
-y

DESIGN OF A NETWORKED CD-ROM FOR MULTIMEDIA APPLICATIONS

by

Steven Michael Levis

Submitted to the

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

in partial fulfillment of the requirements

for the degrees of

BACHELOR OF SCIENCE

and

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May, 1995

© Steven Michael Levis, 1995

The author hereby grants to MIT permission to reproduce and to

distribute copies of this thesis document in whole or in part

Author 'g.
Department of Electrical Engineering and Computer Science

May 15, 1995

C ertified by. """"...
Stephen K. Burns, Technical Dir Of Biomedical Engineering Ctr

Harvard-MIT Health Science
Thesis Supervisor

C ertified by - .Y....-.
CyV vid L. Waring, Bellcore

Thesis Supervisor

Accepted by-.- .- ..
F. R. Morgenthaler

Chair, ertment C ommittee on Graduate Students
\ MASSHUSE' INSTmjtf:

OF TECHNOLOGY

JUL 1 71995

LIBRARIEatKer ER

2

Design of a Networked CD-ROM for Multimedia Applications
by

Steven Levis

Submitted to the Department of Electrical Engineering and Com-
puter Science on May 7, 1995, in partial fulfillment of the require-
ments for the degrees of Bachelor of Science and Master of Science

in Electrical Engineering.

Abstract

Allowing users of multimedia applications access to a large library of such items via the
networking of PC CD-ROM drives (Net-CD) is investigated in this paper. A model for
multimedia systems and an architecture for the implementation of this model are dis-
cussed. A simple Net-CD system is designed, constructed, and tested to determine the fea-
sibility of networking CD-ROM drives on a PC.

Thesis Supervisor: Stephen Burns
Title: Technical Director Of Biomedical Engineering Center

3

Acknowledgements

This project was accomplished during the author's six month cooperative study program
with Bell Communications Research (Bellcore). The author would like to thank Bellcore
for supporting this project, as well as Alex Gelman and Dave Waring for providing inspi-
ration and opportunity throughout the course of the research.

4

Table of Contents

1 Introduction 11
2 Multimedia Systems 13

2.1 A Model for Multimedia Systems 13
2.2 Video Dial Tone Architecture .. 14

3 Design of Networked CD-ROM .. 17
3.1 Networked CD-ROM on VDT ... 17
3.2 Net-CD Software Requirements 18

4 Design of Net-CD Software 23
4.1 Operation of MSCDEX 23
4.2 Design of LOC-CD.SYS .. 24
4.3 Communication Protocol 24...........
4.4 Design of REM-CD.EXE ... 26

5 Results .. 27
6 Conclusion 29
Appendix A LOC-CD.ASM 31
Appendix B REM-CD.ASM 55

5

.n�L\�CI�·(*�JL16�(�?LSU�··�·IPDYI�CI�·

6

List of Figures

Figure 2.1: Multimedia System Model ... 14
Figure 2.2: Video Dial Tone System Architecture .. 16
Figure 3.1: VDT Implementation of a Networked PC CD-ROM 19
Figure 3.2: PC CD-ROM Software Interaction .. 20
Figure 3.3: Net-CD Software Interaction .. 20

7

_____Cqb__l_______l___I___UI__I

8

List of Tables

Table 4.1: Driver Commands Supported by Net-CD 23
Table 4.2: Protocol for Net-CD Data Transmission 25

9

_·_____ll_____s__llIUIIID�·--·�------

10

Chapter 1

Introduction
Multimedia is the term for applications which appeal to more than one of the senses.

These applications require a high-bandwidth information flow to the user. There is a wide

variety of such applications available for PCs on CD-ROM. The amount of information

available on one CD-ROM is hundreds of times greater than the capacity of standard 3-1/

2 inch magnetic diskettes. Information in this large quantity lends itself to use in many

types of applications such as video games, encyclopedias, video shopping, and the like.It

would be an advantage to the user of multimedia CD-ROM software if his or her PC was

networked to a large quantity of CD-ROM type applications. This paper discusses solu-

tions to the networking of a PC CD-ROM and the implementation of one such system.

11

__ _ _ _ _U __ _ _I_ _

12

Chapter 2

Multimedia Systems

2.1 A Model for Multimedia Systems
Figure 2.1 diagrams a model of current multimedia systems. This model shows the

general asymmetry of bandwidth between the user and the multimedia information source.

Although one can envision a system in which the user input was of a high bandwidth, such

as an application with video input, today's multimedia applications have low bandwidth

user input such as a mouse, keyboard or remote control. The high bandwidth output of the

system is required by applications which output video or audio. This bandwidth asymme-

try plays a key role in the system architecture that will be discussed.

The system model in Figure 2.1 is separated into the user interface and the multimedia

information source. One example of a user interface is a personal computer, capable of

playing audio and video, through which multimedia applications a used. Another is the

combination of a television (for audio and video output) and a set-top (for user interface)

which would be used for interactive multimedia applications, including video on demand.

By separating the model in this manner the user interface can be made almost inde-

pendent of the content of the multimedia experience. The exception to this is the necessity

of a standard in terms of the data communication and the types of input and output media.

In this way, the user can have access to a large multimedia library through a constant inter-

face.

The multimedia information source can be represented in many ways. The source can

be a video library, a source of processing power for applications such as central computing

and video games, a CD-ROM, or any source of multimedia applications. The information

source can also be implemented as a network of many different information providers (IP)

13

';Wi�lP·*U·IPI�*IIP�I��·l�-^IU-""·�··l�-

which will provide the user with a variety of multimedia and will also allow for competi-

tion between IP's.

User
Interface

Multimedia
Information

Source

Figure 2.1: Multimedia System Model

2.2 Video Dial Tone Architecture

The Video Dial Tone (VDT) multimedia system architecture takes advantage of, (1) a

network already in existence and (2) the asymmetric nature of contemporary multimedia.

14

_v

I

I

I

The telephone network is used as the channel between the user interface and information

providers. By the use of this network, ordinary telephone subscribers will already have

access to a data communications channel. The disadvantage of this system is that the user

is connected to the network via twisted pair copper wire. The twisted pair, in its current

configuration, has quite a low bandwidth relative to the requirements of multimedia out-

put.

The solution to this problem comes in the form of a technology known as the Asym-

metric Digital Subscriber Line (ADSL). ADSL allows the normally low bandwidth

twisted pair to act as a data communications channel with low bandwidth in one direction

(9600 bits/sec) and a high bandwidth in the opposite direction (1.522 Megabits/sec).

Because of the inherent asymmetry of today's multimedia applications, ADSL allows the

telephone network to be used as a multimedia information source with a small modifica-

tion to the twisted pair terminations at the subscriber and at the central office (CO).

A diagram of the VDT system architecture is shown in Figure 2.2. The ADSL twisted

pair line links the user interface hardware, or Customer Premises Equipment (CPE), with a

dedicated VDT line card in the central office. Through the CO, the line card is connected

to other CO's and the information providers through a Synchronous Optical NETwork

(SONET) using the Asynchronous Transfer Mode (ATM) protocol. SONET is a high

bandwidth fiber-optic network which links distant portions of the telephone network.

The VDT line card can be considered the dividing line between the user interface and

the multimedia information source in the model shown in Figure 2.1. This line card con-

tains a processor capable of running scripts downloaded into it, as well as a buffer used as

a temporary storage area for multimedia information. The line card is capable of executing

protocols necessary for communication with both the user interface and the IP. Because of

the much higher bandwidth of SONET relative to the ADSL, multimedia information can

15

·-·�-ULII·-"-L·-�a�·�····�·I·L�U·�I�·�-�

be sent from the IP in large bursts, buffered in the line card and then sent over the twisted

pair at the proper speed. This allows SONET to be time-multiplexed on a per-user basis.

The VDT architecture allows a currently existing network to implement a multimedia

information source with little modification to the existing line. This will give users an easy

connection to a large library of multimedia titles.

Information Provider

Figure 2.2: Video Dial Tone System Architecture

16

Chapter 3

Design of Networked CD-ROM

3.1 Networked CD-ROM on VDT
One application that would be well suited for VDT would be that of supplying the

user with a large library of PC CD-ROM titles. A diagram for the implementation of such

a system is shown in Figure 3.1. The CPE for the networked CD-ROM (Net-CD) would

consist of the customer's personal computer and an interface peripheral. The interface

would create a data link between the PC and line card, through the SONET and eventually

to the IP.

There are many ways to implement the CD-ROM titles in the IP. The IP could be sim-

ply another PC with a CD-ROM drive and an interface to the network. A more practical

solution might consist of a server which has fast access to many CD-ROM titles. The line

card might buffer and cache data in order to improve performance.

The user load on the IP is limited by the bandwidth of its connection to the network.

One 100 Megabit/sec line, for instance, could service up to 65 users. In order to increase

its capacity, the IP could purchase more lines to increase its bandwidth. This would, how-

ever, also require equipment which could handle the added load. The load on the IP is lim-

ited by its own resources and by the market.

The architecture of the VDT network has already been developed by engineers at Bell

Communications Research (Bellcore). In order to implement Net-CD, software drivers

and VDT interface hardware must designed for the CPE. The following section describes

the design of the required software for the customer's PC.

17

·��'-�-UU·B�·�PIF�·I�Rllol·� I-

3.2 Net-CD Software Requirements

The design of the necessary software to implement Net-CD required research into

MS-DOS's implementation of CD-ROM drives in general. Unfortunately, DOS cannot

handle CD-ROM drives in the same manner as it does for regular disk drives, due to the

large size of data files that is allowed on CD-ROM drives.

DOS requires CD-ROM drives to be supplied with a software driver which will allow

communication between the drive and Microsoft's CD-ROM Extensions (MSCDEX).

MSCDEX masks the workings of the CD-ROM drive from DOS in a manner that makes

the CD appear as if it were a network drive. This is done because DOS allows an excep-

tion for network drives in terms of maximum file size.

Figure 3.2 shows the links between DOS, MSCDEX, DRIVER.SYS (the CD-ROM

drive specific device driver), and the CD-ROM drive. Both of the first two sections, DOS

and MSCDEX, are independent of the type of CD-ROM drive in the system. The final two

sections are device dependent and therefore cannot be implemented in the PC if the CPE is

to be made as general as possible. This division into device independent and dependant

sections is illustrated by a vertical line in Figure 3.2.

The feasibility of implementing the Net-CD on a PC can be shown by writing and

testing software which allows us to replace the vertical line in Figure 3.2 with a division in

hardware, such as the ADSL line in the VDT architecture. This is shown in Figure 3.3.

In this configuration, MSCDEX communicates with LOC-CD.SYS, which, to MSC-

DEX, looks like a CD-ROM device driver. LOC-CD.SYS is linked to REM-CD.EXE in

the remote system via a communications channel. REM-CD.EXE, on the other hand,

looks like MSCDEX to the device dependant DRIVER.SYS.

The communications channel would be replaced by the telephone network between

the CPE and the server in the actual implementation of Net-CD using VDT. However, for

18

this experiment, it is a 115.2kbit/sec serial channel. Although this is roughly 12% of the

speed of system limiting ADSL speed of 1.522 Megabits/sec, it will not effect the feasibil-

ity of a PC Net-CD, as long as a robust CPE interface to the ADSL line can be created.

information

Figure 3.1: VDT Implementation of a Networked PC CD-ROM

The LOC-CD.SYS software driver will receive commands from MSCDEX, and group

them into one of two categories. The first consists of all commands which do not require

any interaction with the CD-ROM device. All requests of this type will be answered

19

I____P__IICU_·UIII--

locally. The remaining commands fall into the second category. These requests are placed

into a packet for shipment to the remote PC's REM-CD.EXE.

Figure 3.2: PC CD-ROM Software Interaction

Figure 3.3: Net-CD Software Interaction

20

I

I

I

I

i

I

The REM-CD.EXE receives commands from the LOC-CD.SYS and passes them to

DRIVER.SYS as if they were coming directly from MSCDEX. When the driver returns

the request, REM-CD.EXE sends the result of the request, which may contain large

amounts of data, back to LOC-CD.SYS. At this point, LOC-CD.SYS returns the result to

MSCDEX as if the data had come from a device dependant driver. In this way, the DOS in

the local PC will accept LOC-CD.SYS as a valid device driver for an internal CD-ROM

drive.

21

__1U__na___*_*M*qjUU*peMO·I��I�-�

22

Chapter 4

Design of Net-CD Software

4.1 Operation of MSCDEX
Microsoft's CD Extensions (MSCDEX) require the presence of a CD-ROM device

driver. This driver must be able to properly handle CD-ROM requests, while still meeting

the requirements of a DOS device driver. Except for the initialization stage, all requests of

the device driver are made through MSCDEX. These requests are in the DOS standard

form of the request header. This request header varies in length dependant on the type of

request made. The type of request is specified in the command field of the request header.

The commands that are supported by LOC-CD.SYS are listed in Table 4.1. All commands

with an index of 128 or greater are CD-ROM device driver specific commands.

Table 4.1: Driver Commands Supported by Net-CD

Index Command
0 Init
3 IO Control Input
7 IO Control Flush
12 IO Control Output
13 Device Open
14 Device Close
128 Read Long
130 Read Long Prefetch
131 Seek

Normal operation of a CD-ROM drive consists of DOS making calls to MSCDEX

which, in turn, makes requests of the CD-ROM device driver. However, DOS allows soft-

ware to make direct requests of the device driver via its multiplex interrupt (INT Ox2F).

These requests have a form and function identical to the request header. The multiplex

interrupt will be shown to play a key role in the operation of REM-CD.EXE.

23

I�"""""~"~~~"~"~U""-P-�P�'�I-

4.2 Design of LOC-CD.SYS

In order to implement LOC-CD.SYS, the source code for this driver must conform to

DOS device driver requirements. Every DOS device driver must begin with the device

header. This 13 byte header is used to inform DOS of the characteristics of the device, as

well as pointers to two required procedures: strategy and interrupt. When DOS makes

requests of the device, it first calls the strategy procedure, then follows with a call to the

interrupt procedure.

Beyond the DOS device driver requirements, LOC-CD.SYS must be able to handle

the extended CD-ROM device driver commands of MSCDEX. These commands, along

with all supported regular commands except for initialization, must be sent to the remote

CD-ROM site via the serial communications channel. This requires serial communication

routines and a protocol for executing the command remotely. The baud rate for the serial

line for this application is set to 115.2 kilobits per second, which is the maximum rate that

DOS allows.

4.3 Communication Protocol
Table 4.2 depicts the protocol used for the Net-CD's data transmission. The local sys-

tem begins the communication with a wakeup signal. After this signal is received and

acknowledged by REM-CD.EXE, the system then begins a loop which begins when the

local system's software receives a CD-ROM request from MSCDEX. The request is then

sent to the remote system. The remote system then performs the MSCDEX request. The

results of the request are then transmitted back to LOC-CD.SYS which, in turn, gives the

results to MSCDEX. When an error occurs, the process detecting the error will transmit

the error byte until the offending system returns the error acknowledge signal. At this

point, the protocol returns to the original transmission of the request header length

(denoted by a "*" in Table 4.2).

24

Table 4.2: Protocol for Net-CD Data Transmission

Local System Remote System
Send Wakeup

Receive Wakeup
Send Acknowledge(ACK)

Receive ACK
Get Request from MSCDEX
Send Request Header (RH) Length

Receive RH Length
Send ACK

Receive ACK
Send RH Data Packet (RHP)

Receive RHP
Send ACK

Receive ACK
Perform Request
Send RH Result Length

Receive RH Result Length
Send ACK

Receive ACK
Send RH Result Data Packet

Receive RH Result Data Packet
Send ACK

Receive ACK
Send CD Data Length

Receive CD Data Length
Send ACK

Receive ACK
Send Data Packet

Receive Data Packet
Send ACK

Receive ACK
Process Data
Return to * Return to *

25

*

**

4.4 Design of REM-CD.EXE

REM-CD.EXE must be able to receive data via the serial line and execute commands

sent from LOC-CD.SYS via the given protocol. Since the requests of MSCDEX to LOC-

CD.SYS that are received by REM-CD.EXE are in a form standard to CD-ROM device

driver requests, REM-CD.EXE can take advantage of the multiplex interrupt mentioned

earlier to call the actual CD-ROM device driver, DRIVER.SYS, with ease.

Once DRIVER.SYS has processed the request, REM-CD.EXE can then send the

results back to LOC-CD.SYS via the serial line. REM-CD.EXE is simply an interface

between LOC-CD.SYS and the DRIVER.SYS. All data associated with each request

returned according to the protocol, and is unchanged by REM-CD.EXE.

26

Chapter 5

Results
The implementation of Net-CD described in the previous chapters is completed and

functional. The project was a success. Except for the slow CD-ROM data transfer delay,

the CPE was indistinguishable from a PC containing a CD-ROM drive. Several CD-ROM

applications were tested, both from DOS and from the Microsoft Windows environment.

Files and directories were tested for integrity via a comparison between the information

obtained by accessing the CD-ROM drive both locally and remotely.

The Net-CD data transfer rate on the serial line is 13.2 times slower than would be

possible by using an ADSL line instead of a serial one. Assuming that a normal CD-ROM

drive has a data transfer bandwidth of 300kbits/sec, the transfer of one data sector on a

CD-ROM (2048 bytes) will take 54.6 milliseconds on a PC with a local CD-ROM drive.

One sector of data will take 10.8 milliseconds to travel on an ADSL line, yielding a 19.8%

increase in total data access time for one sector on the Net-CD system. The system imple-

mented in this paper, however, has a data sector transfer time of 142 ms -- a 260% increase

in data access time.

The 19.8% increase in data access time is not insignificant. This can be reduced, how-

ever, by copying the information on a CD-ROM to a large high-speed magnetic disk

which could actually make the Net-CD faster to use than a local CD-ROM drive, and

would allow multiple users to simultaneously access a single copy of the application.

27

______D__UIII�(___III���

28

Chapter 6

Conclusion
The networking of PC CD-ROM drives is one of many possible types of multimedia

systems. The success of the Net-CD system described in this paper shows that PC CD-

ROM networking is feasible. The implementation of a Net-CD, perhaps over a VDT type

system, will give multimedia users access to a large library of multimedia applications and

will help open the market for Video Dial Tone and other interactive multimedia systems

29

CI�M�sll3ILYs�·-X��·L�-�--�**-Y-�U·�·�··

30

Appendix A

LOC-CD.ASM

.286

COM1 = 03F8H
COM2 = 02F8H

COM3 = 03E8H

COM4 = 02E8H

COM = COM1

; RETURNS ZERO FLAG TRUE (JZ WILL BE TAKEN) IF OK TO XMIT

X_OK MACRO

MOV DX,COM+5

IN AL,DX

AND AL, 020H

CMP AL,020H

ENDM

; RETURNS ZERO CONDITION TRUE (JZ BRANCHES) IF OK TO READ REC.
REGISTER

R_OK MACRO

MOV DX,COM+5

IN AL,DX

AND AL,01H

CMP AL, 01H
ENDM

X_RDY MACRO

; MOV AL,'*'

; CALL P_AL

MOV DX,COM
MOV AL,RCV_READY
OUT DX,AL
ENDM

31

....~~~~~ . - . i n - a -a .~..SmD4h - ,':J ,.c m< -

R_RDY MACRO

MOV DX,COM
IN AL,DX

CALL P_BYTE

CMP AL,RCV_READY
ENDM

RECV_ALM MACRO

MOV DX,COM

IN AL,DX
ENDM

R_WAITM MACRO

@@: R_OK

JNE @B

ENDM

_TEXT SEGMENT BYTE PUBLIC 'CODE'

ASSUME CS:_TEXT

; DEVICE DRIVERS ORIGINATE AT 0 (NOT 100H)

ORG 0

VERY_TOP LABEL BYTE

; FIRST CHARACTER DEVICE HEADER (MUST BE AT OFFSET 0)

DEVICEHEADER:

DW -1, -1 ;POINTER TO NEXT DEVICE

DW OC800H ;(CHARACTER, IOCTL, OPEN/CLOSE/RM)

DW STRATEGY ;STRATEGY ROUTINE OFFSET

DW INTERRUPT ;INTERRUPT ROUTINE OFFSET

DB 'MSCD000 ' ;DEVICE NAME (MUST BE 8 VALID CHARS)

DW 0 ;RESERVED

32

DB 0 ;DRIVE LETTER

UNITS DB 1 ;NUMBER OF UNITS

REQUESTHEADER:

DD 0 ;STRATEGY KEEPS REQUEST HEADER PTR HERE

; REQUEST

RHLT:

DB 23

DB 13

DB 13

DB 26

DB 13

DB 13

DB 13

DB 13

DB 13

DB 13

DB 13

DB 13

DB 26

DB 13

DB 13

DB 27

DB 13

DB 27

DB 24

DB 22

DB 13

DB 13

DB 13

DB 13

HEADER LENGTH TABLE

; ; 0-INIT

; ; 1-ERROR

; ; 2-ERROR

; ; 3-IOCTL INPUT

; 4-ERROR

; ; 5-ERROR

; ; 6-ERROR

; ; 7-IOCTL FLUSH

; ; 8-ERROR

; ; 9-ERROR

; ;10-ERROR

; ;11-ERROR

; ;12-IOCTL OUTPUT

; ;13-DEVICE OPEN

; ;14-DEVICE CLOSE

; ;128-READ LONG

; ;129-ERROR

; ;130-READ LONG PREFETCH

; ;131 SEEK

; ;132 PLAY AUDIO

; ;133-STOP AUDIO

; ;134-ERROR

; ;135-ERROR

; ;136-RESUME AUDIO

PROCESSING_MSG DB 'PROCESSING MSCDEX REQUEST.',ODH,OAH,'$'

SENDING_MSG DB 'SENDING PACKET...','$'

SENDING_MSG2 DB 'SENDING RCV_READY','$'

SENT_MSG DB 'PACKET SENT',ODH,OAH,'$'
RECEIVED_MSG DB 'RCVED.',ODH,OAH,'$'
RCVING_MSG DB 'RCVING.','$'

33

SENT_BYTE DB 'BYTE SENT...','$'

RECEIVEDBYTE DB 'BYTE RECEIVED...','$'

OUT_DATA_MSG DB '(OUTDATA)','$'

DONE_MSG DB 'DONE WITH REQUEST',ODH,OAH,'$'

IOCTL_MSG DB 'IOCTL INPUT REQUEST #','$'

GETHDR DB 'GET HEADER ADDRESS',ODH,OAH,'$'

OTHERMSG DB 'OTHER OPERATION',ODH, OAH,'$'

EXITMSG DB 'EXITING OPERATION',ODH,OAH,'$'

HEXES DB '0123456789ABCDEF'

INTMSG DB 'INTERRUPT',0DH,OAH,'$'

STRMSG DB 'STRATEGY',ODH,OAH,'$'

DBG_MSG DB 'ERROR! OFFSET!=O','$'

OK_MSG DB "LOC-CD READY.",OAH,ODH,'$'
COMMAND DB 8

DATA_LEN DW ?

DTA_OFS DW ?

DTA_SEG DW ?

DOS_DTA_OFS DW ?

DOS_DTA_SEG DW ?

TMP_COUNT DW 3

; STRATEGY

; DEVICE STRATEGY ROUTINE. SAVES THE POINTER TO THE CALLER'S
REQUEST

; HEADER STRUCTURE FOR THE SUBSEQUENT CALL INTO INTERRUPT
BELOW.

; ENTRY:

; ES:BX - FAR PTR TO THE CALLER'S REQUEST HEADER.

; EXIT:

; REQUESTHEADER - FAR PTR TO THE CALLER'S REQUEST HEADER.

_ _
; _ _ _ _ _ _ _ _ _ _ _ _ _ _

34

PR_RH PROC NEAR

PUSH AX

PUSH BX

PRH_LOOP:

MOV AX,BX
CALL P_BYTE

MOV AL,':'
CALL PRNT_AL

MOV AL,BYTE PTR DS: [BX]

CALL P_BYTE

INC BX

MOV AL,'

CALL PRNT_AL

CALL PRNT_AL
LOOP PRH_LOOP

POP BX

POP AX

RET

PR_RH ENDP

SAVE_XFER PROC NEAR

PUSH AX

MOV AX,WORD PTR DS:[BX+143

MOV CS:DOS_DTAOFS,AX
CMP AX,O
JE F
MOV DI,OFFSET CS:DBG_MSG
CALL PR_MSG

0:

MOV AX,WORD PTR DS: [BX+16]
MOV CS:DOS_DTA_SEG,AX
POP AX

RET
SAVE_XFER ENDP

35

RESTORE_XFER PROC NEAR

PUSH AX

MOV AX,WORD PTR CS:DOS_DTA_OFS

MOV CS:DTA_OFS,AX

MOV WORD PTR DS:[BX+14],AX

MOV AX,CS:DOS_DTA_SEG

MOV CS:DTA_SEG,AX

MOV WORD PTR DS:[BX+16],AX

POP AX

RET
RESTORE_XFER ENDP

PRINT_DATA PROC NEAR

PUSH CX

PUSH BX

PUSH AX

PUSH ES

MOV AX,CS:DOS_DTA_SEG

MOV ES,AX

MOV BX,CS:DOS_DTA_OFS

MOV CX,256
PDATA_LOOP:

MOV AL,BYTE PTR ES:[BX]
CALL P_BYTE

MOV AL,'

CALL PRNT_AL
CALL PRNT_AL
INC BX

LOOP PDATA_LOOP

POP ES

POP AX

POP BX

POP CX
RET
PRINT_DATA ENDP

OUT_DATA PROC NEAR

PUSH BX

PUSH ES

36

PUSH CX

PUSH AX

; PUSH DI

; MOV DI,OFFSET CS:OUT_DATA_MSG

; CALL PR_MSG

MOV CX,128

MOV ES,CS:DOS_DTA_SEG
MOV BX,CS:DOS_DTA_OFS
MOV AH,O

G:

MOV AL,BYTE PTR ES: [BX]

CALL P_BYTE

INC BX

LOOP B
POP DI

POP AX

POP CX

POP ES

POP BX

RET

OUT_DATA ENDP

; ON ENTRY:

; DS:BX POINTS TO REQUEST HEADER

SEND_REQUEST_HEADER PROC NEAR

MOV CS:COMMAND,RHP
PUSH DI

PUSH AX

MOV AL,DS:RQH_CMD[BX]

CMP AL,14
JBE @F

SUB AL,113

MOV AH,O

37

MOV DI,AX

MOV AL,BYTE PTR CS:RHLT[DI]

MOV AL,BYTE PTR DS: [BX]

MOV CS:DATA_LEN,AX

MOV CS:DTA_OFS,BX

MOV CS:DTA_SEG,DS
CALL SND_PKT

CALL SAVE_XFER

MOV AL,DS: [BX].RQH_CMD

; MOV CX,CS:DATA_LEN

; CALL PR_RH

CMP AL,3
JNE F

; IOCTL_I

LES DI,IOCTL_XFER[BX] ;APPLICATION'S TRANSFER ADDRESS

MOV CS:DTA_OFS,DI
MOV CS:DTA_SEG,ES
MOV CS:DATA_LEN,1
CALL SND_PKT

@@: CMP AL,12
JNE @F

LES DI,IOCTLXFER[BX] ;APPLICATION'S TRANSFER ADDRESS

MOV CS:DTA_OFS,DI ; IOCTL_O

MOV CS:DTA_SEG,ES
MOV CS:DATA_LEN,1
CALL SND_PKT

:
POP AX

POP DI

RET

SENDREQUEST_HEADER ENDP

RECEIVE_REQUEST_HEADER PROC NEAR
PUSH AX

PUSH DI

MOV CS:DTA_OFS,BX
MOV CS:DTA_SEG,DS

38

CALL RCV_PKT

CALL RESTORE_XFER

CALL RCV_PKT

MOV AX,CS:DATA_LEN
CMP AX,256
JB @F
CALL PRINT_DATA

A:
POP DI
POP AX

RET

RECEIVE_REQUEST_HEADER ENDP

STRATEGY PROC FAR

MOV WORD PTR CS:REQUESTHEADER.LO,BX

MOV WORD PTR CS:REQUESTHEADER.HI,ES

MOV DI,OFFSET CS:STRMSG

CALL PR_MSG

RET

STRATEGY ENDP

; INTERRUPT

; MAIN ENTRY POINT TO THE DEVICE INTERRUPT HANDLER.

; ENTRY:

; REQUESTHEADER - FAR PTR TO THE CALLER'S REQUEST HEADER.

; (SEE MSCDEX.INC) FOR FORMAT OF THE REQUEST HEADER)

INTERRUPT PROC FAR

39

__UII� _1IIIIII1III_�-

PUSH AX

PUSH BX

PUSH CX

PUSH DX

PUSH SI

PUSH DI

PUSH BP

PUSH DS

PUSH ES

MOV DI,OFFSET CS:INTMSG

CALL PR MSG

CALL SET_BD

; POINT DS:BX AT THE REQUEST HEADER

LDS BX,DWORD PTR CS:REQUESTHEADER

MOV AL,DS:[BX].RQH_CMD ;GET COMMAND

CMP AL,DVRQ NCMD_MAX ;EXTENDED COMMAND?

JBE OK_CMD ; NOPE

; MUST BE EXTENDED CDROM DEVICE DRIVER COMMAND, CONVERT INTO
INDEX AT

; END THE NORMAL CDROM DEVICE DRIVER FUNCTION TABLE

CMP AL,DVRQ_ECMD_MIN
JB @F

SUB AL, (DVRQ_ECMD_MIN - DVRQNCMDMAX - 1)
CMP AL, (DVRQ_NCMD_MAX + DVRQ_ECMD_MAX - DVRQ_ECMD_MIN +
1)

JBE OK_CMD ; YES

@:

JMP ERROR ; NOPE, COMMAND OUT OF RANGE

OK_CMD:
CBW

OR AX,AX ;INIT TIME?
JZ INIT ; YES

; NO, DISPATCH TO COMMAND
CMP AX,3

40

JE IOCTL_I

SEND:

MOV DI,OFFSET CS:PROCESSING_MSG
CALL PR_MSG

CALL SEND_REQUEST_HEADER

CALL RECEIVE_REQUEST_HEADER
JMP EXIT_INIT

; INIT

; INIT, CD-ROM DEVICE DRIVER ROUTINE TO INITIALIZE THE DRIVER.

; THIS IS THE ONLY DEVICE DRIVER CALL COMING DIRECTLY FROM
DOS, AND IS

; ONLY MADE ONCE. INIT SHOULD INITIALIZE CERTAIN FIELDS IN THE
REQUEST

; HEADER:

; - SET INIT_UNITS AND INIT_DEVNO TO 0 SINCE DOS VIEWS THIS
AS A CHARACTER

; DEVICE (MSCDEX MAKES ITS OWN DETERMINATION OF THE NUMBER OF
UNITS THROUGH

; THE DEVICE HEADER).

; - RETURN THE ADDRESS OF THE END OF THE RESIDENT CODE/DATA
SECTION IN

; INIT_ENDADDR. CODE/DATA AFTER THIS POINTER IS DISCARDED.

; - PARSE THE CONFIG.SYS LINE AFTER THE '=' CHARACTER (POINTED
TO BY

; INIT_BPBARR) FOR THE DEVICE NAME AND FILL IN THE DEV_NAME
FIELD IN

; THE DEVICE HEADER MAKING SURE IT IS A LEGAL 8-CHARACTER
FILENAME

; (PADDED OUT TO 8 CHARACTERS WITH SPACES IF NECESSARY).

41

; ENTRY:

; DS:BX - FAR PTR TO THE REQUEST HEADER

; INITHEADER STRUC

; INIT_RQH DB SIZE REQUEST_HDR DUP (?)

; INIT_UNITS DB ? -> 0

; INIT_ENDADDR DD ? -> VERY_END

; INIT_BPBARR DD ?

; INIT_DEVNO DB ? -> 0

; INITHEADER ENDS

INIT:

MOV DS:[BX].INIT_UNITS,0O

MOV DS:[BX].INIT_DEVNO,O
MOV WORD PTR DS:[BX+2].INIT_ENDADDR,CS

MOV WORD PTR DS:[BX].INIT_ENDADDR,OFFSET VERY_END

JMP EXIT_INIT

;_IOCTLHEADER STRUC

;IOCTLRQH DB SIZE REQUESTHEADER DUP (?)
;IOCTL MEDIA DB ?

;IOCTL_XFER DD ?

;IOCTL_NBYTES DW ?
;IOCTL_SECTOR DW ?

;IOCTL_VALID DD ?
;_IOCTLHEADER ENDS

IOCTL_I:

LES DI,IOCTLXFER[BX] ;APPLICATION'S TRANSFER ADDRESS

MOV AL,BYTE PTR ES:[DI]

MOV AX,0

CMP AX,O
JNE SEND
INC DI

42

MOV WORD PTR ES:[DI],OFFSET CS:DEVICEHEADER

MOV WORD PTR ES:[DI+2],CS

JMP EXIT_NOT_BUSY

; IOCTL INPUT COMMANDS...

; RETURN_ADDRESS

; IOCTL INPUT SUB-FUNCTION #0.

; RETURN THE ADDRESS OF THE DEVICE HEADER.

RETURN_ADDRESS:

MOV WORD PTR ES:[DI].IO_DEVADDR,OFFSET DEVICEHEADER

MOV WORD PTR ES:[DI+2].IO_DEVADDR,CS

; JMP SHORT IOCTL_IO_EXIT

; DEVICE_OPEN

; DEVICE OPEN, CD-ROM DEVICE DRIVER ROUTINE INDICATING TO THE
DEVICE

43

I___U___r__l__ll__P__1-111��-

; DRIVER THAT AN APPLICATION IS BEGINNING TO USE IT.

. _

; EXIT POINTS.

ERROR:

; EXIT INDICATING UNKNOWN COMMAND ERROR

MOV AX,(ERRBIT + DONEBIT + DRVERR_UNKNOWN_COMMAND)
JMP SHORT EXIT

EXIT_BUSY:

; EXIT INDICATING NO ERRORS AND AUDIO IS PLAYING

MOV AX, (DONEBIT + BUSYBIT)
JMP SHORT EXIT

EXIT_NOT_BUSY:

; EXIT INDICATING NO ERRORS AND AUDIO IS NOT PLAYING

MOV AX,DONEBIT

LDS BX,DWORD PTR CS:REQUESTHEADER

MOV [BX] .RQH_STATUS,AX

EXIT:

44

; EXIT AND POKE THE STATUS WORD INTO THE REQUEST HEADER.

; THIS IS ALWAYS THE FINAL EXIT POINT.

; LDS BX,DWORD PTR CS:REQUESTHEADER

; MOV [BX] .RQH_STATUS,AX

EXIT_INIT:

; EXIT POINT FROM INIT

MOV DI,OFFSET CS:DONE_MSG

CALL PR_MSG
POP ES

POP DS

POP BP

POP DI

POP SI

POP DX

POP CX

POP BX
POP AX

RET

INTERRUPT ENDP

DELAY PROC NEAR

PUSH CX

MOV CX,OFFFFH

~6:

JMP SHORT $+2
LOOP B

POP CX
RET

DELAY ENDP

45

1_·m_____l___ll___pU___IIII_

; FUNCTIONS IN SERIAL.ASM

; MACRO X_OK,R_OK => XMIT OR RCV OK TEST. JZ WILL BRANCH IF OK

; PROC SET_BD => SET BAUD RATE TO 1200 BAUD, 8N1
; PROC XMIT_AL => PLACE [AL] IN XMIT REGISTER

; PROC X_WAIT => LOOP UNTIL OK TO XMIT

; PROC RECV_AL => READ RCV REGISTER TO AL

; PROC R_WAIT => LOOP UNTIL OK TO READ RCV REGISTER
; PROC PRNT_AL => PRINTS THE ASCII REPRESENTATION OF AL TO

CONSOLE

; PROC R_FLUSH => FLUSHES RCV BUFFERS

SET_BD PROC NEAR

MOV AL,080H ; SET DLAB IN REGISTER 3 OF COM1

MOV DX,COM+3

OUT DX,AL
JMP SHORT $+2

MOV AL,01H ; SET BAUD LSB TO 1 (REGo 0)
MOV DX,COM

OUT DX,AL
JMP SHORT $+2

MOV AL,0 ; SET BAUD MSB TO 0 (REG. 1)

MOV DX,COM+1

OUT DX,AL
JMP SHORT $+2

MOV AL,03H ; SET DLAB=O, REG. 3 = 8-N-1
MOV DX,COM+3
OUT DX,AL
JMP SHORT $+2
RET

46

SET_BD ENDP

XMIT_AL PROC NEAR

MOV DX,COM
OUT DX,AL

; CALL P BYTE

RET

XMIT_AL ENDP

X_WAIT PROC NEAR

PUSH AX

TBE:

XOK
JNE TBE

POP AX

RET

X_WAIT ENDP

RECV_AL PROC NEAR

MOV DX,COM
IN AL,DX
RET

RECV_AL ENDP
P_AL PROC NEAR

PUSH AX
PUSH BX

MOV AH,OEH

47

_· _ ____IPI____I___IIII�

MOV BH,0

;INT 10H

POP BX

POP AX

RET

PAL ENDP

PRNT_AL PROC NEAR

; PUSH AX

; PUSH BX

; MOV AH,OEH

; MOV BH,O

INT 10H

; POP BX

; POP AX
RET

PRNT_AL ENDP

; PRINT MESSAGE PROCEDURE

; ON ENTRY:

; DI POINTS TO MESSAGE IN THE DATA

; SEGMENT WHICH IS TERMINATED BY A $

PR_MSG PROC NEAR

PUSH AX

PUSH BX

MSGLOOP:

MOV AL,CS:[DI]

CMP AL,'$'
JE MSGDONE

PUSH DI

CALL P_AL
POP DI

INC DI

JMP MSGLOOP

MSGDONE:

POP BX

POP AX
RET

PR_MSG ENDP

48

; P_WORD PRINTS THE VALUE IN AX AS A HEXADECIMAL
P_WORD PROC NEAR

PUSH AX

CALL P_BYTE

SHR AX,8
CALL P_BYTE

POP AX
RET

P_WORD ENDP

; P_BYTE PRINTS THE VALUE IN AL AS A HEXADECIMAL
P_BYTE PROC NEAR
PUSH BX

PUSH AX

MOV BX,AX
SHR BX,4

AND BX,OOOFH
MOV AL,CS:HEXES[BX]

CALL P_AL
POP BX
PUSH BX

AND BX,00OOFH

MOV AL,CS:HEXES[BX]
CALL P_AL
POP AX

POP BX

RET

P_BYTE ENDP

49

________·_AI4I�UPsll�

R_WAIT PROC NEAR

; MOV AL,'+'

; CALL P_AL
RXRDY:

ROK
JNE RXRDY

RET

R_WAIT ENDP

R_FLUSH PROC NEAR

FLUSHER:

ROK
JNE FL_DONE

CALL RECV_AL

JMP FLUSHER

FL_DONE:
RET

R_FLUSH ENDP

ONE_FLUSH PROC NEAR

PUSH CX

MOV CX,10

R_OK
JNE F

CALL RECV_AL
LOOP B

8:

POP CX
RET

ONE_FLUSH ENDP

RCV_PKT PROC NEAR

50

PUSH ES

PUSH DI
PUSH AX
PUSH BX

PUSH CX

CALL R_FLUSH

MOV DI,OFFSET CS:SENDING_MSG2

CALL PR_MSG

MOV AX,CS:DTA_OFS

SHR AX,4

ADD AX,CS:DTA_SEG

MOV CS:DTA_SEG,AX
MOV AX,CS:DTA_OFS
AND AX,OOOFH

MOV CS:DTA_OFS,AX

MOV AX,CS:DTA_SEG
MOV ES,AX

MOV AX,CS:DTA_OFS
MOV DI,AX

CALL R_FLUSH

RCV_GO:

MOV AL,'-'

CALL P_AL

SND_CHK:

CALL X_WAIT

XRDY
MOV CX,65535

0:

R_OK
JE RCV

LOOP @B

R_OK
JNE SND_CHK

RCV:

RECV_ALM

51

CMP AL,CS:COMMAND

JNE RCV_GO
CLI

R_WAITM

RECV_ALM

MOV BYTE PTR CS:DATA_LEN[0] ,AL
R_WAITM

RECVALM
MOV BYTE PTR CS:DATA_LEN[1],AL

MOV CX,CS:DATA_LEN

CMP CX,0

JE RCV_DONE

RCV_LOOP:

R_WAITM

RECV_ALM

MOV BYTE PTR ES: [DI],AL

INC DI

LOOP RCV_LOOP

RCV_DONE:
STI

MOV DI,OFFSET CS:RECEIVED_MSG

CALL PR_MSG
POP CX

POP BX

POP AX
POP DI

POP ES

RET

RCV_PKT ENDP

SND_PKT PROC NEAR
PUSH ES
PUSH DI

PUSH AX
PUSH BX
PUSH CX

52

CALL DELAY

MOV AX,CS:DTA_OFS

SHR AX,4

ADD AX,CS:DTA_SEG

MOV CS:DTA_SEG,AX
MOV AX,CS:DTA_OFS
AND AX,00OFH

MOV CS:DTA_OFS,AX

MOV DI,OFFSET CS:SENDING_MSG

CALL PR_MSG

@@: CALL R_WAIT

R_RDY
JNE B

MOV DI,OFFSET CS:OK_MSG

CALL PR_MSG

MOV AL,CS:COMMAND
CALL P_BYTE
CALL DELAY

CALL X_WAIT

CALL XMIT_AL

MOV AL,BYTE PTR CS:DATA_LEN[O0
CALL DELAY

CALL X_WAIT

CALL XMIT_AL

MOV AL,BYTE PTR CS:DATA_LEN[1]

CALL DELAY

CALL X_WAIT

CALL XMIT_AL

MOV AX,CS:DATA_LEN
CALL P_WORD

CALL ONE_FLUSH

MOV CX,CS:DATA_LEN

CMP CX,O
JE SND_DONE

MOV ES,CS:DTA_SEG

MOV DI,CS:DTA_OFS
SND_LOOP:
CALL DELAY
CALL X_WAIT

MOV AL,BYTE PTR ES: [DI]

53

CALL XMIT_AL

INC DI

LOOP SND_LOOP

SND DONE:

MOV DI,OFFSET CS:SENT_MSG
CALL PR_MSG

POP CX

POP BX

POP AX

POP DI

POP ES

RET

SND_PKT ENDP

VERY_END:

_TEXT ENDS
END

54

Appendix B

REM-CD.ASM

; Rem-CD.asm

; Remote executable to send data

; and interpret requests for the

; Net-CD system.

; Steve Levis

; 12/19/94

.286

.MODEL LARGE

COM1=03F8h
COM2 = 02F8h

COM3 = 03E8h

COM4=02E8h

COM=COM4

INCLUDE CMDS.ASM

; Returns Zero Flag True (JZ will be taken) if OK to xmit
XOKMACRO

MOVDX,COM+5

INAL,DX

ANDAL, 020h

CMPAL, 020h
ENDM

; Returns Zero Condition True (JZ Branches) if OK to read
rec. register

R_OKMACRO

MOVDX, COM+5

55

INAL, DX

ANDAL, 0lh

CMPAL, 0lh

ENDM

XRDY MACRO
; MOV AL,'*'

CALL PAL
MOV DX,COM

MOV AL,Rcv_Ready

OUT DX,AL

; CALL P_BYTE

ENDM

R_RDY MACRO

MOV DX,COM

IN AL,DX

CMP AL,Rcv_Ready

ENDM

RECV_ALM MACRO

MOV DX,COM

IN AL,DX
ENDM

R_WAITM MACRO

; PUSH BX

; MOV CX,OFFFFh

; MOV BX,O

@@: R_OK

JNE @B

; JE @F

; LOOP @B

; MOV BX,1

; CMP BX,O

POP BX

ENDM

56

; Functions in SERIAL.ASM

; MACRO X_OK,R_OK => Xmit or Rcv OK test.JZ will branch
if ok

; PROCSET_BD => Set Baud Rate to 1200 Baud, 8N1
; PROCXMIT_AL => Place [AL] in Xmit Register

; PROCX_WAIT => Loop until OK to Xmit

; PROCRECV_AL => Read Rcv Register to AL

; PROCR_WAIT => Loop until OK to read Rcv Register
; PROCPRNT_AL => Prints the ASCII representation of AL to

console

; PROCR_FLUSH => Flushes Rcv Buffers

SSEGSEGMENT STACK

DB32 DUP("STACK---")
SSEGENDS

DSEGSEGMENT

OK _MSGDBOk.", '$'
command db 8

data_len dw 31

DTA_ofs dw ?

DTA_seg dw ?

dbg_msg db "Non-Cooked sector requested!",'$'

RH_MSG db "Request Header Command:",'$'

Special_MSG db "No special packet required",0ah,0dh,'$'
sent_msg db "Packet sent.",Oah,Odh,'$'

sending_msg db "Sending packet...",'$'

receivedmsg db "Packet received.",Oah,Odh,'$'

rcving_msg db "Receiving packet...",'$'

waiting_msg db "Waiting for packet...",'$'

receivedbyte db "Byte received...",'$'
sent_byte db "Byte sent...",'$'

cmd_msg db "Cmd Rec.",'$'

hexes db '0123456789ABCDEF'

unx_msg db 'Unexpected command:','$'

s_reqmsg db 'Sending Request',Oah,Odh,'$'
s_rh_msg db 'Sending Request Header',0ah,Odh,'$'
delay_msg db' $'

57

___1______1_·11_1____ ��-

s_data_msg db 'Sending Data',Oah,Odh,'$'

inting_mjnsg db 'Calling Interrupt 2F','$'

newline db Oah,Odh,'$'
ReqHdr db 2 Dup("Request Header ")

RHLen dw ?

DT_Len dw ?
DSEGENDS

BSEG1 SEGMENT

ORG 0

Bufferl db 8192 DUP("BUFFER ")

BSEG1 ENDS

CSEGSEGMENT 'CODE'

ASSUMECS:CSEG,DS:DSEG, SS:SSEG

MAINPROCFAR

PUSHDS

PUSHO

MOVAX,DSEG

MOVDS,AX

CALLSET_BD

CALLR_FLUSH

MOV DI,OFFSET OK_MSG
CALL PR_MSG

PROC_CMD:

MOV COMMAND,RHP
CALL RCV_RH

CMP DT_LEN,63488
JA ENDMAIN

MOV DI,OFFSET DS:S_REQ_MSG
CALL PR_MSG

CALL SND_REQ
MOV DI,OFFSET DS:S_RH_MSG

58

CALL PR_MSG

CALL SND_RH
MOV DI,OFFSET DS:S_DATA_MSG

CALL PR_MSG

CALL SND_DATA
JMP PROC_CMD

ENDMAIN:

MOV AX,DT_LEN
CALL P_WORD

RET

MAINENDP

delay proc near

push cx

push di
mov di,offset ds:delay_msg

call prmsg
mov cx,OFFFFh

8:

jmp short $+2

loop @b

pop di
pop cx

ret

delay endp

RCV_RH PROC NEAR

MOV DTA_ofs,OFFSET ReqHdr

MOV DTA_seg,DS
CALL RCV_PKT

MOV AX,DS:Data_Len

MOV DS:RH_Len,AX

MOV AL,DS:ReqHdr[2] ; Command Code Field

CMP AL,3
JNE f

; IOCTL_I

59

MOV WORD PTR DS:ReqHdr[14],OFFSET BSEG1:Bufferl

MOV WORD PTR DS:ReqHdr[16],BSEG1

MOV AX,WORD PTR DS:ReqHdr[18]

MOV DT_LEN,AX
MOV DTA_ofs,OFFSET BSEG1:Bufferl

MOV DTA_seg,BSEG1

CALL RCV_PKT

JMP RH_DONE

:
CMP AL,12
JNE f

; IOCTL_O

MOV WORD PTR DS:ReqHdr[14],OFFSET BSEG1:Bufferl

MOV WORD PTR DS:ReqHdr[16],BSEG1

MOV AX,WORD PTR DS:ReqHdr[18]
MOV DT_LEN,AX

MOV DTA_ofs,OFFSET BSEG1:Bufferl

MOV DTA_seg,BSEG1

CALL RCV_PKT

JMP RH_DONE

CMP AL,128
JNE @f

READ_LONG: ; READ LONG
MOV WORD PTR DS:ReqHdr[14] ,OFFSET BSEG1:Bufferl

MOV WORD PTR DS:ReqHdr[16],BSEGi
MOV AX,WORD PTR DS:ReqHdr[18]

SHL AX,11 ; AX = AX * 2048

MOV DT_LEN,AX
MOV AL,BYTE PTR DS:ReqHdr[24]

CMP AL,0
JE RLDONE

MOV DI,OFFSET DS:DBG_MSG
CALL PR_MSG
STAY: JMP STAY

RLDONE: MOV DTA_ofs,OFFSET BSEGl:Bufferl

60

MOV DTA_seg,BSEG1

JMP RH_DONE

~:
MOV DS:DT_LEN,O

RH_DONE:

MOV AL,DS:ReqHdr[2]

CALL P_BYTE

MOV AL,'

CALL P_AL
RET

RCV_RH ENDP

SND_REQ PROC NEAR
MOV CX,50
@@: PUSHCX

MOV AL,'#'
CALL P_AL

MOV AX,1510h
MOV CX,4 ; Drive E:

MOV BX,DS
MOV ES,BX
MOV bx,OFFSET BSEG1:Bufferl
MOV word ptr DS:ReqHdr[14],bx
MOV bx,BSEG1
MOV word ptr DS:ReqHdr[16],Bx
MOV BX,OFFSET DS:ReqHdr
INT 02Fh

MOV CX,word ptr DS:ReqHdr[3]
AND CX,8300h

CMP CX,0100h
JE F

POP CX

LOOP B
RET

~:
POP CX
RET

61

�I"1R�31·l�-Xlrr(l�·D*IIUBiPUIIBIIIIIQII

SND_REQ ENDP

SND_RH PROC NEAR

MOV DTA_ofs,OFFSET DS:ReqHdr

MOV DTA_seg,DS

MOV AX,DS:RH_Len
MOV Data_Len,AX

CALL SND_PKT

RET

SND_RH ENDP

SND_DATA PROC NEAR

MOV AX,DT_Len

CALL P_WORD

MOV Data_Len,AX

MOV DTA_seg,BSEG1

MOV DTA_ofs,OFFSET BSEG1:Bufferl

CALL SND_PKT

RET

SND_DATA ENDP

SET_BDPROCNEAR

MOV AL,080h ; Set DLAB in Register 3 of COM1

MOVDX,COM+3

OUT DX,AL
JMP SHORT $+2

MOV AL,01h ; Set baud LSB to 1 (Reg. 0)
MOVDX,COM

OUT DX,AL

JMP SHORT $+2

MOV AL,O ; Set baud MSB to 0 (Reg. 1)

MOVDX,COM+1
OUT DX,AL

JMP SHORT $+2

MOV AL,03h ; Set DLAB=O, Reg. 3 = 8-N-1

62

MOVDX, COM+3

OUT DX,AL
JMP SHORT $+2
RET

SET_BD ENDP

XMIT_AL PROC NEAR

; PUSH DI

; MOV DI,offset sent_byte
; CALL PR_MSG

; POP DI

MOVDX,COM
OUT DX,AL
RET

XMIT_AL ENDP

X_WAIT PROC NEAR

PUSH AX

TBE:

; MOV AL,'+'

; CALL P_AL
XOK
JNETBE

POP AX

RET

X_WAITENDP

RECV_AL PROC NEAR

MOVDX, COM

63

IN AL,DX

RET

RECV_AL ENDP

P_AL PROC NEAR

PUSH AX

PUSH BX

MOV AH,0OEH

MOV BH,O

INT 10h

POP BX

POP AX

RET

P_AL ENDP

PRNT_AL PROC NEAR
; PUSH AX

; PUSH BX

; MOV AH,0EH

; MOV BH,O

INT 10h

; POP BX

; POP AX
RET

PRNT_AL ENDP

; Print Message Procedure

; On Entry:

; DI Points to Message in the data

; segment which is terminated by a $

PR_MSG PROC NEAR

PUSH AX
PUSH BX

MSGLOOP:

MOV AL,DS: [DI]

CMP AL,'$'
JE MSGDONE

CALL P_AL

64

INC DI

JMP MSGLOOP

MSGDONE:

POP BX

POP AX

RET

PR_MSG ENDP

; p_word prints the value in ax as a hexadecimal

p_word proc near
push ax
call p_byte

shr ax,8
call p_byte

pop ax

ret

p_word endp

; p_byte prints the value in al as a hexadecimal
p_byte proc near

push bx
push ax

mov bx,ax
shr bx,4

and bx,OOOFh

mov al,ds:hexes[bx]

call p_al

pop bx
push bx
and bx, OOFh
mov al,ds:hexes[bx]
call p_al

pop ax

pop bx
ret

p_byte endp

65

__IIY____(_·�RYPP____ -- I_--·-----------

R_WAIT PROC NEAR

PUSH AX

RxRDY:

R_OK
JNERxRDY

POP AX

RET

R_WAIT ENDP

R_FLUSH PROC NEAR

FLUSHER:

R_OK

JNEFL_DONE

CALL RECV_AL
JMP FLUSHER

FL_DONE:

RET

R_FLUSH ENDP

ONE_FLUSH PROC NEAR

R_OK
JNE F

CALL RECV_AL
@@: RET

ONE_FLUSH ENDP

rcvpkt proc near
push es

push di
push ax
push bx

push cx

MOV DI,OFFSET DS:waiting_msg

66

CALL PR_MSG

mov ax,CS:DTA_ofs
shr ax,4

add ax,CS:DTA_seg

mov CS:DTA_seg,ax
mov ax,CS:DTA_ofs
and ax,OOOFh

mov CS:DTA_ofs,ax

mov es,ds:DTA_seg

mov di,ds:DTA_ofs
call rflush
mov al,'-'
call p_al

snd_chk: ;(or money order)

call x_wait

x_rdy

mov cx,65535

@:
rok
je rcv

loop b

rok
jne snd_chk

rcv:

recv_alm

cmp al,ds:command

jne snd_chk
xfer_com:

cli

r_waitm

recv_alm

mov byte ptr ds:data_len[O],al

r_waitm

recv_alm

mov byte ptr ds:data_len[l],al

mov cx,ds:data_len
cmp cx,O

67

je rcv_done

rcv_loop:

sti

r_waitm

cli

recv_alm

mov byte ptr es:[di],al
inc di

loop rcv_loop

rcv_done:
sti

mov di,offset received_msg

call prmsg
pop cx

pop bx

pop ax

pop di

pop es

ret

rcv_pkt endp

snd_pkt proc near
push es

push di

push ax

push bx

push cx

mov di,offset waiting_msg
call prmsg

mov ax,CS:DTA_ofs

shr ax,4

add ax,CS:DTA_seg
mov CS:DTA_seg,ax

mov ax,CS:DTA_ofs

and ax,OOOFh

mov CS:DTA_ofs,ax

68

@@: call r_wait

r_rdy

jne @B

call delay

mov di,offset ok_msg

call pr_msg
mov al,ds:command

call delay
call x_wait

call xmit_al

mov al,byte ptr ds:data_len[0]

call delay

call x_wait

call xmit_al

mov al,byte ptr ds:data_len[l]

call delay

call x_wait

call xmit_al

call one_flush

mov cx,ds:data_len

cmp cx,O
je snd_done

mov es,ds:DTA_seg

mov di,ds:DTA_ofs

snd_loop:

call x_wait

mov al,byte ptr es:[di]
call xmit_al

inc di

loop snd_loop

snd_done:

mov di,offset sentmsg
call prmsg
pop cx

pop bx

pop ax

pop di
pop es
ret

69

snd pkt endp

CSEGENDS
ENDMAIN

70

L-11

