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Abstract
Let g be a simple Lie algebra, with corresponding connected Lie group G. Suppose
g has a vector space splitting into a sum of subalgebras g = k + b, so that one
can identify g' - k + b*. By the Kostant-Symes involution theorem, the invariant
functions on g*, when restricted to b, Poisson commute there, and in particular
Poisson commute on co-adjoint orbits of B = exp b.

Let Lg denote the loop algebra of smooth maps from S1 to g, whose Fourier series
converge absolutely with respect to some weight function w. Using the Killing form
of g, one can construct a canonical central extension Lg of Lg. For suitably chosen
w, there exists a group LG corresponding to Lg, as well as Iwasawa decompositions
at the algebra and group levels: Lg = k + a + ii, and LG = KAN.

We apply the Kostant-Symes theorem to the splitting Lg = k + b, (where b =
i + ii). Co-adjoint orbits in (Lg)* are parameterized by conjugacy classes in G, and
so the class functions of G give rise to invariant functions on (Lg)'. When restricted
to co-adjoint orbits of B = exp b, these functions Poisson commute. In this paper we
realize the symmetric periodic Toda phase space associated with g, as a co-adjoint
orbit of B, and show that the restricted invariant functions result in a completely
integrable system on this orbit.
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A NEW COMPLETELY INTEGRABLE SYSTEM

MALCOLM QUINN

1. INTRODUCTION

This paper is the result of a collaboration with S. Singer, and presents a new com-

pletely integrable system, whose phase space coincides with that of the real symmetric

periodic Toda lattice. Following the scheme used by Singer [Si] to construct complex

action variables for the complexified non-periodic Toda lattice, we arrive at an in-

tegrable system defined for any simple Lie algebra, and prescribed entirely in terms

of Lie-theoretic data. Despite the analogy with Singer's earlier work, the functions

defining our system are not action variables, (their flows do not seem to be periodic),

nor is the system the usual Toda lattice, (the functions do not appear to commute

with the standard Toda Hamiltonian). These discrepancies arise because our system

is real, and suggest that by looking at a suitable complexification one might recover

complex action variables for a Toda-like Hamiltonian. Our original goal was to give

a geometric explanation of the construction of action variables for the real symmetric

periodic Toda lattice, given by Flaschka and McLaughlin [FM], for the lattice ob-

tained from the algebra sl(n). However, the present system is of interest in its own

right, because of its very natural description.

Toda lattice models belong to a general class of integrable systems, associated to

vector space splittings of Lie algebras. Suppose a Lie algebra g, (with corresponding

connected Lie group G), splits as a vector space into g = + b, where , ,b are

subalgebras, (corresponding to subgroups K, B respectively). Then one can naturally

identify g* - {? + b*, and so co-adjoint orbits of B can be thought of as sitting inside

g*. The invariant functions on g*, when restricted to a particular B co-adjoint orbit,

give a family of Poisson commuting functions on that orbit, and generate flows there

described by Lax pair equations; this is the content of the Kostant-Symes involution

theorem, ([Ko],[Sy]). And so provided the dimensions are right, by restricting the
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MALCOLM QUINN

invariant functions on g*, one can generate interesting completely integrable systems

on the co-adjoint orbits of B. The classical Toda lattices arise in this way from various

splittings of sl(n, R) and sl(n, C), and their construction generalizes to arbitrary

simple Lie algebras, (see for instance [Pe]).

Given an invariant function I, one can describe the flows it generates in b* quite

explicitly. Taking an x0 E b*, one factorizes exptVI(xo) = k(t)-lb(t), where k(t) E

K, b(t) E B and k(O) = Id = b(O). Then the flow generated by I through x0 is given

by

x(t) = Ad;(t)xo = Ad(t)xo .

Singer observed that when K n B = {Id}, periodicity of exp tVI implies periodicity

of the flows generated by I. In particular if VI is constant on some cross-section of

the co-adjoint action, and exp tVI is periodic, then I generates a torus action on b*.

This idea suggests a method of finding action variables on co-adjoint orbits in b*,

(though in practice the construction will only be local). One first looks for some

natural cross-section of g* transverse to the co-adjoint orbits, and then defines invari-

ant functions by pulling back to g* functions defined on this cross-section. One then

tries to identify those functions I such that VI satisfies the periodicity conditions

described. By this method Singer constructs action variables for the complexified

non-periodic Toda lattice.

In the present paper the algebra considered is an infinite dimensional loop algebra

Lg, (actually, a central extension of this), derived from some finite dimensional g. By

a well-known construction, (e.g. [GW1], [RS, [RSF]), we realize the real symmetric

periodic Toda phase space, as a co-adjoint orbit associated with a splitting of this al-

gebra. Because of the remarkable fact that co-adjoint orbits in Lg* are parameterized

by conjugacy classes in the finite dimensional group G, a natural choice of invariant

functions is available by way of the class functions on G. Using local arguments, we

show that this family of functions generates a completely integrable system on our

phase space.

The construction closely parallels that used by Singer in the case of complexified

non-periodic Toda, although more technical machinery is needed, to deal with the

infinite dimensional setting. And in contrast to the non-periodic case, the locally

defined functions used to prove integrability are not readily recognizable as having

8



A NEW COMPLETELY INTEGRABLE SYSTEM 9

periodic flows, nor do they seem to commute with the standard Toda Hamiltonian.

Our hope is that once the complexified system is analyzed, our method will yield

complex action variables, periodic in complex time, making the analogy with non-

periodic Toda complete.
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2. BACKGROUND MATERIAL

2.1. The classical periodic Toda lattice. The Toda lattice was first considered

by Toda in 1967, as a system of particles on the line with exponential interaction of

nearest neighbors. The periodic Toda lattice deals with the case where the particles

lie on a circle with the potential V(x) = e - - 1 + x connecting neighboring particles.

For an (n + 1)-particle system the phase space is T*Rn+l, and in terms of canonical

coordinates qi,pi} the Hamiltonian is

1 n+l n+1
H = H(q,p) = E P + E e-(qk-- ), qo +l.

k=1 k=l1

The rotational symmetry of the system means that the total momentum pi is

conserved, so moving to "center of mass" coordinates on the circle one can take as

fixed E qi = 0 = pi. The transformation of Flaschka:

ak - 1e(q' - qk+1)/2 1ak = e( +)/2 bk =--P k = 1,2, ... , n +l

transforms to phase space to {(ak, bk): Ebk = 0, ak > 0 with IIak = 2-n-1}, with
symplectic form w = -4 En+l jn+l dak A dbj. The Hamiltonian becomes-.j=1 =j ak

n+l n+l
H = H(a, b)= 2 b2 +4 Ea,

k=1 k=l

and the associated Hamiltonian equations of motion are

ak = ak(bk+i - bk)

bk = 2(a2k - a_ 1 )

The crucial observation is that these equations may be written in Lax pair form. If

we set

bl al 0 ... an+l

al b2 a 2 ·

L= 0 a2 b3 . O0

· a+'... 0 an ban+
a,+l ... 0 an b,+l

10



A NEW COMPLETELY INTEGRABLE SYSTEM 11

and
O al 0 ... a+l

-al 0 a2

B= 0 -a 2 0 . 0

an+l ... 0 -an 0

then the equations of motion can be written

L = [B,L], (*)

and so B, L form a Lax pair. We can also write the Hamiltonian as

H(L) = Tr(L2).

To show the system is completely integrable one considers the functions

Ik(L) = lTr(Lk), k = 23, 3,..., n + 1.

To see that these functions are constants of motion suppose L = L(t) is a solution to

the equation (*). By induction (Lk) = [B,Lk] for k = 2,3..., n + 1, from which it

follows that Tr(Lk) = 0, and so Ik(L) 0 O along L(t). These functions are independent

almost everywhere in the phase space, essentially because together they generate the

symmetric polynomials in the eigenvalues of L, and generic L has distinct eigenvalues.

Poisson commutativity is a consequence of the Kostant-Symes involution theorem,

(which we describe later in this section). Since the dimension of the phase-space is

2n, and we have n a.e. functionally independent commuting constants of motion, the

system is completely integrable.

The phase space of matrices of the form of L is contained in sl(n + 1, C). Later we

shall give the general construction of this periodic Toda phase space, for any simple

algebra g, and present a new completely integrable system on this space.

2.2. Hamiltonian systems on co-adjoint orbits. We now recall some well known

facts about Hamiltonian systems on Lie algebra duals.

For any finite dimensional lie algebra g there is a canonical Poisson structure on

g*. The Poisson bracket of two functions f, g E C° (g*) is defined to be

{f, g}() = (, [Vf, Vg]),
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where (., ) is the pairing between g and g*, and Vf(It), Vg(It) are the gradients at A,

of f, g respectively. Casimirs of this bracket, i.e. functions for which {f, -. 0, are

precisely those functions which are invariant under the co-adjoint action of the group

associated to g. We shall denote this ring of invariant functions by I(g*).

Given a function H E C°(g*), we define the associated Hamiltonian vector field

to be EH = {., H}, which has a corresponding flow described by the equation

= -adH,(f). ·

The right hand side is the infinitesimal co-adjoint action of VH(~) E g on E *,

showing that the flows are contained in co-adjoint orbits. In particular the Hamilto-

nian vector fields are tangent to the co-adjoint orbits, which are precisely the symplec-

tic leaves of the Poisson foliation arising from the bracket {., .}. They are symplectic

manifolds, and the inclusion of an orbit O -, g* is a Poisson map.

If in addition g admits a non-degenerate invariant bilinear form, then one can

identify g - g*, the co-adjoint action corresponds to the adjoint action, and the

equations of motion can be written in "Lax pair form":

= advH()z ·-

2.3. The involution and factorization theorems. A map R E End(g) is said to

be an "R-matrix", if the associated R-bracket, defined by

[X,Y]R = ([RX, Y] + [X, RY]),

is a Lie bracket. When this is the case, the R-bracket gives rise to an associated

R-Poisson bracket {., }R on g*.

Involution Theorem. Functions from I(g*) are in involution with respect to {., }R.

Proof. We have

{f, g}R(U) := (, [Vf, Vg]R) = -(, [RVf, Vg] + [Vf, RVg]).

If f, g are invariant then adf- 0 ad;., and the result follows. 

12



A NEW COMPLETELY INTEGRABLE SYSTEM

Suppose now that the Lie algebra g, which corresponds to a connected Lie group G,

has a vector space splitting g = 9+ + g-, where g+, g_ are subalgebras corresponding

to connected subgroups G+, G_ respectively. Let HI denote the projection operators

onto g± along gT, so for each X E g we have X = X+ + X_, where X± = Il±X. Let

R denote the endomorphism of g given by

R= H+ - IH ;

this is an R-matrix, whose corresponding R-bracket is

[X, Y]R = [X+, Y+ - [X, Y_].

This bracket is of particular importance because of the following proposition:

Proposition.. The equations of motion induced by a function H E I(g*) with respect

to the above R-matrix have the form

d _
dt -adM., where E g*, M = ±IVH(,).

If g admits a non-degenerate invariant bilinear form, so that one can identify g C g*,

and a = ad, then these equations can be written in Lax-pairform:

dx
/ = [X, M+]

Proof. The vector field associated to H by the R-bracket is EH = {, H}R, and so

(EH)1,F = (H, [VF, VH]R)
1

-= (, [V+F, V+H] - [V_F, V_H]).

Since H is invariant, ad'H E 0, so that we get EH = -ad*+H = adH7_, which proves

the result. 

Remarkably, a simple recipe exists for solving the equations of motion associated

to H by the R-bracket:

Factorization Theorem. Let g(t) be the smooth curves in G± which solve the

factorization problem:

exptVH(o) = g+(t)-'g_(t), g±(O) = Id.

13
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Then the R-matrix flow of H E I(g*) through the point do E g* is given by

((t) = Adg;(t)fo .

Proof. Note that because of the splitting of g, the factorization described will exist,

at least for t near zero. Differentiating the proposed solution with respect to t gives

= ad*g-(,o so we need to show that gT 1 = -M+. Set X = VH(( 0 ) and take

the derivative of g+ exptX = g_. This gives dRexptXg+ + dLg+ exptxX = g-, where

R, L denote the right and left multiplication operators on G. Since exp tX = g-lg_,

this becomes

g+g-l + Ad9_X = g-I1

But Adg_X = Adg_VH(o) = VH(Ad;g_o) = VH((t)), using the invariance of H,
so that

VH((t)) = gl - +g'

Now apply the projections HI+, and we get the desired identity. l

Notice that if G_ nG+ = {Id}, and for some to one has exp toVH(o) = Id, then by

uniqueness of the factorization, it must be that g+(to) = Id, and so the flow generated

by H is periodic. This observation can be very useful when one is trying to find action

variables, which by definition must generate periodic flows.

2.4. The Kostant-Symes Involution Theorem. We can now express the usual

Kostant-Symes involution theorem as a consequence of these theorems. Since g =

g+ + g_, we have g* = Ann(g+) + Ann(-_), where Ann(g+) are the annihilators of

Bg± in g*. Because one can identify Ann(^) ' g, we get g* - 4; + g*..

Now note that from the R-bracket induced by the splitting, there is an associated

R-adjoint action RAd of G, which we can express in terms of the ordinary adjoint

action:

RAdepxY = AdexpX+ Y+ + Adexp-x_-Y_-

Taking E g .; Ann(g_) we have that

(f, RAdexp -xY) = (, Adexp -x+ Y+)

= (Ad*,,X+, Y+)

= (H; Ad,,px+ , Y).

14
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Thus the R-co-adjoint action of exp X on Q is given by II Adxpx+ , which is pre-

cisely the ordinary co-adjoint action of exp X+ E G+ on E g;. This shows that

the R-co-adjoint action preserves g C g*, and that the R-co-adjoint orbits through

elements of g; are precisely the ordinary co-adjoint orbits under the action of G+.

We note also that if A E g* satisfies (A, [g+,g+]) = 0 = (A, [g_,g_]), (for example

if A is a character of g_), then A is fixed by the R-co-adjoint action.

Combining these facts we get the involution theorem usually attributed to Kostant

and Symes:

Kostant-Symes Involution Theorem. Suppose g = g+ +9-_ is a vector space split-

ting into two subalgebras, and that A E g* satisfies (A, [g+,g+]) = 0 = (, [g-,g-]).

(1) Functions on g; - Ann(g_) of the form Fx(P) = F(3 + A), where F ranges
over the invariant functions on g*, are in involution with respect to the Poisson

bracket on g;.

(2) The equations of motion on g; induced by a function of the form FA can be

written
di
dt = -adM,

where , = p + A, M = ±IIVF(f + A).

In particular we shall consider generalised Iwasawa decompositions g = + a + n,

for special infinite dimensional algebras, and take 9+ = a + n, g_ = . The symmetric

Toda lattice phase space will be identified as a (character shifted) co-adjoint orbit

of G+, and then the Kostant-Symes involution theorem will be used to find Poisson

commuting functions on the phase space.

2.5. Application to infinite dimensional algebras. The involution theorem fol-
lows from a formal algebraic manipulation, and so with suitable care can be applied

to infinite dimensional algebras. Suppose g = g + g_ is infinite dimensional, and

admits an invariant non-degenerate bilinear form (.,.), so that g embeds in 0* by

the mapping X 4 (X, .). The image is called the "smooth part of the dual", and

we restrict attention to this subspace. We also consider only smooth functions F

on this subspace which have a gradient, i.e. for which there exists a smooth map

15
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VF: g - g with dFxY = (Y,VF(X)), for all X,Y E g. Then the Poisson bracket

on such functions is defined by the usual formula,

{F, H}(X) = (X, [VF, VH](X)),

although {F, H} need not possess a gradient, so this is not a Lie bracket in general.

Now one can show by the usual argument that if F is invariant under the action of

G on g C g*, then F is a Casimir for the bracket, i.e. {F, H} = 0, and the involution

theorem goes through as in the finite dimensional case. The form (., ) also gives an

embedding of g± C g, and so when we come to speak of the Poisson structure on

Ig, and the co-adjoint orbits in g, we similarly restrict attention to the invariant

subspace g, and interpret the brackets and so on, in the appropriate fashion.

2.6. Some Lie Theory. We now fix some notation, and recall a few standard facts

from Lie theory, (see for example [Kn]). These facts are worth keeping in mind, as

the analogous results for infinite dimensional loop algebras, (particularly the Iwasawa

decomposition), will be important later on.

Take to be a rank n complex simple Lie algebra, and let G denote the corre-

sponding connected complex Lie group. Let [) be a fixed Cartan subalgebra of g, with

corresponding Cartan subgroup H, and let A denote the set of roots associated to

(g, [t), A+ C A a fixed choice of positive roots, and II = {a,... n} C A+ the cor-

responding simple roots. Let a*c E A+ denote the highest root, so that a*, = E kaic

for some non-negative integers ki.

Let g, denote the root space corresponding to a E A, and choose a Chevalley

basis {E}aEA U 1 < i < 1 • n} for . Here , = CE, and Hg = [E,, E_-] is

normalised so that a(H,) = 2. With respect to the Killing form (.,.) on , one has

that (ga, 9g) = 0 for a + P 3 0, with go0 - .

Take to be the compact real form of g determined by this basis:

= SpanR { iH,, E, - E_,, i(E + E_a) : E A} ,

and let K be the real compact immersed subgroup of G corresponding to t. Take

0: g - g to be the Cartan involution of g defined by , so that

O(H)=-H, (E)=-E-,

16
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and 0 extends by conjugate linearity to the rest of g. Set p = it, then g = + p is

a Cartan decomposition of g, into +1 and -1 eigenspaces for 0, and is orthogonal

with respect to the Killing form of g regarded as a real Lie algebra, which is given

by 2Re(.,.). At the group level there is a corresponding factorization of G into

G = K exp p.

The elements of and p are semisimple, (adx for X E , (resp. X E p), is anti-

symmetric, (resp. symmetric), with respect to the form B(X, Y) = -Re(X, O(Y))).

Take a = Spans{ H} and note that this is a maximal abelian subalgebra of p, con-

sisting of seinisimple elements of g, thus we can decompose with respect to the

ad-action of a. From the relative root system of (g, a), one arrives at a root space

decomposition g = n_ + m + a + n+, where m = SpanR{iH} is the centralizer of a in

e, and n+ and n_ are respectively the sum of the positive and negative root spaces.

Because of our choice of a, n± = SpanR{E,, iE,: ±a E A}.

The resulting Iwasawa decomposition of g is g = + a + n+. Let A and N be the

immersed subgroups of G corresponding to the subalgebras a and n+ respectively.

Then A is a vector group, N is a nilpotent Lie group, and the Iwasawa decomposition

for G is given by the factorization G = KAN.

Example 2.6.1. Take g = sl(n+ 1, C), with invariant bilinear form given by (X, Y) =

Tr(XY). Let Eij denote the matrix with a 1 in the (i,j)-th position, and zeroes ev-

erywhere else. Take b to be the standard Cartan subalgebra spanned by the diagonal

matrices Ei,i - Ei+l,i+l, 1 < i < n, and define ei E * by ei(Ejj) = 6i,. Take the

standard positive roots given by ai = - Ei+l, 1 < i < n. The Cartan involution is

negative conjugate transpose (X) = -X t , which gives the Cartan decomposition

sl(n + 1, C) = su(n + 1) + isu(n + 1),

i.e. sl(n + 1, C) decomposes as a sum of skew-Hermitian and Hermitian matrices.

To see that this decomposition is orthogonal with respect to Re(., .), take X,Y E

sl(n + 1, C) to be respectively skew-Hermitian and Hermitian, so that Xt = -X and

Yt = . Then

Tr(XY) = -Tr(Xt t) = -Tr(YX) = -Tr(XY),

17
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and consequently Tr(XY) is pure imaginary, so that Re Tr(XY) = 0, and the de-

composition is orthogonal. Taking a C isu(n + 1) to be the algebra of real diagonal

matrices, the resulting Iwasawa decomposition is

sl(n + 1, C) = su(n + 1) + {real diag trace 0} + {strictly upper triangular}.

At the group level SL(n + 1, C) = SU(n + 1)AN, where A is the group of diagonal

determinant one matrices with positive entries, and N is the group of upper triangular

matrices with ones on the diagonal.
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3. Loop ALGEBRAS

Consider the algebra g[z, z- 1] = g C[z, z-'], of Laurent polynomials with coef-

ficients in g. This so-called "(polynomial) loop algebra" has bracket [Xzm, Yz n] =

[X, Y]zm+n, and possesses an invariant non-degenerate bilinear form, which by an

abuse of notation we also denote (., ):

(ZXmZm, ynZn) (Xm, y(Eg.z ,EYnz')=C(xY_m).
m n m

The form makes sense because the Laurent polynomials include only finitely many

non-zero terms. Note that we can think of elements of this algebra as finite Fourier

series, and can equivalently write the form as

(0, b) =2i, (Z()' (z)) z

3.1. A Cartan decomposition. We extend the Cartan involution 0 of g to g[z, z - 1]

by defining:

0(q0)(z) = ((Z- 1 )), so that O(Xzk) = o(X)z - k .

Remark. Notice that the map z -+ i- 1, is an involution of Cx with fixed point set

the compact real form S1.

The real form corresponding to is

Zm +z -m

eSpanR{ia( 2 ), Ez m - E_,z-m , i(Ez m + Ez- m ) : E , m E Z},

and we get the Cartan decomposition g[z, z - 1] = + i. Note that consists of those

elements of g[z, z - 1] whose image is in the compact form , for all z E S1. We also

have that and i are orthogonal with respect to the form Re(., .).

There is also a generalised Iwasawa decomposition for g[z, z-l], which we construct

after first giving the "principal gradation" for g[z, z-l'].

3.2. The principal gradation. The S1 action (ei .q)(z) = 0(e0iz), and the adjoint

action of the Cartan subgroup H, are commuting actions on g[z, z-l], which give rise

to the natural eigenspace decomposition [z, z -1] = @a,k ga 0 zk, (where go -- t).
We now generate this decomposition algebraically, as well as presenting a standard

gradation, and a generalised Iwasawa decomposition, for g[z, z-l].

19
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Let RD denote the trivial real algebra generated by the derivation D = izy, and

note that this is the infinitesimal generator of the S1 action described above. Take

the semidirect product 9 = RD x> g[z, z- 1 ], which has commutator

[(a, X), (b, Y)] = (0, [X, Y] + aDY - bDX).

Now take a as in section 2.6 to be the real span of {Hj, }, and set A = RD >4 a. This is

a commutative subalgebra of 9, and we get a root space decomposition corresponding

to the pair (, A). An element & E A*, &a 0, is said to be a root if the corresponding

root space

, = {X E : adq = (H)X VH E A},

is non-zero. One can easily verify that the roots of (, A) are given by

A = a + n- : EA, n E Z} U {ny : nEZ\1{O}}

where y E A* is defined by y(D) = 1, yl - 0. The corresponding root spaces are

Ga+ny = ga zn, ny = Zn .

Notice that because we began with a Chevalley basis we have a(HP) E R, and con-

sequently we can regard the roots a E *, (complex dual), of (g, b), as roots a E a*,

(real dual), of (g, a). Correspondingly we think of g, as a real two-dimensional space

spanned by {Ea, iEa}. We arrive at the (real) decomposition

R = RD+ ® z + 3 o X Z
k ac,k

which gives the desired decomposition for g[z, z-1].

Define a root & = a + n-y to be positive if n > O, or if n = 0 and a is positive in

A. Then a system of simple roots is given by

fl = {Oal, ... .n, - ca*},

(where ac = E kiai is the highest root of (g, a)).

Let Ho be the unique element of a satisfying a(Ho) = 1 for 1 < i < n, take

c := 1 + a*(Ho) = 1 + Eki to be the Coxeter number of the root system (g, a),

and set f = cD + H0o E A. By construction ad4 has integer eigenvalues. Let 9 m

20
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denote the eigenspace corresponding to the eigenvalue m E Z, and so now we have

R = RD + + m0om9, with

gm = { C) Zj' j = m}) {g ® zk : ht(a) + kc = m},

where ht(a) is the height of a root a with respect to the simple base H. By inspection

[Qm, rn] C 7mn+n, and we get the so-called "principal gradation" of g[z, z-1]:

g[Z, -1] = [ + - m.
m0O

From invariance of the form (, .) on g[z, z-'] defined at the beginning of this section,

one also has that (m, G,) = 0 if m Z -n, and the Cartan involution maps 0O(gm) C

5-m. Define fi+ = m>o+m, SO we can write the decomposition as

g[z, z - ] = f_ + m + a + f+,

where m = ia. We define the generalised Iwasawa decomposition to be

g[z, z- 1] = + a + i+

or simply g[z, z-'] = e + b where b = a + ii = a + n + zg[z].

Example 3.2.1. Consider g = sl(n + 1, C). Let Eij denote the matrix with a 1 in

the (i, j)-th position, and zeroes everywhere else. Take [) to be the standard Cartan

subalgebra spanned by the diagonal matrices E 1i, - Ei+l,i+, 1 < i < n, and define

Ci E * by Ei(Ejj) = i,j. Take the standard positive roots given by ai = ei - i+l,

1 < i < n. The highest root is a, = e - ,n+l, and the Coxeter number is c = n + 1.

The element that generates the principal gradation is H = (n + 1)D + Ho0 , where Ho

is given by

( n/2 /n/2 - ... O
n/2-1Ho -n2

-n/2 + 1
0 . . . -n/2

where the entries are anti-symmetric about the anti-diagonal.
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Let Dk be the span of {Eij : j- i = k), so that Dk denotes those elements

of sl(n + 1, C) non-zero only along the kth off-diagonal, -n < k < n. Then the

eigenspaces appearing in the principal gradation are given by

6(n+l)j = () z j E Z,

6(n+1)j+e = Di 0 zj + De-(n+l) 0 zj +l j E Z, 0 < e < n.

Thus Em>0gm consists of polynomials from sl(n+ 1, C)[z], (i.e. without z-1 terms),

whose constant term is strictly upper-triangular. The resulting Iwasawa decomposi-

tion is sl(n + 1, C)[z, z-1] = su(n + 1) + , where b is given by

b = SpanR{Eii - Ei+l,i+l} + Spanc{Eij : j > i} + z sl(n + 1, C)[z].

That is, b consists of polynomials in z with coefficients from sl(n + 1,C), whose

constant term is upper triangular, with real entries on the diagonal.

3.3. A special co-adjoint orbit. Consider the decomposition g[z,z -1] = e + b.

Each of these spaces is infinite dimensional, and so their duals are rather unwieldy.

For the time being we shall ignore questions of topology, and consider only algebraic

duals. The non-degenerate form (., ) gives a natural inclusion -L C b*, and from the

Cartan decomposition, tJ is i. We shall restrict attention to this subspace of b*.

Consider the element q, E i given by

o(Z) = Z(Eoi + E-a,) + E,*z- 1+ E_,z.

(Recall that a = E kiaci is the highest root of g). We shall realize the Toda phase

space as a co-adjoint orbit of exp b, or more precisely as a co-adjoint orbit of exp b,

through 0. Of course we have not yet associated a group to I, and must take

a completion of before we can do so, so that the meaning of exp b is not clear.

However, we can make sense of this as follows.

Take X E . Formally we know that since b is a subalgebra of g[z,z-l], the

action of badr on 0,, can be found by taking the action of adl on 0 in g[z,z-],

and projecting onto t' C b* along b-I. Invariance of (.,.) means that under the

identification of t C b*, ad* becomes ad, and we get

6adxqo = Inl.adxqo.
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Now b is generated by b, together with the element E_,.z, arid one easily finds

that because of the projection occurring in this formula, and the form of ~0, the

entire infinitesimal orbit is generated by the action of b alone. For X E b we have

Adexp(x) = eadx, and so the co-adjoint action of exp(X) on 0, can be written

exp(X) · 0 = II eadx .

For general X E b this also makes sense, provided we regard the projection as killing

all O(z 2 ) terms appearing in the potentially infinite series for eadx 0. This will be

precisely what happens when we pass to a completion for b in section 4.6, and so this

is how we shall intrepret the co-adjoint action of exp b on 0. The important thing

to observe is that the action effectively reduces to an action of the finite dimensional

group exp b = B, and so the corresponding orbit is finite dimensional.

Proposition. The co-adjoint orbit O of exp b through q0$ consists of points of the
form

H + yqi(Ea, + Ea_,,) + q(E.z- + E_,,.z)
i

where qi,q. > 0 satisfy q. n qki = 1, and H is in the real span of {H,,i}. For any
fixed H set OH = (H, .). Then the Poisson structure on 0o is given by

{PH, qi} = ai(H)qi, {lpH,q.} = -a.(H)q..

Proof. The algebra = a + n+ + zg[z] is generated by R{H,,} + C{Eai } + CE_. z,

and it suffices to find the action of these generators. To calculate the projection II.

we note that according to the splitting g[z, z-'] = t + b- we have

pH = Re(,)H + Im(p)H,

Ei = O + E E_,ai = (E-,i + Eat) - Eai,

E_a.z = 0 + E_o.z, E.az - 1 = (Ea.z-1 + E_,.Z) - E_.z .

First we calculate exp(H). 0, where H is in the real span of {H,}:

Consider eadH(Ea + E_a) = ea(H)Ea + e-a(H)E_a. Projecting on to t] along b- gives

exp(H) (E, + E_a) = e-a(H)(Ea + E_a),
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and likewise

exp(H) (Eaz -1 + E_,.z) = e(H)(E,,z - l + E_.z).

Thus the action of exp(H) on o, is given by

exp(H) 0 = E qi(Eai + E_a,) + q.(E,,z - 1 + E_,.z), (1)

where qi = e-ai(H) and q. = ea'(H). Since we started with a Chevalley basis, cai(H,,)

is an integer for each i and j, and by assumption H is in the real span of {Haj}, so

that qi, q. are real-valued and positive. In addition a. = Ekiai, which implies that

q* . Iqi = 1.
Similarly, taking E C, and E H, we get

.exp(#sEo) Oo = Re(#)HO + Oo (2)

exp(E_.Z. z). = Re()Ha. + 0o. (3)

Repeated applications of the generators to (1), (2) and (3) gives the required orbit.

To calculate the Poisson brackets on 0o note that the q's can be regarded as linear

functionals on 1- C b*, with

(Ea, .) (Ea. z, )
(EI Ea)' q

- (Ea., E_1*) 
Fix H in the real span of {H,i} and set OH = (H, .). The gradients of these linear

functionals are given by

E. E.aZ- 1

Vq = (Ea,, E_a) Vq (Ea., E_) V = H.

(Note that these gradients are normalised to belong to b). The Poisson brackets are

now easy to calculate. For example,

{fH, qa}(X) = (X,[V/H,Vqa](X)) = (X,[H, E )

E,,= a(H). (X, E ))

= (H) q(X).

So {1H, q.} = a(H) q, and similarly {OH, q*} = -a*(H) q*. All other brackets are

zero. 
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3.4. The main example: g = sl(n + 1, C). We can now construct the classical

symmetric periodic Toda lattice. We have

O

1

0 (Z) = 0

z

1 0 ... Z - 1

0 1 ".

1 0 ". 0

-.. 0 1 0

and the co-adjoint orbit of exp 6 through 0o(z) consists of matrices of the form

bl

a,

+(z) = o

an+l Z

al O · ·* a,+lza, 0 ... an+l z - l

b2 a2 ".

a 2 b3 ". 0

. ban+
*-- O an bn+l

where ai, bj E R, ai > 0, and Ebi = O, Hai = 1. The Poisson structure is given by

{bi - bi+i, ai} = 2ai, {bi+ - bi+2, ai} = -ai ,

which reduces to

{ai, bj} = (i+l,j - ij)ai.

From the form (kZk, CE1 jz) = Tr k_-k, we get the Hamiltonian

1 1 n+l

H(,) = 2 (, > = 2 E
k=l

n+l

k = ak 
k=l

and so recover the classical real symmetric periodic Toda lattice.

3.5. A Natural Central Extension. The operator D = izd is a derivation on
g[z, z-1], and maps Xzk -+ ikXzk. To this we can associate a 2-cocycle w via the

form (, .), with

w(, ,b) = (<, DO),

or in terms of Fourier series

W(0, ) = i (-k, k)-
k
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This is a C-valued skew-symmetric bilinear form on g[z, z-1], which satisfies

W([6, 0], 6) + cyclic = 0,

and so can be used to construct a central extension of g[z, z-1], which we denote

b[z1 z 11:

0 o- C --+ [z, z-1 ] --+ g[z, - 1] --+ 0.

As a vector space b[z, z-1] is g[z, z-1] + C, and its commutator is given by:

[(O, P), (,, q)] = ([O, i] w(O, )).

This extended loop algebra, and its completions, will play a key role from now on.



A NEW COMPLETELY INTEGRABLE SYSTEM

4. THE COMPLETED LOOP ALGEBRAS

We now consider various completions of the algebras g[z, z-'] and [z, z- 1]. The

goal is to do this in such a way that the existence of corresponding Lie groups is

assured, along with group factorizations corresponding to the Iwasawa decompositions

of the algebras.

4.1. The smooth loop algebra. Perhaps the most natural completion of [z, z -1]

is the smooth loop algebra Lg, which is the space of smooth maps from S1 to g. By

taking Fourier series one can identify this algebra as
00

Lg = { q= E , Ezk:nkZk unif. cvgt. on l = 1 n > }.
-oo k

The bracket on g induces one on Lg making it into an infinite dimensional Lie algebra.

With the topology of uniform convergence

dN

,En E LSg O-n ~ | Id-N(fn-)l 0 uniformly VN > 0O
Lg has the structure of a Fr6chet space; it is a complete Hausdorff metrizable locally

convex topological vector space, (for the details see [Ha]). The corresponding infinite

dimensional Lie group is the smooth loop group LG of smooth maps from S' to G.

The definitions of the Killing form (, ), the derivation D = izz, and the 2-cocycle w

for the algebra g[z, z-l], all pass without problem to Lg, and give rise in particular

to a central extension Lg of Lsg by C, which is nothing but the smooth completion

of the extension [z, z-l].

The problem with choosing the smooth completion of [z, z - 1] is that in general

there is no guarantee of the existence of a group corresponding to L,g, (see for example

[PS] Theorem 4.4.1), and so the factorization method cannot be used to generate

solutions for Lax-pair equations in Lg. Because of this we are led to consider other

completions of g[z, z-l].

4.2. w-completions of the affine algebras. A function w: Z -- (0, oo) is called a

weight if w(k + m) < w(k)w(m). Given a weight w there is an associated norm I1 I1,

on g[z, z -1] given by

|E XkZIk| = I XkIw(k).
k k
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Let Log denote the completion of g[z, Z- 1] relative to this norm. That is, Lutg consists

of all those infinite Fourier series with coefficients in g, that are uniformly convergent

with respect to I11 II,. The norm extends to [z,z -1] by setting 11(z) + PlIw =

Iq(z)IIl + IPI, and the corresponding completion is just L",g+C. Note that if w(k) >
Clkli for some constant C > 0, then these completions are Banach Lie algebras,

([GW2]).

Definition 4.2.1. (a) w is said to be symmetric if w(k) = w(-k).

(b) w is of non-analytic type if limk-,,O w(k)l/k = 1.

(c) w is said to be rapidly increasing at infinity if there exists A with 1 < A < 2, and

limk-,, IkL-1/A logw(k) = oo.

Remark. Note that if w is rapidly increasing at infinity, then limk--., w(k) k- p = 00

for all p > 0, and from this one can easily deduce that the elements of Lg are smooth,

so that Lug C L,g.

Example 4.2.1. Take w(k) = exp(kl12 /3 ). Then w is symmetric, of non-analytic

type, and rapidly increasing at infinity, (e.g. take A = 7/4 in part (c) of the definition).

4.3. Associated Lie Groups. Suppose w is a symmetric weight of non-analytic

type. Let L,,G denote the set of Fourier series with coefficients in G, which are

uniformly convergent with respect to the weight w. Then L,G is a Banach-Lie

group, whose corresponding Lie algebra is Lwg. As noted in section 4.1 the extension

Lg may not correspond to any Lie group, but for the central extension of L,g we

have the following theorem from [GW2]:

Theorem 1. If the symmetric weight w is of non-analytic type, and rapidly increas-

ing at infinity, then there is a complex Banach-Lie group L, G, whose Lie algebra is

Lg = Lg + C, and which is a central extension of L, G by Cx.

Henceforth we shall assume that we have fixed some choice of weight w of symmet-

ric, non-analytic type, that increases rapidly at infinity, and that we have constructed

the completions described above. As a notational convenience we shall drop any ref-

erence to w from now on, so that Lg shall mean the w-completion of the Laurent
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polynomial algebra, which in general will be strictly smaller than the full smooth

loop algebra. The corresponding group will be denoted LG, and the associated cen-

tral extensions will be denoted Lg, and LG, respectively.

4.4. A generalised Iwasawa decomposition. Earlier we constructed the decom-

position g[z, z- 1] = e+it, where the algebra e is the real form of the Cartan involution

0, extended to g[z, z-1 ] by (0())(z) = 0(+(z)). consists of those elements of g[z, z- ]

whose image is in the compact form e for all z E S1. Via the principal gradation we

came to the Iwasawa decomposition

g[z, -'] = + + n+ + zg[z]

=e+ 

where a is the real span of {H,), and n+ is the sum of the positive root spaces. We

note that b consists of polynomial loops with no z-1 terms, and whose constant term

lies in b = a + n+.

The definition of 9 makes sense on Lg, and leads to the decomposition Lg = e + ie,

where now denotes those w-smooth loops invariant under 9, (and so whose image is

in for all z E S1 ). The generalised Iwasawa decomposition is

Lg = + a + +

where b is the w-completion of the corresponding algebra for g[z, z-1], hence consists

of those w-convergent Fourier series with no z- 1 terms, and constant term in b.

Finally, 0 extends to a conjugation of Lg, by setting 0(q(z), p) = (((z)), p), which

leads to the decomposition Lq = ( + R) + i(i + R), and the Iwasawa decomposition

Lg = (I + R) + (b + iR) .

The justification for calling these splittings Iwasawa decompositions, comes from

the work of Goodman and Wallach [GW2], which shows that there are corresponding

factorizations at the group level, very much like the finite dimensional case. Para-

phrasing [GW2] theorems 5.5, 6.4 and 6.5 we have:
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Theorem 2. There are Lie subgroups K, B of L G, whose Lie algebras are e and b,

such that the map Kx B -- LG: (k, b) - kb is a real-analytic manifold isomorphism.

Similarly, there are Lie subgroups K, B of L G, whose Lie algebras are I+R and b+ilR,

such that the map kx B -+ L G: (k, b) - kb is a real-analytic manifold isomorphism.

The group K is a central extension of K by S', and B = B R.

As a matter of convenience we shall consider the splitting

Lg = ( + C) + b

Because elements of b have no powers of z-1 in their Fourier series, w(b, b) = 0, so

that the terms in this splitting are (real) subalgebras of Lg. The corresponding group

factorization is LG = (K R)B.

4.5. The gauge-coadjoint action. The algebra Lg = Lg + C has commutator

[(, p), (, q)] = ([O, ], w(O, ))

Because (0, p) is in the center of the algebra, one can think of as an adjoint action of

Lg on Lg:

ad (, q) = (adi0,w(O, b)).

This in turn comes from an adjoint action of the group LG on Lg:

Lemma 4.5.1. For y E L G, and (b,q) E Lg

Ad (ib,q) = (A4d, q-(y-1Dy, 0)).

Proof. One can easily verify that this is an action, so it suffices to show that the

derivative at the identity of this action is ad. Suppose 7t = exp t4 for some E Lg.

Then

d= expt(o) = d exp t(O + s),
dy ds =o

so that
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d2

= [dtd |=O exp-tq(9) .exdt ds ,s,t=o

= +i -(o[-/( + ) + s)]ds (=)

d

= D.

This shows d Io ( 'Dt yt, i)
required. l

= -w(0b,;), and so It=OAd, (;, q) is ado(;b,q) as

From now on we shall treat Lg = Lg + C as a real Lie algebra. We introduce a

nondegenerate real-bilinear pairing ((, )) on Lg, defined by

(((O, p), (b, q))) = Re{(Q, V) + pq}.

Remark. Note that this form is not invariant. In fact if g is semi-simple then Lg

does not possess a non-degenerate invariant form. This is because [Lg, Lg] = Lg,

and consequently a central element (0, p) paired with any other element of Lg by an

invariant form will be zero.

Using this form we can embed Lg C Lg as a real subspace. The image of the

embedding is the so-called "smooth part of the dual"; it is invariant under the co-

adjoint action of LG as the following lemma shows:

Lemma 4.5.2. If y E LG and (,p) E Lg C (Lg)*, then the co-adjoint action of 7

on (,p) is given by

Ad (,p) = (Ad + pD,-',p).

Note: We shall at times use the abbreviation -y (, p) for Ad(q, p).

Proof. The verification is straightforward:

:p t(9 + )
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= Re{(, Ady-l ) + pq- p(yD-y- ',)}

= Re{(Ad, + pD7-', +) pq}

= (((Ad#O + pDy7-' ,p), (b, q)))

This completes the proof. 

Definition 4.5.1. This action is called the gauge co-adjoint action, or simply the

gauge action, of 7 E LG on (,p) E Lg.

Remark. The reason for this nomenclature is the following. For a principal G-bundle

P -- X, the gauge group of the bundle is defined to be the group of fiber preserving

automorphisms of P, that commute with the G action. This group has a natural

action on the affine space A of connections on the bundle. For the trivial G-bundle

S1 x G - S1 there is a natural identification of 5 ~ LG, and A - L,g, and

the action of a gauge group element y E LG on a connection E Lsg is given by

y k= Ad-b + Dy -1 .

4.6. The Toda phase space. In section 3.3 the Toda phase space was constructed

from the splitting g[z, z -1] = e + b, by looking at the co-adjoint orbit of exp b through

an element ~ E l C b*. We argued that even though exp b was ill-defined at that

point, one could make sense of the action by restricting attention to exp b = B.

Now we do have groups corresponding to our algebras, and by considering the

splitting LOg = ( + C) + b we can examine the co-adjoint orbit of exp b = f through

(,0 O) E ( + C) C b*. The orbit consists of all points of the form

II(+C)7 ( 0o, ) = (.l±Ad 0o, 0),

where y E B. The first term is just the w-completion of the orbit O0 found in the

g[z, z - ] case, which is just 0, itself. Thus the co-adjoint orbit through ( 0,O0) is

(o0, 0). Note that to generate the full orbit it suffices to consider only the action of

B C B, which is consistent with our comments in 3.3.

We will identify the Toda phase space not as (0, 0), but as a character shifted

version of this.
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Claim. (O, i) is a character of e + C.

Certainly (O, i) E b C (+C)*, so it suffices to check that (((, i), [ + C, + C])) = 0.

But this follows from the fact that w(t, t) R, which one can verify by first checking

that Di C , and then showing that ( , ) E R.
We henceforth identify the

Toda phase space (0, 0) + (0, i),

and shall apply the Kostant-Symes involution theorem to this (character shifted)

co-adjoint orbit.
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5. INVARIANT FUNCTIONS ON Lg

We now endeavor to construct a family of Poisson commuting functions on the Toda

phase space (O, i), by an application of the Kostant-Symes involution theorem. To

do so we require invariant functions on (Lg)*, (or more precisely on Lg C (Lg)*).

5.1. The monodromy. Roughly speaking, coadjoint orbits in Lg C (Lg)* corre-

spond to conjugacy classes in G. A natural way to get invariant functions on Lg is

to take class functions on G, and pull them back to Lg via this correspondence. We

make this precise as follows.

Definition 5.1.1. Given (, ,p) E Lg, (p #~ 0), consider the differential equation

dt h(t)- = l4(eit), h(O) = Id,
dt p

where h: R -+ G. We shall refer to this as the monodromy equation associated to

(4, p). The monodromy M(,,p) of the element (, p) E Lg is defined by M(,,p) = h(2r),

and we call M: (, p) - M(,,p) the monodromy map. An element (, p) will be said to

be loop-regular if its monodromy is regular, that is, if the maximal abelian subgroup

of G containing M(,O,p) is conjugate to the Cartan subgroup.

The monodromy map is a smooth tame map of Frechet spaces, ([Ha] Theorem

3.2.2), and consequently the set of loop-regular elements is open in Lg.

Remark. The monodromy has a simple geometric interpretation. As noted earlier,

we can identify Lg with the space of connections on the trivial principal bundle

S1 x G - S1 . Given a connection 3, the horizontal lift of the curve c: R -

S1: c(t) = eit, through the point (1, Id), is (c(t), h(t)) where h(t) is determined by the

differential equation in the definition. M(4,p) is thus the monodromy, (or equivalently

the holonomy), of the connection 'O. This interpretation shows that the solution h(t)

exists for all t E R.

The following proposition gives a parameterization of the gauge co-adjoint orbits,

and will allow us to define invariant functions on Lg C (Lg)*.
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Proposition. The monodromy classifies the gauge co-adjoint orbits in the following

sense:

(1) If y E LG, then the monodromy of 7y (, p) is (1)M(,p)y(1)-'.

(2) If the monodromy of each of (, p), (, p) belong to the same conjugacy class

in G, then there exists -y E L G with y (q, p) = (, p).

Hence for fixed p Z 0, the monodromy map gives a 1-1 correspondence between coad-

joint orbits of L G in L x p}, and conjugacy classes of G.

Proof. (1) If -y (,p) = (,p), one can easily verify that h(t) = (eit)h(t)7(1)l solves
the monodromy equation for (, p), and the result follows.

(2) Suppose h, h are solutions to the monodromy equation for (, p), (, p) respectively,

and that g E G conjugates M(0,p) to M($,p). Take y(eit) = h(t)gh(t) - 1, then '(qy ,p) =

(cAP). ]

Hence by composing class functions on G with the monodromy map, we get a
natural invariant family of functions on Lg C (Lg)*. By the Kostant-Symes theorem,

these functions will Poisson commute when restricted to the Toda orbit. The rest of

the paper will be spent demonstrating that this gives a completely integrable system

on the orbit.

5.2. Locally defined invariant functions. Consider a family of generators of the

class functions of some matrix group. The values of these functions, evaluated at
a particular matrix A, determine the eigenvalues of that matrix. If the matrix is
regular, (i.e. has distinct eigenvalues), one can define "eigenvalue functions" near A,
in terms of the generators. Essentially this involves conjugating matrices near A to

diagonal form, and taking the diagonal entries; locally this map is well-defined, up to

a choice of ordering of the eigenvalues. It is also invariant under conjugation.

We now give an analogous construction of invariant locally defined functions on

Lg, defined near loop-regular elements. First observe that loop-regular elements may
be conjugated to x CX under the gauge action:

Lemma 5.2.1. If (, p) is loop-regular, then there exists -y E LG and a constant loop

E C Lg such that y (,p) = (, p).
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Proof. By loop regularity M(4,p) is conjugate to some h E exp tl. Suppose h = exp H

and set (z) = H E Lg. Then M(,,p) = h, so M(4,p), M(,,p) are conjugate, and there
exists E LG with y (,p) = (,P). 

For a loop regular (, i) in the Toda phase space eo, more can be said, as the

following lemma, which will be used later on, shows.

Lemma 5.2.2. If ( , i) is a loop-regular element in the Toda phase space, there exists

E K C LG, and y E a C j such that (, i) = y (, i).

Proof. The monodromy equation for (, i) is ff-' = -iq(eit). Since +(z) E i, this

shows that f(t) E K for all t, and in particular the monodromy f(27r) = M(,,i) is in K.

By loop regularity, and since K is the compact form of G, M(,i) can be conjugated

in K to an element of the maximal torus H n K of K: kM(,,i)k -1 = h E H fn K,

for some k E K. But h can be written h = exp -2irip for some i E t n = ia,

and is the monodromy of (, i). Because the monodromies are conjugate in K, and

the solutions of the monodromy equations have images in K, there exists y E K:

. (,i)= (,i). []

We now show that locally, gauge-conjugation to x Cx is a well defined map.

Specifically we prove:

Proposition. Fix a loop-regular (, p), and a (, p) E [j x Cx gauge conjugate to it.

Then there exists a gauge invariant loop-regular neighborhood U C Lg of (l, p), and

a well-defined smooth gauge invariant map I1: U -- I such that #(qo, p) = .

Proof. This proposition follows from a standard implicit function theorem argument,

although in this setting we need the Nash-Moser inverse function theorem for tame

Fr6chet spaces, (see [Ha] for more details). We give a sketch of the argument.

Let v: G - C denote the vector of character maps, corresponding to the fun-

damental weights of g. These characters freely generate the ring of class functions,

(see [St], pg.87). Define X: Lg -- C1 to be the composite of this map with the mon-

odromy map: X = vM, and let X denote the restriction of X to x Cx. Define

F: L9 x ( x Cx ) Lg x C1 by F = (prL, X - ), and note that F is a smooth tame

map.
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Claim. F is locally invertible at ((, p), (i, p))

This follows from the Nash-Moser theorem, after one shows that (D)- 1 and DX are

smooth tame maps near ((O, p), (, p)), which is an easy consequence of the definitions.

Hence by the standard argument one constructs an open neighborhood UI C Lg of

(/s, p), and a smooth map : U _- x C which satisfies F((', q), A(O, q)) = ((7, q), 0),

and A(j, p) = (, p). (Note that since the set of loop-regular elements is open in Lg,

we can without loss of generality take all the open sets constructed to be loop regular).

Now because (, p) is loop regular, its stabiliser in the affine Weyl group is trivial,

and so we can find a neighborhood N C 1 x C' of it in which no two elements are

conjugate by the Weyl group action. By the continuity of A, shrinking U if necessary,

we can assume that (U) C N. Now set U = LG * U, the image of U under the gauge

action of LG. Define #: U -+ f] to be the map which first gauge conjugates u E U to

U, then maps to x CX by A, then projects to Ij. By construction # is well defined,

and has the desired properties. 

We can now define, at least locally, invariant functions on the set of loop-regular

elements in Lg. We simply use the map # constructed above to gauge conjugate the

loop-regular (, p) to (h, p) in the Cartan subalgebra i x C C Lg, and then evaluate

a(h), for roots a E A. In particular we use the simple roots:

Definition 5.2.1. For j = 1,...,n, define Ij: U - R: (, p) Re[aj(#(0,p))].

The goal is to show that these functions generate a completely integrable system,

when restricted to the Toda orbit. Notice that despite the local definition of these

functions, the flows that they generate on the orbit are defined for all time. That is,

they never leave the region of definition of the functions. This is because from the

factorization theorem, the flows are effected by a co-adjoint action on the starting

point, and our functions are defined on co-adjoint invariant neighborhoods.

Of course we must first show that they are even defined on the Toda orbit, by

proving the existence of loop-regular elements there. We must also prove that when

restricted to the orbit, the Ij are functionally independent. Poisson commutativity

is guaranteed by the Kostant-Symes theorem, since by construction the functions are

invariant on Lg.
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Once these things have been proven, we will also have shown that the globally

defined functions obtained by composing class functions of G with the monodromy

map, define a completely integrable system on the orbit. This follows because from

the construction of p, one sees that these global functions determine the values of the

local Ij.

Before we go on to the proofs we present an example of what is involved in calcu-

lating the functions Ij.

Example 5.2.1. Take g = sl(n + 1, C). The typical form of an element in the orbit

is given by (, i) where

b al O .*0 an+lz-

al b2 a2

+(z)= 0 a2 b3 ". 0

: · '*. . a n

an+l Z... 0 an bn+l

The monodromy equation is h(t)h(t)- 1 = -iq(eit) with h(O) = Id. Because q is Her-

mitian, the solution h(t) will be unitary, and in particular the monodromy M(O, i) =

h(2ir) belongs to SU(n + 1), and so has modulus one eigenvalues: eial,..., ein+ },

where each Ai belongs to R. The regularity assumption means that these eigenvalues

are distinct. The Ai's are determined only up to a choice of their ordering, and up

to addition of an integer multiple of 27r. (This corresponds to the action of the affine

Weyl group on x C). Making a choice of Ai's, define the map p so that it takes

(0, i) to diag(Al,..., A,+1). Then the functions Ij corresponding to this choice of P

map Ij : (, i) - Aj - j+l.

5.3. The gradient of Ij. We finish this section with a calculation of the gradients

of the functions Ij. The following lemma will make the calculation relatively easy:

Lemma 5.3.1. The gauge orbits are transverse to [ x C.
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Proof. This follows from noting that

((ad;(hp), (h',p'))) = (((hp), -ado(h'p')))

= -(((h,p), ([0, h], O)))

= -Re(h, [, h']),

which is zero using the invariance of the Killing form, and the commutativity of F.

But ad*,(h, p) is tangent at (h, p) to the gauge orbit through (h, p), which proves the

result. 

For each a EI H take hj E to be the unique element satisfying aj(h) = (h, hj) for

every h E . Note in particular that hj is in the real span of the H",'s. The gradients

of the Ij's are now straightforward to calculate:

Proposition. The gradient of Ij at (, p) E U is given by

1VIj (, p) =-j( j(+ p)))

where y E LG satisfies (, p) = A (y(o, p), p).

Proof. We first suppose that (h, p) E U n ( x C), with p(h, p) = (h, p), and evaluate

VIj(h,p). By the lemma, the tangent space at (h,p) decomposes into an x C

component, and a transversal component in the direction of the orbit through (h, p).

If (', q) is in the latter direction then (, q) = ad*(h,p) for some fE Lg, and

((( q), VIj(h, p))) It=,i((h, p) + tad,(h, p)),

which is zero since Ij is invariant under the gauge action. For a vector (h', p') in the

[ x C direction we get

(((h, p), VIj(h, p))) = tItoj((h, p) + t(h', p'))

dt= t=oRe aj(/(h + th', p + tp')).

Now (h + th', p + tp') has monodromy exp 2ir h+th,, which is also the monodromy of

(ph+h', p). This element can be made arbitrarily close to (h, p) by taking t sufficiently
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small, and so p of it will just be ph+th, for small t, since fixes a neighborhood of

(h, p) in U n (t) x C). Hence we get

(((h, p), VI(h, p))) = I t Ij((h, p) + t(h ,p'))
dt

Re | t= (h) + t c(h')j

=Re{ ca(h)+a (h')}

= (((h p'), (h, -- (h))))

Thus VIj(h, p) = (hi, -a(h)). Now take a general (,p) E U, so there exists y E LG

such that (, p) = Ad;(h,p) where h = (,p). Then

(((, q), VI(, P))) d= | _0(Ad(h, p) + t(b, q))

= djt=ojI((h,p) + tAd_ (0b, q))

= (((d, q), AdVIj(h, p))

And so VIj(q,p) = Ad,(hj,-paj(h)) as claimed. 

This calculation will be used in section 7 to show that the functions Ij, when

restricted to the Toda orbit, are functionally independent there.

Notice that despite the simple form of VIj, the behavior of exp tVIj is still un-

clear, and periodicity is by no means certain. This should be compared with Singer's

work on the complexified non-periodic Toda lattice, where exp of the corresponding

quantity is plainly periodic, and one gets complex action variables, [Si].

Another discrepancy with Singer's work is that commutativity with the Toda

Hamiltonian also seems to break down. Consider H: Lg - R defined by

H(P, p) = Re(,V) 

This function gives the usual Toda Hamiltonian when restricted to the Toda orbit, but

since it is not invariant under the co-adjoint action, we can't use the Kostant-Symes

theorem to deduce that it commutes with the functions Ij.
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Instead we calculate the bracket directly. One can easily verify that the gradient

of H is VH(I', q) = (b,0). Applying the R-bracket formulation to the splitting of

Lg = ( + C) + b we get

{H, '}R(0 'i) =-(((O, i), [VH, (VIj);]))

where we have used the invariance of Ij, and are projecting VIj onto b along + C.

Plugging in our expressions for the gradients we get

{HI, I}R(O' i) = -Re{(, [, (Adyhj)]) + iw(A, (Acdtyhj ))}

= -Re iw(O, (Ad,hj);)

Using the general form for a point (, i) in the Toda orbit, and a Fourier series

expansion for (Adyh j );, this further reduces to

{H, I }R(', i) = q.Re(E., [(Adyhj)]ll)
where [(Adhj))]l denotes the coefficient of z in the Fourier series for (Adhj). Un-

fortunately, it seems unlikely that this quantity is zero for each point in the phase

space at which Ij is defined, (recall that 7 is determined by (, i) via (, i) = y7 (y, i)).

Thus our functions seem not to commute with the Toda Hamiltonian on the Toda

phase space. Nevertheless, commutativity is certainly "close", suggesting that it may

be possible to find some slightly perturbed Toda Hamiltonian which does commute.

For the present paper, we shall content ourselves with showing that the functions

Ij do generate a completely integrable system on the Toda phase space.
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6. EXISTENCE OF LOOP-REGULAR ELEMENTS IN THE TODA PHASE SPACE

We now show that there are loop-regular elements in the Toda phase space, so

that it makes sense to restrict the functions {Ij} there, and consider the flows they

generate.

If we consider only elements (, p) E Lg with p = i, we can regard the monodromy

map as mapping M : Lg - G : -+ f(2ir), where f: R - G solves the equation

ffl = ?(eit), and f(0) = Id. This definition easily extends to any 0 E C(R,g).

Given a smooth function : R -+ g, define the "lift equation" associated to 0 to be

df(t) f(t) f(t)-= (t), f(O) = Id,
dt

where f: R -+ G; that a unique solution exists follows from the smoothness of .

Abusing notation, we define the "lift map" M: C (R,g) - G by M(+) = f(2r).

Thinking of Lg as sitting inside COO(R,g) as the subspace of smooth 2r-periodic

functions, the lift map of an element E Lg is just the ordinary monodromy of

(q, i) E Lg.

Notice that if we consider the trivial principal bundle G -, IR x G -i R, (whose

space of connections can be identified with f1l(R)®g m C°°(R, g) ), then the horizontal

lift of the curve c(t): t + t through (1, Id), determined by the connection , is given

by (c(t), f(t)), where f(t) solves the lift equation for . This interpretation shows

that the solution f(t) exists for all t E R.

Lemma 6.0.2. If f solves the lift equation for E C°°(R,), and 4 E C-(R,9),

then

M(O + p) = M(q)M(Adf-_,) .

Proof. Suppose g solves the lift equation for Adf-14b. Then

d(fg) 1(fg)r- = ff- + fg_'lf1l = (+ + 4) .
dt z

Thus M(k +- ) = f(27r)g(2r) = M(q)M(Adf-14).. o

We can now prove the following proposition:

Proposition. The set of loop-regular elements in the Toda phase space is non-empty.
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Proof. The idea is simple. First we construct a sequence of elements b, + , lying in

the Toda phase space, and satisfying:

(1) M(qs) = Mo is constant, and regular in G.

(2) The solution f to the lift equation for 0,, has image in the compact subgroup

K c G.
(3) s -+ ) as s - oo.

Properties (2) and (3) force Adfl;-IS --, 0 as s - oo, and so by continuity of M

one has M(Adf;- 1b) - Id. (In this instance, rather than using the fact that M is

a "smooth tame map" in the sense of Fr6chet spaces, since we know f, and Abs are

bounded we can appeal to a more robust theorem from the standard theory of o.d.e's

to deduce the desired continuity of M. See for example [J], section 2.3).

Applying lemma 6.0.2, and using property (1), we get M(0, + Vs) - Mo. Since

Mo is regular, and the set of regular elements in G is open, this implies that for

sufficiently large s the element M(5 + ,s) will be regular, and hence qs + As will be

loop-regular.

So the problem becomes one of finding a sequence 4, + s satisfying (1), (2) and

(3). To do this, we need a couple of simple lemmas.

Let {q : i = 1,...,n} C be a dual basis to the set of simple roots, so that

ci(e;j) -= i,j for all i, j, and set H = 2 i ci.

Lemma 6.0.3. H = ,0 , H,.

Proof. It suffices to show that ai(&I>o Hc) = 2, for each simple root ai. This is

equivalent to showing that (p, ai) = 1, where p = >o a. Let ri denote the Weyl

group reflection generated by ai. Since ri(ai) = -ai, and ri(p) = p - ai, using
invariance of the killing form we have:

(p, Cai) = (ri (p), ri((ai)) = (p - a, -ai) =-(P, ai) + (i, a1)

Since (ai, ac) = 2, we get (p, ai) = 1 as required. 1

Now H, : a E A} forms a root system, with base given by the simple co-roots

{H,, }. Thus H can also be written as a positive integer linear combination of the

43



MALCOLM QUINN

H,, so we have three expressions for H:

n n

H = ,= > Ho =c ciH iX
i=l a>O i=l

where the coefficients ci belong to Z>. Define

n n

E= EiE, , F = EV/iE_,
i=l i=l

Using the three expressions for H the following lemma is easy to verify:

Lemma 6.0.4. The triple H, E, F generates an algebra isomorphic to sl(2, C), with
[E,F] = H, [H,E] = 2E, [H,F] = -2F, and so there exists g E G such that
E+ F = AdgH.

We can now define the sequence qs + ,. Set p(s) = 1+2, where c is the Coxeter

number of the system, and take

n

s = p(s)(E + F) = p(s) E Z /(Eai + E_i) ,
i=l

i-=1 (p(s) (+ki)

where the coefficients ki come from the highest root a. = E kiai.

By construction , + i, belongs to the Toda phase space for each positive integer

s, and p, - 0 as s - oo. The solution to the lift equation for qs is f(t) = exp

and since 'b, belongs to , f(t) lies in K for all t. Because E + F = AdgH, the

monodromy of q is

M(OS) = exp-2riq, = gexp(-2ri 1 + 2 H)g-1
2c

= g exp(-2ri 2H) exp(2riH)-g- 1.

But exp(27riH, ) = Id, (in the adjoint representation H, is diagonal with integer

entries), and so exp(27riH) = Id. One also has that for each positive root a,

1 - 1a( H)= a(ZEEi)= ht(a) E Q N (0,1),
2( c c
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so that exp(-27riH) is regular in G. This implies that we have regularity of the

monodromy M(Os) = gexp(-2zrilH)g- = Mo. Thus the requirements (1), (2) and

(3) are satisfied, and the proof is complete.

Example 6.0.1. In sl(4, C) one finds:

1 + 8s
8

O

IvX
O

O

0

2

0

0

2

0

03

01)

0)O3
O

O

O O

0 -1

-1 o
0 -3

1 + 8s--8g
8

3
O

O

O

0
1

0

0

where g E 0(4), and

)s = (1 + 8

O

O

O

lz
6

0 0 z1-
00 0O

0 0
0 0 

and the monodromy of Os is given by

M(o,) = Mo = g

37ri
e 4

0

0

0iO

0 0 0

e-Tr 0 0 1

0 eT 0 
00 0 4
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7. INDEPENDENCE OF THE VARIABLES

Independence of the functions Ij on the Toda orbit O, = (, i) means linear

independence of the differentials dIj, at points where the functions are defined. This is

equivalent to independence of the associated Hamiltonian vector fields, obtained using

the symplectic structure of (O,. These vector fields will be independent at a point,

provided the flow through that point, generated by any non-trivial linear combination

of the vector fields, is itself non-trivial. Hence to demonstrate the desired functional

independence, we prove the following proposition:

Proposition. Consider a (real) linear combination I = E cjlj. The flow generated

by I through any loop-regular (, i) E Oo is trivial, if and only if all the cj 's are zero.

Proof. If I - 0, the associated flow is obviously trivial. Conversely, suppose the flow

through some point (, i) is trivial. From the factorization theorem, the flow is given

by

(O(t),i) = PAd;(t)(b, i) = db(t(,i),

where k(t), b(t) solve the factorization problem exp tVI(o, i) = k(t)- b(t), induced by

LG = (KR)B, (see section 4.4). Triviality of the flow means for all times t:

Adb(t)(q, i) = (,i).

We can write (,i) = Ad(y, i), where y E K and # E a, (see lemma 5.2.2), which

implies that

Ad-_lb(t)y(/, i) = (, i).

Now for small times -- lb(t)7y is close to the identity, and hence in the image of the

exponential map. Write -lb(t)y = exp v(t), for some curve v(t) in Lg, and fix t for

the time being. One has that Adxp (, i) = (, i), for all s, and differentiating this

with respect to s at s = 0 gives ad*(p, i) = (0, 0).

Lemma 7.0.5. ad(p, i) = (0, 0) == E I 

Proof. From the formula for ad*, we have adv# + iDv = 0. Write v as a Fourier series

v = E vkzk, and decompose each k according to the root-space decomposition as
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Vk = vk + Ft, v. Using the fact that ji E 4I, this gives

E [((H) + k)"k + kv/]Zk = 0.
k,c

Since by assumption is regular, a(p) is non-integer for every root a, hence v' = 0

for all k, a. It follows that t, = t, which is in , as required. LI

Hence -yb(t) 7 = exp v(t) E H for small t. For small times b(t) is also in the

image of the exponential map, and so can be written b(t) = exp /(t), for some curve

/(t) E b. It follows that (t) = Ady-lv(t)

Lemma 7.0.6. /3(t) is in a C , and consequently b(t) is a constant loop, (i.e. inde-

pendent of z), in A C H.

Proof. Since v is a constant loop independent of z, the equation = Ad.-, v implies

that the eigenvalues of P(z) are constant for z E S', and are determined by v E .

Because /3(z) is in , the coefficients of the characteristic polynomial for /(z) are

holomorphic on z{ < 1. They have constant values on S1, and hence are constant for

all zlJ < 1, and so the eigenvalues of P(z) are constant.

But /3(0) belongs to a+ n+, and can be realised as an upper triangular matrix with

real diagonal entries. In particular the eigenvalues of /3(0), and hence of (z), are

real. As the eigenvalues of P(z) are determined by v, this shows that v E a C ).

Since ?y E K, this implies that Ad-,lv E i, and so P(t,z) E b n i = a, which

completes the proof. 

Thus b(t) = exp P(t) is a constant loop, (i.e. independent of z), and the triviality

of the flow Adb(t)(0, i) implies that Adexp8(t) = . However, if one substitutes for

0 the general form of a point in the Toda orbit, found in section 3.3, one sees that

this last equality is only possible if ai(/3(t)) = 0, for each simple root ai. This forces

f/(t) = 0, and so b(t) _ Id for small times.

We can now deduce that I =- O0. We have exptVI(o,i) = k(t) E KR, and so

VI(b, i) is in the corresponding Lie algebra t + C. But VI(O, i) = (Adh, *) also

belongs to it + C, as y E K and h = E cjhj E a. Thus Adh E e n it = o0}, hence h

is zero, and so the coefficients cj are zero, by independence of the elements hj.
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Thus a trivial flow is possible only if we take a trivial linear combination of the Ij's;

a non-trivial combination will generate a non-trivial flow, hence the Ij are functionally

independent as required. 

Conclusion. This shows that, as we originally asserted, the local functions Ij
generate a completely integrable system on the Toda phase space. Hence we have
also achieved our goal of showing that the functions formed by composing the class

functions of G with the monodromy map, (which locally generate the functions Ij),

give a completely integrable system on the Toda phase space as well.

hvt c

44b t. @ d tgs'M q~vule d1YO,6t t
eci A_

48



A NEW COMPLETELY INTEGRABLE SYSTEM

REFERENCES

[FM] H. Flaschka and D. W. McLaughlin, Canonically conjugate variables for the Korteweg-de
Vries equation and the Toda lattice with periodic boundary conditions, Prog. Theoret. Phys.,
55, 438-456, (1976).

[GW1] R. Goodman and N. R. Wallach, Classical and quantum mechanical systems of Toda lattice
type (II), Commun. Math. Phys., 94, 177-217, (1984).

[GW2] R. Goodman and N. R. Wallach, Structure and unitary cocycle representations of loop groups
and the group of diffeomorphisms of the circle, Jour. Reine Angew. Math., (1984), 69-133.

[Ha] R. S. Hamilton, The inverse function theorem of Nash and Moser, Bull. Amer. Math. Soc. 7
(1982), 65-222.

[J] F. John, Ordinary Differential Equations, Courant Institute of Mathematical Sciences, New
York University, (1965).

[Ka] V. Kac, Infinite Dimensional Lie Algebras, Cambridge Univ. Press, Cambridge, (1990), 3rd
edition.

[Ko] B. Kostant, The solution to a generalized Toda lattice and representation theory, Adv. Math.,
39, 195-338, (1979).

[Kn] A. Knapp, Representation Theory of Semisimple Groups; An Overview Based On Examples,
Princeton University Press, (1986).

[PS] A. Pressley and G. Segal, Loop Groups, Clarendon Press, Oxford, (1988).
[Pe] A. M. Perelomov, Integrable Systems of Classical Mechanics and Lie Algebras, Vol. I,

Birkhiuser, (1990).
[RS] A. G. Reyman and M. A. Semenov-Tian-Shansky, Group-theoretical methods in the theory of

finite-dimensional integrable systems, Dynamical Systems VII, ed.'s V. I. Arnol'd and S. P.
Novikov, Springer-Verlag, Berline, (1987).

[RSF] A. G. Reiman, M. A. Semenov-Tian-Shansky and I. E. Frenkel, Graded Lie Algebras and
Completely Integrable Dynamical Systems, Soviet Math. Dokl., 20, (1979), 811-814.

[Si] S. Singer, Private communication, (1995).
[St] R. Steinberg, Conjugacy Classes in Algebraic Groups, Lecture Notes in Mathematics, 366,

Springer-Verlag, (1974).
[Sy] W. Symes, Systems of Toda type, inverse spectral problems and representation theory, Invent.

Math., 59, 13-53, (1980).

49


