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Abstract

A class of control problems has been identified in which the control objective is to transition
from a measured initial state to a desired final state in a single control action. For systems that
have a monotonic relationship between control action and steady-state system output, a self-
tuning open-loop controller that divides the input space into non-overlapping "bins," each with
an associated control action, can be applied.

This type of control scheme has been implemented on a prototype device, for use in
automated teller machines, that straightens banknotes that have become rotated with respect to
their normal direction of travel. The length of time that a solenoid fires is the control variable;
by partitioning the state space (consisting of note skew), a mapping is created between
measured incoming skew and solenoid firing time. As the deskewer corrects more notes and
gains experience, the mapping is adjusted and the machine's performance improves.

For certain special cases, an analytical expression is presented from which the number of
bins that minimizes average squared output can be found. This number is determined before
any tuning occurs, and takes into account both the number of training iterations available and
the "learning rate" of the algorithm used to adjust control action. Equations that allow numerical
determination of the optimal divisions are given under more general assumptions. Simulation is
used to validate the predictions and test the controller on more-general system models.

A technique is next presented that uses training data in progressively-finer regions of the
control mapping. In this "bin splitting" technique, a wide region of constant control action is
trained for an analytically-determined number of iterations. The region is then divided in two,
and new training data that falls into one of the subdivisions no longer alters the control action
of the other subdivision. The split regions learn independently, and may themselves split again
at a later time. In certain cases, analysis of bin splitting yields a series of partially-coupled,
structurally-identical nonlinear equations that are solved sequentially in order to find the
number of iterations between splits. These splitting times are found to be independent of the
number of training iterations available. Simulation is again used to validate the predictions and
apply the controller to more-general systems. For the example system under consideration, bin
splitting yields better performance than any static bin structure.

Thesis Supervisor: Dr. Harry West
Title: Senior Lecturer in Mechanical Engineering
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Notation

x Overbar denotes the average output of a stochastic process

ai Location of bin boundary i

Slope of linear function relating input and output (at a fixed ); equals a 

E(.) Expectation operator; expected value of term in parentheses

Eabc Special notation for E(/U2). See Section 3.3.

Defined as (1 -i)

Bb Defined as p. See Section 3.3.

4i Defined as i =(1 - Pi + PIb) ·See Section 3.3.

Y Learning rate, used in updating control action z. Larger values give smaller update.

Al Lower bound on a i

/u Average output; when used with a subscript, average output for the region of input
space in bin i

N Total number of training notes available to the whole system (all bins)
n General iteration counter

ni Iteration at which the i-th split occurs. See Section 3.3.

V Upper bound on I ai
Pi Probability of an input falling into a bin in the i-th generation. See Section 3.3.
p(.) Probability density function of term in parentheses

Pi Probability of i notes falling into a bin. See Section 2.2.3.

S2 Average squared output of system; when used with a subscript, average squared
output for the region of input space in bin i

a 2 Variance of the inherent noise in the system, measured at a fixed input and fixed
control action

02 bin Variance of the output for the region of input space covered by a particular bin

a2bin i i tracks C2bin in bin-splitting analysis. See Section 3.3.

Ir Control action associated with a single bin; when used with a subscript, refers to
control action in a particular bin (except in Sections 1.4 and 2.2)

Oin System input

,,ut System output
w Width of a single bin

W Width of the entire range of input space
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Chapter 1
Introduction

1.1 Introduction
This thesis deals with a class of control problems in which the control objective is to use a

single application of constant control action (an open loop controller) to drive a system from a

given initial state to a desired constant final state. The systems considered have two

fundamental characteristics: the relationship between control action and steady-state system

output is monotonic, in a sense described below, and the system output is stable in the absence

of an applied control action. While the systems are generally difficult to model precisely, their

monotonicity serves as a simple heuristic relating control action to final state, and allows the

application of a self-tuning open-loop controller that operates without a traditional model.

A simple illustration involves a variant of the childhood game of "marbles." Suppose we

wish to control a device that, given the distance of a marble from some target location, strikes

the marble with sufficient impulse for it to stop exactly on the target. The desired controller is a

mapping from input space (initial marble position) to control output (applied impulse), with a

qualitative form shown in Figure 1.1. Once the marble has been struck there is no further

control of its trajectory; the controller is open-loop.

When the device applies a nominally-constant impulse to different marbles, all starting at that

same distance from the target, we assume that there is some random variation in the marbles'

final resting positions. Although the marbles are outwardly identical, some overshoot the

target, while others undershoot. This variable error may be due to small differences in their

weight, size, or smoothness, or to fluctuations in the amount of impulse the device applies. It

does not occur because the marbles hit each other; we can remove each one from the playing

field after it has stopped rolling, and before its successor has been struck by the device.

The random variation in final position suggests that without detailed characterization of each

marble, there is no possible control mapping that will cause every marble to stop exactly on

target. To fairly evaluate the success of our controller, which we will assume does not have
detailed information about each marble (other than initial distance from the target), some type of

average measure of its performance is required. In this example, it is reasonable to choose the

success criterion to be the expected value of the square of the distance to the target after the

15



marble has ceased rolling. The use of squared distance penalizes the controller equally for over-

and undershooting.

Impulse applied
to each marble

Distance
trom goal

Figure 1.1: General Form of the Control Mapping

A proposed method of implementing an open-loop controller for the device is as follows.

The input space (here, the distance from the marble to the target) is divided into a series of

ranges, or "bins," as depicted in Figure 1.2. Within each bin is an associated single control

action (the impulse). Before a marble is hit, its initial distance is measured, and the impulse to

be applied by the device is taken from the bin into which the distance falls.

The control action within a bin is adjusted, typically during a separate training period, with

an algorithm that uses observations of the results of previous applications of trial control values

associated with that bin. These control adjustments - the "self-tuning" - serve to reduce output

error within each bin.

For systems of the type considered in this work (see the next section and Appendix A), we

can use an adjustment algorithm that requires no system model beyond knowledge of the sign

of, and bounds on the magnitude of, the derivative of system output with respect to control

action. The sign information (assumed to be always positive or negative) allows adjustment, in

the proper direction, of control action, while the derivative bounds are used to prevent

divergence of the chosen algorithm. Other learning methods, not considered here, may not

require the derivative bounds.

An advantage of the proposed controller is that as the bins' prescribed actions are tuned,

there is maximal "locality" to the change in the overall mapping. Only states that fall into a

given bin are affected by the control action update. This is in contrast to many neural network

schemes, in which the changes to the connection weights from a single training pair affect the

entire input-output mapping.

16



Impulse applied
to each marble

i i

I I

I I

I I_______I I_ _DistanceI 4. -~~~~ DistanceI I from goal
A range of constant

control action, or "bin"

Figure 1.2: Piecewise-Constant Controller

A second advantage is that the control laws can be updated throughout operation, which

allows the controller to compensate for slowly-varying changes in plant performance. This is

not considered in Chapters 2 and 3; instead, training from a state of no knowledge (initial

control action of zero) is used as a convenient benchmark of system performance. Sections 4.2

and 4.3 suggest methods by which the analyses presented in this work can be adapted to find

the best controller structure when the main concern is updating an already-trained controller.

Finally, the proposed controller is conceptually simple, and easy to implement in hardware.

One disadvantage of the controller is that the number of bins increases geometrically with the

number of input variables and arithmetically with the division of each input variable's range. A

second is that the control-action-adjustment method is not clearly defined in situations where

there is more than one control action; an additional heuristic is needed to decide which of the

multiple actions should be adjusted, given a particular system output. Only SISO systems are

considered here.

This thesis addresses the three design variables of this controller: the number of bins, the

placement of bin boundaries, and the method of adjusting control action within each bin. In the

basic formulation given in Chapter 2, before any tuning occurs, the number of input ranges is

determined by the amount of desired or available training information, and other system

parameters. This approach, with its fixed number of bins, is referred to in this thesis as a

"static structure." After initial training is complete, the bins can be "split," as discussed in

Chapter 3, or the boundaries of each bin can be adjusted so as to minimize error caused by

suboptimal division of the input space (Appendix D).
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1.2 The Deskewer
A practical example of the type of system described above, and the motivation for much of

the work presented here, is a bill-deskewing device for automated teller machines (ATM). This

is a machine, designed and constructed at MIT by the author and several others ([Kotovsky 90]

and [Levinsky 1992]), that straightens banknotes that have become rotated with respect to their

normal direction of travel in an ATM. The deskewer project is briefly recounted below.

1.2.1 Historical Background

Since 1969, the Omron Corporation of Japan has designed and produced various types of

cash-handling equipment, from change dispensers to ATM. The machines have been

experimentally tuned to a very high level of sophistication over time; by the early 1990's,

Omron's most advanced model, the HX-ATM, reliably operated at a transfer rate of over ten

notes per second.

During the late 1980's engineers at Omron became convinced that they needed to expand

their analytical knowledge of the note-handling process in order to increase transfer speeds and

improve reliability. To reduce the need for expensive human service, they also wanted to

incorporate self-adjusting mechanisms and mechanical error-correction systems into their

designs. With those goals in mind they entered into a research project with the Mechatronics

Design Lab of MIT.

1.2.2 Basic Technology of Bill Counting

The bill-handling technology used by Omron is similar to that employed by other major

Japanese manufacturers of such products (Hitachi, Fujitsu, Oki, and Toshiba). In contrast to

ATM in America, where cash to be deposited is first placed in an envelope, ATM in Japan

accept direct input of bills from the customer. The notes are slid from the top of the deposit

stack by a rotating feed roller (Figure 1.3) and carried through the machine by rubber transport

belts that "sandwich" the notes. Through a series of belts and sensors the bills are validated,

counted, and stacked in cartridges during a deposit cycle, and fed, again using rotating-feed-

roller technology, out of the cartridges during cash withdrawal. While the machines examined

during this project were built for the Japanese market (and were thus sized to handle yen),

Omron uses near-identical technology to produce cash-handling equipment for other Asian

countries.

IInformation about Japan's ATM market, Omron's machines, and Omron's need for analytical models came

from a series of discussions with Omron personnel over a two-year period. These people included, but were not

limited to, Hiroyuki Nishimura, Ryuichi Onomoto, Ichiro Kubo, and Yoshimasa Sugitate.
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Rotating

Transport belts
sandwiching note

Figure 1.3: Simplified Sketch of Feed Roller

Jamming is the principal failure mode in Omron's machines. Typically, a note becomes

stuck at a fork in the travel path while the notes behind it continue to move, causing one or

more bills to crumple before the machine's optical sensors detect the problem and stop the

transport mechanism. The exact causes of failure are difficult to pinpoint because the failure

rate is so low - the only statistics Omron has are taken from in-service operation. It is has not

been possible to observe enough failures in a controlled factory environment to adequately

determine all causes of jamming.

1.2.3 Skew

Omron does possess enough statistical information about jamming, however, to indicate that

a phenomenon known as "skew" is the most common cause of jamming incidents. It was

therefore decided that the initial approach to improved machine reliability would be to correct

skewed notes in transit. Skew (Figure 1.4) is defined as a note's angular deviation from the

correct travel position in which its short side is parallel to the direction of belt travel. The

spacing between a skewed bill and its two surrounding notes (leading and trailing) is incorrect;

this can cause jamming at forks in the travel path.

Early research in the project found that skew occurs at the very beginning of the feeding

process, when the note is accelerated by the slipping frictional contact of the feed roller. If a

note enters the roller with one corner leading (slightly skewed), the frictional forces are initially

applied at that corner, causing a torque that rotates the bill and increases its skew angle. This

effect has been predicted by numerical simulation (see [Levinsky 1992]) and confirmed with

19



high-speed video. In addition, if the feed roller does not exert even pressure at all points along

its axis, the note skews. This occurs because the frictional feeding force on a given area of the

note's surface is proportional to the pressure that the roller applies on that area; when the

pressure is not uniformly distributed along the roller's axis, a net moment is exerted on the

note. This phenomena is exploited during machine maintenance when technicians perform

feed-roller pressure adjustments based on a machine-accumulated record of each deposited

note's skew as it exited the feeder. An asymmetrical distribution of skew indicates that the

roller pressure is uneven.

ng
S

Figure 1.4: Skewed Note

1.2.4 The Deskewer

A conceptual sketch of the deskewer prototype is shown in Figure 1.5. Detailed drawings

are presented in Appendix B, while additional information on design alternatives and

construction has been documented elsewhere [Kotovsky 1989].

The deskewer uses optical sensors mounted perpendicularly to, and out of the plane of, the

note travel path to detect the angle of skew. The note's skew is determined by measuring the

time difference between obscuration of the left and right initial-skew optical sensor pairs. This

angle is then tested in the antecedents of a bank of if-then rules, and a control action is selected.

This is a, the firing time to be applied by one of the two solenoids mounted perpendicular to the

notes' path. Once the skewed bill has passed under the actuators, the solenoid on the leading

side fires downward, pinning a small area of the bill against aluminum plates located

20



underneath the travel path (see Figure 1.6). The pinned area serves as a pivot point while the

motion of the belts rotates the bill in a direction opposite that of the initial skew. If the control

action has been properly selected, the solenoid retracts just as the bill has been completely

straightened; if not, the bill leaves with a residual skew. This error is then measured by a

second set of feedback optical sensors, and the output skew value is used to immediately adjust

the control action of the rule which was initially selected. Depending on note velocity and

skew, solenoid firing time ranges from approximately 10 to 50 milliseconds.

Feedback-skew-measuring
optical sensors

Bill travel
direction

Solenoids and
pinning plates

Initial-skew-measuring
optical sensors

sKewecd 11l

Figure 1.5: Main Elements of the Deskewer

1.2.5 Application of the Controller to the Deskewer

The detailed modeling of frictional-contact note-handling machines presents four

fundamental difficulties. First, the Coulomb friction model (frictional force is proportional to

normal force) is empirically derived and does not model the stick-slip behavior that can occur

when a portion of the bill touches a surface such as the feed roller or the transport belts.

The second problem is the extreme variability in note quality encountered during actual

operation. Notes are nonisotropic because they have usually been folded; at a crease they bend

more easily in some directions than in others. They also show uneven surface wear, with

accompanying variability in coefficient of friction.

21



1K .gn~lPnnirl Crrtp

I

Solenoid motion

ed point

Right-side solenoid fires and holds bill to pinning plate.
Belts on both sides continue to move, dragging bill about axis of right-side solenoid.

Figure 1.6: Deskewing Action

Third, machine performance can vary according to such factors as humidity, which alters the

note's mechanical properties, and belt wear, which affects the coefficient of friction between

belt and note.

Fourth, even with a considerably simplified system model, the resulting note-motion

equations involve complex multidimensional integrals with time-varying limits of integration,

as shown in Appendix C. These equations are usually solved numerically, and are thus

principally used to examine the qualitative effects of the variation of design parameters on

machine performance.

While a controller that effects closed-loop control on each note can compensate for note

wear, machine wear, and humidity variation, there is currently no inexpensive sensor2 for

continuously measuring skew during the deskewing process. In contrast, control hardware for

the open-loop controller is straightforward, consisting of timers and low-cost optical sensor

pairs that measure the incoming and outgoing note skew, and a timer that holds the solenoid

firing time. The drawback of a traditional open-loop controller is that its fixed mapping

between incoming-note skew and solenoid firing time does not account for'the changes in

deskewing times due to environmental shifts, note variation, and machine wear.

2 The margins on ATM are very slim. According to Omron, a sufficiently-affordable deskewing sensor must

cost less than approximately $5 (1990 dollars).
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In an attempt to combine the simplicity of open-loop control with the robustness of closed-

loop, a controller identical in form to the one introduced in Section 1.1 was applied to the

deskewer. Feedback is not effected on any single note while it is deskewing, but the measured

outgoing skew is used to alter the control mapping and thus change the solenoid firing timing

for all future notes. The system is "locally open, globally closed." The mapping evolves over

time, and corrects for variations in deskewer performance.

The clear relationship between firing time r and output O,,, allows the adjustment algorithm

to proceed with minimal information. If the note is undercorrected, we have reason to believe

that the firing time for the bin needs to be increased, while overcorrection suggests a decrease.

In short, d' is negative.

Figure 1.7 shows the process. A note enters the machine; a skew time is selected; the note is

corrected; the note's output skew is measured; based on the observed over-correction, the

solenoid time associated with the input bin is reduced.

Skewed
input note Solenoid

firing time

Firing time
is selected

_ _ _ 0

Selected control action

40 :

II I

, ' I II i I 
h i I

Selected firing time is applied, yielding... I...............-- -- 

Over-corrected Solenoid
firing time
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1.3 Problem Statement
1.3.1 Limitations of the First Approach

A binned controller was first applied to the deskewer, analyzed, and experimentally found to

give adequate performance [Levinsky 92]. The analysis assumed perfect behavior of the
deskewer; a one-to-one relationship ,,ut = F(Oin,) in which there is no output variation for

notes of identical input skew and applied firing time. Given this idealization, the control action

within each bin was shown to converge to within a known range.

However, the work did not address two key aspects of the system's behavior. First, the

finite range of each bin dictates that there can be no single firing time that yields a uniform

output of 0° for all notes affected by that bin. The control-action-tuning algorithm can at best

adjust the control value of each bin to yield an expected output skew of 0°.

Second, even for incoming notes of a single skew, and at a fixed firing time, the notes'
outgoing skew will have some random error; the strict one-to-one relationship ,,Ut = F(Oin,r)

does not hold. The output of the deskewer is best described as a joint probability distribution of

the form p Oin, ut), where the subscript r indicates that the distribution is a function of the

solenoid firing time. The presence of such a distribution is due to the varying mechanical

qualities of the notes, such as stiffness and surface friction, as well as the finite bin width.

Since the deskewer's belts wear and the quality of incoming notes can vary, the distribution

may also be nonstationary. For simplicity, we assume stationary distributions in this thesis.

Because of the nonzero bin width and the inherent variability of output skew (even with a

fixed in and r), the deskewer will always yield nonzero output skews. The goal must be to

optimize its behavior with respect to some broader measure of error.

If training time is unimportant and all probability distributions are stationary, the optimum

piecewise-constant controller will tend towards an infinite number of bins. The number of bins

must be limited, however, if the number of training samples is not infinite, as is the case in

most practical problems. In a real ATM, the deskewer might only have several hundred notes

available for self-tuning. If there are thousands of bins, most will receive no adjustment.

There is a tradeoff between bin width and training time. With many narrow bins, the

potential performance of the machine improves. But, there will be fewer training samples per

bin, which can increase the average error (measured with the control action fixed for all time

post-training). With a few wide bins, there are more training samples per bin, but the bin width

itself degrades performance.

The goal of this thesis is to find the optimal controller for a fixed number of training notes.

The adjustable variables are the number of bins, the boundaries of each bin, and the control

action associated with each bin. While the general solution of this problem is presently

unknown, an idealized model that captures many important features of real system performance
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is created in Chapter 2. A rigorous analysis of the optimal formulation of the piecewise-

constant controller can be applied to this model; controllers designed with this analysis are then

evaluated, via simulation, on more-complex systems that do not obey the model's simplified

assumptions.

1.3.2 Performance Criterion

Generally, we will minimize the expected value of average square of system deviation from

a desired setpoint, with the evaluation measurements taken after all training is complete. No

weight is given to error incurred during the training period. Because the motivating problem is

the deskewer, in which we are trying to minimize skew, the cost function is here the average

squared output skew of notes exiting the deskewer:
(maximum sin) 

E( 92) = f esu p(is ut)dout dOin (1.3-1)
(minimum in) 

This expression can be rewritten using the product of the conditional probability distribution

p,(O,,,utli) and the distribution of Oi,,, p(i).
(maximum in) -

E0=2 tI2 Out In (1.3-2)E(2 ut) p out p(outloin) P(Oin) d0u t dOin (1.3-2)
(minimum Sin) -

The subscript attached to pt(,,,ut, in) and p(o,,utlin) indicates that the distribution is

altered by adjusting the firing time associated with each bin. We can divide (1.3-2) into a sum

of integrals, each of which represents a single bin. If ai represents the bin boundaries and b is

the total number of bins:

E(o8ut) =19in) p() od ,u( d Ol) (1.3-3)

This can be rewritten by integrating (2, PTi(et,,fOin)) across the range of 0,,u,, which gives

us ,ut(Oin,ri) the average 82,t at a given Oi,, and ri. Replacing the inner integral in (1.3-3):

E(ut) = ( uinr)P(O)d (1.3-4)

The minimization of (1.3-4) involves the selection of the total number of bins, b; placement
of the b - 1 bin boundaries, ai; and selection of the b firing times zi. Once b has been chosen,

we are left with an optimization problem in b + (b - 1) = 2b - 1 variables. Generally, none of

the probability distributions are known a priori; they are estimated through experimental

observation.
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1.4 Example Solution for Fixed Bin Structure
Without detailed knowledge of the behavior of the system to be controlled, the general

optimization of (1.3-4) is impossible in closed-form (for arbitrary ut(0 in ri) and p(in)). The

approach of this thesis is to formulate simplified models based on important elements of the

general behavior of real-world systems, and to then optimize the controller structure based on

these models. This "optimum" is then applied to the real system with the expectation that its

performance will prove better than that of a structure designed on an ad hoc basis. This

expectation is realized in Chapters 2 and 3. When the "optimal" controller is applied to

simulated systems in which the simplifying assumptions are relaxed, good qualitative

agreement is observed between the theoretical predictions and the simulated results.

As a simple example of the solution techniques used, let us assume a completely linear

model of deskewer performance, with an added stochastic term. This is an analytic realization

of three plausible heuristic models. First, for a fixed control action, notes that enter the

deskewer with relatively greater skew will tend to leave with greater skew. Second, for a fixed

incoming skew, longer solenoid firing times will tend to reduce outgoing skew. Third, there is

some inherent variation in the note quality which leads to a concomitant variation in output.

Input skew is here assumed to be uniformly distributed. ,in is the incoming skew of a note,

,,ut is the outgoing skew after exiting the deskewer, is the solenoid firing time, l and C are

constants, and r is an independent (uncorrelated) noise term of zero mean and constant variance
a2 :

Oout(in,r) = pIin + Cr + r (1.4-1)

Given that JL2 is the squared average output value of the bin, it can be shown from equation

(2.3-7) that E(S2), the expected average squared output (measured in degrees2 , in the case of

the deskewer) of a bin of width w is:

E(S2 ) = 12 + E(binwidthw) + a2 (1.4-2)

If we divide the single bin into two sub-bins of width w/2, the output is then:

I 21 ,2EJw(S2)= 2 (W/2( + q T()2E(.inwidthw2,'2

48 + 2 i2bin widthw/2,) + E(ubinwidthw/2,)) (1.4-3)
left bin left bin
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If (1.4-3) is smaller than (1.4-2), we should use two bins. This decision hinges on the sizes

of E(2in width w) and 1 (E(lbin width w/2,)+ E(lbin width w/2,) at the end of the training period. The
left bin right bin I

value of E(,u2) in a bin is a function of both the learning technique used and the number of

training notes which fall into that bin. In Chapter 2, the analysis of the static bin structure
allows the use of any learning method in which the evolution of E(1u2), as a function of

training iterations, can be expressed analytically.

The adjustment method examined in this thesis is a standard gradient descent technique that

was applied to the deskewer in [Levinsky 1992]. In the remainder of this section, the subscript

n refers to the values of the subscripted variables at specific training iterations. Each time an
output Out,, is observed, the following update rule is applied:

n+r = ,, + Ut (1.4-4)

where yis the learning constant. Defining = l - for clarity, it can be shown that:

E(u,2) = nE(U2)+ + 2) (1.4-5)

CFor convergence of (1.4-5), we require y> 2 . A more general analysis proceeds from the

development of Gauss-Markov processes presented in [Gardner 1986], and is given in Section

2.2.
For a given bin trained from a state of no control knowledge (zero control action), E(uo2),

the value of E(/u2) before any training occurs, is completely deterministic and can be shown to

equal the square of the average value of 0,,Ut arising from a in that is halfway between the bin

boundaries. For a single bin, total input space width of W, and N training notes, substituting

(1.4-5) into (1.4-2) gives:

E(S2)= N2W2 N ( _ N)( C)2 I W2 + 2 (1.4-6)
4 ) 7 12

This is the expected average squared output as a function' of training time for one bin. When
we move to multiple bins, the determination of E(/u2) is complicated by the fact that the number

of notes falling into a single bin obeys a binomial distribution. This is addressed in the next
chapter, but for simplicity we here assume that an even number of notes is guaranteed to fall into
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each bin. If the single bin is split into two equally-sized bins, the individual bins' error

components are now weighted by bin width and summed:

E(S2)2=2( 22( w) + ( ) + (2(2 ) + 72)) + 2P(34 W+y) +Tw_+(2))

N5 R 2W 2 ( C)2 _ W2 + (
= T 6W +( (l ) ( r 48 )+ (1.4-7)

If (1.4-7) yields a smaller E(S2 ) than (1.4-6), two bins should be used. Similar arguments

are used to extend this result to an arbitrary number of bins. Relaxation of the above

simplifications adds algebraic complexity, but the analytical technique is identical.

1.5 Relation to Existing Research
The piecewise-constant controller can be broadly classified as a nonparametric,

unsupervised, reinforcement-trained direct controller. The principal value of this work,

however, is not found in the controller structure; rather, for what appears to be the first time, it

presents an analytical procedure for optimizing the division of state space for a simple model of

a real control problem. While much of the literature reviewed presents techniques for

classifying or dividing regions, none has presented a method based on the same type of

analysis set forth in this work.

The problem of state-space division is common to much of modern "intelligent" control,

pattern recognition/classification, and function approximation. In these three areas, neural and

fuzzy techniques appear in many of the reviewed papers, while genetic algorithms, simulated

annealing/stochastic reinforcement, and gradient descent are frequently used to optimize

controller or classifier structure.

Control - One of the first applications of binning is found in [Michie 1968], in which a

cart/pole system is controlled by dividing up the position and velocity inputs into "boxes," each

containing a bivalued control action. A critic algorithm then adjusts each boxes' control and

stabilizes the system. The overall algorithm came to be known as BOXES. Extensions are

found in [Bain 1990], in which a two-pole system is controlled, and [Gullapalli 1994], in

which the box boundaries are arbitrarily chosen, and then trained with a reinforcement

algorithm. Genetic algorithms are used twice in [Varsek 1993] in the control of a cart/pole

system. The first application finds control rules and boundaries of input-space bins. Following

a sharp compression of the rule set, a second-stage genetic algorithm is used to retune the

reduced set.

28



The automated selection of membership functions for fuzzy-logic-based controllers can be

considered a division of input space. Early work includes [Procyk 1977], in which an

invertible incremental system model is used to adjust the membership functions, while the

breadth of recent work is represented in [Berenji 1992], [Isaka 1992], [Jang 1992], [Wang

1992], [Nie 1993], and [Yager 1993].

A field generally known as "memory-based" control is represented by the work of Atkeson

([Atkeson 1989], [Schall 1994]) and Kawamura ([Kawamura 1990]). Typically, values of

control action and system-state vectors are stored together in a large computer memory; to plan

a desired trajectory through state space, the nearest available state-space data points are found

and their stored control actions are applied, sometimes in parallel with a PID controller. The

main connection to this work lies in the nonparametric nature of the controller.

Other work with similarities to that presented here includes [Mikami 1992], in which shop

scheduling is learned by stochastic automata trained with a reinforcement algorithm. The

notable aspect of this work is that a genetic algorithm is applied to a system simulation to find a

good compression function for the system states (which are used by the automata to schedule

the shop). For the open-loop controller, that is equivalent to joining narrow bins so that a

single control action is applied to a wider range of input space.

[Heiss 1994] presents a different approach to a similar problem. In estimating a one-

dimensional input-output mapping, spline interpolation is used to ensure that non-updated areas

of the mapping have a smooth, continuous representation. The learning algorithm only requires

information about the direction of approximation error, rather than the usual function-

approximation requirement of error magnitude. Detailed analysis is given for a variety of spline

smoothing techniques. This approach is fundamentally different from bin splitting, and more

akin to nearest-neighbor interpolation schemes.

[Gray 1982] contains a collection of papers dealing with quantization and binning issues in

pulse-code-modulation (PCM) theory.

Pattern recognition - Pattern recognition can be viewed as division of a "feature vector"

space into separate areas, each denoting a separate pattern class. This can be done with an

explicit recognition of the boundary areas, as in the linearly separating classifiers in [Duda

1973] or the nearest-neighbor selection rules that are used to choose control action for a

grinding problem in [Asada 1989]. Other techniques include forms of competitive

unsupervised networks in which pattern cluster centroids are learned iteratively. Well-known

work includes Kohonen's Learning Vector Quantization (LVQ) [Kohonen 1989]; recent

extensions are found in [Pal 1993].

No application of pattern classification techniques that is directly relevant to the open-loop

controller's binning problem has yet been found in the literature. However, one recent paper
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has elements in common with the boundary adjustment work described here. In [Sun 1992], a

neural network is used to implement a fuzzy classifier, which then has its membership

functions adjusted via gradient descent. The classifier has a fixed number of bins, though, and

requires labeled training data.

Function approximation - Relevant papers in this large field tend to focus on the

"universal approximation" properties of schemes that combine simple nonlinear elements. In

[Poggio 1989] and [Girosi 1989], a detailed theory of radial-basis-function neural networks is

presented, largely in the context of function approximation. These papers also contain

extensive reviews of function approximation literature. [Whitehead 1994] describes the use of a

genetic algorithm to optimize the locations of radial basis functions in a time-series-prediction

problem. [Ying 1994] presents a method for calculating the number of fuzzy membership

functions necessary to approximate a polynomial to a given degree of accuracy.

1.6 Thesis Overview
This thesis examines various applications and extensions of the piecewise-constant

controller to simple analytical models of deskewer-like systems. Chapter 2 analyzes the static

structure, in which the number of bins and their locations are fixed during the training period.

Closed-form results are given for special cases, but the analysis is sufficiently broad to allow

numerical solution of more-general cases. Simulation is then used to validate the analytical

results, and to evaluate the model-optimal controller when it is applied to systems that do not

obey the simplifying assumptions used to derive the optimal structure.

Using results from Chapter 2, Chapter 3 sets forth a bin splitting method that dynamically

changes the number of bins during training; this allows more-effective utilization of training

samples. The optimal iterations at which to split bins are found for certain cases. Simulation

results are again presented.

Chapter 4 summarizes the results of this work and points out directions for further research.

Appendix A presents two additional systems to which the self-tuning open-loop controller

can be applied. Appendix B has more-detailed views of the deskewer, along with lists of parts.

Appendix C presents an analytical model of the deskewer, demonstrating the lack of a

traditional transfer function. A method for adjusting bin boundary locations based on measured

output is given in Appendix D. Appendix E contains a more-general derivation of some of the

key results from Chapter 3. Two methods for estimating model parameters used in the analyses

of Chapters 2 and 3 are examined and simulated in Appendix F. Appendix G contains the

commented Mathematica programs used to simulate the deskewer, validate the predictions of

the optimization expressions, and evaluate the controller when applied to more-general

systems.
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Chapter 2
The Static-Structure Case

2.1 Introduction
This chapter presents the analysis of the optimal structure for a piecewise-constant controller

that has a fixed number of bins, in fixed locations, for the duration of the training period. The

optimization criteria is the minimization of expected average squared output after training has

ceased.

The analysis begins with an examination of an algorithm for updating the control action

associated with each bin. Next, the effect of the presence of multiple bins on learning rate is

considered. In order to find the optimal controller structure, the results from the analysis of

learning are then combined with assumptions on the variation of output across the width of

single bins.

At each step, the analysis proceeds with maximal generality. When an assumption is needed

to continue it is labeled as such. The final, optimal controller is thus derived for a model built

upon these assumptions. Most can be replaced with more-general suppositions at the price of

either increased analytical complexity, or the need to resort to numerical solutions. Extensions

to the analysis are discussed in Section 4.2.

2.2 Analysis of the Learning Algorithm
2.2.1 Effect of Learning Efficiency

If only a fixed number of training samples is available, selection of the proper number of

input space divisions presents a clear tradeoff. While a large number of bins permits smaller

output error by giving smaller sections of the input range their own control actions, and thus

more closely approximating each Oin's optimal t, the expected number of notes falling into each

bin during the training process is lower than that of a controller with fewer bins. The increase

in error due to insufficient training may offset the effect of narrow bins. Predicting the potential

difficulties caused by the amount of training clearly depends on the efficiency of the algorithm

used to adjust r, once we have specified the algorithm, we can determine the number of bins

that optimizes the balance between bin width and ability to reduce the average squared output in

each bin through training.

31



2.2.2 Expected Outputs for a Fixed Number of Trials in One Bin

The adjustment method examined here is a standard gradient descent technique that was

applied to the deskewer in [Levinsky 1992]. This method takes the error from a single training

cycle, divides it by a "learning constant," and adds the result to the previous control action.

This strategy was employed in early model-reference adaptive control systems to adjust system

gains; in [Astrom 1989] it is referred to as the "MIT rule." It is a special case of the stochastic

approximation methods discussed in [Gelb 1974], in which the learning constant is fixed. It is

also identical to Newton's method of finding roots, but with a fixed Jacobian. Many other

learning methods can be constructed, including those which save past data and use more than a

single output error measurement to update control action, but in this thesis we examine the

gradient descent method because of its analytical simplicity, ease of implementation, and

continuing popularity in learning control. More information can be found in [Gardner 1986].

In this section we examine a single bin. The subscript n refers to the values of these
variables at specific training iterations. Each time an output ,,,tn is observed, the following

update rule is applied:

T.+ I = un t+ t,1 (2.2-1)

where y is the learning constant. Although we are here trying to drive 0,,, to zero, the

following derivation does not change substantially if we select a different desired output value

(reference input) for 0,,u,. We make the following assumptions:

Assumption 2.2.1: The mean output of a bin, composed of outputs from all inputs that

fall in the bin, is given by:
ai

,u of bin i = i = ,t(O ) p(Oin) dOin (2.2-2)

jp(6in) d--in

and is assumed to be a monotonic function of r with bounded derivatives. This is the sign and

boundedness restriction referred to in Section 1.1:

< A < d < v, with d < 0 (2.2-3)

The expression for gu contains a factor of I to normalize the value of

MP(in) din
"i-l

eut(in,) p(Oin) dOin, which is the contribution to the average output of the entire machine
ai-I

from bin i, appropriately weighted by p(Oin) . When data from each bin is measured separately
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and a bin mean is computed, the bin is treated as a single "universe," and the data must be

normalized by the percentage of notes that fall into that bin during machine operation.

Assumption 2.2.2: The learning constant is larger than one-half the upper bound on the

derivative postulated in equation (2.2-3):

y> v (2.2-4)

This restriction is used below in (2.2-9) to guarantee the convergence of the learning algorithm.

Assumption 2.2.3: 0,,tn equals the average output of the bin, #, plus an independent

(uncorrelated) noise term r of zero mean and constant variance u2in

Rute = . n + r. (2.2-5)

This ends the assumptions. We define a (possibly) varying scaling factor c that relates the

change in u to the change in r:

PAn+ I, =- C(Tn+ l -In) (2.2-6)

By (2.2-3) and the mean value theorem of calculus, c is bounded:

l < c, < v (2.2-7)

Combining (2.2-1), (2.2-5), and (2.2-6):

A -n + = nfn+ I Cnt(P + r ) (2.2-8)

which shows that u can be modeled as the output of a first-order time-varying Gauss-Markov

process:

p =(l _ cn~p _ Cnr(2.2-9)

Now we determine the expected values of r for an arbitrary number of training cycles. As r

has a mean of zero, the expected value of / after one training cycle is:

E(a + 1)= (1- y) E(a ) (2.2-10)

Assumption 2.2.2 insures 1 - < 1, which guarantees convergence of E(u) to zero as n

tends towards infinity.

E( 2) is used later in this chapter. Squaring (2.2-9) and taking expected values:

E(+ 1 l) = (I- +) n-2 2 2 n 2-1)

Conservative bounds are found by noting:

(1-)2E(an) + 2in < E(a2+ ) < -) E(U2) + 2 (2.2-12)7 n F bin n+ n 1¥ ii (2.2-12)
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Defining = (1 - for clarity and taking examples of the first three trials in a bin:

E(ul2) < E([o 2 ) + Y2in
22

E(ll) < p2E(S./) + 2 a2in+ V2 (2.2-13)
2

2 2 2
<3 p + -7 hin + 2bin + :bin

we find:
V2 2 n- 

E(u,2)< ¢nE(uo 2) + 2 in J (2.2-14)

Using the algebraic identity:

-XI~~~~~~ nn-II -=xn-I +Xn-2 +n-3 +... +X+= x Xj (2.2-15)
1-X . =0.

(2.2-14) is simplified to:

E(un2) < nE(02) + (I ) 2hi (2.2-16)
(1- ) C2in

A lower bound is found by exchanging v for I. in the expression for p. It is the presence of

bounds on E(/u2), rather than exact values, which necessitates the optimization of upper

bounds on error in both this chapter and the next.

2.2.3 Expected Outputs for Multiple Bins

If we are given N training samples and have b bins, it is incorrect to assume that N/b

samples will fall into each bin; we must explicitly calculate the expected value of output using

the probabilities of n equalling particular values. If pi is the probability that the number of
samples n that fall in a particular bin is i, and E(,n2=,) is the expected squared average output

of that bin whenj samples are used in training, E(M2) in that bin is given by:

E(]2) = OE(U2=O) + plE(2 = I)... + PNE(u2= ) (2.2-17)

Using the upper bound given in (2.2-16):

V2 V2

E(u 2) < p0E( 4 2 = 0) + PI E(2 = 0) + Pi ( )2 in - Pli _ ) 2 in

V i V2 2 +... (2.2-18)+ 20 E(b=0i)+P2(1 2)y2 20 (1 ) bin+ (22-1)

+ PNNE(n2 =O) + N v 2 i-PNN V 2in
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Rearranging:

E(J) < E(J =Opo +PI j + P2 2+ ... + PNN)

+ V i()P + IP2+.. + PN) (2.2-19)

V2 ab2i(P, p22 + + ... + PNN )

The number of inputs falling into a bin is properly modeled as a Bernoulli process. There is

a probability P (for any bin i, P = j P(in) dOin ) that on any single trial the input falls into a
ai-l

particular bin, but over the entire series of N trials, the probability distribution of n, the number

of notes falling into the bin, is given by the binomial theorem:

! p( p)Npn (2.2-20)
n!(N - n)!

Direct expansion of powers of the binomial ((1 - P) + P) gives:

NcNN1)_p)N-p2 q' +pN((l -P)+ p)N =(1-p)N + N(1-P)N-Ip + 2(N )(p)N-2p2 ++pN
(2.2-21)

= P + P + P2+... + PN

Similarly:

((l-p)+ px)N =( (_ P)N + N(l p) + p)N - 2 + p= + x+P22+ ... + pNxN (2.2-22)
Substituting equations (2.2-21) and (2.2-22) into (2.2-19):

V2 2

E(/2)< E(n2 = °X( 1- P)+ P)N + (l )2 (li o) ) 2 2(((l - P) + P) )

(I- (1- bin-,yl O'rj Po

(2.2-23)

Simplifying:

E(1U
2) < E(U2=oX(1 _ ) p)N + V2(2 V 2 2 ((1 _ P)+ P)N

(1 - Y2I _ .) 2 bin
O 2y (2.2-24)

((1 P) po)NE 12 +(I1_((Ip) p2N)
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Note that (2.2-24) has the same structure as (2.2-16), the expression for a single bin. The

only effect of multiple bins is to increase the effective 0, and slow the training. We know the

effective 0 is larger because:

((I1-P)+ P0)-0 =(1 -PX -0)>0 (2.2-25)

The first term of (2.2-24) disappears as N increases to infinity, but the second term remains:

lim E(U 2) < A b2 V in (2.2-26)
N-4- (1 - )-2 -(2- bi2)

As yincreases, E(pu2) goes to zero; the slower learning reduces the effect of noise (as is also

the case in stochastic approximation).

2.3 Number and Location of Bins
2.3.1 Output Variation in a Single Bin

In order to continue the analysis we must now add assumptions about the variation of output

across a single bin. From this section to the end of the chapter, subscripts on u and S refer to

bin numbers instead of training iterations.

Assumption 2.3.1: The distribution p,uOi,, ) is white-noise (succeeding samples of

noise in the system output are completely uncorrelated with each other) and Gaussian with a

mean given by the function ,ut(in,rT) and variance 0 2. 2 is constant for all values of Oin

and .

Assumption 2.3.2: Within each bin, and for each fixed r, ,,ut(i,,,'r) is approximated by

a linear function of Oi,. This is:

Oout( Oin,7) 30 -[10in (2.3-1)

where go and lI are constants which may vary according to bin location and r. Figure 2.1

graphically summarizes Assumptions 2.3.1 and 2.3.2.

As in Section 2.2.1, pi is defined as:

ai

pi= 1 f out(inri p(in)dn (2.3-2)

f p(Oin) dOin
"i-Il

Substituting (2.3-1) into (2.3-2)
"i

Hi= ,i { (fo+fl n) P(Oin) di (2.3-3)

i P(in) doin
i-l
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Random output variation r

Gaussian with linearly-varying mean, constant 0 2

Single bin

Figure 2.1: Output Variation Across Width of Bin

Similarly, the average squared output, Si2 , is given by:
Ili

S2 = - f O2ut p(Oin) dOin

S P(in) dOin-

ai-I

From Assumptions 2.3.1 and 2.3.2, ,out(in,Ti) is given by:

qoung i) = (out,(in, i)) + 2 = P 2On + 2ppOin + p] + a2

Substituting:
Ii

Si2 = , 1 | (pl~2n + 2fllOin + flo2+ + 2)p(Oin) dOin

f P(Oin) din"-'

L 1 J (s 2 + i)P(in) doin + 0+

P(in) dO"in
ai-l

Squaring (2.3-3) and substituting into (2.3-6):

ai

T p(Oin) din
i- l

l, O nP(iin ) d6O,)
(1Pbie 2)

[ai- I
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6in
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(2.3-5)

(2.3-6)

li

Si - + + a 2 (2.3-7)

Ai

L

v

I

1 Oi2.p(i,,,) din



If we do not know the effect of changing r on /3B, it is possible that at a non-zero i, 31I may

decrease enough so that S2 will be less than that found when pi = 0. Because this generally

cannot be predicted a priori, it is reasonable to adjust r so that pi = 0 in each bin.

The quantity oin, first used in Section 2.2.2, can be immediately identified in (2.3-7):

J 1 nP(Oin) dOin Jl sinP(Oin) dOin

2 = ,I + ' 2 (2.3-8)

f P(Oin) pn ( P(in) dOin

2.3.2 Optimal Number of Bins for Arbitrary Input Distribution

For tractability, we add the following assumption:

Assumption 2.3.3: In all bins, regardless of boundaries or ', 1 is constant.

We now use (2.3-7) to determine the average squared output for the system. This is:
22

S2 =s,2 p(in) dOn- +S2 P(in) dOin+ - +S4 P(Gin)din
a0 a Ia - I

f Ap,)d( OinP(Oin) d Oin (,,+ (2.3-9)

- /3 oifnp(oin) doin,-i + iti p(Oin) dOn + 2

f P(Oin)din
eli- I

By substituting the bound on expected squared average output given in (2.2-24), we find:

'b I/ oinp( oin) doi
E(S2) <f 1 inp( in)d + a 2

i- P(in)d dOin

1[f pI )d (' " nd'(2.3-10)
ai- p(GI,) dGi- ) Ij P(&,,)- (2.3-10)

+ i f p(Oin) din 1 -J P(Oin)dOin +O 
i-I ai- I } i-

V2 r 2

(1-O)Y 2 abin

Equation (2.3-10), the upper bound on mean squared output, must be optimized with

respect to the number of bins b and the bin locations ai. Generally, this is done numerically for

arbitrary input distributions.
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2.3.3 Optimal Bin Locations for Arbitrary Input Distribution

Because the general solution to (2.3-10) is currently unknown, we simplify the problem by

finding "reasonable" bin locations and then minimizing E(S2) with respect to number of bins

alone. Two special cases are immediately suggested. First, if we have a very large number of

training samples available, it is possible to drive i = 0 in (2.3-9). Setting all i to 0:

,t I 1 inP(Oin) d ink

S 2 = PI Ji2 +0.2S2= " 8p(oij dOrn - ai ;)+a 2
+(2.3-11)ao r0 P(in) dO(in

ai- I

The first and third terms of (2.3-11) are fixed and independent of bin location, so by

[ 10 inP(Oin)dOin

maximizing , , we minimize (2.3-11). Such a structure is the best

j p(8i)dOi
ai-l I

possible when all control actions are set so that the mean output of each bin is zero. This is a

reasonable approach, because if additional training date should become available after initial

training is complete, the control actions might be made "nearly" perfect.

The second special case is that of equiprobable bins. Here f p(Oin) din is identical in each
ai- I

bin, and equals 1/b. (2.3-10) reduces to:

E(S2 ) < fin6P(Oin) doin-b flOinP(Oin) dOn + ' 2

ai- 1 o ~~~~~~(2.3-12)

bi=l ba X = b 

Even with the simplifying assumption of equiprobable bins, (2.3-12) must be solved

numerically for arbitrary input distributions.

2.4 Solution of the Uniform-Input-Distribution Case
2.4.1 Optimal Bin Locations for Uniform Input Distribution

We now minimize (2.3-10) for the special case of a uniform distribution of the input

variable:

P( in) W (2.4-1)
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where W is the range of the input variable. The first method of bin location, in which all ui are

assumed to equal 0, requires the maximization of the second term of (2.3-11), which we label

V. That is:

PlOin 1 d-Oind

Ili

li-I

To maximize V, we differentiate it with respect to each bin boundary and set the resulting

system of equations to zero. Evaluating the terms in (2.4-2) that relate to an arbitrary bin i and

its neighbor, bin (i + 1):

42 (a2-a 2 _ l1 )
2

4W (ai- ail)
1 ) +

=4 t(a- aiXai+ a ) +a,-

2 i aiai
- 4 ai a+I -aXaj+

Differentiating (2.4-3) with respect to bin boundary ai:

= 4 ai + ail) 2+2(ai - aiXai + ai ) - (ai+l+ ai)2+ 2(ai+l - aiXai+l + a))

a 4W =
= a2 +2aai j +a2 +2a2 2a2 - a2 +2ai _ai2 +a 1-2a/2

a +a 2ala)= f 4W(ai+l - ail4W I I 4W-a +(a2ai+_l + ai-))

(2.4-4)

Setting (2.4-4) to zero:

ai = (ai+l + ai-l) (2.4-5)

Equation (2.4-5) must hold for all bins in order to minimize V. It is clear that (2.4-5) locates

a minimum, as differentiation of (2.4-4) shows:

2v- = -2 (2.4-6)

Rearranging (2.4-5) gives the following difference equation:

ai+1= 2ai - ai-l

If ai = ai_l + w , where w is a constant that we can select, we obtain the inductive step:

ai+ = 2ai- ai_ = 2ai -ai + w = ai+ w
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Since a0 is fixed, if we choose the inductive basis al = aO + - , (2.4-8) gives:
b

Wi
ai = a + Wb (2.4-9)

and the boundary condition ab = ao + W is satisfied. Thus, for the special case of uniform

input distributions, an equiprobable bin distribution satisfies (2.4-5), which maximizes V and

thus minimizes (2.3-11). The two special cases of bin location discussed in Section 2.3.3 yield

identical results, and will be treated together below.

2.4.2 Optimal Number of Bins for Uniform Input Distribution

The special case of equiprobable bins was shown in (2.3-12). Inserting the uniform input

distribution and simplifying:

' 3W W2i=l
(I -

I

1) , N b /2 (a3 - a3)V2 ((1 - +
+'!((l -)+ b E( =, bini)- 3W( (2.4-10)

(I- )),fJ2 b()1 b I 

The term i 0, din must now be evaluated. From (2.4-9) we can write:
ai- I

'i- ) 2z b 2b2 b3 4b4

Substituting (2.4-9) into (2.4-11) and simplifying:

2 (2.4-13)i= b2 b3 +4 b4 -i=l b3 b b2

(2.4-12)
The well-known identities:

b 2 b( b+ 1
i=1 6
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are substituted into (2.4-12), and we find after simplification:

f. W 4 W 4 aoW3 + a2W 2
oi6dOi =_ W4 W aoW + aoW 2 (2.4-14)

i= l v',"i-l i' 12b3 - - b

We can also simplify (2.4-10) by noting:

-a = a = ab + abao + ao2 (2.4-15)W ab - a

Inserting (2.4-14), (2.4-15), and W = ab - ao into (2.4-10):

E(S2) < 1§(a2 - 2abaO + a) + (( b) ) E(2 0, bini)
(2.4-16)

+- 3 2 + l¥ i 2 a o2a'+ +

(I i -0) (l b 12b 2(a- 2abaO + a) + 2) + 2

But W2 =a2- 2abao + a2; inserting this into (2.4-16), we see that there is no explicit

dependence on either the starting point of the input range, a, or the ending point, ab. The only

essential information is their difference, which is the input range W:

E(S2 ) < 1 IW2 1 ((1 lE( = bini)

12 -,b)T12 b ( -bi+b) 1~ 1n bin22 + i) (2.4-17)

b
A value for XE(2= 0, bin ) must now be assumed. We here choose to examine the initial

training of the controller from a state of no knowledge, as a baseline for comparing various bin

structures. In Section 4.2, a procedure is suggested for using (2.4-17) to choose a structure for

a controller that will be updated from an already-trained state.

Assumption 2.4.1: All bins have a control action of zero at the beginning of the training

process. Furthermore, we assume that at zero control action, the output is identical to the input,

with no additional variance. This is equivalent to assuming that the error in the system

accounted for in 0 2 arises strictly from the application of control action, and has no

component due to sensing errors.
Since the output mirrors the uniform input, there is no need to use E(2in i). The term yu

2 is

well-defined:

2=o, bini = a o + 2 b (2.4-18)
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Thus:

l2 2=O, bini b2iL i + i ba2 -aOW (2.4-19)-- i=- i 0 2
2i -2 i b b i=1 b)11\

Using the identities of (2.4-13):

bW 2 W 2
'n2=O, bin i = -- - +ba2 + abW (2.4-20)

i= 1 3 12b OT ugV 

Substituting (2.4-20) into (2.4-17):

E(S2) < ilW + -)+N W2+a2+aW12 b2 b) ( 3 12b2 )
+ ( )2(1 ((1 b)+ b)){12 I 2+2W 2 ) )+ (2.4-21)

Substituting 0 = (1 -i) gives the final expression for an upper bound on the expected

squared output of the controller after all training has ceased. Again, the key assumptions are

uniform input distribution, uniform bin widths, and identical P31 and a2 in each bin:

E(S) < b2 + 1- + ) 3 12b2 + a + a

~1132~~~~ 2b w2
2~~({ A_9 3

+

This expression can be differentiated with respect to b to find the optimum number of bins,

but when left in terms of all the variable parameters, the result is a lengthy equation whose

analytical solution is not known at this time. A less general but easier-to-grasp approach is to

insert known values of parameters and make numerical calculations.

The two parameters over which we have direct control are b, the number of bins, and y, the

learning rate. Figure 2.2 is a graph of (2.4-22), while Figures 2.3 and 2.4 are contour plots of

Figure 2.2. Figure 2.3 gives an overview of the meaningful design space, and Figure 2.4

examines the minimum area more closely. Values of parameters inserted into (2.4-22) represent

appropriate values for the deskewer (see [Levinsky 1992]): A = 0.1, v = 0.5, 3PI = 1, a = 1.75,

W = 30, and a0 = 0. We choose N = 1000, which is a training set that can easily be completed

in a few hours.
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Figure 2.2: Plot of Upper Bound of E(S 2) vs. b and y
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Figure 2.4: Contour Plot of Minimum of Upper Bound of E(S2)
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Note that the minimum of the upper bound does not necessarily coincide with the minimum

that would be found if the system were known perfectly. For example, if the system model

were completely linear, and A = v = 0.3, the area containing the minimum contours of error

differs slightly from that depicted in Figure 2.4. The "perfect knowledge" area is shown in

Figure 2.5. In b-y space, its minimum is located close to the upper bound's minimum, which

validates our reliance on the upper bound.

6

4

y

2

15 b 20

Figure 2.5: Contour Plot of True Minimum of E(S2)

2.5 Simulation Results
To validate the preceding analytical predictions and to test the controller on systems that do

not obey the assumptions used in the controller's derivation, a simulation has been written in

Mathematica. The code is presented in Section F.2. For the static-structure case, the desired

result is a graph showing output error as a function of number of bins.

The simulations in this section, as well as those in Chapter 3, begin from a state of no

knowledge (uniformly zero control action). The deskewer is modeled with a given analytical

expression, which allows faster simulation than an explicitly physics-based model such as the

one given in Appendix C. The parameters used are identical to those of the preceding section: A

= 0.1, v = 0.5, ,i = 1, a= 1.75, W = 30, and a = 0. yis chosen to be 5, because Figures 2.4

and 2.5 indicate that such a value gives good, if not optimal, performance.

In these simulations, mean squared output is evaluated by fixing control actions and

simulating a series of test iterations. The simulation trains the deskewer for 1200 cycles

(chosen because this number allows six bin splits, as seen in the next chapter), then freezes

control-action updating to evaluate output for 200 cycles. This is repeated for static structures
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ranging from one to 51 bins; at each bin structure, the entire process of training and evaluating

is repeated ten times. These ten repeats are averaged to find each plotted data point.

The performance of the controller is evaluated on four system models. The first is linear:

o,,ut(O,) = Oin- 0.3' + r (2.5-1)

where r is a normally-distributed noise term of variance a. Note that 3l1 = 1, and A = v = 0.3.

This is the only model which obeys all of the assumptions used to derive the optimality

equations.

The second model adds high-frequency variations, comparable in wavelength to the size of a

bin (in the Oin direction) and size of a single update in control action (in the r direction). Here, A

= 0.1 and v = 0.5, but PI is no longer constant:

ou8t(Oint, ) = in, + sin (i,,) - 0.3Tr + sin (0.2T) + r (2.5-2)

The third model adds the equivalent of a low-frequency variation of P1 in Oin, while retaining

the sine terms. O,,, is modeled as an increasing parabolic function of Oin, with the contribution

to a O}, from the parabolic term, the analog of P1, ranging from zero at i,n = 0 ° to 2 at
a in

Gin = 30°. This is a system in which the output accelerates faster than linearly in the input

variable, but the error in the 0 ° - 300 input range is less than that of the linear system in (2.5-1):

Oout(Gin,) = G30 n + sin (in) - 0.3r + sin (0.2T) + r (2.5-3)

The fourth model has a parabolic term, but the curve is inverted and shifted to the right,

relative to the model in (2.5-3). The parabolic term's contribution to the derivative here

decreases from 2 at in, = 0° to zero at 0i, = 30°. The error in the 0° - 30° range is greater in this

model than in the preceding three.

Out(Oin,,r) = - (- 30)2 + 30 + sin (in) - 0.3T + sin (0.2r) + r (2.5-4)

Three solid curves are plotted in each of Figures 2.6 through 2.13. The central curve is the

predicted average squared output when A and v are identical and known exactly, and the input

distribution is uniform, while the upper and lower curves are the upper and lower bounds on

average squared output predicted when A = 0.1, v = 0.5 (and vice versa), and the input

distribution is uniform. While only the simulation of Figure 2.6, using model (2.5-1) and a

uniform input distribution, obeys the assumptions about system behavior used to find the

optimal controller, the curves are drawn to clearly show how results obtained from systems of

increased complexity differ from predictions of output based on the simplified models of this

chapter.
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Figures 2.6 through 2.9 present simulation results using models (2.5-1) through (2.5-4),

respectively. The input distribution is uniformly distributed from 0° to 30°.

In Figure 2.6, results from the simulation of the first model, which obeys the optimization

assumptions, show the validity of the theoretical expressions for expected error.
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Figure 2.6: S2 vs. Bin
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The addition of the sine terms does not substantially affect output error predictions, as seen

in Figure 2.7.
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The third model has less initial error in the 0° - 300 range than in the first two, which suggests

that more bins might be desirable. This is seen in Figure 2.8, in which the output error at high

bin numbers is less than that predicted for the linear-variation-across-bin-width models.
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Figure 2.8: S2 vs. Bin
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Similarly, the greater initial error of the fourth model suggests the use of fewer bins than in

the linear case, to allow for more training. Figure 2.9 shows that the minimum error point is

nearly identical, but the output error for bin numbers greater than approximately 20 is higher

than that predicted for the linear case.

S2

60

50

40

30

20

10

0

.
.

* 0

, ~ 1 20 304
10 20 30 40 5U

Number of bins

Figure 2.9: S2 vs. Bin Number - Fourth Model, Uniform Distribution
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The assumption of a uniform input distribution is perhaps the most unrealistic element of the

analysis of this chapter. Real systems, including ATM, are much more likely to have modal

distributions, with the majority of samples clustered around the nominal operating point.

Taking the deskewer as an example, most notes are relatively unskewed.

While optimal controllers can be found numerically for arbitrary input distributions, we

would like to know how a controller designed under the tractable uniform-distribution

assumption fares when used with a different distribution. Figures 2.10 through 2.13 use the

models of (2.5-1) through (2.5-4), respectively, but also employ a normal input distribution of

0° mean and 15° standard deviation. The tails of the distribution beyond -30 ° and 30° are cut

off, as these represent unrecoverable situations; the skew is too excessive to allow proper note

travel.

Two simulations have been performed for each of these test models. The first uses equal-

width bins, as in the simulations represented in Figures 2.6 through 2.9, while the second uses

bins that are equiprobable over the 00-30° range. In all cases, the equiprobable bins outperform

the equal-width bins. The higher-error data (at a given bin number) is from the equal-width

simulations, while the lower-error data is from the equiprobable simulations.
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Figure 2.10: S2 vs. Bin Number - First Model. Normal Distribution
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Figure 2.13: S2 vs. Bin Number - Fourth Model, Normal Distribution

As expected, the observed error of the equal-width bins exceeds that predicted under the

uniform distribution assumption. This is because too many bins are allocated to the higher

input skew regions, in which comparatively few notes fall. The overall effect is like that of a

static structure of fewer bins, applied to the lower-skew/higher-probability region of input

space. This explains the similar shapes of the exact prediction curve and the observed data.

When the static structure of equal-probability bins is used, performance closely matches that

predicted under the linear model/uniform-input-distribution case. By choosing the number of

bins based on that model, but placing them equiprobably, good results are obtained.
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Chapter 3
Bin Splitting

3.1 Introduction
The static-structure analysis of Chapter 2 assumed that adjustment of control action in a

single range (a "bin") had no effect on the control action in neighboring bins. No interpolation,

or related form of nearest-neighbor averaging, was considered.

Interpolation and averaging can be regarded as methods for spreading the lessons learned

from local training data to larger regions of the control mapping. In this chapter, another

approach to extending the realm of applicability of each training iteration is proposed. We call

this alternative scheme "bin splitting." In this method, a single wide bin receives initial training.

When a sufficient amount of learning has occurred, the wide bin splits into two narrower bins.

Initially, the newly-split bins use the control action that was associated with the single large

bin; this makes the analysis tractable. The process is shown in Figure 3.1.

ai 1 a ai ai ais1 ai 1 ai ai+l
I I I I I II I

A single wide bin Splits into two Which then continue
is partially trained... narrower bins... training independently

Figure 3.1: Bin Splitting

This procedure uses early training samples to improve the control mapping over a large

region of the input space. The splitting then allows refinement of the more narrowly-drawn

regions. For an important special case, results have been obtained on the question of when to

split from a single bin into two smaller bins, each half the width of the input space. In the

examples tested, bin splitting yields better performance than a fixed structure, of either a single

wide bin or two smaller bins, throughout the training process. The analysis is then extended to
address the general question of when to split two bins into four, four into eight, eight into

sixteen, ad infinitum. A surprising result is that all splitting times are independent of the total
number of allowable training iterations.
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Another way of viewing the premise of bin splitting is as follows. For a given number of

notes entering the multi-bin system, we intuitively expect that wider bins' output error should

decrease more quickly than the error of narrower bins. While the wider bins will have a larger

error than narrower bins if both are perfectly trained, the wider bins should asymptotically

approach their potential minimum error more quickly.

Consider a situation in which we train two systems from a state of no knowledge. The first

system consists of a single wide bin covering the entire input range, and the second consists of

two bins, dividing the input range evenly. Figure 3.2 shows graphs of (2.4-22), expected

average squared output, as a function of N, with b set to one and two bins. Parameter values

used in evaluating the equation are representative of those found in the deskewer.

E(S2)
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Dotted line is one-bin system
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Figure 3.2: Evolution of Error for One and Two-Bin Systems

The initial rate of decrease in error is greater in the single-bin system, but the error quickly

reaches an asymptotic value that is larger than that eventually achieved by the two-bin system.

If the controller starts with a single bin to take advantage of the rapid decrease in error, and

then moves to two bins to reach the lower-error asymptote, we expect to achieve better

performance (for a given number of training iterations) than is possible with a static structure of

either one or two bins. This is shown in Figure 3.3.
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Figure 3.3: Changing the Number of Bins in Mid-Training
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3.2 Necessary Results from Chapter 2
All results in this chapter again refer to the uniform input distribution model. By solving

(2.3-7), we find that for a single bin of width w:

E(S2) = 1_2W2 + +E(/u2) (3.2-1)

where all parameters are as defined previously. E(S2) is treated as if it were the entire system

under consideration, with 100% of all "interesting" notes falling into that single bin; that is why

no normalization factors appear in (3.2-1).

From (2.3-8), we see that for this single bin:

bin 1 2W2 + o2 (3.2-2)
bin- 1 2 1

For a bin that has probability P of a note falling into it, the following expression holds

(equation (2.2-24) of the Bernoulli-process analysis):

E(U2) <(I-P+P)) ((I _ () I _( + ) Vbn (3.2-3)

P is clearly equal to w/W in the uniform input distribution case (where W is the input space

of the entire problem). N is the total number of training iterations to which the entire multi-bin

system has been subjected; the fact that only a fraction of N has fallen into a particular bin is

accounted for by the terms involving P.

Starting with the results stated above we can find a bin splitting algorithm. In the remainder

of this work, the inequality in (3.2-3) will be written as an equality denoting the upper-bound

on system error; the analysis in this chapter again optimizes the controller structure to minimize

the upper bound. The source of this distinction is identical to that found in Chapter 2.

3.3 Notation
In this chapter, we will discuss the splitting of a single bin into a number of smaller sub-

bins. For maximum generality, the single bin that we start with will again be treated as the

entire system under consideration; the splitting process will serve to minimize the upper bound

on error in that region. Within the initial region of interest, we assume a uniform input

distribution, but this need not hold in adjacent regions. Other regions that start as a single bin

can split concurrently, using an identical analysis, but with more or less-thinly-spread uniform

distributions. In this way, a series of piecewise-constant, "stepped" regions can approximate

an arbitrary input distribution, assuming each uniform-distribution region is covered initially by

a single bin.
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This algorithm given here assumes that all bins of a given "generation" split at the same

time. That is, the system moves from two bins to four bins at a single value of n; there is no

time when there are three bins. Clearly, the algorithm allows only powers of two as potential

quantities of bins. This restriction on splitting freedom results in considerable analytical

simplification (see Appendix E), and allows us to proceed without explicit estimation of errors

in each individual bin (as will be seen below).

In the remainder of this chapter, the following four pieces of notation will be used:

1. For a specific bin, after a given number of iterations and bin splittings, E(Y2) will be

denoted by E,b,,. Here, a is the "generation number," b is the "bin number," and c is the "note

number." The generation number is the base-2 logarithm of the total number of bins. Two bins

are in the first generation, and four bins in the second generation. The generation number is

clearly equal to the number of bin splits that have been performed. The bin number denotes

specific bins within a particular generation, with 1 being the leftmost bin in the input space, and

2 a being the rightmost bin for generation number a. The note number is the cumulative number

of training notes that have fallen into the initial wide region of interest, regardless of generation

number. It starts at zero, when no training has been performed, and ends at N, when all notes

have been used.

For example, E3,5,19 is the expected squared average output of the fifth bin from the small

end of the input range, after three bins splits have taken place (third generation), and nineteen

training notes have been used in the entire region of initial interest.

2. As seen in (3.2-3), the term (1 - P + PO) occurs twice in the expression for E(2). This

quantity changes according to the size of the bin, and occurs frequently in the analysis, so we

define:

Oi =(1 - Pi + Pi) (3.3-1)

where b = P =(1 -I / 2, as defined in our previous work, and Pi is the probability of a note

falling into a particular bin in the i-th generation. If we start with a single bin that covers the

entire input range of the system, Pi =2-'.

3. ni refers to the training note after which the i-th split occurs. For example, if we move

from one bin to two after the fourth training note, n = 4.

4. The i in 2in i refers to the in associated with generation i. It is identical in all bins of a

given generation, because the bins are all of the same width in this analysis.
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3.4 An Equivalent Representation of Output Error
This section proceeds from the results derived in Appendix E. Immediately after we decide

to split a bin, but before any additional training notes are used, we can write two alternative

representations of that bin' s output. The first gives the bin output as if there were only a single

bin, while the second expresses the output as the sum of two sub-bins. No additional training

has been done, so the expected average squared output should be identical. The different

representations are only a notational distinction.

Using the notation introduced in the previous section, the output of a single bin is:

E(S2 ) = 1 W2 + +Eo,,, l (3.4-1)

Section 2.4.1 explained the rationale for choosing equal-width bins when working under the

uniform input-distribution assumptions; Appendix E shows how this choice makes the splitting

analysis tractable. For two bins of equal width:

E(S2 ) = 1 + +E ln + + a' +E& 2
2 (12 + 2 12 1 \ 2 12J2i

E('=02W2~-+2 ~+E'+2'2+E' (3.4-2)
12w2 + - +2l(Ell1,n + E1.,2,nl)

Equations (3.4-1) and (3.4-2) are equal, as they are simply two different ways of writing the

same system output. Equating them:

I 2 2
E0oln, + 16 12= -(E ,nl +El,2,nl) (3.4-3)

This process of equating two system representations is used repeatedly in the remainder of

this chapter.

3.5 Optimization of the First Split
The first split can now be analyzed. After this split, we have N - n1 notes left with which to

train the controller. The performance of the system at the end of all training can be written as:

E(S2) = 1w + 2 +(EI,N + E1,2,) (3.5-1)

However, this newly-split system has only N - nl notes for training, so N - n appears in

place of N in (3.2-3). This yields:

IE, 2,N l,,n n ( -n) 
+ E1,2N)= = 1(Eii + E1 + (1 - b0 bin, (3.5-2)2 2(E ) + -(1 -I-b) 00) l~
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But we can insert (3.4-3) into (3.5-2), and substitute the result back into (3.5-1):

E(S2) = w +2+l- o fw) 1 21 -1nl )V2

From (3.2-3), we can replace E , in (3.5-3):) 

From (3.2-3), we can replace E, ,ni in (3.5-3):

(3.5-3)

E(S2 ) = fIw 2 2 +& ,N -n qEo+ (- 2) .bin° 2 1 ) +~~~~48 ~ ~(1- ¢) 2 16
(3.5-4)

This is identical to the final result in Appendix E. Differentiating (3.5-4) with respect to n to

find the optimal splitting time:

(1 - bC') v2 + 2

(I - ) b'inO 161)
(3.5-5)

N-n 2 IlNn q-n V 2

Falc orIE+ - ( ) ) +(( )Oin , (- bin,

Factoring (3.5-5):

aE(S 2 ) N In

n, 
(I - 0n) v2

~0lg0'! (1-~ ~binO
I 22 I v 2

16 ' ( - 00) bin"

Since ¢1 is always greater than zero, (3.5-6) can only equal zero if the terms inside the

outermost parentheses also equal zero. By finding the nl at which this occurs, we minimize the

expected error. If 1 < n < (N - 1), we know that by splitting, the error is less than if we had

kept a fixed structure of either one or two bins for the entire training process. The question of

the existence of such a zero is not addressed here; if one does not exist for 1 < n < (N - 1), no

splitting should be performed.

An interesting result in (3.5-6) is that the terms in the outermost parentheses (in which we

seek the zero) do not depend on N, which only appears in the exponent of ¢X. While this may

seem counterintuitive, a re-examination of Figures 3.2 and 3.3 confirms the plausibility of this

result. The optimal splitting time yields the best results for all future iterations, regardless of

how many are performed post-splitting.
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3.6 The Second Split
When splitting a second time, we ask the following question: given a two-bin structure with

initial conditions (starting E(u2)) identical to those present at the time of the first split (from

one bin to two), is there some iteration at which we can switch to four bins and reduce

expected error for all operation after the end of the training period? We take the results of the

single-bin training period as a starting point for this analysis, and hope to improve future

performance by appropriately choosing the two-bin to four-bin splitting time.

First we write the equivalent representations for the two and four-bin structures, before any

training has been performed with four bins:

192 + + +(E2,,n+ E2,2,n2+ E2,3,n2+E24 ,n2)= 12w2 + 2 +(E, ln2+ E,,2,)

(3.6-1)

Thus:

l(E lt+ + + E E +E=l + 1L2 2 (3.6-2)4(E2, n2+ E2, 2,n 2 + E2,3,n2 + =2,,n (3.6-2)

Using (3.2-3), we proceed as we did in (3.5-2) for the two bin case:

N - ()N-n2)v2 
4(E2, ,N + E2N +E 2,4N)= 4 (E 2',ln2 + 22n+ 2,3,n2 4n)+ -2,n) + b i n 2

(3.6-3)

Inserting (3.6-2) into (3.6-3):

=~' - ~2[gl'l'n"gl'2'n p W +(1-0) /2n2

(3.6-4)

Now we back-substitute the equalities found in the two-bin case, which leaves the four-bin

equations dependent on only the initial value Eo,1,0. In this way, the errors in the individual split

bins do not need to be tracked or estimated. Apart from the analytical simplifications afforded

by simultaneous splitting, the elimination of tracking is the main motivation for requiring all

bins to split at the same iteration. From (3.2-3) and (3.5-2) we have:

l'(E , + El. -2, nlEl 2 ( nl + E12,nl) + (- bi, (3.6-5)-2 2,n2 2( nj 2,n (1 4) / bin,
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Inserting (3.6-5) into (3.6-4):

I(E 2 1,N I E2N+ E 2, 3 N + E2,4,N) =

Substituting (3.4-3) into (3.6-6):

(E 2,1,N + E2,2 + E2,3,N + E2,4,N) =

(1 - n2) V2

(1-k) 07
-nE,lnl + Ip2 w264

-+ ( ) n, +
16 I (1- ) 7 , I

Inserting (3.2-3) into (3.6-7) gives:

(1 -_ -n2) 2

( - o) i 'i2+ E 2,3,N + E2,4N) =

(- An) v2

(1 - 0) 2 0 b in' 0 ' 16 i1w

(1 _ ln2-n l ) 2

+ ( --) bin,

(3.6-8)

I + p2W 2)

1-(E2,,N + E2,2,N

+-)2 N - {n2 -l{ 4

Inserting (3.6-8) into (3.6-1) gives the final expression for expected average squared output:

E(S2) = 1 pW2 + 92

+ 2N - n n2-nl4n'Eo,,o +

(I-2N-n)V 2
2

(- ) _ p ) /20+ ( -rabin,2

( 1- ¢) v

( 00) i abi

(3.6-9)

1 2 +
16 W +

(1 - n2 - n l ) 2

(1 - ) y 2 r bin I
+ f2w2
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We now differentiate (3.6-9) with respect to both splitting points, and factor:

aE(S2) = 
an, -lNn

+ In(bI E0,o,0 -
( - V2 2

( - 0b) 2 bin, 0
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I ln, 2 )+ (1 - &i - Cbin, I
k - TUJ I

+ 1P2W2)
64 

(3.6-7)

I v 2

(1 - )b) O bi n

(3.6-10)

t, &n) ni 

( - gn) V2 2 1 2
07 1 E0, 1,0 4 ---- + -- P2

(I - 0) ~ bin, 16 



I 

aE(S2 ) Nn2ln(
)- bi+ 6 W (3.6-11)

(I 0) w 16

k 

(+ (l) 2n) I,2 2 2 1 V &2
( 0) I +~ 64 (l ) -bin, 2 

(1 _ ~bn) V2 I 2W2 2 - n V2

+In( ) n2n EoO+ (lb) bin+ 16 (I ) 2 bin I

The earlier optimal splitting point, nj, is independent of the later, n2. Differentiation with

respect to nl yields an equation identical to (3.5-5), with no dependence on N or n2.

Differentiation with respect to n2 yields an equation identical in form to (3.5-5), but with a

dependence on nl. However, nl was already fixed in the differentiation for the first splitting
aE(s 2 ) aE(s2 )

point, so n2 can be found immediately (if a root of an2 exists when an is zero). This
an2 an,

pattern holds for later splits; the next splitting iteration can always be found from a single

equation once all earlier splitting points are known.

3.7 The General Case
For the sake of brevity, a general expression will not be presented, but an iterative process

for deriving the splitting-point equation is shown in the following derivation of the expression

for the third split. First, we write the dual representation of output for the two generations at

the moment of splitting, and then find the relationship between their E. This is:

1 1 , . 2 2-;al E + (3.7-1)

1 4
Next, we look at the previous generation's expression for 4- E2, n3 which can be found

from (3.6-8). By substituting n2 where N appears in (3.6-8):

4 E2, 3 = (3.7-2)3n22, (1n3 ) bin,2 (3.7-2)

-nl ~0nE0'l'0+ 1 0) 2 b i 1'-"]5W +Lo --f2n'v2:b, +~ ~___~w2(nj ( - 11 ) 2 ' 2 I - n (1( ) I 1/32207' E_ d!bin, 0 0 +-f w - Ijn 010 (l bn 6 I- 0binl,I
+
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By inserting (3.7-2) into (3.7-1), the expression for i E3,8,n is found. We then use this

to find the expected output, but we will also use it when we write the expected output for the

next generation (just as we used (3.6-8) here). The complete expression is:

E1( 7 +(1 - ) 3N-n3 2 2 5 6E(S2) 22 o2 ) i q.~ -n ( (-2 E( ( ~+ 2 2
768 ' (1 - ) ,3 - 4b) 25

- 2n3 - n -n{nIE+, + -) 2 +1 2 ( -n1 +¢? ~n'0' 1"0(1 o bin, 1' bn, ( I - 0 ) ",o 16 (I -b) g 0i +

(3.7-3)

The process outlined here is iterative, and allows simple calculation of the output of the next

generation's structure from expressions derived for the current generation. The general

expression for an arbitrary generation can be obtained through this procedure. Optimization is

again performed by taking derivatives of the n's; as before, earlier optimal splitting points are

not affected by those that come later.

The derivation, being iterative, is amenable to numerical implementation; we need never

write the general expression. All plots of theoretical predictions shown in the next section were

implemented with a recursive function definition in Mathematica. The definition (but not the

graphics code) is found in Section F.3, under the heading Functions for optimization of

splitting times.

3.8 Theoretical Results
In all of the plots below, the system is trained from a state of uniformly-zero control action,

and starts with a single wide bin that covers the entire input range. While this may not represent

an actual, practical application of the splitting.method, it does allow a standard basis of

comparison for different techniques. For a system like the deskewer, we use the following

parameters: A = 0.1, v = 0.5, y= 5, p , = 1, a = 1.75, W = 30, and N = 500 (chosen because

the first four splits of the deskewer-like system occur within 500 iterations). We first show a

graph of expected output as a function of number of iterations for systems in which the bin

structure is static (Figure 3.4). Clearly, more bins do not necessarily yield better performance.
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Figure 3.4: Error vs. Iterations for 1. 2. 4. 8. 16-Bin Static Systems

Figure 3.5 is a plot of the output error after the 50th iteration, as a function of the single

splitting iteration, in a system which goes from one to two bins. The minimum is found at

nl = 10.46, which must be rounded to an integer in practice; we have here reduced the total

number of iterations to 50, to more clearly show the existence of a minimum:
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Figure 3.5: Error After 50 Iterations vs. Srlittine
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Figure 3.6 duplicates the situation of Figure 3.5, but with N restored to its original test value

of 500. Close examination shows that the minimum is still at the same place (between 10 and
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11), but that practically, the splitting time is almost unimportant. The only significant effect

comes from splitting too late, and thus not allowing sufficient training time for the two bins.

Note also that the N = 500 case has much lower overall error than the N = 50 case, so even

though the splitting point is the same, the additional training notes allow greatly improved

system performance.
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Figure 3.6: Error After 500
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Iterations vs. Stlitting Iteration (1 to 2 Bins)

Figure 3.7 is a two-dimensional plot of output error after the 100th iteration as a function of

the first two splitting iterations; at the end of the process, there are a total of four bins. As

expected, the optimal value for nl is the same as in the one-to-two bins case; n2 is optimized at

45.5. While the plotted region focuses on the area of the minimum error, examination of larger

regions shows there is only one minimum.
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Figure 3.7: Error After 100 Iterations vs. First Two Splitting Iterations
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Continuing the analysis through the first four splits, we find that the optimal splitting times for

n3 and n4 are 115.8 and 257.8, respectively. Figure 3.8 shows a plot of expected average

squared output as a function of number of training iterations, when all splitting occurs at the

optimal points. For comparison, the plot of the output of the optimal static system (which

consists of 9 bins when N = 300) is overlaid. The splitting structure is clearly superior.
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Figure 3.8: Error vs. Iterations - Optimal Splitting and Static Structures

Figure 3.9 presents the ratio of the expected average squared output of an optimally split

controller to that of the optimal static structure at a given final iteration. The splits occur at 11,

47, 116, 258, 541, and 1117 iterations, while the number of static bins varies with the iteration

(because the optimal number of bins depends on the final iteration). At each integer iteration

value, the optimal number of bins in the static structure is found and, as it is generally

fractional, rounded to the nearest integer. This integer number of bins is then used to re-

evaluate the expected output error of the static structure. The rounding of bin numbers accounts

for the sudden jumps in the plot.

As the final iteration increases, we expect the benefit of a split structure to tail off, and the

ratio to go to unity. No matter how many bins are used, the performance of the controller is

still limited by the inherent noise in the system. This trend is exhibited in Figure 3.9, but it is

important to note that the error figure used is only a single-point value - the expected error for
all time after the final training iteration. This is analogous to an Lo norm in real analysis. But,

an advantage of splitting that is not quantified by Figure 3.9 can be seen by reinspecting Figure

3.8. The integrated error over the training period, like an L, norm, will at least tend towards a

constant, and may increase unboundedly.
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Figure 3.9: Ratio of Splitting Error to Static Error

3.9 Simulation Results
The bin splitting simulation code is presented in Section F.3. Unlike the static-structure

simulations, in which N is fixed and the number of bins is varied, the desired results of the

splitting simulations are graphs showing expected output error as a function of final iteration

number, as in Figure 3.8.

Once again, the simulations begin from a state of no knowledge (uniformly zero control

action); the deskewer is modeled with a given analytical expression; the parameters used are

identical to those of the preceding section ( = 0.1, v = 0.5, /t = 1, a = 1.75, W = 30, and

a0 = 0); and yis chosen to be 5.

For all simulations in this section, average squared output is evaluated after every 20 training

notes by fixing control actions and feeding 200 test iterations through the simulation. The total

number of training notes is 1200, and the entire process is repeated 20 times.

The progression of average squared output versus iteration number is also evaluated for a

near-optimal static structure of 12 bins. The splitting schedule is identical to that used in Figure

3.8, while the static bin number was chosen through inspection of the results of the static-

structure simulations of Chapter 2.

The two solid curves plotted in all figures below represent theoretical average squared output

versus number of iterations for a completely linear system (obeying (2.5-1)), with a uniform

input distribution of range 0° - 30°. The only simulation which matches these assumptions is

that of Figure 3.10, but as in Chapter 2, we would like to see how the results from models that
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violate the analytical assumptions compare with theory. The upper curve, with greater error, is

from the 12-bin static structure, while the lower curve comes from the splitting controller. In

both curves, ). = v = 0.3.

In all simulations shown in this section, the splitting structure outperforms the static

structure. The higher-error data (at a given iteration) is from the static simulations, while the

lower-error data is from the splitting simulations.

Figures 3.10 through 3.13 show the results of simulations of the four system models of

Section 2.5, respectively. The results in Figure 3.10 validate this chapter's analytical

predictions.
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Figures 3.14 through 3.17 contain the results of simulations of the four models, but with a

normal input distribution of 0° mean and 15° standard deviation. As in the simulations of

Chapter 2, the tails of the distribution above 300 and below -30 ° are eliminated. All bins are of

equal width. The observed output errors exceed those predicted, as seen in Chapter 2, because
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of the overly large number of bins in the area of high Oin, but the splitting controller again

outperforms the static controller.
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Figure 3.14: S2 vs. Iteration Number - First Model. N.D..
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Figure 3.15: S2 vs. Iteration Number - 2nd Model, N.D., Equal-Width Bins
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Finally, the simulations are repeated with the same normal input distribution, but with an

equiprobable bin structure. As seen in the previous chapter, the observed results have much

lower error than the equivalent simulations with equal-width bins.
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Figure 3.20: S2 vs. Iteration Number - Third Model. N.D., Equiprobable Bins
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Figure 3.21: S2 vs. Iteration Number - 4th Model. N.D.. Equiprobable Bins

In the twelve simulations presented in this section, the bin splitting controller consistently

yields better performance than an optimal static structure. While the exact amount of performance

increase varies with the simulated model and the input distribution, this broadly-observed trend

confirms the idea that splitting, with its application of early data to the entire input space, is more

"sensible" than a static structure, with its strict segregation of training experiences.
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Chapter 4
Conclusions and Future Directions

4.1 Conclusions
This thesis presents the analysis of the application of the self-tuning, open-loop, piecewise-

constant controller to a class of control problems in which the control objective is to use a

single application of constant control action to drive a system from a given initial state to a

desired constant final state. The motivating example is the bill deskewer, but the analysis is

applicable to other systems. The optimization goal is the minimization of expected average

squared output, measured after the completion of training.

The first case examined is one in which the controller structure is fixed for the duration of

training. No changes are allowed to the number or location of bins. For a simplified model of

system performance, the optimal number and location of bins is found. The number of bins is

determined both by the amount of available training data and by the method used to train the

bins, while location is a function of the system model and the distribution of sample points in

the input space. Simulation validates the analytical predictions, and shows that the qualitative

predictions of the idealized analysis are correct even when the modeled system is generalized to

include certain nonlinearities.

In order to broaden the range over which early training data is used, a bin splitting technique

is next developed. A single wide bin is used at the beginning of training, followed by division

of this bin into two halves. Each half continues training and is later split again, followed by

further subdivisions. In this way, later training data is used in progressively-finer regions of

the control mapping. For the same models examined in the static-structure analysis, a series of

partially-coupled, structurally-identical nonlinear equations that determine the optimal splitting

times is derived, and the splitting times are found to be independent of the number of training

iterations available. For the system models examined, the splitting algorithm yields better

results than any static configuration of equal-width bins, a finding that is confirmed with

simulation. Adding plausible trial nonlinearities to the system model, in simulation, does not

appear to reduce the advantage of the splitting technique.
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While the example system used in this thesis is based on the deskewer, the analytical tools

presented can be immediately applied to other systems by appropriate substitution of model

parameters.

4.2 Extensions of the Static Structure Analysis
For the static structure of Chapter 2, there are five areas in which further research should be

conducted.

First, the algorithm used to update control action is of central importance in the analyses of

Chapters 2 and 3, because it determines the value of E(].2) as a function of training iterations.

Alternate algorithms that have the merits of either converging more quickly, or requiring less

information about the system (for example, not requiring knowledge of derivative bounds)

should be considered.

Second, the next logical extension of the analytical results is to cases in which the input

distributions are piecewise-linear. As some input distributions will yield non-integrable

equations, a piecewise-linear approximation to the real distribution could be substituted, with

the number of elements determined by the desired accuracy of approximation. An attempt at

performing this work suggested that the resulting equations were likely to be tractable, but

complicated. Numerical results could well be faster.

Third, a framework for numerically determining the optimal static structure for arbitrary

input distributions has been presented, but the location of bins hinges on optimization of

equation (2.3-11). This optimization problem needs additional investigation, and will likely

need to be performed numerically.

Fourth, the linear model of variation of average output versus input (Assumption 2.3.2)

could be enhanced. For the uniform-input-distribution case, an analytical solution may still be

possible if the linear model is replaced by a higher-order polynomial. However, the effective

choice of a polynomial model assumes a degree of detailed modeling information that may not

be available for a given system.

Finally, the question remains of how to choose a controller structure when the main concern

is not training from a state of no knowledge, but rather the updating of control action in an

already-trained controller. If 1000 notes are available to retune the deskewer every morning,

starting from existing control action is likely to yield better results than beginning anew with no

knowledge. So, if the existing actions are the starting point, how many bins should be used?

For the uniform input distribution case, examination of equation (2.4-17) presents a possible
b

answer. In that equation, the quantity il E(2 = 0, bin i) needs to be determined as the last step in

finding the expression for expected average squared output. When the controller is slightly
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mistuned, this quantity is nonzero. If, for an arbitrary number of bins, the "average" value of

E(n 2=0, bin i) arising from "typical" misadjustment of the controller could be determined,

this "average" value could be inserted into (2.4-17), and the optimal number of bins found. A

similar technique could be easily used in the numerical solution of more general models.

Because the estimation of error arising from mistuning requires detailed knowledge about

"typical" misadjustment, an analysis of this type was not carried out here.

4.3 Extensions of Bin Splitting
Because the bin splitting analysis is derived from that of the static structure, the comments of

the preceding section generally apply here as well. However, there are three issues particular to

the bin splitting case.

First, unlike the static-structure problem, no method is currently known for handling non-

uniform input distributions, even numerically. These arbitrary distributions could, however, be

approximated by a collection of uniform-distribution regions.

Second, while we expect that the bin splitting algorithm will always yield better performance

than any static structure for a fixed number of iterations, there is no proof of this conjecture at

this time. The analysis offers a straightforward way to check that this is the case for any

particular system, however, so the lack of proof may be of mainly theoretical interest.

Finally, in order to eliminate the need for tracking of the bins' average outputs during the

training process, the algorithm presented in Chapter 3 is restricted to powers-of-two numbers

of bins, and identical splitting times for all bins in a given generation. Appendix E shows how

the initial output error of sub-bins can be calculated, which allows complete freedom in

splitting by treating each newly-created sub-bin as an isolated system. This possibility should

be more fully explored.

An appropriate use of the splitting technique could be as a "second round" training

procedure. For example, given a control system that has already been trained with some bin

structure (either static, or one derived through bin splitting), a period of time could be allowed

in which to collect data without altering control actions. This data could then be used to

calculate actual (as opposed to expected) output errors, and based on these results, regions of

high output error could be split.
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Appendix A
Example Systems

There are other systems to which the self-tuning open-loop controller might be applied. This

section briefly describes two of them, and notes the features they have in common with the

deskewer.

The first example is a method for automated grinding of weld beads. We can construct a

controller that examines a small section of unground weld, just as it is about to pass under the

grinding wheel. This is analogous to a single note passing through the deskewer. The

measured height of the oncoming section of bead serves as the input space, which is

appropriately divided into bins; depending on our performance criterion, each bin holds one of

two distinct types of control action. If the bead or wheel temperature is the limiting factor, and

multiple passes are allowed, the controller sets grinder compliance. If the primary concern is

one-pass grinding, the absolute position of the wheel over the surface is specified, and held as

stiffly as possible with the available actuators. This binning process is repeated for successive

lengths of bead.

The bead height of each section is then measured post-grind, and used to adjust the control

action for all future grinds. In the position-specification case, any residual bead moves the

wheel position associated with the input bin closer to the surface, while gouges in the

unwelded area cause the adjustment algorithm to increase the gap between wheel and surface.

Similarly, temperature rise or wheel kickback leads to increased compliance in the compliance-

specification case. This does, of course, also mean that an increased number of passes is

necessary to achieve sufficient material removal.

The second example concerns automatic volume control of a car radio in a situation with

varying background noise. The measured performance is the listener's subjective sense of

"loudness," where positive values are too loud, negative values are too quiet, and a value of

zero is optimal.

The observation that "if the radio is too quiet, one should turn it up" serves as a heuristic

with which a volume controller can be adjusted. The input space is the measured background

noise; in this problem, the training time per bin may be quite short, but the recognition of a
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large number of different background noise levels (having many bins) is limited by the user's

willingness to take the time required to train each bin.

The common themes in the deskewer and the two examples presented here are the stability

of system output in the absence of an applied control action, which allows the use of an open-

loop controller, and the monotonicity of steady-state output as a function of applied control

action, which enables us to always tune the controller in the proper direction. We know

intuitively that the car stereo will be heard more clearly if it is turned up in the presence of

background noise; that the grinder will remove more material if it is pressed more forcefully

against the weld bead; and that the deskewer will reduce note skew in proportion to the

solenoid firing time.
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Appendix B
The Deskewer

The deskewer concept was created by a team of four people: Harry West, Ross Levinsky,

Ryuichi Onomoto (a mechanical engineer from Omron), and Jack Kotovsky. Kotovsky, in

close consultation with Onomoto, designed and built the actual prototype for his bachelor's

thesis. All diagrams in this section use measurements that were either taken from his thesis

[Kotovsky 1989] or directly from the deskewer.

The deskewer's optical sensor and solenoid-firing relay circuits were designed by Ichiro

Kubo, an Omron electrical engineer, and wired by Kotovsky. Levinsky designed and built

dedicated control hardware, handled interfacing of the deskewer to an IBM-PC/AT clone, and

designed and programmed the control software.

Figure B. 1 shows the functional elements of the Omron-supplied test fixture to which the

deskewer is attached. Notes enter the transport belts from a feed cartridge identical to those

used to store bills in Omron's GX-series ATM; however, the bills are manually inserted into

the cartridge in a skewed position to provide rotated test notes for the deskewer. After the notes

are deskewed they fall into a small bin at the end of the test fixture. Maximum transport speed

of the fixture is approximately 1.5 m/s, equivalent to 10 notes/second throughput.

The deskewer is shown in greater detail at the bottom of Figure B. 1. The upper and lower

belts (between which the notes are transported) can be clearly seen, as can the two solenoids

and four pairs of optical sensors. The whole section is driven by a toothed belt running on the

drive gear partially visible on the left side of the drawing.

Figure B.2 lists the parts that make up the main frame of the deskewer. The shafts, belts,

rollers, and drive gear are all supplied by Omron and are typical of their note-handling

technology.

Figure B.3 lists the optical sensors (supplied by Omron), the solenoids, and miscellaneous

hardware.

Figure B.4 gives dimensions of the deskewer's side plate. The 3 mm holes are through-

holes for the fixed-shaft mounting screws, while the 10 mm hole holds the bearings for the

drive shaft. The left and right side plates are identical.
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Deskewer section

Note-feeding
cartridge

Figure B. 1: Test Fixture and Deskewer Closeup
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1. 171mm x 105mm x 3mm side plate (2)
2. Bottom plate (1)
3. Angle bracket for side plate/bottom plate attachment (2)
4. 6mm diameter x 250mm length drive shaft (1). Mounted in bearings.
5. 19mm peak-diameter x 18mm-wide crowned drive roller (2). Set-screwed

to drive shaft.
6. 8mm diameter x 190mm length roller shaft (6). Fixed to side plates.
7. 19mm peak-diameter x 18mm-wide crowned transport-belt roller (12).

Free-spinning on roller shafts.
8. 362mm x 9mm x 1mm (measured unstretched) rubber transport belt (2)
9. 366mm x 9mm x mm (measured unstretched) rubber transport belt (2)
10. 14.4mm diameter drive gear (1)

Figure B.2: Main Structure of Deskewer
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1. Shindengen F224C-12V solenoid (2)
2. Solenoid mounting bracket (2)
3. Solenoid pinning block (2)
4. Omron/Sharp M601P phototransistor (4)
5. Omron infrared LED (4)
6. Optical sensor mounting assembly, consisting of shaft clamp and

adjustable mounting plate (8)

Lateral spacing of the optical-sensor pairs is 5 cm from
infrared-beam center to infrared-beam center

Figure B.3: Sensors and Solenoids

82



U 0/

o c
C ~o *· -

t 5 *
C)~ ~~r

a *I~ 41:
0I

E~~

IT

83

- --- 0-



84



Appendix C
Analysis of the Deskewer

C.1 General Case of Coulomb-Frictional Contact
The fundamental model for many bill-handling tasks is that of a machine surface interacting

with the note through frictional contact. This is the case in the feeding process, in which the

feed roller slips with respect to the note's surface and accelerates the bill into the travel belts. It

is also the reason that the deskewer is able to straighten bills; the belts slide over the note and

exert a moment that rotates the note about the solenoid's pinning point. Because sliding

frictional contact is so fundamental to the note-handling process, it is useful to consider the

general case of Coulomb-frictional contact (in which the frictional force is linearly proportional

to the contact force).

Consider a small translating plate in contact with a moving surface, as in Figure C. 1. The

plate can be viewed as a differential element of the note, while the moving surface can be

considered a sliding belt or rotating feed roller. Coulomb's Law of Friction describes the

magnitude of the frictional force as proportional to the normal force between plate and surface

(with proportionality constant ul, the coefficient of friction), and the direction of the frictional

force as that of the relative velocity between plate and surface (Figure C.2):

Magnitude of frictional force = F = F, (C. 1-1)

Direction of frictional force = V - V = (V - Vp) + (VC - Vy) (. 1-2)

To get the complete expression for frictional force on the plate, the force direction vector is

normalized to a unit vector. This leads to:

Normalized direction of Ffv= p (V- V ) + (Vy- V (C.1 -3)

r s-VI V /(Vs - x2+sy_ Vy)

The frictional force vector is simply the frictional force's magnitude multiplied by its
normalized direction vector:

Ff= I Ff- = I (vF-.VP,,) i + (v - VP) J (C. 1-4)
IVs - Vp (Vs V)2+(V V2
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Vp = plate velocity = Vi + V j

SI~ s e c I A
V = surface velocity = V i + VY j

Figure C. 1: Small Plate Element Translating on Moving Surface

Equation (C. 1-4) is the general expression for sliding-friction force on a non-rotating

element. A note can be thought of as many tiny elements connected together, each with a

slightly different velocity vector (due to the entire note's rotation). If the entire region of contact

between the note and the surface is integrated, the total force acting on the note can be found,

and its motion can be predicted. The surface's definition changes according to the specific

analysis; for the feeder it is the feed roller area in contact with the note, while for the deskewer

it is the belt area in contact with the note (neglecting the area pinned by the solenoid). Because

the contact area changes with time, a closed-form solution to the equations of motion may be

impossible.

C.2 Deskewer-Specific Equations
Figure C.3 is a plan view of the deskewer prototype. Equation (C. 1-4) can be applied by

considering the moving belts to be the surface and the note to be a connected collection of small

plates. With the coordinate system oriented as shown, V,, the x - direction component of the

surface velocity, is zero, and Vsy, the y - direction component of the surface velocity, is set to

Vb, the belt velocity:

V,=0
(C.2-1)

V= Vb
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V

vp

if I
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\ o -

Direction of frictional-force vector

Figure C.2: Direction of Frictional-Force Vector

Because the note is pinned by the solenoid and rotates around the pinning point, it is

convenient to express the note's surface velocity as a function of surface position and rotation
rate about the pinning point. If w ( = ) is the angular velocity of the note about the pinning

point, (x, y) is the position of an arbitrary point on the note's surface, and S is the solenoid

displacement from the centerline of the travel path (as in Figure C.3):

Velocity of note point (x, y) = - y i - (S - x)j (C.2-2)

Thus:

Vpx = - WY
(C.2-3)

VP =- (S-x)

Substituting into (C.1-4):

Ff= +Fn ( (C.2-4)

The note is viewed as a connected group of small plates, so the normal force is more
properly treated as a normal stress ar (assumed constant over a single plate due to its small size)

multiplied by the area of a plate.

IF I= a(x, y) dx dy (C.2-5)
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I)

Solenoid
inning point

Figure C.3: Plan View of Deskewing System

The standard differential equation for a rotating rigid body is now applied. I is the moment

of inertia of the note when rotating about a given solenoid pivot-point position, and R, the

region of integration, is the contact area between the belts and the note. It varies with time.

.. r Ic ^i , lyi+(V+c (s-X))j
io= | o.(X, y) /- 2 dx dy

I.[a 8/ (WY) + (V 2
(C.2-6)

The remaining difficulty is the prediction of the normal forces between the note and the

belts. This problem is complex because of the high flexibility of the belts and the note, so for

numerical investigations the normal stresses are generally assumed to be constant over the
contact area.
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C.3 Example Solution of Deskewer Equations
It can be seen immediately that (C.2-6) is difficult to solve analytically even with a constant

value for a, so a computer simulation has been written to numerically solve the equation. For

simplicity, the program ignores buckling of the bill by assuming the note to be a rigid plate.

First a spacewise integration is performed over the note-belt contact area to determine the force

on the bill, and then a time-domain integration is performed to find the motion of the bill over a

small time interval. The fineness of the integration steps is then adjusted until consistent results

are obtained. Predicted performance (in the form of necessary solenoid firing time versus input

skew) has been obtained for a number of different machine configurations, and a sample result

graph is shown below in Figure C.4.

Three graphs of the T required to straighten the bill perfectly versus in, are displayed, each

representing a different position, relative to the leading edge of the bill, of the solenoid pinning

point. P refers to the normalized distance back from the leading edge; P = 0 means the pinning

point is at the leading edge and P = 1 indicates that the pin occurs at the trailing edge. The

lateral solenoid position, S, and belt speed, Vb, are fixed in all cases shown, with the solenoid

position at 30 mm and the belt speed at 1 m/s.

S = 30mm
JU -

40 -

E 30-

US 20-
0)
a)
Z

10 

()0

I P = 0.25
+ P=0.5
.: P = 0.75

Pinning position

0 5 10 15 20 25

Oin, (degrees)

Figure C.4: Simulation Results for Varying Pin Position P

Experimental evidence indicates that this graph is qualitatively correct. Pinning positions of

P < 0.5 tend to require longer firing times for adequate deskewing, while those towards the
trailing edge need less time. As an additional advantage, the trailing-edge positions have been
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observed to cause less note-buckling than those towards the leading edge, because the

deskewing force provided by the belts acts to tension the bill.

Figure C.5 shows a graph similar to that in Figure C.4, except that the pinning position is

now fixed at P = 0.75, while the lateral solenoid position is varied from 30 mm to 65 mm. The

simulation indicates that the required deskewing time is slightly affected by solenoid position,

with S = 65 mm consistently requiring the most time. The biggest variation in timing occurs at

an input skew of 20°, and is 4.4 milliseconds (between the 65 mm and the 50 mm positions).

This effect is notable because the feeding process normally causes slight (up to

approximately 10 mm) variation in the lateral position of notes. Two bills with identical input

skews but horizontally-offset positions in the transport belts are entering two slightly different

deskewing systems, distinguished by a difference in S. The notes thus require different

deskewing times.

P = 0.75
~sr~3u -

An -

- 30-

ry) 20 -
c)

10

0- 1 %I ' I ' I *' 

a S=30 mm
* S = 50 mm

: S = 65 mm

Solenoid position

0 5 10 15 20 25

0n (degrees)

Figure C.5: Simulation Results for Varying Solenoid Position S
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Appendix D
Adjustment of Bin Boundaries

This appendix discusses a gradient descent procedure that uses measured performance data

to move the prechosen bin boundaries in directions that reduce output error. This technique is
meant to be applied to systems that do not have a constant Pf.

We first examine the contribution to total system error from two adjacent bins. From (1.3-4):

ai ai+l

E(o,2u,) for two adjacent rules = f ut(ini,r') P(9in) dein+ -. (t(in,si+l) P(Oin din (D-1)
ai- I ai

We attempt to reduce the error caused by suboptimal placement of the boundary between

these two terms with a gradient descent procedure. Taking the partial derivative of output error
with respect to ai:

aE(u) = (uin , = ,,)- t(Oin = ai,i+l)) P(Oin= ai) (D-2)

As is usual with gradient descent formulas, the boundary is moved in the direction of the

negative of the gradient, to expand the range of the lower-error bin.

To evaluate (D-2) further, we again examine the uniform-input-distribution case with
identical a in all bins. By using measurements of average output and average squared output of

adjacent bins, we can determine values for t( in = ai, ri) and Tt( in = ai Zi+l)

Evaluating (2.3-3) and (2.3-7) for a uniform input distribution:

ai

Pi =' a (P. + =l inin il(ai-I + ai) + (D-3)

wOin i-l

ai

X1inWdOi
S; ai-i ai a

[ .
+2-2 + a 2 = 11212(ai - ai - 1)2 + i/2 + C 2 (D-4)

I T2- I+ 
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Solving (D-3) and (D-4) for fPI and Po:

go = ½lf1 (ai_ + ai) - Hi (D-5)

P 23(Si2- , 2 - 2) (D-6)
(D-6)

(ai - ai- l)

Substituting (D-5) and (D-6) into (2.3-5) and simplifying:

, i = f3ei + 2fflo0in + p + C2
Oout(O i n , 0.i) 22 (D-7)

= 3s7 - 2,u14 -2o2 + (24x) pi / s2 -2 _- 2

An identical analysis performed on bin (i + 1) yields:

t,.ti,,i+ ) = 3 S21 2+ 1 -2 2 ,2 (2 ) i + S2+1 2 - (D-8)

Substituting (D-7) and (D-8) into (D-2)

E(O = p(itn= ai)(3(Si2 S2+1) - 2(- Ui2+ 1)

+ V S2- _2X _21 2 ()

(D-9)

With this analysis we assume that perfect, noise-free measurements of stationary values of

S2 and are available. Thus, (D-9) cannot be used to move bin boundaries while adjustment of

, is ongoing, and we must have enough samples of system output to make good estimates of

S2 and u in each bin. It is also questionable whether bin boundary adjustment should be

applied while St is not "sufficiently" close to zero and while further training may be possible.

Figure D. 1 depicts a situation in which the gradient descent method moves bin boundary ai in a

direction that is desirable if ri (and thus pi) is fixed for all time, but undesirable if possible

future training moves ui and ]i+l closer to zero.

If we restrict bin boundary motion to cases in which both pui and gi+l are approximately zero

(the right side of Figure D. 1), we find:

aE(ut= 3(Si - S2+ I)p(Oin= ai) for Hi, i+, =0 (D-10)
Oai
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The bin boundary is thus moved to reduce the size of the bin with larger average squared
output. The premise of this process is clear: the value of PI may differ in adjacent bins, so we

exploit this possibility to adjust bin boundary location in a way that reduces the contribution to
overall system error from the bin with larger f3i.

From (D-10) we see that an added benefit of adjusting bin boundaries with u = 0 is that no

knowledge of a is necessary (although the assumption of constant a still holds).

out Ot

ai ai+l
I I

I I b 
- vin

ai- 1

I

a i ai,+

I

I

& Sin

//

Moving ai to the right reduces error here... But increases error later if
more training is allowed

Figure D.1: Adjusting Bin Boundaries when 0
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Appendix E
Tracking Outputs of
Individual Bins

In Chapter 3, the decision to split all bins into equal-width halves, simultaneously, yields an

analytical expression for the optimal splitting iterations that only requires knowledge of the

initial squared average output of the original parent bin. The more general case, in which each

sub-bin is split independently, and not necessarily symmetrically, is addressed in this
appendix. We find that if E(4 ) and E(p2 ) are known in a parent bin, there is more flexibility in

the splitting process; this information is sufficient to generate analogous values for the sub-

bins. They can in turn be treated as independent parent-bins for the next generation, and are no

longer forced to split at the same time.

To derive the relations between the E(u) and E(u2) of the initial wide bin and the sub-bins,

we consider the situation just after the splitting iteration, but before the sub-bins have been

trained separately. The sub-bins still have the same control action as their parent; we simply
wish to know what E(u) and E(,u2) would be in each sub-bin if they were to be identified at

any given training iteration of the parent, but left with unaltered control actions.

Figure E. 1 shows the boundaries of the initial bin at a and c, and the point at which it is later

split, b. The initial bin (range a-c) will be referred to with a lower-case w subscript, while the

a-b and b-c sub-ranges will be denoted with subscript 1 and r, respectively (the a-b-c notation is

inconsistent with other sections' ai notation, but here makes the equations easier to follow).

The upper-case W refers to the entire range of the input space.

out

a b c

II in
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The average output for the initial range a-c is:

juw=

The integral in the denominator of (E- 1) is the normalization factor that lets us treat the initial

range as the entire system under consideration. Squaring (E-1):

2 2
= If, 1(c + a)2 + ,fo2 + flo(c + a) (E-2)

The average output and its square for the left bin are given below. Note the presence of

another normalizing factor; we treat this sub-bin as a self-contained system.

l in + ,O~)dinG * P31(b + a) + (E-3)= (a) + +2
1

P12 =1 (b + a)2+ I Po(b + a)+ 0 (E-4)
4

Doing the same for the right bin, 3tr:

'Ur (l in + O)din = 2 PI(b + c) + fl° (E-5)

h dOin

Pr2 = fPl2(b + )2 + lfio(b + c) + (E-6)

The stochastic adjustment of control action means that P has a probabilistic distribution.

Since pi is fixed, we can write:

E(/lw) = 2f,1(c + a) + E(o) (E-7)

or:

E(o) = E(L.) - 2 f,(c + a) (E-8)

Similarly, from (E-2):

Ew)= _X(c + a)2 + E(fl) + f, (c + a)E(i30) (E-9)4 1~~~~~~~~~~~EO
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Substituting (E-8) into (E-9):

E(p) = E(W)- fl(c + a)(E(w) - - l(c + a)) - I3pl(c + a)2 (E-10)

Simplifying:

E(3) = E ) - ,(c + a)E(/2)+ 13(c + a)2 (E- ll)

In equations (E-8) and (E- 1) are expressions for E(1fo) and E(Io2). We can now put these

expressions into those for E(ul) and r) From (E-4):

E ) = fI 31(b + a)2 + ,(b + a)E(30) + E(fI2) (E-12)

Substituting (E-8) and (E-11) into (E-12) and simplifying:

E(Ul) = E(]w) - PI (C - b)E(j) + f4l(c - b)2 (E-13)

From (E-6):

E,2) el= f4 (b + )2 + p(b + c) E(o) + fPO) (E- 14)

Substituting (E-8) and (E-l 1) into (E-14) and simplifying:

E(r 2) = Ew)+ (b - a)E(yU) + f4 (b - a)2 (E-15)

Following the previous definitions:

( (b-a) + (b-a) )

(1 (c-b) (c-b)W + W
(E-16)

1
2 =in l =-i',2(b - a)2 + 2

ybin, r =1 l(c- b)2 + 

Inserting (E-16) in the equation for iterative evolution of the squared average output, (2.2-24):

(1 -. n.v2,2

E(l2 n) = E(,/ n 0)+ ( -¢)2 °abin, )
E( ) = n0,E,2 o(1+ .)V 2 (E-17)

2 Orn" 2 )+--(p ~ 2
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Writing the output of the two-bin system as in Section 3.4:

E(S2)= (b-a) ((b - a 2 + N-nE( I)+ (I _N )v a)
-(c- - nEa, = splittingiteration)+ ( - 01 r - )

+ )(3( 12 + (un=splitting iteration)+ ( abinn+(c-a)} 2 2 -
(E-18)

r))

By using the expressions for E($u) and E(/t) as a function of n, and inserting them into

(E-13) and (E-15), we obtain E(, = n=splittingingraon) ad Er,spittigiteration) in (E-18). We then

substitute the notation of (E-16), and arrive at the equation for the expected average squared

output of the two-bin system after the final iteration, N, as a function of splitting iteration n.

E(S2) =

1

+ CT2 +
(c - a)

(b-a) (b-a)
w + wwe we

(1 - ))

)N-nv2

" 2(c
- b)2 + )

+ (b - a)
(b - a) Nn

E{.Aw, n = 0) +
(1 - )v
( - )r2 ")

+(++(c - a) 12
+ I -

1

+ 2 +

(c - b)
W

( I
(c - b)

W
+W )

( - )y2

(c - b) )N(

W
wE(/L, n = ) +

-n

V2

-(l - ,(c - b
(1 2

(1- y2)v.

(I -

+ f1(b -a)wE(Un = o) + 4Xp,(b-a)))

(E-19)

(E-19) may be optimized with respect to b and n to find the best boundary location and

splitting time, but an analytical solution is not known at this time. A significant simplification
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occurs if we divide the initial range evenly by setting b = (c + )/2; we will work from (E-18), to

avoid the algebraic complexity of (E-19):

p2(( - a)2 N nV2 2 +N-n+
E(S 2)= 1 2 a + 1a +0' I t2 ( }( ' (abb n=splitting iteration) r, = splittingiterao))

(E-20)

The notation applicable to the left bin has been used in (E-20), but as c2in , = 2 andbin, - bin, r

U1 = ¢r, the right-bin notation could have been used with no change in the form of the equation.

Noting that b - a = W/2, and substituting (E-13) and (E-15) into (E-20) yields the following

equation:

E(S2) #2W2 2 + (1-¢)2E(S2)= 12w2 + a2 + (l -n)v2 (2in ) + IN-n((I n=splittingiteration) 1 6 W2) (E-21)

By inserting a value of E2, n=splittingiteration) in terms of E( n=) , (E-21) is transformed

into (3.5-3).

Thus, while the general case of bin-splitting location may be examined via (E- 19), a much

simpler formulation is possible if the splitting point is located in the center of the bin, as in

(E-21). It allows us to "work backwards" in the equations for output error (regardless of how

many bins there are, as long as the number is a power of two) until all results depend on the
single quantity E(/u2,= ) 

As noted at the beginning of this appendix, by tracking both E(,w) and E(,u2), we enable

the sub-bins to become independent parents to the next generation of bins. E(u,) and E(Mr) can

be found trivially from (E-3), (E-5), and (E-8). Along with (E-13) and (E-15), we have all the

necessary information. Taking the right sub-bin as an example, E(,ur) and E(/,2) are merely

substituted for E(uw) and E(t2 ) in the above results.
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Appendix F
Estimation of Model Parameters

F.1 Parameters to be Estimated
It can be shown from (2.3-7) that for the simplified model used in Chapters 2 and 3

(uniform input distribution, linear output variation), the expected average squared output of a

bin of width w is:

E(S2) = 1l2 2 + E(2) + 2 (F. 1-1)

There are two fixed parameters in (F. 1-1) that are not known a priori: a and #I . To optimize

the controller, values of A, and v are also needed, and Section F.3 suggests a method for their

estimation.

The expectation operators are present in (F.1-1) because the future value of u2 (and by
extension, S2 ) has a stochastic component, as seen in the learning analysis of Section 2.2.

Nonetheless, at any given time it is always true that:

S2 - 1 IW2 + w 2 + 2 + 2 (F. 1-2)

To find working values for S2 and u2 , it is well-known that the minimum-variance unbiased

estimator is the sample statistic, taken from observed performance data. We denote sample

statistics with a over the estimated quantity.

F.2 Estimation of a
In an extremely narrow bin (w = 0), the term of (F. 1-2) in which w appears is nearly zero.

We can then write:

S2 ~t2 + 2 (F.2-1)

If we take enough samples to have "good" estimates of S2 and # 2 , we find:

C S2= 2 -- 2 (F.2-2)

This estimation can be repeated in narrow bins located anywhere in the input space, thus
allowing local characterization of a.
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F.3 Estimation of i1

In this section, we assume that a is known, and examine two simple approaches to

estimating fi3. The first is based on the well-known response-surface method, while the second

is identical to that given for estimating oain the preceding section.

In the response-surface method, a model of given structure is fitted to observed experimental

data. The data is used to adjust model parameters, which are generally coefficients of terms in a

polynomial model. A simple example is ordinary least-squares fitting of a line to noisy data.

To determine fil, a model expressing 6
out in terms of in, and r is needed, with il as a linear

parameter. For example, an appropriate model could be the one first given in equation (1.4-1):

0ouOin,,, r)= 1Oin + Cr + r (F.3-1)

where PI and C are unknown constants and r is a noise term. By collecting triplets of data

(O,,ut, in, T), least-square-optimal estimates of PI and C can be easily determined. Because it is

difficult to find an unbiased estimator for bounds on derivatives, the estimated value of C can

be modified by "safety factors", and used as estimates of A and v.

The main drawback of this method is that an infinite number of models can be chosen, but

without a clear idea of the correct model structure, the estimates obtained may be useless. As an

example, consider the following case.

In Mathematica, a single bin of a system modeled by (F.3-1) was simulated, with fI = 1,

C = - 0.3, and a = 1.75. The simulation starts from a control action of zero and executes 100

training cycles, all in the bin covering the input space from 15° to 18". The 100 data points so

obtained are then fit to two different models. The first is simply that of (F.3-1), while the

second adds an unknown constant term. The entire process is repeated 30 times, to obtain an

average measurement of the estimated PI and C.

For one particular run, the fit to the first model was:

out(Oin,, ) = 1.01 in - 0.31 r (F.3-2)

The fit to the second model was:

,,ut(,in,rt) = 0.95 i, -0.31 r + 0.95 (F.3-3)

In both cases, the estimates of P1 and C are reasonable, but the constant term of (F.3-3) is

not present in the system model of (F.3-1). This is the essence of the model-selection problem;

data can be made to fit any model, but the resulting parameters may be meaningless.
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The second method of estimating PI does not suffer from the difficulty of model selection. If

an estimate of ca is known (perhaps through the process described in Section F.2), by fixing

control action and taking sufficient data from a single bin, (F. 1-1) yields:

p =12 (2_2_ 2) (F.3-4)

Using the model of (F.3-1), this procedure was also simulated in Mathematica. First, 100

training cycles are used to train the single 15°-18 ° bin from an initial control action of zero. The

control action is then fixed, and another 100 data points are taken to obtain an estimate of PI.

As before, the whole process is repeated 30 times. The average estimated value of PI was

found to be 0.95. This value is close to the actual value of 1, and does not require selection of a

response-surface model; however, this method also does not offer any estimates of A and v.

There is an additional problem: if a set of observed data is unusually noise-free (resulting in

S2 = 0 ), the right side of (F.3-4) can be negative, implying an imaginary value for PI. Such

estimation runs must be discarded.
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Appendix G
Simulation Code

G.1 Introduction
All simulations used in this thesis were written in Mathematica, version 2.2. Mathematica

was chosen because it allows easy symbolic manipulation of the analytical results of Chapters 2

and 3, and rapid prototyping and debugging of code.

Two programs are presented. The first, in Section G.2, simulates the deskewer (using a

given analytic expression, rather than a physics-based model) and plots average values of

average squared output versus number of bins, for use in the numerical optimization of the

static structure. Functions that evaluate the theoretical predictions of Chapters 2 and 3 are also

included, and are used in the plots that compare simulation results to theory.

The second program, in Section G.3, uses the same deskewer model to find average values

of average squared output versus number of training iterations. It simulates both the static

structure and the bin splitting controller, and plots the results for both cases. Again, symbolic

functions are used to compare the theory of Chapter 3 to simulated experiment.

There are important differences between Mathematica programs and those of traditional

languages such as C. Some of these differences are described below.

1. Normally, comments are marked with (* at the beginning and *) at the end. To facilitate

reading the programs, and to allow room for more detailed explanations, statements in

Courier, such as Print, are Mathematica code, while statements in Times Italic, such

as these words, signify comments. Italicized comments must be removed or properly

enclosed if the programs are entered as reproduced here.

2. Mathematica is an interpreted language, and unless explicitly marked for delayed

evaluation (as explained in item 5, below), blocks of statements are executed immediately

upon entry.

3. The code was written and executed on a Macintosh, via a "notebook" interface. This

interface marks related blocks of code with brackets at the right-hand side of the page.

Because these brackets are only displayed in the notebook, the blocks of code are denoted
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by blank separator lines in the listings below. When typing them into a notebook, each

block should receive its own bracket.

Blocks of code can also be denoted by separated pairs of parentheses, as in:

Print [ "Hi!"];

Print ["Bye! "]

Note that parentheses-enclosed blocks in the programs may contain blank spaces, to

improve readability.

4. Semicolons after a line suppress output in the notebook, if they are either at the end of a

single line or after the last line of a block. They are also used to allow more than one

statement in a block; in fact, within a block, lines must be ended with a semicolon to allow

chaining of statements. Lines that do not end with a semicolon are either independent

statements that do not suppress output, or the ending lines of blocks of chained statements.

5. Blocks that begin with a line of the form functionName := xxx, where xxx is other

code, can be considered function definitions. The ":=" means that functionName is

evaluated each time it is called, rather than only upon definition, as is the case with a "="

operator. Functions defined with ":=" are not initially evaluated upon typing.

6. In Mathematica, there is no "main" routine, as in a C program. Each block of code is an

independent entity, and programs are written by placing calls to functions (both predefined

and user-written) together in a block, separated by semicolons. This implies that all

functions and variables are accessible to each other and are always present in the

environment, unless explicitly defined as local or transient via such structures as Module.

This lack of a "main" also implies that the order of supporting function entry can be

somewhat haphazard, as long as a given function has been entered/defined before any later

function attempts to execute it

7. In a real Mathematica session, all entered code is automatically marked with an input

number, and all results return with an output number. The form of these tags is somewhat

system-dependent, so they have been omitted from the programs.

8. Built-in functions have names that begin with a capital letter, and may have other capitals

throughout the name (for example, "ToExpression"). In the programs below, user-written
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functions and user-defined variables begin with a lowercase letter, but usually include a

capital letter somewhere in the remainder of the name (such as "locateBin" and

"binBoundaryInit").

9. Mathematica syntax is explained in [Wolfram 1991]. This reference book comes with every

copy of the software, but is also available for purchase separately in bookstores.

G.2 Output Error vs. Number of Bins
This simulation assumes a nonlinear system model, as noted in the code. We vary the

derivative dOout/dt by adding a sin function. The bounds of the derivative are now .1 and .5,
with a mean of.3.

We also vary fI by adding a sinusoid, so it varies between 0 and 2. The period is a bit faster
than that of the varying values of dOou/dt; it's 1 rad/s.

We now have a normal input distribution. 2 a = 300

Functions used in the simulation

Reads in built-in functions that deal with statistics
<<Statistics' ContinuousDistributions'

params={l->.l,nu->.5,g->5,Bl->l,w->30,s->1.75 are assumed to be the "real" deskwer
parameters

params={1l->.3,nu->.3,g->5,B1->l,w->30,s->1.75}

Delivers the skew of the incoming note. Other simulations use a uniform distribution. Here
we've avoided using the built-in normal-distribution generator because for some reason, it's
slow.

getInput:=Sqrt[-2*Log[Random[]]] 15 Cos[Random[] 6.2831853]//Abs;

Initializes the locations of the boundaries between bins
binBoundaryInit [n_]:= Range[0,n]*w/n/.params

Takes an input skew, and finds out which bin it falls into. The splitting simulation uses a more
sophisticated but slower algorithm.

locateBin[n_,numberOfBins_]:=Min[Floor[n*(numberOfBins/w)]+1,
numberOfBins] /.params

Gets an input, finds the control action, applies both to the system model, then returns the input,
output, and bin number of control action

controlCycle[numberOfBins_]:=Module [ {thetaIn,whichBin,whichControl,
thetaOut},(
thetaIn=getInput;
whichBin=locateBin[ thetaIn, numberOfBins];
whichControl=control [[whichBin]];
thetaOut=system[thetaIn,whichControl];
{thetaIn,thetaOut,whichBin}
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Given the input, output, bin number triple, this adjusts the control action
controlAdjust[(thetaIn_,thetaOut_,whichBin_}]:=

control[[whichBin] +=thetaOut/g/.params;

System model. It's linear, plus the nonlinear terms mentioned above.
system[input_,control_]:=Module [ {systemOutput},(

systemOutput=l*input+Sin[input]-.3*control+Sin[0.2*control];
If[ (control!=0),systemOutput+=

Sqrt[-2*Log[Random[]]] s Cos[Random[] 6.2831853]/.params];
systemOutput
)]

Returns theoretical mean squared outputfor a given number of bins and a given final training
iteration number

staticBin[number_,finalIteration_]: =(
phi[0]=(1-l/g)^2;
1/12 B1^2 (w/number)^2 + s^2 +
(nu/g)^2/(1-phi[0]) *
(1-(l+(phi[0]-1)/number)^finalIteration) *
(1/12 B1^2 (w/number)^2 + s^2) +
(1+(phi[0] -1)/number)^finalIteration *
(w^2/3 - (w/number)^2/12))

Simulation
The number of iterations is the final iteration number of the training process. It's also the
number of notes fed through the machine to evaluate its performance after training has ceased.
The maximum number of bins sets the upper limit on how many bins we examine. The
maximum number of repeats is how many times we do the whole process of training and
testing for a given number of bins. We chose 5 here because the simulation takes so long.

numberOfIterations=1000;
maxNumberOfBins=51;
maxNumberOfRepeats=5;

statistics is the record of measured output error in each bin. It has three indices. The first refers
to the repeat number; the second refers to the number of bins in the control system during that
trial; the third refers to each particular bin number. So, statistics[[2,9,6]] refers to the error
measured in the 6th bin of the 2nd trial of a 9-bin control structure.

statistics=Table[0,{maxNumberOfRepeats}, {maxNumberOfBins},
{maxNumberOfBins)];

Same structure as the statistics array; holds the number of notes thatfell into the bin
howMany=Table [0,{maxNumberOfRepeats},{maxNumberOfBins},

{maxNumberOfBins}];

Begins the outermost loop, over the number of bins
For [numberOfBins=lBinserOfBins<=maxNumberOfBins,numberOfBins+=1,

(Print["Number of bins: ",numberOfBins];

Begins the number of repeats loop
For [numberOfRepeats=l,numberOfRepeats<=maxNumberOfRepeats,

numberOfRepeats++,

Clears the control action for this repeat
(control=Table[0, numberOfBins)];
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Does the learning for numberOfjterations cycles
Do[(Module [ {output},(

output=controlCycle[numberOfBins];
controlAdjust[output]

)]), {numberOfIterations)];

Does the evaluation of error for numberOfiterations cycles
Do[(Module [ {output},(

output=controlCycle[numberOfBins];
statistics[[numberOfRepeats,numberOfBins,output[[3]] ]+=

output[[2]]^2;
howMany[[numberOfRepeats,numberOfBins,output[[3]]]] += 1;

)]) ,(numberOfIterations ];

Print["Number of repeats: ",numberOfRepeats]

) ]; Closes the number of repeats loop

Writes the simulation data to a file
Put[statistics,numberOfBins, UWS:User Folders:Ross:Temporary"];

) Closes the number of bins loop

Sums and prints the statistics, showing measured average squared output for each bin. This
summed data is then plotted against the theoretical predictions.

Print[ Apply[Plus,Apply[Plus,statistics],{1}]/
{numberOfIterations maxNumberOfRepeats)];

data=Apply[Plus,Apply[Plus,statistics],{1}]/
(numberOfIterations maxNumberOfRepeats);

Plot[staticBin[number,1000]/.params,{number,1,51}]

Show[%,ListPlot[data]]
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G.3 Output Error vs. Number of Iterations

This simulation checks the predicted output error versus number of iterations, for both the
bin splitting case and the static structure case.

This simulation assumes a nonlinear system model, as noted in the code. We vary the

derivative dout/dt by adding a sin function. The bounds of the derivative are now .1 and .5,
with a mean of .3.

We also vary 3I by adding a sinusoid, so it varies between 0 and 2. The period is a bit faster

than that of the varying values of dOou/dt; it's 1 rad/s.

We now have a normal input distribution. 2 a = 300

Parameters

Reads in built-in functions that deal with statistics
<<Statistics' ContinuousDistributions'

params=ll->. ,nu->.5,g->5,Bl->,w->30,s->1.75,nO->O} are assumed to be the "real"
deskwer parameters. nO is the starting iteration of training.

params={1l->.3,nu->.3,g->5,Bl->l,w->30,s->1.75,nO->0};

Total number of training notes used in system
totalNumberOfNotes=1200;

Number of complete training runthroughs we do
numberOfRepeats=50;

How often we stop the training and do the evaluation of system output error
sampleSpacing=20;

Number of notes used to evaluate output error. No training is done on these notes.
numberOfEvalNotes=200;

Number of static bins in the static simulation
numberOfStaticBins=17;

Functions used in both bin splitting and static simulations

Delivers the skew of the incoming note. Other simulations use a uniform distribution. Here
we've avoided using the built-in normal-distribution generator because for some reason, it's
slow.

getInput:=Sqrt[-2*Log[Random[]]] 15 Cos[Random[] 6.2831853]//Abs;

Given the input, output, bin number triple, this adjusts the control action
controlAdjust[{thetaIn_,thetaOut_,whichBin_}]:=

control[[whichBin] +=thetaOut/g/.params;

System model. It's linear, plus the nonlinear terms mentioned above.
system[input_,control_] :=Module[ {systemOutput},(

systemOutput=l*input+Sin[input]-.3*control+Sin[0.2*control];
If[(control!=0),systemOutput+=

Sqrt[-2*Log[Random[]]] s Cos[Random[] 6.2831853]/.params];
systemOutput
)]
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Takes an input skew, and finds out into which bin it falls. A more involved process than the
first program, as the bin boundaries change location when splitting.

locateBin[n_]:=If[n>=controlBoundary[[-1] , {Length[controlBoundary]-1},
Position[Map[n >=# &, controlBoundary],False,{1}][[1]] -1]

Gets an input, finds the control action, applies both to the system model, then returns the input,
output, and bin number of control action

controlCycle:=Module [ {thetaIn,whichBin,whichControl,thetaOut},
thetaIn=getInput;
whichBin=locateBin[ thetaIn];
whichControl=control[[ whichBin[ [1]] ];
thetaOut=system[thetaIn,whichControl];
{thetaIn,thetaOut,whichBin}//Flatten

Functions used only in the bin splitting problem

Takes the vector of control actions, doubles it, and puts the control action that was in one bin
into two adjacent bins. Used when splitting.

doubleControls:=control=Flatten[Map[ {#l, #1}&,control]]

At splitting time, puts the new boundaries in. For example, the boundary vector 0,5,10]
becomes 0,2.5,5,7.5,101.

doubleBinBoundaries:=Module[ {i,temp},
temp=Table[1,{2 Length[controlBoundary]-l}];
For[i=l,i<Length[controlBoundary],i++,

temp[[2i - 1]]=controlBoundary[[i]];
temp[[2i]]=(controlBoundary[[i ]+controlBoundary[ [i+1] ] ) /2.0;

];
temp[[2 Length[controlBoundary] -1] =controlBoundary[[-1]];
controlBoundary=temp

Functions for optimization of splitting times

This term appears often in the following functions, so we define it once here.
errorFromWidth[generation_]:=1/12 B1^2 (w/2^generation)^2/.params

We want a general expression that will find the output error as a function of any number of
splitting points. To do that, we'd like to use variables of the form nl, n2, n3, etc., and then
feed the resulting expressions to the numerical optimizing function. There's no convenient way
to make such a family of "subscripted" variables, so we use this kludge routine. We feed
catVar the alphabetic and numeric parts of the variable, and it gives us back a concatenated
expression that serves as a legitimate variable. There must be some better way to do this...

catVar[n_,i_]:=ToExpression[ToString[n]<>ToString[i]]

On is turned into a function
phi[0]:= (1-1/g)^2/.params;
phi[n_] := (1-(1/2^n) +(1/2^n) phi[0])/.params;

m2 is the theoretical expected squared mean and meanOutput2 is the expected squared output.
With these functions, we can make recursive calls to find the generalform for expected squared
output error after any generation of splits.

sbin2[n_]:=(errorFromWidth[n]+s^2)/.params;
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startingError:=(B1 w/2)^2/.params;

m2Zero[generation_]:=meanOutput2[generation-1] -
errorFromWidth[generation]-s^2;

m2Zero[0]:=startingError;

meanOutput2[generation_]:= errorFromWidth[generation]+s^2 +
m2Zero[generation]phi[generation]^(catVar[n,generation+l]-
catVar[n,generation] ) + (1-phi[generation]^(catVar[n,generation+l] -
catVar[n,generation]))/(l-phi[0]) (nu/g)^2 sbin2[generation]

Sets the initial search points andfunction to be optimized in the FindMinimum numerical
optimization function

minPred[generation_]:=Prepend[
Table[{catVar[n,i],10 2^i},{i,generation}],
meanOutput2 [generation]/.params/.

{catVar[n,generation+l]->totalNumberOfNotes}];

Finds the maximum number of splits before the splitting iteration exceeds the available amount
of training notes

howManySplits:=Module[ (i},{
i=l;
While[(catVar[n,i]/.Apply[FindMinimum,minPred[i]] [[2,i]])<

totalNumberOfNotes,i++];
i-1

}] [[1] ]

Plotting theoretical output of optimally-split system

maxNumberOfSplits=howManySplits;

Find the optimal splitting points
vectorOfSplits:=Module [ {splitPoints,i}, 

splitPoints=Apply[FindMinimum,minPred[maxNumberOfSplits]] [[2]];
(Table[catVar[n,i], {i,l,Length[splitPoints]}]/.splitPoints)
}] [[11];

This section of code plots the predicted squared output error
Module[{i,plotExpression,splitPoints},{

Add zero to the beginning and the last iteration to the end of vector of splitting points
splitPoints=

{-1}-Join-Round[vectorOfSplits]-Join-{totalNumberOfNotes};

plotPoints={};

This loop goes through the different generations
For[generation=0, generation<=maxNumberOfSplits,generation++,{

The theoretical expression for this generation, with the appropriate splitting
points substituted in
plotExpression=meanOutput2[generation]/.params/.

Table[catVar[n,i]->splitPoints[[i+l]] , {i,l,generation}];
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This plugs specific iteration values into the plotExpression functions and
concatenates the output with results from previous generations' results
plotPoints=Append[plotPoints,

Table [plotExpression/.catVar[n,generation+1]->i,
{i,splitPoints[[generation+1l]+1,
splitPoints[[generation+2] 1]]//Flatten;

} ; Close generation loop

Now we need to shift all the points over one to the left, as the first element of plotPoints is the
output error at zero iterations. We also make each data point of plotPoints and an Ix,y] pair so
it can be graphed

plotPoints=Table [i,plotPoints [ [i+l]]),{i,0,totalNumberOfNotes];

ListPlot[plotPoints,PlotJoined->True]

}] Close the plotting module

Static bin boundary predicted error function

As before, returns theoretical mean squared output for a given number of bins and a given final
training iteration number

staticBin[number_,finalIteration_]:=(
phi[0]=(l1-/g)^2;
1/12 B1^2 (w/number)^2 + s^2 +
(nu/g)^2/(1-phi[0]) *
(1-(l+(phi[0]-1)/number)^finalIteration) *
(1/12 B1^2 (w/number)^2 + s^2) +
(1+(phi[0]-1)/number)^finalIteration *
(w^2/3 - (w/number)^2/12))

Optimization of static structure

We compile staticBin, for faster execution speed. We use the //N option because it stops
Mathematica from using exact integer arithmetic later

speedo=Evaluate[staticBin[bn,iterates]/.params] //N

This is the function that does the optimization of static structure for each iteration number
optstatic = Table[FindMinimum[speedo/.iterates->iterator,

{bn,1+.02 iterator}],{iterator,0,totalNumberOfNotes}];

This strips the variable name bn out of optstatic, and leaves a list of number pairs. The first
element of the pair is the error, and the second is the optimal number of bins.

optstatic = Map[{#[[l],bn/.#[[2]]}&,optstatic];

Rounds the number of bins from optstatic to the nearest integer. Can't have fractional bin
numbers.

optstaticrounded=Map[{#[[1]],Round[#[[2]]]} &, optstatic];

Use the compiled version of staticBin (speedo) to find the output of the system given an integer
number of bins, then plot

optstaticroundedoutput =

Table [ {speedo/.{bn->optstaticrounded[[i,2] 3 , iterates->i-1},
optstaticrounded[[i,2]]}, {i,l,totalNumberOfNotes+l}];

ListPlot[Table[{i,optstaticroundedoutput[[i,l]]},{i,1,1201}]];
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Static simulation

Setup the size of the outputData table. Here, as in all variables below, the S suffix refers to the
static simulation.

outputDataS=Table[O,{numberOfRepeats}];

From here, all else gets enclosed for repeated evaluation. We're using a Do loop, so the
number of repeats is at the bottom.

Do[

Restart the control setup at the beginning of each iteration
control=Table[0,{numberOfStaticBins} ];
controlBoundary=

Table[i, i,0.,w/.params,w/numberOfStaticBins/.params}];

Assess performance at the zeroth iteration
Module [ {output},

output=0;
Do[output+=((controlCycle[[2]])^2) , {numberOfEvalNotes}];
outputDataS [ [repeatNumber] ] ={ {0,output/numberOfEvalNotes}};

];

Start with the first note; after it's through, i still equals 1 (because it's a For loop), and it's fair
to say that we've done "one" iteration

For[i=l,i<=totalNumberOfNotes,i++,

Do a learning cycle
Module [ {output},

output=controlCycle;
controlAdjust[output];

]i

If it's the right note, determined by sampleSpacing, evaluation output error
If[Mod[i,sampleSpacing]===0,

Module [ {output},
output=0;
Do [output+=

((controlCycle[[2]])^2) , {numberOfEvalNotes}];

Append the error measured at this data point
outputDataS[[repeatNumber] =

Append[outputDataS[ [repeatNumber]],
{i,output/numberOfEvalNotes}];

] Closes the Module
, ]; Closes the If

], Closes the For
{repeatNumber, numberOfRepeats}]; Closes the Do loop

Average the various repeats
averagedDataS=(Apply[Plus,outputDataS] )/numberOfRepeats;

Save and plot he data
Put[averagedDataS, "Control City:Applications:Mathematica 2.2.2:

Ross's simulations:TemporaryS"];

ListPlot[averagedDataS]
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Splitting simulation

Find the splitting points
vectorOfSplits
splitPoints=(0}-Join-Round[vectorOfSplits]-Join-{totalNumberOfNotes};

Setup the size of the outputData table
outputData=Table [0,numberOfRepeats}];

From here, all else gets enclosed for repeated evaluation. We're using a Do loop, so the
number of repeats is at the bottom.

Do[

Restart the control setup at the beginning of each iteration. It starts out as a single bin
and is split at the appropriate times later.
control={0};
controlBoundary={0,w}/.params;

Assess performance at the zeroth iteration
Module [output)},

output=0;
Do[output+=((controlCycle[[2]])^2),{numberOfEvalNotes}];
outputData[[repeatNumber] =({0,output/numberOfEvalNotes}};

];

In the splitting simulation, we loop over the number of generations. Within each generation,
we loop over the notes that fall into that generation.

For[generation=O,generation<=maxNumberOfSplits,generation++,

Loop over notes in generation
For[i=splitPoints[[generation+l] ]+1,

i<splitPoints[[generation+2] +1,i++,

Do a learning cycle
Module [output),

output=controlCycle;
controlAdjust[output];

];

If it's the right note, determined by sampleSpacing, evaluation output error
If[Mod[i,sampleSpacing]===0,

Module [{output},
output=0;
Do [output+=

((controlCycle[[2]])^2), numberOfEvalNotes}];

Append the error measured at this data point
outputData[[repeatNumber]] =

Append[outputData[[repeatNumber] ,
(i,output/numberOfEvalNotes}];

] Closes the Module

, ]; Closes the If

]; Closes the For loop over notes of this generation
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Now we split the bins, and the boundaries
If[generation!=maxNumberOfSplits,

doubleControls;doubleBinBoundaries; ,
], Closes the For loop over number of generations

(repeatNumber, numberOfRepeats }]; Closes the Do loop

Average the various repeats
averagedData=(Apply[Plus,outputData])/numberOfRepeats;

Save and plot the data
Put[averagedData,"Control City:Applications:Mathematica 2.2.2:

Ross's simulations:Temporary"]

ListPlot[averagedData]
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