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Abstract

This thesis develops a methodology for solving the bus network design problem (BNDP)
in which one seeks to determine the best configuration of bus routes and their frequencies,
given information on the bus transit demand, the street network, the available resources
and the operational constraints. The proposed methodology follows a heuristic approach
and consists of two main components - route generation (RG) and vehicle allocation (VA)
- that are implemented in a single automated design procedure.

The proposed methodology addresses the principal shortcomings of previous
heuristic approaches to the BNDP and is characterized by its ability to (1) incorporate the
fleet size constraint within the route generation process, (2) identify the major trip patterns
in the demand matrix for guidance in the route configuration, and (3) solve the BNDP
using a general network design or a transit center network design.

The RG procedure is based on the concept of route skeletons which consist of
three nodes - two termini and one intermediate node - that are expanded into full routes by
means of nodal insertions. RG creates one route at a time and estimates the number of
buses required on the network after each route is generated. If the vehicle estimate is less
than the available fleet size, an additional route is generated and the network is re-
evaluated; otherwise, VA is initiated. VA calculates the minimum number of buses
required on each route so as to satisfy the loading feasibility and passenger assignment
constraints. Surplus buses remaining after the minimum vehicle requirement is determined
may be allocated on the network to improve its overall performance, or used by RG to
create additional routes.

The proposed methodology and automated design procedure are applied to a case
study in San Juan, Puerto Rico where a major restructuring of the bus system using a
transit center concept has been proposed. Solutions produced by the proposed
methodology are compared with the proposed transit center route plan.

Thesis Supervisor: Dr. Nigel H. M. Wilson
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

Buses are the dominant form of public transport in many metropolitan areas and large

cities due to their inherent advantages of low fixed costs and operating flexibility. In

1993, buses carried almost 65% of the 8.3 billion annual passenger trips in the U.S. and

accounted for more than 50% of the 39.6 billion annual passenger miles (Transit Fact

Book, 1994-1995). In most large cities, however, transit systems (including bus systems)

lose some ridership each year owing to increasing car ownership and lower density

suburban development. In the last few decades, this has resulted in an automobile-based

lifestyle in most metropolitan areas with dramatic redistributions of population,

employment, retail centers and other trip generators. During the same period, total urban

person trips have increased significantly and have become more dispersed due to the

redistribution of land use, whereas transit trip making has grown at a much slower rate or

even experienced a decline. One reason for this is that the bus route networks have

generally not been improved through restructuring and, thus, could not adapt to the

changing demand for transit trips. As a result, buses have become less productive and less

cost-effective.

Although bus networks have changed in this period in some of the rapidly growing

cities, in many cases the basic network and service structures have remained essentially the

same. In fact, bus authorities have failed to take advantage of the flexibility of bus transit

in dealing with changing demand patterns, partly because of the absence of systematic

procedures to develop and evaluate alternative route and service structures. As a result,

the overall redesign of a bus network involves a higher risk of a poorer performance. Bus

authorities - recognizing that increasing fares to counterbalance the decrease in cost-

effectiveness caused by a decline in passengers would result in accelerating the

deterioration in the bus transit market - have resorted to other means of countering the

losses. Their main planning focus is often placed on ways for cutting costs, particularly by
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tackling the most poorly patronized routes, rather than considering major network

restructuring. They have also focused on operational planning activities including bus and

driver scheduling, since the largest single cost component of providing bus service is the

driver's wage and fringe benefits.

This thesis addresses a more strategic aspect of bus service planning in which one

seeks to determine a configuration of bus routes and their frequencies that achieves some

desired objective, subject to operational and budget constraints. This strategic problem,

which will be referred to hereafter as the bus network design problem (BNDP) is at the

heart of bus service planning and is a key to the success or failure of an overall service

restructuring. In the next section, the BNDP is placed in the context of the overall bus

service planning process.

1.1 The Bus Service Planning Process

The overall bus service planning process shown in table 1.1 is a systematic decision

sequence consisting of the following elements: route and network design, frequency

determination, timetable development, bus scheduling and driver scheduling. The BNDP,

as defined in the previous section and for the rest of this thesis, is concerned only with the

first two components. Although the activities are shown sequentially, there are strong

interrelations between the elements of the problem, and characteristics of the elements

down the sequence may well have some effect on higher level decisions. If one considers

the overall planning process as an optimization problem, a single global mathematical

program formulation could be hypothesized to encompass all the elements of the process.

However, because of various complexities, it is infeasible to include all these elements in a

single model. Instead, the overall problem is divided into computationally tractable

subproblems, often corresponding to the internal organization of the public transit

authorities. As such, bus service planning problems are often classified at the strategic,

tactical and operational levels. Strategic planning is concerned with the long- term

development of the bus route network, a task which requires comprehensive studies and

that must stay in place for some time to achieve its full potential impact. Tactical planning
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Table 1.1: The Bus Service Planning Process

deals with the service frequency determination and is considered to be a medium-term

development, whereas operational planning encompasses the remaining schedule-related

activities and is conceived of as a frequently performed short-term planning effort.

Among all the activities mentioned above, the ones at the operational planning

level have received the most attention by both bus authorities and researchers. From the

perspective of bus properties, the scheduling components involve potential tangible cost

savings that help improve the financial position of the system. On the other hand, the

relatively high frequency of operational planning activities within the planning cycle has

13

Independent Inputs Planning Activity Output

Demand data Route and Network Design Route changes

Supply data New routes

Route performance indices Operating strategies

Subsidy available Frequency Determination Service frequencies

Buses available

Service policies

Current patronage

Demand by time of day Timetable Development Trip departure times

Times to first and last trips Trip arrival times

Running times

Deadhead times Bus Scheduling Bus schedules

Recovery times

Schedule constraints

Cost structure

Driver work rules Driver Scheduling Driver schedules

Run cost structure



motivated researchers to focus on those activities and to develop numerous computer

programs to automate them, at least partially.

The BNDP has received less attention than the operational planning subproblems

because of its complexity. Approached from a constrained optimization perspective, the

BNDP is difficult to formulate as a well-behaved model. A bus network is comprised of

links that form a subset of the full street network. In an optimization framework, the

provision of bus service on a particular street can be viewed as a 0/1 discrete choice of

adding a link to the bus network to enable the flow of bus passengers. On the other hand,

frequencies are continuous decision variables that have to be considered in conjunction

with the route link discrete variables. Thus, the modeling of the BNDP as an optimization

problem would involve mixed integer programming which is a highly complex class of

optimization problems. (Difficulties related to the modeling of the BNDP as an

optimization problem are discussed further in the next chapter.)

Non-optimization approaches to the BNDP attempt to address the two main facets

of the problem by dividing the BNDP into two components: the generation of the

network of routes and the determination of service frequencies. However, even in this

approach, the BNDP is still a difficult problem for two reasons. First, the route design

component is closely related to the frequency determination component, since the vehicle

requirement on each route - on which both the cost of the design and its effectiveness

critically depend - cannot be known unless frequencies are determined. At the same time,

the BNDP is almost always constrained by the size of the available fleet of buses.

Consequently, isolating the process of route and network design from frequency

determination prevents a reliable assessment of the required number of buses to operate on

a particular network of routes, possibly resulting in a design that is not within the

operator's resource constraints. Second, bus transit systems are characterized by the fact

that it is the users - not the planner - who determine their own routing. Consequently, the

frequency determination model within the BNDP must be capable of predicting the choice

behavior of passengers with respect to transit paths. In itself, the transit path choice

problem is inherently stochastic and time-dependent in nature, and its inclusion in the

BNDP adds yet another burden.
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1.2 Motivation

It should be obvious that the overall restructuring of a bus network can have significant

impacts on the system's performance. In the short term, potential benefits from network

restructuring include the improvement in the total travel time and in the level of demand

satisfaction. In the longer run, ridership is likely to increase as a result of the improvement

in the level of service. Moreover, benefits from optimally, or near-optimally, solving the

BNDP are likely to outweigh those resulting from other improvements within the rest of

the bus planning activities such as scheduling improvements at the operational level. If the

overall bus planning process is viewed as a single optimization problem, the establishment

of routes and frequencies would greatly reduce the solution space of the problem. Even

when the overall problem is separated into its various components, the marginal benefits

obtained from operational improvements would be small if the route network and service

frequencies are treated as fixed and given. Consequently, a good solution for the BNDP is

necessary for a successful overall restructuring of a bus system.

Prior optimization approaches to the BNDP can be grouped into those predicated

on idealization of the network and those dealing with actual routes. The majority of

approaches in both categories has not received extensive application. Methods based on

idealizing the network are best suited for screening or policy analysis, rather than final

design, and thus have limited practical applicability. The second group of methods is

inevitably heuristic and is generally complex, non-user oriented and expensive, both in

terms of the data needed and the direct cost and staff time required. Moreover, many of

the prior heuristic approaches suffer from the following principal shortcomings:

1. The operator's fleet size constraint is not explicitly addressed at the route design level.

Certain approaches (Silman et al., 1974; Israeli and Ceder, 1989) start by creating a large

pool of "possible" routes. Then, smaller route subsets are selected and the demand is

assigned to each one, calculating the corresponding vehicle requirement and specific

performance measures. The subset which satisfies the resource constraint and produces
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the best overall performance is then selected as the final solution. In another approach

(Baaj and Mahmassani, 1993), the vehicle requirement is not calculated until a pre-

specified number N of routes is generated. Routes are then either added to or dropped

from the set of N routes in order to match the vehicle requirement with the available bus

fleet size.

2. Most heuristic approaches do not rely properly on the demand matrix for guidance in

the route layout. Approaches which determine all possible routes use constraints on round

tip time and circuity ratio to generate the routes. Route subsets are then formed using

several strategies which only partially consider the amount of demand satisfied by each

subset. Other approaches generally do not take full advantage of the trip patterns

contained in the demand matrix.

3. Only a few approaches are capable of incorporating a pre-defined network concept

(radial, grid, etc.) in the route generation process. In many large cities, the network

restructuring process may be more beneficial if a concept that is different from the one

implemented in the existing system is adopted, especially if the new concept is better at

serving new trip patterns that have developed since the existing system was conceived.

The approach to the BNDP adopted in this thesis attempts to address the

deficiencies described above. This will allow for increasing the chances of acceptance of

this approach within transit properties. In particular, the proposed approach will attempt

to incorporate the operator's fleet size constraint within the route generation process in

order to create a more realistic bus planning tool that addresses one of the operator's main

concerns. In addition, the approach will attempt to permit solving the BNDP on the basis

of a network concept different from that of the current system. This would also appeal to

planning authorities who are usually more reluctant in undertaking service restructuring

whenever a new service concept needs to be investigated, because of the additional effort

and cost involved.
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1.3 Research Objectives

The discussion in the previous sections has demonstrated the importance of the BNDP

within the process of bus service planning. The fundamental question addressed in this

thesis is the following:

Given information on the bus transit demand, the street network, the

available resources and the operational constraints, how to design the

best possible network of bus routes and frequencies?

To this end, the thesis has two major objectives. The first objective is to develop a

methodology for solving the BNDP and to implement it as an automated design procedure

that can be used as a strategic planning tool in the restructuring of bus systems. Because

the optimal solution to the BNDP is too complex to be feasible, a heuristic approach

which produces a "good" but not necessarily optimal solution will be adopted. Besides

designing networks with the guidance of the existing demand matrix, the methodology will

also be capable of generating solutions based on a concept that is different from the one

used in the existing system. The development of the methodology will be preceded by a

review of previous literature on the BNDP in which the existing approaches for solving

this problem are analyzed. The automated design procedure based on the proposed

methodology is intended for use as a planning tool which does not necessarily deliver a

readily-implementable solution. The focus is on producing a basic description of the

network, along with a set of global performance measures that facilitates comparison of

the solution to the existing system. The basic network can then be refined in terms of the

route layout and service frequencies in order to reach an implementable solution.

The second objective of this thesis is to apply the methodology to a case study in

which an existing bus network is to be restructured. The bus system of the metropolitan

city of San Juan, Puerto Rico is an appropriate case study for this research because a plan

for a major restructuring of the existing system, involving a basic change in the network
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concept, has been approved and is currently under development. The restructuring is part

of a comprehensive study to improve the overall public transportation in the San Juan

Metropolitan Area, which has sustained a considerable decline in transit ridership over the

last 20 to 25 years. The current bus system is characterized by adequate coverage and

connectivity and a relatively low fare, but suffers from low frequencies and a lack of

speed, directness and schedule adherence on a large number of routes. Plans for

restructuring the network are based on a transit center concept which requires establishing

several transit centers located at the major destinations in the region and connecting them

with high-frequency trunk routes and medium-to-high frequency local routes. The San

Juan case study provides an opportunity to experiment with the design procedure on a real

problem, and to compare its performance to the proposed design

1.4 Thesis Organization

Chapter 2 starts by reviewing the literature on the BNDP, describing the various solution

approaches and highlighting their strengths, weaknesses and practicality. Next, a more

detailed review of the heuristic approach for solving the BNDP is presented in which the

two main components of this approach - route generation and frequency determination -

are described. In chapter 3, a methodology for solving the BNDP is presented. The main

features and assumptions of the methodology are first discussed, and then the two main

components are briefly described and placed in the context of the design procedure.

Chapter 4 focuses on route generation and starts by discussing the various approaches that

were considered for that process. The major steps of route generation in the case of a

general network concept and of a transit center concept are then described in detail.

Chapter 5 is concerned with vehicle allocation and starts with a review of the theory and

practice of vehicle allocation methods. After the proposed vehicle allocation process is

described, a numerical example illustrating the performance of route generation and

vehicle allocation is presented. In chapter 6, the San Juan case study is used to investigate

the performance of the methodology and design procedure and to draw the final

conclusions, which are reported in chapter 7.
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Chapter 2

Literature Review

This chapter reviews the literature on the various approaches used for solving the BNDP

in order to place the research in its appropriate context. The review starts by classifying

the different approaches used, briefly describing their main characteristics, strengths,

weaknesses and uses. After that, the focus is placed on the mathematical heuristic

approach which provides a suitable framework for the automated bus network design

procedure sought in this research. This approach is particularly useful in the short-range

planning of bus service and can be used to develop an efficient screening tool for

investigating the restructuring of existing networks.

2.1 Approaches for Solving the BNDP

The approaches for solving the BNDP used by transit planners or proposed by researchers

are reviewed in this section. Because the planning of bus routes and frequencies is

understood to include both their development and evaluation, the various approaches for

solving the BNDP are classified according to two attributes: (1) the method of generating

a solution and (2) the method of evaluation. Based on these two attributes, the

approaches for solving the BNDP may be classified into five categories: (1) manual; (2)

market analysis; (3) systems analysis; (4) systems analysis with interactive graphics; and

(5) mathematical. Table 2.1 shows the classification of these approaches, and the

following paragraphs briefly describe the characteristics of each.

2.1.1 Manual

The manual approach relies on qualitative, non-quantifiable guidelines and ad hoc

procedures which reflect the professional judgment and practical experience of service

19



Table 2.1: Classification of Approaches for Solving the BNDP

planners in the transit industry. In this approach, bus networks are manually restructured

by planners who often have considerable knowledge of the service area which allows them

to propose generally minor improvements to the existing system. The modified bus

network is also evaluated manually, rather than by commercially available computer-based

analysis tools, and ridership is estimated qualitatively based on comparable routes, without

performing passenger assignment. Because of the limited amount of analysis performed,

the data required by this approach is usually simple and relatively easy to obtain.

An example of the guidelines used in the manual approach is the NCHRP Report

69 published by the Transportation Research Board (1980) which suggests service

planning guidelines in the form of rules of thumb that cover issues such as service area and

route coverage, route structure and spacing, route directness, route length, and route

duplication. Guidelines with regard to service levels include desirable minimum service

frequencies and loading standards. These guidelines are based on interviews with transit

planners over a broad spectrum of U.S. and Canadian cities and emphasize practice rather

than theory.

In general, the manual approach is most useful for short-range planning, minor

changes in the network (such as the extension of a bus route to a new suburb) and fine-

tuning of bus networks. However, the manual approach is not suitable for comprehensive

20

Approach Method of Network Method of Network

Generation Evaluation

Manual manual manual

Market Analysis Project manual partially computerized

Systems Analysis manual computerized

Systems Analysis with manual computerized, with

Interactive Graphics interactive graphics

Mathematical computerized computerized



network revisions or medium or long-range planning, because the evaluation of the

modified network is unlikely to be either consistent or comprehensive. Another weakness

of the manual approach is that many value judgments are involved in the restructuring of

the network.

2.1.2 Market Analysis Project (MAP)

The MAP approach as described by Bursey et al. (1979) consists of three main

components: (1) the description of the existing system; (2) the analysis of the

characteristics of the existing system; and (3) the design cycle. The description of the

existing system is used, along with other studies, to develop an understanding of its

demand and cost characteristics. An alternative network with its characterizing

frequencies and fare structure is developed at the beginning of the design cycle, and the

demand and cost characteristics of the existing network are then used manually to predict

the operator's costs and passenger flows on the proposed network and to appraise its

performance. The evaluation of the network is used as the basis for changing its structure

or characteristics in the case where the network does not perform as desired, and the

design cycle is repeated until a network with satisfactory performance is obtained.

The MAP approach is only partially computerized, with the use of the computer

restricted to the examination of passenger origin-destination and household survey data.

However, the evaluation of the modified network in terms of estimating ridership and

calculating performance measures is performed in a simple way without requiring network

analysis tools. As such, this approach is most suitable for small-scale networks in rural

and/ or inter-urban applications.

2.1.3 System Analysis (SA)

The major characteristic that distinguishes the SA approach from the other approaches is

the use of computer-based models for the evaluation of bus networks which are capable of

estimating the change in ridership on the restructured network and assessing its
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performance. As with the previous two approaches, bus routes and frequencies are

established in the SA approach based on the planner's expertise and local knowledge of

the area, the operator's capabilities, and the network concepts that might be successfully

implemented. The network is then analyzed using computer-based evaluation models,

producing a set of performance measures at the route level that form the basis for

modifying the proposed network and going through another design cycle, if necessary.

The evaluation models which have been used in the SA approach include TRANSEPT

(Last and Leak, 1976) which uses the multi-path assignment model of Dial (1971) and

TRANSCOM (Chapleau and Chriqui, 1975). More recent computer-based evaluation

models use interactive graphics and are discussed in the next section.

The SA approach is far superior to the manual approach because it is more

systematic and comprehensive. One of its main advantages is that it allows for variable

demand. Without a computer-based evaluation model, the prediction of link volumes is

practically infeasible, even for small networks, because of the possibility of having

multiple-paths serving certain origin-destination flows. In the case of large and complex

networks, the SA approach becomes necessary because of the increased occurrence of

route overlap which requires a formal path choice model. On the other hand, the SA

approach typically allows only a limited number of alternative networks to be considered

because of the effort required to design a network at the level of detail required by the

evaluation process, as well as the large amounts of data required in that process.

2.1.4 System Analysis with Interactive Graphics (SAIG)

This approach is essentially the same as the previous one in terms of the generation and

evaluation of alternative networks. However, in this approach, a slightly different type of

network evaluation is permitted through the use of interactive graphics which provide a

computer-assisted, graphically-based operating environment for the planner to interface

and interact with the formal procedures for network evaluation. These graphical

capabilities support the evaluation process by allowing the planner to see results such as
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passenger flows on the spatial layout of the network, taking the network evaluation

process to a higher level than allowed by the other approaches.

Several computer models with interactive graphics capabilities have been

developed for transit network evaluation. Among these are VIPS (Andreasson, 1976) and

its successor VIPS-II (Jansson, 1987) developed by the Volvo Corporation,

TRANSPLAN (Osleeb et al., 1976), MADITUC (Chapleau et al., 1982) and EMME/2

(Florian et al., 1986). Of these, VIPS-II and EMME/2 provide the most extensive

graphical displays, as well as sophisticated evaluation models.

2.1.5 Mathematical

The mathematical approach attempts to employ mathematical techniques to produce

optimal bus networks. Mathematical formulations of the BNDP have been concerned

primarily with the minimization of an overall cost measure, generally a combination of user

costs and operator costs, subject to feasibility constraints. Two types of mathematical

approaches can be identified: the analytical type and the heuristic type.

2.1.5.1 Analytical

In this approach, bus networks and the urban areas they serve are idealized by using

simple bus network geometries and travel demand functions. Extensive work of this type

has been based on constrained optimization methods in which design parameters such as

route spacing, route length, stop spacing or headways are selected so as to minimize an

objective reflecting benefits to the passenger and cost to the operator. Byrne (1976),

Hurdle (1973) and Newell (1979) have developed analytical optimization models based on

an assumption of fixed demand, limited design parameters and the objective of minimizing

the sum of passenger and operator costs. Kocur and Hendrickson (1982) extended this

approach to the case of variable demand, a broad range of design parameters and a choice

of objectives reflecting user and/ or operator benefits. Nevertheless, all of these methods

result in an over-simplification of the actual problem, precluding their use in actual
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network design. However, this approach may still be suited for screening or policy

analysis in which approximate design parameters are to be determined, rather than a

detailed final design.

2.1.5.2 Heuristic

The search for heuristic approaches to the BNDP is motivated by five main sources of

complexity which preclude the use of formal optimization methods for solving the

problem. The first difficulty relates to the mathematical formulation of the problem,

namely the difficulty of defining the decision variables. While frequencies can be related to

the passengers or operator's costs and expressed in the objective function, the number of

routes and their configuration (which are also decision variables for the problem) can not.

The second source of complexity results from the non-linearities and non-convexities

exhibited by the BNDP formulations. Non-convexities are illustrated by the fact that more

buses can be deployed in the network, thereby increasing the operator's costs, and still

produce a higher total travel time (worse user costs). As pointed out by Newell (1979),

concavity is induced by the waiting time which occurs at the access points to the system,

not on the links of the network, and which cannot be easily incorporated in the model.

Third, the complexity of the problem grows exponentially with the size of the transit

network. The solution of the BNDP whose formulation includes discrete variables

becomes extremely difficult with large networks. Fourth, the BNDP has a multi-objective

nature. Most of the existing approaches consider reducing user costs and/or operator

costs as their sole objective. In practice, however, important trade-offs among other

conflicting objectives may need to be addressed in what is inherently a multi-objective

problem. An example would be the trade-off between attempting to serve the largest

demand possible by.creating routes and deploying resources even in low-density areas, or

concentrating resources on the more productive routes. A similar trade-off that may be

considered is between directness and coverage. Such considerations, which are important

in practice, have not typically been included in mathematical programming formulations.

The last source of complexity relates to the spatial layout of routes. It is difficult to

24



characterize and incorporate in a formal procedure what constitutes a "good" spatial

layout of routes. This aspect has been to a certain extent addressed through design

criteria and constraints such as route coverage, route duplication, route length, and

directness of service (circuity).

All of the above complexities have shifted the focus on solving the BNDP to the

use of heuristic approaches. The heuristic mathematical approach attempts to produce a

"good" solution, but does not guarantee optimality. Most of these heuristic approaches

decompose the BNDP into its two main components: route generation which creates a

network of "good" routes, and frequency determination which allocates buses across the

routes. Passenger assignment is also an important element of the heuristic approach and is

addressed in the frequency determination subproblem. One advantage of this approach is

that it is capable of generating bus network alternatives from scratch. Also, because the

generation process may be automated, the overall design process may be performed more

rapidly. The disadvantages of this approach, however, are mainly that it is fairly complex

and that it does not incorporate the professional judgment and practical experience of the

planner. However, the latter problem can be overcome by allowing the planner to interact

with the design procedure and incorporate his or her knowledge in the final solution.

2.1.6 Summary of Approaches to the BNDP

Table 2.2 summarizes the strengths and weaknesses of the different approaches to the

BNDP and shows the types of urban areas and planning horizons for which each approach

is most applicable. Among all the approaches, the heuristic approach is the only one

which may be used to accomplish the research objectives set in the previous chapter,

particularly the development of an automated network design procedure. The heuristic

approach shares similar benefits with the SA approach in terms of being systematic and

comprehensive. Furthermore, if successfully implemented in an automated design

procedure, the heuristic approach may complement the other manual approaches for

network design by providing an alternative solution to the one proposed by the planners.

This solution can then be compared to the manual solution, possibly suggesting
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Solution
Approach Strengths Weaknesses Uses
Manual · simple * maybe ad hoc * small urban areas with

· inexpensive * usually not few bus routes
· requires less comprehensive * simple bus networks

expertise * requires value * short-range planning
· short time of judgments * fine-tuning of networks

implementation
Market * systematic * similar to the * small urban areas
Analysis * comprehensive manual approach * operation planning
Project * not too expensive * more suitable for

small/urban networks
Systems * systematic * few options tested * medium/large urban
Analysis * comprehensive * long time of areas

* allows multiple implementation * short range (operational)
objectives * bias towards current planning

· not too expensive network * complex networks with
· widely used in * large data many routes

practice requirement * long range (conceptual)
planning, but with less
details

Systems * systematic * bias towards current * depending on models
Analysis * more options may network used, can be used for
with Interactive be tested * quite expensive small-large areas, short-
Graphics * shorter long range

implementation * moderately complex
period networks

Analytical * simple geometric * over-simplification of * not applicable in real
networks and real problem situations
demand functions * not suitable for use in * best suited for screening

practice analysis

Heuristic * more * may not produce * short-medium range
comprehensive optimal solution planning
than most other * approach still under * small-medium areas
approaches (less development * new bus networks
than SA)

· systematic

· many options
tested

· no bias towards
current system

· short

implementation
time

Table 2.2: Summary of Approaches to the BNDP
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beneficial modifications in the latter. Therefore, the heuristic approach for solving the

BNDP will be adopted, and in the following sections, this approach is considered in

greater detail.

2.2 The Heuristic Approach for Solving the BNDP

The restructuring of a bus network is likely to have significant impacts on ridership. In

fact, one of the long term objectives and potential benefits of network restructuring is the

possibility of generating additional ridership by attracting travelers from other modes. The

heuristic approach for solving the BNDP may be broadly categorized according to the

treatment of demand. Although the assumption of variable demand is more appealing in

terms of the objectives of network restructuring, only a few of these heuristics (Dubois et

al., 1979; Hasselstrom, 1981) allow variable demand. Difficulties involved in the variable

demand assumption include the increased complexity in the formulation and solution of

the model. Moreover, there is no strong evidence to suggest that the existing demand

models are reliable for route network changes in public transport systems (Multisystems,

1982). Also, bus operators in most metropolitan areas are more concerned about the

impact of changes on the current ridership than about the potential for generating new

ridership. For these reasons and because of the reduced complexity, models which

assume demand to be independent of the service quality offered are more often used at the

design phase, combined with constraints to guarantee minimum service levels. In these

models, ridership can be estimated separately (outside the model) after the restructuring if

desired and, if it is significantly different from the initial one, the new demand matrix can

be used to perform a second iteration through the design heuristic.

The heuristic approach includes two major components, route generation and

frequency determination, which will be briefly reviewed in the following sections.

Passenger assignment is an important element in the approach and is also described.
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2.2.1 Route Generation

As mentioned previously, route generation (RG) suffers from a lack of criteria which

characterize a "good" network of routes. In the absence of service frequencies, a

particular layout of routes holds little information on the level of service provided to the

passengers and the total vehicle requirement for the operator. In practice, this problem is

solved by adopting a cyclic design process in which a bus network is manually designed by

the planner, and then evaluated to provide information to help in modifying the design.

Heuristic procedures devised to solve the BNDP have tried to mimic this iterative

process by replacing the manual RG by an automated procedure. Although the automated

RG cannot incorporate the judgment of the planner in laying out the routes, it is far

superior to exhaustively searching all possible combinations and efficiently eliminating the

ones that do not meet certain requirements. One of the earliest examples of heuristic

procedures for RG is by Lampkin and Saalmans (1967) who were the first to introduce the

concept of skeleton routes - consisting of four nodes, with the end nodes acting as termini

of the routes. Based on this concept, a heuristic procedure inserts feasible nodes

iteratively into the skeleton route until it is completely developed. The nodal insertion

process is based on "desirable properties" that are expected to be present in a "good"

network, and ensures that the resulting network satisfies them. These properties reflect

basic elements of the level of service provided - such as demand satisfaction and

connectivity - and are expressed quantitatively in an objective function used to select

feasible insertion nodes during the process of skeleton route expansion. However, one of

the shortcomings of this heuristic procedure is that it takes no account of the available

fleet size while developing the network of routes, and there is no clear indication of how

the process should end.

Silman et al. (1974) applied a RG heuristic that is similar to the one developed by

Lampkin and Saalmans to the city of Haifa, Israel. In this procedure, bus routes are

generated by a process of insertion and deletion. The process starts with a non-empty

initial set of routes which is then augmented by addition of routes selected from a set of

candidate four-node skeletons. Once a skeleton is chosen, it is expanded in a manner
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similar to that in Lampkin and Saalmans' heuristic. The criteria for selecting a route from

the candidate set is based on the marginal decrease in the total travel time caused by the

addition of the route under consideration. Since frequencies (and thus waiting times) are

not known at this stage, travel time between any two nodes is approximated as the

minimum of in-vehicle travel time or walk time, in addition to a transfer penalty time in

case of transfers (only one transfer is allowed).

Hasselstrom (1981) suggested a heuristic procedure which is among a very few

ones to generate bus routes and determine their frequencies simultaneously. The

procedure consists of three stages. In the first stage, it is assumed that there is a direct bus

link between each pair of nodes in the street network and the frequency of service on this

extended network is calculated using a simple model. Next, passengers are allocated on

the alternative paths between each origin-destination pair so as to minimize the total time,

as in a highway assignment. Little-used links are then eliminated and passenger flows are

concentrated on the remaining routes, recalculating the frequencies of service until a

satisfactory solution is reached. In the second stage, thousands of possible routes are

generated, satisfying constraints on minimum and maximum lengths. In the third and final

stage, optimal frequencies are estimated for all the generated routes (in the second stage)

by choosing the routes that follow as closely as possible the passenger flows and the

frequencies from stage one. The final set of bus routes and frequencies may be improved

interactively with input from the planner. The procedure of Hasselstrom used a direct

demand model both to estimate a desire matrix based on providing high-quality service

throughout the area, and to reduce the demand as the actual design is developed providing

less than ideal service between some origin-destination pairs.

Israeli and Ceder (1989) developed a model to create all routes (and transfers) that

connect every node in the network and that satisfy round trip time and circuity constraints.

Out of this huge pool of feasible routes, the model then generates smaller subsets, with

routes in each subset maintaining network connectivity and deviating the least from their

corresponding shortest paths. Each set is determined by heuristically solving the set

covering problem (a non-linear integer programming problem), which determines the

minimum number of routes (out of the pool of feasible routes) that are needed to cover all
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the nodes in the network. The alternative sets of routes are obtained by imposing

incremental changes to an existing set by deleting the "worst" route and re-solving the set

covering problem. For each of the subsets, the model assigns the demand and calculates a

set of performance measures, including the fleet size requirement. At this point, the

planner is able to choose the most suitable subset.

More recently, Baaj and Mahmassani (1993) presented a route generation heuristic

as a single component in an artificial intelligence-based design procedure for solving the

BNDP. Their route generation algorithm shares several aspects with previous route

generation heuristics, notably the idea of skeleton routes (although the definition of

skeletons is quite different than that in previous work). In the first step, the algorithm

selects the terminal node pair from a ranked list of the M highest-demand terminal node

pairs and uses it as a seed for the skeleton to be expanded. The skeleton route is either the

shortest path connecting the seed nodes, or an alternate short path (slightly longer) with

significantly different nodal composition than the former. The expansion of the M

skeletons into routes may be performed according to one of four different node selection

and insertion strategies, each one reflecting a certain trade-off between the level of

passenger service and operator costs. The various strategies allow the generation of

different sets of routes in the final solution. The process of route expansion is continued

until a pre-specified level of demand satisfaction is achieved. The resulting set of routes

may be improved in a separate procedure after the frequencies of service are determined,

also in a separate procedure. Improvements to the solution are attempted at the system

coverage level (discontinuation of service on routes that suffer from low ridership) and at

the route structure level (joining low ridership routes with other medium to high ridership

routes and splitting long routes).

The solution created by Baaj and Mahmassani is heavily guided by the demand

matrix of the existing system and thus resulted in a network that is biased towards the

existing one. Shih and Mahmassani (1994) extended that work and presented a design

methodology that would be capable of designing a bus network using the transit center

concept, with the possibility of providing coordinated service at the transit centers. In the

first cycle of the overall design process, Shih and Mahmassani utilized the RG procedure
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of Baaj to create a set of M routes. Flows in the demand matrix are then assigned to the

generated routes using a network analysis procedure and several node-level descriptors

are computed. The transit center selection procedure is then applied to the given route

configuration and the corresponding descriptors so as to identify suitable candidate centers

that would offer "good" transfer opportunities. Next, the second cycle of the design

process is initiated by the re-application of the RG procedure, this time with the transit

centers ranked highest in the set of M skeleton seeds (this set also contains high-demand

terminal node pairs). The expansion of the M skeletons is performed in a similar way as in

the RG procedure of Baaj, except for minor changes that are introduced to account for the

difference in route structure in the transit center concept.

In reviewing RG heuristics, two issues emerge. First, the concept of route

skeletons has been used repeatedly by several authors for initiating the process. However,

these skeletons are defined differently, either as an ordered sequence of nodes (with the

first and the last acting as termini) or as a short(est) path between two terminal nodes.

The advantages of each skeleton type have not been previously addressed, although the

definition of skeletons might have a large impact on the quality of the solution produced.

Therefore, the appropriateness of the skeleton concept to initiate RG will be considered in

this thesis. Moreover, if a skeleton route is to be adopted, a comparison between the two

types of skeletons needs to be made.

The other more fundamental issue is the need to investigate the possibility of

efficiently assessing the vehicle requirement during RG in order to terminate the process

once the available bus fleet is exhausted. This issue is important to consider in the design

methodology if it is expected to be used in practice, since in real situations, the fleet size

constraint is an essential component of any BNDP. Most of the previous heuristics do not

address this issue. Some of them allow the generation of a pool of all feasible routes, and

then successively select subsets of this pool, determining the frequencies and the vehicle

requirement on each subset, and then replacing routes from the pool until a network

satisfying the fleet size constraint is found. Other heuristics ignore the fleet size constraint

completely, pre-specifying a fixed number of routes to be generated. One guaranteed, yet

highly inefficient solution is to implement a vehicle allocation procedure within the route

31



generation algorithm that would update the total vehicle requirement after the generation

of each route. This issue will be discussed further in subsequent chapters.

2.2.2 Frequency Determination

The optimization approach to the problem of frequency determination on a given bus

network may be viewed as finding the optimal allocation of the resources (bus-hours) on

all the routes and across time periods so as to maximize (or minimize) some objective

function subject to a set of feasibility constraints. Typically, this problem has been

formulated with the objective of minimizing a cost function combining the passenger and

operator costs. The former is often expressed in terms of the total travel time incurred by

passengers in the network. Operator costs are difficult to quantify in terms of the decision

variables (frequencies), so the total number of buses available to the operator is generally

used instead, in the form of a fleet size constraint. Other constraints include the minimum

operating frequencies and the allowable passenger loading on all routes.

Lampkin and Saalmans (1967) formulate the problem of frequency determination

with the objective of minimizing the total passenger travel time, expressed as a function of

service frequencies, subject to a fleet size constraint. The total travel time is the sum of

individual travel times between each origin-destination pair and consists of wait time, in-

vehicle travel time and transfer time. Travel time between each node pair is determined by

considering three mutually exclusive cases. In Case A, at least one bus route connects the

node pair and it is less beneficial to walk between the two nodes. Case B also considers at

least one bus route between the node pair but allows for the possibility of walking instead

of waiting for the bus. In Case C, no single bus route exists between the node pair and

passengers are forced either to walk or to make a transfer trip. The overall matrix of

travel time is calculated first by using walking time in all the cells. Next, node pairs

corresponding to cases A and B are considered and their travel time values are updated.

Finally, the matrix is improved by comparing for each node pair the direct travel time and

the travel time through an intermediate node. The solution technique used is a modified

random search procedure in which an initial (guessed) solution of the vector of frequencies
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is used to start the procedure. After that, new values of the frequencies are produced by

random perturbation from the best values of frequencies found to date.

Silman et al. (1974) extended the frequency determination procedure of Lampkin

and Saalmans and expressed the objective function in terms of the sum of total travel time

and a discomfort penalty. The only feasibility constraint used in this problem is the fleet

size constraint and, as in the procedure of Lampkin and Saalmans, the total travel time is

calculated by assuming simple passenger path choice strategy, thereby eliminating the need

for a formal passenger assignment procedure. The discomfort penalty is included in the

objective function as a way of dealing with the capacity constraint which was neglected by

Lampkin and Saalmans. The discomfort penalty consists of a cost based on the number of

standing passengers per bus and, by minimizing it, the bus capacity constraint is implicitly

considered.

Han and Wilson (1982) address the problem of allocating buses in the case of a

heavily utilized network with overlapping routes. In such systems, many origin-

destination pairs are characterized by multiple paths, so the passenger assignment problem

was addressed explicitly. The problem is formulated with the objective function of

minimizing the occupancy level at the most heavily loaded point on each route in the

system, subject to three constraints: (1) loading feasibility, which stipulates that passengers

not be prevented from boarding a bus on their preferred route because of insufficient

capacity; (2) the passenger flow assignment, which guarantees that the bus passenger flow

on any link is dictated by the passenger assignment submodel; and (3) the fleet size

constraint, which ensures that the available fleet size is not exceeded. The passenger

assignment subproblem uses a simple path choice criteria which divides passenger flows

into captive (served by a unique preferred path) and variable trips (otherwise). The

solution to the problem is performed in a two-stage heuristic which first finds the

minimum number of buses required, and then allocates surplus buses (if any).

Furth and Wilson (1981) treat the problem of frequency determination as a

constrained resource allocation problem with the objective of maximizing the net social

benefit (consumer surplus), subject to constraints on subsidy, fleet size and maximum

headways. The ridership on each route is assumed to vary as a function of the frequency
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of service on that route, and is used in the objective function to express the social benefit.

The formulation of Furth and Wilson does not require passenger assignment, and ignores

the effect of route competition and complementarity effects.

In summary, the frequency determination (or vehicle allocation) problem is well-

behaved when formulated as an optimization problem. The solution of the problem,

however, may not be computationally tractable unless certain simplifying assumptions

about the passenger's path choice process are made. A key issue in this regard is the

assumption of route independence, which greatly simplifies the problem so that a

passenger assignment submodel would not be necessary. What needs to be addressed in

the proposed methodology, however, is the situations in which this assumption may be

valid and the impacts of using it on the overall network design process.

2.2.3 Passenger Assignment

Passenger assignment becomes an important part of the frequency determination problem

in complex networks with common route segments. From a behavioral standpoint, the

objective of the bus passenger is to minimize his or her "inconvenience" which is a

weighted sum of access time, wait time, travel time, transfer inconvenience and travel

cost The transit passenger assignment problem has been studied by many authors.

Following Dial (1967), many passenger assignment algorithms were based on the

assumptions of deterministic running times and exponentially distributed headways on all

routes, in which case the market share of passengers for a particular route is simply its

frequency share.

Dial's model assigns passengers to a single optimal path in the network with

minimum expected travel time. In the case of common routes (or paths) with equal travel

times, the assignment is proportional to route frequencies (frequency share rule). Le

Clercq (72) presented an improved algorithm for solving Dial's model; however, in most

other respects, his approach is similar to that of Dial. Andreasson (1977) expanded on the

models of Dial and Le Clercq by performing path assignment based on a simple heuristic

to include paths in the passenger's optimal choice set. If the travel time conditional upon
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choosing a given path is less than the minimum over all paths of the headway plus the

travel time after boarding, that route is included in the path assignment. Once the optimal

path choice set is determined, path assignment is again based on the relative route

frequencies. The procedure discussed by Andreasson was later incorporated as part of the

Volvo transit planning package VIPS.

Jansson and Ridderstolpe (1992) show that when headways are deterministic

rather than exponential, the frequency share model does not always hold, with passenger

shares depending on the degree of schedule coordination. Their model, which is used in

the VIPS-II software, assumes the existence of a vehicle timetable, to which vehicle

movements adhere perfectly. As a result, depending on the level of coordination of

routes, different path assignments may be inferred. For coordinated routes, assignment is

again based on the frequency share rule, whereas for uncoordinated routes, a heuristic is

used based on the presumption that vehicle departures on any route are uniformly

distributed between departures on any other route.

Spiess and Florian (1989) present a different model for transit assignment whereby

the traveler does not choose a path, but rather selects a strategy. Spiess' approach allows

the transit rider to select any subset of paths leading to the destination with the first

vehicle to arrive determining which of the alternative routes is actually taken on an

individual trip. This optimal strategy concept allows more realistic modeling of the

traveler's behavior and is used in the transit network evaluation model EMME/2.

Hickman (1993) developed a path choice model which takes into account the

impacts of real-time information on transit passenger behavior. This dynamic model

assumes that the passenger decides his/ her boarding strategy as vehicles arrive at the

terminal. The dynamic model is also useful in describing adaptive path choice decisions

made during the passenger's trip.

To summarize, transit assignment algorithms may be very complicated to

implement and the marginal benefit of using a more realistic assignment algorithm may not

be justified, considering the computational cost involved. At the same time, the focus of

the proposed methodology will be primarily on the route generation component. The role

of frequency determination within the methodology would be to assess the vehicle
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requirements on each route and to calculate global performance measures in order to

guide the process of route generation, rather than to provide a detailed calculation of the

frequencies. Moreover, the solution obtained from the proposed methodology may be

analyzed in depth by the use of a readily available transit evaluation model such as

EMME/2.
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Chapter 3

Proposed Methodology

In this chapter, the proposed methodology for solving the BNDP is presented. Section

3.1 discusses the basic features of the solution framework, namely its capability to

combine individual components of the network design problem adapted from the literature

into a single coherent process. Section 3.1 also describes the development of the network

within this framework and the fact that the design process does not yield a single final

solution. Section 3.2 discusses the treatment of demand within the proposed methodology

and section 3.3 describes the two service concepts provided by the solution framework:

general and transit-center. Section 3.4 presents an overview of the two major components

of the proposed methodology: (1) the route generation process which creates a single

route at a time and incorporates it in the set of routes produced thus far; and (2) the

vehicle allocation process which determines the frequency of service on each route of the

network by allocating the available bus fleet so as to satisfy a certain service objective and

a set of operational and policy constraints. Section 3.5 describes how the planner can

introduce improvements to the network solutions created by the design procedure.

Finally, section 3.6 outlines the overall design process and provides a flow chart describing

the major components.

3.1 Solution Framework

The solution framework combines previous work on the bus network design problem, or

specific components of that problem, into a single automated procedure that takes into

account the passenger's service requirements and the limited resources of the operator.

Although it shares some aspects of modularity with other heuristic design procedures, the

proposed procedure is distinguished by the integration of vehicle allocation into the route

generation process, thereby addressing the important relationship between those two
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major components, as well as the tradeoffs of creating networks with different number of

routes. In all the previous approaches reviewed in chapter 2, with the exception of the

one proposed by Hasselstrom, the generation of a pre-specified and often large number of

routes has been performed in isolation from the vehicle allocation process, without any

consideration of the operator's resource constraints. Consequently, the evaluation of the

final solution may well reveal a network that is not consistent with the available resources.

To achieve a balance between the size of the network and the available resources

of the operator, the proposed design procedure is conceived to evaluate the network

(partially) every time a new route is created. The purpose of the evaluation is to estimate

the total number of buses needed in order to decide whether to create more routes or to

terminate route generation. Two methods for evaluating the network are envisioned. The

first method calculates the route frequencies using simple rules of thumb, such as the peak

load factor method or the square root rule, and uses them to determine the vehicle

requirement on each route. These simple methods do not require passenger assignment

and impose little computational cost on the overall process. The second method

determines a measure of the network's level of demand satisfaction - which is a global

performance measure that depends only on the nodal composition of the network (not a

function of the service frequencies) - and uses it as an indication of the network's

development level and its vehicle requirement. Although it does not explicitly calculate a

value of the total vehicle requirement, the second method is still fairly reliable in assessing

the amount of resources required and is more computationally efficient than the first

method.

If the evaluation suggests the network is likely to consume all the available

resources, a more elaborate vehicle allocation process is called upon to determine more

accurately the total number of buses required and to calculate a range of network

performance measures. On the other hand, if the network requires less buses than the

available fleet, vehicle allocation is bypassed, another route is generated and the new

network is re-assessed. The route generation process is terminated when vehicle

allocation exhausts all the available resources.
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The ability to perform network evaluation at close intervals in the route generation

process adds another advantage to the proposed solution framework that was not fully

explored in this thesis, but may be considered as an extension to this work. The

information obtained from the intermediate network evaluation may be used in a variety of

ways to guide the generation of routes, thereby transforming network development into a

dynamic process with the expectation of achieving a better final solution. However, such

actions may eventually reduce the overall efficiency of the design process and, hence,

hinder the main feature of the proposed methodology.

Another important feature of the proposed framework is related to the

development of the final solution. Because of the nature of the network design problem, it

may well be that a better overall solution can be obtained if the route generation process is

terminated a few iterations before all the resources are exhausted and the remaining buses

are allocated to the most heavily patronized routes. This uncertainty is an inherent

characteristic of the problem and motivates the investigation for a measure of the marginal

benefit of adding a bus to an existing route to improve its wait and transfer times, as

opposed to using the same bus to serve additional trips on a newly developed route. In

fact, the proposed solution framework builds on that aspect by creating a file that records

the performance measures and basic characteristics of several solution networks that

satisfy minimum requirements of directness and coverage. As will be described in chapter

5, this file contains two cases of vehicle allocation for each network configuration

recorded, the first one requiring a minimum number of buses and the second one utilizing

all the available vehicles.

Consequently, when the overall design process is terminated due to the

unavailability of additional resources, it yields more than the solution corresponding to the

last network configuration (which consumes all the available resources). Instead, several

network solutions are contained in the file, each one with a slightly different number of

routes, vehicle requirements and performance measures. The planner may then analyze

the data at hand and decide on the overall "best" solution.

39



3.2 Treatment of Demand

The proposed methodology adopts a fixed demand approach to the BNDP, treating the

given demand matrix as fixed and independent of the service quality offered between any

origin-destination pair. As discussed in the previous chapter, this assumption simplifies

the formulation of an already complex problem, and does not necessarily preclude the

possibility of conducting a more comprehensive analysis of the system. The impacts of the

network restructuring on ridership can still be considered, although not within the design

procedure itself, by feeding the service characteristics of the modified network into a

separate demand model which can estimate the demand matrix that is consistent with the

service provided on that network. If this matrix is significantly different from the one

input to the design process, a second iteration through the design procedure can be

performed with the new demand matrix.

By assuming a fixed demand matrix, the focus of the design process is placed on

increasing the benefits to the current system users rather than on the potential of

generating additional ridership. However, bus (and other transit) systems are generally

recognized to be an important social service, with the social benefits - including reductions

in traffic congestion, pollution and energy use - being proportional to the number of riders.

These benefits are likely to be more significant than the ones experienced by the current

users, especially when the long-term development of the system is considered. Since the

proposed methodology for BNDP addresses the strategic planning of bus systems, an

external feedback loop for estimating additional ridership should be used to complement

the design procedure. However, within the procedure itself, the variation in demand is not

explicitly considered.

3.3 Network Concepts

A demand matrix normally reflects the type of the network used to generate it. For

example, if the bus network is radial, the demand matrix is expected to exhibit a radial

structure as well, with one row (column) dominating all other rows (columns). If the
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same matrix is then used to restructure the network, it is very likely that the modified

route configuration will also follow a radial pattern. This is particularly true if the design

process used attempts to serve all the existing nodes in the current network. On the other

hand, the input demand matrix could be different from the existing transit demand,

reflecting "desired" trip patterns that correspond to a presumed network concept.

Most of the previous approaches to network design do not specify a particular

network concept - such as radial or multi-centered - and tend to be guided only by the

existing demand matrix in determining the route configuration. Consequently, the type of

network generated is likely to reflect the existing travel patterns, resulting in a network

similar in concept to the one that already exists and serving the same type of trips. This

limitation is addressed in the proposed methodology by allowing the planner to choose

between specifying a transit-center network concept prior to the initiation of the design

process, or not specifying a particular concept and letting the process be guided

exclusively by the demand matrix. These two options are described in the following

sections.

3.3.1 General Network Design

If no network concept is specified, route generation is guided exclusively by the existing

demand matrix. The selection of the terminals and intermediate nodes for each route is

dictated primarily by the number of trips made between each pair of those nodes. The

network is developed by sequentially selecting feasible route "skeletons", sorted in

decreasing order by the number of trips, and expanding them into full routes by means of

nodal insertions. No attempt is made to serve all the nodes in the existing system,

although the design process aims to satisfy the largest amount of demand possible.

Consequently, the final solution obtained may be similar to the existing bus network;

however it is also expected to deliver a better overall performance because of the tradeoffs

of service expansion and concentration that are investigated in the design process.
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3.3.2 Transit Center Network Concept

In many major metropolitan areas, many activities such as employment, shopping, medical

and educational that were once concentrated in the downtown area have gradually

decentralized as a result of extensive suburban development. These fundamental changes

in land use have made it difficult for the conventional bus network, which typically follows

a radial pattern from the central business district into the suburbs, to provide adequate

service for many desired trips within the suburbs. Consequently, some cities have

proposed different network concepts designed to provide better service to multi-nucleated

metropolises with significant suburban development. The transit center concept revolves

around major community retail and/ or employment centers functioning as effective hubs

around which transit operations are focused. These centers are served by trunk or main

lines that connect the various centers, operating at high frequencies and along the most

direct routes. Feeder buses or demand responsive service also serve the transit centers

and provide a local collection-distribution function.

When the transit center concept is specified as the basis of the design process,

route generation needs to be modified in a number of ways. First, the demand matrix

needs to be transformed in order to reflect the redistribution of origin-destination flows in

the transit center network. This transformation investigates the possibility of directing any

origin-destination flow via an appropriate transit center by attempting to assign each flow

to one or two transit center nodes. As a result of the transformation, the demand among

transit center nodes, as well as the demand between each of these centers and the other

nodes, is increased, reinforcing the role of the centers as major hubs in the network and

influencing the process of route generation to consider creating routes to serve them.

Because transit center nodes now capture a large portion of the total demand, trunk lines

are likely to be created at an early stage of route generation, which seeks the most direct

path for this type of route. Feeder routes which increase the levels of network coverage

and directness by providing access to the transit centers are also encouraged by the

demand matrix transformation. Flows which are not affected by the transformation would
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still be served by the transit center network, either by being incorporated in feeder routes

or by requiring the route generation process to create direct routes to serve them.

The performance of a transit center solution is evaluated based on the original

(non-transformed) demand matrix and may well be inferior to that obtained if no particular

concept is specified. The reason is that the demand matrix reflects a well-established

current service that is ineffective at serving the many newly-developed and dispersed

destinations within its service area. Consequently, the demand between those destinations

may have been kept artificially low and the routes created to serve them in the solution

network may seem to be unjustified. Assessing the performance of the solution network

in that case is better performed with a demand matrix estimated based on the proposed

service changes.

3.4 The Network Design Procedure

The network design procedure consists of two major components - route generation (RG)

and vehicle allocation (VA) - which are integrated into a single automated process. These

two components are described in the following sections.

3.4.1 Route Generation

For a given demand matrix, street network information and set of design parameters, the

RG process constructs a single bus route at a time and adds it to the set of routes already

created. The process of single route generation is preceded by the determination of all

feasible initial skeleton routes, each consisting of a sequence of three nodes (two terminal

nodes plus one intermediate node) satisfying operational constraints on round trip time

and circuity. At each iteration of the single route generation process, the feasible initial

skeleton with the highest number of trips is selected and expanded into a connected path

by means of nodal insertion. Feasible insertion nodes are selected according to an

objective function which combines measures of route directness, and network coverage

and connectivity into a single expression. The connected path obtained is referred to as a
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base route and is investigated for additional insertions that might increase its share of

demand without causing lengthy deviations. After all feasible additional insertions have

been examined, the route is considered fully developed and is added to the set of

previously generated routes.

3.4.2 Vehicle Allocation

VA aims at assigning the available fleet of buses to the network of routes developed thus

far so as (1) to ensure enough capacity on each route to accommodate all passengers

choosing it and (2) to allocate any surplus buses, if they exist. VA achieves the first

objective by assigning the demand matrix onto the network of routes according to a

certain model of passenger behavior that depicts the preference of users towards choosing

a particular travel path among a set of options. VA includes a path choice model which

assigns passengers on each route as a function of its frequency , as well as the frequencies

on the competing routes offering similar service. In turn, the frequency of service on each

route is determined by assigning buses on the route according to its maximum link flow

(which is governed by the passenger assignment). Therefore, the VA process attempts to

reach an equilibrium in which the vehicle and passenger assignments are consistent with

each other. The allocation obtained when this equilibrium state is reached is referred to as

the base allocation and requires the minimum number of buses. The VA process also

calculates performance indicators corresponding to the system after base allocation and

includes measures of the total in-vehicle travel, wait and transfer time.

If buses remain unused after the base allocation is performed, these buses are

assigned using a surplus allocation procedure which also calculates the new performance

measures corresponding to the surplus allocation. Both sets of performance measures

(corresponding to the base and surplus allocation) are used at the end of the design

process to facilitate the selection of the overall "best" solution by the planner.
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3.5 Network Improvements

Solutions obtained from the design procedure may benefit from certain modifications to

improve their overall performance. Because they involve a high degree of judgment and

interaction with the planner, network improvements were not developed as part of the

automated design procedure. Instead, the emphasis was placed on creating a route

generation process that would reduce the need for further improvement. In particular, RG

includes provisions to discourage the formation of overlapping routes. This would

improve the network's demand coverage level by allowing the generation of fairly

independent routes serving a larger number of distinct nodes. Moreover, RG prevents the

formation of excessively circuitous routes and limits the round trip times in order to

promote directness of service. These constraints are discussed further in chapter 4.

The solution produced by the RG procedure may require improvements that target

short and/ or low-ridership routes. These routes may be improved in more than one way,

each with significantly different implications. Low-ridership routes may be joined with

medium to high frequency routes, thereby reducing the total vehicle requirement and

improving the network's directness. Alternatively, low-ridership routes may be totally

eliminated from the network and the buses operating on them used to generate new

routes. The proposed methodology was conceived to allow the planner to modify the

solution obtained from the design procedure and to feed back the modified network into

VA which re-evaluates it and calculates new performance measures. Also, if the modified

network requires less buses, RG is resumed in order to create additional routes.

3.6 The Overall Design Process

A flow chart displaying the overall bus network design process is shown in figure 3.1. RG

starts with the (optional) demand matrix transformation procedure and proceeds towards

the main loop where single routes are created. In the first few iterations of the RG

process, individual routes are created without allocating buses to them, since the number
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of buses required by the current network is likely to be below the available fleet size (the

vehicle requirement is estimated within the main loop by the network evaluation

procedure). As long as this condition prevails, VA is bypassed in order to reduce the total

running time. However, when the network reaches a critical size, this condition ceases to

be valid and the VA process becomes necessary to estimate the total vehicle requirement

more reliably. After it is performed for the first time, the VA process is performed

repeatedly after each new route is created until all the resources are exhausted. VA

calculates the frequency of service on each route, the total vehicle requirement and the

performance measures, and then stores the current solution in a file. When no more buses

remain, this file contains network solutions with different sizes and performance measures,

but all with vehicle requirements in the vicinity of the available fleet. These solutions are

then analyzed by the planner, taking into account tradeoffs among travel time, demand

coverage and buses required. The "best" network is then selected and, if necessary,

subjected to improvements. If the network is modified after improvements, VA is

performed again and the vehicle requirement is recalculated; otherwise, the design process

is terminated. A new demand matrix may then be estimated (outside the design

procedure) and a new iteration of the overall procedure may be performed, if necessary.

The design process is discussed further in chapter 5, after the RG and VA processes are

presented.
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Chapter 4

Route Generation

This chapter focuses on the generation of bus routes from a given bus demand matrix and

a description of the street network that includes for each node its neighboring nodes and

the in-vehicle travel times on all possible connecting links. The main component in the

network development is the single route generation (SRG) process, which creates

individual routes between two terminals by specifying intermediate nodes along a path in

the street network.

Two general approaches for developing a single route exist and are discussed in

the next sections. The approach for SRG is based partly on the route generation process

originally proposed by Lampkin and Saalmans (1967) and shares some aspects with the

route generation algorithm implemented by Baaj and Mahmassani (1993). The approach

starts by selecting an initial route skeleton consisting of a sequence of three nodes and

successively inserts intermediate nodes until a connected base route is found. Additional

insertions that increase the base route's share of the total demand without subjecting the

passengers to significant time delays are then performed.

The route generation (RG) process creates bus networks that provide fixed-

schedule uncoordinated service among the various routes. The process can also construct

networks around the concept of transit centers, incorporating better transfer opportunities

at these centers, as well as faster and more direct service between two centers in the route

design. A similar feature has been implemented in Shih and Mahmassani (1994) with

additional considerations for demand responsive services.

Section 4.1 presents an overview of the RG process for the case of a general

network design, including a flow chart and a summary of the major steps involved.

Section 4.2 describes the proposed approach for route generation and discusses the

options that were considered in selecting the approach. The input and the design

parameters required for the process are described in section 4.3. Sections 4.4 and 4.5

48



describe the formation of feasible initial skeletons and the selection of the best initial

skeleton before each iteration of the SRG process. The expansion of skeletons into base

routes is described is section 4.6 and deviations from the base route are considered in

section 4.7. Finally, section 4.8 discusses the modifications implemented in the SRG

process for designing networks based on the transit center concept.

4.1 Overview of the Route Generation Process

In the review of previous methods of bus network design presented in chapter 2, two

major approaches for route generation were identified. The first approach is attributed to

Lampkin and Saalmans and is based on selecting the best four-node initial skeleton,

starting and ending with permissible termini, and then expanding the skeleton into a

complete route by means of nodal insertions. The second approach was developed by

Baaj and Mahmassani and consists of identifying the shortest path (or an alternate short

path) between two selected termini, and then expanding this base route by inserting

neighboring nodes. In the latter approach, the process is initiated by selecting the seed

nodes of the route from a list of terminal node pairs, ranked in decreasing order of the

number of trips.

The RG process proposed in this methodology combines some of the basic

elements of the previous approaches and is comprised of four main components: (1) pre-

processing and the determination of all feasible initial route skeletons, (2) selection of the

best initial skeleton, (3) expansion of an initial skeleton into a base route, and (4)

consideration of route deviations. The last three components form the SRG process

which is performed iteratively until a satisfactory network is developed. The first

component is executed only once at the beginning and is used to initiate the SRG process.

In the case of a transit center network design, this component is preceded by a demand

matrix transformation procedure which examines the possibility of routing each origin-

destination flow via one or two designated transit center nodes.

The RG process starts by finding all combinations of initial route skeletons -

consisting of a terminal node pair and a major intermediate node. Major nodes are either
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specified in the input, or determined from the demand matrix as the set of nodes with a

large number of associated trips. Each skeleton combination undergoes a filtering process

which discards skeletons that violate constraints on round trip time and circuity, and the

remaining ones form the set of feasible initial route skeletons.

The SRG process is initiated by approximating the demand served by each feasible

initial skeleton and selecting the one with the largest number of trips. The demand

associated with each feasible initial skeleton is calculated by aggregating the number of

trips between each node pair in the skeleton, only if the node pair is not already served by

any of the routes that have already been developed. This rule is used to discourage the

selection of initial skeletons whose nodes are already served by existing routes, thereby

reducing the amount of overlap in the network.

After the best initial skeleton is selected, it is then expanded into a base route using

an iterative process of nodal insertion. A base route is a connected and relatively direct

path (although not necessarily the shortest) between the route's termini and is created as a

first-stage expansion of the skeleton route. At this stage, nodal insertion is performed in

"gaps" in the skeleton route, with a gap defined as any situation where two consecutive

nodes in the skeleton are non-adjacent (i.e. they are not directly joined by a link). Feasible

insertion nodes for filling a gap are determined according to two heuristic rules which

reject nodes causing (1) a large deviation of the skeleton route from its corresponding

shortest path, or (2) a skeleton route round trip time exceeding a maximum allowable

value. Feasible insertion nodes are evaluated using an objective function expressing

weighted measures of route directness, coverage and connectivity to previously generated

routes, and the node which maximizes the objective function is selected and inserted in the

skeleton. The process of nodal selection and insertion is repeated for all the gaps in the

skeleton until the base route is fully developed or until a gap cannot be filled. In the latter

case, the route under expansion is considered infeasible and is discarded. The second

stage of route expansion investigates detours from the base route caused by nodes that are

one-link away between two consecutive (and adjacent) nodes on the base route. Feasible

insertion nodes are determined as in the first stage expansion process, except for a more

restrictive condition on route circuity in order to prevent large deviations of the route
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from its current path. Also, a feasible node is not inserted unless the additional gain in

demand outweighs the increase in travel time caused by the detour, calculated for all the

passengers affected by it. After the last two consecutive nodes on the route have been

examined for possible detours, the route is considered fully developed and is compared to

all the routes generated thus far to determine whether it is a subset of any of them. If that

is the case, the route is deleted to prevent unnecessary service duplication.

The flow chart of the RG process is shown in figures 4.la and 4.lb. After a route

is fully developed (one iteration of SRG is completed), the process may be either repeated

or terminated, depending on the performance of the network of routes obtained thus far.

This issue will be addressed in the next chapter after the vehicle allocation process is

presented. The major steps involved in the RG process may be summarized as follows:

Step 0: Pre-processing and determination of feasible initial skeletons

* Read the input and design parameters. If the transit center concept is

specified as the basis of the design process, transform the demand matrix

by routing origin-destination flows via one or two transit centers, where

appropriate.

* Create all three-node initial skeleton combinations, consisting of a

terminal node pair and an intermediate destination node.

* Determine the set of feasible initial skeletons by eliminating the ones

with unacceptable round trip time or circuity.

* Calculate estimates of the demand served by each feasible skeleton and

list all feasible skeletons in decreasing order of demand.

Step 1: Start the SRG process (steps 1 through 4) to create the kth route

* Modify the list of feasible initial skeletons by updating the value of

demand served by each skeleton. Demand between two nodes in the

skeleton that are already served by a route does not count towards the

demand associated with that skeleton.
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v Select the initial skeleton (r,d,s) with the highest demand value.

Step 2: Expand the initial skeleton (r.d.s) into a base route

* For each gap in (r,d,s), examine all feasible insertion nodes and insert the

one which maximizes the objective function.

* Repeat step 2 until a base route consisting of a sequence of adjacent

nodes is found, or until a gap cannot be filled.

* If a base route is found, go to step 3; otherwise, quit the expansion of

the current skeleton and return to step 1.

Step 3: Consider deviations from the base route. Set n = 1

* Locate a feasible insertion node that is one link away from nodes n and

n+ 1 on the base route. If the additional demand satisfied by inserting that

node outweighs the delay caused by the detour then insert the node.

* Set n = n+l and repeat step 3 until node n +1 is the last node on the base

route.

Step 4: Route k is fully developed

* If route k is a subset of a previously generated route, then delete it.

Otherwise, add route k to set of routes.

* Go to step 1 if more routes can be generated.

4.2 The Proposed Approach for Route Generation

In the review in chapter 2, most of the heuristic approaches to route generation consisted

of a repetitive and identical process of developing a single route until some termination

criterion is met (Lampkin and Saalmans, 1967; Silman and al., 1974; Baaj and

Mahmassani, 1993). Furthermore, the generation of routes was divided into two major

parts: the creation of route nuclei, and the expansion of these nuclei into full routes. The
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route nucleus varied in structure among the several approaches, but generally consisted of

a terminal node pair and a few intermediate nodes, enough to form an adequate

representation of the route it describes and to assess the benefits of including that route in

the final design. Since a fully developed route may contain many nodes, the number of

possible route combinations is often very large, even in relatively small networks.

Moreover, many routes share similar features with other routes and may differ only in a

small number of nodes or segments. Therefore, these similar route combinations may be

substituted by a smaller number of route nuclei which can be formed and evaluated more

efficiently in the first part of route generation. As a result, a priority list for developing

route nuclei is established and, in the second part, nuclei are successively selected from

that list and expanded into full routes.

The proposed RG process follows the same partitioning mentioned above and

combines basic elements from previous approaches. Two distinct approaches for creating

route nuclei were presented in chapter 2: (1) the route skeleton approach originally

proposed by Lampkin and Saalmans and (2) the base path approach implemented by Baaj

and Mahmassani. In the first approach, a route nucleus between two terminal nodes is a

sequence of four (not necessarily connected) nodes including two intermediate nodes

between the termini, whereas in the second approach, it is the shortest path between the

two terminal nodes.

If these approaches are compared, it can be argued that a node-based route

skeleton is capable of exploring more alternative routes for a given terminal node pair than

an initial path. By taking advantage of a broad choice of intermediate nodes, the skeleton

route approach is in effect evaluating several trajectories of the final route, each one

corresponding to a particular selection of intermediate destinations. In contrast, the base

path approach determines only the single shortest path between each two terminal nodes,

imposing a limit on the trajectory of the route and the destinations it ultimately serves.

The objective of investigating multiple routing alternatives for a terminal node pair and

selecting the "best" routing is thus defeated. Instead, the initial path approach is overly

concerned with finding the most direct route between a certain terminal node pair,
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overlooking the benefits from considering paths, other than the shortest one, that might be

more useful in serving important destinations.

To better understand the advantage of the initial skeleton approach in this regard,

consider the situation in figure 4.2 which shows a simple example of a typical radial bus

transit network. The downtown district is the only major destination in the area and is

assumed to be concentrated at node n. Suppose that nodes t, t2 , t3 and t4 are existing

terminals for the two routes in the system, R1 serving the north-south corridor and R2

serving the east-west corridor. Assume further that for some reason (traffic congestion,

lack of space, etc.), node n cannot be a terminal. Because the central core is the only

major destination in this purely radial system, bus trips are made only between node n and

the nodes on each leg of routes R1 and R2. To compare the two approaches to route

generation, the demand matrix corresponding to the system of figure 4.2 will be used to

re-design the bus network serving the same area. Note that in this example, there are six

possible combinations of terminal node pairs.

In the case where the base path approach is used, the highest-demand terminal

node pair is selected at each iteration. In this example, however, the number of trips

between any two terminal nodes is zero, and no clear choice of terminals exists. However,

for the sake of argument, suppose that (t1 ,t2) is chosen (arbitrarily) to generate the first

route. This route, R1, shown in figure 4.3a, does not include node n. In fact, it is highly

unlikely that node n would be part of R1 - even after detours from the initial shortest path

are considered and despite the fact that an appreciable demand exists between n and both

t, and t2. The reason is that node n is not on the shortest (or near shortest) path between

the route's termini.

On the other hand, if a skeleton approach is used for the same example, all

skeleton combinations would be formed first and then ranked in decreasing order of the

number of trips. Using only one major destination as an intermediate node, six possible

initial skeletons can be formed, each combination consisting of node n in between two

terminal nodes. Note that in general, more major destination nodes are present in the

network and skeleton combinations outnumber terminal node pair combinations. Each
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skeleton has a different number of trips associated with it. For the sake of comparison,

suppose that the skeleton (t,n,t 2) is selected as having the largest number of trips. The

final route R1 obtained after (t,,n,t2) is developed is shown in figure 4.3b and although it

is less direct than RI, R. clearly serves more trips. In this example, any skeleton other

than (t,,n,t 2 ) would also yield a better route than R1, since all final routes would have to

go through the major destination node n.

The significance of this simple example is that it demonstrates a fundamental

problem with the base path approach, namely its limitation on the number of routing

options for a given set of terminal nodes. The limitation may cause the neglect of better

routing options and, as in the last example, could lead to the formation of routes such as

R1 , with no major destination to serve and with a demand that may not warrant its

existence in the first place. The impact of this problem extends to the vehicle allocation

stage of the network design, in which route R. will require a certain (minimum) number

of buses that would have otherwise been put to better use on the other routes.

Having established the advantage of the initial skeleton approach in creating route

nuclei, the second part of route generation which expands the route nuclei into complete

routes is now addressed. An issue that is related to the initial skeletons and that was not

discussed in the previous section is the necessity to limit the number of skeleton route

combinations. In fact, if no restrictions are placed on the choice of the intermediate

node(s), the initial skeleton approach may result in excessively long or circuitous routes

after expansion, because no explicit measures to balance the route's directness with the

amount of trips serviced are imposed. Long or circuitous routes are undesirable because

they penalize the passenger's travel time, and are also difficult to operate because they

might create service reliability problems.

For these reasons, the initial skeleton approach should include provisions to ensure

that these skeletons are operationally feasible before they are considered for expansion.

Referring back to the last example, the feasibility of the initial skeleton (t,nt 2) would have

to be checked during the formation of skeleton combinations and, if it is within allowable
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limits of length and circuity, it is allowed to be a candidate skeleton for expansion. (t,n,t 3)

and (t2,n,t4) both have a circuity ratio of unity and are thus guaranteed to be feasible.

Because more than one alternative of expanding a given initial skeleton may exist,

the route length and circuity should also be addressed during expansion. Consider the

case of figure 4.4 where the skeleton route consists of the terminal nodes r and s and the

intermediate destination node d. In this example, the expansion of the route segments

[r,d] and [d,s] may be performed in two ways each, resulting in different round trip times

and circuity levels of the final route. If no restrictions on the process of expansion of the

initial skeleton (r,d,s) are imposed, the final route may follow path P - which is the longest

and most circuitous possible path - if the benefits from generating such a path more than

offset the disbenefits from the additional travel time incurred.

To overcome these problems, the proposed RG process starts with the creation of

feasible initial skeletons whose corresponding estimates of route length and circuity satisfy

maximum allowable values. Furthermore, after it is selected, an initial skeleton is

expanded in two stages. In the first stage, the best feasible nodes are inserted in the

skeleton until a connected path between the route's terminals is found. To ensure a

relatively direct and short path, the same feasibility conditions imposed on the initial

skeletons can be evaluated before each insertion, allowing only the feasible nodes which, if

inserted, would not result in the skeleton route violating requirements of length and

circuity.

The connected path obtained at the end of the first stage is referred to as the base

route and is analogous to the base path created in the other approach, except that it is not

necessarily the shortest one, since it has to go through pre-specified intermediate nodes.

In the second stage, minor detours from the base route are considered incrementally,

whereby neighboring feasible nodes that improve the route's share of total demand

without excessively penalizing passengers with increased travel time are inserted. The

merit of the two-stage approach is that it initially creates a feasible base route which

satisfies the operational constraints, leaving the door open to detours in a later stage.

Although it may not necessarily capture all the demand it can potentially serve, this route

guarantees a basic service that might be extended at the second stage of route expansion.
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On the other hand, a single-stage expansion approach might consider many detours at an

early stage of the expansion process, precluding its acceptance as an operationally feasible

fully developed route.

Based on all the discussion above, a route generation process which uses an initial

skeleton approach is proposed. Furthermore, it is suggested that the expansion of the

initial skeletons be performed in two stages, with a base route obtained at the end of the

first stage and possible detours from the base route examined in the second stage. The

RG process is thus composed of four main components: (1) the determination of the set

of feasible initial route skeletons, (2) the selection of an initial skeleton, (3) the expansion

of the initial skeleton into a base route, and (4) the consideration of route deviations.

Moreover, a procedure for transforming the demand matrix is required in the case of a

transit center network concept, in order for the methodology to yield effective results.

After a description of the input required by the RG process, each of the four components

is described in more detail. The demand transformation procedure is described in section

4.8.1.

4.3 Input and Design Parameters

The input required by the RG process can be grouped into the following categories:

Network: The street network nodes (with terminal nodes identified separately) and

links, the node connectivity information, and the shortest travel time

matrix.

Demand: A symmetric bus demand matrix.

Parameters: The maximum allowable route round trip time RT,,, the maximum

allowable route circuity RC,, and the weights wd, wt and wn for the

components of the objective function.

The network information represents the basic elements of the street network on

which buses can operate. Networks are usually coded from street maps into an abstract,
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computer-usable format consisting of nodes and links. Links are used to designate the

individual road segments (streets, roads, freeways, etc.), whereas nodes represent the

intersection of these segments and may also be used as points to shape the topology of the

highway system. In the case where it is used to perform demand analysis, the network

also contains special nodes called centroids, in addition to regular nodes, that represent the

traffic analysis zones considered in the study.

For the purpose of bus network design, a less detailed network than the one used

for demand analysis is recommended. Highway networks used in demand analysis serve to

model travel by auto, which generally has a larger and more dense access area than transit,

thereby requiring a network with a high level of detail. Besides, the proposed network

design methodology is intended to be a screening tool that generates preliminary bus

routes and frequencies that will require further refinements in terms of the exact alignment

and the amount of service provided; thus, no additional benefits are gained by using a

highly detailed network. Finally, the execution time of the RG process is highly sensitive

to the size of the network used because it includes several operations that are proportional

to the number of nodes and links in the network. For all these reasons, it is suggested that

the size of the network used for route generation be kept to a minimum, keeping all

valuable information such as the major bus transit corridors, destinations and access points

to other modes in the network.

To establish the connectivity of the network, a link identification number is used to

designate the nodes at the ends of each link. At the link level, the only attribute required is

the estimated travel time, which is used to calculate the minimum travel time matrix. Bus

demand, expressed as the number of trips per hour, is stored at the node level and is

associated with the nodes that replace zone centroids.

The parameters used in the RG process can be classified into two types. The first

type consists of parameters pertaining to the service pattern and service levels of the

system and may be inferred from service planning guidelines. These guidelines are based

on the experience and professional judgment of transit planners rather than on theoretical

considerations. NCHRP Report 69 (1980) suggests several criteria for network design,

and those specifically related to route generation are shown in table 4.1. Route length, for
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Table 4.1: Service Planning Guidelines, Selected from NCHRP, Report 69, 1980

example, is suggested to be less that 25 miles or 2 hours round trip (1.4a) and is easily

incorporated in the design process (sections 4.4, 4.6.1 and 4.7) with the use of a maximum

allowable round trip time parameter RTm,. The directness criteria, however, are more

difficult to incorporate as stated in table 4.1, because they are either too descriptive (1.3c),

or they make reference to information that route generation is not concerned with (1.3a

and 1.3b). In that case, an interpretation of the guidelines into a more explicit measure

that would fit within the structure of the RG process is necessary. Table 4.2 shows two

parameters used in the RG process - the maximum allowable round trip time RT and the

maximum allowable route circuity RC,. A route's circuity in this context is defined as

the ratio of its one-way trip length (in time units) to the minimum travel time between its

termini. Because no comparable measure is provided in the practical service guidelines,
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1.3 Route Directness/ Simplicity

a. Routes should be direct and avoid circuitous routings. Routes should not

be more than 20 percent longer in distance than comparative trips by car.

b. Route deviation shall not exceed 8 minutes per round trip, based on at

least 10 customers per round trip.

c. Generally, there should not be more than two branches per round trip.

1.4 Route Length

a. Routes should be as short as possible to serve their markets; excessively

long routes should be avoided. Route length generally should not exceed 25

miles round trip or 2 hours.

b. Two routes with a common terminal may become a through route if they

have more than 20 percent transfers and similar service requirements, subject

to (a).



Table 4.2: Design Parameters for the SRG

the value of RC,, is specified on a judgmental basis and should be validated after the

experimental stage is conducted.

The other parameters used are specific to the proposed RG process and,

consequently, are entirely empirical in nature. These parameters consist of the weights wd,

wt and w, used in the objective function to combine three measures of the passenger's level

of service into a single measure (section 4.6.2). These weights depend on the magnitude

of the measures they are associated with and are calibrated accordingly using a heuristic

procedure described in appendix A.

4.4 Determination of Feasible Initial Skeleton Routes

An initial skeleton consists of a sequence of three nodes: the first and last nodes are the

termini of the route under development, and the intermediate node is a major generator in

the service area. In general, the trajectory of the final route may be known with more

certainty if the number of intermediate nodes in the initial skeleton is increased, and thus, a

more accurate evaluation of the potential of the skeletons may be achieved. However,

additional information drawn from adding one more intermediate node is expected to be

small. In addition, the number of initial skeleton node combinations grows rapidly with
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Design Parameter Use Value

Maximum allowable To limit the round trip time estimate on 2 hours

round trip time, RT. a skeleton route (NCHRP, Report 69)

Maximum allowable To limit the circuity of a skeleton route, 1.0 - 1.5

route circuity, RC, defined as the ratio of its one-way trip

length (in time units) to the minimum

travel time between its termini.



the increase in the number of intermediate nodes, requiring additional comparisons to

select the best initial skeleton. Therefore, only one intermediate node is used. If the

demand matrix reflects a radial travel pattern, a single node would be sufficient to

influence the formation of skeletons that go through a downtown location (if the deviation

is feasible). If a transit center network is to be designed, a single intermediate node would

also be sufficient, since the demand matrix would be transformed, prior to the

determination of feasible skeletons, in a way to increase the chance of a transit center

being chosen as an intermediate node.

Each pair of terminal nodes is matched with every major node to form all possible

three-node skeletons. The set of feasible initial skeletons is determined by imposing

constraints on the round trip time and circuity of the route corresponding to each skeleton

combination. As shown in figure 4.5, a lower bound li,, on the round trip time of a route

between r and s can be calculated by summing the shortest path travel times SP,d and SPd,,

between the terminal nodes and the intermediate node on its corresponding skeleton

(r,d,s). Similarly, the circuity of that route (defined in the previous section) is bounded

from below by the circuity ci, of its corresponding route skeleton, calculated as the ratio

of the sum of SP,d and SP4, to SP,,. Therefore, skeletons with values of lmin or cmi,

exceeding RT, or RCm,. respectively are excluded from the set of feasible initial

skeletons.

4.5 Selection of the Best Initial Skeleton

For each feasible initial skeleton, the total number of trips that will be served by the route

after its full development is approximated by the sum of trips made between each pair of

nodes in the skeleton. This approximation is obviously a lower bound, since it ignores

additional trips between nodes that have not yet been inserted, as well as any transferring

trips from other routes. However, at this early stage of development, this estimate is the

only possible indication of the potential trips which may be served by the route, and is

used at the beginning of each iteration of the SRG process to select the skeleton with the

highest number of trips.
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Figure 4.5: Minimum Round Trip Time and Circuity of Skeleton (r,d,s)
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After a route is fully developed, the demand associated with every initial feasible

skeleton is recalculated, ignoring all the trips that are satisfied by the set of all routes

already generated. The selection of the best initial skeleton for the next route to be

developed is then made based on the modified values of demand. This calculation is

performed for two reasons. First, it prevents previously selected skeletons from being

selected in subsequent iterations of the SRG process. Although this could also be

prevented by simply discarding these skeletons from the set of feasible initial skeletons, the

latter is likely to contain others which overlap with these skeletons. If any one of these

overlapping skeletons is then selected at a later stage of RG, the resulting full route is

likely to be overlapping with other routes in the network. This leads to the second reason

for modifying the demand associated with each feasible skeleton. By doing so, feasible

skeletons would be selected for their potential of serving trips that are not already

(directly) served by the current network. Consequently, the degree of route overlap in the

final network is reduced, and its demand coverage is improved.

4.6 Expansion of a Skeleton into a Base Route

The expansion of an initial skeleton into a base route is the first stage of a two-level

expansion process required to complete route development The expansion into a base

route is performed using an iterative process of locating "gaps" between nodes already in

their position in the skeleton route and filling them with the "best" feasible insertion nodes.

A gap is defined as two consecutive nodes i and i+ 1 in a skeleton, where i and i+ 1 are not

connected by a single link (non-adjacent). Additional insertions between adjacent nodes in

the skeleton are considered in the second stage of expansion (section 4.7), after the base

route has been obtained.

To understand how this stage of expansion works, consider the initial skeleton

route shown in figure 4.6a which consists of the terminal nodes r and s and intermediate

node d. The first gap is located between nodes r and d, which are the first two

consecutive and non-adjacent nodes in the skeleton. The first iteration of the expansion

process attempts to close the gap between r and d by inserting a feasible neighboring node
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in between. All the feasible nodes are evaluated and the one which maximizes an objective

function is inserted. This situation is illustrated in figure 4.6b in which the best feasible

node n1 is inserted between r and d. The next gap in the skeleton is now located between

nodes n, and d and the search for feasible insertion nodes for that gap is performed. In

figure 4.6c, n2 is the only feasible insertion node for that gap and is therefore automatically

added to the skeleton. The expansion process is continued in the same manner (figure

4.6d through figure 4.6f) until all the gaps in the skeleton are closed or until a gap with no

feasible insertion nodes is encountered. In the latter case, the current route is abandoned

and a new iteration of the SRG process is initiated with a different skeleton. If all the gaps

could be filled, a connected path such as r-n1-n 2-d-n4-n3-ns-s of figure 4.6f is obtained.

This path is the base route which is examined for deviations in the second stage of route

expansion.

4.6.1 Feasible Insertion Nodes

The purpose of creating a set of feasible insertion nodes prior to the selection of the best

node to insert in a certain gap is to reduce the number of nodes that need to be evaluated.

Given a gap between nodes i and i+ 1 in the skeleton route (r,d,s), the set of feasible

insertion nodes sfn is calculated relative to nodes i and i+ 1 and contains all nodes n which

satisfy both the following conditions:

1. If 1., (the lower bound on the round trip time for the route between r and s), estimated

from the skeleton after the insertion of n in between nodes i and i+ 1, is less than RT=

then include node n in sfn.

2. If c, (the lower bound on the circuity of the route between r and s), estimated from

the skeleton after the insertion of n in between nodes i and i+ 1, is less than RC, then

include node n in sfn.

Note that these conditions are the same as the initial skeleton feasibility criteria

presented in section 4.4 and that values of m and c. are calculated similarly. The only
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difference is that the path adopted by the route under expansion is more certain at this

stage (with more nodes and links in their final position on the route) than in the initial

skeleton stage. Therefore, the calculation of lmm and cX produces more accurate

estimates of the final route's length and circuity.

4.6.2 Selection of the Best Feasible Node

In order to determine the "best" node for insertion in a certain gap among all the feasible

nodes, an objective function which combines several measures of the passenger's level of

service is utilized. For each node n belonging to sfn, the objective function objctv(n) is

evaluated and the node which maximizes the objective function is selected for insertion.

The objective function is expressed as:

objctv(n) = Wd dem(n) - wl dev(n) + w, rts(n)

where dem(n) = the additional number of currently unserved trips between node

n and each of the nodes already in the route,

dev(n) = the additional deviation from the shortest path (in passenger-

minutes) imposed by the insertion of node n in the route,

rts(n) = the number of already generated routes passing through node n,

and

Wd, wj and w, are the weights of the three components.

The first component, dem(n), reflects the goal of increasing network directness by

satisfying the largest demand possible without transfers, as well as the objective of having

high ridership routes in the final design. In order to reduce route overlap in the final

network, the demand between node n and node m which belongs to the route under

expansion is added to dem(n) only if n and m are not both included in a route that has

already been developed. The second component, dev(n), is obtained by summing the

additional travel time incurred over all the passengers affected by the diversion of the
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route from its path due to the insertion of n. It is used to favor nodes that would result in

reasonably direct routes. The last component, rts(n), gives preference to nodes that have

already been included in other routes, thereby achieving a well-connected final route

network with a high level of demand coverage.

The objective function is not based on any theoretical considerations and is simply

an attempt to combine the above three measures and to address the tradeoffs among them

in a quantitative manner. The weights wd, wj and w. may also be used to emphasize one or

other of the components. The weights are determined empirically and a procedure for

calculating their numerical values is presented in appendix A.

4.6.3 Backtracking

During the process of skeleton route expansion, it is possible that the route does a U-turn

and retraces part of its path. This undesirable situation is called backtracking and is

caused by the situation where the best insertion node is already on the skeleton. Consider

the situation in figure 4.7a which shows a gap between nodes a and c in a skeleton route

(a,c,e) under expansion. In searching for a node to insert between a and c, it may well be

that node d is the best feasible insertion node according to the value of the objective

function. After d is inserted (figure 4.7b), the next gap is between a and d and the only

feasible insertion node for that gap is node c. Because node c already exists in the

skeleton, inserting it again between a and d would cause the skeleton to become a-c-d-c-e

and the final route to trace segment [c,d] at least twice. Although this situation cannot be

easily anticipated and avoided, backtracking is detected after it has occurred and the node

responsible for it is removed from the skeleton route and is prevented from being added

back in the same gap. The node to be removed is selected between the two nodes that

specify the current gap as the one that was last inserted in the route. In this case, node d

is removed (being the latter of a and d) and is not allowed to be a feasible insertion node

in the gap between a and c (figure 4.7c). In the next iteration, node b is selected instead

as the best node to insert in that gap (figure 4.7d) and the final expansion path would be a-

b-c-d-e.

73



C>
Figure 4.7a: Skeleton a-c-e

.0
,CX

- - ~ _ .

Figure 4.7b: Skeleton a-d-c-e

)"

Iff X
-o -- ' o 

Figure 4.7c: Skeleton a-c-e

-0
-e

Figure 4.7d: Skeleton a-b-c-e

74

-C!
Q. �

I

0- C,

0-

0- O



4.7 Deviations from the Base Route

After a base route is found, the second stage of route expansion is initiated by considering

additional insertions that would cause deviations from the base route. Specifically, the

SRG process examines feasible insertion nodes that are one-link away from two adjacent

nodes on the base route, and that, if inserted, would significantly increase the direct

demand satisfied by the route with only a relatively small increase in travel time. Insertion

between adjacent nodes in the base route is intended to complement the first-stage

insertion in gaps and to allow the possibility of rerouting a segment of a route by replacing

it with another one parallel to it. For each pair of consecutive nodes i and i+ 1 on the base

route, feasible insertion nodes are identified relative to i and i+ 1. The feasibility criteria is

similar to the one used in the skeleton expansion process (section 4.6.1), except that a

more restrictive route circuity condition is used in order to prevent large deviations of the

route from its current path. Specifically, a "local" circuity parameter ci,i+l is calculated and

compared to the maximum allowable circuity ratio RCm. ci,il is determined relative to

two consecutive nodes i and i+l on the route under consideration, and measures the

deviation between these two nodes due to the insertion of node n. If the local deviation is

permissible (cii,l < RCm,,,) and the round trip time of the route after node n is inserted is

less than the maximum allowable, n is considered feasible.

Because nodes only one-link away are considered for insertion, it is unlikely that

more than one feasible node will be found. In order to decide whether a feasible node n is

worth inserting or not, the same objective function is evaluated for n. A positive value of

the objective function indicates that the effects of additional demand directly satisfied by

the modified route and the increased opportunity to serve additional destinations through

transfer to other routes do indeed offset the increase in passenger-minutes imposed by the

detour. If the insertion of node n is deemed to be beneficial, the deviation involving node

n is accepted. In the unlikely event that more than one feasible insertion node exists and

all of them yield a positive value of the objective function, the one which maximizes the
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objective function is selected. Finally, the process of additional insertions is terminated

when the last two consecutive nodes on the route have been examined.

In order to illustrate the process of additional insertion (stage two) and to compare

it with the skeleton expansion process (stage one), the example from section 4.6 is used.

Figure 4.8a shows the base route r-n2-n3 -n,-ns-n4 -n6-s obtained after the skeleton

expansion process is terminated. In this example, the only case where an insertion of a

node one-link away is possible is between n, and ns. If n7 is feasible, and if the objective

function evaluated at n7 is positive, then n7 is inserted between nj and ns, yielding the

modified route r-n2-n 3-n-n7-n-n4-n 6-s shown in figure 4.8b. To appreciate the advantage

of a two-stage skeleton expansion approach, note that ns was feasible for insertion

between n, and n4 during the skeleton expansion (otherwise it would not have become

part of the base route) and that node n7 is very likely to have also been feasible for

insertion at that stage, since it satisfies the feasibility condition between n: and ns.

Because the objective function value of ns exceeded that of n7, the former was selected to

fill the gap between nodes no and n4, deferring the insertion of n7 till after securing a

feasible base route. If, on the other hand, both ns and n7 were inserted between n1 and ns

at the stage of skeleton expansion, the chances of rejecting the base route would have

been increased because of the additional length and circuity introduced by n7.

It is worth mentioning that the process of additional insertions ignores the case of

nodes that are farther away than one link from two consecutive nodes on the base route.

Figure 4.9 shows an example where nodes m and n would not be considered for insertion

between i and j. However, it is assumed that in such cases, the chances of finding a

deviation such as (m,n) that is feasible are quite small. Therefore, neglecting deviations

more than one-link away may be justified, especially if the computational effort required to

detect such cases is also taken into account. This is not to say that every deviation from

the base path consists necessarily of only one node. The example in figures 4.10a, 4.10b

and 4.10c shows the case where node m, which is one-link away from i and j, is first

inserted in to the route and then node n, which is one-link away from m and j, is also

inserted in the route. The result is that segment [iJ] has been replaced by the parallel

segment [m,n].
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Figure 4.9: Two-Node Deviation from Base Route
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Figure 4.10a: Segment (i,) of Base Route

Figure 4.10b: Segment (i,) after First Iteration of Additional Insertions

Figure 4.10c: Segment (i,j) after Second Iteration of Additional Insertions
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4.8 Route Generation with the Transit Center Concept

The process of route generation in the case of a transit center network follows the same

basic structure used for general network design presented in the previous sections, except

for several modifications that are necessitated by the difference in characteristics among

the various route types involved in the transit center concept. As described in the previous

chapter, transit centers are served by two types of routes - trunks and feeders. Trunk

routes connect a transit center to one or more other transit centers along a direct path and

are characterized by high frequency service. Feeder routes operate in a mini-radial pattern

with service oriented towards the transit center. These routes operate at a lower

frequency and serve a collection-distribution function.

The proposed methodology for bus network design allows the design of a transit

center network which requires the specification of a set of transit center nodes in addition

to the input used in the general network design. As a screening tool, the proposed

methodology can therefore assist transit properties in performing a preliminary analysis of

the alternative network scenario without requiring an extensive effort or cost. By

performing simple manipulations on the matrix of existing bus demand, the RG process is

capable of appraising, at least in a preliminary manner, the redistribution of the trips in the

transit center network and then to use the modified matrix as the starting point of the

transit center design. This is not to say that the process is capable of completely assessing

the change in bus demand or in trip-making patterns due to the new concept; such

evaluation requires a full-scale demand analysis and is not within the capabilities of the

proposed methodology. The transformations performed on the demand matrix serve only

to influence the RG process into acknowledging that transit center nodes would be the

major transfer nodes in the new network.

80



4.8.1 Demand Matrix Transformation

The main feature of a transit center network is that many trips made in the system go

through one or more of the designated transit centers. If a demand matrix which

corresponds to a radial bus network is used as the basis for the design of such a system, a

large portion of the origin-destination flows that is satisfied directly by existing routes

might be redirected via one or more transit center nodes in the new network. To

illustrate, consider the example of two nodes a and b which are served by route R in the

existing bus system. If the network is to be re-designed around the transit center concept

and, if in that design, node tc, which is slightly off the route between a and b, is specified

as a transit center, the direct flow D(a,b) would be considered for reassignment via tc.

This is not to say that the flow D(a,b) would necessarily be reassigned, since certain

requirements concerning the feasibility of the potential new route R,c that would serve a

and b via tc also have to be met. Even if the transformation is made, a and b would not

necessarily belong to the same route R,c, since one of them may be infeasible at a certain

stage of route R,c's expansion. A flow that is served in the new system via two transit

centers would be transformed similarly, except that it would also be assigned between the

two transit centers involved. Flows that require more than two transit centers to be

satisfied are not considered for transformation, since such trips would require more than

two transfers. Routes which serve these flows directly (without going through any transit

centers) may be created later if the flows are large enough to justify the direct connection.

The major question in the demand matrix transformation procedure is to determine

which flows would be affected by the transit center system. Since no exact answer can be

provided unless the network is completely redesigned, heuristic rules are applied to each

flow to determine whether, or not, it is likely to be affected and to determine the necessary

demand transformation. For a flow D(o,d) between nodes o and d and a set of transit

center nodes tc1, tc2, ... tcm, the following heuristic rules are suggested:

Step 1. If the path o-tcl-tc 2-d is feasible, assign D(o,d) to D(o,tcl), D(tc,,tc 2) and D(tc 2,d),

delete D(o,d), and repeat step 1 for another flow. Otherwise, go to step 2.
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Step 2. If the path o-tck-d is feasible, assign D(o,d) to D(o,tck) and D(tck,d), delete D(o,d),

and use step 1 with another flow. Otherwise, go to step 3.

Step 3. If all paths o-tci-d are infeasible for all i = 1 ... m, do not perform any

transformation on D(o,d). Select another flow and go to step 1.

For the sake of consistency, the same skeleton feasibility conditions are used to

determine whether the paths involving the transit center nodes are feasible or not.

Recalling from section 4.4, these conditions consist of meeting requirements on the

maximum allowable length (round trip time) and circuity.

Transformations involving two transit center nodes are given priority over single

transit center node transformations, since routes with two transit centers provide better

connection and transfer opportunities to other routes in the system. Also, this

transformation builds up the demand between the transit centers and promotes the

generation of high frequency trunk routes between the centers. Flows that are reassigned

via one transit center reinforce the creation of feeder routes connecting to these centers.

Finally, flows which cannot be reassigned via any of the transit centers are not modified

and may be served in the final design by direct routes, if a skeleton with a non-transit

center intermediate node and sufficient demand is found.

It is important to note that there may be other - and probably better - heuristic

procedures for transforming the demand matrix than the one proposed above. The main

advantage of the proposed three-step transformation procedure is its simplicity and low

computational cost relative to its effectiveness in emphasizing the role of transit centers

prior to the generation of routes. From a network evaluation perspective, however, the

transformation procedure may not achieve the best reassignment of all origin-destination

flows to their appropriate transit centers. To understand the limitations of the proposed

transformation procedure in that regard, consider figure 4.1 la in which the flow D(o,d)

between node pair (o,d) is to be reassigned via one or two transit centers. Assume for

simplicity that tc, and tc2 are the only two transit centers in the vicinity of nodes o and d.

Because of the position of d relative to nodes o, tc, and tc2, the path o-tc,-tc 2-d is likely to

be feasible. Consequently, D(o,d) is reassigned to D(o,tc,), D(tc,,tc2) and D(tc2,d) and
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Figure 4.11a: Reassignment of Flow D(o,d) - Case 1

Figure 4.11b: Reassignment of Flow D(o,d) - Case 2
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then deleted - according to step 1 of the proposed transformation procedure. In this case,

this particular reassignment of D(o,d) is the most desirable one for RG because it increases

the demand at both nodes tc, and tc2 and improves the chance of creating a trunk route

between them. At the same time, the reassignment of D(o,d) is also adequate from a

passenger assignment perspective since the path o-tc,-tc2-d is relatively short and direct.

(A slightly shorter in-vehicle travel time path between o and d involving only one transit

center may exist, although this path would require a larger total travel time because it

would not be served by a high frequency trunk route). On the other hand, if node d is

positioned as shown in figure 4.1 lb, it is likely that the path o-tc]-tc 2-d would also be

feasible, resulting in the reassignment of D(o,d) via tc, and tc2 as in the previous case.

Although this assignment is beneficial for RG, it is not the most appropriate one in terms

of passenger assignment. Instead, a better reassignment of D(o,d) in this case would be

via tc, only which involves a much shorter path (o-tc,-d) and eliminates the unnecessary

transfer at t 2.

This simple example demonstrates that the proposed demand matrix

transformation procedure is not appropriate for route generation and network evaluation

at the same time. Such a procedure would be more sophisticated than the one proposed in

this thesis because it would have to compare the benefits (and disbenefits) of the various

reassignment alternatives that may be possible for each flow in terms of the number of

transfers involved and total travel time. As mentioned earlier, the proposed demand

matrix transformation procedure is intended to influence RG in the case of a transit center

design and, therefore, does not consider the effects of the transformation beyond the RG

process. If the transformed demand matrix is utilized in the VA procedure, the inflated

demand at the transit center nodes would cause higher frequencies on the routes

containing them than what is actually required. Moreover, the total in-vehicle and transfer

time calculated based on the transformed matrix would be significantly greater than their

actual values because the proposed transformation procedure sometimes forces the

reassignment of flows via more centers than is needed. For these reasons, the transformed

demand matrix is used only in the RG procedure, and then replaced by the original
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(unmodified) demand matrix in the VA procedure for calculating the service frequencies,

the number of buses required and the performance measures.

4.8.2 The Generation of Trunk Routes

In general, skeletons containing transit center nodes are expected to rank highest among

all feasible skeletons because of the demand transformations which increase the demand

for travel to the transit centers, reinforcing their role as the hubs in the network. In

particular, skeletons with transit centers at both terminals have the highest demand

satisfaction values because the matrix transformation procedure attempts to re-direct

flows via two transit centers and, consequently, require high frequencies of service. These

skeletons form the trunk routes which provide a direct, high-frequency service between

the two transit centers. The feasibility criteria of trunk route skeletonis uses a lower

circuity ratio (typically 1.2) in order to generate faster and more direct routes between

transit centers. Moreover, detours from the base path are not considered for trunk routes.

This does not necessarily reduce the demand coverage of the final network, since a large

portion of the demand captured by trunk routes is realized via transfers from feeder

services rather than from the route itself.

4.8.3 The Generation of Feeder and Other Routes

Feeder routes are expanded from initial skeletons formed between a terminal node and one

of the transit centers. These skeletons are also characterized by a large level of demand

satisfaction and thus are selected at the early stages of RG. The expansion of feeder

routes is performed as in the case of a general network design, including the consideration

of additional insertions beyond the base route level.
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4.8.4 Transit Center Nodes

In order to produce a network with the transit center concept, a set of transit centers have

to be specified in the input. Guidelines for selecting transit center nodes within the design

process were not considered, because it is believed that the choice of transit centers can

only be performed by the planner, based on his or her knowledge of the major trip

generators in the service area (such as retail and/or employment centers). In addition, the

location of transit centers is often dictated by external factors such as the availability of

space and access to the street network, which are obviously beyond the scope of the

proposed methodology. However, the design procedure could be used to compare

different sets of transit centers by modifying the specified transit center nodes in the input.
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Chapter 5

Vehicle Allocation

This chapter describes the process of vehicle allocation (VA) within the proposed

methodology of bus network design. Several approaches to vehicle allocation are

considered, ranging from the simple rules of thumb used in the transit industry to the more

sophisticated optimization-based methods. The proposed VA process was selected based

on the character of the networks produced by the route generation (RG) process, mainly

the fact that the routes in these networks are characterized by some degree of overlap.

The method of VA adopted was originally proposed by Han and Wilson (1982) and is

capable of analyzing networks with overlapping routes because it incorporates a passenger

path choice model. The method aims at allocating the available fleet of buses to the

network so as to (1) ensure enough capacity on each route to accommodate all the

passengers who would select it, and (2) minimize the occupancy level at the most heavily

loaded point on any route in the system. The heuristic solution to this method

decomposes the problem into two components. The base vehicle allocation identifies the

minimum number of buses required for a feasible solution, satisfying the capacity and

other constraints. The surplus vehicle allocation assigns the remaining buses in order to

improve the performance of the system in terms of waiting and transfer time.

Section 5.1 discusses several approaches to incorporating vehicle allocation within

route generation. Methods of vehicle allocation are reviewed in section 5.2 and the

following two sections describe in more detail two approaches for optimal vehicle

allocation. Section 5.5 describes the characteristics of the networks created by the RG

process and identifies the features sought in the VA process to address them. In sections

5.6 through 5.8, the VA process adopted is described in detail, and in section 5.9, the

overall design methodology is discussed in light of the VA process. Two ways of

integrating vehicle allocation and route generation are presented in section 5.10 and the

next section uses a simple numerical example to illustrate their performance.

87



5.1 Vehicle Allocation within the Proposed Design Methodology

Vehicle allocation is the second major component after route generation in the proposed

network design methodology and is used to assign the limited number of buses available to

the network and to estimate the frequency of service on each of the routes. As explained

in chapter 3, previous heuristic approaches to the network design problem have almost

exclusively separated route generation from vehicle allocation by assigning the available

buses after all possible routes, or a desirable number of routes, have been created. The

negative implications of this approach were also discussed in that chapter and it was

decided that the proposed methodology will address this weakness by investigating ways

of integrating route generation and vehicle allocation so as to achieve consistency between

the size of the network created and the resources available.

Vehicle allocation and route generation may be integrated at more than one level.

The highest degree of integration is achieved by approach 1, shown in figure 5.1, in which

the required number of buses is determined every time a new route is added to the

network. This approach guarantees that the number of buses required by the final

network will not exceed the available fleet size because the vehicle requirement is

monitored throughout the network development. However this approach is

computationally demanding, since the VA process is likely to require a large amount of

calculations. Alternatively, figure 5.2 shows a second approach that might be used,

whereby the VA process is called upon less frequently, only after a certain additional

number N of routes have been created since the last vehicle allocation. In order to reduce

the risk of the required buses exceeding the fleet size, this approach may be taken one step

further to create approach 3 which includes a procedure to evaluate the current network,

positioned within the route generation loop as shown in figure 5.3. This procedure would

be used to estimate the total number of buses required after each route is generated, using

a simple and computationally efficient method of estimation. When this estimate

approaches the available fleet size, the VA procedure which is capable of performing a

more accurate and elaborate allocation, is initiated. If any buses remain unused, an
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Figure 5.1: Approach 1 for Integrating Vehicle Allocation and Route Generation
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Figure 5.2: Approach 2 for Integrating Vehicle Allocation and Route Generation
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Figure 5.3: Approach 3 for Integrating Vehicle Allocation and Route Generation
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additional route is created and the new network is re-evaluated; otherwise, route

generation is terminated. Approach 1 is unlikely to be feasible because of its considerable

computational cost. Furthermore, since the second approach may be viewed as a

derivative of the more general third approach, only the latter will be considered in the rest

of this chapter. The procedure for evaluating the network within the route generation

loop will be discussed in section 5.10 which describes the overall design process after the

integration of the RG and VA processes. In the following sections, several methods for

vehicle allocation are reviewed and the advantages and limitations of each presented.

5.2 Methods for Vehicle Allocation

Methods for vehicle allocation vary considerably between theory and practice. In the

transit industry, vehicles are allocated according to service standards which provide

operators with practical guidelines for setting frequencies. These standards are a result of

both codification of existing rules of thumb and a statement of policy, and focus mainly on

lower and upper bounds for setting frequencies. However, these methods fall short of

ensuring that transit resources are allocated most efficiently because they do not achieve

any well-defined objective.

In theory, optimal vehicle allocation may be determined by using mathematical

programming methods to solve the following problem: How can the limited resources be

allocated to maximize the benefit from operating the system? If the benefits and costs that

arise from operating the system can be determined for every bus route as a function of the

service frequencies provided, the optimal allocation of resources can be shown to occur

when the ratio of marginal benefit to marginal cost (marginal rate of return) on each route

is the same and is sufficient to exhaust the available resources. At the optimum, some

routes may be operating at a profit and others at a loss; yet, the solution is most efficient

since the total benefit cannot be increased by shifting resources from one route to another.

However, achieving economic efficiency by balancing the marginal costs and benefits is

not a simple task because of the difficulty in making a plausible quantification of the costs

and, particularly, the benefits on each route in terms of service frequencies. The
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fundamental issue in that regard is the assumption about route dependence. If ridership on

a route is assumed to be affected only by the service frequency on that route, a relatively

simple expression of the benefits can be obtained and the optimality conditions can be

easily derived. On the other hand, if the ridership on a route is assumed to depend on the

service provided by the competing routes, as well as the service on the route under

consideration, the formulation of the resource allocation problem becomes much harder.

Section 5.2.3 discusses further the effect of the route dependence assumption on the

formulation of the general problem, as well as the implications of this assumption on the

applicability of vehicle allocation to various network types. In the following sections, a

number of methods for vehicle allocation are discussed.

5.2.1 The Peak-Load Factor Method

In this method, a lower bound on the frequency of service on each route is calculated as

the total number of passengers at the peak-load point on the route divided by the product

of the vehicle seating capacity and a specified peak-load factor. Because of its simplicity,

this method is widely used in the transit industry for setting frequencies, especially during

peak periods. The main weakness of this method, however, is that it is not efficient with

respect to the optimization of passenger services, because it does not maximizes the user

benefits of operating the system. Also, by making the average maximum passenger load

factor equal on all routes, this method causes relatively long waiting times on low-

ridership routes, compared with an allocation which minimizes the total passenger waiting

times. Finally, this method assumes that ridership on each route is fixed, irrespective of

the amount of service provided. Consequently, when equal peak-load factors are used to

set frequencies, shifts in ridership that occur on competing routes in the system due to the

new frequencies are not accounted for, resulting in actual passenger loads that are

different from the ones that were originally sought.
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5.2.2 The Square Root Rule

The best-known theory for setting frequencies on bus routes is the square root rule, which

is based on the minimization of the sum of total passenger wait time costs and total

operator costs. The service frequencyfk provided on route k is expressed as:

where r = total ridership on route k (passengers per hour),

tk = round trip time on route k (hours),

b = value of wait time ($ per hour), and

c = bus operating cost ($ per bus per hour).

The advantage of this method is that it realizes a more efficient allocation with

respect to the system user than the peak-load factor method because it incorporates the

passengers wait time cost in the objective function. However, because the ridership on a

route is assumed to be fixed (not a function of the service frequencies), the full social (user

and non-user) benefits are not accounted for. Still, the major weakness of the square root

rule is that it does not consider bus capacity constraints. In the general case where routes

of different lengths exist, the square root rule states that the passenger load should be

proportional to the square root of the product of route length and ridership on that route,

unlike the peak load factor rule which assumes the same passenger load on all routes.

Consequently, on longer and/ or heavier routes, not enough capacity might be provided

and the solution would be infeasible, which explains the lack of acceptance of this method

by the industry. Nevertheless, this rule can be combined with the peak-load factor method

in the following manner: buses on routes which are on the lower end of ridership or

length are allocated using the more efficient square root rule, whereas buses on high-

ridership or long routes are determined according to the peak load factor method which

guarantees enough capacity on these routes.
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5.2.3 Mathematical Programming Methods

The mathematical programming approach formulates vehicle allocation as an optimization

problem in which an objective function expressing benefits from operating a transit system

is maximized subject to a set of constraints. In the general case, benefits arising from

operating a transit system include the direct benefits that accrue to the users of the system,

as well as the positive externalities that accrue to non-users. Direct benefits are generally

represented by the total consumer surplus, calculated using a ridership function on each

route expressing the number of passengers as a function of service frequencies.

Equivalently, the direct benefits may be stated as the savings in the total passenger wait

time, determined for each route as a function of the route's frequency of service and

ridership. Positive externalities - such as reduction in congestion and pollution, increased

mobility to those with no automobiles, and energy savings - are assumed to be largely

collinear with ridership.

Describing ridership in terms of service frequencies (or headways) is the main

component in the objective function and needs to be obtained in order to solve the

optimization problem. The main distinction among the various optimization models of

vehicle allocation is the assumption about route dependence which, in fact, affects the

expression of ridership. In general, ridership on one route depends not only on the

headway of that route, but also on the headways of competing and complementary routes.

In other words, an improvement in service on one route in the system will divert riders

from other competing routes because of the passenger route choice behavior. An

improvement in service on one route can also raise ridership on another complementary

route when there is a large transfer volume between the two. The degree of route

dependence, however, may vary among systems, depending on the amount of route

competition and complementarity. Many transit systems in large cities outside North

America, for example, are characterized by networks with extensively overlapping routes,

requiring a vehicle allocation model which recognizes route dependence. On the other

hand, if the routes in the network are fairly independent, the problem formulation may be

greatly simplified by assuming that ridership on a route depends exclusively on the
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headway of that route. Table 5.1 summarizes the possible cases of route dependence and

displays the various ways of expressing route ridership in terms of frequency. Note that in

the first case, ridership is assumed to be unaffected by the service provided and, thus, the

social benefits (proportional to ridership) cannot be expressed in the objective function of

the allocation problem. This assumption is used in the peak-load factor method and

square root rule, which explains why they are less efficient in allocating vehicles than the

formal optimization models, which use either of the other two expressions for ridership in

their objective functions.

The following sections describe two different approaches for optimal vehicle

allocation. The first approach is by Furth and Wilson (1981) and is based on the

assumption of independent routes. The second approach by Han and Wilson (1982)

recognizes route interdependence and is applicable in the case of networks with

overlapping routes.

5.3 Allocation of Buses on Independent Routes (Furth and Wilson, 1981)

The problem is formulated with the objective of maximizing the net social benefit,

composed of the weighted summation of consumer surplus and ridership over all the

routes in the network, subject to subsidy, fleet size, maximum load factor, and maximum

(policy) headway constraints. The assumption of route independence allows a relatively

straightforward formulation, resulting in a computationally tractable model. Also, since

the ridership on each route is assumed to be a function only of the headway on that route,

passenger assignment is not required. The problem is solved by deriving the optimality

conditions relating the headways to the other variables in the model and then applying

these conditions in an iterative algorithm for obtaining the optimal set of headways.

The advantage of this approach is that it recognizes transit as an important social

service, addressing both user and public benefits. One of the key findings reported by the

authors while experimenting with this approach is that results obtained when demand is

assumed fixed were very similar to those based on variable demand. This was attributed

to the fact that providing the best service for current passengers is usually a good way to
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Fixed Ridership Ridership is a Function of the Level of Service

* ridership for each route * r = r(hk), where hk * rk = r(h,, h2, ... hn), where hi,

k is a constant, rk is the headway on h2, ... hn are headways on

route k routes i through n (including

k)

* Social benefits cannot * No passenger path * Passenger path choice model

be evaluated choice model may be required

required

* Used in peak-load * Simple expression * More complex expression of

factor method and of total benefits total benefits in objective

square-root rule (social and function.

passenger) in

objective function

rk = total ridership on route k

Table 5.1: Ridership Assumptions

attract new ones. The most important limitation of this model, however, is the assumption

of route independence. Therefore, care must be taken in applying this model and in

interpreting its results in situations where strong route competition or complementarity

exists.

5.4 The Allocation of Buses in Heavily Utilized Networks with

Overlapping Routes (Han and Wilson, 1982)

This model addresses networks with extensively overlapping routes and with buses

frequently operating at, or close to, capacity. Ridership on a route is assumed to be a

function of the headway on that route, as well as the headways on the competing routes

overlapping with the route under consideration. For that reason, a passenger assignment

97



component is incorporated in the model in the form of passenger flow constraints which

relate the volume on each route segment to the origin-destination flows and service

frequencies on that route and competing routes offering similar service. A functional form

of this constraint cannot be specified, however, because the passenger assignment process

depends on path choice criteria that need to be examined for every origin-destination pair

in the network. In terms of the objective function, two assumptions are made. First, the

social benefits are neglected because ridership cannot be expressed as a closed-form

function of headways; thus, the objective function is limited to the direct benefits,

expressed as the savings in wait time and crowding levels for all passengers. Second, it is

argued that the specification of accurate wait time and crowding level in the objective

function is extremely difficult since many buses will be operating under severe capacity

constraints. As such, the simplified objective of minimizing the occupancy level at the

most heavily loaded point on any route of the system is used instead.. This objective may

be viewed as equivalent to reducing passenger wait time because of the presence of the

loading feasibility constraint, which ensures that passengers are not prevented from

boarding a bus on their preferred route (and thus incurring longer waiting and travel times)

because inadequate capacity has been allocated to that route.

The loading feasibility constraint stipulates that the passenger load on any route

segment - expressed as the ratio of the link flow on that segment to the route's frequency

of service - should not be greater than the passenger capacity for each bus. Since the link

flow is also a function of frequency, this constraint is endogenous to the model and thus

the final solution must be an equilibrium in which the passenger assignment is consistent

with the frequency allocation. A two-stage heuristic solution is proposed for this model.

In the first stage, base vehicle allocation is performed iteratively by (1) determining

frequencies and assigning vehicles to meet the peak loads on each route and by (2)

assigning passengers to find the peak loads on each route, until the equilibrium point is

reached where passenger and vehicle assignments are consistent with each other. If, at

such an equilibrium, the required fleet size is infeasible, then the given demand cannot be

satisfied with the existing fleet operating on the given set of routes without violating the

loading feasibility constraint and the underlying premise that all passengers are served by
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their preferred routes. If, on the other hand, the fleet size required is feasible, a second

stage surplus vehicle allocation is performed to achieve the objective of reducing the level

of crowding on the most heavily loaded points in the system.

The advantage of this method is that it identifies in the base allocation procedure a

feasible solution which satisfies all constraints, including the loading feasibility constraint,

using a minimum number of buses which provides enough capacity on each route to carry

all passengers selecting it. If buses remain after this stage, wait and transfer times are

improved by assigning the surplus buses so as to achieve an explicit objective.

5.5 Characteristics of Networks Created by the Route Generation

Process

Prior to the selection of a method of vehicle allocation to be used in the proposed

methodology, the main characteristics of the networks produced by the RG process are

examined in order to adopt a method which is consistent with those characteristics. Route

dependence is the key factor in deciding on a particular method, since the routes created

by the RG process are expected to exhibit a certain degree of overlap. The reason for this

is the nature of the process which relies on systematic rules for inserting nodes in a route

under expansion. In the extreme case, if a skeleton route that has already been fully

developed is re-selected again for expansion, the same route obtained earlier would be

generated, since the criteria of node insertion would be identical in this case. Although

this situation is prevented from arising in the RG process by modifying the demand

associated with each feasible initial skeleton after each route is completely developed

(section 4.5), it is still possible to encounter a situation in which routes in the network are

overlapping. Consider, for example, figure 5.4a showing route k which has been created

at some point of the RG process from expanding the initial skeleton (r,d,s). Suppose that

in the current iteration of RG, (t,d,u) is selected as the best initial skeleton route for

expansion. Note that the intermediate (major destination) node d is in common with the

skeleton of route k, because the terminal nodes t and u happen to be close to nodes r and

s. Consequently, the number of feasible intermediate nodes for the terminal node pair (t,u)
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is reduced to d and a few other nodes, and if node d has a large originating demand, it is

likely that it would also be associated with terminals t and u. Note also that the RG

process does not reduce the demand associated with the skeleton route (t,d,u), although it

overlaps considerably with (the existing) route k, since the node pairs td, du and tu are not

served by route k. As a result, the final route I between t and u is expected to overlap with

route k as shown in figure 5.4b, because the initial skeletons of both routes are almost

identical.

The possibility of generating networks characterized by overlapping routes is not

exclusively caused by the characteristics of the RG process. The street network may also

be a contributing factor by restricting access between certain districts in the service area to

a small number of roads on which buses could operate. Hence, if more than one route is

created between those regions, these routes would be forced to overlap along the same

corridor. Overlapping routes may be considered later at the stage of network

improvement by attempting to combine pairs of overlapping routes into a single

operationally acceptable route. However, these improvements will not be considered until

a network which exhausts the available fleet size is generated. Because overlapping routes

are likely to be present in that network, the vehicle allocation procedure used in the

proposed methodology should be capable of analyzing networks characterized by

overlapping routes. This characteristic is essential in order to produce realistic estimates

of the vehicle requirements on each route. Therefore, the vehicle allocation method of

Han and Wilson is selected to allocate buses in the proposed network design

methodology. In the following sections, the base and surplus vehicle allocation

procedures are described in more detail.

5.6 The Base Vehicle Allocation Procedure

The base vehicle allocation procedure is performed on a given set of routes to determine

the minimum number of buses (and service frequencies) on each route so as to satisfy the

loading feasibility constraint. The base vehicle allocation procedure starts by classifying all

the origin-destination flows into two mutually exclusive sets. Captive flows are passenger
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trips with a unique preferred path or route, whereas variable flows are defined as the

complement of captive flows and consist of passenger trips served by two or more

competing paths or routes. The definition of preferred and competing paths depends on

the qualities of service (as valued by the riders) on all possible paths and, in the case of the

model of Han and Wilson, is based on the lexicographic path choice strategy which

considers two criteria: (1) the number of transfers involved in the trip and (2) the in-

vehicle travel time incurred on the alternative paths. Hence, a preferred path for node pair

ij would be one (not necessarily a unique one) with a minimum number of transfers and

minimum in-vehicle travel time among all possible paths. Moreover, competing paths for

node pair ij consist of all the preferred paths between i and j. To perform the

classification of flows, all node pairs are first divided among the following three sets:

* NO_TRANS, containing node pairs which are directly satisfied by at least one route in

the network.

* ONE_TRANS, which contains node pairs that are not directly linked by any route in

the network, but whose demand may be served by a single transfer.

* UNSAT, which contains all node pairs unsatisfied by 0/ 1 transfers.

Trips that involve more than one transfer are not considered by the base allocation

procedure, thereby avoiding a considerable amount of computation and keeping the

execution time of the procedure tolerable. It is assumed that a passenger will simply not

consider boarding a bus to accomplish a trip requiring two or more transfers, or

alternatively that this demand is a negligible portion of the total demand. Trips belonging

to the NO_TRANS set and that have a unique minimum in-vehicle travel time route

serving them are considered captive. Similarly in the ONE_TRANS set, trips with a

unique minimum in-vehicle travel time path are considered captive. The rest of the flows

in NO_TRANS and ONE_TRANS are classified as variable. The captive flow on link

(i,l) of bus route k can be determined as follows:
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CFk = VY 8S

qeD

where D = set of captive flow node pairs,

V = flow between the node pair ij,

6§ = 1, if m and I are the nodes on route k used for boarding and exiting

on the unique path from i to j, 0 otherwise.

Similarly, the variable flow between nodes m and I which are served by a set of

competing routes (not paths) can be determined as follows:

VF, = X DR hp
#EOpEPU

where 0 = set of variable flow node pairs,

PU = set of minimum in-vehicle travel time (preferred) paths between the

node pair ij,

hJ = flow on path p between the node pair ij,

8~ = 1, if m and I are the nodes used for boarding and exiting on path p

between the node pair ij, 0 otherwise.

The calculation of the path flows hpi is performed by assuming that trips between i and j

are divided among the competing routes in proportion to the frequency shares on these

routes. This rule is based on the assumption that passengers will always board the first

arriving bus of any competing route and that vehicle arrivals on each bus route follow a

Poisson distribution (Chriqui and Robillard, 1975). In the case of a node pair ij belonging

to the NO_TRANS set and served (directly) by a set of competing routes, the path flow

on each competing route k is expressed as:
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hk# = qk Vij

)pqp
pePu

where qk = service frequency on route k.

In the case of a node pair ij belonging to the ONE_TRANS set and served by a set

of competing paths each with a single transfer node, the same frequency share rule is

applied among the competing paths. However, in this case, each path is designated by its

transfer node and consists of a set of different routes with different frequencies. For this

reason, the various paths are first classified, with each route originating from node i and

belonging to one of the competing paths defining a distinct class, and then the frequency

share rule is applied to find the "class-flows". After these flows are determined, flows on

paths within each class are assumed to be divided according to the relative weights of the

transfer nodes involved in the class of paths.

The total passenger flow on link ij of route k can now be determined as follows:

fy C E CF + qk VF
mEAi IBi meA IB qr

reXw

where A/k = set of nodes on route k which are not posterior to node i,

Bk = set of nodes on route k which are posterior to node i,

Xm, = set of competing routes between nodes m and 1.

To initiate the iterative process of passenger and vehicle assignments, the

following procedure is followed:

(1) Determine CFk for every node pair ij and for every bus route k.

(2) Using only the captive flows, determine an initial set of frequencies q() for all routes

k from:
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where C = passenger capacity on each bus.

Set n = 0.

(3) Compute the total passenger flow fi on each link ij of each route k, using qk =q(n).

(4) Set n = n + 1 and calculate q(n) as the solution to the following system of equations:

Cq~) = max (fk)

for all links ij on each route k.

(5) If I q(n) - q-) I < allowable, then STOP. Otherwise, go to step 4.

5.7 The Surplus Vehicle Allocation Procedure

The aim of this procedure is to allocate buses remaining after the base allocation is

performed to the route network so as to improve the total travel time experienced by

passengers. Although all of the methods that were considered earlier in section 5.2 for

base allocation are still applicable, it should be kept in mind that the solution obtained

from base allocation corresponds to an equilibrium between vehicle and passenger

assignments. Consequently, care must be taken in selecting a surplus allocation method so

as to tamper only minimally with this equilibrium. One simple (almost trivial) way of

preserving this equilibrium is suggested by Han and Wilson and consists of simply

increasing the service frequencies in proportion to their existing (base allocation) values

until all the available buses are consumed. In other words, the surplus frequency on each

route k is given by:
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, qi. rti

iER

where surpk = frequency of service on route k, using all of the bus fleet,

M = fleet size,

qk = frequency of service on route k, determined in the base allocation

procedure,

Irtk = round trip time on route k, and

R = set of all routes.

Since the peak passenger load on each route is proportional to the route's

frequency share, passenger assignment is unchanged. This method can be viewed as

aiming to reduce the crowding level on the most heavily loaded point on each route in the

system. In terms of minimizing the total passenger travel time, however, this method is

less efficient than the square root rule and is only considered for surplus allocation for the

following reasons. The first and most obvious reason is that it preserves the equilibrium

solution created by the base allocation. Second, this method is computationally easier to

implement than the square root rule. Finally, surplus buses that are subject to allocation

are often small in number. As will be discussed further in section 5.9, when a large

number of surplus buses remain after base allocation, it is generally more beneficial to use

them to create additional routes than to provide better service on the current network. As

such, the saving in the passenger travel time obtained from utilizing surplus buses to

increase frequencies in proportion to their existing are likely to differ little from the one

obtained using the square root rule. Therefore, the former method is adopted for surplus

allocation.
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5.8 Calculation of Performance Measures

Besides calculating the frequencies of service and the required number of buses on each

route of the network, the base and surplus allocation procedures also compute several

global performance measures. In terms of the amount of demand served, the vehicle

allocation procedures calculate (1) the number of passenger-trips satisfied directly without

transfer; (2) the number of passenger-trips served within a maximum of one transfer; and

(3) the number of passenger-trips that are not served by the network. Measures which

reflect the passenger travel time consist of the total in-vehicle, waiting and transfer time.

These performance measures assist the planner in analyzing the solutions produced by the

design process and allow the investigation of tradeoffs among the various measures of the

service provided.

Passenger in-vehicle travel time is calculated by multiplying route or path flows by

the trip time on the corresponding link. For waiting and transfer times, it is assumed that

the average waiting time of a passenger at a node is equal to half the combined headway

on the competing routes serving that node, calculated as the inverse of the sum of the

frequencies on these competing routes. This calculation ignores stochasticity in bus

headways.

5.9 Solution Approach

The solution approach has thus far been guided by the goal of ensuring that the number of

buses required by the generated network does not exceed the available resources. An

inherent feature in the development of the solution that has not yet been addressed,

however, is the fact that the network with the best overall performance may not be the one

exhausting all the available buses.

To illustrate this situation, consider the case where N routes have already been

generated using the proposed design methodology. If the base allocation procedure is
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performed on this network, the total minimum number of buses required would be B(.

Suppose that the following performance measures corresponding to this network are

calculated:

· COV(N), the percentage of total demand satisfied with 0/ 1 transfer

* DIR(N), the percentage of total demand satisfied directly (without transfer)

* IV1 T'N), the total in-vehicle travel time

* WAITN), the total wait time

* XFER(N), the total transfer time

Suppose further that the available fleet size is FS. Ignoring for the moment the

case where B is greater than FS, two cases are considered. In the first case, B(, is

equal to (or slightly less than) FS and route generation is terminated since creating an

additional route would cause the total number of buses to exceed FS. The other steps that

follow will be described in section 5.10 where the flow chart of the overall methodology is

also presented.

In the second case, B(.n) is less than FS and two options for the next step to be

taken are possible.

Option 1: Continue the RG Process

Another route is created and added to the network, raising the number of routes in the

network to N+ 1. The minimum number of vehicles required (obtained from base

allocation) is now B(+), which is greater than B(. If the performance measures

corresponding to this network (of size N+ 1 routes) are compared to the ones

corresponding to the previous network (of size N routes), the following inferences could

be made:

a. COVn+l) > COV(N) and DIR(N+l) 2 DIR(N). The levels of network coverage and

directness cannot decline by the creation of additional routes. In the worst case, coverage
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and directness may stay the same if the newly generated route k does not serve at least one

origin-destination flow that was not served in the previous network, either directly or with

one transfer.

b. IVTN+ t) > or < IVTN). If route k serves origin-destination flows that were not

previously served, the total in-vehicle travel time is increased. Although the total travel

time is increased in this case, the directness and coverage levels of the network would also

be improved. On the other hand, if route k competes with other routes and offers a more

frequent and direct (shorter trip time) service than the others, the total in-vehicle travel

time may be reduced. The reason is that a portion of the flows served by the routes

competing with k would be re-assigned on k and would benefit from its shorter trip time.

c. WAITN+') > or < WAITiN). The change in total wait time follows'the change in in-

vehicle travel time in most cases. Thus, similar arguments may be used to show that the

changes here are also unpredictable.

d. XFERN'l) > or < XFER(N). If route k creates more opportunities to satisfy trips via

one transfer, the total transfer time is increased, along with the network coverage.

However, if k changes at least a single one-transfer trip into a direct trip, the total transfer

time might be improved.

In general, the direction of change in the total travel time (IVTT + WAIT +

XFER) cannot be predicted. Although the levels of coverage and directness cannot

decrease by creating an additional route, there is a possibility that the overall performance

of the augmented network (taking into account all the measures) might be reduced.

Option 2. Terminate the RG Process and Perform Surplus Allocation

Surplus allocation would assign the (FS - B( ) buses onto the network in order to

improve the overall level of service. The levels of network coverage and directness would

remain unchanged, since the route configuration is not affected by surplus allocation.
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Also, the total in-vehicle travel time would still be the same, since no additional routes are

created and the frequencies of service are increased in proportion to their base-allocation

values, keeping the same frequency shares among competing routes. The total transfer

and wait times, on the other hand, would be improved because of the increased frequency

of service on all routes. Therefore, the total travel time is improved.

In the first few route generation iterations, the improvement in the network's

coverage and directness clearly outweighs the possible increase in the total travel time and

the minimum number of buses required, and the decision to generate more routes is thus

justified. However, as the size of the network increases, marginal benefits from demand

satisfaction decrease rapidly. As such, it becomes more difficult to decide whether more

routes should be created with the surplus buses or whether to terminate route generation

and allocate these buses on the network to improve the total passenger travel time.

Ideally, a decision rule based on the marginal benefits of assigning one surplus bus to the

existing network or of operating it on a newly-created route would have been sufficient.

Unfortunately, the performance measures, which are needed to express those marginal

benefits, do not behave in a predictable manner and thus cannot be used.

The absence of a clear decision rule implies that the design procedure is not

capable of reaching the "best" network solution automatically, without external assistance.

This deficiency is not uncharacteristic of heuristic approaches to designing bus networks

and is caused by the multiple-objective nature of the problem. To compensate for this

deficiency, the planner may intervene in the decision-making process at the later stages of

route generation when surplus buses are about to be completely consumed, in order to

guide the process. However, any external interaction would considerably hinder the

running-time efficiency of the route generation process, defeating the purpose of using it

as an automated design tool. Instead, it is suggested that the design procedure would

automatically investigate several near-best network solutions at the later stages of route

generation and keep a record of the main characteristics of each one. These solutions may

be compared at the end of route generation and the overall best network then be retrieved.
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To implement this solution approach successfully, an efficient and reliable method

is needed for estimating the number of surplus buses after each route is generated (within

the route generation loop). This is necessary for identifying the kth iteration of the route

generation process beyond which the network has entered its final stages. Once the k'h

iteration is identified, the multiple near-best solutions are determined by assigning any

surplus buses and storing the network and its corresponding performance measures in a

file before generating an additional route. Although the base vehicle allocation is reliable

for estimating the minimum vehicle requirement (for identifying the kth iteration), it is not

computationally efficient enough to be incorporated within the route generation cycle.

Instead, a much simpler procedure is needed. The next section describes in more detail

the process of producing several network solutions and the procedure to estimate the

number of surplus buses within the route generation loop.

5.10 Integrating Vehicle Allocation with Route Generation

The integration of vehicle allocation and route generation that was addressed earlier in

section 5.1 is now re-examined in light of the proposed solution approach outlined in the

previous section. The flow chart in figure 5.5 shows the integrated RG and VA processes

within the overall design procedure. The number of buses Best required is estimated by the

network evaluation procedure incorporated within the RG loop. In the first few iterations

of the RG process, Best would still be considerably less than the fleet size FS, and

additional routes are created without allocating buses to the network. As the RG process

continues, the number of surplus buses (FS - Be,t) diminishes and when this value becomes

non-positive, the RG process is interrupted and the base vehicle allocation procedure is

initiated. In this procedure, the total minimum number of buses Bmi, required by the

current network is calculated. (If the network evaluation procedure within the RG loop is

effective, Bmin will be similar to B,.t) If surplus buses exist (Bmi, < FS), these buses are

allocated on the network in order to improve the level of service. Then, the routes in the

network, along with the performance measures corresponding to the base and surplus

vehicle allocation frequencies, are stored in a file which will be used at the end of the RG
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Figure 5.5: The Bus Network Design Process
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process to select the "best" overall network solution. Next, the RG process is resumed,

and the RG-VA cycle is repeated until all surplus buses are assigned (B,in > FS) at the end

of the base vehicle allocation procedure. At this point, the file used to store previous

networks is retrieved and the best overall network (taking into account the total demand

satisfied, total passenger travel time, and total buses required) is selected and examined for

possible network improvements.

The only component of the RG-VA cycle that has not been addressed yet is the

network evaluation procedure which estimates Bs,,. Two methods for estimating this value

are suggested:

1. The Direct Method

This method starts by calculating the frequencies of service on all the routes in the current

network using a combination of the square root rule and peak-load factor method. On

long and/ or high-ridership routes, frequency is calculated using the peak load-factor

method, based on the route's maximum link-flow. On the other routes, the square root

rule is used instead based on the total ridership values. The maximum link-flow and total

ridership on a route are calculated from the origin-destination flows served directly by this

route and may be increased by a certain fixed percentage to account for transferring

volumes. Also, to prevent over-counting of trips in networks characterized with route

overlap, flows on a common route segment are assigned completely to a single route,

selected (arbitrarily) among all the overlapping routes along the segment. Although this

assignment method will not be realistic in predicting the passenger volumes and vehicle

requirements on individual routes, it should result in a reasonable estimate of the total

number of buses required, Be,t.

2. The Indirect Method

This method estimates B, 1t indirectly by examining other, more easily calculated network

development indicators which do not depend on the frequencies of service required on the

routes. The level of demand satisfied directly (without transfer) by the network, DIR, can

be easily calculated after each route is created and may be used for that purpose. When
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this level exceeds a certain minimum value, DIRU, the route generation loop is

interrupted and the base allocation process is initiated. The value of DIR iD may be chosen

based, for example, on the size and route structure of a comparable (or the existing) bus

network. Alternatively, a value that is arbitrarily close to the 100% mark may be used for

the first time, causing the RG process to terminate before VA is ever executed, because

the minimum level of demand served directly could not be satisfied. In the next run, a

lower value is used, and this process is repeated until a solution is found.

These two methods will be compared in the next section where a simple numerical

example is presented.

5.11 Numerical Example

In this section, a numerical example is used to illustrate the proposed bus network design

methodology. The objectives of this computational experiment are to:

· Examine the performance of the solution produced by the RG procedure for the cases

of general and transit center network concepts and compare it with other solutions to

the same problem.

· Investigate the benefits of integrating RG with VA and generating multiple near-best

solutions.

To achieve these objectives, a benchmark problem, known in the literature as

Mandl's network, is used. This problem is based on a case study in Switzerland and was

first utilized by Mandl (1979) to demonstrate his transit network design algorithm. (The

solution proposed by Mandl suffers from several deficiencies and will not be considered

here.) Other authors such as Baaj (1993) and Shih (1994) also used the same problem to

investigate the performance of their approaches. Baaj solved Mandl's problem by

generating a network which closely follows the demand matrix. Shih generated two

solutions - the first with a timed-transfer coordinated service and the second with
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uncoordinated service. These two networks are identical in terms of route structure and

nodal composition; service coordination in the second network was achieved by changing

the allocation of buses so as to reduce the total transfer time.

The design algorithms of Baaj and Shih (reviewed in chapter 2) are nearly identical

in terms of the general approach. Neither approach is constrained by a fixed fleet size,

aiming instead at generating networks with the level of demand satisfaction above a

minimum pre-specified value. In this problem, Baaj and Shih determine the required fleet

size as part of the solution, considering it as a performance measure rather than a

constraint. For the sake of comparison, the proposed design methodology will be

constrained by the fleet size to a value that is comparable to the one determined by Baaj

and Shih. The solution obtained will then be compared to that of Baaj and Shih in terms

of the nodal composition and the performance measures of demand satisfaction and total

passenger travel time.

Mandl's network consists of 15 nodes and is illustrated in figure 5.6, with the in-

vehicle travel time (in minutes) shown on each link. The demand matrix in table 5.2

contains the peak hourly number of passenger trips between each node pair. Terminals

were not originally specified for this network and Baaj and Shih considered all nodes to be

feasible termini. Moreover, since the network is small, all the nodes were considered in

the determination of feasible initial skeletons, as opposed to limiting these nodes only to

major trip generators. Therefore, the number of feasible initial skeletons is maximized.

Baaj and Shih generated solutions with three different sets of design parameters,

each set differing from the other in terms of the minimum percentage of the total demand

satisfied directly, the node insertion strategy, and the skeleton formation method. The

other parameters were kept the same in all three design parameter sets. Because the three

solutions produced by Baaj are similar in terms of their overall performance, only one

solution will be presented. For the same reason, only one solution by Shih is considered.

The values of the design parameters used in RG and VA are displayed in table 5.3,

along with their analogous values in Baaj's and Shih's algorithms. The weights of the

objective function are calculated as described in appendix A. The bus peak load factor If,

and operating cost c, and the passenger's value of time b are used in the network
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1

2
3
4
5
6
7
8
9
10
11

12
13
14
15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 400 200 60 80 150 75 75 30 160 30 25 35 0 0
400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
200 50 0 40 60 180 90 90 15 45 20 10 10 5 0
60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
80 20 60 50 0 50 25 25 10 120 20 15 5 0 0
150 180 180 100 50 0 100 100 30 880 60 15 15 10 0
75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
75 90 90 50 25 100 50 0 15 440 35 10 10 5 0
30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
160 130 45 240 120 880 440 440 140 0 600 250 500 200 0
30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
35 10 10 10 5 15 10 10 0 500 95 70 0 45 0
0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
0 0 o0 0 O 0 0 0 o o o o 0

Table 5.2: Bus Demand Matrix (passenger trips per hour)

Table 5.3: Design Parameters

* For trunk routes in the transit center design, a circuity ratio of 1.2 is used.
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Value used Value used

Design Parameters in RG, VA by Baaj, Shih

Maximum round trip time, RTm 120 min. 120 min.

Maximum circuity ratio, RCm 1.5* 1.5

Weight of demand in the objective function, wd 0.00103 N/A

Weight of circuity in objective function, w, 0.00019 N/A

Weight of connectivity in objective function, w, 1.00 N/A

Bus capacity, cap 40 pass. 40 pass.

Bus peak load factor, 1.25 1.25

Passenger's value of wait time, b $10 per hour N/A

Bus operating cost, c $50 per bus N/A

Minimum % of demand satisfied directly, DIR,, 80% 50, 70%

Fleet size, FS 90 buses N/A



evaluation procedure to calculate an estimate of the total vehicle requirement, B,,st (Ifis

utilized with the peak load factor method and b and c are used in the square root rule).

The minimum percentage of demand satisfied directly by the network DIRiDi is also used

as the alternative (indirect) method of evaluating the network within the RG loop.

In the first run, a network which closely follows the travel patterns in the demand

matrix was designed (general network design). The estimate of the number of buses

required, B,,, was calculated within RG based on the network's level of demand served

without transfer (DIR), and the VA process was initiated whenever that measure exceeded

80% (DIR,=). The first solution (network A) which satisfied the latter condition had a

directly-served demand level of 84%, contained 7 routes and required a minimum of 86

buses (Bmi,) as calculated by the base vehicle allocation procedure. Since the fleet size (90

buses) was not completely consumed, the 4 surplus buses were allocated on the network

and route generation was resumed. The next solution (network B) had an 89% level of

demand served without transfer, contained 8 routes and required 91 buses. The RG

process was terminated at this point, since no surplus buses remained.

In the second run, the two major destination nodes were specified as transit centers

and a transit center network was generated for the same problem. The solution consisted

of a high frequency trunk route operating between the two transit centers, 8 feeder routes

that connect to either one of the two centers, and two other routes serving other major

destinations.

The results of both runs are shown at the end of this chapter in tables 5.4 through

5.11, along with the solutions created by Baaj and by Shih. Based on these results, several

observations can be made and are presented in the following paragraphs.

Case 1: General Network Design

Demand Satisfaction

The solution created by RG (tables 5.5 and 5.6) was successful in capturing the dominant

trip patterns reflected in the demand matrix. Mandl's network is characterized by a radial

trip pattern centered around the two highest demand nodes - 6 and 10 - which define the
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central core. The majority of trips destined to this core are initiated at nodes 1, 2, 6, 8 and

10 which account for 61% of the total passenger trips generated. Both networks A and B

created by RG contained a route which serves all of the above major trip generators (route

3). Moreover, the solutions contained routes that either go through the core (routes 1, 3,

5 and 7) or connect to at least one of the nodes 6 or 10 (routes 2, 4 and 6), increasing the

level of demand satisfied by the network solution. Network A served all passengers with

at most one transfer and achieved an 84% level of direct (no transfer) demand satisfaction.

In network B, all passenger-trips were served with at most one transfer, with 89% of the

these trips served directly. In comparison, the level of direct demand satisfaction in Baaj's

and Shih's networks is 81% and 88%, respectively. On average, routes in networks A and

B are longer (36 and 37 minutes of round trip time, respectively) and slightly more

circuitous (1.1 circuity ratio) than routes in Baaj's network (30 minute round trip time and

1.0 circuity ratio), which explains the higher level of direct demand attained by networks

A and B. Routes in network B are similar to those in Shih's network in terms of average

round trip time (37 minutes) and circuity (1.1) and, consequently, network B has a

demand satisfaction level that is comparable to that of Shih's solution.

Travel Time

With the same number of passengers served by all network solutions (100%), networks A

and B outperformed Baaj and Shih's solutions in terms of in-vehicle and wait times (table

5.4). Among all solutions, network A has the lowest sum of total in-vehicle and wait time

which is 12% and 8% less than that on Baaj and Shih's networks respectively. The wait

time on networks A and B is better because these networks contain more than one route

serving nodes 1, 2, 6, 8 and 10 which are the highest-demand nodes. In network B for

example, nodes 1, 2 and 6 are served by routes 3, 6 and 8 (table 5.6), and the combined

frequency on the route segment containing these nodes is higher than that on route 4 in

Baaj's network (table 5.8) or route 8 in Shih's network (table 5.9). Baaj and Shih

calculated the total transfer time as the sum of all 5-minute penalties for each transfer

(assuming that each transfer is equivalent to five minutes of in-vehicle travel time). As

such, the transfer time reflects the number of transfers made rather than the actual waiting
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time at transfer points. In contrast, the total transfer time determined in the VA procedure

is calculated according to the frequencies of routes that passengers transfer to.

Consequently, the total passenger travel time on networks A and B cannot be compared to

that of Shih's and Baaj's networks.

Vehicle Requirements

Because they serve more passengers, networks A and B required more vehicles (86 and 90

buses, respectively) than Baaj's network (82 buses). The number of buses required by

Shih's network (68 buses') is remarkably low - even when compared to Baaj's network -

although the route configuration and demand satisfaction levels are quite similar to

networks A and B. While Shih compares his solution to that of Baaj, he does not provide

an explanation for this considerable difference in vehicle requirements (20%). A possible

reason for this difference could be that Shih's vehicle allocation procedure does not

provide enough capacity on each route to satisfy all passengers choosing it.

Estimation of the Number of Buses

The network evaluation procedure within the RG loop was based on the level of demand

served (indirect method) in order to compare this method with the one based on a

combination of the square root rule and the peak load factor method (direct method). For

that purpose, VA was initiated whenever the network's level of direct demand satisfaction,

DIR, exceeded 80% (DIR,). Then, Bes, was calculated using the square root rule and

peak-load factor method and compared to Bmin, the vehicle requirement produced by the

base vehicle allocation process. Results of these calculations are shown in table 5.7 for

network A which required 86 buses as determined by VA (base vehicle allocation). For

this network, the direct method underestimated Bes, (69 buses) by a factor of 1.2, the

reason being that transfer volumes are not accounted for when using the square root rule

or the peak-load factor method. (The 20% difference in vehicle requirement is

comparable with the 16% of trips served using transfers in network A.) However, it is still

Two other solutions produced by Shih using slightly different sets of design parameters required 84
buses, which is comparable with the vehicle requirement on Baaj's network and networks A and B.
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reasonable to use the direct method with a (constant) factor fun which accounts for

transfer volumes. Because these volumes may change during the network development

process (depending on the degree of complementarity in the network) f. would first be

estimated and then updated each time after the VA procedure is performed.

Generation of Multiple Solutions

The two solutions created by RG provide an example of the possible tradeoff that may

exist among the various service characteristics of alternative networks. The surplus buses

(4) remaining after performing base vehicle allocation on network A were assigned to the

same network in order to improve its service performance. If network A after surplus

allocation (table 5.4) is compared to network B, it can be seen that each of the individual

components of the total passenger travel time in network A is better, due to the

concentration of service on a lesser number of routes, with a 4% improvement in the total

passenger waiting time. On the other hand, the percent of demand satisfied without

transfer, DIR, increased by 5% from network A (84%) to network B (89%), because of

the generation of an additional route (route 8). Although the tradeoffs involved in this

simple example may not be significant, they demonstrate the capability of the design

methodology to present several near-best network alternatives that can be analyzed in

order to reach a better final solution.

Case 2: Transit-Center Network Design

In the second run, nodes 6 and 10 were used as the only two transit centers around which

the network is to be designed. The solution obtained (table 5.10) consists of a high-

frequency trunk route operating on the segment 6-8-10, as well as 8 medium-to-high

frequency feeder routes which collect passengers from the rest of the network and

connects them to either one of the centers. Two other routes (8 and 9) which do not

connect to either of the transit centers were also generated. Shih does not provide a

transit center solution to the Mandl network so a comparison with other transit center
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solutions is not possible. Instead, the transit center solution will be compared to the

general design produced in the first run.

Demand Satisfaction

The transit center network serves less direct demand (78%) than the one produced by the

general network design (89%). Compared to network B, the transit center solution does

not contain a single route which connects all of the highest-demand nodes (1, 2, 6, 8 and

10), resulting in the difference in the level of direct demand satisfaction. This difference is

not caused by an inadequate choice of routes but rather because of the nature of the transit

center concept which relies on transferring at the transit centers. In terms of the total

demand satisfied, the transit center solution performs nearly as well as the general network

design, serving 98% of all passengers within 1 transfer and all of the passengers within

two transfers. On average, routes in the transit center solution are shorter (33 minutes of

round trip time) than routes generated in the case of a general network design (36-37

minutes). This could also be attributed to the nature of the transit center concept which

favors the generation of shorter feeder routes rather than longer (and more circuitous)

routes providing direct service between removed destinations.

Travel Time

The total travel time is worst in the transit center design where the minimum number of

buses is allocated on the network (base vehicle allocation), especially in terms of wait

time. The concentration of buses on the trunk route (route 1) and on a few major feeder

routes (routes 5, 7 and 10), as well as the large number of routes generated, result in

fewer buses allocated on each route. Consequently, service is on average less frequent in

the case of a transit center design and wait time is longer. The total transfer time is also

higher because of the increased number of transfers made. However, if the surplus buses

(21) are allocated on the transit center network (table 5.11), its wait ant transfer times are

significantly improved and its total passenger travel time becomes slightly better than that

of networks A and B (5 and 6%, respectively).
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Vehicle Requirements

The transit center solution consumes less vehicles (69 buses) than network B (90 buses)

because it satisfies a smaller amount of total demand. The reason is that routes in the

transit center network are generally shorter and less circuitous than in network B.

In summary, the solutions produced by the proposed network design methodology

are comparable with the other solutions to Mandl's problem. In terms of demand

satisfaction, networks A and B are slightly better than Baaj's solution and in turn, require

a few more buses. Although Shih's network is quite similar to network B in various

aspects, it requires a significantly lower number of buses. Shih does not comment on the

vehicle requirement of his network and it is not clear from the data available how such a

saving in buses could be achieved. Networks A and B are clearly better in terms of in-

vehicle and wait times than the other solutions, whereas the transfer time was not available

for comparison in the other solutions. The transit center solution to Mandl's problem is

outperformed by the general network designs in terms of demand satisfaction, although its

overall performance is still acceptable in many respects. Moreover, the allocation of

surplus buses on the transit center network may considerably enhance its travel time,

thereby compensating for its lower demand satisfaction level by providing a more frequent

service. A comparison of the transit center network with other transit center solutions

could not be made, however, because Shih does not provide a transit center solution to

Mandl's problem.
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Table 5.4: Summary of Solutions to Mandl's Problem - General Network Design

* Based on a 5 minute transfer penalty for each trip.
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Network A

Performance (Surplus Baaj's Shih's

Measures Allocation) Network B Solution Solution

Number of routes 7 8 7 8

% Demand served directly 84 89 81 88

% Demand served within 1 transfer 100 100 N/A N/A

% Demand served within 2 transfers 100 100 100 100

% Demand unserved 0 0 0 0

Number of buses 90 90 82 68

IVTT (pass - min.) 159,464 159,883 180,350 168,023

WAIT (pass - min.) 18,932 19,920 22,804 26,455

XFER (pass - min.) 38,052 38,607 14,800' 9,550'

Total travel time 216,448 218,410 217,954 204,028



Route Nodal Frequency Round Trip Buses Circuity

Number Composition (bus/ hour) Time (min.) Required Ratio

1 6-8-15-7-10 34 26 15 1.3

2 10-11-13 27 20 9 1.0

3 1-2-3-6-8-10 23 46 18 1.1

4 12-11-10-14 11 46 8 1.0

5 5-4-6-8-10 26 36 16 1.2

6 1-2-3-6-8-15-7 20 38 13 1.0

7 9-15-6-8-10 10 42 7 1.2

Average / Total 22 36 / 254 12 / 86 1.1

Table 5.5: RG - VA Solution (Network A - Base Allocation)

Route Nodal Frequency Round Trip Buses Circuity

Number Composition (bus/ hour) Time (min.) Required Ratio

1 6-8-15-7-10 37 26 16 1.3

2 10-11-13 27 20 9 1.0

3 1-2-3-6-8-10 21 46 16 1.1

4 12-11-10-14 11 46 8 1.0

5 5-4-6-8-10 22 36 13 1.2

6 1-2-3-6-8-15-7 19 38 12 1.0

7 9-15-6-8-10 10 42 7 1.2

8 1-2-3-6-4-5 13 42 9 1.2

Average / Total 20 37 / 296 11 / 90 1.1

Table 5.6: RG-VA Solution (Network B)
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Route Frequency Frequency Number of Number of Buses

Number (VA) (Square Root/ Buses (VA) (Square Root/ Peak-

Peak-Load) Load)

1 34 28 15 12

2 27 26 9 9

3 23 18 18 14

4 11 11 8 8

5 26 20 16 12

6 20 13 13 8

7 10 8 7 6

Total 86 69

Table 5.7: Frequency and Base Vehicle Requirements on Network A

Route Route Round Trip Circuity

Number Composition Time (min.) Ratio

1 10-13 20 1.0

2 10-11-12 30 1.0

3 10-14 16 1.0

4 1-2-3-6-8-10 46 1.0

5 9-15-7-10 34 1.0

6 5-4-6-8-10 36 1.0

7 1-2-4-5 30 1.1

Total/ Average 212/ 30 1.0
m~~~~~~ , _. i

Table 5.8: Baaj's Solution
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Table 5.9: Shih's Solution
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Route Route Round Trip Circuity

Number Composition Time (min.) Ratio

1 3-6-15-7-10-11 40 1.1

2 2-3-6-8-15-7-10-11 46 1.1

3 10-14-13 20 1.0

4 1-2-4-6 30 1.2

5 10-11-12 30 1.0

6 9-15-7-10 34 1.0

7 5-4-6-8-10 36 1.0

8 1-2-3-6-8-10-13 66 1.0

Total/ Average 302/ 37 1.1



Route Nodal Frequency Round Trip Buses Circuity

Number Composition (bus/ hour) Time (min.) Required Ratio

1 6-8-10 32 20 11 1.0

2 1-2-3-6 12 26 5 1.0

3 4-6-8-15-7 6 20 2 1.1

4 6-4-12 3 28 1 1.0

5 7-10-13-14 13 38 8 1.3

6 5-4-6-8-15-9 4 40 2 1.1

7 10-1.1-12 21 30 10 1.0

8 1-2-4-5 4 30 2 1.1

9 5-4-12-11-13 5 58 5 1.0

10 1-2-4-6-8-15-9 23 54 21 1.1

11 10-11-13-14 4 24 2 1.5

Average/ Total 12 33 /368 8 / 69 1.1

Table 5.10: Transit Center Network Solution -- Base Allocation
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Table 5.11: RG - VA Solutions - General and Transit Center Designs
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Transit Center

Transit Center Solution - General

Solution - Base Surplus Design -

Performance Measures Allocation Allocation Network B

Number of routes 11 11 8

% Demand served directly 78 78 89

% Demand served within 1 transfer 98 98 100

% Demand served within 2 transfers 100 100 100

% Demand unserved 0 0 0

Number of buses 69 90 90

IVTT (pass - min.) 149,170 149,170 159,883

WAIT (pass - min.) 33,984 26,054 19,920

XFER (pass- min.) 39,071 29,954 38,607

Total travel time 222,225 214,585 218,410



Chapter 6

Case Study

In this chapter, the proposed bus network design methodology and automated design

procedure are applied to a real world transit network problem. Data from the bus system

of San Juan, Puerto Rico is used in a case study to illustrate the performance of the design

methodology. San Juan provides an appropriate case study for this research because a

plan to restructure its existing bus system, involving a basic change in the network

concept, has been proposed and will be shortly implemented. Consequently, solutions

produced by the design methodology can be compared to the proposed network changes.

6.1 Introduction

Ridership on all forms of public transportation has declined in the San Juan Region over

the last 20 to 25 years. The combination of increasing auto ownership and deterioration

of public bus service reduced the latter's share of person trips within the region to 2.4% in

1990, compared to 19.6% in 1964 (Barton - Aschman Associates, 1993). Currently, the

bus network in the San Juan region consists of 42 routes operating with a maximum of

183 buses. The system is generally characterized by adequate coverage and connectivity

and a relatively low fare. However, the service suffers from low frequencies - with

headways on some routes well over an hour - and a lack of speed, directness and schedule

adherence on many routes. Modifications to the system have been limited, except for a

significant improvement in bus operations made in October 1990 when service on a major

corridor was contracted out to a private operator. Buses on that corridor (referred to as

the Metrobus corridor) which connects the highest population and employment density

areas in the San Juan region operates on a contraflow exclusive lane and provides a high

frequency service.
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Although minor realignments of AMA routes to feed the Metrobus corridor have

been implemented, network restructuring was still indispensable for improving the overall

performance of the system. In 1994, introduction of a transit center network concept was

proposed (Multisystems, 1994) as a way of restructuring the system and providing better

service. Improvements in service frequency, speed, directness and schedule adherence

were specifically targeted in the proposed route structure change. Components of the

transit center concept include 13 transit centers located at the major destinations in the

region, 7 trunk routes with 4-10 minute headways, and 20 local routes with 20-30 minute

headways.

6.2 Objectives of the Case Study

The principle aim of this case study is to examine the performance of the bus network

design methodology using data from the San Juan Region and to compare the results to

the proposed transit center network plan. Since the design procedure does not produce a

complete or detailed solution, the comparison of results will focus primarily on the general

layout of routes and the allocation of the available buses on them. Therefore, the case

study is not an attempt to design a bus network for San Juan, but rather to experiment

with the methodology and to examine its potential as a planning tool. To this end, the

case study has the following objectives:

1. To produce a general network design (network G) and a transit center network design

(network TC) for the San Juan region. Network G will be compared to the existing bus

network with respect to the general route configuration and service frequencies. Network

G will be compared to network TC in a similar manner, taking into account the level of

demand satisfied by each network and the difference in the total passenger travel time

between the two.

2. To compare network TC with the proposed transit center route plan in terms of the

different route types involved (trunk and feeder routes) and to comment on the results.
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3. To test the performance of the automated design procedure on a large network and to

report the required running time of the RG and VA components.

6.3 Data for the Case Study

Figure 6.1 shows the major destinations in the San Juan Region which are located mainly

along the central corridor (the Metrobus corridor) which extends between the old part of

San Juan and Rio Piedras in the middle of the metropolitan area. The Old San Juan - Rio

Piedras spine comprises the highest population density areas in the region, as well the

principal employment concentrations in Old San Juan (governmental, retail), Santurce

(governmental) and Hato Rey (financial). The other major trip generators in the region

include the centers of the Bayamon (west) and Carolina (east) municipalities at the edges

of the metropolitan area, which have the second and third highest population densities in

the region, respectively.

The demand and travel time information used in the case study were obtained from

the San Juan Regional Transportation Plan (Barton - Aschman Associates, 1993) and

corresponds to the year 1990. This information is coded on a large network of the San

Juan region which consists of more than 6,000 nodes, including the centroids of 765 traffic

analysis zones (TAZ's).

For the case study, the demand and travel time information in the San Juan

Regional Transportation Plan had to be aggregated to a size that would match with a

much smaller street network, preferably not exceeding 200 nodes (for reasons discussed

earlier in section 4.3). The street network was created so as to include only the area in

which the (desired) bus system is to be operated. This roughly corresponds to the service

area of the current bus system and consists of the central core of the San Juan

metropolitan region which contains the major destinations (Old San Juan, Santurce, Hato

Rey and Rio Piedras) and which extends west to Bayamon and east to Carolina. The

street network was then developed manually by selecting all the major bus corridors and

streets within this area on which buses can operate. Finally, this network was divided into
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238 street segments and 163 nodes based on the locations of existing termini, major

destinations and access points to other modes. The connectivity information

corresponding to this network was also manually established.

The demand and travel time information in the San Juan Regional Transportation

Plan was available at the TAZ level (between each pair of the 765 centroids) and, thus,

needed to be aggregated so as to fit the 163-node street network. For the demand matrix,

the aggregation was performed first by identifying for each node in the street network its

closest TAZ centroid(s)*. After all the centroids were matched, a new demand matrix was

created in which column (row) i was obtained by summing all the columns (rows) in the

existing demand matrix that match with node i in the street network into a single column

(row). For the travel time matrix, each node in the street network was matched with its

single closest TAZ centroid. A new travel time matrix was then created by assigning the

travel time between each node pair in the street network the value of travel time between

its matching centroid pair.

The data and design parameters used in the case study are summarized in table 6.1.

The number of buses used in the case of a general network design is 183 buses, which is

the currently available fleet size (including buses operating on the Metrobus corridor).

The existing 8 termini which are located along the central Old San Juan - Rio Piedras

corridor and around Bayamon and Carolina centers were used in the design of the network

(figure 6.2). Where a transit center concept is used, these terminals were augmented by 7

transit centers located at other principal trip generators in the region, including one at the

largest medical complex in the island (Centro Medico) and one near the University of

Puerto Rico (UPR) campus in Rio Piedras.

The circuity and round trip time parameters used in the case study are based on the

service planning guidelines presented earlier in chapter 4. The maximum limit on the

round trip time (120 minutes) is consistent with the San Juan travel time conditions,

allowing the formation of routes between the pertinent terminal pairs. A transfer volume

'This was achieved using the TransCAD software by overlaying a map of the reduced street network and
a map of the TAZ centroids.
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Input Data

Table 6.1: Data and Design Parameters for the San Juan Case Study

factor f,., of 1.3* is used in the network evaluation procedure (within the RG loop) to

account for transfer volumes when estimating the total vehicle requirement B,,s. B,t is

calculated using a combination of the square root rule and peak-load factor method for

determining frequencies (direct method) without considering transfer volumes, and VA is

initiated whenever fi.r Bes,t exceeds the available fleet size, FS. After VA is performed, a

more accurate estimate of the total vehicle requirement is obtained, Bmin, and the value of

fun is recalculated as B,, /B,.

'For trunk routes, a circuity ratio of 1.2 is used to guarantee more direct service.
* A lower initial value (1.1-1.2) may also be used without affecting the network development process.

This relatively high value is selected in order to perform the first vehicle allocation at an early stage of
route generation.
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Total number of nodes = 163

Number of links = 238

Number of terminals = 8 (existing)

Number of transit centers = 7 (proposed)

Total number of passenger trips per hour = 21,972

Average link travel time = 4.9 minutes

Fleet size = 183 buses

Design Parameters

Maximum round trip time = 120 minutes

Maximum allowable circuity ratio = 1.5*

Bus capacity = 40 passengers

Bus peak load factor = 1.25

Transfer volume factor f, = 1.3 (initial value)



6.4 Results of the General Network Design

In the first run of the design procedure, a general network was designed and the results

are shown in tables B.1 through B.3 in appendix B. For the given round trip time and

circuity parameters, 2386 feasible initial skeletons were created at the beginning of RG.

The first network generated, G1 (table B.1), consisted of 20 routes and required a

minimum of 155 buses. Since network G1 did not completely consume the bus fleet (183

buses), route generation was resumed. Six additional routes were generated, resulting in

network G2 (tables B.2 and B.3) which comprised 26 routes and required 186 buses. The

RG process was terminated at this point. Performance measures of networks G1 and G2

are summarized in table 6.2.

Individual routes in network G2 will not be compared to routes in the current bus

system in San Juan, since many of these routes suffer from insufficient service and require

extensive restructuring. Instead, global characteristics of network G2 pertaining to the

level of demand satisfied, general route layout, service frequencies and total travel time

distribution will be examined and, whenever possible, compared to their corresponding

values in the current network.

Route Layout and Demand Satisfaction

Network G2 is effective in serving major destinations and trip generators in the San Juan

region. Route 16 (table B.3) follows the current Metrobus corridor - operating between

the Covadonga terminal (old San Juan) and the Capetillo terminal (Rio Piedras) - and

serves the employment concentrations in old San Juan, Santurce and Hato Rey. Highly

populated areas and other employment centers outside this central corridor are served by

several routes which feed into route 16. These routes (1, 3, 4, 14, 15, 17, 18, 21 and 26)

connect Bayamon, Carolina, Catano, Centro Medico, Country Club, Isla Verde and San

Patricio to the central corridor, mainly through Hato Rey. (Route 3 turns north after

going through Hato Rey and ends in Santurce, whereas route 1 turns south towards

Capetillo). All the other feeder routes (8, 11, 12, 19 and 20) terminate at Capetillo.
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Table 6.2: Performance Measures of Networks G1 and G2

Routes which start outside the central core and do not feed into route 16 are few (routes

24 and 25), which explains the relatively low level of direct demand (44%) satisfied by

network G2. Most of the trips made between major destinations outside the central core

require at least one transfer, either at Hato Rey or Capetillo. In fact, when one-transfer

trips are considered, the level of demand satisfaction is increased to 81%. Trips which are

unserved by network G2 amount to 9% of the total demand and mainly are on the

southern edge of the metropolitan region.

Service Frequencies

Frequencies in network G2 vary between 2 and 7 buses per hour (30 and 9 minute

headways, respectively), except on route 16 which operates at a frequency of 15 buses per

hour (4 minute headway). Although, the headway on route 16 is the same as the current

one on the Metrobus route, the other routes in network G2 have a higher frequency on

average than the rest of the routes in the existing network. If route 16 is excluded, the

average headway in network G2 is 20 minutes. On the other hand, the average headway
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Performance Measures Network G1 Network G2

Number of routes 20 26

% Demand served directly (0 transfer) 40 44

% Demand served within 1 transfer 74 81

% Demand unserved 13 9

Number of buses required 155 186

IVTT (pass - min.) 1,782,046 1,810,514

WAIT (pass - min.) 93,206 95,933

XFER (pass - min.) 181,899 179,653

Total travel time 2,057,151 2,086,100



in the current network, excluding Metrobus, is 34 minutes (Multisystems, 1994). The

higher level of service in network G2 is achieved by concentrating the available fleet size

on a smaller number of routes (26, as opposed to 42 in the current network).

Travel Time

The total wait time on network G2 amounts to only 5% of the total passenger travel time,

which is consistent with the relatively high level of service provided on most of the routes.

The total transfer time contributes 9% of the total travel time, with 86% of the latter

incurring as in-vehicle travel time.

6.5 Results of the Transit Center Network Design

In the second run, a transit center concept was used with the introduction of the proposed

transit centers and the demand matrix transformation procedure. Results of the transit

center design are displayed in tables B.4 through B.12 in appendix B. Two networks were

also generated in this case. Network TC1 (table B.4) contained 19 routes and required

125 buses. The second network, TC2 (tables B.5 and B.6), required 145 buses and

consisted of 24 routes. Additional routes generated with the surplus buses did not

significantly improve the network's demand satisfaction level and were allocated instead

on network TC2 (tables B.7 and B.8) to improve its total passenger travel time. A

summary of the main characteristics of networks TC1 and TC2 are displayed in table 6.3.

The number of initial feasible skeletons in this case was 7059, which is significantly

higher than the one produced in the case of the general network design, although the same

parameters of round trip time and circuity were used. The reason is the addition of the 7

transit centers to the existing termini, raising the number of termini to 15 and increasing

the number of possible terminal combinations. In the following paragraphs, the route

layout, demand satisfaction, service frequencies and travel time on network TC2 will be

examined and compared to those of network G2. Also, the results of the demand matrix

transformation procedure which preceded the generation of networks TC 1 and TC2 will
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Table 6.3: Performance Measures of Networks TC1 and TC2

be presented. A comparison between the routes of network TC2 and the proposed transit

center routes will be made later in section 6.6.

Demand Matrix Transformation

The demand matrix transformation procedure re-directed a large portion of the origin-

destination flows towards their corresponding nearest one or two transit centers. Table

6.4 shows the total demand originating at the transit center nodes before and after the

demand matrix transformation. San Patricio sustained the largest increase in originating

demand (255%), since all flows initiating in the vicinity of the Bayamon and Catano areas

and directed towards the central core terminate either in Hato Rey or Capetillo. At the

same time, San Patricio is the nearest transit center for most of these origin-destination

flows. Similarly, UPR falls on a relatively direct path for most of the flows between the

outlying areas in the western sector of the San Juan region and the Capetillo terminal.
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Network Network

Network TC2 - Base TC2 - Surplus

Performance Measures TC1 Allocation Allocation

Number of routes 19 24 24

% Demand served directly (0 transfer) 35 37 37

% Demand served within 1 transfer 72 78 78

% Demand unserved 11 9 9

Number of buses required 125 145 183

IVTT (pass - min.) 1,445,917 1,665,673 1,665,673

WAIT (pass - min.) 123,254 127,592 101,097

XFER (pass - min.) 215,948 209,186 165,748

Total travel time 1,785,119 2,022,451 1,932,518
. . .~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~I



Table 6.4: Demand Originating at Transit Centers

Consequently, the demand originating at UPR was also increased considerably (183%).

The demand originating at Santurce was also significantly increased by the transformation

(106%), since a large number of trips are made between old San Juan and the rest of the

region, most of which were re-directed through Santurce. Centro Medico and Isla Verde

were less affected than the other transit centers by the demand matrix transformation. Isla

Verde (43%) is relatively isolated from the rest of the network and flows re-assigned to it

are unlikely to follow a path which satisfies round trip time and circuity constraints.

Centro Medico (67%) is not as isolated from the network as Isla Verde, but it competes

with the better-located San Patricio and UPR transit centers in capturing re-directed

flows, especially those initiating at Bayamon or Catano and directed towards the central

core.
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Demand Originating

at Transit Center Percent

Before Demand After Demand Increase in

Matrix Matrix Originating

Transit Center Transformation Transformation Demand

Santurce 1,527 3,145 106

University of Puerto Rico (UPR) 790 2,236 183

Centro Medico 126 210 67

San Patricio 809 2,872 255

Rio Hondo 75 92 23

Isla Verde 588 840 43

Plaza Carolina 328 439 34



Route Layout and Demand Satisfaction

The demand matrix transformation procedure had a significant impact on altering the

existing trip-making patterns from being dominantly oriented towards the central corridor

to being directed towards the transit centers dispersed throughout the region. The number

of routes that do not feed into the central corridor have increased from 2 in network G2

(routes 24 and 25) to 5 in network TC2 (routes 8, 14, 17, 18 and 22). All of these routes

contain at least one transit center terminal and were affected by the build up of demand at

their corresponding transit center(s). Routes in TC2 which remained oriented towards the

central corridor did not use Hato Rey or Capetillo exclusively as the connection point to

the central area, as in network G2. For example, route 7 in TC2 connects Catano and San

Patricio to Santurce instead of Hato Rey (route 21 in network G2, table B.3). Similarly,

route 4 connects Bayamon to three transit centers - San Patricio, Centro Medico and UPR

- instead of going through San Patricio and ending in Hato Rey (route 26 in network G2,

table B.3).

Despite having more routes connecting destinations outside the central district

without the need of transfers, network TC2 did not achieve a higher level of direct

demand satisfaction than network G2 (table 6.5). The reason is related to the nature of

the transit center concept and the fact that routes in TC2 are, on average, shorter and less

circuitous than routes in G2 because of the trunk routes included in the solution. (The

average route round trip time in network TC2 is 96 minutes, whereas the corresponding

value in G2 is 108 minutes.) The percentage of trips served within one transfer in network

TC2 is also lower (78%) than that in G2 (81%), but the level of trips unserved is the same

in both networks (9%). All of this indicates that more transfers are involved in network

TC2 than in G2.

142



Table 6.5: Comparison Between Networks G2 and TC2

Service Frequencies

Frequencies on network TC2 in the case of base allocation (tables B.5 and B.6) and

network G2 are similar, both averaging 4 buses per hour on a route. In TC2, 12 routes (1

through 8, 20 and 22 through 24) contain more than one transit center and can potentially

serve as trunk or feeder routes. The average frequency on these routes is 4 buses per hour

(15 minute headway), and is increased to 5 buses per hour (12 minute headway) in the

case where surplus buses are allocated. Routes containing only one transit center may

serve as feeders and generally have lower frequencies. These routes (9 through 14, 16

through 18, and 21) have an average frequency of 3 buses per hour (4 buses per hour in

the case of surplus allocation).
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Network Network

TC2 - Base TC2- Surplus

Performance Measures Network G2 Allocation Allocation

Number of routes 26 24 24

% Demand served directly (0 transfer) 44 37 37

% Demand served within 1 transfer 81 78 78

% Demand unserved 9 9 9

Number of buses required 186 145 183

IVTT (pass - min.) 1,810,514 1,665,673 1,665,673

WAIT (pass- min.) 95,933 127,592 101,097

XFER (pass - min.) 179,653 209,186 165,748

Total travel time 2,086,100 2,022,451 1,932,518



Travel Time

With networks TC2 and G2 roughly serving a similar number of trips, the total travel time

on both networks can be compared. Table 6.5 shows that the total wait time on TC2

(base allocation) increased by about 33% from that on G2, and the total transfer time by

16%. The increase in wait time is due to the concentration of service on the potential

trunk routes with fewer buses operating on the feeder and other routes (average of 6

buses) than in network G2 (average of 7 buses). The increase in the total transfer time is

caused by TC2 providing fewer one-seat rides than G2 in return for a more direct service

to major destinations. This is further reflected in the 8% reduction of in-vehicle travel

time in TC2 (as compared to G2) which is also caused by the lower level of demand

satisfaction.

When the surplus buses are allocated on TC2, the increase of wait time over that

of G2 is reduced from 33% to only 5%. Furthermore, transfer time on TC2 actually

becomes less than that on G2 by 8%, mainly because most surplus buses are allocated to

the potential trunk routes.

If a comparison between networks TC2 and G2 is made based exclusively on the

performance measures presented in the previous paragraphs (and summarized in table

6.5), it can be argued that the two networks represent a tradeoff between achieving a

higher level of demand satisfaction (G2), and providing a more direct and frequent service

(TC2). However, this comparison may undermine the actual demand satisfaction level of

network TC2, implying that network G2 is clearly better than TC2 in that respect. In fact,

the demand satisfaction level of network TC2 cannot be realistically appraised unless the

demand matrix is re-estimated taking into account the changes in service introduced by the

transit center concept. Demand matrix re-estimation (which is part of the proposed

methodology) would determine a distribution of trips that is different from the existing

one, one which is in accordance with the new service provided. If the re-estimated matrix

is used to re-evaluate network TC2, better overall performance would be obtained,
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including a possibly higher level of demand satisfaction. Another important issue that has

to be considered in the comparison of G2 and TC2 is that the latter has a potential for

attracting additional ridership because it provides more frequent service to major trip

generators than G2. Even if the evaluation of TC2 after demand matrix re-estimation

reveals an increase in wait or transfer time, the benefits of attracting additional passengers

are likely to be large enough to compensate for them.

6.6 Comparison with the Proposed Transit Center Route Plan

In this section, the trunk and feeder routes in network TC2 (surplus allocation, tables B.7

and B.8) are compared with the proposed transit center route plan. In TC2, 9 routes (1

through 6, 8, 20 and 21) were assigned relatively high frequencies (above 4 buses per

hour), had a circuity ratio below 1.2, and connected two or more transit centers. These

routes are shown in table 6.6 and will be compared to the proposed trunk routes. The

remaining 15 routes were considered as feeders, connecting certain termini to their

corresponding closest transit center(s), or local routes operating between two termini.

Trunk Routes

All of the 7 trunk routes in the proposed route plan had similar counterparts in TC2.

These routes, summarized in table 6.7, roughly follow the same path as the proposed

trunk routes (figure 6.3) and go through exactly the same major destinations. Generally,

frequencies on the trunk routes in TC2 are slightly lower than the ones proposed, ranging

between 4 and 6 buses per hour (15 and 10 minute headways, respectively), except for

trunk T6 which provides a much more frequent service, with 15 buses per hour (4 minute

headway). The higher frequencies on the proposed trunk routes are caused by the implicit

assumption made in the transit center route plan about a build up in ridership as a result of

the more frequent service on the major routes. In fact, the proposed route plan requires

the deployment of additional buses (around 30 buses) in order to provide 10 minute

headways (6 buses per hour) on all trunk routes and 20 minute headways (3 buses per
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Circuity Frequencies

Itinerary* Ratio (bus/hour)

1: UPR - Capetilo - P. Carolina - Carolina 1.0 6

2: Rio Hondo - Bayamon - San Patricio - Hato Rey 1.2 5

3: Covadonga - Santurce - Hato Rey - UPR - Capetillo 1.2 15

4: UPR - Centro Medico - San Patricio - Bayamon 1.2 4

5: Catano - San Patricio - Hato Rey - UPR - Capetillo 1.2 6

6: Santurce - Las Casas - Capetillo - UPR 1.2 4

8: Isla Verde - P. Carolina 1.2 4

20: Isla Verde - Santurce - Covadonga 1.1 5

21: P. Carolina - Capetillo 1.1 3

Table 6.6: Potential Trunk Routes in Network TC2

Proposed Frequencies

Frequencies in TC2

Itinerary of Trunk Routes* (bus/hour) (bus/hour)

TI: Catano - San Patricio - Hato Rey - UPR - Capetillo 6 6

T2: UPR - Capetillo - P. Carolina - Carolina 6 6

T3: UPR - Centro Medico - San Patricio - Bayamon 6 4

T4: Rio Hondo - Bayamon - San Patricio - Hato Rey 6 5

T5: Isla Verde - Santurce - Covadonga 6 5

T6: Covadonga - Santurce - Hato Rey - UPR - Capetillo 12 - 15 15

T7: Santurce - Las Casas - Capetillo - UPR 6 4

Table 6.7: Trunk Routes in the Proposed Route Plan and Network TC2
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hour) on most feeder routes. Therefore, if additional buses are used in the design

procedure, all trunk routes in TC2 would have frequencies that match more with the ones

proposed.

Feeder and Other Routes

Table 6.8 shows the feeder routes that are similar to the ones in the proposed route plan.

Among the 17 major feeder routes in the proposed route plan, 11 shared strong similarities

with feeder routes in TC2. Moreover, frequencies on the feeder routes in TC2 are

comparable with their counterparts in the proposed route plan, although they are slightly

higher on some routes. TC2 also includes one route - route 19 running between the

Capetillo and Country Club termini - which does not contain any transit center nodes.

6.7 The Automated Design Procedure

The program implementing the automated design procedure is written in Pascal and was

run on a DEC 5000 workstation, although it can be easily converted to run on the more

commercially available PC-compatible machines. The program is designed to

accommodate networks with up to 200 nodes and can generate and allocate vehicles on up

to 50 routes. In order to work with larger networks, a more efficient data structure has to

be created and used within the program for storing the larger amount of input data and

keeping the running time within tolerable limits.

In the San Juan case study, the bulk of the running time of the design procedure

was utilized by the VA process. In the first run of the procedure in which a general

network design was sought, the first 20 routes (network G1) were generated in about 2.5

minutes. On the other hand, the VA procedure which followed the generation of these

routes required around 37 minutes to determine the frequencies and to calculate the

various performance measures, raising the total running time to about 40 minutes. The

design procedure similarly required a total of 42 minutes to generate and evaluate network

TC2 (24 routes) in the second run, including the time used by the demand matrix
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transformation procedure which did not cause any observable increase in the total running

time. (The additional 2 minutes in the second run are caused mainly by the generation of

more routes.)

The most time-consuming component of VA is the calculation of the variable and

captive flows, which is related to the passenger assignment model. The VA also uses an

iterative solution algorithm to solve for the base frequencies which utilizes a maximum

allowable error term. Thus, the running time of VA may be slightly reduced by using a

larger allowable error term, although the accuracy of the solution would be affected.

6.8 Summary

The computational experiment using the San Juan case study has demonstrated the

performance of the proposed network design methodology and automated design

procedure on a large problem. In the case of a general network design, the methodology

produced a solution which achieved an acceptable level of demand satisfaction and

contained routes that are consistent with the trip-making patterns in the demand matrix.

In the case of the transit center design, the methodology generated a considerably different

route configuration without suffering from a large reduction in the total demand satisfied

and with better overall travel time. The total running time of the automated design

procedure was within tolerable limits, although it could be made considerably more

efficient by improving the time required by the VA component.
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Chapter 7

Conclusions

In this thesis, a methodology for solving the bus network design problem (BNDP) has

been developed which incorporates route generation and vehicle allocation in a single

automated heuristic procedure. The thesis is motivated by the potential benefits of

network restructuring and the lack of heuristic approaches that have received extensive

practical application. A literature review revealed that the existing heuristic approaches to

the BNDP lack three main elements that have limited their practical applicability. First,

the operator's fleet size constraint has not been explicitly addressed at the route design

level. Second, the demand matrix has not been adequately used to guide the design

process. Finally, only a few approaches have incorporated a pre-defined network concept

in the route generation process.

The methodology for solving the BNDP developed in thesis has focused primarily

on these important elements and presented a bus planning tool that has the potential to

receive practical application from planning authorities. The main components of the

methodology consist of route generation (RG), vehicle allocation (VA), network

improvements, and demand matrix re-estimation. In this thesis, the RG and VA

procedures were developed and incorporated together in order to address, more explicitly,

the operator's fleet size constraint. The RG procedure is heavily guided by the demand

matrix so as to produce routes that serve the largest possible number of trips. RG can also

be used with the same input demand matrix to design networks around the transit center

concept by transforming the demand matrix prior to the initiation of the route

development process. The VA procedure, which is based on a simple passenger path

choice model, allocates buses on the generated routes so as to provide enough capacity to

allow each passenger to board the bus on his or her preferred route.

Computational testing of the proposed methodology on Mandl's benchmark

problem generated solutions that, in certain aspects, outperformed other solutions to the
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problem. Computational testing of the methodology on a real-world problem using data

from the bus system of San Juan, Puerto Rico, produced results that are comparable with

a proposed plan for network restructuring.

7.1 Route Generation

Although it is based on the basic concept of initial route skeletons which is used by other

approaches, the proposed RG process introduced several modifications to that concept

which lead to better performance in certain aspects of the final solution. The first

modification is related to the definition of an initial route skeleton as a sequence of 3

nodes - two termini and one intermediate node - as opposed to the shortest path between

the route's termini. This definition does not focus primarily on the directness of the route

under development, but rather on the potential of the route to serve a major intermediate

destination. As a result, networks created by the RG procedure are more likely to satisfy a

large number of trips directly, without transfers. The second modification is concerned

with the selection of the best initial skeleton (at each iteration of the RG process)

according to the demand between all its node pairs that are unserved by the routes already

developed, as opposed to the demand between its terminal nodes. Consequently, routes

that have the potential to serve more trips are selected and developed prior to the other

routes, increasing the number of trips satisfied in the final solution.

The proposed RG process also includes several measures to reduce the occurrence

of route overlap in the final solution. The problem of route overlap can have a significant

negative impact on the quality of solution because overlapping routes require a minimum

amount of service, therefore consuming valuable resources and potentially preventing

additional routes from being generated. At the route skeleton level, a reduction of

potential overlap was achieved by ranking skeletons according to demand between

skeleton node pairs that are not included in routes that have already been developed. This

measure does not guarantee avoiding this problem, since a skeleton that overlaps with an

existing route k and extends further beyond at least one of k's termini is not affected by it.

For this reason, another measure to reduce route overlap was imposed on the skeleton
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expansion process: when measuring the additional demand caused by inserting a node in a

skeleton (first component of objective function), only the directly unserved demand was

used. As a result, the insertion of the same high-demand nodes is discouraged in skeletons

that were not affected by the measure to reduce overlap at the skeleton level.

These features that characterize the proposed RG process resulted in satisfactory

performance when tested on Mandl's benchmark problem and the San Juan case study.

The solution created by RG for Mandl's problem was better in capturing the dominant trip

patterns in the demand matrix than the other solutions, resulting in a larger number of trips

satisfied. In the San Juan case study, this observation was further reinforced in the case of

general network design which produced a network (G2) satisfying 81% of the total trips

within only one transfer. Furthermore, the routes in G2 were fairly distinct.

In the case of a transit center design, RG performs a demand matrix transformation

which is used to modify the distribution of trips in a way that is consistent (at least in a

preliminary manner) with a transit center network. In the San Juan case study, the

transformation was effective in replacing routes oriented towards the central corridor by

routes that are clustered around the various transit centers scattered throughout the

region.

7.2 Vehicle Allocation

Developing a VA procedure was not the main objective of this thesis. As explained in the

first chapter, the problem of optimal frequency determination (which can also be viewed as

a problem of vehicle allocation) has received much more attention by bus planning

authorities and researchers than the BNDP. Moreover, numerous computer programs for

network evaluation (such as EMME/2) have been recently developed that are capable of

performing passenger assignment in complex networks - such as the ones characterized by

common route segments - based on sophisticated passenger behavioral models. These

programs may be used with the solution obtained from the RG procedure to assign the

passengers on the network, determine the required frequencies and perform a detailed

analysis of the performance of the service provided. The role of the VA procedure within
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the methodology, however, is to estimate the total vehicle requirement on a particular

network in order to guide the RG process.

In that regard, the proposed methodology relied on two separate procedures for

vehicle allocation/ frequency determination: (1) the network evaluation procedure within

the RG loop which uses a combination of the square root rule and the peak-load factor

method for determining frequencies; and (2) the more extensive VA procedure which is

based on the work of Han and Wilson (1982). Frequencies calculated using a combination

of the square root rule and the peak-load factor method may be more efficient with respect

to the passenger's travel time than the base vehicle allocation procedure in the case of

routes with a low degree of competition and complementarity. However, as the network's

complexity increases, these methods lose their advantage because they cannot ensure

adequate capacity on each route. On the other hand, the base vehicle allocation procedure

used in the VA procedure is capable of finding the equilibrium between passenger and

vehicle assignments and determine the minimum number of buses required on each route

to maintain a desired peak load factor. Computational testing on Mandl's problem

revealed that the combination of the square root rule and the peak-load factor method

underestimated the vehicle requirement in the case of large transfer volumes. However,

these methods are still used in the proposed methodology in order to estimate roughly the

number of buses required and to initiate the VA procedure which produces a more reliable

estimate of the vehicle requirement.

7.3 Further Research

The bus network design problem has many facets that were not considered in this thesis

and that can become topics of further research. For example, the problem can be extended

to encompass more than one vehicle type, each with a different capacity and/ or cost

structure, thereby requiring a different model to determine the optimal (or near optimal)

allocation of service on the network of routes. Another possible extension of the problem

would consider the vehicle size as a variable that needs to be determined as part of the

154



solution. Shih and Mahmassani (1994) have already presented a transit network design

procedure which includes a model for vehicle sizing.

Even the aspects of bus network design that were dealt with in this thesis may be

further extended. Route generation can be improved by adopting more sophisticated node

selection and insertion strategies. For example, an improved route generation procedure

would be capable of monitoring a wide range of performance measures while developing

the network and can proceed by creating routes that enhance specific aspects of the

current network. In that sense, the route generation process would become more

dynamic.

In the case of a transit center design, a procedure to identify the best (or near best)

transit centers may be incorporated in the methodology. Such procedure could start by

proposing a certain number of feasible transit centers, based on criteria of location and/ or

travel time, and then use information obtained from the VA procedure (such as the

number of transfers at each one of these candidate nodes) to update the choice of transit

centers and perform another evaluation.

The demand matrix transformation procedure used in the case of a transit center

design can also be improved. Besides emphasizing the role of transit centers during the

process of route generation, a better procedure would be capable of appraising - in a

relatively accurate and yet efficient method - the potential increase in ridership caused by

the change in network concept. The modified demand matrix would then be used to

influence the network evaluation process in order to allocate adequate frequencies on the

trunk and feeder routes.

More efficient vehicle allocation procedures could significantly improve the overall

performance of the methodology by allowing higher levels of integration with route

generation. Also, efficient vehicle allocation procedures would enable the evaluation of a

larger number of networks in a relatively shorter time.

Another direction for further research would focus on network improvements

which is a major component of the proposed methodology that was not developed in this

thesis. Although the need for network improvement actions depends greatly on the

performance of the RG procedure, solutions produced by the design procedure would still
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benefit from actions at the route structure level. These actions include reducing low

ridership/ frequency routes, route splitting, and devising new combinations of routes

through branch exchange.

Finally, further testing of the methodology on different networks and their

corresponding demand matrices is needed in order to form a better judgment of the

methodology and to investigate its practical application.
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Appendix A

Determination of the Weights wd, w, and w. of the Objective Function
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The following is a procedure for generating values of the weight Wd, wi and w, of the

objective function. Recalling from chapter 4, the objective function is expressed as:

objctv(n) = Wd dem(n) - wl dev(n) + wn ' rts(n)

where dem(n) = the additional number of unserved trips between the node n and

each of the nodes already in the route,

dev(n) = the additional deviation from the shortest path (in passenger-

minutes) imposed by the insertion of node n in the route, and

rts(n) = the number of already generated routes passing through node n

The weights are determined so as to (1) reflect the relative trade-offs among the terms of

the objective function, and (2) to reject a node n for insertion in a base route if objtv(n) is

negative (second stage insertion).

The following relationships are used to determine the weights:

number of routes number of routes 1 1
1. '-d a total demand t; w = b. todemand average link length 15; Wn =

2. a-b+c=O

3. a, b and c are strictly positive.

The relationships are based on the idea of selecting the weights so as an "average" node n

would make the objective function value go to zero. number offor example, cantotal demand o

be viewed as the average additional demand incurred by the addition of a typical node.

In the example used in chapter 5, total demand = 15570 trips

number of routes = 8 (expected)

average link length (in-vehicle time) = 5.33 minutes

if we use a = 2, b = 3 and c = 1, the values for the weights are:

wd = 0.001028

wi = 0.000193

W = 

158



Appendix B

Results of the San Juan Case Study
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Route Round Trip Frequency Number

Number Itinerary Time (min.) (bus' hr) of Buses

I Capetillo - Hato Rey - San Patricio - 120 10 20

Catano

2 Las Casas - Hato Rey 42 2 2

3 Capetillo - Santurce - Hato Rey - 120 13 26

Covadonga

4 Hato Rey - Santurce - Catano 120 5 10

5 Hato Rey - Country Club 120 3 6

6 Las Casas - Santurce - Covadonga 86 5 7

7 Capetillo - UPR - Hato Rey 62 3 3

8 Las Casas - Hato Rey - Capetillo 88 2 3

9 Country Club - Capetillo 94 2 3

10 Hato Rey - Las Casas - Covadonga 102 3 4

11 Covadonga - Catano 100 3 5

12 Capetillo - UPR - Centro Medico - 120 9 18

San Patricio - Bayamon

13 Country Club - Capetillo - UPR - 120 4 8

Hato Rey

14 Covadonga - Las Casas - Capetillo 120 3 6

15 Bayamon - Hato Rey 92 3 5

16 Catano - UPR -Capetillo 120 6 12

17 Hato Rey - Santurce - Covadonga 82 5 7

18 Las Casas - Catano 108 2 3

19 Country Club - Isla Verde - Hato Rey 108 2 3

20 Carolina - Isla Verde - Hato Rey 120 2 4

Total / Average 2044 / 102 4 155 / 8

Table B.1: Network G1
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Table B.2: Network G2
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Route Round Trip Frequency Number

Number Itinerary Time (min.) (bus/ hr) of Buses

1 Capetillo - Hato Rey - San Patricio - 120 7 14

Catano

2 Capetillo - Hato Rey - Covadonga 120 7 14

3 Hato Rey - Santurce - Catano 120 3 6

4 Hato Rey - Country Club 120 3 4

5 Las Casas - Santurce - Covadonga 86 3 3

6 Capetillo - UPR - Hato Rey 62 3 3

7 Las Casas - Hato Rey - Capetillo 88 2 3

8 Country Club - Capetillo 94 2 3

9 Hato Rey -Las Casas - Covadonga 102 3 4

10 Covadonga- Catano 100 3 5

11 Capetillo - UPR - Centro Medico - 120 7 14

San Patricio - Bayamon

12 Country Club - Capetillo - UPR - 120 4 8

Hato Rey

13 Hato Rey - Santurce - Covadonga 108 5 7



Route Round Trip Frequency Number

Number Itinerary Time (min.) (bus/ hr) of Buses

14 Country Club - Hato Rey 108 2 4

15 Carolina - Isla Verde -Hato Rey 120 3 6

16 Covadonga - Santurce - Hato Rey - 120 15 30

UPR - Capetillo

17 Bayamon - Hato Rey 92 3 5

18 Las Casas - Hato Rey - San Patricio - 108 5 10

Catano

19 Catano - San Patricio - UPR - 120 6 12

Capetillo

20 Carolina - Capetillo 104 2 3

21 Catano - San Patricio - Hato Rey 120 2 4

22 Covadonga - Las Casas - Capetillo 120 2 4

23 Covadonga - Santurce - Las Casas 92 4 6

24 Bayamon - San Patricio - Las Casas 120 2 4

25 Catano - Las Casas 118 2 3

26 Hato Rey - San Patricio - Bayamon 120 2 4

Total / Average 2822/ 108 4 186 / 7

Table B.3: Network G2 (Continued)
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Route Circuity Round Trip Frequency Number

Number Itinerary* Ratio Time (min.) (bus/ hr) of Buses

1 Carolina - P. Carolina - Capetillo 1.0 104 5 9

2 Bayamon - San Patricio - Hato 1.2 114 4 8

Rey

3 Covadonga - Santurce - Hato Rey - 1.2 120 12 24

UPR - Capetillo

4 UPR - Centro Medico - San 1.2 104 3 5

Patricio - Bayamon

5 Catano - San Patricio - Hatlo Rey - 1.2 120 5 10

UPR - Capetillo

6 Santurce - Las Casas - Capetillo - 1.2 120 3 6

UPR

7 Santurce - San Patricio - Catano 1.2 86 2 3

8 Isla Verde - P. Carolina 1.2 86 3 5

9 Hatlo Rey - Centro Medico 1.4 104 3 5

10 Covadonga - Santurce 1.5 100 4 6

11 Santurce - Las Casas - Hato Rey 1.4 120 4 8

12 P. Carolina - Hatlo Rey 1.0 112 3 7

13 Santurce - Las Casas 1.5 78 4 5

14 San Patricio - Las Casas 1.0 80 3 4

15 Covadonga - Catano 1.0 100 4 7

16 Hatlo Rey - San Patricio 1.2 60 2 2

17 P. Carolina - Carolina 1.4 36 2 1

18 P. Carolina - Country Club 1.3 98 3 5

19 Country Club - Capetillo 1.1 72 4 5

Total / Average 1.2 1814 / 95 4 125 / 7

Table B.4: Network TC1
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Table B.5: Network TC2 Base Allocation

Route Circuity Round Trip Frequency Number

Number Itinerary* Ratio Time (min.) (bus/ hr) of Buses

1 Carolina - P. Carolina - Capetillo 1.0 110 5 9

- UPR

2 Rio Hondo - Bayamon - San 1.2 120 4 8

Patricio - Hato Rey

3 Covadonga - Santurce - Hato Rey 1.2 120 12 24

- UPR - Capetillo

4 UPR - Centro Medico - San 1.2 104 3 5

Patricio - Bayamon

5 Catano - San Patricio - Hato Rey 1.2 120 5 10

- UPR - Capetillo

6 Santurce - Las Casas - Capetillo - 1.2 120 3 6

UPR

7 Santurce - San Patricio - Catano 1.2 86 2 3

8 Isla Verde - P. Carolina 1.2 86 3 5

9 Hato Rey - Centro Medico 1.4 104 3 5

10 Covadonga - Santurce 1.5 100 4 5

* Transit centers are shown in italic
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Route Circuity Round Trip Frequency Number

Number Itinerary Ratio Time (min.) (bus/ hr) of Buses

11 Santurce - Las Casas - Hato Rey 1.4 120 4 8

12 P. Carolina - Hato Rey 1.0 112 3 7

13 Santurce - Las Casas 1.5 78 4 5

14 San Patricio - Las Casas 1.0 80 3 4

15 Covadonga- Catano 1.0 100 4 7

16 Hato Rey - San Patricio 1.2 60 2 2

17 P. Carolina - Carolina 1.4 36 2 1

18 P. Carolina - Country Club 1.3 98 3 5

19 Country Club - Capetillo 1.1 72 4 5

20 Isla Verde - Santurce - 1.1 120 4 8

Covadonga

21 P. Carolina -Capetillo 1.1 88 2 3

22 Centro Medico -San Patricio 1.3 72 2 3

23 Centro Medico - UPR - Capetillo 1.4 110 2 4

24 Capetillo - UPR - San Patricio 1.3 78 2 3

Total / Average 1.2 2296 / 96 4 145 / 6

Table B.6: Network TC2 - Base Allocation (Continued)
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Table B.7: Network TC2 - Surplus Allocation
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Route Circuity Round Trip Frequency Number

Number Itinerary* Ratio Time (min.) (bus/ hr) of Buses

1 Carolina - P. Carolina - Capetillo 1.0 110 6 11

- UPR

2 Rio Hondo - Bayamon - San 1.2 120 5 10

Patricio - Hato Rey

:3 Covadonga - Santurce - Hato Rey 1.2 120 15 30

- UPR - Capetillo

4 UPR - Centro Medico - San 1.2 104 4 6

Patricio - Bayamon

5 Catano San Patricio - Hato Rey 1.2 120 6 13

- UPR - Capetillo

6 Santurce - Las Casas - Capetillo - 1.2 120 4 8

UPR

7 Santurce - San Patricio - Catano 1.2 86 3 4

:8 Isla Verde - P. Carolina 1.2 86 4 6

9 Hato Rey - Centro Medico 1.4 104 4 6

10 Covadonga - Santurce 1.5 100 5 6

* Transit centers are shown in italic



Route Circuity Round Trip Frequency Number

Number Itinerary* Ratio Time (min.) (bus/ hr) of Buses

11 Santurce - Las Casas - Hato Rey 1.4 120 5 10

12 P. Carolina - Hato Rey 1.0 112 4 8

13 Santurce - Las Casas 1.5 78 5 7

14 San Patricio - Las Casas 1.0 80 4 4

15 Covadonga- Catano 1.0 100 5 7

16 Hato Rey - San Patricio 1.2 60 3 2

17 P. Carolina- Carolina 1.4 36 3 1

18 P. Carolina - Country Club 1.3 98 4 5

19 Country Club - Capetillo 1.1 72 5 5

20 Isla Verde - Santurce - 1.1 120 5 18

Covadonga

21 P. Carolina -Capetillo 1.1 88 3 9

22 Centro Medico - San Patricio 1.3 72 3 3

23 Centro Medico - UPR - Capetillo 1.4 110 3 4

24 Capetillo - UPR - San Patricio 1.3 78 3 3

Total / Average 1.2 2296 / 96 5 183 / 8

Table B.8: Network TC2 - Surplus Allocation (Continued)
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Route Frequency

Number Itinerary* (bus/ hr)

T1 Catano - San Patricio - Hato Rey - UPR - Capetillo 6

T2 UPR - Capetillo - P. Carolina - Carolina 6

T3 UPR - Centro Medico - San Patricio - Bayamon 6

T4 Rio Hondo - Bayamon - San Patricio - Hato Rey 6

T5 Isla Verde - Santurce - Covadonga 6

T6 Covadonga - Santurce - Hato Rey - UPR - Capetillo 12 - 15

T7 Santurce - Las Casas - Capetillo - UPR 6

Table B.9: Trunk Routes in Proposed Transit Center Route Plan (Multisystems, 1994)

Route Circuity Frequency

Number Itinerary* Ratio (bus/ hr)

5 Catano - San Patricio - Hato Rey - UPR - Capetillo 1.2 10

1 UPR - Capetillo - P. Carolina - Carolina 1:0 8

4 UPR - Centro Medico - San Patricio - Bayamon 1.2 7

2 Rio Hondo - Bayamon - San Patricio - Hato Rey 1.2 9

20 Isla Verde - Santurce - Covadonga 1.1 9

3 Covadonga - Santurce - Hato Rey - UPR - Capetillo 1.2 15

6 Santurce - Las Casas - Capetillo - UPR 1.2 10

Table B.10: Trunk Routes in Network TC2
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Route

Number
I -S,,

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

Itinerary*

Covadonga - Santurce

Hato Rey - Santurce

Hato Rey - Centro Medico

Hato Rey - P. Carolina (1)

Hato Rey - P. Carolina (2)

P. Carolina - Isla Verde

P. Carolina - Carolina

Carolina - Country Club

P. Carolina - Capetillo - UPR

Centro Medico - San Patricio (1)

Centro Medico - San Patricio (2)

Centro Medico - Bayamon

Centro Medico - UPR - Capetillo

Capetillo - UPR - San Patricio

Catano - Rio Hondo

San Patricio - Santurce

Isla Verde - Capetillo

Frequency

(bus/ hr)

3

3

3

3

3

3

2

2

3

3

3

2

2

3

2

3

3

Table B. 11: Major Feeders and Local Routes in Proposed Transit Center Route Plan

(Multisystems, 1994)
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Itinerary
.. . . . .~~~~~~~~~~~~

Santurce - San Patricio - Catano

Isla Verde - P. Carolina

Hato Rey - Centro Medico

Covadonga - Santurce

Santurce - Las Casas - Hato Rey

P. Carolina - Hato Rey

Santurce - Las Casas

San Patricio - Las Casas

Covadonga - Catano

Hato Rey - San Patricio

P. Carolina - Carolina

P. Carolina - Country Club

Country Club - Capetillo

Capetillo - P. Carolina

Centro Medico - San Patricio

Centro Medico - UPR - Capetillo

Capetillo - UPR - San Patricio

Frequency

(bus/ hr)

2

4

3

3

7

4

5

3

4

2

2

3

4

6

2

2

2

Table B. 12: Feeders and Local Routes in Network TC2
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Route

Number

7

8

9

10

11

12

13

14

15

16

]17

18

19

21

22

23

24
L - ..

Transit centers are shown in italic
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