination of these signals may result in no change in the parameter. That
is, the learning is inadequate, but the parameters are not changing. This results in

suboptimal learning.
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In a multi-output MLP, there is an error signal for each output of the network. For
the hidden to output weights, the credit assignment is simple, each of these weights
contributes to only one output. However, the input to hidden weights contribute to
all the outputs of the network. The result is that the input to hidden weights are
updated according to some combination of the error signals [62]. Thus each input
to hidden weight can receive conflicting update instructions from each output, this
is the credit assignment problem. It is unclear, as yet, how credit assignment may
manifest itself in learning. If parameter updates do indeed stop even when error is
non-zero, it may indicate a relationship between credit assignment and local minima,
however this has never been shown.

The Tree Structured approach to the MLP eliminates this credit assignment prob-
lem by allocating a subnetwork to each output. All the weights in a particular sub-
network contribute to the production of one output. As a result, each weight in the
network is updated by only one error signal, thereby eliminating the possibility of

multiple error signals.

Parallel Computational Substructures

The parallelization induced by the decomposition process has many important fea-
tures.

First, the modularity of each subtask allows partial training of the entire task.
That is, a portion of the task can be learned, thereby allowing the available compu-
tational resources to be focused on the remaining subtasks. This feature may not be
possible in the undecomposed larger task. For example, training an MLP network
is either adequate or not, no partial information can be extracted from a particular
training session.

The decomposition strategy also allows for parallel training. Instead of training
a large task which is computationally intensive, a set of subtasks, each with smaller
computational requirements, can be trained simultaneously. In general, this reduces
the required training time of the parallel subtasks over the original task. In addi-

tion, each subnetwork is independent, thus, tightly coupled architectures described
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in parallelization schemes such as Zhang [78] are not required, each subnetwork can
be trained in a distributed fashion without any intersubnetwork communication.

In principle, the decomposition process requires no communication between sub-
networks. However, Chapter 5 describes how restricted communication between the
subnetworks may enhance training and reduce required computational resources.

Decomposition can also result in robust performance of the working implemen-
tation of the learned task. Once training is complete, the subtasks act in parallel
to perform the specified task. Because of the modular structure, each subtask can
be duplicated adding redundancy to the implementation. Such redundancy is possi-
ble even when decomposition is not used, however, the implementation for parallel,

independent subtasks is substantially simpler.

Modular Processing in the Human Brain

There is increasing evidence that information processing in the brain is performed by
parallel subsystems [30, 77). That is, systems such as vision and language may be
composed of subsystems that act on input information (e.g. retinal image or audible
speech) and process it in parallel. This type of information processing paradigm has
been fundamental in the development of artificial neural networks.

Recent evidence indicates that parallel learning may also take place in the brain [41].
In the same way that parallel subsystems are involved in the processing of informa-
tion, there may exist parallel subsystems that store information. This represents an
important paradigm shift for artificial neural networks. Although parallel learning
is known to be computationally efficient, there is now evidence that it may also be
biologically plausible.

In this way, the Tree Structured architectures represent both a computationally

efficient and biologically relevant model of learning.
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4.3 Tree-Like Perceptron Network

This section describes the simplest form of the Tree Structured architecture, the

Tree-Like Perceptron network.

4.3.1 Architecture

The architecture of the Tree-Like Perceptron network is simplest application of de-
composition strategy. The multi-output MLP is partitioned into a set of single output
subnetworks, one for each output in the original network. A simple example of the
decomposition process is shown in Figure 4-1.

The allocation of hidden units to each subnetwork is arbitrary. If the original MLP
network has a specified number of hidden units, then a simple strategy for allocation
is to distribute the hidden units equally amongst the subnetworks. Otherwise, the
number of hidden units can be chosen initially and then changed based on the training
behavior, a common strategy for MLP networks.

An important fact of hidden unit allocation is that the number of hidden units in
any subnetwork is guaranteed to be no larger than the total number of hidden units
to train the MLP network. If this fact were not true, it is possible for a subnetwork to
require more computation to train than the original task. This fortunate result can
be demonstrated by using the concept of linear independence developed in Chapter 3.

If a multi-output MLP requires a minimum of M hidden units to be trained, then
there are M linearly independent vectors in the internal representation. That is, if
any of the vectors of the internal representation were linearly dependent, then the
associated hidden unit would be unnecessary. Moreover, the target vector of each
output lies in the space spanned by the M linearly independent vectors. Thus any
target output of a subnetwork must also lie in a space spanned by the M linearly
independent vectors. By placing the M linearly independent vectors into the internal
representation of the subnetwork, the subnetwork can now learn its target vector. In

fact, the number of hidden units required by the subnetwork may be much smaller
than M.

54



s’ N 7 \ 7 N
4 N\ 7 AN e N
4 N 7/ N\ / \
S A . _ A A .
\ ~ \ - 1 - 1

~ - i < !

\ PR \ < \ >
\ PR S / \ Phe S o I \ P S o 1
- ~ - ~ - ~
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Having established the architecture of the subnetworks, the issue of training be-
comes important. The next section outlines a measure for gauging the utility of the
Tree-Like Perceptron network over the MLP for particular applications. In addi-
tion, some novel strategies are discussed that take advantage of the decomposition

approach, even in computationally-limited environments.

4.3.2 Training

In evaluating Tree-Like Perceptron training, the MLP network was chosen as the
architecture for comparison. This choice was made due to both the availability of
MLP training software and its wide use in artificial neural network applications [28].

One method of evaluating large MLP performance is to model the training process
probabilistically. In training large MLP networks, training sessions are run repeatedly
until a desired level of training is reached. Each training session can be treated as
a Bernoulli trial. That is, over each training session the MLP network either learns
adequately with some probability p or does not learn adequately with probability
1 — p. Using this approach, the expected training performance can be calculated
through two parameters : the probability of learning adequately on any particular
session, p, and the time required to run the training session, Ts. If these quantities
are known, the expected amount of time required to train the MLP is l;;i.

Using a similar training approach for the Tree-Like Perceptron network a rela-
tive performance measure can be calculated. Training performance of the Tree-Like
Perceptron, however, will vary widely with the available computational resources. If
extensive computational resources are available, then a fully parallel training scheme
will result in the minimum training time. With smaller resources, partial parallel or

even serial approaches may be required.

Serial Subnetwork Training

Assume that the subnetworks have to be trained one at a time due to lack of com-

putational resources, this is the worst case training performance of the Tree-Like
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Perceptron network.

Using a protocol similar to that of the MLP network, each subnetwork can be
trained for one session and then evaluated. If the subnetwork learns to an adequate
level, then the parameters are stored and this subnetwork no longer needs to be
trained again. However, if the subnetwork does not learn to an adequate level, then
the subnetwork is put into a queue to get retrained. The training continues with the
next subnetwork. This retraining of subnetworks continues until all subnetworks have
been trained to an adequate level. Given this training protocol, the serial training
performance of Tree-Like Perceptron can be calculated.

Let a session of MLP network training be Tj,.p units of time in duration. Let
the probability of the MLP converging (i.e. reaching an adequate level of training)
on any training session be Py p. Due to the smaller size of the Tree-Like Perceptron
network subnetwork, a training session of the subnetwork will be a fraction of the
time that a MLP takes to train say, Br.pT v Lp, Where 3 < 1. If the probability of the
convergence of any Tree-Like perceptron subnetwork is Prpp (assume for simplicity
that each subnetwork is equally likely to converge) and there are N, output units,

then

1
Curr = Turp P
MLP
N,
Crip = PBrieTurp 2
TLP

where Cprp and Crpp are the computation times for the MLP and the Tree-Like

Perceptron network respectively. The ratio of these computation times, %A#ﬁ is a

measure of the efficiency of the Tree-Like perceptron network performance:

Cumrp _ Prip 1
Crip PurpBrip N,

If the ratio %ﬁf > 1 then the Tree-Like Perceptron network trains in a shorter
amount of time, otherwise the MLP converges faster. This measure cannot be directly

computed since the probabilities of convergence are unknown. However, the ratio of
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probabilities required to choose the Tree-Like Perceptron, the critical ratio, 63,,,u,

can be computed as :

P
PTLP > ﬂTLP NO = G:erial (41)
MLP

That is, for the serially trained Tree-Like Perceptron network to outperform the
MLP, the ratio of probabilities must be greater than 63,,,,,, the critical ratio for the
serial training. This measure indicates how much easier the Tree-Like Perceptron
subnetworks must be to train (i.e. greater probability of convergence) for the Tree-
Like Perceptron to be more effective than the MLP network at learning the set of

patterns. This measure can also be adapted to parallel training schemes, where the

effectiveness of the decomposition is greater.

Parallel Subnetwork Training

If the computing resources are increased so that N subnetworks, N < N,, can be
trained simultaneously, then N subnetworks are trained in parallel until all subnet-
works reach an adequate level of learning.
Following the serial training derivation, the critical ratio for N-parallel training,
Ny 18 ¢

N,
O = Brur 2. (4.2)

This measure, when compared to the serial critical ratio, is much smaller due to
the presence of N in the denominator. In fact, as N increases toward N,, the ratio
can become less than one, indicating that even if the single output network has a
lower probability of convergence than the MLP network, the speed of each training
session and parallel nature of training make the Tree-Like Perceptron network more

attractive computationally, than the MLP.

Simultaneous Subnetwork Training Sessions

Consider the case where the number of subnetworks to be trained is smaller than
the maximum number of subnetworks that can be trained in parallel. This situation

can arise in two different ways: the computational resources may be great enough
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to support more than the N, subnetworks resulting from the decomposition; or the
number of subnetworks to be retrained falls below the maximum number during the
parallel training process. In either case, the extra parallel slots can be used to train the
same subnetwork in multiple sessions simultaneously. In this way, the computational
resources are maximized and the probability of convergence for the subnetwork is

increased.

Adaptive Resource Allocation

In considering the training of the Tree-Like Perceptron, the assumption has been
that the original choice of hidden layer size for each subnetwork was sufficient. In
practice, some of the subnetworks may not converge after many retraining sessions,
i.e. Prpp = 0. One method of solving this problem is to dynamically change the size
of the hidden layers in those subnetworks which are consistently failing to achieve
an adequate level of training. It is known that increasing the size of the hidden
layer increases the possible number of linearly independent vectors in the internal
representation (Section 3.2). This also increases the likelihood of achieving exact
learning, thereby increasing Prrp. Rueckl et al [61] describe a similar technique used
to develop efficient internal representations in split MLP networks, using a form of

decomposition similar to the paradigm of modular neural network models.

Hidden Credit Scaling

One possible problem with the decomposition process is related to credit assignment.
Although the credit assignment problem is eliminated in the Tree-Like Perceptron
network, the amount of credit each input to hidden weight sees in a subnetwork
decreases. In a multi-output MLP, input to hidden weights respond to a combination
of the error signals at the output. Although the error signals could negate each other,
they may also reinforce each other causing large parameter changes. In contrast, the
single output of the subnetworks provides a fraction of the error signal that an input
to hidden weight in an MLP may see resulting smaller parameter changes and slower

convergence. To overcome this problem, the credit to each input to hidden weight
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can be scaled to increase the response of the weight. This type of approach has also

been effective in the training of MLP networks [2].

4.4 Simulation Results and Discussion

This section discusses the results of training simulations of the Tree-Like Perceptron

network versus the MLP. Results are given for two different training tasks.

4.4.1 Computer Speech
Experimental Protocol

This simulation example encompasses a Computer Speech task and is discussed in
detail in Appendix C. For the purposes of this discussion, the example has approxi-
mately 5400 input-output patterns. There are 203 inputs and 26 outputs, all binary
valued.

The MLP was chosen to have 100 hidden units. Each subnetwork of the Tree-
Like Perceptron was also chosen to have 100 hidden units each to take advantage of
the available resources. All the training sessions were run on the Adaptive Solutions
CNAPS Neurocomputer (Appendix D).

The simulations were normalized for time. That is, each architecture was allotted
a specified amount of time to run as many training sessions as possible. Each archi-
tecture was given 60 hours and each training session was limited to 1000 epochs. An
epoch is a presentation of all the patterns of the training data once.

The best network for the MLP architecture was chosen based on lowest classifica-
tion error. The best network for the Tree-Like Perceptron architecture was comprised
of the subnetworks with the lowest classification errors over all the training sessions.
Classification error is the percentage of incorrectly classified input patterns with re-
spect to the entire training set.

It is important to note that the classification error calculated for the Tree-Like

Architecture is a worst case calculation. Classification error is the number of incor-
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rectly classified input patterns. Thus, if one of the output nodes does not match the
target, the entire pattern is considered erroneous. When decomposing the network
into subnetworks a classification error is calculated for each subnetwork. Since it is
unclear from which patterns these errors came, the errors can not be consolidated on
a per pattern basis. Thus the classification errors are simply added together over all
the subnetworks. This number then represents the situation where each error from
each subnetwork is from a different example — the worst case. If some of the errors
were, in fact, from the same patterns, then in principle, the true classification error
would be smaller.

The training method used was backpropagation of errors with a learning rate of
0.01 and no momentum. No adaptive allocation scheme was used for the Tree-Like

Perceptron.

Simulation Results and Discussion

In the 60 hours allocated, 100 training sessions of the MLP were run. Nine training
sessions of the Tree-Like were run which included 126 subnetworks. Figure 4-2 shows
the number of subnetworks trained in each training session. After the last training
session 12 subnetworks out of the 26 had reached perfect classification.

A note regarding the use of the critical ratio should be made. The critical ratio,
in principle, has the predictive power to decide whether the Tree-Like Perceptron
is suited to a particular application. However, the development of the critical ratio
assumed that the probabilities of convergence of the subnetworks were the same, given
Figure 4-2, this assumption is probably false. Because of the severe limitation in both
approximating probabilities of convergence, and modeling multiple probabilities, the
critical ratio in unlikely to have any consistent predictive value. At this stage the
critical ratio serves to demonstrate the relationships between the important quantities
in the training process : the probabilities of convergence (Pyrp, Prip), the relative
speed of a training session (BrLp), the number of subnetworks (N,) and the degree
of parallelism (V). Further investigations may reveal new relationships which will

allow the critical ratio, or some other measure, to become an accurate predictor of
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Figure 4-2: Remaining Tree-Like Perceptron subnetworks which have non-zero clas-

sification error after each training session. This simulation represents the Computer
Speech task.
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Figure 4-3: Error Trajectories for MLP versus Tree-Like Perceptron for the Computer
Speech. The best network was chosen according to the description in the text.

Tree-Like Perceptron efficacy.

Because of the difficulty in computation of the critical ratio, the identification of
the most efficient architecture is left to simulation.

The error trajectories of the Tree-Like Perceptron and MLP are given in Fig-
ure 4-3. The final sum of squared errors are the same order of magnitude, however,
comparison of the classification error shows the Tree-Like Perceptron to have greater
efficacy. The best classification errors are given in Table 4.1. Neither of the ar-
chitectures achieved exact learning. However, the Tree-Like Perceptron achieved a
classification error of 5.92% whereas the best MLP training session was 12.52%

Note that even after 100 training sessions, the MLP was unable to converge.

However, after only 9 training sessions, the Tree-Like Perceptron Architecture was
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Architecture Best Classification Error

Number of Errors | Percentage
MLP 681 12.52 %

Tree-Like Perceptron 322 5.92 %

Table 4.1: Best Classification Errors — Computer Speech. The classification errors
for each network is given. The Tree-Like Perceptron classification is a worst case
calculation.

able to decrease the classification error from the best MLP training session by ~x 53%.

In this example, the MLP network is unlikely to learn exactly due to the limited
number of hidden units. As such, this example demonstrates the use of the Tree-
Like Perceptron in a resource limited environment. This benefit is a result of the
partial training characteristics. For applications which are larger that the available
resources, the problem can be decomposed into subproblems which may be solvable
in the available resources. In this example, the large MLP problem could not be
solved with 100 hidden units (the hypothetical maximum), but the classification error
was cut in half by using subnetworks each with 100 hidden units. The unfortunate
result of this method is the increase in storage requirements due the large number of
parameters.

As described, this Computer Speech problem, cannot be solved in the available
resources. It does demonstrate the utility of partial learning, however, the Tree-Like
Perceptron, may be unable to achieve exact learning. The example described in the
next set of simulations is one in which exact learning can be achieved for the MLP

and thus represents another important test of the decomposition strategy.

4.4.2 Character Recognition
Experimental Protocol

The Character Recognition example used in this simulation is discussed at length in
Appendix C. For the purposes of this discussion, the set of patterns contains 2600
input-output patterns. There are 64 inputs and 26 outputs, all binary valued.

The number of hidden units in the MLP was chosen to be maximum. Since these
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simulations were run on an Adaptive Solutions CNAPS Neurocomputer [27] with
128 processing elements, the maximum size of the MLP network was 500 hidden
units. For a detailed discussion of the Adaptive Solutions CNAPS Neurocomputer
see Appendix D. The allocation of Tree-Like Perceptron hidden units was 20 hidden
units per subnetwork, approximately 500 hidden units among 26 subnetworks. This
approach reduces the storage requirements for weights when compared to the previous
example.

The simulations were normalized with respect to time. That is, each architecture
was allotted a specified amount of time to run as many sessions as possible. Each
session was also limited to 10000 epochs. The time allotted to each architecture was
80 hours. At the end of the allotted time, the best set of network parameters from
each architecture was selected as the basis for comparison.

The best set of network parameters was chosen based on two criteria, the final
sum of squared error and classification error.

The construction of the best set of network parameters differed for each architec-
ture. For the MLP, the best set of parameters resulted from the training session with
the lowest sum of squared error. If another training session resulted in fewer classifi-
cation errors, then these parameters were used for the classification performance.

The best Tree-Like Perceptron network was constructed of the best training session
for each subnetwork. The best training session for a subnetwork was chosen on the
basis of fewest classification errors or sum of squared error. It should be noted that if
a subnetwork learned to perfection, i.e. had zero classification errors, the subnetwork
was no longer trained, thereby increasing the number of sessions available to other
subnetworks.

The training method used for both architectures was backpropagation of errors
with a learning rate of 0.01 and no momentum.

This example was chosen because the MLP architecture can learn to perfection,
however, the MLP architecture requires a hidden credit scaling factor of 8.0. Since
the hidden credit scaling factor is limited to 16.0 on the Adaptive Solutions CNAPS

Neurocomputer, it is inappropriate to run the scaled MLP against the Tree-Like Per-
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ceptron, since the Tree-Like Perceptron would be unable to generate the hidden credit
scale required to compensate for the smaller hidden credit. An appropriate compar-
ison is to run the MLP without hidden credit scaling and the Tree-Like Perceptron
with a maximum hidden credit scaling of 16.0. The hidden credit scaling compen-
sates for decreased hidden credit as described in Section 4.3. Even at a hidden credit
scaling factor of 16.0, the Tree-Like Perceptron is still at a disadvantage since the

number of outputs in the MLP is 26.

Effect of Hidden Credit Scaling

The effect of the hidden credit scaling on the training of both the architectures is
dramatically displayed in Figures 4-4 and 4-5. In both architectures, use of the
hidden credit scale factor resulted in an order of magnitude decrease in sum of squared
error. In fact, the MLP converged to perfection in when run with an optimal hidden
credit scaling factor of 8.0. If the scaling factor could be further increased, past the
maximum of 16.0, the Tree-Like Perceptron could fully compensate for the 26 outputs

which are present in the MLP.

Simulation Results and Discussion

In the 80 hours allocated, the MLP was able to run 32 training sessions of the unscaled
algorithm.

The Tree-Like Perceptron was able to run 10 training sessions comprising 160
subnetworks. Figure 4-6 shows the number of subnetworks remaining to be retrained
after each training session. Note that after the 80 hours only 6 out of the original
26 subnetworks did not train to perfection. Thus many of the network were able
to converge in the allocated number of hidden units. Moreover, the subnetworks
which had a low probability of convergence were identified quickly and the resources
were focused on them. If an adaptive allocation scheme was also used, the remaining
subnetworks may also have trained to perfection.

Figure 4-7 shows the error trajectories for the best simulations for each archi-

tecture. Note that for the Tree-Like Perceptron, the trajectory is composed of 26
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Figure 4-4: The MLP was run with and without hidden credit scaling. The MLP
with scaling converged to zero classification error, whereas the best unscaled network
had 42 % classification error. Sum of squared error trajectories are shown above.
This simulation represents the Character Recognition task.
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Figure 4-5: The Tree-Like Perceptron was run with and without hidden credit scaling.
The Tree-Like Perceptron with scaling converged to ~ 1% classification error, whereas
the best unscaled network had a worst case classification error of 100 %. Sum of
squared error trajectories are shown above. This simulation represents the Character
Recognition task.
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Figure 4-7: Error Trajectories for MLP versus Tree-Like Perceptron for the Character
Recognition task. The best network was chosen according to the description in the
text.

different subnetwork trajectories summed together. The most important aspect of
this comparison is the difference in final sum of squared error. The Tree-Like Percep-
tron network clearly outperforms the unscaled MLP by almost one order of magnitude
in final sum of squared error. If the comparison is done by classification error (Fig-
ure 4-8) a similar relationship can be seen. The best classification errors can be seen
in Table 4.2. After the training sessions have completed, the best Tree-Like Percep-
tron network has =~ 1% classification error whereas the best unscaled MLP network
has = 42% classification error !

The Tree-Like Perceptron network performed much better than the unscaled MLP.
Using the decomposition strategy the classification error was reduced greatly as seen

in Table 4.2. The Tree-Like Perceptron is disadvantaged in that the hidden units
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| Architecture | Best Classification Error |

MLP unscaled 41.7 %
Tree-Like Perceptron scaled 1.2 %

Table 4.2: Best Classification Errors — Character Recognition. The classification
errors for each network is given. The Tree-Like Perceptron classification is a worst
case calculation.
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Figure 4-8: Classification Error for Tree-Like Perceptron network after each train-
ing session of the Character Recognition task. The scaled MLP achieved perfect
classification. The best classification error achieved by the unscaled MLP was 41.7

%.
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receive only a fraction of the error feedback the MLP enjoys. Thus a fair comparison
should include a hidden credit scaling factor for the Tree-Like Perceptron to compen-
sate for the difference (Section 4.3). This example has been constructed to make the
performance conditions similar by using a hidden credit scaling factor of 16.0 for the
TLP versus no hidden credit scaling for the MLP (which has an intrinsic scaling of
26 from the output units). Clearly, since the resources are available to achieve exact
learning, scaled training of the MLP network would be used in practice. However, this
simulation comparison shows that the hidden credit scaling if increased may increase
the performance of the Tree-Like Perceptron also, as indicated by the increase in
performance in Figure 4-5. Unfortunately, the limitations of the computing platform
prevented such an increase in hidden credit scaling.

Both the simulation examples highlight the efficiency of the decomposition ap-
proach.

The Computer Speech example resulted in half the classification error when the
decomposition approach was applied. Moreover, the decomposition approach allowed
partial training of the network in the context of the resource limited environment.
Unfortunately, the Computer Speech example was difficult to train and thus required
a large number of parameters to achieve this level of performance.

The Character Recognition example represents a problem which can be solved by
using the MLP with a hidden credit scaling factor. In practice, the exact solution
would be used. However, in the context of an appropriate comparison, the decom-
position strategy was efficient in reducing the network error. In this comparison, the
Tree-Like Perceptron was able to reduce the classification error from ~ 42% to ~ 1%.

The next chapter looks at improving the results of the Tree-Like Perceptron by
increasing the intersubnetwork communication. The resulting architecture is a mix of

the MLP feedforward computation and the Tree-Like Perceptron learning strategy.
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Chapter 5

Tree Structured Neural Network
Architectures - The Tree-Like
Shared Network

5.1 Introduction

The previous chapter introduced the family of Tree-Like neural network architectures.
The simplest member, the Tree-Like Perceptron, based on the Multilayer Perceptron
(MLP), displayed good training performance when compared to the unscaled MLP
in the Computer Speech and Character Recognition task. However, in both cases,
the subnetworks were run in serial, since the computational resources did not allow
for parallel training. Because of this limitation, few training sessions could be run. If
the Tree-Like Perceptron could be adapted to the hardware dedicated for the MLP,
then parallel training would be easier to achieve on existing platforms.

In this chapter, the discussion of the Tree Structured Architectures is concluded
with a discussion of the Tree-Like Shared Network. The Tree-Like Shared network
uses the concept of linear independence developed in Chapter 3 to create a network

with parallel learning characteristics in an MLP-type architecture.

73



5.2 Tree-Like Shared Network

5.2.1 Architecture

The Tree-Like Shared network shares common structure with the Tree-Like Percep-
tron and the MLP. In feedforward computation, the Tree-Like Shared network is
identical to the MLP. Subnetwork are still present as shown in Figure 5-1. For each
output there is a subnetwork with a specified number of hidden units. The number
of hidden units can be chosen as in the Tree-Like Perceptron. Unlike the Tree-Like
Perceptron, the subnetworks are not independent, each subnetwork hidden layer is
connected to every other subnetwork output by hidden to output weights (Figure 5-1).

The addition of hidden to output connections allows the output of each subnetwork
to use the linearly independent vectors created in the internal representations of the
other subnetworks (Chapter 3). Presumably, the number of required vectors in the
internal representation of each subnetwork would decrease and thus converge faster.

In addition to the advantage gained by the sharing of linearly independent vectors,
the architecture has still maintained a degree of parallelization in the learning process.
The computation is identical to the MLP and thus the advantages of redundancy

(Chapter 4) during utilization in an application is lost.

5.2.2 Training

The training of the Tree-Shared network is similar to the Tree-Like Perceptron in
that each subnetwork is trained individually and in parallel. However, the additional
hidden to output weights must also be updated. These updates are done with respect
to the hidden unit to which the weight is connected.

A potential pitfall of this method is the early response of the subnetworks. Ini-
tially, the hidden unit outputs will be changing rapidly to adjust to the targets, as
described in Section 3.4. As a result, the subnetworks will be responding to both the
hidden units which they control and external units which will be providing changing

values. These external hidden units can be thought of as disturbances to the subnet-
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Figure 5-1: Dual origin of Tree-Like Shared network. The Tree-Like Shared network
has computational aspects of both the MLP and Tree-Like Perceptron network. The
feedforward computation is identical to the MLP, note the fully connected structure
of the weights. The architecture, however, is still subdivided into subnetworks, desig-
nated by the shading of the output and hidden units. In this way, the parallel learning
approach is maintained. The solid lines in the Tree-Like Shared network represent
the hidden to output weights which allow sharing of the linearly independent vectors
amongst the subnetworks. The solid lines are updated by the subnetwork to which it
provides input.
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work and may result in poor training early on. As the outputs of the hidden units
stabilize, the subnetworks will adjust to the new hidden unit values. It is unclear, a

priori, whether this will result in poor training performance.

5.3 Simulation Results and Discussion

The simulation example used for this comparison is the Character Recognition task
used in the previous chapter. It is described in detail in Appendix C. The training
set has 2600 input-output patterns. Each input has 64 attributes and each output
has 26 attributes, all are binary valued.

The Tree-Like Shared network and MLP have similar computation times and as
such, the comparison was normalized to number of training sessions. Each network
was trained for 20 sessions. The MLP had 500 hidden units, the maximum for the
Adaptive Solutions CNAPS Neurocomputer. The Tree-Like Shared network had 20
units per subnetwork, approximately 500 units distributed amongst the 26 subnet-
works.

The training sessions were run at a learning rate of 0.01 with no momentum.

In analogy with the simulations of the Tree-Like Perceptron, the Tree-Like Shared
was trained with a hidden credit scaling of 16.0 and the MLP was trained without
a hidden credit scaling. For practical purposes, the MLP can achieve exact learning
when a hidden credit scaling of 8.0 is used in training. However, the Tree-Like Shared
is limited to a scaling factor of 16.0, which is smaller than the number of outputs in
the network (Section 4.3). Thus the Tree-Like Shared is already at a disadvantage
and by eliminating the hidden scaling factor for the MLP, an appropriate basis of
comparison can be established.

The best training sessions were chosen on the basis of lowest final sum of squared
error.

Figure 5-2 shows the training trajectories for the best MLP (both scaled and
unscaled), Tree-Like Shared networks and Tree-Like Perceptron networks. The Tree-

Like Perceptron results are from the simulation of previous chapter, and are included
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Figure 5-2: Error History for Tree-Like Shared Network versus Tree-Like Perceptron
versus MLP. The best architecture was chosen on the basis of lowest final sum of
squared error. The Tree-Like perceptron trajectory is taken from the simulations of
the previous chapter.

to compare the two Tree-Like architectures. The scaled MLP results are also included
to show the increase in learning created by the hidden credit scaling. Note how the
unscaled MLP and Tree-Like Shared have similar training performance for sum of
squared error.

The best classification errors are shown in Table 5.1. Even though the sum of
squared error was similar, the classification error of the Tree-Like Shared network is
approximately 25% lower when compared to the unscaled MLP.

In comparing the Tree-Like Shared network to the Tree-Like Perceptron, the Tree-
Like Perceptron outperforms the Tree-Like Shared network in both sum of squared

error (Figure 5-2) and classification performance.
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|  Architecture | Best Classification Error |

MLP (unscaled) 41.7 %
Tree-Like Shared 15.8 %

Table 5.1: Best Classification Errors — Character Recognition

The Tree-Like Shared network has shown to be a useful strategy in training.
Although, the expected performance gain over the Tree-Like Perceptron was not
achieved, the Tree-Like Shared network does have the advantage of parallel training
on platforms designed specifically for the MLP architecture. That is, the Tree-Like
Perceptron subnetwork training sessions were run in a serial fashion, whereas the
Tree-Like Shared network was run with all subnetworks in parallel taking advantage
of both the specialized hardware and parallel training.

The decrease in expected performance may be due to the changing internal rep-
resentations early in the training process. Chapter 3 showed that the minimization
of the sum of squared error modulated the change in internal representation towards
exact learning. If the inputs from the other subnetworks are constantly changing, the
effect on the subnetwork is that the target vector is changing (disturbance effect).
As a result, the subnetwork has difficulty adjusting its internal representation to the
changing target, resulting in decreased performance.

Showing the efficacy of a new neural network architecture or algorithm is an
inductive process. It must be applied to example after example before it is clear that
it is generally useful. Even with motivations such as parallel training and biologically
relevance, it is unclear a priori how well an architecture will perform on an arbitrary
application. The Tree Structured Architectures are an excellent example of this. The
model indicates increased learning performance and the results are consistent with
improved performance. However, further work with Tree-Like Shared network showed
that the learning performance is not always predictable.

Unfortunately, neural network design principles, in the current form, represent a
set of strategies which have few quantitative measures. As such, the use of intuition

and raw computational power are likely to be the most effective design tools.
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Chapter 6

A Novel Two Hidden Layer
Architecture for Reduced

Parameter Representations

6.1 Introduction

In evaluating neural network architectures, there are many important factors. In
Chapters 4 and 5 the efficiency of computation and speed of training were the metrics
of performance. Another important facet of neural network training is the size of the
representation generated by the training process. Large representations use more
storage space on the computing elements and are generally more computationally
intensive to train [71].

The size of the representation is also related to the generalization ability of a
network. Generalization refers to a network’s ability to predict the correct output
for input patterns that are not in the training set. In principle, a network can be
trained on a subset of all the data, instead of the entire data set, and still produce
the appropriate output for the remainder of the data set. This is important for
applications where the all data is not known a priori or the data set is far too large to

train a network in a reasonable amount of time. Generalization ability is related to the

79



number of parameters in a feedforward neural network (e.g. Multilayer Perceptron)
through the Vapnik-Chervonenkis (VC) dimension [13, 32, 31, 8]. Simply put, the
generalization ability of a network decreases as the number of weights in the network
increases [15]. Thus the notion of a reduced parameter, or minimal, representation is
appealing from the viewpoint of generalization.

The literature has many examples of algorithmic and analytical approaches to ob-
tain minimal representations. Strategies to modify the number of parameters during
training have been successful in achieving reduced parameter representations. Prun-
ing algorithms start with some number of parameters and eliminate those which do
not contribute to the output significantly [69, 32]. Construction algorithms start from
a set of small of parameters, adding parameters as needed [19, 60]. Other training
algorithms use both the elimination and addition of weights to produce a reduced
parameter representation [3].

Bounds on the number of hidden units required to guarantee exact learning have
also provided useful results in the context of reducing the number of parameters in a
representation [34, 7, 4]. Section 3.3 describes the minimal number of hidden units
required for learning an arbitrary target. The determination of the minimal number
of hidden units required for a fixed set of patterns (as opposed to arbitrary) is an
open question. The minimal number of hidden units would correspond to the optimal
architecture for size and generalization for a feedforward neural network.

This investigation studies a novel two hidden layer architecture developed to re-
duce the number of parameters in MLP-like networks. The analytic foundations of
this architecture have been developed from results in Chapter 3. The motivation and
structure of the architecture are described and simulations versus Multilayer Percep-

tron show the relative learning performance.

6.2 Novel Two Hidden Layer Architecture

This section describes the analytic development of the novel two hidden layer archi-

tecture.
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Lemma 3.2 shows that there exists a linear combination of a set of input vectors,
from distinct input patterns, which results in a vector of distinct elements. The
input vectors are the input patterns of a training set put into a node-wise orientation
(Section 3.2). Alternatively, Lemma 3.2 states there exists weights such that distinct
input patterns can be fed into a single linear node (Figure 6-1 Network A) and the
output of that linear node is different for each input pattern.

This single element coding and the target patterns can now be combined to form a
new single input training set. This new training set can be trained on a single hidden
layer MLP with one input (Figure 6-1 Network B).

The combination of these subnetworks (Figure 6-1 Networks A and B) gives a
novel two hidden layer network (Figure 6-1 Network C). This new network still has
the universal approximation characteristics of a conventional MLP as a result of
Lemma 3.2. Also, the network has the same bounds on hidden units as a conven-
tional MLP, except that these bounds apply to the second hidden layer. But most
importantly, this network has fewer parameters than a conventional MLP for many
application-relevant network sizes.

A conventional MLP with N; input units, Ng hidden units and N, output units
has :

(Nr+1) Ng+(Ng+1)-N,= (N;+N,+1)-Ng+ N,
parameters, whereas the new architecture with the same parameters would have :
N1+1+2-NH+(NH+1)-NO=$(No+2)'NH+NI+NO
parameters. The difference in number of parameters (MLP - novel) is (N; —1)- Ny —

Nj. This implies that the MLP has fewer parameters when :

N;

Ny <
E>N1

which for Ny > 2is Ny = 1. Thus the MLP has fewer parameters only when Ny = 1,

meaning that for most networks, the novel two hidden layer architecture has fewer
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Figure 6-1: The Novel Two Hidden Layer Network. The two hidden layer network,
C, is comprised of a coding portion, A, which produces a distinct element for each
input pattern and a single input single hidden layer MLP portion, B, to perform the
mapping to the target.
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parameters.

Theoretically, the new architecture can represent any training set that the MLP
can, however, training the new architecture may be very difficult. Also, many comput-
ers are limited in precision and dynamic range and thus a linear unit is unsuitable.
Since the hyperbolic tangent function is bijective (i.e. 1:1) it would preserve the
uniqueness in the single element encoding. Due to these practical concerns the simu-
lations below were run with multiple sigmoidal coding units in the first hidden layer.
The number of coding units in the first hidden layer was chosen such that the total

number of parameters was still fewer than in the MLP.

6.3 Simulation Results

The Character Recognition task used in this simulation is described in detail in Ap-
pendix C. For the purposes of this discussion, the example contains 2600 input-output
examples. Each input has 64 attributes and each output has 26 attributes. All the
attributes are binary valued. Both networks were trained on an Adaptive Solutions
CNAPS Neurocomputer using the backpropagation algorithms (one layer and two
layer) that come as part of the machine software. For a discussion of the Adaptive
Solutions CNAPS Neurocomputer refer to Appendix D. The MLP was run with 100
hidden units. The novel architecture was run with 100 units in its second hidden
layer and 10, 20 or 40 coding units in its first hidden layer. The learning rate used
for both architectures was 0.01 and no momentum was used.

Five training sessions for each network were run and the session ending in the
lowest sum of squared error was used for comparison.

Simulation results in Figure 6-2 show poor performance of the novel architecture
for all coding layer sizes. The classification error for all the novel architecture networks

was 100 % error, meaning the architecture did not learn any patterns.
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Figure 6-2: Error Trajectories for Novel Two Hidden Layer Network versus MLP.
For each network, the error trajectory with the lowest sum of squared error for each
architecture was chosen from five training sessions.
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6.4 Discussion

The novel architecture discussed here has been motivated by a reduction in the num-
ber of parameters in feedforward neural network representations. Using results de-
veloped in Section 3.3, a novel two hidden layer is described with equivalent repre-
sentation ability, in principle, as the MLP. However, the training algorithm used was
unable to train the weights to any substantial decrease in sum of squared error (Fig-
ure 6-2). Poor performance is likely due to a high degree of sensitivity of the model
to precision and dynamic range. For example, the exchange of the sigmoidal units
for the linear coding units severely limited the dynamic range of the coding layer.
In fact, the distinct coding may have been impossible to generate. The limited pre-
cision and dynamic range of the CNAPS Neurocomputer exacerbated this difficulty.
Further training in environments with higher precision and dynamic range may show

this network to be a useful reduced parameter representation.
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Chapter 7

Conclusions

In an attempt to design new algorithms and architectures for faster training and com-
putational efficiency of feedforward artificial neural networks, the analysis of learning
dynamics has been important.

The concept of a system matrix and its condition number led to the development
of the linearly independent internal representation. The linearly independent inter-
nal representation was useful in determining the minimum architecture of an MLP
required for exact learning. In addition, the minimization of the sum of squared error
was shown to enhance the linear independence of the internal representation, thereby
increasing the likelihood of achieving exact learning. As a result, the linearly indepen-
dent internal representation was a promising substrate for algorithm and architecture
design.

The Tree-Like Architectures used a decomposition strategy, shown to be both
computationally efficient and biologically relevant, to increase training performance
in the MLP. The Tree-Like Perceptron was able to show the utility of partial training
in the context of a resource limited environment, in training the Computer Speech
example. The classification error was halved at the expense of a greater number of
network parameters. The Tree-Like Perceptron when compared to the MLP under
similar training conditions, on a Character Recognition task, was able to decrease
the classification error from ~ 42% to ~ 1%. Thus showing the efficacy of the

decomposition approach. Unfortunately, the use of a hidden scale factor in training
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the MLP, allowed the MLP to train to perfection. Limitations on the size of the scale
factor available made it impossible to carry an appropriate comparison to the MLP
which trained to perfection.

Preliminary results from the Computer Speech and Character Recognition exam-
ples indicate the Tree-Like Perceptron to be potentially useful in the efficient training
of large-scale neural networks.

The application of the linear independence concept to the Tree-Like Perceptron
produced the Tree-Like Shared network, which outperformed the MLP in classifica-
tion error on the Character Recognition example. However, the Tree-Like Shared
network was expected to outperform the Tree-Like Perceptron due to the increased
sharing of internal representation vectors. Since the Tree-Like Perceptron actually
outperformed the Tree-Shared network, it is likely that the disturbance effect of the
changing internal representations in other subnetworks, actually slows down conver-
gence. The Tree-Like Shared network has the advantage of running a parallel training
scheme within the confines of specialized hardware for the MLP.

Some potential pitfalls of the Tree-Like Architectures may result from the un-
derestimated efficacy of the MLP and backpropagation. The simple addition of the
hidden credit scaling factor was able to boost the Character Recognition MLP net-
work to perfection. It is likely that for certain applications ad hoc modifications to
the backpropagation algorithm are likely to outperform the Tree-Like Architecture
strategy. Delineating the efficacy of the Tree-Like Architecture is an important mea-
sure for practical utilization of the decomposition strategy. A measure of this may
be the critical ratio, which can indicate the utility of the Tree-Like Architecture over
the MLP. However, the critical ratio is, currently, difficult to calculate.

A novel two hidden layer architecture derived directly from the concept of lin-
ear independence was designed specifically to reduce the number of parameters in
the learned representation. A reduced number of parameters decreases the storage
requirement as well as increasing the generalization ability. Unfortunately, the two
hidden layer architecture performed poorly. The poor performance may have been a

result of the limited precision and dynamic range of the computing platform rather
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than any inherent restriction in the network representation ability. Further work in
more computationally robust environments may reveal the practical training charac-
teristics of this reduced parameter network.

This investigation has identified some important principles in the design of new
neural network architectures and algorithms. The linearly independent internal rep-
resentation was shown to be necessary for exact learning and an inherent property
of many current training strategies. The decomposition strategy was shown to be
effective in reducing training and classification error in large-scale networks as well as
being biologically relevant and computationally efficient. In addition, the reduction in
size of parameterizations may be an important step in reducing storage requirements
in architectures as well as increasing generalization ability.

As yet, it is unclear if simple ad hoc modifications to current strategies will solve
the increased computational burden created by growing neural network application
size. If these ad hoc modifications fail, as they are likely to do, the principles de-
veloped and demonstrated in this investigation will be important in the design of
new computationally efficient and biologically relevant artificial feedforward neural

network architectures and algorithms.
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Chapter 8

Future Work

Many concepts presented in this investigation will be useful to future investigations
in the design of new algorithms and architectures for learning and computational
efficiency.

The concept of the linearly independent internal representation has been impor-
tant in identifying the upper bound on the number of hidden units required for exact
training. Further work may reveal an algorithm for determining the minimal number
of hidden units required for exact learning of a fixed (rather than arbitrary) training
set.

The decomposition strategy of the Tree-Like Architectures was tested on two
examples. Although, the results showed potential benefits, the development of the
critical ratio may aid in identifying problems for which the decomposition strategy
will result in efficient learning.

Parameter reduction is also an important aspect of computational efficiency. The
further development of the linear independence concept may aid in understanding the

feasibility of reduced parameter representations.

89



Appendix A

Proofs

A.1 Proof of Lemma 3.1

Proof:

The proof consists of three cases: one where the elements of s, denoted
[s];»¢ = 1,..., N, have the same sign as the corresponding elements of u,
denoted [u];,i = 1,..., N; another where the elements are of opposite
signs; and the last case where some of the signs may differ. Without loss
of generality assume that ||s|| = 1.

Case 1 : sgn([s],) =sgn([u],),:=1,...,N

Noting that tanh is symmetric, choose a > 0 and b = 0 so that [s], -
[u], > 0. Since for all i 3 [s], # 0 the resulting inner product is strictly
positive, i.e. greater than zero.

Case 2 : sgn(s];) = —sgn([u];),i=1,...,N

Using a similar argument as in Case 1, choose a < 0 (since the signs
differ) and b = 0 to obtain a strictly positive inner product.
Case 3 : Some but not all signs of [s]; and [u], differ

This case generates three new subcases based on the following sub-
division. Subdivide the set of indices {1,..., N} into two subsets. The

first, I ;4me, denotes the indices for which [s]i have the same sign as the
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corresponding [u];. The second, Iy, are the remaining indices, for which
the signs differ.

Subcase 1 :

> liskl= > liski>0

i1€Isame 1€lgify

Choose ¢ > 0 such that

1
G:N_m;e—H( Z l[S]iI_ Z |[S]z|)

ielsa.me 'iEIdiff

where Nygme is the number of elements in ;..
Since |tanh(a[u];)| < 1, choose a > 0 such that |tanh(a[u],)| > 1 —
€,1 € Iyume and b= 0.

The following inequalities result:

Z [s]; tanh(a[u];) > Z |[s];|(1 —€)

iEIsame ieIsame
E [s]; tanh(a[u];) > - Z |[s];]
i€laif s i€lgisg

Combining the sums gives,

Stanh(au) = 3.5 tauh(aful,

= 2 [sl;tanh(afu]) + >° [s];tanh(alu);)

ieIsﬂmE iEIdiff

> > sLlt-¢ = > |l
iEI.same iEIdiff

> >0 lskl= X2 lislkl= X llskle
iGIsame iEIdi_fj ielsame

> (]Vsame"f'l)e'—]Vsame6

> €

Subcase ii :

Z \ls]| = Z |s};| < 0
t€I1same iGId,'ff
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This case is similar to Subcase i, except that the roles of I;s; and
Iume are interchanged.

Subcase iii :

Z |[sl:| - Z |sl;| =0

1€1same 'I:EIdiff

Let € > 0, choose b such that

ol = 2, min |[u];]+e
k = arg min_|[u]|

Let the sign of b be opposite to the sign of [u];

Define @i = u + b1. For @i define ;4. and Iyfs as before. Thus,

Z |lsl:| = Z |[s];| # 0

ieisame iel_diff

and can use subcase i or ii to solve for the appropriate value of a. The

required value of b is then ab.

O
A.2 Proof of Lemma 3.2
To begin a definition is required,
Definition A.1 A set of column vectors, {si,...,Sk} is said to have distinct rows if

the matriz

S =[si1]... sk

has no identical rows.

When applied to input vectors, Definition A.1 is equivalent to the distinct input

pattern condition. Lemma A.1, which follows, is used to extend Theorem 3.1 to
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multiple inputs.

Lemma A.1 Given a set of vectors, {sy,...,Sx}, with distinct rows, 3 {a1,...,ax}

such that

k
u=> as;

i=1

has distinct elements.

Note that Lemma A.1 is simply a restatement of Lemma 3.2 without connotation
to MLP networks.
Proof

For k = 3, have s;, sy and s3 with distinct rows. a; and a, will be
found such that a;S; + ass; has distinct elements and has distinct rows
with respect to s3.

Let q =s; + s, and

6= r{}éﬁll[q],- — [al;
That is, ¢ is the smallest difference between the elements of q.
Let A be the set of ordered pairs (7, j) such that |[q]; — [q];| = ¢.
There exist three possible cases,
Case 1: § # 0 and q and s; have distinct rows
That is, q has distinct elements, thus a; = 1 and ay = 1.
Case 2 : § # 0 and q and s3 do not have distinct rows
Let B be the set of indices ¢ such that [q]; = [s3];.
Let

y = lgéigl[ss]i — [a];]

and

d = min |[q]; - [q];]
i
(1,5)¢A
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That is, 4 is the next largest difference between corresponding elements
of s3 and q. $ is the next largest difference between the the elements of
q. Let

p= ({,Ijl)aexA ma.x([Sz]i, [52]j)7

that is p is the largest element of s,, and let

min(4, §)
p+1

€ =

then s; + (1 — €)s, has distinct elements and has distinct rows with respect
to s3.
Case 3:6=0

Let

6= min |[a]; - [la];-

(4,9)
i#j
(i.j)€A

That is, d is the next largest difference between the the elements of q. Let

p= (5;% maX([Sz]i, [Sz]j)a

that is p is the largest element of s,, and let

8

€= .
p+1

then s, + (1 — €)s, has distinct elements. If s; + (1 — €)ss does not have
distinct rows with respect to s3 then follow case 2 with s, = (1 — €)s,.

Assume the proposition true for k¥ = r, then truth for ¥ = r + 1 must
be shown.

By assumption, 3 {di,...,d,} such that & = ¥7_, d;s; has distinct
elements and the vectors @ and s,,; have distinct rows.

This is the k¥ = 3 case without the distinct rows requirement again

and b; and b, can be found such that b, + bys,,; has distinct elements.
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Letting

a; = bldi,i=1,...,7"

ary1 = by

41 a;s; has distinct elements.

The proof follows by induction.

A.3 Proof of Proposition 3.1

Lemma A.2 Given a set of linearly independent vectors, {vi,..., vy} with distinct
patterns where v; € RN,i = 1,...,k,3 {c1,...,c} and {(a1,b1),...(an—k,bN—k)}
such that

k
u= Z C;V;

=1

has distinct elements and
{Vl, ooy Vi, tanh(alu + bll), .. ,tanh(aN_ku + bN_kl)}

forms a complete basis of RN.

Proof:

A vector of distinct elements, u, can be generated by Lemma 3.2.
Corollary 3.1 proves complete basis for ®" can be generated with N non-
linear units and a vector of distinct elements. If k linearly independent
vectors are given, then choose N — k vectors from the complete basis to
create another complete basis which includes the k given linearly inde-
pendent vectors. This follows from the fact that the number of linearly
independent vectors required to form a complete basis is the dimension of

the vector space.
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Proof of Proposition 3.1:

Lemma A.2 shows that given the linearly independent vectors in the
input data, number of nonlinear hidden units required to form a complete
basis can be reduced from Np. Let k = R([vy]...|vn,|1]). Choose k
linearly independent vectors from the input data (and 1). Assume a net-
work with Np hidden units as described in Theorem 3.2 already exists.
By Lemma A.2, choose Np — k vectors from the complete basis of the
existing network. If the k& hidden units not chosen for the basis are elimi-
nated and the k linearly independent input vectors are connected directly
to the output, then the result is a network with Np — k hidden units with
a complete basis consisting of vectors of the internal representation and
input vectors. Moreover, any additional hidden units would be unneces-
sary since a complete basis already exists, the deletion of any node would
result in an incomplete basis. Thus Np — k£ hidden units are enough to

interpolate an arbitrary data set.

A.4 Proof of Corollary 3.2
Proof:

By adding multiple output nodes, the number of target vectors is in-
creased. Each target vector is an element of ®V?. Thus the complete

basis due to the Np — R ( [ vy ) L , vy, |1 D hidden units and the lin-

early independent input vectors can span all the required target vectors.
Note that each new output node adds new hidden to output and input
to output weights. Each set of weights can be set independently of other

output nodes to form the appropriate linear combination for the particu-
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lar target vector required. As a result, any number of output nodes can

be supported, since the complete basis spans RV7.
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Appendix B

Observations on ” Characterization
of Training Errors in Supervised
Learning Using Gradient-Based

Rules”

The following is an excerpt from the communication {66] outlining an erroneous proof
in Wang and Malakooti [74]. As detailed below a similar version of Proposition 3.1

(Section 3.3) as stated in the above article follows from an erroneous proof.

B.1 Letter to the Editor of Neural Networks

Editor:

The recently published article Characterization of Training Error in Supervised
Learning Using Gradient-Based Rules by Jun Wang and B. Malakooti [74], represents
a significant effort in describing training errors in feedforward neural networks. This
paper uses a systems-theoretic framework to outline some appealing results. Unfor-
tunately, as we will describe, some of the proofs are incomplete, indicating that the
results may be less tractable than initially conjectured.

In particular, Theorem 3 (which provides a basis for many statements that follow)
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relates the rank of the Jacobian matrix of the neural network to the steady-state error

during training. Specifically it states

”... a steady-state training error E[@] is always an absolute minimum

error iff the rank of the matrix ¥(z,w) is Pm.”

where ¥(z,w) is a matrix composed of the Jacobian matrix of each output node
transposed. It is important to note that the gradient direction, —7(t)V,E, is given
by n(¢)¥(z,w)é(y), where n(t) is a time-dependent learning rate, é(y) is the vector
of errors for each pattern and y the network output. An absolute minimum is defined
by the authors as a zero error minimum.

The proof as published verifies the sufficiency condition, but fails to address all
the aspects of the necessary condition.

The authors’ sufficiency proof follows from a direct linear algebraic argument.
That is, if ¥(z,w) has full rank and w(t) = n(t)¥(z, w)é(y) = 0, then for n(¢) >
0, é(y) must be identically zero.

The authors’ (incorrect) necessity proof :

”For necessity, if the rank of ¥(xz, @) is less than Pm, then 3w such that
w(t) = 0 and é(y) # O (nontrivial solution); that is, the steady-state error
is not an absolute minimum error E[@] = 0. Therefore, ¥(z,w) must be

of rank Pm.”

does not preclude the trivial solution é(y) = O while the Rank ¥(z,w) < Pm (Fig-
ure B-1). This is illustrated in the following counterexample.

Assume that in training a neural network we encounter a local minimum, w, with
é(y) # 0. The sufficiency condition states that ¥(z,w) must have deficient rank.
Suppose now we define a new target set for the network which is identical to the
current output of the network (i.e. at the local minimum). Then é'(y) = 0 (error of
new target set) while ¥(z,w), which is unaffected by the change of target, remains
deficient in rank. In other words, it is possible to have a target set and weight vector,
W, such that &'(y) = 0 while ¥(z, w) is rank deficient. This result is inconsistent with

the theorem.
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Set of Possible Solutions, w(t)=0
with Rank ¥(x,w) < Pm

e(y)=0

Absolute
Minima

Figure B-1: Solution Set for Necessary Condition

Note that our counterexample assumes the existence of local minima. The validity
of this assumption has been shown by Blum [11], who proved analytically the existence
of local minima for the Exclusive-OR network.

Despite the incompleteness of the theorem, there is some empirical evidence that
the matrix W(z,w) indeed has full rank at absolute minima for particular exam-
ples [65]. Unfortunately, the theorem as it stands, does not allow a definitive proof

of the necessity of this condition in the general case.

100



Appendix C

Simulation Examples

This appendix describes the simulation examples used in this investigation.

C.1 Character Recognition

This example is a character recognition task. It was obtained from the University
of California, Irvine repository for machine learning databases [49]. It was originally
used in a study of Holland-style adaptive classifiers [20]. The results of this method
were able to achieve just over 80 % accuracy in classification. There is no recorded
usage of feedforward neural networks to learn this task.

The purpose of this task is to correctly classify characters based on 16 measure-
ments of a raster image of the character. The measurements are both statistical
moments and edge counts of the raw raster data. The description of the measure-
ments is given in Table C.1. The patterns themselves consist of a letter output and
16 integer inputs. Each element of the input has a value between 0 and 15. The
full data set contains 20000 characters. These were generated from 20 base fonts and
random distortions thereof. The distribution of the characters in the full data set are
given in Table C.2.

The simulations presented in this investigation uses only 2600 characters from
the full data set, 100 for each letter. In addition, the inputs and output have been

recoded. Each input element was coded into a string of 4 binary bits, therefore making
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| Name | Description | Data Type | Input/Output |

lettr capital letter 26 values from A to Z output
x-box horizontal position of box integer input
y-box vertical position of box integer input
width width of box integer input
high height of box integer input
onpix total # on pixels integer input
x-bar mean x of on pixels in box integer input
y-bar mean y of on pixels in box integer input
x2bar mean X variance integer input
y2bar mean y variance integer input
xybar mean X y correlation integer input
x2ybr mean of x *x ¥y integer input
xy2br mean of x ¥y * y integer input
x-ege | mean edge count left to right integer input
Xegvy correlation of x-ege with y integer input
y-ege | mean edge count bottom to top integer input
yegvx correlation of y-ege with x integer input

Table C.1: Attributes of Character Recognition Example

the input pattern 64 bits in total. Each character of the output was designated one
output, therefore only one of 26 outputs would be active at any one time.

It is important to note that although this is not a very large example, it does
represent a task where exact learning is required. As such, the size and accurate

learning requirements combine to make this a useful problem to study.

| Instances | Letter | Instances | Letter | Instances | Letter | Instances | Letter |

789 A 766 B 736 C 805 D
768 E 775 F 773 G 734 H
755 I 747 J 739 K 761 L
792 M 783 N 753 O 803 P
783 Q 758 R 748 S 796 T
813 U 764 \% 752 W 787 X
786 Y 734 Z

Table C.2: Distribution of Examples in Character Recognition Example
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C.2 Computer Speech

This example is designed to teach an artificial neural network to speak. The NET Talk
data and network are described in detail in an investigation due to Sejnowski and
Rosenberg [64]. The purpose of their investigation was to test the feasibility of teach-
ing artificial neural networks to speak. In the process, the generalization and the data
extraction capabilities of artificial feedforward neural networks are studied.

The input data is in the form of letters which are presented to the network in the
context of other letter and other words. The output data is a phonetic coding of how
the letter should be pronounced in this context, which can then be fed into a vocoder
to listen to the speech.

Once trained, the artificial neural network was tested on other words for general-
ization ability, which the investigation characterized as good. In addition, the hidden
units were studied to understand the features that were extracted from the input
data.

The network used in the Sejnowski investigation had 203 (7 x 29) inputs, 80 hidden
units and 26 output units. Approximately 1024 words were in the training set, and
this yielded approximately 5400 training examples. The training time was on the
order of days, as described in the investigation.

The large network size and long training time makes this a useful task on which
to test parallel algorithms and hardware implementations. For example, the paral-
lel algorithm on the Connection Machine CM-5 [78] used this task as a benchmark
problem, and was able to take days of computation down to minutes. The CNAPS
chips due to Hammerstrom [27], a hardware implementation of the MLP algorithm,
was able to train the NETTalk network in 7 seconds [31].

This example represents a difficult problem in network training. Both the network
size, training set size and required training time make this an interesting benchmark

problem in the study of large artificial neural network tasks.
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Appendix D

Computational Resources

This appendix outlines the computational resources used to produce the results in this
investigation. All of the data presented in this investigation is a result of simulations
run on the Adaptive Solution CNAPS Neurocomputer, however, the other platforms
described here played an integral part in the development of concepts.

For each platform, the general architecture and its relationship to neural network
computation is discussed. In addition, any neural network software used in this
investigation is also described here.

This discussion is meant to demonstrate the wide range computational resources
required to carry out the simulations described and by no means does it represent a

complete description of the computational properties of each platform.

D.1 Adaptive Solutions CNAPS Neurocomputer

The Adaptive Solutions CNAPS Neurocomputer is a SIMD processing engine specif-
ically designed for neural network applications [27]. Each processor consists of the
basic elements of a simple add and multiply machine. The topology of the processors
is in the form of a linear array with each processor connected to common IN and QUT
buses and to left and right neighbours. If programmed efficiently, the machine is a
powerful inner product engine, and as such performs excellently in the computation

and training of Multilayer Perceptrons.
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Each processing elements performs fixed point arithmetic and is limited to 16-bit
signed weights and intermediate calculations and 8-bit inputs. As a result, architec-
tures that are not robust to limited precision and dynamic range perform poorly e.g.
the Two Layer Architecture described in Chapter 6.

Although this machine has multiple processors, the SIMD architecture precludes
parallel training, except for very small applications. The Tree-Like Perceptron net-
work was simulated in a serial fashion with the backpropagation program provided
with the machine. The Tree-Like Shared network was simulated using a program
adapted from the backpropagation program provided with the machine. The Two
Layer network was simulated with the two hidden layer program provided with the
machine.

An important computational consideration was that the author had exclusive
access to this machine. As described below, the timesharing of even the most powerful
computer can reduce its computational ability by orders of magnitude. As a result,

all of the simulations described in this investigation have been run on this machine.

D.2 Connection Machine CM-5

The Thinking Machines Connection Machines CM-5 is a massively parallel computer
developed for both MIMD and data parallel approaches to parallel computation. The
processing elements are Sparc 10 RISC processors augmented with 8 floating point
units. The topology of the network is highly flexible, but its native modes are NEWS
mesh and torus.

Previous work on the CM-5 for parallel implementations of backpropagation is
due to Zhang [78]. All the architecture simulators for this investigation were designed
to take advantage of parallel training strategies. In addition, a simulator for multiple,
parallel training sessions of MLP networks was designed to study the probabilistic
nature of training.

Despite the computational power of the CM-5, the timesharing environment re-

duced it efficacy greatly, making it a highly flexible medium to small-scale simulator.
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The delineation of large, medium and small-scale are somewhat arbitrary. It takes
into account number of patterns to be learned, the size of the network and the time
required to train it. Examples of large-scale problems are the NET Talk problem [64]
example and the full data set of the Character Recognition example, both described in
Appendix C. Medium-scale examples would be the scaled down version of the Char-
acter recognition problem used in this investigation (see Appendix C). Small-scale

examples would range from XOR [62] to the SONAR problem [25].

D.3 CRAY X-MP

The CRAY X-MP is a powerful vector supercomputer. Although it is a multiprocessor
machine, the CRAY X-MP is not a parallel computer. Thus results from the CRAY
were performed in a serial training fashion. The advantage of the CRAY is its powerful
vector computation engine. The vector computations make it especially suited for
training the Multilayer Perceptron and similar network architectures.

The freeware ASPIRIN neural network simulator by Russell Leighton was used
to perform calculations on the CRAY. It supports the use of vector libraries making
it a powerful simulator. When compared to the workstation version of the software,
described below, there was a 150 times speedup when run on the CRAY. This speedup
also takes into account the timesharing environment of the CRAY. Although the
CRAY has good computational performance, the CM-5 represented a much more
flexible environment, especially for parallel training, thus the CRAY was used for
some initial results and then phased out. Simulations that were originally run on the

CRAY, were re-run on the Adaptive solutions machine with similar computational

performance.

D.4 SUN Sparcstation 1

The SUN Sparc 1 workstation is a single processor workstation. As such, parallel

training is impossible and serial training is slow. As a result, the Sparc workstation
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was only used for small-scale testing.

The software used in small-scale testing was the ASPIRIN freeware package by
Russell Leighton. This package was described under the description of the CRAY
X-MP.
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