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Abstract
A new technique is proposed for rigorously analyzing, from first principles, the macro-
scopically inhomogeneous low-Reynolds number flow of an incompressible Newtonian
fluid through the interstices of a spatially periodic model of a porous medium. The
scheme involves developing a generalized Taylor series expansion of the microscale
velocity field v and pressure field p in terms of a continuous local position vector and
a discrete global position vector.

An exact microscale solution is developed for an arbitrary incompressible, New-
tonian flow field, allowing the velocity and pressure to be 'separated' into a product
solution composed of two parts: (i) spatially periodic lattice functions, characterizing
the fine-scale, unit cell geometry of the porous medium; (ii) constant arbitrary tensors
(related to the Darcy-scale mean velocity gradients), describing the inhomogeneous
macroscale flow field. This technique may be used to describe other inhomogeneous
transport processes occuring in these types of porous media.

From this exact microscale product representation, a macroscale description of the
flow is constructed. The microscale-+macroscale 'averaging' scheme is not a volume-
average technique, but rather represents a more fundamental approach, drawing on
classical macroscale definitions to define the mean velocity field V and mean stress
field P. (The macroscale pressure p then follows directly from P without requiring
any assumptions about the existence of a pressure field within the interiors of the
bed particles, as is characteristic of classical volume-average approaches.) Macroscale
linear and angular momentum balances follow naturally from these definitions. As
well, constitutive relationships are derived, relating the Darcy-scale external body
force density, deviatoric stress, and external body couple density to such Darcy-scale
kinematical fields as the velocity, vorticity, and rate-of-strain. All phenomenolog-
ical coefficients appearing in these macroscale constitutive relations are implicitly
expressed as unique functions of the microscale lattice geometry and the interstitial
viscosity. Their calculation requires only the solution of Stokes flow problems within
a single unit cell of the periodic array, despite the non-local, inhomogeneity of the
basic flow. The final form of the macroscale linear momentum equation contains not
only the usual Darcy permeability dyadic, but also a coupling triadic (relating V to



V ) and a Brinkman-type viscosity tetradic (relating V p to V V V). The scheme
also allows calculation of higher-order mean velocity gradient terms in the expression
for V p.

Numerical solutions of the first three unit-cell fields, arising from v, V v and
V V V, respectively, are calculated for various two-dimensional square arrays com-
posed of circular and elliptical cylinders. The macroscale phenomenological coeffi-
cients appearing in the several Darcy-scale constitutive relationships are calculated
from these unit cell microscale, Stokes-flow fields. Among other things, the effects of
particle volume fraction and ellipse eccentricity upon these coefficients are quantified.

Thesis Supervisor: Howard Brenner
Title: Willard Henry Dow Professor of Chemical Engineering
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I have yet to see any problem, however complicated, which, when you looked at

it in the right way, did not become still more complicated.

Poul Anderson, 1969

Whoever, in the pursuit of science, seeks after immediate practical utility may

rest assured that he seeks in vain.

Hermann Ludwig Ferdinand von Helmholtz, 1862
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Chapter 1

Introduction

1.1 Origin of the Darcy-Brinkman Equation

The slow, quasisteady flow of an incompressible Newtonian fluid through the inter-

sticies of a porous medium may be described by Stokes equation,

Vp = V2v, (1.1-1)

together with the continuity equation,

Vv = (1.1-2)

valid at every point of the interstitial fluid continuum. Here, p is the pressure, is the

(isotropic and uniform) fluid viscosity, and v is the vector velocity. As the particles

comprising the porous medium are fixed in space, and the fluid adheres to the surfaces

of these particles, the above equations are necessarily subject to the no-slip boundary

condition

v=O on sp, (1.1-3)

where sp denotes the particle surfaces. Whereas equations (1.1-1)-(1.1-3) constitute

a purely microscale description of flow in a porous material, a macroscale description

of the flow is more often used, one which views the combined skeletal porous medium
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and fluid as a heterogeneous continuum (see applications in § 2.3).

The first macroscale description of flow through porous materials was proposed

by Darcy [44], namely

Vp = v, (1.1-4)

where overbars represent quantities defined on a coarse scale that views the fluid-

particle system as a continuum, k being the permeability of the medium. Coupled

with this is the continuity condition,

V v = (1.1-5)

for incompressible fluids.

As first noted by Brinkman [29, 30, 31], fundamental problems associated with

Darcy's equation (1.1-4) exist. First, as (1.1-4) is a first-order equation, it is im-

possible to formulate rational macroscale boundary conditions, in contrast with Eq.

(1.1-1), which is of the second-order. Second, in the limit as the volumetric particle

density 0 shrinks to zero (corresponding to k - oo) one should presumably recover

Stokes equation (1.1-1). For these reasons, Brinkman [30] proposed the following

modification of Darcy's equation:

-_ ,--2 (1.1-6)

where ,jE* is an effective viscosity1 (Brinkman viscosity) of the macroscale continuum.

Brinkman used (1.1-6) to compute the force on a sphere embedded in a porous mass

[30], but noted that the results were sensitive to the choice of A*. He suggested that

perhaps one could use of Einstein's viscosity result for suspensions [48, 49], namely

=1 + (1.1-7)
Au 2

'To avoid confusion, the effective viscosity of a medium composed of particles fixed in space will
hereafter be refered to as the Brinkman viscosity, while the effective viscosity of a neutrally buoyant
suspension will be termed the suspension viscosity.
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Brinkman compared his analytical results [30] with experimental data by Carman

[33] for a column packed with particles and showed that not only was Ti* not given

by Einstein's result, but also that fT* could either be larger or smaller than /p, de-

pending upon specific circumstances. Brinkman found that his theoretical results

agreed better with Carman's experimental correlation for the choice T!* = I, rather

than (1.1-7). More recently [83], numerical results for the suspension viscosity, valid

at larger particle concentrations, show that the suspension viscosity is larger than

that predicted by (1.1-7). This would lead to even greater discrepancies between the

results of Brinkman and Carman. More fundamentally, since Brinkman's basis for

proposing (1.1-6) is purely empirical, no rational basis exists for determining i7* for

a packed bed.

1.2 Current Objectives and Approach

This thesis proposes a technique involving a generalized Taylor series expansion for de-

riving the appropriate macroscale equations governing Stokes flow through a spatially

periodic model of a porous medium together with the phenomenological coefficients

appearing therein as a function of the microgeometry of the medium.

Chapter 2 describes earlier contributions in determining the Brinkman viscosity

for a specific porous medium. In particular, Figure 2-1 shows a widespread disagree-

ment as to the Brinkman viscosity of a random array of uniform sized spheres. The

drawback to the random approach is that assumptions have to be made about the

form of the macroscale description. Furthermore, it inherently relies on a volume

average approach which may not produce physical interpretations of the averaged

quantities.

Chapter 3 outlines the formulation of a generalized Taylor series expansion. The

focus is on reorganizing the series into parts dependent upon a continuous local po-

sition vector, and parts dependent upon a discrete global position vector. As well,

jump conditions are derived which are imposed upon the relevant microscale fields

at each order of the expansion by the requirement of continuity of v and p across
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contiguous cell faces.

Chapter 4 is devoted to applying the generalized Taylor series results of Chapter

3 to the specific problem of an arbitrary flow field within the intersticies of a spa-

tially periodic model of a porous medium with with an arbitrary, but deterministic

microscale geometry. Successive sections are devoted to solving a higher-order trun-

cation of the generalized Taylor series, culminating in the central intermediate result

that v and p can be expressed in a 'separation-of-variables' format involving spatially

periodic lattice functions (functions determined uniquely by the unit cell geometry),

multiplied by constant arbitrary tensors [cf. (4.6-32) and (4.6-33)]. This derivation

is for an arbitrary microscale flow, with no assumptions being required as to scale

separation.

Chapter 5 rigorously provides a means of interpreting the exact, general mi-

croscale solution, derived in Chapter 4, in terms of physical, macroscale variables.

It is assumed, as usual, that three relevant length scales exist for the porous medium,

namely a microscale , a mesoscale £ [such that cell-face properties can be inter-

preted as macroscale differential properties, cf. Eqs. (5.2-3), (5.2-8) and (5.2-16)],

and a macroscale L, obeying the strong inequality

L > > t.

When the macroscale velocity V is determined at Taylor series orders greater than

zero, the macroscale continuity condition is recovered from an auxiliary condition as

V = 0.

Moreover, because of the definitions of the macroscale velocity v (5.2-9) and

macroscale stress P (5.2-11), Newton's laws of motion and continuum mechanical

arguments furnish the macroscale linear momentum equation,

V P + (e) 0,
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with F(e) the net external volumetric body force density (required to hold the particles

stationary). The macroscale pressure p then is simply proportional to the negative

trace of P. This is in sharp contrast with volume averaging approaches (Afacan &

Masliyah [6], Du Plessis & Masliyah [45], Lundgren [73], Slattery [103] and Whitaker

[120]) that require assumptions be made as to a possible existence of a microscale

pressure field or pressure gradient within the particle interiors. This is because defi-

nitions such as (5.2-9) and (5.2-11) are not derived. Similarly, the macroscale stress

tensor is shown to satisfy the macroscale angular momentum equation

- (e)Px +N = o

with Px the macroscale stress pseudovector (related to the antisymmetric part of

P) and N the net external volumetric body couple density. Again, since the mi-

croscale stress is symmetric, volume averaging techniques will yield only symmetric

macroscale stresses (Px = O) even though, as a counterexample, a medium composed

of asymmetric particles necessarily requires an external body couple density N(e) to

keep the particles fixed in place.

Only terms up to and including V VV in the taylor series expansion are computed,

ultimately furnishing an equation of the form

Vpi=A V+ B: VV±+ CV VV

The phenomenological coefficents appearing above, consisting of the dyadic A, triadic

B and tetradic C are uniquely determined from the solution of three cellular-level, in-

homogeneous Stokes flow problems. Retention of higher-order terms such as V V V V

does not affect these three coefficients. Accordingly, the above Brinkman-type equa-

tion possesses a general validity that transcends the truncation of the Taylor series

expansion. A more fundamental form of the momentum equation is derived

oij=F'i-~a'~·+~-p. 2
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explicitly showing the contributions to the macroscale pressure drop from the ex-

ternal voumetric body force density F(e), symmetric deviatoric stress Ts and stress

pseudovector Px. In turn, the dependencies of these quantities upon the macroscale

velocity V, vorticity w and symmetric rate-of-strain dyadic S are derived as

(e) =- -k-l *v + . [f(p) v + f(r) f(s)],

= [K(l) .v + Kr).w + :S]v

with the phenomenological coefficients appearing therein uniquely determined from

the same three cellular-level, inhomogeneous Stokes flow problems.

Finally, in Chapter 6, calculations of these coefficients for two-dimensional arrays

of circular and elliptical cylinders is effected. Their dependence upon particle volume

fraction and ellipse eccentricity is studied.
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Chapter 2

Derivations and Uses of the

Brinkman Equation

2.1 Introduction

Before formulating a rigorous theory for describing an exact, generalized microscale

flow field and its macroscale interpretation, a brief account is presented here of pre-

vious work in both formulating and using the Brinkman equation.
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2.2 Previous Derivations

Although the macroscale description (1.1-6) appears superficially to be a plausible

extension of (1.1-4), no rigorous theoretical foundation exists that justifies its use.

The first steps toward validation of (1.1-6) were initiated by Beavers and coworkers

[15, 16]. These researchers experimentally studied the laminar flow of a viscous fluid

over a naturally permeable block and found that the mass efflux of a parallel Poiseuille

flow was greatly enhanced over the corresponding rate observed for a comparable im-

permeable surface. A simple, linear-slip boundary condition using a nondimensional

slip coefficient a was proposed; experimental a values for various materials lay in

the range 0.1 < a < 4.0. This slip coefficient scheme was later justified by Saffman

[93]. Subsequently, Neal & Nader [81] analytically solved this problem two ways: (i)

using Darcy's equation within the medium together with a slip boundary condition

on the free-stream side of the medium surface; (ii) using Brinkman's equation in the

medium, together with matching velocities at the medium surface. They showed that

these two methods were equivalent and that, in fact, the Brinkman viscosity and slip

coefficient were related by fU*//b = a 2. Experimental values [15, 16] of 77*/ft thereby

ranged from 0.01 to 16.0.

Neal & Nader [81] concluded that although 77* M ,u in general, the choice of

* = /u was recommended since it was in keeping with established practice-stating

specifically that

"... it does not yet appear possible to accurately predict j*//f for any

given porous media."

Wiegel [122] provides a derivation of the macroscopic equations governing Stokes

flow, but concentrates primarily on the Darcy term and assumes 77* = /u. Vafai &

Tien [113] include boundary and inertial effects in their analysis, but also assume

L* = -t. Joseph et al. [67] include inertial and convective terms, but choose * = -,,

arguing that

"It is not appropriate to replace /u by an effective viscosity 77*, as one does

with suspensions, since the fluid in the porous medium retains its bulk
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properties."

On the other hand, Ladd [71] assumes that all transport coefficients (e.g., self diffu-

sivity, effective viscosity) are independent of whether the particle bed is fixed in space

or constitutes a neutrally buoyant suspension.

Using a molecular-dynamics-like simulation (Stokesian dynamics), Durlofsky &

Brady [46] conclude that the Brinkman equation is valid only when X < 0.05, but in

their analysis they suppose ,j* = .

Near macroscale boundaries, macroscale velocity and pressure gradients vary on

a length scale of the order of the pore dimensions, at which scale a the continuum

view of the porous medium becomes invalid. A method initially proposed for thermal

transport processes [2, 34, 36] was later extended by Chang & Acrivos [35] to flow

around a sphere immersed in a random array of fixed spheres. This method pro-

poses that near macroscale surfaces one should replace Hi* in (1.1-6) by a nonuniform

Brinkman viscosity ir which varies near macroscale surfaces according to the relation

= + * (2.2-1)

with R is a macroscale position vector, the areal fraction of solids near the

macroscale boundary, and i7* the Brinkman viscosity in the bulk medium. This

equation possesses the property that the Brinkman viscosity reduces to the fluid vis-

cosity near the macroscale boundary, and to that of the bulk Brinkman viscosity far

from the macroscale boundary. Later, Sangani & Behl [96] numerically solved the

problem of flow over a semi-infinite, spatially periodic array of spheres and compared

results obtained for the slip coefficient with those obtained by the use of (1.1-6) with

either a constant Brinkman viscosity or that given in (2.2-1). Better numerical agree-

ment was obtained using (2.2-1); however, one must still determine *. Sangani and

coworkers [97, 96] utilized a previously developed method [35] used for random arrays

to determine L7*, and found that this method (as well as most self-consistent schemes)

yielded )7*/u > 1, even though better agreement with numerical calculations of the

permeability was obtained only with the inequality )7*/p < 1. For this reason, they
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suggested retaining the relation A* = /,.

A rigorous derivation of (1.1-6) should simultaneously furnish the effective prop-

erties of the porous medium, independently of the flow field. To date, this has not

been achieved, although it has been accomplished for the separate cases of Darcy's

equation and the rheological properties of neutrally-buoyant suspensions.

2.2.1 Darcy's Equation

In it's most general form, Darcy's equation (1.1-4) may be written as

Vp = -tk - 1 V, (2.2-2)

where k is the dyadic permeability. One of the simpler ways to derive Darcy's equation

(2.2-2) is to take a spatially periodic medium and subject it to a uniform macroscale

pressure gradient. Details of this analysis may be found elsewhere (This actually

corresponds to the zeroth-order flow field presented in Section 4.3).

Let the dyadic field V°(r) and vector field l°O(r) denote the solution of the cellular

boundary-value problem

V2V0 V = I V (r E f), (2.2-3)

V-V = 0 V(r E f), (2.2-4)

with I the dyadic idemfactor, r a position vector defined within a unit cell, and f

the fluid (continuous) domain within a unit cell. Equations (2.2-3) and (2.2-4) are to

be solved subject to the no-slip particle boundary condition,

V ° = 0 V(r E sp), (2.2-5)

and the requirement that V ° and II° be spatially periodic functions in a unit cell.

Note that Equations (2.2-3)-(2.2-5) are functions only of the geometry of a unit cell.
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The permeability is then defined as

k d-f OJVOdV, (2.2-6)
Tf

where r0 is the volume of a unit cell, and dV is a differential volume element.

2.2.2 Suspension Rheology

Similar to the simple derivation of Darcy's equation shown previously, one may per-

form a similar analysis for a spatially periodic suspension. (See Adler and coworkers

[3, 4], Zuzovsky et al. [125] and Nunan & Keller [83].) Subjecting a spatially pe-

riodic suspension to a macroscopic, homogeneous shear flow results in equations for

the (configuration-specific) suspension viscosity which are only a function of the sus-

pension geometry within a unit cell. Felderhof [52, 53, 54, 55] presents a theoretical

derivation of the suspension viscosity of a random suspension.

Extensive reviews are provided by Brenner [20, 21, 22, 23], Adler et al. [5] and Jef-

frey & Acrivos [66]. Recent calculations have been performed involving hard sphere

(Clercx & Schram [43]), liquid/liquid (Miloh & Benveniste [77]), and liquid/vapor

(Boshenyatov & Chernyshev [19] and Iguchi & Morita [65]) suspensions. Moreover, ef-

fects arising from aggregation/disaggregation (Potanin & Uriev [89]) and magnetoflu-

ids (Shen & Doi [101]) have also been studied.

2.2.3 Permeability

The permeability of porous media has been extensively calculated for various ge-

ometries. In general, results for the permeability of media composed of spheres are

expressed in terms of the force acting on a single sphere in the array, namely

F = 67rtIaUK, (2.2-7)
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where K is related to the permeability via the expression

k 2
K-1. (2.2-8)

a2 9

Equations (2.2-7) and (2.2-8) apply for isotropic arrays of spheres. This is the case

for most of the literature cited, the latter being concerned either with random ar-

rays or square, spatially periodic arrays of spheres. The sole contribution addressing

anisotropic permeabilities is that by Larson & Higdon [72], who computed the various

permeability components of an array of ellipsoidal cylinders.

Results for spatially periodic cubic arrays of spheres were obtained initially by

Hasimoto [60], and later by Zick & Homsy [124] and Sangani & Acrivos [95], who

obtained

K-' = 1 - 1.760103 + - 1.55932 +... (simple), (2.2-9)

= 1 - 1.791q0 + - 0.329q2 +... (body-centered), (2.2-10)

= 1 - 1.791q0 + - 0.302 2 +... (face-centered). (2.2-11)

These expansions are valid for small concentrations. Comparable results [95] to O(010 )

exist. Additionally, Sangani & Acrivos [95] provide a direct substitution method, valid

for all b.

On the other hand, random arrays of spheres have been studied by Brinkman [30],

Lundgren [73], Childress [42], Howells [63] and Buyevich & Shchelchkova [32], all of

whom obtained

K-1 = 1 {1+ [- (80 - 302) 2 (2.2-12)

The central issue here is that one must have an expression for 7*/pu as a function of

0. Accordingly, the goal becomes that of calculating both k and * concurrently.

Another common geometry studied is that of circular cylinders arrayed in a square

lattice. Such two-dimensional arrays have been studied by Hasimoto [60] and Sangani
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& Acrivos [94], who obtained

47F' - In - 0.738 + q - 0.88702 + ..., (2.2-13)
F' 2

valid for small 0, with F' the drag per unit length of a cylinder in the array. Random

arrays of cylinders were treated numerically by Sangani & Yao [97].

2.2.4 Brinkman Viscosity

Whereas general agreement exists regarding the permeability of a porous medium for

a given geometry, the same cannot be said of the Brinkman viscosity. Experimental

work on the latter subject is scarce, and the only experimental work performed to

date to determine the Brinkman viscosity is that of Beavers and coworkers [15, 16]

and more recently Givler & Altobelli [58]. Additionally, most theoretical evaluations

of 77* have been directed at random arrays of spheres, with only a few contributions

existing for other geometries.

Random Arrays of Spheres

Methods for calculating the Brinkman viscosity are based on a self-consistent field

approach, in which each particle is regarded as being immersed in a fictitious medium.

i) (1970) Ooms et al. [84] used a previously developed averaging procedure,

obtaining

~/ 1 -0'(2.2-14)
or upon expansion about = 0,

*_1 ++ 2+O 0 3) (2.2-15)

valid for low particle concentrations. This result was also obtained by

Lundgren [73].
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ii) (1972) Lundgren [73] extended statistical methods previously developed

by Tam [107] and Saffman [93], to obtain

7* 4r y

Al 3 F(y)'

where

F(y)
00

-27r Z(-1)i(2j + 1)2Gj(y)2
j=l
o00

-8w Z (-l)i(j +
j=l

+ Gj(y) )
+ ,Hi(,y) 

1) -yGj(y)Gj+,(y)

Gj (-y) =-( T)

+67r(1 +ty)

1
2

sinh y

(2)Hj (-/) - -
P7 J

wherein I and K are respectively modified Bessel functions of the first

and second kinds, and

def a

a= kv/k
(2.2-19)

with a the sphere radius. Lundgren [73] remarks that this expression may

be valid only for small Iq, as mutual impenetrability of the particles was

neglected in the analysis. Note also the singular behavior at = 2/3.

iii) (1978) Buyevich & Shchelchkova [32], using methods similar to Lundgren,

obtained 1

-= [1+ 2 (e'- 1 -1 /2) (2.2-20)

1 The last term in their [32] equation (5.35) appears to contain a typographical error, and should
be multiplied by 4 (p in that paper).

36

(2.2-16)

(2.2-17)

1
2

(2.2-18)

021
90 3 80 - 32\

- 4 4
20/

5 00 i'



with 'y given by (2.2-19). The expansion of (2.2-20) for small is

72* 7 9 3 1972/1* 4_ 19 +q32 + 0 () . (2.2-21)

Although Buyevich & Shchelchkova [32] include a term which they claim

was overlooked by Lundgren, their Brinkman viscosity calculation now

possesses a singularity at 0 = 1/4. Once again, this analysis neglects the

mutual impenetrability of the particles.

iv) (1978) Freed & Muthukumar [57] use an effective medium approach to

obtain2

+ 92 (2.2-22)

P 1- 11 X + 363 02 549 03 + (9 - 189 2) (80 _ 3 2) 

or, for small I,

X* 5 9 3 2772 (2.2-23)
I~ , + q0~ 02 + 2 2 (2.2-23)L 2 2 v 40 0) 

Here too, the effective viscosity becomes singular as X -+ 1/4.

v) (1983) Koplik et. al. [70], arguing that the porous medium induces a

viscosity renormalization, obtain two results for the Brinkman viscosity.

By computing the energy dissipation caused by a sphere in an extensional

flow field in a porous medium, they obtain

* = 1 - 10 (2.2-24)

whereas using a self-consistent method to determine both k and i* simul-

taneously, they conclude that

L 1- X-)3 +.... (2.2-25)

2In their analysis [57], the penultimate term of Eq. (4.21) should be multiplied by a.
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q- Method A Method B
0.1 1.30 1.30
0.2 1.76 1.79
0.3 2.56 2.69
0.4 3.50 4.88
0.5 5.96 13.5
0.6 9.20 42.3

Table 2.1: Values of A*/l calculated by methods A and B [33,34].

In both (2.2-24) and (2.2-25) the effective viscosity is smaller than the

interstitial fluid viscosity; from this fact, Koplik et al. drew the following

conclusion:

"... a reasonable post hoc explanation of our result is that once

much of the force exerted by the porous medium is collected

into the Darcy drag term, the remaining force exerted by the

material due to gradients should be less than the same force ex-

erted by pure fluid; in a sense, part of the Einstein contribution

is already taken into account by the permeability term, a term

absent in the case of suspensions."

vi) (1985) Kim & Russel [69] assumed pairwise-additive hydrodynamic inter-

actions within an effective medium, obtaining

--* 1 + + log 0 + 21.041 + log (2.2-26)2 -321-U .yogJ

vii) (1988) Chang & Acrivos [35, 36] use two methods, both based upon the

application of (2.2-1) near the sphere. Method A is a self-consistent tech-

nique, whereas method B involves decomposing the velocity field around

the sphere into a bulk flow and a disturbance. Results from both methods

are presented in Table 2.1.
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viii) (1989) Slobodov [104], using methods developed previously by Lundgren

[73] and Tam [107], obtains

1 } 

7i* 75

/ 8

12 

- > , (2.2-27)

or
7* 25 25 3 275 /
/- _ - + 52 +0 (). (2.2-28)

The wide disparities between different authors in the -dependence of 7l*/f is

emphasized in Figure 2-1. It is evident that very little agreement exists between

authors, even for very small . Indeed, it is unclear whether 7L* should be larger

or smaller than ,/. Most theories predict ,7* > , but experimental work [15, 16]

and numerical computations [30, 96, 97] suggest that * < u. Furthermore, since

the permeability predicted for random media [30, 32, 42, 63, 73] is dependent on the

value of i* [cf. (2.2-12)], all these analyses yield different results for 7*, despite the

fact that they furnish the same equation for k, namely (2.2-12).

Other Geometries

Analyses of other geometries include random arrays of spheres with a given size distri-

bution (Tam [107]), channels with periodic cross-bridging fibers (Tsay & Weinbaum

[112]), and periodic arrays of circular (and ellipsoidal) cylinders (Larson & Higdon

[72]).

Larson & Higdon [72] obtain numerical results for both the permeability and

Brinkman viscosity. They also experimented with changing the aspect ratio of the

cylinders, so that in one limiting case flow occurred across flat plates normal to

the boundary, and in another flow occured across flat plates parallel to the inter-

face. Suprisingly, they concluded that although the permeability was anisotropic,

Brinkman's equation could not distinguish between the two types of flow (because of

the scalar viscosity). They suggested that one should perhaps include terms propor-
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tional to the velocity gradient in (1.1-6). It seems obvious that this type of media

should not only exhibit an anisotropic, tensorial permeability, but also a tensorial

Brinkman viscosity.
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2.3 Applications of the Darcy-Brinkman Equa-

tion

The Brinkman equation finds application in many different fields. Initially, Brinkman

was interested in modelling clusters of polymer molecules as porous spheres [29].

In a related context, polymers adsorbed to solid surfaces have been treated as a

porous medium layer by Varoqui & Dejardin [115] and Anderson & Kim [7]. Flow

in membranes with grafted polyelectrolyte brushes have been studied by Milner [76]

and Misray & Varanasi [78]. In these applications to polymer systems, all authors

supposed that A* = .

The problem of flow in catalyst systems, where one encounters a porous medium

composed of porous particles, each with a different permeability, was first treated by

Brinkman [31]. Flow around a cylinder embedded in a porous medium (Pop & Cheng

[88]) and flow relative to porous spheres (Neal et al. [80]) have also been studied,

where the choice jT* = u was again made since it was "... in keeping with established

practice."

Other flow systems studied via the Brinkman equation are: (i) flow of two immis-

cible fluids over a porous medium (Bhargava & Nirmal [18]); (ii) flow in a partially

gel-filled channel, such as occurs in partially obstructed membranes and certain body

tissues (Ethier & Kamm [51]); (iii) flow in a porous tube and shell system (Pangrle et.

al. [85]); (iv) transport of solid spherical macromolecules in ordered and disordered

media (Phillips et al. [86, 87]); (v) prediction of pressure drop and filtration effi-

ciency in fibrous media (Spielman & Goren [105]); (vi) and instabilities of ferrofluids

in porous media (Vaidyanathan et al. [114]). Here too, all these analyses are based

on the assumption that j7* = /,.

Natural convection and the onset of instabilities in a fluid saturated porous

medium have been studied for different geometries, most notably: (i) a medium

bounded above and below by horizontal flat plates (Katto & Masuaka [68], Walker

& Homsy [119], Chang & Jang [37]); (ii) a medium adjacent to a vertical flat plate

(Cheng & Minkowycz [41], Hsu & Cheng [64]); (iii) a medium in a vertical enclosure
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(Tong & Subramanian [111], Vasseur and coworkers [116, 117]); (iv) and a medium in

an inclined slot (Vasseur et al. [118]). Chang & Jang [37] include not only the Darcy

drag term (proportional to V) and a viscous Brinkman term (proportional to V2V),

but also contributions from convective terms (proportional to V. VV) and inertial

terms (proportional to VIVI) (Forchheimer [56] or Ergun [50]). They find inter alia

that the greatest contribution to the heat flux arises from the viscous terms. This

significant contribution was also noted by several other authors [64, 111, 116]. This

suggests that the results would be highly dependent upon the choice of j7*; yet all the

above authors arbitrarily choose 7* = 1,.

Other thermal systems studied that incorporate a Brinkman term include: (i)

forced convection (Wooding [123], Cheng et al. [40], Nakayama et al. [79]); (ii) mixed

convection (Hayes [61], Qin & Kaloni [90]); (iii) heat transfer in geothermal systems

(Cheng [39]); (iv) freezing heat transfer in porous media (Sasaki et al. [98]); (v) and

film condensation in porous media (Majumdar & Tien [74]). Once again, all of these

studies assume that * = .

The sole application embodying the inequality 7T* # A was an elementary stydy

study by Berkowitz [17], involving the flow of fluid through a fracture bounded by

a porous medium. He showed that the net flow rate through the fracture was very

susceptible to the choice of :*.

One argument for using * = /u results from the observation that in dilute systems,

ft* -+ , whereas in nondilute systems the decreasing permeability renders the Darcy

term very much more significant than the Brinkman term. This argument is, however,

incorrect for some of the systems listed previously. Another reason for the choice

of T* = u is simply that as of now, no rational way exists to determine T* for a

given medium geometry. Furthermore, those results already obtained are in wide

disagreement (see Figure 2-1 on page 40).
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Chapter 3

Generalized Taylor Series

Expansion

3.1 Introduction

In general, it will be useful to expand any scalar or tensor field-itself functionally

dependent upon an M-dimensional position vector-in a Taylor series about an ar-

bitrary reference point such that there is a separation between the continuous local

position vector and the discrete global position vector. This will be done by first

examining a scalar function-dependent upon a one-dimensional position vector-

subsequently building up to a more general expansion.
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3.2 1-Dimensional Position Vector

Here we address scalar and tensor fields dependent upon but a single independent

scalar position variable, X (-oo < X < oo), say; that is, the fields depend function-

ally upon only one spatial dimension.

3.2.1 Scalar Fields: Continuous Derivative

Consider an arbitrary scalar function f(X) of X. When f(X) and all its deriva-

tives dm f(X)/dX m are finite at all positions X the function may be expressed in a

convergent Taylor series about an arbitrary point X' (Figure 3-la) as

00 1
f(X) = E f (Ix') {X - X'm (3.2-1)

m=O

where the functions rf(IX') are defined as

7m(Xl) def dmf(X) 
dXm (3.2-2)

X=XI

As indicated by the arguments, the latter coefficients depend upon the position chosen

for X' despite the fact that X' does not appear on the left-hand side of (3.2-1).

Examples of simple functions (having continuous derivatives at all points) are:

Exponential:

f(X) = exp(X) =- fm(IX') = exp(X');

Trigonometric:

f(X) = sin(X) f X') = (-1)sin(X') m even,
(-1) -2 cos(X') m odd;

Polynomial:

001 _ 1
f(X) = E akXk = (IX') = E ak+mX'

k=0 ' k=O
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f

X = X'

(a)

n=O n=1 I i In=2=n n=3 
I I
I I

i v I~~~~~~~~~~~~~~~

Xn = o xn = e xn = 2e = Xn Xn = 3e
x=0 x=O x=0 x=O

(b)

Figure 3-1: The arbitrary one dimensional scalar function f(X) may be represented
as: (a) a function of the continuous position variable X (-oo < X < oo) and
expanded in a Taylor series about the point X = X'; or (b) a function of the con-
tinuous local position x (-a < x < e - a) and discrete global position Xn = n
(n = 0, 1, +2,...) which in turn may be expanded in a Taylor series about the same
point Xn + x = X'.
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The latter are valid for all m = 0, 1, 2,....

3.2.2 Scalar Fields: Discrete Formulation

As shown in Figure 3-1b, the position variable X can be alternatively expressed as

the sum of a continuous local position x and a discrete global position X, as

X ef X + X, (3.2-3)

where x spans the range

-a < x < - a, (3.2-4)

and

X = n V (n = , 1, 2,...). (3.2-5)

The origin from which the local coordinate x is measured is chosen such that x = 0

corresponds to X = Xn.

In view of the above decomposition an arbitrary function f (X) possesses the

equivalent representation

(3.2-6)

Now introduce into the Taylor series (3.2-1) the decomposition (3.2-3) to write

100 m

f (Xn, x) = E -f (X'){Xn + X-X}m
m=O M

(3.2-7)

This equation may be rearranged into groups characterized by like powers of Xn- X'.

This can be done via the identity

(a+ b)m= ( ) am- bj,
j=o j

(3.2-8)
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valid for any two scalars a and b with the binomial coefficients defined as

(m- j)!j!
This enables def(3.2-7) to be written as

This enables (3.2-7) to be written as

oo m 1f(X,,)=0E =
m=Oj=O

( mj} f (Ix') xm- j {x - X'I. (3.2-10)

The order of the double summation may be interchanged by the identity

mO m

m=O j=O

o00 00

Amj -= z Amj,
j=O m=j

(3.2-11)

with Amj the (m, j)th argument of the summation. Hence, upon reordering the inner

summation, (3.2-10) becomes

o00 1

f (X-n x) rj=O
j=0 j!

This can be ultimately written as

x 1
f(X,x) = E m lf XI)

m=O
{Xn - X'}m

where the coefficents

(3.2-14)fm(XIX') defZ Em I(X') Xi
j=O

are in general functions of the local position x as well as the choice of reference point

X'. For the sample test functions given previously, this expansion gives:

Exponential:

f(X) - exp(X) fm (xlX') = exp(X' + x);
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xm {Xn - xl} . (3.2-12)

(3.2-13)
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Trigonometric:

f (X) = sin(X) > fm( X')= i
(--1) sin(X' + x)

(-1) 2 cos(X' + x)

Polynomial:

f(X) = akX
k=O

=, f ( X') = ka+, {x' + 
k=O 

3.2.3 Scalar Fields: Continuity Conditions Imposed Upon

fm (x X')

Because of the assumed continuity of f (X), conditions pertaining to the continuity

of fm(xlXI) at points on the 'interface' between adjacent 'cells' may be derived. A

point common to cells n - 1 and n is (Xn_1, £ - a) - (X, -a). Basically, at a point

corresponding to an interface (r = -a), we have that

f(Xn - £, ) x=e-a = f (Xn, ) I l=-a , (3.2-15)

wherein the left- and right-hand sides respectively refer to approaching the interface

from the left and right.

series (3.2-13) yields

Substituting into the latter the explicit form of the Taylor

1E fm(alX')
m=O

oo

{x n-x'}= E
m=O

fm(f- aX') {X
M!

in which a common reference point X' has been used for both sides of (3.2-15). Next,

regroup this equation into terms involving like powers of Xn - X' by using (3.2-8)

and (3.2-11) to rewrite (3.2-16) as

0r 1E M! fn-alX') X.-X'J"
m=0

00oo

=E
m=O

01
j o f +j (fj=O 0!

-alX) {-a } {X - X m (3.2-17)
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Since both the current cell Xn of interest and the reference point X' are arbitrary,

one may match all powers of Xn - X' to obtain

f m(-alX')= E fm+( - alX') { -f}I. (3.2-18)
j=o

This expresses the value of fm occuring on the left-hand boundary x = -a of the

cell in terms of the values of fm, fm+1, fm+2, ... occuring on the right-hand boundary

x = - a of the cell. Now, define the jump in any function F(x) as the difference

between the value of the function at the right- and left-hand sides of the cell; explicitly,

IIF(x)ll de F(x)l= ,_ a - F(x) _a (3.2-19)

such that (3.2-18) may be alternatively expressed as

f±2 +3= ~fml _2 ef m+21 + e- fm+3|~ _(3.2-20)
1. z=-a 2! x=-a 3! =a -...

wherein the arguments (xlX') have been suppressed. The appearing in the first

term on the right hand side of (3.2-20) can be rewritten as £ = ( - a) + a giving the

intermediate result

1. =2 a t+ 3. +=- 2! a 2fr ~+ 3 (3.2-21)
Next, replace m by m + in (3.2-20) and substitute the result into the second term

appearing on the right-hand side of (3.2-21) to obtain

e- a fm+l a fm+l[
=1! =e-a !+ x=-

( 2 £a 3 . 2a\
- -. f +2 + - fm+3 (3.2-22)
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But the first and second terms on the right-hand side of (3.2-22) correspond identically

to the jump in the function fm+lx or

fm : -! lfm+ lx
-(2! ) fm+2 + (2! 1! lx=f-a 3! - 2a2!

f m+3 x=-a
2=e- a

- ..-. (3.2-23)

This process of recursive substitution may be continued, eventually enabling (3.2-20)

to be written in the form

m llfm+lX_ 2! lfm+2 2 + I Jf+3X3 (3.2-24)

From (3.2-18) this furnishes the ultimate form

fm(x lx')l= - (-1
j=l J!

[fm+i (x X')xi j

expressing the jump in fm in terms of the jumps in fm+lx, fm+2x2,..

(3.2-25)

and explicitly

displaying the dependence of f m (xlX') upon both x and X'.

Finally, because f(X) and all its derivatives have been assumed continuous and

finite for all X, the expression (3.2-15) remains valid for any derivatives of f(X, x)

with respect to x when approached from either side. A similar procedure to that

outlined previously then gives the general relation

difm(xIX')
dxi

00

-
j=l

(-1)i xi (3.2-26)

_- (-1)I d i (

valid for m = 0, 1, 2,... and i = 0, 1, 2,....

(3.2-27)
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3.2.4 Tensor Fields

It is easy to extend the preceding results for a one-dimensional scalar field f(X) to an

Nth rank tensor field f(X) since the position vector is still one-dimensional. Thereby,

(3.2-1) is replaced by

f(X) = f ( {X') X - X'}, (3.2-28)
m=O

where

dX(lxm) (3.2-29)
X=X

In terms of the decomposition of X into Xn and x, the Taylor series becomes

00 1
f(Xn, x) = -f (xlIX') {Xn - X'} m , (3.2-30)

wherein

fm (XX,) def E _ f +j (IX') xj. (3.2-31)
j=0 oJ

Finally, the continuity of f(X) and its derivatives across cell faces results in (3.2-26)

and (3.2-27) adopting the respective forms

difm(xIXI) (-l)J II difm+( ] (3.2-32) 

-j=1

00 -11 [fmi'(X IxI)x] (3.2-33)j= j! dxi
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3.3 M-Dimensional Position Vector

Next, we consider scalar and tensor fields dependent upon M independent scalar

position variables (X 1, X2,..., XM) characterized by the position vector

R =_ R(X, X2,.. ,XM). (3.3-1)

[These independent position variables are not to be confused with the one-dimensional

discrete position vector X,. The M-dimensional counterpart to Xn, namely Rn, will

be developed later.]

3.3.1 Scalar Fields: Continuous

Consider a Taylor series expansion of a scalar function f (R) where our attention is

restricted to the class of function in which f (R) and all of its derivatives

dm f(R)/dR m Vm f(R), (3.3-2)

are finite at all positions R, wherein the gradient operator is defined as

vdef 0 (3.3-3)
OR'

and the notation am (or V m) for any vector a represents the mth rank tensor aa... a,

where a is repeated m times. The function f (R) may then be expanded in a conver-

gent Taylor series about an arbitrary point R' as

0 1

f(R) = E m!f (IR') { }- {R - (3.3-4)
m=O

f= IR') + f1 (R') { (R - R'}
1+2f( R, R}2 1 3(R · R,}3 .+ V[(IR') : R - R + J(IR') {R- +.... (3.3-5)
2! 3!
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The multiple-dot notation {.)m appearing as the operator in the expression A {.)m B,

involving any two tensors A and B (each of rank greater than m), represents the

contraction between the last m indices of A Aa..ap (p > m) and the first m

indices of B - Bbb2...bq (q > m) in the order specified by the 'nesting convention'

[38, 75]. This operation can be expressed in summation convention notation as

[A }0B]alaa2 .ablb2 Aaa2. ..apbb 2 ... bq ,

[A }1 B] Aaa2 ... ap- L r- B C b2 b3 ... bq
al a2 ... ap- 1 b2b3 ...bq

[A {.}2 B] a a2 a2b3b4 .b- AaLa 2 ... ap2 c2ciBcc 2 b3 b4 ... bq

and, in general,

[A I{m B]a... ap-mbm+lbm+... _ Aa1a2 ...apcm...cl Bc...cmbm+lbm+2...bq - (3.3-6)

In the Taylor series (3.3-4) the quantity rm(lR') is simply the mth derivative of f(R)

with respect to R, evaluated at the point R'. As indicated by the argument, fm(R')

depends upon the choice of reference position R' and is defined as

frn( R') de [V mf(R)]R=R (33-7)

or, alternatively,

(3.3-8)fli2 ...im(IR,) = [VilVi2... Vmf(R)] =R (3.3-8)

From these definitions, it is obvious that rn(IR') is symmetric with respect to all

its m indices. Furthermore, f 0, f and f2 respectively represent a scalar, vector and

dyadic function.

For a simple function (possessing continuous derivatives at all points) the fm's

are:
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Exponential:

f(R) = exp (R R) =. f (IR') = exp (R' R'),

f 1(IR') = 2R' exp (R'- R'),

f2(R') = 2 [I + 2R'R'] exp (R' R'),

f3 (IR') = 4 [IR' + (IR')t + R'I + 2R'R'R'] exp (R'. R') .

3.3.2 Scalar Fields: Discrete

Alternatively, as outlined in Appendix B, the continuous position vector R can be

expressed as the sum of a discrete global position vector Rn and a continuous local

position vector r [cf. (B.0-1)], namely

R = Rn + r, (3.3-9)

similar to the decomposition (3.2-3). An arbitrary function then has the equivalent

expression

f(R) - f(Rn, r). (3.3-10)

Introduce the decomposition (3.3-9) into the Taylor series (3.3-4) to write

00 1

m=Of(Rn, r) = E mf (R'){} m{R + r- R'}m. (3.3-11)

Collect like powers of Rn - R' by making use of the following identity for any two

vectors a and b:

(a + b)m de (
j=Om(:

am-bi s. (3.3-12)

This is similar to its scalar counterpart (3.2-8), with the normalized permutation

symmetrization operator [[A] defined as [92]

(3.3-13)
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Equation (3.3-11) may then be rewritten as

f (Rj, mr) r= (I) {}m -rm l { } j {R - R (3.3-14)
j=0 3 m=0

where the symmetry operator has been dropped because of the symmetry of the

tensors (R'). The previous equation may be ultimately written as

f(Rn, r) = E -fm(rlR) {.} {Rn - R'}m (3.3-15)

where the tensors fm(rlR') are defined as

00

fm(rlR') d-f E +(l}R'){}j r (3.3-16)
j=0 oJ!

and are themselves fully symmetric with respect to all their m indices.

3.3.3 Scalar Fields: Continuity Conditions Imposed Upon

fm (r I R')

Once again, it will prove useful to derive some continuity conditions imposed upon the

fm (rlR')'s given the assumed continuity of f(R) across the cell faces 0r0. Continuity

of f (Rn, r) requires that

f(Rn - lk, r + lk) = f(Rn, r) V(r E 0o; k = 1, 2,..., M), (3.3-17)

where the lk's are the lattice vectors (see Appendix B). Substitute the Taylor series

(3.3-15) into the equality (3.3-17) to obtain

001 R) 1
m- f m(rlR') {m {R= fm(r +lkR') {}m {Rn -R'- l m

mO M.m- m.
(3.3-18)

assumed to hold at all points lying on the cell surface and for all lattice vectors. The

next step entails collecting together terms involving like powers of Rn - R'. Towards
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this end, equation (3.3-18) may be rewritten by using (3.3-12) and (3.2-11) to obtain

001

E fm(r R') {}m {Rn-R'm
m=0O

m=- ± E [4fm+i(r+1kRI){.}i{1k}ij{} m {R-R'} m , (3.3-19)

where the symmetry operator appearing in (3.3-12) has been dropped because of the

symmetry of the tensors fm (r R'). Since the vector Rn - R' is arbitrary, this equation

must be satisfied for all powers of Rn - R'. This leads to the following expression

[similar to (3.2-18) for the one-dimensional position vector]:

ho01
fm (r R') = fm+j(r + lk R) {}j {-lk} , (3.3-20)

j=0o 

valid for r CE 0 0. Equation (3.3-20) relates the value of fm on the cell face at r to

the values of fm, fm+1, fm+2,... on the opposite cell face at r + lk for all cell faces

k = 1, 2,..., M. The jump condition (3.2-19) can be extended for any scalar function

F(r) to represent the difference between the value of the function on opposite cell

faces as

flF(r)I d-f F(r + lk) - F(r) V(r E To; k = 1, 2,..., M). (3.3-21)

Following a similar procedure to that outlined in the one-dimensional theory, recursive

substitution of (3.3-20) into itself along with use of the definition of the jump (3.3-21)

and the symmetry of the tensors fm(rlRX), ultimately leads to the expression

-.fmrRf+J(r'R){ }- ( -)J rj (3.3-22)

relating the jump in f to the jumps in fm+l, fm+2,... together with the continuous

local position vector r. Finally, because f(R) and its derivatives are assumed con-

tinuous and finite at all points R, equation (3.3-17) holds for all the derivatives of

f(Rn, r) with respect to r when approached from opposite sides of a given cell face.
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This enables (3.3-22) to take on the more general form

|V7ifm(rlR')| =- - (- ) [Vifm+i (rlR')] {.}I rill (3.3-23)

j=1 !

valid for all r E 00, i = 0, 1, 2,... and m = 0, 1, 2,.... The gradient operator here

is, of course, V = a/ar. The latter is equivalent to (3.3-3) for all points not on the

surface (r 9 00T), but the jump operator itself involves taking the limit as the position

vector r approaches a cell face from opposite sides, so that no ambiguity exists in the

choice of notation.

3.3.4 Tensor Fields

Finally, the previous results for a scalar function are extended to the most general

case of an Nth rank tensor field f(R) depending upon the M-dimensional position

vector R. The function f(R) can be substituted for f(R) but care must be taken

in preserving the right indices of f(R) throughout the many dot products. The

continuous Taylor series (3.3-4) can be written as

00 1

f(R) = E m! (IR') {}m {R - R'} (3.3-25)
m-O0

= T(lR) + 1(IR').R - R'}
1R,2 1 3 R, 3+ 2(IR')- {R - + f(IR') {R-R' +... (3.3-26)

2! 3!

and if fili2...iN (R) represents f(R) written in component form where ili 2 ... iN repre-

sent the N indices of f(R), then the tensors f (IR') are given as

ii2 ... jiNjlj2...jm (R') [VjlVj 2 ... Vmfii2...iN (R)i]RR (3.3-27)R=R1~ ~ (33-7
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where F(I[R') represents the mth derivative of f(R) with respect to R, evaluated at

the arbitrary reference point R'. 1 Notice that the tensor m(lR') is of rank N + m;

furthermore, this tensor is symmetric with respect to its last m indices.

The decomposition (3.3-9), followed by forming derivatives of f(R,, r) with respect

to R,, furnishes the Taylor series analog to (3.3-15), but now with the Nth rank tensor

f(Rn, r) appearing in place of the scalar field f(Rn, r); explicitly,

00 1
f(Rn, r) = Emifm(rlR') {.m {Rn - R m , (3.3-28)

m=O

where the tensor fm (rlR') is defined as

fm(lR=/)df E r '(JR') {.} r (3.3-29)
j=o0

and is of rank N + m and symmetric with respect to its last m indices. Furthermore,

the general continuity conditions imposed upon the tensor fm(rlR')-as a result of

the implied continuity of f(R) and its derivatives across cell faces-can be expressed

as

vif (rR)l = - ( l j! l[Vifm+(rlR')] {}rII (3.3-30)j=1 Ll

= (J] UV [fm+(rlR') {-}i ri'l , (3.3-31)3=1 ! 

valid for all r E O0, i = 0, 1, 2,... and m = 0, 1, 2,....

1The indices of f(R) are preserved at the front of r(IR') such that the tensor {R - R'} is
post-dotted into the tensor f(IR'), as in (3.3-25).
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3.4 Spatially Periodic Functions

The most general results, namely (3.3-30) or (3.3-31) will be used in subsequent

sections to extract the jump conditions imposed upon the coefficients of the velocity

and pressure fields when expanded in a Taylor series. Functions that are independent

of the discrete position variable Rn will be termed spatially periodic:

F(R) F(r). (3.4-1)

Furthermore, if this spatially periodic function is continuous and smooth everywhere,

then it and all its derivatives will be single valued everywhere. Such a function will

be termed fully spatially periodic and identified by a tilde:

F(R) F(r) F(R) F(r). (3.4-2)

Finally, because of the unique value of F(r) and all its derivatives at all points in

space (including points lying on cell boundaries), the jump in this function and all of

its derivatives is identically zero:

This p(r)operty can, in fact, be thought of as defining a .) (3.4-3)

This property can, in fact, be thought of as defining a fully spatially periodic function.
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Chapter 4

An Exact Microscale Solution for

Generalized Flow through Porous

Media

4.1 Introduction

In this chapter, creeping flow in a spatially periodic model of a porous medium is

studied. The geometry of each cell is assumed known a priori and sequential solu-

tions representing increasing orders of flow complexity are developed, culmulating in

a general solution for an entirely arbitrary mean flow. This solution [cf. (4.6-39) and

(4.6-40)] is composed of: (i) fully spatially periodic functions determined from charac-

teristic cell problems [cf. (4.6-41)] and uniquely defined entirely by the cell geometry;

(ii) an arbitrary scalar function and its derivatives. In effect, item (i) pertains to the

microscale flow, whereas item (ii) pertains to the macroscale or mean, Darcy-scale

flow.
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4.2 Basic Theory

Here, generalized Taylor series expansions (in the discrete vector Rn) are developed

for the microscale velocity and pressure fields. Equations satisfied by these fields,

corresponding to successive powers of R,, are subsequently established. The velocity

and the pressure are assumed continuous and smooth at all fluid points R. The

generic results of Chapter 3, pertaining to the expansion of an arbitrary but smooth

function (3.3-28), as well as the jump conditions imposed on the functions appearing

in these series (3.3-30) or (3.3-31), will be used.

4.2.1 Steady-state Stokes Equations

Attention will be restricted to steady, incompressible, creeping flows, for which the

equations satisfied by the velocity and pressure fields v(R) and p(R) at all points R

within the fluid domain are

,uV2 v-Vp = 0, (4.2-1)

V v = 0, (4.2-2)

subject to the usual no-slip boundary condition on the partice surfaces:

v = 0 V (R E s), (4.2-3)

with the gradient operator defined as V = 0/aR, as in (3.3-3). The next step involves

expanding these fields in a Taylor series, subsequently determining from the creeping

flow and continuity equations the differential equations satisfied by the Taylor series

coefficients appearing in these expansions.
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4.2.2 General Taylor Series Expansion for the Velocity and

Pressure Fields

In any spatially periodic geometric model porous medium, the velocity and pressure

fields at any point R within the interstitial fluid possess the equivalent representations

v(R) - v(R., r) (4.2-4)

and

p(R) - p(Rn, r). (4.2-5)

Because of their assumed smoothness, these fields can be expanded in the discrete

form of a Taylor series about an arbitrary point (denoted by the position R'). From

(3.3-28) we obtain

v(Rn, r)
00 1= E -v m(rIR') {} m {Rn-R'}m (4.2-6)

v°(rlR') + vl(rlR') {Rn - R'}

+ 2V2(rR') : {Rn - R'}2 + V3 (rlR').
2! 3!

and

p(Rn, r)
00 1

= E m pm (rR') { .) m
m=O

(4.2-7)

p°(rlR') + p'(rlR') {Rn - R'}
1 2+-p (riR')
2!

: Rn - R'}2 + p3(rlR') {Rn - R'}3 + . .

The definitions of the tensors vm(rlR') and pm (rlR') of respective ranks m + 1 and

m follow directly from (3.3-29) as

v m (rIR') df E -vmi (R) { }j ri
j=o0 j-

(4.2-8)
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and

pm(rIlR ) def E l pm+j (IR) {.}j rj (4.2-9)
j=o0.

where the functions Vm (IR') and p(IR') are given as

il jj 2...j,,, ( R') - [Vj1V.. Vj v R=R (4.2-10)

pj...jl(IR') -[V jVj 2 ... Vjmp(R)][I (4.2-11)

represent the mth derivative of the velocity and pressure fields with respect to the

position vector R, evaluated at the reference point R'. Note in the former that the

tensorial index representing the vector v(R) constitutes the leading tensorial index

of the m + 1 rank tensors vm(lR') and v m (rlR'). As noted by their arguments, the

tensors vm and pm depend upon the local position r and the reference point R'. From

these definitions it is obvious that the tensor vm (rlR') is symmetric with respect to

its last m indices whereas pm (rlR') is symmetric with respect to all its m indices. The

respective tensors v° , v1 and v2 represent vector, dyadic and triadic fields, whereas

p0, pl and p2 respectively represent scalar, vector and dyadic fields.

4.2.3 mth-order Equations: The Fluid Domain, rf

Substitute (4.2-6) and (4.2-7) into (4.2-1) to (4.2-3) and note that Rn- R' is constant

and arbitrary within the fluid region r of a cell. As such, the resulting expressions

must match at all orders of Rn - R'. This ultimately furnishes the equations for

vm(rlR) and pm (rlR'), namely

uV2Vm -- Vpm = 0, (4.2-12)

V.v m = O (4.2-13)

and

vm = 0 V(r sp) (4.2-14)
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These equations apply for each m = 0, 1, 2,..., for all cells and for all r E f except for

the set of points of zero measure lying on the cell faces (r 3 0r0). The interpretation of

the gradient operator in equations (4.2-12) to (4.2-14) is that, within a given cell, the

discrete vector Rn is a constant and thus derivatives with respect to R are equivalent

to derivatives with respect to r:

0
V (r 3 a0o). (4.2-15)

Cell boundaries must be treated separately, since ambiguity exists as to what is meant

by d/Or on a cell surface owing to the fact that the boundary is common to contiguous

cells.

4.2.4 mth-order Equations: The Boundary T0o of a Cell

Since the velocity and pressure (and their derivatives) are assumed to be continuous,

each must have a unique value when approached from opposite sides of a common

cell face, i.e.,

[Viv(Rn, r)] I = [Vv(Rn, r)] IRn_
Rnr n-krl

V

r e Oro;

k = 1,2,3;

i = 0, 1, 2,..

(4.2-16)

and

= [Vip(Rn, r)] 
Rn-lk ,r+1k

r E 0 To;

k = 1,2,3;

i = 0,1,2,...

, (4.2-17)

similar to (3.3-17). Writing (3.3-31) in terms of vm (rlR') gives

(-1)j [Vivm+j(rlR)] {}jrilj=l J!
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- ( lj ) I[vm+ (rR')Jri] } (4.2-19)
j=l

Similarily, the jump conditions imposed upon pm (rlR') are

vipm (rIR')l = j E ( i[vipm+j(rlR')] {}i rill (4.2-20)

j=l-- - Z(j])1 vi[pm+i(rIR!) {i ri] (4.2-21)

The latter pairs of I ViM 11 and IV pm 11 equations are valid for all r E Oro and at each

i = 0, 1, 2,... and m = 0, 1, 2, .... Whereas equations (4.2-12) to (4.2-14) describe

how vm (rlR') and pm (rlR') vary within the local fluid domain r E f of each cell,

the latter pairs of velocity/pressure equations describe how these fields vary from cell

to cell as n changes.

In what follows, the discrete series (4.2-6) for the velocity field (and comparable

series for the pressure field) will be successively truncated at terms of ever-increasing

order in the index m. The successive solutions for the fields vm(rlR) and pm(rlR' )

will be determined, ultimately deriving-by induction-a general solution for the

original, untruncated series.
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4.3 Truncated Zeroth-order Microscale Flow

In this section, the discrete form Taylor series expansion (4.2-6) for v(R) will be

truncated so that only the leading term, v°(rlR'), remains.

4.3.1 Microscale Velocity, v(R)

Arbitrarily choose

v1(rlR') = v') = R') = . . . = 0 (4.3-1)

in the discrete Taylor series (4.2-6), so that attention is focused only on the flow field

v (Rn, r) = v(rlR'), (4.3-2)

where physical significance remains to be established. The choice (4.3-1) combined

with the jump restrictions [embodied in (4.2-18) or (4.2-19) with m = 0] imposed

upon v°(rlR') as a result of the continuous nature of v(R) and all its derivatives at

every point in the fluid shows that the function v°(rJR') must satisfy

[[Viv°(rlRn)l = 0 V (i = 0, 1, 2,...). (4.3-3)

Recall from (3.4-3) that this is what constitutes a fully spatially periodic function-

one in which the function and all its derivatives are spatially periodic and continuous

at all points in the fluid; accordingly, we may write

v°(rlR' ) = v°(rlR'), (4.3-4)

where the tilde serves as a reminder that the function to which it is affixed is fully

spatially periodic.
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In combination, the forms of the tensors vm(rlR ') are

{° (m = 0),

vm = (4.3-5)

0 V(m = 1,2,3,...),

in which the arguments (rlR') have been suppressed. Hence, from (4.3-2), v(R) is of

the form

v (Rn, r) = °(rlR'). (4.3-6)

It is of course intuitively clear that the velocity field, having been assumed inde-

pendent of Rn as in (4.3-2), is necessarily spatially periodic, as in (4.3-6), and so

the conclusion may appear trivial. However, when dealing with higher-order flows,

where intuition may be lacking, the procedure outlined here serves to systematically

establish the requisite forms of the tensors vm(rlR').

4.3.2 Microscale Pressure, p(R)

Equations (4.2-12) and the form of the tensors vm (rlR') [see equation (4.3-5)] give

Vpl = Vp2 = .. = 0. (4.3-7)

This shows that the tensors pm(rlR') for m = 1, 2, 3,... are all, at most, constants

(dependent of course upon the choice of reference point R'). As such, we may write

pm(riR') = m (IR') V(m= 1,2,3,...). (4.3-8)

Next, write jump condition (4.2-20) for m > 1 and i = 0. [The case i > 1

when m > 1 with the form (4.3-8) yields 0 = 0, which is of course always satisfied.]

Subsequent use of (4.3-8) yields

= J) W+ (R){ I rill V(m=1,2,3,). (4.39)j=l -
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Since the latter must hold for all r and for all values of m indicated, this necessitates

that

~W(IR') = 0 V (m = 2,3,4,...). (4.3-10)

The jump conditon (4.2-21) for m = 0, together with (4.3-8) and (4.3-10), requires

that

]lVip°(rR')I = IV i ['(IR') r] 11 V (i = 0, 1, 2,...). (4.3-11)

In conjunction with (3.4-3), the preceding relation requires that p°(rJR') be of the

form

p0 (rlR') = PO(rlR') + l (]R') · r (4.3-12)

where, by definition, the jump in p°(rlR') as well as in all of its derivatives is identi-

cally zero. From (4.3-12), (4.3-8) and (4.3-10) it is apparent that the tensor pm (rlR')

is of the form

pm 

s - i 1.r (m = 0),

V (m = 1), (4.3-13)

0 V(m = 2,3, 4,...),

wherein the arguments (rlR') and (R') have been suppressed. The preceding consti-

tutes the counterpart of (4.3-5).

Substitute (4.3-13) into the discrete form of the Taylor series (4.2-6) for p(R) to

ultimately obtain the following form of the microscale pressure field:

p(Rn, r) = P (rR') + I"(IR') {R - R'}. (4.3-14)

This shows that the microscale pressure field is composed of a spatially periodic

part and a part that grows linearly with R. [This form of p(R) could have been

obtained more straightforwardly by noting that since the microscale velocity field is

spatially periodic, as in (4.3-6), it follows directly from (4.2-1) that the microscale
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pressure gradient is also spatially periodic. In turn, the latter fact implies the result

(4.3-14). However, the general utility of this scheme for choosing a specific v(R) and

determining therefrom the resulting form of p(R) will be manifest when dealing with

more complex flows.]

Basically v(R) and p(R) for this zeroth-order flow field have been expressed in

terms of fully spatially periodic functions, namely V°(rlR'), P°(rlR'), and an arbi-

trary constant vector, I 1(IR'). The next step involves removing the dependence of

i°(rlR') and p°(rlR') upon the choice of reference point, R'. This will ultimately

show [cf. (4.3-50) and (4.3-51)] that v(R) and p(R) can be expressed as a sum of

three components: (i) fully spatially periodic functions, depending only upon unit

cell geometry; (ii) constants, dependent upon reference point R'; and (iii) powers of

R - R'. Again, the utility of this general procedure will be evident in subsequent

sections.

4.3.3 Solution of V°O(rjR'), p°(rR')

Set m = 0 in Eqs. (4.2-12) to (4.2-14) and substitute into these the respective

'decompositions' of v°(rlR') and p°(rlR') appearing in (4.3-5) and (4.3-13) to obtain

tV v2 - Vp = W, (4.3-15)

V. i = 0, (4.3-16)

O = O V(r E sp). (4.3-17)

As the problem defined by (4.3-15) to (4.3-17) is linear, the unknown constant vector

1' (JR') and the viscosity pt may be removed from the problem by defining the dyadic

'velocity' field V°(r) and the vector 'pressure' field l°O(r) as

ptiV(rjR) de VO (r) l(R (), (4.3-18)

p°(rlR') de-f ° (IR') + fl(r). 'l(IR'), (4.3-19)
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where the scalar constant o (R') is included to remove the arbitrary constant which

would otherwise appear in p°(rlR'), as implied by (4.3-15). Define °(IR') as

'T (R') def P(rR')), (4.3-20)

with the interstitial average of any function F(r) defined as

(4.3-21)(F(r)) de 1f/ F(r) dr,
rf s

in which d3r denotes a volume element in the local space domain, r GE 0. The choice

of the zero-order constant in (4.3-20) implies that 1°(r) is normalized as

(h°(r)) = 0. (4.3-22)

The 'separation-of-variables' relations (4.3-18) and (4.3-19) are of course subject

to a posteriori verification. Explicitly, if the constants T°(R') and I (IR') can

be removed from equations (4.3-15) to (4.3-17) by the proposed forms (4.3-18) and

(4.3-19), then this will prove that the fields V°(r) and 1f°(r) are indeed independent

of the choice of reference point R'.

Substitute the definitions (4.3-18) and (4.3-19) into (4.3-15) to (4.3-17) to obtain

(V2V - V II°- ) 

(V VO) . 1

V;o.·~

= 0,

= 0,

- 0

(4.3-23)

(4.3-24)

(4.3-25)V (r E s).

As " (IR') is an arbitrary vector, the equality of the terms that it dot multiplies

must be identically zero. Thus we obtain the characteristic 'unit cell' problem:

V2V0 -VNi = I,

V-VO = 0,

V° = 0

(4.3-26)

(4.3-27)

V (r E sp), (4.3-28)
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subject to the normalization condition

(ji°(r)) = 0, (4.3-29)

wherein the appearance of the tilde implies that the functions V°(r) and Ti°(r) are

fully spatially periodic. Equations (4.3-26) to (4.3-29) will be termed the 0 (0) (i.e.

zero order) cell problem. This unit cell problem is devoid of both the arbitrary con-

stants [°(]JR'), l' (SR')] as well as the fluid rheology (characterized by /4). Conse-

quently, the spatially periodic fields V°(r) and 0l°(r) are determined from and are

solely functions of the given geometry of the unit cell, i.e. of r.

4.3.4 Uniqueness of V°(r), ti°(r)

To demonstrate uniqueness, assume that there exist at least two different solutions

(V', n') and (V", I") of the system of equations (4.3-26) to (4.3-29). Uniqueness

will be proved by showing that the pair of quantities (V, I) defined as

V(r) d V'(r) - V"(r) (4.3-30)

and

l(r) d H'(r) - H"(r) (4.3-31)

are zero for all r E -f:

V(r) = 0, (4.3-32)

1l(r) = 0. (4.3-33)

As the primed and double-primed fields each satisfy (4.3-26) to (4.3-29), it follows

from the linearity of these equations that (V, I) satisfy

v 2v = VII, (4.3-34)

V V = 0, (4.3-35)

V = O V(r E Sp), (4.3-36)
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K(I) = .

Double-dot multiply (4.3-34) by Vt and use the Cartesian tensor identities

vijvinj = Vi (ifni) -

VfjVIIvij = VI [(V1 i) ij]

- (viVj )fT

-(Vi¢,) (lA)

in conjunction with (4.3-35) to obtain

(vI ) (v1 ij) = Vl [(v1 ij) ]j] -

Integrate this over rf and use the divergence theorem to obtain

(VEfij) (Vij) d3r = i dS 1 (VIVij) Vj -
8 ro +sp

The surface integrals over sp vanish as a consequence of (4.3-36) while the integrals

over OrT may be rewritten using the identity [28]

f dS'A= E J dSIHAII,
aro j s+j

(4.3-39)

valid for any tensor function A. The jump conditions implied by the fact that V(r)

and I1(r) are fully spatially periodic (3.4-3) necessitate that the surface integrals over

0r0 appearing in (4.3-38) are identically zero. Consequently,

fTY

(VIVij) (Vti/j) d3 r = 0. (4.3-40)

As a consequence of the quadratic, nonnegative nature of the integrand at each
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f
i dSiVinj.

arO+sp

(4.3-38)
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point r, it is necessarily true that

(VIij) (~ij) > 0,

whence it follows that

VV =O V(r E Tf).

This, in turn, requires that V(r) be at most a constant. However, from the boundary

condition (4.3-36) this constant must be identically zero, thereby demonstrating the

validity of (4.3-32). Furthermore, it now follows from (4.3-34) that

VI = O V (r E Tf).

From (4.3-37) this demonstrates the validity of (4.3-33), whence the uniqueness of

V°(r) and 1°0(r) is established. (Q.E.D.)

4.3.5 Negativity and Symmetry of V°

The dyadic coefficient

Vo - T rdS. V°(r) (4.3-41)

will subsequently appear in the macroscale formulation [cf. (5.3-6)] of our flow prob-

lem. Application of the divergence theorem, followed by differentiation. by parts,

together with the vanishing (4.3-28) of V°(r) on the paricle surfaces and the fact

(4.3-27) that V°(r) is divergence free, leads to the equivalent expression

V = 1 /VO(r) dr
Tf

T (V (r)). (4.3-42)

The utility of this expression is that since V ° is expressible as the integral of a spatially

periodic function over the domain Tf, it is then a lattice constant; that is, it depends
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only upon the lattice configuration, but not upon the particular choice made for the

manner in which the spatially periodic geometry is decomposed into unit cells [28].

To determine the properties of V ° defined in (4.3-41), first pre-dot (4.3-26) by

Vot to obtain

VkIVIVkI - -V ,k1j - Vj = O.

With use of (4.3-27) the previous equation may be rewritten as

Integrate the latter over the fluid domain rf, use (4.3-42), and rearrange the resulting

expression, thereby obtaining

1 (Vek) (VIe) d=r f V (i IIj - oVIV V ) d3r + Vj.

Tf fr

The first term on the right-hand side may be converted into a surface integral over

both r0 0 and sp. The integral over sp will vanish as a consequence of the no-slip

condition (4.3-36) while the integral over arT will vanish as a result of the spatially

periodic nature of the integrand. This provides an alternate definition of V °, namely

V-o I (VLVj) (VV) d r.
Tf

(4.3-43)

Since the right-hand side of (4.3-43) is obviously invariant upon exchanging i and

j, it follows that V° is symmetric:

- -- = V °. (4.3-44)

Pre- and post-dotting (4.3-43) by an arbitrary constant vector X yields

Xijo = -1 / (Xj VkjV) (XiVvki) d3r.
Tf
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As a consequence of the nonnegative nature of the integrand at each point r, it follows

that
-

- V X > o (X), (4.3-45)

whence V ° is a negative-definite dyadic. This property implies, inter alia, that the

determinant as well as the inverse of V ° are both well defined. Ultimately, it will be

shown that -V physically represents the permeability dyadic k of the medium.

4.3.6 Dependence of W°(IR') and ~I(IR') Upon Choice of

Reference Point

From (4.3-6) and (4.3-18) the exact microscale velocity field for the present zeroth-

order flow field is

/,v(Rn, r) = V°(r) · (IR'), (4.3-46)

while from (4.3-14) and (4.3-19) the corresponding microscale pressure field is

p(Rn, r) = T°(IR') + 1'(jR') {R - R'} + 1°0(r) . '(1R'). (4.3-47)

As the microscale flow fields v(R) v(Rn, r) and p(R) p(Rn, r) are both inde-

pendent of the choice of reference point R', a different choice of reference point, say

R", necessarily yields the identical fields v and p. Equate the velocity and pressure

fields for a given flow (v,p) characterized by the constants {°([R'), i(IR')} with

the identical velocity and pressure fields characterized by the different set of con-

stants {°(IR"), 'l (IR")} arising from the choice of R" as the reference point. In

this context, equality of the velocity fields yields

VO(r) W1(R') = VO(r) i (IR"),

whereas equality of the pressure fields gives

T °(I R' ) + {R - R' + I°(r) W1(IR')
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= °(IR") + l((IR) · {R - R"} -+ ii°(r) l(JlR").

Since these expressions must match for all choices of R, it follows that

(IR"') = W (IR') = V', say (4.3-48)

and

E°(]R") = T°(IR') + {R "- R'}, (4.3-49)

expressing the changes in the value of these constants with different choices of refer-

ence point. This also shows that the choice of reference point is somewhat arbitrary,

since knowledge of these constants for one particular reference point implies that they

are known for any other choice of reference point. Furthermore, for this zeroth-order

flow field the vector 1 is a true constant, independent of reference point.

4.3.7 Summary of Truncated Zeroth-order Flow

The zeroth-order microscale velocity field-initially defined by truncating the discrele

Taylor series (4.2-6) at one term-can be expressed via (4.3-6), (4.3-18) and (4.3-48)

in the form

,uv(R) = V°(r) · A1 (4.3-50)

whereas the corresponding microscale pressure field can be obtained from (4.3-14),

(4.3-19) and (4.3-18) as

p(R) = (IJR') + 1 {R - R'} + f°(r). ~. (4.3-51)

The preceding pair of relations correspond to a spatially periodic flow field, with the

pressure varying linearly on the macroscale Rn. All the microscale details of the flow

are contained in the fully spatially periodic functions V°(r) and IO(r), which form

the 0 (0) cell problem. Expicitly from (4.3-26) to (4.3-29):

0 (0) cell problem:
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v2V0 V oi

VO

Fvo
(jjO)

= I,

= 0,

= 0 V(r e sp),

= 0.

This zero-order problem uniquely defines the fields (V, H) which are determined

entirely from the geometry of the unit cell (independently of the arbitrary choice of

cell shape); that is, they are 'lattice fields'. All the macroscale details are embodied

within the constants °(IR') and V, wherein the dependence of ° (IR') upon the

choice of reference point is given by Eq. (4.3-49) as

O (R!') = o(iR') + V. {R" - R'}. (4.3-53)
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4.4 Truncated First-order Microscale Flow

In this subsection we truncate the discrete Taylor series (4.2-6) for v(R) at two terms

and determine the corresponding form of the pressure field.

4.4.1 Microscale Velocity, v(R)

Retain only the first two tensors in (4.2-6) by setting

vm(rlR') = O V (m = 2, 3, 4,...)

such that the discrete form of the Taylor series yields the microscale velocity field

v (Rn, r) = v°(rlR') + vl(rlR') {Rn - R' . (4.4-2)

Use the jump condition imposed upon v1(rlR') by setting m = 1 in (4.2-18), along

with the choice (4.4-1), and write

|Vivl(rlR')l =0 V(i = 0,1,2,...).

The latter immediately implies as a consequence of (3.4-3) that this first-order field

is fully spatially periodic:

V1 (rIR') = 1 (rIR'). (4.4-4)

Now determine the form of v°(rjR') by setting m = 0 in the jump condition

(4.2-19) and combine this with the choice (4.4-1) and (4.4-4) to obtain

]V'v°o(rlR) = IVi [i1(rIR') r] 1 V (i = 0, 1,2,.

which again implies that v°(rlR') is of the form

v°(rJR') = V° (rlR') + Vl (rlR') r

(4.4-5)

(4.4-6)
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and consists of both a fully spatially periodic part and a second fully spatially periodic

part multiplied by r.

For this first order flow, Eqs. (4.4-2), (4.4-4) and (4.4-6) show that the tensor

vm (rlR') is of the form

Vm V

+ ;l r

-1
Vo-p~

(m = 0),

(m= 1), (4.4-7)

0 V(m = 2, 3, 4,...).

Accordingly, the first-order microscale velocity field (4.4-2) may be rewritten as

v(Rn, r) = V°(rlR') + Vl(rlR') {R- R'}, (4.4-8)

where it is important to note that the last term on the right-hand side is dotted by

R and not Rn as in (4.4-2). Comparing (4.4-8) to (4.3-6) it is apparent that the

form of this first-order flow is composed of a fully spatially periodic part T° and a

second fully spatially periodic piece multiplied by the continuous position vector R.

However, the functions T° appearing in both (4.3-6) and (4.4-8) are not the same [cf.

(4.3-18) and (4.4-33)].

4.4.2 Microscale Pressure, p(R)

Similar to (4.3-7), Eqs. (4.2-12) and (4.4-7) combine to give

Vpm = O (4.4-9)

implying that for m > 2 these tensors are at most constants:

pm(rlR') = m(IR') V(m = 2,3,4,...).
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Use of the jump condition (4.2-20) for m > 2 and i = 0 (note that the cases i > 1

and m > 2 yield the trivial solution 0 = 0) in conjunction with the above shows that

V(m = 3,4,5,...). (4.4-11)

Write the jump condition (4.2-21) for m = 1 and use (4.4-10) and (4.4-11) to

obtain

[[Vipl(rlR') = IVi [ 2(1R') r] V(i = 0,1,2,...) (4.4-12)

implying that pl(rlR') is of the form

(4.4-13)

Next, set m = 0 in (4.2-21) and use (4.4-10), (4.4-11) and (4.4-13) to derive the

expression

||Vipol = |V ['I r] +
1

2
|Vi [ 2 : rr] ]| V(i = 0, 1,2, .. .).

In this expression the explicit dependence of the various terms upon r and R' has

been suppressed. The preceding equation implies that p°(rlR') is of the form

p (rlR') = p° (rlR') + jp(rlR') r + -12 (IR') rr.
2

(4.4-15)

Ultimately, from (4.4-10), (4.4-11), (4.4-13) and (4.4-15) the tensor p m (rlR') is

83

p1(rlR') = p (rJR') + T 2(IR') r.

(4.4-14)



found to be

pm =

p + r + - :rr (m = 0),

pl+ W2 l.r (m = 1),
(4.4-16)

,p (m = 2),

0 V(m = 3, 4, 5,...).

This constitutes the counterpart of (4.4-7). Moreover, the microscale pressure field

for the present truncated first-order flow may be written as

p(Rn, r) = p°(rlR') + Pl(rlR') {R- } + R') + !( {IR -R'} 2 . (4.4-17)
2

It follows from the definition of pm (rlR') [see (4.2-9)] that the dyadic 2 (R') is

symmetric. As was the case with the truncated zeroth-order flow problem, we wish

to separate out from Vm (rlR') and Pm (rR') their explicit dependence upon the choice

of reference point R'. By so doing, the decomposition is thereby separated into its

microscale and macroscale elements.

4.4.3 Solution of V1(rlR') and p'(rlR')

Set m = 1 in Eqs. (4.2-12) to (4.2-14) and introduce the forms of v'(rlR') and

p1(rlR') as in (4.4-7) and (4.4-16):

AVV2V - V' q2, (4.4-18)

V-V 1 = 0, (4.4-19)

v1 = 0 V(r sp). (4.4-20)

The symmetry of W 2(IR') has been employed in deriving (4.4-18). As in the truncated

zeroth-order flow problem, the goal is to remove from these equations their dependence

upon 2 (JR'). At first thought one might suppose (since these equations are linear
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in the dyadic W2) that the dyadic v1 is necessarily of the form .Vl = A: W2, where

A is a 4th rank tensor (together with a similar decoupling for Pl). However, the

problem is even simpler since the dyadic equations (4.4-18) to (4.4-20) uncouple with

respect to the last tensoral index. Explicitly, if one defines: (i) the vector Fj as the

jth column of the dyadic ('matrix') V1

FX def v1

(ii) the scalar fj as the jth component of vector l

fj def 

-2
(iii) and the vector G3 as the jth column of the dyadic F

C def -22

then Eqs. (4.4-18) to (4.4-20) may be rewritten in terms of Fj, fj and G3 . The

resulting equations, namely

,/V2F-j _Vf = G

V. F = 0,

F j = 0 V(r E sp),

valid for j = 1, 2,..., M, are identical to those governing V° and P of the truncated

zeroth-order flow, namely Eqs. (4.3-15) to (4.3-17). Ultimately, as in (4.3-18) and

(4.3-19), this enables the dyadic field -l(rlR') and the vector field Pl(rlR') to be

written in the respective forms

/v'(rjR') = V°(r). 2(]R '), (4.4-21)

j(r[R') = (IR') + fl°(r) - 2(IR'), (4.4-22)
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where V°O(r) and I1°(r) are the solutions of the 0 (0) cell problem (4.3-52). The

constant vector Wl (IR'), defined as

'l(JR') d'f (pl(rlR')) (4.4-23)

has been included to remove the arbitrary constant vector from jl(rlR').

4.4.4 First Auxiliary Condition

Essentially, (4.4-8) is equivalent to a macroscale shearing motion. As such, there exists

a restriction imposed upon Vl(rlR') owing to fluid incompressibility. This auxiliary

condition can be quantified by setting m = 0 in (4.2-13) and integrating over the fluid

domain:

1 /V v0 d3r = 0.

Tf

In the latter use the divergence theorem together with the facts that: (i) v ° vanishes

on sp (4.2-14); (ii) v ° is given by (4.4-6); (iii) surface integrals of spatially periodic

functions over 0 To vanish. This yields

-.1 dS v r = . (4.4-24)
AT0

Equivalently, from (4.4-21),

l f dS . (VO 2)r = ,
o ro

which may be rewritten as

(-, rdS*V):W 2 = .
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However, the term in parentheses is simply the truncated zeroth-order dyadic V °

given by (4.3-41). Consequently,

vO: 2 = 0 (4.4-25)

or

(VO°()) -' 2 (IR') = 0. (4.4-26)

Hereafter, the restriction (4.4-25) or (4.4-26) will be termed auxiliary condition #1.

Since VO is not singular, but is rather a negative-definite dyadic, Eq. (4.4-25)

places a restriction upon the choice of the symmetric dyadic 2 (IR') for incompress-

ibility to be retained. This is similar to the restriction imposed upon the velocity

gradient dyadic G for an arbitrary shear flow, v = G R, requiring that I: G = 0 in

order that the incompressibility condition V · v = 0 be satisfied.

4.4.5 Solution of v°(rIR') and jp°(rlR')

Combine v°(rlR') and p°(rlR') given in (4.4-7) and (4.4-16) with the solutions

Vl(rlR') and Pl(rlR') appearing in (4.4-21) and (4.4-22) to obtain the alternative

expressions

/av0 = No +VO .- 2 r, (4.4-27)

p0 o + - 1-2p p ':rr. (4.4-28)
2

Set m = 0 in (4.2-12) to (4.2-14) and use the previous two equations to derive the

following intermediate equations governing the fully spatially periodic fields 0°(rlR')

and p°(rlR'):

/V2V0 Vp = 1 + [If0 -2t(VV°)]: 2 _ [V2 0-V °Vft - I] * 2
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,V = _o [V V-VO] 2

= -V 2 r V (r sp).

In light of the O (0) cell problem (4.3-52) and the fact that W2 (IR') is a symmetric

dyadic, these governing equations may be rewritten without any loss of generality as

tUV2 i-V _ Vo 1 _ + IoI - 2t (VV°) .F2, (4.4-29)

JVi .= V]j P I 2, (4.4-30)
u~v° = 0 V(r sp) (4.4-31)

Notationally, M A is the symmetrization operator defined in (3.3-13) but only with

respect to the last n indices of the general tensor A. It is obvious that integrating the

continuity condition (4.4-30) over the fluid domain and using the divergence theorem

along with the other properties of °0 (rR') reproduces auxiliary condition #1, namely

Eqs. (4.4-25) or (4.4-26), restricting the value of 2(jR').

As Eqs. (4.4-29) to (4.4-31) are linear in ' (JR') and I 2(R'), the latter constants

can be removed from the governing equations. In particular the vector 1 (jR') may

be removed in exactly the same manner as in the truncated zeroth-order flow problem

via the decompositions (4.3-18) and (4.3-19). In a similar manner, one might envision

removing the dyadic W2(IR') by supposing its dependence upon V°(rlR') to be of

the form iV = A · 2, with A(r) a third rank tensor field. Unfortunately, this

would lead to (4.4-30) adopting the form V A = -V °, which upon integrating this

continuity condition over the fluid volume Tf and recognizing (4.3-42) would lead to

the inconsistent requirement that V ° = 0. This error arises because 2(IR') is not a

totally arbitrary dyadic, but rather must obey auxiliary condition #1, Eqs. (4.4-25)

or (4.4-26).

88



This problem may be rectified by rewriting (4.4-30) as

(4.4-32)

without loss of generality. This ansatz removes the difficulty described previously,

enabling us to postulate a solution of Eqs. (4.4-29), (4.4-31) and (4.4-32) of the form

,L (r{R') def V°(r) · (IR')

+V'(r) W2(IR') (4.4-33)

p (rRn) d f (IR ) + O(r) l(IR)

+-i (r) :-2 (IR ). (4.4-34)

Appearing in these expressions are the triadic field Vl(r) and the dyadic field Ili(r),

with

(4.4-35)

included to remove the arbitrary constant in P°(rlR').

satisfied by Vl(r) and 'II(r) is then

V2Vl _ V 1'

vl

= Iiio

The characteristic problem

- 2 t (_VO) 2 (4.4-36)

(4.4-37)

(4.4-38)

= - [Vo -(V),

= 0 V(r sp),

together with the normalization condition

(i>f ) = o

and the fact that these fields are fully spatially periodic.

(4.4-39)
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Equations (4.4-36) to (4.4-39) constitute the 0 (1) cell problem. This problem is

devoid of all arbitrary constants and fluid rheology. As such, the fields V'(r) and

TIl(r) are uniquely defined by the unit cell geometry. Furthermore, the form of the

inhomogeneous, forcing terms on the right-hand sides of (4.4-36) and (4.4-37) is such

that the triadic field V 1 (r) is symmetric with respect to its last two indices, while the

dyadic field IIl(r) is symmetric with respect to all its indices.

4.4.6 Uniqueness of Vl(r) and flI(r)

As in §4.3.4, uniqueness will be proved by first assuming that there exist at least

two solutions, (V', nI') and (V", h"), of the system of equations (4.4-36) to (4.4-39).

Uniqueness is demonstrated by proving that the quantities (V, H) defined as

V def V/- Vpl' (4.4-40)

fT def H'-_ f" (4.4-41)

vanish identically:

V = O, (4.4-42)

I = . (4.4-43)

As the primed and double-primed fields each satisfy (4.4-36) to (4.4-39), and the

uniqueness of V 0 and IlO (and of course (VO)) was shown in §4.3.4, it follows from

the linearity of these equations that (V, i) satisfy the system of equations

V2V = VII, (4.4-44)

V.V = 0, (4.4-45)

V = O V(r Sp), (4.4-46)

(AI) = O. (4.4-47)

As in §4.3.4, triple-dot multiply (4.4-44) by V (contracting equivalent indices),
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employ differentiation by parts, utilize (4.4-45), integrate the result over Tf, use the

divergence theorem, apply (4.4-46) to the integral over sp, and finally observe that

surface integrals of spatially periodic functions over To vanish. These arguments

eventually yield

f (Vijk) (Vijk) d3r = 0. (4.4-48)
rf

As a consequence of the nonnegative nature of this quadratic integrand at each point

r E f, the tetradic quantity VV must itself be identically zero, implying that V is at

most a constant. But from (4.4-46) the value of this constant must be identically zero,

thereby proving (4.4-42). It then follows from (4.4-42) and (4.4-44) that VII = 0

at all points r E Tf, implying II is at most a constant. However, from (4.4-47) this

constant is identically zero, thereby proving (4.4-43). (Q.E.D.)

4.4.7 Dependence of W(R') upon the Choice of Reference

Point

Upon combining Eqs. (4.4-8), (4.4-21) and (4.4-33), the exact microscale velocity

field describing this truncated first-order flow field is

jv(R,r) = V°(r). [ 1(JR') + 2(JR') . (R-R'}]

+Vl(r) ' : 2 ([R'). (4.4-49)

Substitution of (4.4-22) and (4.4-34) into (4.4-17) yields the corresponding microscale

pressure field, namely

p(R, r) = W(IR') + 1 (IR') {R - R') + l2(R) R: R- R'}2

+t°O(r) [· [(IR') + E2 (IR') {R - R'}]

+1 (r) W2 (R'). (4.4-50)

These microscale fields are independent of the choice of reference point R'. As

such, the set of constants {0 (jR'), H (jR'), 2 (jR')} based upon a reference point
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R' are related to those based upon a different reference point R", namely

{To(R),W (R'!), 2(CR')}. Their exact interrelations can be found by equating

the velocity and pressure fields written with respect to each of these two alternative

choices of reference points, and subsequently matching the results for all orders of R.

The final result is the trio of relations

2(I1R )
= 2 (JR') = 2, say, (4.4-51)

I (JR ") -= I ( R') + 2 {R" - R'}, (4.4-52)

J0(IR") = o(R') + (lR')- {R"-R'} +R"
2

(4.4-53)

expressing the value of these constants with respect to the reference point R" in terms

of their values with respect to the reference point R'.

4.4.8 Summary of Truncated First-order Flow

The first-order microscale velocity and pressure fields-defined by appropriately trun-

cating the discrete form of the Taylor series (4.2-6) for the velocity at two terms-are

given by (4.4-49) and (4.4-50) as

pLV(R) = VO(r) [ 1(IR') + H2- {R - R'}] + Vl(r) (4.4-54)

and

p(R) = W(IR') 1(IR') {RR- R'+ 2 {R- R}

+II°(r) [ (R') + -{R- R'}] + fil(r): 2. (4.4-55)

All microscale flow characteristics are implicitly contained in the fields {VO (r), fo (r) }

and {V' (r), Hil(r)}, with the former fields constituting the O (0) cell problem defined

in (4.3-52) and the latter fields the O (1) cell problem defined in Eqs. (4.4-36) to
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(4.4-39):

O (1) Cell Problem: (4.4-56)

V2V V I1 = II ° - 2t(VVO°) 2

Iv = -Vo- (V) 

Vl = (r E sp),

(Il)= o.

This problem posed by these equations is uniquely determined from the unit cell

geometry. All macroscale details are embedded in the constants °(jR'), l,1 (JR')

and V. It is apparent that setting W2 = 0 in (4.4-54) and (4.4-55) reduces these

to (4.3-50) and (4.3-51) respectively; that is, the zeroth-order flow solution is recov-

ered. Consequently, this higher-order flow is determined entirely by the value of L2.

This constant symmetric dyadic is not entirely arbitrary, but rather is restricted by

auxiliary condition #1 given by (4.4-26):

(V) : 2 = 0. (4.4-57)

The explicit dependence of 0 (IR') and 1 (IR') upon the choice of reference point

is given by Eqs. (4.4-52) and (4.4-53) as

WI (IR") = 1(IR') + 2. {R" - R'}, (4.4-58)

O (IR") = O(JR') + W1(ljR') {R"- R'} + 12 : { R" -} 2
2

(4.4-59)
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4.5 Truncated Second-order Microscale Flow

Second-order flow entails truncating the discrete form of the Taylor series (4.2-6) for

v(R) at three terms and determining the corresponding pressure field.

4.5.1 Microscale Velocity, v(R)

Retain only the first three tensors vm(rlR ') in the expansion (4.2-6) by setting

vm(rlR') = 0 V (m = 3,4,5,...)

v (Rn, r) = v°(rlR') + vl(rlR'). {Rn- R'} + v2(rIR') {R n- R'}2 . (4.5-2)

As in §§4.3.1 and 4.4.1, set m = 2 in the boundary condition (4.2-19) and use

(4.5-2) to determine the form of the triadic v2 (rlR'). Next, proceeding downward

recursively, set m = 1 and m = 0 in (4.2-19) to determine the respective forms of

the dyadic v1 (rlR') and the vector v°(rlR'). This procedure shows that the tensors

vm(rlR) for this truncated second-order flow field are given by

vo + v1 r + :rr (m = 0),

(m = 1),

(4.5-3)

(m = 2),

V(m = 3,4,5,...).

Consequently, the second-order microscale velocity (4.5-2) may be rewritten as

v(R,, r) = i°(rlR') + i'(rlR') {R- R'} + v2(rlR'): {R-R'} 2. (4.5-4)= v ((R')+ $ rlR')· (R- R 2
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Equations (4.5-3) and (4.5-4) are the functional counterparts of the truncated zeroth-

order velocity field (4.3-5), (4.3-6) and the truncated first-order velocity field (4.4-7),

(4.4-8). Again, the functions °(rR') and Vl(rlR') appearing here are different than

those for the lower-order truncations.

4.5.2 Microscale Pressure, p(R)

Again, as in §§4.3.2 and 4.4.2, set m = 3, 4, 5,... in (4.2-12), (4.5-3) and in the jump

conditon (4.2-20) to determine the form of the higher order tensors pm (rlR'). Then

work backwards, setting m = 2, 1, 0, determining therefrom the form of pm(rlR') for

each m. This procedure ultimately yields

pm =

p +p .r+ p2 rr+ 3 rrr (m= 0),

pl + p2 r + 3: rr (m = 1),

~p2 + a r (m = 2), (4.5-5)

'3 (m = 3),

0 V(m = 4,5, 6, .. ),

where 3 (IR') is an arbitrary, fully symmetric triadic. This is the counterpart of

(4.5-3). Additionally, the microscale pressure field for this truncated second-order

flow may be written as

p(Rn, r) = (rlR') + pl(rlR') {R - R'}

+p2(rlR') : {R - R' + (IR') {R- R'}, (4.5-6)
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where once again, the functions °(rR') and 'l(rlR') differ from those appearing in

the lower-order flows.

4.5.3 Solution of V2 (rlR') and p2(rlR')

Set m = 2 in Eqs. (4.2-12) to (4.2-14) and use the forms of v2 (rl R ' ) and p2 (rlR')

given in (4.5-3) and (4.5-5) to obtain

2zxv2 _ Vp2 = 3a, (4.5-7)

V .2 = 0, (4.5-8)

V2 = 0 V(r C sp), (4.5-9)

wherein the symmetry of W 3 (JR') has been used in deriving (4.5-7). Once again,

owing to the fact that these equations are linearly independent with respect to their
-3

last two indices, the technique subsequently used to remove I (R') from the previous

equations is identical to the procedure outlined in §4.4.3. As such, the solution of the

preceding trio of equations is

/_2(r R') V°(r) 3(IR'), (4.5-10)

p2 (r I R') + l°(r) (R'), (4.5-11)

in which V°(r) and fIl(r) are the solutions of the 0 (0) cell problem (4.3-52). The

constant symmetric dyadic 2 (JR') which has been introduced is defined

2(R') d ( r2(r R')) (4.5-12)

4.5.4 Second Auxiliary Condition

In what follows, restrictions are placed on the values of v2(r R') such that the incom-

pressibility condition is satisfied. Auxiliary condition #2 [cf. (4.5-14)] may then be
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established from (4.2-13) and (4.5-3).

Set m = 1 in (4.2-13) and integrate over the fluid domain to obtain

1 v vl d3r =0.
Tf

Use the divergence theorem together with (4.2-14) and (4.5-3) yields

1-p dS * v2 * r = 0. (4.5-13)

Substitute (4.5-10) into the previous equation and rewrite the resulting expression

as

1 if rdS VO :3=O

upon recognizing the symmetry of 3(IR'). The term in parentheses appearing above

is simply the zeroth-order dyadic V ° (4.3-41), whereupon we obtain auxiliary condi-

tion #2:

VO: T3 = 0 (4.5-14)

or

(VO°(r)) 3 (IR') = 0. (4.5-15)

This condition shows that V (JR') itself is not a totally arbitrary constant symmetric

triadic, but rather must satisfy (4.5-14) or (4.5-15) for the requirement of incompress-

ibility to be preserved.

4.5.5 Solution of v 1(rlR') and pl(rlR')

Combine the forms of vl(rlR') and p1 (rlR') given in Eqs. (4.5-3) and (4.5-5) with

the solutions of V2 (rlR') and p2(rJR') from (4.5-10) and (4.5-11) to derive

V1 = pv1 +i V O. .r (4.5-16)
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p p= ' + 2·r+i.r+ . r + 1 : rr. (4.5-17)
2

Set m = 1 in Eqs. (4.2-12) to (4.2-14) and substitute into (4.5-16) and (4.5-17) the

forms of v1 (rlR') and pl(rlR'), thereby obtaining the following system of equations

governing the fully spatially periodic dyadic field iV(rlR') and vector field Fp(rlR'):

V2I _ Vl = + t(VV°)]: [V2VO V I] 3

,V .V = -v °: -[v. v°] . r,

/ = -V· r V (r sp),

in which the fully symmetric properties of the dyadic W2(IR') and triadic a (IR')

have been exploited. These symmetry conditions, together with the 0 (0) cell problem

defined by Eqs. (4.3-52), can be used to rewrite these governing equations in the

equivalent form

/.V2V l = + [ I-2 f[oi - 2t(VV°) I s: (4.5-18)V- -1 ° (4.5-18)

mv. _ Vol , (4.5-19)

Jv 1= 0 V(r E sp). (4.5-20)

Obviously, integrating the continuity conditon (4.5-19) over the fluid domain, followed

by use of the divergence theorem, the no-slip condition (4.5-20) and the spatially

periodic nature of Vl(rlR'), leads directly to auxiliary condition #2 [Eqs. (4.5-14) or

(4.5-15)] restricting the value chosen for the fully symmetric triadic I 3 (IR').

As in §4.4.5, although Eqs. (4.5-18) to (4.5-20) are linear in I 2(IR') and I 3(IR'),

it is this restriction placed upon Va (IR') which requires consideration when removing
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the dependence of v'(rJR') and Pl(rlR') upon these constant tensors. In light of

(4.5-15), the continuity condition (4.5-19) is replaced by the equivalent expression

IV V = - [V- (VO) -8 :i 3, (4.5-21)

and the solutions l(rlR') and P1 (rlR') may be written as

v1 (rR') = VO°(r ( R ' )+ r): (R'), (4.5-22)

P1(rlR') = 1(IR') + ii°(r) - 2(IR') + il'(r): 3 (IR'), (4.5-23)

with the constant vector l1 (IR') defined as

({R') def (l1(rIR')) (4.5-24)

This solution clearly depends upon knowledge of the solutions of the 0 (0) cell problem

(4.3-52) for [VO(r), i(r)], the O (1) cell problem (4.4-56) for [V(r), Il(r)] and the

constants W1 (IR), W 2(IR') and W3(IR').

4.5.6 First Auxiliary Condition

Further restrictions need to be imposed upon the fields vl(rIR') and V2 (rlR') to

assure that fluid incompressibility is always satisfied. To establish these restrictions,

set m = 0 in (4.2-13) and integrate over the fluid domain rf to obtain

(V v) =0.

Subsequent use of the divergence theorem, together with the no-slip condition

(4.2-14), the form of v°(rjR') suggested in (4.5-3) and the fact that spatially periodic
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functions integrate to zero over the surface of a cell 9T0 furnishes the requirement

dS [ .r + v2: rr = 0. (4.5-25)

Re-use of the divergence theorem and the no-slip conditions (4.4-31) and (4.5-20)

reduce the above to the form

(v [l· r + 2 rr ]) 0.

Perform the divergence operations in the latter to obtain

([V 1] r+ I: V1'+ 2 [V.i 2] rr+I: 2r) =0

and subsequently use the forms of vl(rlR') and V2(rlR') established in (4.5-22) and

(4.5-10) to derive

[V Vol r 23: rr] + [V V +V0]: r+V : + V ) = 0.

This result may be simplified by using the continuity conditions imposed upon V°(r)

and V1 (r) given in the cell problems (4.3-52) and (4.4-56):

(V°): W3 (r) + (°) : W2 + (V1)3 = 0

Upon recognizing that the first term on the left-hand side of the above is identically

zero as a result of auxiliary condition #2 (4.5-15), one obtains the ultimate result

(Vo( (R')+((r)) (i 3 (R') - 0, (4.5-26)

where the symmetry of the tensors W 2(IR') and I 3(IR') has again been utilized. This

is auxiliary condition #1, restricting the choice of W (jR') and J 3(IR') such that the

indicated sum is satisfied. Notice that the choice of I 3(IR') = 0 automatically

satisfies auxilliary condition #2 (4.5-15) and, furthermore, that auxiliary condition
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#1 becomes identical to that calculated for the first-order flow field (4.4-26).

4.5.7 Solution of vi°(rlR') and j°(rJR')

Substitute (4.5-10), (4.5-11), (4.5-22) and (4.5-23) into (4.5-3) and (4.5-5) and use

the symmetry of the constants T"(IR') to obtain

Ipv° = iL0v + VO r +[Vr + °rr] .3 (4.5-27)

po = P .r + r + rr ·2 + [Il r + Il° rr +
2

-rrr] i 3 .

(4.5-28)

Set m = 0 in Eqs. (4.2-12) to (4.2-14) and substitute the previous equations into the

resulting expressions to obtain the following system of equations governing the fully

spatially periodic vector field i°(rlR') and scalar field p°(rlR'):

/V2V- _ Vp° = 1 - [V2 V -VI° -I] [2 r 3+ rr

_ [V2V - vl - Ii + 2t (VVO°)] : r

+ [io - 2t (V0)] : 2

+ [II

t/V vo

/-v°

-2t(VV1) - voI] :3,

1-32r+ 2 
2

: rr]

V (r E sp).

= - [V.vo] [

= _~o. ~. * r[ + VOr] *3

The symmetry conditions imposed on the tensors - m (IR'), in conjunction with the

0 (0) cell problem (4.3-52), the O (1) cell problem (4.4-56), and auxiliary condition
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#2 defined in (4.5-15), enable the preceding equations for i°(rR') and p°(rIR') to

be rewritten as

LV2V0 -Vp° = 1 + [Ii -2 (V V°) 1 2 2

+[I I1 -2(VV') VoVi3 3, (4.5-29)

' V = - -V0]S: 2--2 [ Vl ]i 3 (4.5-30)

lAv° = 0 V (r E sp). (4.5-31)

Since this trio of equations is linear in the constants W'(IR'), dependence upon

these constants can be removed. In particular the constant l (JR') can be removed

via the 0 (0) cell problem while V1 (IR') may be removed by using the O (1) cell

problem. Previously, when a solution was sought for {I°,p °} and the 0 (1) cell

problem derived in § 4.4.5, an adjustment had to be made to the continuity condition

based on auxiliary condition #1 before removal of the constants could be effected.

This is not the case here as the solution for V°(rlR') will involve a term like V1

'2 and a term like V2.1 3 [cf. (4.5-32)]. The continuity condition (4.5-30) will

then produce a term like (V V l) : 2, which when converted via the 0 (1) cell

problem continuity condition, will cancel the term double-dotting W2 in (4.5-30).

This, in turn, will leave the residual term (V°): 2. But upon replacing the latter

with -(Vl) 'i3 from auxiliary condition #1 for this truncated second-order flow

(4.5-26), the result will be to effectively have an inhomogeneous term appearing in

the continuity condition for V2 (r), such a term possessing a zero mean [cf. (4.5-36)].

Indeed, this which was the reason for rewriting the continuity condition in § 4.4.5 in

the first place.

To this end, define the tetradic field V 2 (r) and the triadic field II 2 (r) as

uv(rlR') def V(r)- 'l(IR') + Vl(r) : W2( R') + V2(r)' 3 (IR,),
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(4.5-32)

O(rlR,) d ef °O(IR') + O(r) W(IR' )

+l(r): W(IR') + iH2(r):3(IR!), (4.5-33)

with

To(IR) d (o (rlR')) (4.5-34)

included to remove the arbitrary constant in P(rlR'). Substitute (4.5-32) and (4.5-33)

into (4.5-29) to (4.5-31) and simplify the resulting expressions by using the charac-

teristic cell problems and the auxiliary conditions to determine the characteristic

problem satisfied by V2 (r) and rfl2(r), namely,

V2V2 -_ V 2 : 2I1 -2i (VV1) - oI83° (435)

V. V2 = -V1 - (V) , (4.5-36)

V2 = 0 (r E sp), (4.5-37)

together with the normalization condition

(fj2) = . (4.5-38)

Equations (4.5-35) to (4.5-38) constitute the O (2) cell problem to be solved for the

fields [V2(r), Nf2 (r)]. These fields are determined entirely from the unit cell geometry.

Furthermore, because of the symmetry of the inhomogeneous terms in (4.5-35) and

(4.5-36), V 2 (r) is symmetric with respect to its last three indices, while 1h2 (r) is

symmetric with respect to all three of its indices.
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4.5.8 Uniqueness of V2(r) and 112(r)

As in §§4.3.4 and 4.4.6, uniqueness of these fields may be proved by first assuming

that there exist at least two different solutions (V', ') and (V", n") of the system

of equations (4.5-35) to (4.5-38). Uniqueness will be proved by showing that the

quantities (V, ) defined as

V def V_- V (4.5-39)

def [ -ItsH f Hj II?" (4.5-40)

are identically

V= O (4.5-41)

II = 0. (4.5-42)

As the primed and double-primed fields each satisfy (4.5-35) to (4.5-38), and the

uniqueness of both V °, I °O and V1, II1 were shown in §§4.3.4 and 4.4.6, it follows

from the linearity of these equations that (V, H) satisfy

V2V = VI (4.5-43)

VV = O (4.5-44)

V = O V(r s) (4.5-45)

(I) = 0. (4.5-46)

As in §§4.3.4 and 4.4.6, quadruple-dot multiply (4.5-43) by V (contracting on

equivalent indices), use differentiation by parts, apply (4.5-44), integrate the result

over Tf, use the divergence theorem, apply (4.5-45) to the integral over sp, and finally

note that the surface integrals of spatially periodic functions over 9T0 vanish. These

eventually yield

(Viijkm) (VVjkm) d3r = 0. (4.5-47)
Tf

As a consequence of the nonnegative nature of this quadratic integrand at each point

r E f, the tensor VV itself must be identically zero, implying that V is at most
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a constant. But from (4.5-45) the value of this constant must be identically zero,

thereby proving (4.5-41). It then follows from (4.5-41) and (4.5-43) that VII = 0 at

all points r E Tf, implying II is at most a constant. But from (4.5-46) this constant

is identically zero, whereupon (4.5-42) follows. (Q.E.D.)

4.5.9 Dependence of -m(R') upon the Choice of Reference

Point

Combining the microscale velocity field representation (4.5-4) with the solutions

(4.5-10), (4.5-22) and (4.5-32) yields, upon suppressing the arguments (r) of the fields

and the reference point dependence (R') of the constants, the truncated second-order

velocity field

ILv(Rn, r) = V° L + W2 { R - R 1- +2 : R- R'}2

+v 1: [ + W { {R - R'}]

+ V 29-3. (4.5-48)

Likewise, the corresponding pressure field can be written upon combining (4.5-6) with

the solutions (4.5-11), (4.5-23) and (4.5-33) as

p n = 1 {R - R 2 : { R 12 + 693 R- R!13p(Rn, r) + 1 -.R -R + : } 
2 6

+0 + W .R - R + 1T : J -R'

+n f' : [s +3 * {R -R]

(4.5-49)

This truncated second-order flow field must be independent of the choice of reference

point R'. As such, choosing a different reference point, R", say, and equating the

velocity and pressure fields when written for these two different reference points,

results in equations relating the values of the two sets of constants Vm(IR') and
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3-m 1
m(I"R") = E -Im-i(JR) {.} i{R" - R} 3

j=o 
V(m = 0, 1,2,3).

4.5.10 Summary of Truncated Second-order Flow

In summary, the truncated second-order microscale velocity and pressure fields-

defined by truncating the discrete form of the Taylor series (4.2-6) for the velocity at

three terms-are given from (4.5-48) and (4.5-49) as

puv(Rn, r) = V ° + 2 { R - R' + : {R - R'} 2]

+V1 : +{ - R'}]

(4.5-51)

and

p(Rn, r) = + .{R- R'}
1 -2

2

+ [ + fi * { p R - R' +2 R-R'}2]

+__1 [j'2_ +'3. {R-R}]
+Hl23. (4.5-52)

All of the microscale flow characteristics are contained in the fully spatially periodic

fields {Vm(r), IIm(r)} calculated from the 0 (0) cell problem (4.3-52), the 0 (1) cell

problem (4.4-56) and the 0 (2) cell problem determined from (4.5-35) to (4.5-38):

0 (2) Cell Problem:

= [I 1ilv2V2 _ VII2

V . V2

(4.5-53)

- 2t (VV) - VI= -VK- V)_ ,

106

(4.5-50)

IW3:JR 
6 

JR - R!12 +



v2 = 0 V(r Sp),

(I 2 ) = 0.

This problem possesses a unique solution [V2(r), f2 (r)] determined entirely from

the unit cell geometry. All the macroscale details of the flow are contained in the

constants Io (IR'), ((R'), J2(lR') and H3 . It is obvious that upon setting T 3

in (4.5-51) and (4.5-52) that the truncated first-order flow field is recovered, while

setting W3 = 0 and H2 = 0 recovers the truncated zeroth-order flow field. These

constant tensors are fully symmetric, but not totally arbitrary in order that the

resulting flow field satisfies continuity. The restrictions are determined from the first

and second auxiliary conditions, (4.5-15) and (4.5-26) respectively, namely

(VO): W2 + (VI) 3 = 0, (4.5-54)

(V): F3 = 0. (4.5-55)

The explicit dependence of <(JR') upon the choice of reference point R' can be

expressed as

3-m .
( 3R")= V i 3(IR') {.}j {R"- R'j V(m =0, 1,2,3). (4.5-56)

j=0o 
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4.6 General Microscale Flow

The net results of the previous sections (§§ 4.3, 4.4 and 4.5) has been to determine

a conveninent way to express the velocity and pressure fields existing in a spatially

periodic model of a porous medium in circumstances where the mean flow is arbitrary

(except for the requirement that it be incompressible). In the present section, those

results for various degrees of truncation are cast into a more general framework, al-

lowing one to inductively establish the expansion for an arbitrary degree of truncation

of the series expansion.

4.6.1 Microscale Velocity v(R) and Pressure p(R)

The velocity and pressure fields for the zero-, first- and second-order flows show by

induction that the discrete form of the Taylor series (4.2-6) and (4.2-7) for v(R) and

p(R), namely

v(R) = E v(rIR') ()m {$R - R')
m=O

and

p(R) = E p pm (r lR) {.}m {Rn - R' m
m=O

possess the equivalent representations

00 1

v(R) = E Vm(rR' ) {) (R- R " , (4.6-1)
m=O

001
p(R) = - , Pm(rJR) {.}m {R- 'm. (4.6-2)

m=O

The key difference between the two lies in the fact that the latter expressions involve

fully spatially periodic functions and powers of a continuous position vector.

The relationship between the field vm (rlR') and the fully spatially periodic field

Vm (rlR') can be established by rewriting (4.6-1) while expanding the position vector

R using the decomposition (3.3-9) in conjunction with the identity (3.3-12) (with the

108



choices a = r and b = R- R'). This yields

m=O j=o ( ) {]

Since vim (rR') is symmetric with respect to its last m indices [cf. (4.2-8)], the

symmetry operator appearing in the last term may be deleted. Moreover, upon

inverting the order of the summation (3.2-11), the previous equation may be rewritten

as

v = ! m-+ {. r } {.} {Rn- 

Comparison of this expression with the discrete Taylor series (4.2-6) furnishes the

expression

001
vm(rlR') - .vj+m(rlR) {} r V(m = 0,1,2,...) (4.6-3)

j=o0

relating the fields vm (rlR') to the fully spatially periodic fields Vm(rlR'). In a similar

manner, the relation between pm(rlR') and pm(rlR') is found to be

oo 1

pm(rlR') = 1 -P+m(rR) } r V (m =0,1,2,...). (4.6-4)
j=o J.

The inverse of (4.6-3), namely an explicit expression for Vm(rlR') in terms of

v m (rlR'), may be derived by replacing Rn by R- r in the discrete Taylor series

(4.2-6), using the identity (3.3-12) (with the choices a = -r and b = R - R'), and

switching the order of the summations to obtain

v = E 1 m 1 v {.}m {-r}m] {.}· {R-R'i

Comparison with (4.6-1) gives

-Vm(rlRI)Z vm(rR')= (+(rR') ( m = 0,1,2, .. ). (4.6-5)
j=o 
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A similar procedure yields the inverse of (4.6-4), namely

pm(rR')-E ,1) pJ+m(rIR'){}iri V(m=0,1,2, .) (4.6-6)
j=o J

As in the preceding sections, the goal now is to separate out the dependence of

vm(rlR') and Pm(rIR') upon the choice of reference point R'.

4.6.2 Equations Satisfied by Vm(rlR') and pm(rIR')

This subsection developes the differential equations and boundary conditions govern-

ing the fully spatially periodic fields -im (rjR') and pm (rjR').

Equation (4.6-5) combines with the no-slip condition (4.2-14) on the particle sur-

faces to show that Vm(rlR') also satisfies the no-slip condition:

Vm = 0 V (r E sp), (4.6-7)

valid for m = 0, 1, 2,....

Form the divergence of (4.6-5) and differentiate the result by parts to obtain

V*v m '- Z (1)3 [V jI+m] {-}iri + ( -1) I: vj+m {.}i rj- 1,
j=o J j=1 (J 1)!

whose derivation has utilized the identity

V (rj ) =jiIr-l s V(j 1,2,3,.. (4.6-8)

as well as the symmetry of vm (rlR'). The first sum on the right-hand side of the

equation preceding the above is identically zero by the continuity condition (4.2-13)

while the second sum may be rewritten, obtaining

V m I' (-l)Jvj+l+m {.}i ri.
j=o

However, from (4.6-5) the previous summation is identically V"m+l(rlR'), whence the
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incompressibility requirement satisfied by vm (rlR') requires that

V im = -I: vm+l, (4.6-9)

valid for m = 0, 1, 2,....

The linear momentum equation satisfied by Vm(rlR') and P m (rlR') can be derived

by first forming the gradient of (4.6-5) and differentiating the resultant expression by

parts to obtain

v t = E (-1[VvJ+m] {.-i r + Z (-) tvJ+m {.}j-1 r-1,
j=o j j= (- 1)!

wherein the identity (4.6-8) together with the symmetry of vm (rlR') have been used.

Next, form the divergence of the previous equation and again differentiate by parts

and use (4.6-8) and symmetry to obtain

j=V29m = ( [V vi+m -1 }J

j=1o !

+V (-1) tvj+m {.}j-lrj 1 .
j= (- 1)!

Convert the second summation using differentiation by parts and combine with the

third summation, resulting in the expression

v2im = E (()i [V2vi+] {.-} r_
j=Q j

+2'V E c(- v tv+m {}j rj - -

j=1 (J -2)!
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Rearrangement of the summations gives

V2
;m = E i) [V2vj] {} ri

j=0 J

-2V. t [; (1)Jvj+l+m{-}jrJ]
0 J !

(-l) vj+2+m {} r I
=O

Upon comparison of the last two terms with (4.6-5) the above ultimately becomes

V2V=- (= [V2Vj+m] {}j r1 - 2V tVm Vm - I. (4.6-10)
j=0 

In a similar manner, form the gradient of (4.6-6), use differentiation by parts to-

gether with the identity (4.6-8) and the symmetry conditions imposed upon pm(rlR')

to eventually obtain

Vp = l) [Vp i] {-}3 rj - (4.6-11)
j=o J!

Multiply (4.6-10) by /u, subtract from this (4.6-11) and use the linear momentum

equation (4.2-12) to obtain

/v2Vm Vm = m+l _ 2/V -tv+l /m+2 I, (4.6-12)

valid for m = 0, 1, 2 .... In summary, whereas the aperiodic fields vm(rlR) and

pm (rlR') satisfy equations (4.2-12) to (4.2-14) and jump conditions (4.2-18) to

(4.2-21), the fully spatially periodic fields m (rlR') and m (rlR') satisfy (4.6-12),

(4.6-9) and (4.6-7), namely

/,V2m- vptm = pm+l _ 2V . tvm+ _- ,vm+2. I, (4.6-13)

V V = -I Vm+l, (4.6-14)

vm = 0 V(r sp), (4.6-15)
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with the jump condition (3.4-3) implicitly satisfied by their fully spatially periodic

nature.

4.6.3 Characteristic Cell Problems and General Auxiliary

Conditions

Similar to the definitions (4.3-20) for the zero-order flow, (4.4-23) and (4.4-35) for

the first-order flow, and (4.5-12), (4.5-24) together with (4.5-34) for the second-order

flow, define the constants Tm(IR') as

-m (IR') def ( m (lRR')). (4.6-16)

Observing the patterns of equations (4.5-10), (4.5-11), (4.5-22), (4.5-23), (4.5-32) and

(4.5-33) of the second-order flow problem, it seems resonable to assume (subject, of

course, to a posteriori verification) that the dependence of Vm(rlR) and pm(rR')

upon the constants i-m(R') (and hence upon R') is linear and can be removed by

defining solutions of the respective forms

j=o

Pm (rlR') de m (R) + ZE I(r) {.}Ij+ j+l+m( IR), (4.6-18)
j=o

where the spatially periodic fields Vm (r) and rtm(r) are to be determined. Upon

forming the cellular average of (4.6-18) and using the normalization condition (4.6-16)

we obtain
00

E (iJ(r)) {.} j+l J++m(IR/) = 0.
j=o

Since this must hold for all values of m = 0, 1, 2,..., this shows that IIm(r) must be

normalized as

(iim) = 0. (4.6-19)

113



The no-slip condition (4.6-7) written for the proposed solution (4.6-17) gives

00

Evj {.}j+l Vj+l+m 0sp) V(r E sp).
j=o

As this must apply for all m, equality is satisfied by the choice

V m = 0 V(r E Sp), (4.6-20)

valid for m = 0, 1, 2, ....

Integrate the continuity condition (4.6-9) over the fluid domain f, use the diver-

gence theorem, the spatially periodic nature of these fields, and the fact (4.6-7) that

they vanish on the particle surfaces to derive the restriction

I (m+l) = 0 V(m = 0,1,2,...). (4.6-21)

Substitution of the proposed solution (4.6-17) into the above equation thereby fur-

nishes the generalized auxiliary conditions:

E (Vj) {.}j+2 Wj+2+m = 0 V (m = 0, 1, 2,...), (4.6-22)
j=o

restricting the values of the constant tensors im(IR'). This equation is what was

previously termed auxiliary condition #m, possessing the form (4.4-57) for the trun-

cated first-order flow field and (4.5-54) and (4.5-55) for the truncated second-order

field.

Rewrite the continuity condition (4.6-9) as

V · m + I: Vm+l = 0,

and substitute into this the proposed solution (4.6-17) to obtain

[V Vj ] {.}j+1 +l+m + E V j {.}j+2 j+2+m = O.
j=O j=O
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This may be rewritten equivalently as

00 00

v. Vol.] +m + E [V Vi] {.}j+1 ij++m + E Vi {.}j+2 j+2+m = 0.
j=_ j=o

The latter two summations may be combined by replacing the dummy index j by

j + 1 in the second term, yielding

00

[V . Vo°] . 1+ + E [V V+ + V j ] {.}j+2 ij+2+m = 0. (4.6-23)
j=o

This must be satisfied for all m = 0,1, 2,.... Set m = 0 in the latter and note

that the vector l (R') is arbitrary, and not otherwise restricted by the generalized

auxiliary conditions (4.6-22). This reveals that the dyadic field V°(r) must satisfy

the continuity condition

V V = 0. (4.6-24)

The latter two displayed equations combine to give

00

1 [vj. V + + Vi] {.+2 j+m = O.j=o

This relation would appear to require that V Vj+ = -V j. However, this would

lead to the erroneous conclusion that (Vj) = 0. The source of error resides in the

fact that the tensors Wm(IR') are not totally arbitrary, but rather must satisfy the

general auxiliary conditions (4.6-22). It is because of this fact that the latter equation

may be rewritten in the equivalent form

00

E [v + 1+ V - ()] {.}J2 -j+2+m = O.
j=0

Furthermore, since every m(lR) is a fully symmetric tensor, this equation may be

satisfied by the choice

V Vm+ l = E-Vm - (Vm)] . (4.6-25)
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Equations (4.6-24) and (4.6-25) combine to furnish the following 'continuity con-

straint' on Vm(r):

V.Vm =
0

- (Vm1)I

(m = 0),

V(m = 1, 2,3,.

The linear momentum equation governing Vm(r) and fIm(r) can be derived as

follows. Rewrite (4.6-12) as

iV2i m - Vpm -_ m+l + 2/V . tjvm+l + m+2. I = 0,

and substitute into this the proposed solutions (4.6-17) and (4.6-18), thereby obtain-

ing

00

[ 2V jvi- viJ] {.}j+1 j+l+m
j=O

oj=

+[j=o
j=0

{.}j+2 j+2+m

{ * }i @+2+

= 0.

Next, separate out the j = 0 and j = 1 terms of the first summation, the first term

of the second summation, the first term of the third summation, and collect terms to

obtain

[V2Vo - Vji - I]

- Vii- I° + 2t (VV)]

-m+2

-m+2

00oo

+ E [V2Vi
j=2

- vi] {.}j+1 j+l+m

+ 2t(VV))] { .}j+2 j+2+m
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+ j= j+ j+3m 
j=o

+ [V2V1

+ E -IJi
j=1



+ E [Vji] [} j e3+3
j=o

= 0.

The three summations in the latter may be combined upon expressing the first two

as sums from j = 0 to oo, thus resulting in the expression

[V2V- VO- V °_I] .m+l

+ [V2 _ V_ I - + 2t(VVO)l +2+1 ~ -V11-1 fi + qm±2

+ [V2Vj+ 2 _ V j+2 I-_ +l + 2t (VVj+ l) + VjIj {.}j+3 j+3+m
j=0

= 0.

Since this expression must be satisfied for m = 0, 1, 2..., and because W (JR') is a

fully symmetric tensor, the fields V m (r) and -Im(r) necessarily satisfy the relations

v2Vmv_ vIm =

I

I i°o - 2t (VVO) ]s2

[ Iim-- 2t (vVm-)vm-2I l

(m = 0),

(m = 1), (4.6-27)

V(m > 2).

The latter equation along with (4.6-26), (4.6-20) and (4.6-19), namely

V. Vm =

o (m = 0),

- >_-

V m = 0 V (r E sp), (4.6-29)

(jIm) = 0, (4.6-30)

constitute the O (m) cell problem for m = 0, 1, 2,... as were derived in the previ-

ous sections (4.3-52), (4.4-56) and (4.5-53) for the special cases of m = 0, m = 1

and m = 2. Notice that although equations (4.6-12), (4.6-9) and (4.6-7) satisfied
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by (m, pm) were expressed in terms of higher solutions (making a general solution

somewhat unclear), the characteristic cell problems (4.6-27), (4.6-26), (4.6-20) and

(4.6-19) for the fields (Vm, IIm) are expressed in terms of lower solutions. (This also

furnishes one of the reasons that solutions derived in the previous sections had to

begin with the highest-order terms, subsequently to be solved successively for each

lower term.) The generation of the characteristic cell problems and their unique-

ness at each order confirms the proposed solutions (4.6-17) and (4.6-18) of the fields

vm(rlR') and pm (rlR').

4.6.4 Microscale Velocity and Pressure Fields

Substitute (4.6-17) into (4.6-1) to obtain

,Iv(R) = (r) { }i+ I+ (R)] {.}m{R-R'} m (4.6-31)

Several ways exist to express the latter in a more useful form. An obvious form would

be to group together summations involving like powers of 'M(IR'). This can be done

by replacing j by j - m, followed by interchanging the order of the summations to

obtain

00 j

1 v(R) = I 1 v-m {R- '} }j+1 j+
j=0 Lm=0 

- V° · W1+ [+ VtJ °R - R'}]: 

+ V2 + V1 R - R'} + 2° {R- }2] +.... (4.6-32)

A similar procedure in which (4.6-2) is combined with (4.6-18) yields

p(R) = + E J(J + 1)!+ {3- R - R} ]{.}j+1 m
j=0 m=0 (4.6-33)

(4.6-33)
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Equations (4.6-32) and (4.6-33) represent the general forms of the microscale velocity

and pressure fields. The choice of ' (R') = 0 for m > 2, 3 or 4 yields the truncated

zeroth- first- and second-order solutions respectively, as outlined in previous sections.

Alternatively, (4.6-31) may be regrouped in terms of tensor functions multiplying

each cell solution im(r). Interchanging the summations in (4.6-31) yields

00

pv(R) = E Vj {.} j E -j+l'm' {.}m { R - R'}m (4.6-34)
j=0 M=

Notice that the term in brackets has the form of a Taylor series. This suggests defining

the scalar field

'b(R) def z -! (IR') {}m {- R'} m, (4.6-35)
m-O0

wherein any dependence of +(R) upon choice of reference point does not appear for

the same reasons it is absent from (4.6-34). This allows (4.6-34) to be rewritten as

00

v(R) = E Vj(R) {()j+l Vj+lV(R). (4.6-36)
j=0

Likewise, the microscale pressure field may also be written in terms of the function

V)(R) as

p(R) = tb(R) + E ij (R) {.}j+1 V j+l/(R). (4.6-37)
j=o

To understand the significance of the function i(R), it is useful to look at the

microscale solutions generated by various forms of b (R). The case b = °0 results in

v(R) = O0 and p(R) = To which corresponds to a quiescent fluid in a porous medium.

The case 4' = o + R corresponds to the zeroth-order flow field with the velocity

being spatially periodic and the pressure being composed of a spatially periodic part

(a homogeneous flow field on the macroscale) and a part varying linearly with R.

Including higher order powers of R in O(R) results in higher order inhomogeneities

in the corresponding flow fields.
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4.6.5 General Auxiliary Condition Imposed Upon b(R)

Since the fluid is incompressible, a restriction upon the choice of the function '(R)

exists. Form the divergence of (4.6-36) to obtain

iV V -= 0 = E [V Vi] {.}j+l Vj+l + E Vj {.}j+2 ViHj+2p,
j=o j=o

which can be rewritten as

0 = [v . VO] V + E [V .V+l + Vi] {}2 V-2 .
j=O

Use of the cellular continuity condition (4.6-26) enables the latter to be expressed as

00

0 = E (Vi) {}j+2 V j+2p. (4.6-38)
j=o

This represents an alternative form of the generalized auxiliary conditions, since

if we substitute the definition (4.6-35) into (4.6-38), rearrange yields

E 1 I (Vi) {.}J+2+ {} {R- =0

which must be valid for all powers of R - R'. As such, the inner summation must be

identically zero for all m. This is precisely the generalized auxiliary condition (4.6-22)

derived previously. The utility of the forms (4.6-36), (4.6-37) and (4.6-38) is that the

solution v(R), p(R) no longer needs to be described in terms of the set of reference

cell dependent tensors Tm(IR'), but rather in terms of the scalar function +(R).

4.6.6 Summary of Generalized Microscale Flow

The microscale velocity v(R) and pressure p(R) fields satisfying the steady, incom-

pressible, creeping flow equations (4.2-1) and (4.2-2) at all points R in the interstitial

fluid domain together with the no-slip condition (4.2-3) on particle surfaces can be
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written in the respective forms

00

I.v(R) = E Vi(R) (.}j+ Vj+1y(R)
j=o

and
00

p(R)= - (R) + E Hi (R) {}j+1 Vj+l(R).
j=o

The microscale information pertaining to the flow fields is contained in the fully

spatially periodic fields [Vm(r), Hm(r)], which represent solutions of the 0 (m) cell

problem:

0 (m) cell problem: (4.6-41)

V2Vm _Vm =n

V V 

jm

I

I

[ II - 2t (VVO) ],2

Iiim- - 2t(VVm-1) - Vm-2I m+l

0

-- Vm-1- KVm-1)]S

(m = 0),

V(m> 1);

= 0 V(r E sp;m >1);

= 0 V(m> 1).
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Likewise, the macroscale information pertaining to the original flow fields is contained

in the scalar function +(R), which obeys the restriction

E (Vi) {.}j+2 Vj+20 = 0. (4.6-42)
j=o

but is totally arbitrary apart from this. The function +(R) may be chosen so as to

describe externally imposed macroscale fields.
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Chapter 5

Generalized Macroscale Flow

through Porous Media

5.1 Introduction

The exact solution determined in Chapter 4 will be analysed in this chapter to deter-

mine the relevant macroscale fields, namely the macroscale velocity V and stress P.

These macroscale fields will be expressed in terms of the tensors W"n for each order

of flow. The velocity relation ultimately obtained in this way can then be inverted

so as to express the macroscale pressure gradient in terms of the macroscale velocity

and its gradients. Ultimately, both Darcy's law and a Brinkman-like generalization

thereof-together with the phenomenological coefficients appearing therein-can be

determined from the unit cell geometry.
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5.2 Basic Macroscopic Flow Theory

In general, any transport process occuring in a porous media is characterized by two

different length scales on which the phenomena may be viewed. These are represented

respectively by the characteristic length scale of the particles (or the unit cell) over

which the relevant microscale fields vary due to boundary conditions satisfied on the

particle surfaces sp, and the length scale L over which the mean or average fields

vary sensibly. In general L will refer to the linear dimensions of the boundaries of the

porous medium. A detailed description of the procedure used to derive the macroscale

equations from their microscale counterparts is given by Brenner and Edwards [28]

and by Nitsche and Brenner [82]; hence, only a brief review is given here.

5.2.1 Macroscale Metrics

In formulating a macroscale description of an exact microscale field such as v(R),

it is important to note that at the macroscale the distinct fluid and particle phases

do not possess separate identities. Instead, any macroscale field [such as v(R)] when

evaluated at a macroscopic 'point' is a composite entity, deriving from the properties

of both the fluid and particle phases. On this coarse scale, distances less that the

characteristic length of a unit cell are irresolvable. As such, the macroscale position

vector in this continuum limit is defined as

R R, (5.2-1)

while the macroscopic 'differential' displacement vector dR between the neighboring

cells R and R + dR (i.e., between Rn and Rn + lk), defined as the displacement

vector connecting two adjacent lattice points, is by definition

R def
dR df k, (5.2-2)

with lk any basic lattice vector.

Again, since distances less than Ilk[ cannot be resolved at the macroscale, the
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directed area of a curvilinear face of a unit cell can be interpreted from a macroscale

viewpoint as being
-- def

dS =sk, (5.2-3)

in which dS is regarded as a 'differential' element of surface area of the macrocontin-

uum.

The volume r0 of a unit cell is infinitesimal when viewed at the macroscale; hence,

one can define the macroscale differential volume element, denoted by dV or d3 R, as

{dV or dR} de'r (5.2-4)

It then follows from (B.O-10) together with (5.2-2) to (5.2-4) that since To0 = sk lk

(no sum on k) then

dV = dS · dR, (5.2-5)

which is consistent with the findamental definition of an elementary differential vol-

ume. The quantities dR, dS and dV serve to characterize the differential macroscale

geometry.

5.2.2 Macroscale Velocity, v

Consider the net volumetric flow rate of fluid qk through the cell face sk of cell n:

qkn I
Sk {n}

dS v(Rn, r). (5.2-6)

We seek to express (5.2-6) in the form

qk = Sk V(Rn), (5.2-7)

where V is independent of the particular choice k (k = 1, 2, 3) of cell face.

Furthermore, from a macroscale viewpoint, qk, defined by (5.2-6), possesses the in-
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terpretation [28, 82]

d= df qk, (5.2-8)

the quantity dq denoting a differential flow rate through the surface dS(_ Sk) on the

macroscale. Hence, in combination with (5.2-1) and (5.2-3), the relation (5.2-7) may

be expressed in the classical, Eulerian form

d = dS (R). (5.2-9)

The physical significance of (5.2-9) resides in the fact that it constitutes a purely

macroscale definition of the macroscale velocity vector V, completely analagous to the

comparable definition of the microscale velocity v appropriate to a true continuum,

namely

dq = dS v. (5.2-10)

In particular, V is that vector which is independent of the magnitude and the direction

of the areal vector dS, such that when dot multiplied by the differential macroscale

area dS, gives the volumetric flow rate dq through dS. Definitions of V based purely

on volume averages [14, 102, 103, 121] of v are inappropriate since such definitions

fail to provide a physical proof of (5.2-9).

5.2.3 Macroscale Stress, P

Just as the macroscale velocity V possesses a purely macroscale interpretation (5.2-9),

one similarily expects the macroscale stress P to be defined as that dyadic (indepen-

dent of dS) which when dotted with dS gives the force df exerted by the material

lying on the positive side of dS (that side into which dS points) upon the material

on the negative side, i.e.,

df = dS P(R). (5.2-11)
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To this end, consider the force fk exerted by the fluid on the positive side of sk upon

the fluid on the negative side of sk of cell n,

deffk -
skf{n

dS- P(Rn, r), (5.2-12)

where the microscale stress P is defined as

p def -Ip + 2S (5.2-13)

with

Sdef [(Vv + t(Vv)] (VV)

the symmetric rate of strain tensor. Here, A represents the symmetric part of the

tensor function A with respect to its first two indices.

The next step consists of expressing (5.2-12) as

fk = Sk P(R.), (5.2-15)

where P is independent of the particular choice k (k = ±1, ±2, ±3) of cell face. As

in (5.2-8) and (5.2-3), the macroscale interpretation of fk is [28, 82]

df def- fk. (5.2-16)

This macroscale stress can be decomposed into normal and deviatoric stresses as

follows:

(5.2-17)

-s i+ -a- -Ip +T +T.

In the latter,
_ defp -vI: P

(5.2-14)

(5.2-18)
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and

Ts def P + )I I P) . (5.2-20)

Ta def ( t (5.2-21)

Here,

v-2= (I: I)- , (5.2-22)

denotes the inverse of the dimensionality N of space, namely v = 1/N. Explicitly, v 

1/2 or v = 1/3 for N a 2-dimensional or 3-dimensional problem respectively. Equation

(5.2-19) defines the macroscale mean pressure p. Similarily, T is the macroscopic,

traceless, deviatoric stress tensor-which is further broken down into its (traceless)

symmetric and antisymmetric parts, T and Ta, respectively. The antisymmetric

dyadic Ta can further be expressed in terms of the pseudovector Px as

-a 1 -T =- P (5.2-23)
2

where Px is defined as

def
P def -' P (5.2-24)

= -e:T

with e the unit isotropic triadic (unit alternating tensor).

Note that no aphysical assumptions have to be made regarding the possible exis-

tence of a (microscale) pressure field or pressure gradient within the particle interiors,

in contrast with the case of a volume average approach [6, 45, 73, 103, 120], where

this ambiguous and physically undefined concept plays a key role.
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5.2.4 External Body Force Density

Consider the force (per unit superficial volume) exerted by the fluid upon the particles

in cell {n}:

F=-- / dS P, (5.2-25)
Sp{n}

where dS points into the particles. Since the particles are fixed in space, Newton's

law of conservation of momentum requires that the sum of the various forces exerted

upon the particles is identically zero:

F + F(e) = 0. (5.2-26)

From the latter two equations, it follows that

) j=- dS* P (5.2-27)
o

represents the external force (per unit superficial volume) exerted by an agency lying

'outside' the porous medium upon the particles. This can be converted into a surface

integral by using the divergence theorem while noting that the microscale stress field

is divergence free; hence the result

E(e) = - J dS P(Rn, r). (5.2-28)
TO

5.2.5 External Body Couple Density

The torque (per unit superficial volume, and with respect to an origin at the point

from which R originates) exerted by the fluid upon the particles in cell {n} is, by

definition,

J 1 / R x (dS.P). (5.2-29)
sp {n}
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As the particles neither translate nor rotate, conservation of angular momentum re-

quires

+ (e) =o (5.2-30)

which shows that the volumetric external torque density exerted by an agency lying

'outside' the porous medium upon the particles is given by

L(e) 1 

sp{n}

R x (dS P).

Upon use of the divergence theorem this gives the intermediate result:

L(e) = 
To f{n}

V (P x R) d3r - J
aO o n}

R x (dS P).

But, as a consequence of the identity

V.(P xR)=(V.P) x R-P, (5.2-33)

jointly with the facts that P is divergence free and symmetric, this simplifies to

(e) -1 J Rx (dS P).
aro{ n}

(5.2-34)

Decompose R into Rn and r (B.0-1), and write

L(e) = Rn x 1aT

7 a 9TO

dS P)
-If

TO aT

r x (dS P), (5.2-35)

which has the form

(5.2-36)
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with the external body force density F(e) given in (5.2-28) and the external body

couple density N(e) given as

N(e)= -- r x [dS-P(Rn, r)]. (5.2-37)
aT7O

5.2.6 Macroscale Linear Momentum Equation

Since the macroscale definitions of V and P [see Eqs. (5.2-9) and (5.2-11)] are iden-

tical to their microscale counterparts, effective-medium equations follow naturally

from Newton's laws of motion and continuum-mechanical theory. Cauchy's linear

momentum equation written for this macroscale continuum is

DMt = () .P (5.2-38)
Dt

where M is the volumetric momentum density and D/Dt the material derivative. At

each flow order (and hence for a general flow) it will be shown that the macroscale

stress P computed from (5.2-11) and the external body force density F(e) computed

from (5.2-28) satisfy the relation

F(e) + V P = O (5.2-39)

The solution scheme involves computing V, P (or T) and F(e) for each order of

flow from the exact microscale results of Chapter 4. Subsequently, the dependence

of T and F(e) upon V and its macroscale gradients is determined. The macroscale

momentum equation can then be derived from (5.2-39) and (5.2-17) as

p F(e) + .T. (5.2-40)

With T and F() expressed as a function of V, Eq. (5.2-40) will ultimately produce

the relation between the macroscale pressure gradient and the macroscale velocity

field [cf. Eq. (5.3-39) for the zeroth-order flow]. Finally, the macroscale continuity
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condition

V v= O (5.2-41)

will be shown to arise from the auxiliary conditions (4.6-22) imposed upon the mi-

croscale velocity field.

5.2.7 Macroscale Angular Momentum Equation

Again, from the macroscale definitions of V and P, Cauchy's angular momentum

equation written for this continuum is

DI = p + N(e) + V (5.2-42)
Dt

where I is the volumetric intrinsic angular momentum density. At each flow order

it will be shown that the macroscale antisymmetric stress (represented by its pseu-

dovector, Px) calculated from (5.2-11) and the external body couple density N(e)

computed from (5.2-37) satisfy the relation

P, + N(e) = 0. (5.2-43)

As such, the macroscale couple stress C for this macroscopic description of flow in

porous media is at most a constant (possibly zero).
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5.3 Zeroth-order Macroscale Flow

For zeroth-order flow, the velocity and pressure are given by (4.3-50) and (4.3-51) as

[v(R) = V°(R) T'I (5.3-1)

and

p(R) o +W .R

+TI(R). . (5.3-2)

The dependence of these and subsequent microscale fields upon the arbitrary reference

point R' has been suppressed in the interest of clarity, as well as the fact that its choice

does not effect the final results.

5.3.1 Macroscale Velocity, v

Substitute (5.3-2) into (5.2-6) to obtain

qk = - dS Vo) (5.3-3)

where the explicit dependence of sk upon n has been deleted since the integrand is

independent of n. This integral can be simplified by using the identity (Brenner and

Edwards [281)

(5.3-4)[dS A- sk - JrdS.A,
c, To,,>

UcTo

valid for any tensor function X whose jump is zero (i.e., [|A[: 0).

(5.3-3) becomes

qk - Sk ' -
lTlj -oa7o

Consequently,

rdS- V .- W (5.3-5)
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This possesses the same form as (5.2-7). Hence, upon recognizing that the term in

brackets is simply V ° , the zeroth-order macroscale velocity field is found to be

iuv(R) = V ° .. 1 (5.3-6)

This shows the macroscale velocity field for the zeroth-order flow to be homogeneous,

i.e., a constant independent of R. Since V° is both symmetric and negative definite,

its inverse exists and is unique. As such, (5.3-6) can be inverted to express the vector

Il as a function of V:

I1 = ° -. V, (5.3-7)

where Ao = (V0)-1

5.3.2 Macroscale Stress, P

From (5.3-1), (5.3-2), (5.2-13) and (5.2-14) the microscale zeroth-order stress field is

P(R) ( +-1 )
P0 (R). 1, (5.3-8)

where the (n + 3)rd rank tensor Pn(R) is defined as

n d-f _ + 2(VVn) V(n 0, 1, 2,...), (5.3-9)

representing the geometric stress determined from the unit cell problems. It is obvi-

ously symmetric with respect to its first two indices.

Substitute (5.3-8) into (5.2-12) to obtain

fk dST°- ldSr'- dS Rn lfPdS'P°) ''

of which the first and third integrals are, by definition, sk. The second may be
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rewritten by using (B.0-10) and the fourth by using (5.3-4), thereby obtaining

fk = s -I lk dSr+IR2n) Y *,1+ rdS. P°) . (5.3-10)

The lk term appearing above is of O (dRI) while the next term is of (Ri). Hence,

since RI > dRI, the former term may be neglected compared with the latter. Upon

defining the mean geometric stress tensor VF of rank (n + 3) as

de-f 1 rdS . Pn(r) V(n = 0,1,2,...), (5.3-11)
7o

and comparing (5.3-10) with (5.2-15), it follows that the zeroth-order macroscale

stress field is

P(R) I 1

+Po · 1 (5.3-12)

which is accurate to O (dRI).

The macroscale pressure determined from (5.2-19) is then

(R) o + WIK R

-vI : P , (5.3-13)

consisting of a constant term and one that grows linearly with R.

The symmetric part of the traceless, deviatoric stress calculated from (5.2-20) and

(5.3-12) is

T = 2 +tP· )-VII: A] ]·X (5.3-14)

while the antisymmetric part derived from (5.2-23), (5.2-24) and (5.3-12) is

Px = -:P P . . (5.3-15)
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Whereas the mean macroscale pressure p depended linearly upon R, the symmetric

portion of the macroscale deviatoric stress is a constant, independent of R. By using

(5.3-7), the constant 1 can be replaced by the macroscale velocity V, enabling the

two parts of the deviatoric stress to be respectively expressed as

Ts = K() v (5.3-16)

and

Px =/,tc~lu v. (5.3-17)

The constant triadic K(), linearly relating the macroscale velocity to the sym-

metric part of the deviatoric stress, is defined in cartesian tensor summation notation

as
-M 4ef I (-0O -0 0 _0
K ijk - Pijm + Pjim) -vcijPm Amk. (5.3-18)

From the properties of Ts, this triadic is symmetric and traceless, each with respect

to the first two indices of ijk:

Kijk = Kjik (5.3-19)

and

Kii j = 0 V (j = 1, 2, 3). (5.3-20)

Hence, of the 27 components (for three dimensions or 8 for two dimensions) of K(), at

most 15 (or 4) are independent. This number decreases as a result of any geometric

symmetries possessed by the skeletal spatially periodic medium. The constant pseu-

dodyadic c(l) relating the macroscale velocity to the macroscale stress pseudovector

(or antisymmetric stress) is defied as

-(I) def _O -0ij = -ikllkmAmj. (5.3-21)

Since () transforms a true vector V into a pseudovector Px, a porous medium (such

as a square array of circular cylinders or spheres) possessing reflection symmetry will

be characterized by -() = 0.
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5.3.3 External Body Force Density, F(e)

From (5.2-28) and (5.3-8), the external force per unit of superficial volume exerted

on the particles in order to prevent them from translating or rotating in the presence

of this zeroth-order flow field is given by

e) fdS -I( (5.3-22)oF dS [-I ( + 1 R) + o (53-22)
Ado

The latter may be simplified upon using the decomposition (B.O-1), and recognizing

that surface integrals of spatially periodic functions (of which constants are special

cases) are identically zero (4.3-39); hence,

V(e) I / dSr_ .F(e) =1 fj dSrV1. (5.3-23)

Together with the identity

-if dSr = - Vrd3 r (5.3-24)
TO0 o

I-1 Jd3r
7'0-I

one thereby ultimately obtains

one thereby ultimately obtains

(5.3-25)

Essentially, the external force required to keep the particles from translating or

rotating is uniform throughout the porous medium for this zeroth-order flow field;

that is, it is independent of {n} and hence of R. Combine the latter with (5.3-7) to

obtain

F(e) - A.· v, (5.3-26)

which shows the external force depends linearly upon V. Now, form the macroscale
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divergence of P from (5.3-12),

V P = -) (5.3-27)

and compare this to the expression for the external body force density (5.3-25),

thereby obtaining the macroscale linear momentum equation

F(e) + V. P = 0 (5.3-28)

satisfied by the zeroth-order flow field. Hence, the divergence of the macroscale

stress (determined by considering the forces acting on the cell faces) is balanced

by the external body force density (determined by considering the forces acting on

the particles). Equation (5.3-28) provides confirmation that (sans inertia) Cauchy's

linear momentum equation (5.2-38) is satisfied by the macroscale fields, at least for

this zeroth-order flow field.

5.3.4 External Body Couple Density, N(

From (5.2-37) and (5.3-8), the external couple volumetric density exerted on the

particles, which prevents them from translating and rotating as a result of this zeroth-

order flow field, is given by

N(e) = :- rdS [- + ' .R) + P o 1]. (5.3-29)
o 70

In the preceding, the identity

a x b = -e: ab (5.3-30)

has been used to rewrite the cross product between any two vectors a and b. Ex-

panding R via (B.0-1) and using similar arguments to those invoked in simplifying

(5.3-10) yields

(e) I (TW° 1 -R) + P T1] (5.3-31)
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Since c: I = 0, this reduces to

N(e)' po 1 , (5.3-32)

which upon introduction of (5.3-7) gives

N(e) -e' {0. .T v. (5.3-33)

This shows that the external body couple is a constant, independent of R, and that

it depends linearly upon the (constant) macroscale velocity. Comparison of (5.3-32)

with (5.3-15) shows that

Px + N() -= O (5.3-34)

for this zeroth-order flow field. Basically, the pseudovector P, characterizing the

antisymmetric portion of the macroscale stress is shown here to be the negative of

the external body couple density for this order of flow. As a result, the couple stress

C in Cauchy's angular momentum equation (5.2-42) does not contribute, and may

be a constant, or at least of order dR smaller than the external body couple and

antisymmetric macroscale stress.

5.3.5 Macroscale Equation: Darcy's Law

The macroscale relation between VP and the velocity field may be derived from

(5.2-40) along with the corresponding expressions for Ts (5.3-16), Px (5.3-17) and

F(e) (5.3-26) as

Vp=F(e)+V T + e' P x, (5.3-35)

wherein

F(e) = p. , (5.3-36)

Ts - pKq) v (5.3-37)

Px = pc() . , (5.3-38)
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with K(l) and c(') defined as in (5.3-18) and (5.3-21) respectively. 

As V is constant for this zeroth-order flow field, the stress contributions in (5.3-35)

disappear upon forming the divergence, so that the resulting macroscale linear mo-

mentum equation is simply

Vp= -k - .v, (5.3-39)

where the permeability dyadic is defined as

k def _V. (5.3-40)

Accordingly, k is a symmetric, positive-definite dyadic. Equation (5.3-39) is, of course,

Darcy's law. The continuity equation (V. V = 0) for this zeroth-order flow is au-

tomatically satisfied because V is a constant for this flow. [However, a continuity

condition will appear for higher-order flows as a consequence of the auxiliary condi-

tions (4.6-22).]

1Caution should be taken when combining the generic linear momentum equation (5.3-35) with
the zeroth-order constitutive relations (5.3-37) and (5.3-38) for the stresses because this could lead
to the erroneous result

1- - - 11Vp = A° V + [t-K(')- - ()] (Vv)t
2

where the term ()) i-e (l) may be thought of as relating the macroscale velocity gradient to
the macroscale pressure gradient. However, from the results of higher order flow fields, the external

body force density F(e) will have contributions dependent upon higher order macroscale gradients
of v, hence there will also be a contribution to Vjp which is linear in VV but which comes from the
external body force density.
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5.4 First-order Macroscale Flow

For the first-order flow, the microscale velocity and pressure fields are respectively

given by (4.4-54) and (4.4-55) as

ILv(R) = V°O(R) [ + R]

+V1(R) : T2 (5.4-1)

and

-O -1 1-2p(R) = + +F R+ W' :RR
2

+ftl(R): W2. (5.4-2)

5.4.1 Macroscale Velocity, v

As in the definition (4.3-41) of V °, define the (n + 2) rank tensor

-n def 1 rd (r)

aTo

This tensor is obviously symmetric with respect to its last n +

tute (5.4-1) into (5.2-6) and rearrange using (5.3-4) and (B.O-10)

definitions of V ° and V1 . This yields

1 indices. Substi-

while utilizing the

qk=k [-.1 ( ) S (5.4-4)

As in the comparable stress calculation of §5.3.2 the second, lk, term may

when compared with the third. Comparison of (5.4-4) with (5.2-7) then

v(R) [ -+ 2 . ]
+V 1 : 2

be neglected

gives

(5.4-5)
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for the first-order macroscale velocity field v(R), accurate to within an error of

O (IdRI). The macroscale velocity field for this first-order flow is seen to be composed

of a homogeneous part plus a part which varies linearly with R. Of course, setting

W2 = 0 recovers the homogeneous zeroth-order flow field, discussed in § 5.3.1.

Form the macroscale gradient of (5.4-5) to obtain

/*VV- = Hr2. g, (5.4-6)

wherein the symmetries of q2 and V° have been used. Upon computing the trace of

(5.4-6) and comparing the result with auxiliary condition #1 (4.4-25), it follows that

the latter may be expressed in the alternate form

V v = , (5.4-7)

corresponding to the macroscale continuity equation.

Equation (5.4-6) can be inverted and expressed in Cartesian tensor notation as

[ 2]ij = ItiljmArmk VIVk, (5.4-8)

with the fourth-rank isotropic tensor I4 defined as

I'4k def iS kl (5.4-9)

(6 ij6 kl + 6kj 6il) (5.4-10)
2

The velocity gradient in (5.4-8) may be further decomposed by rewriting VV as

1
VV -S + 2e- , (5.4-11)

where S is the macroscale symmetric rate-of-strain dyadic, defined as

-gef 2[(V) t , (5.4-12)
2 --
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and w is the macroscale pseudovector vorticity, defined as

- def
w = x V.

Equation (5.4-8) then adopts the equivalent form

I WIij = i4nj1AmoI4 nkOSlk

+ IInjmAmo2nok wk.

Substitution of (5.4-14) into (5.4-5) ultimately gives

-1 -2I>@+)4R Io_ -

-Y AiVlmnno~mj ' Sjki

/ Xi l Vl mnnno 2 Emoj Wj X2

(5.4-13)

(5.4-14)

(5.4-15)

in which the symmetry of V1 with respect to its last two indices has been used.

5.4.2 Macroscale Stress, P

The microscale stress tensor for this first-order flow, determined from (5.4-1), (5.4-2),

(5.2-13), (5.2-14) and (5.3-9), is

+1P(R) .R+ 1-I2
2

:RR]

+P°(R) q1 + W2 -R]

+pl(R): 2 + 2 [VO(R) 2] . (5.4-16)

Introduce this into (5.2-12) and again compare the relative orders of the resulting

terms, enabling one to replace R" by R n and ultimately by IR. Thereby, one obtains

the first-order macroscale stress field,

P(R) 2
:R R
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· [1 =+o+ P +V

to within an error O (dRh), in which

-2 + V- ---2
(5.4-17)

the (n + 4)th rank tensor V is defined as

V - rVn(r)dS. (5.4-18)

The latter yields V upon forming its trace with respect to its second and last indices.

From (5.2-19) the macroscale pressure field is

- 1-2 --p(R) +V + -R+ -2 RR
-vI: PO . [1 + j2 . -]

-V [I: ( +
=)-V

+ V°]
-2

(5.4-19)

in which the last term in the latter will ultimately vanish as a consequence of auxiliary

condition #1 (4.4-25). The macroscale pressure field for this first-order flow thus

possesses constant, linear, and quadratic contributions from the macroscale position

vector R.

The symmetric deviatoric stress, computed by combining (5.4-17) and (5.2-20)

with the inversion relations (5.4-14) and (5.4-15), can be expressed as

-T K( ) _+- K(r)
(5.4-20)

where the constant triadic K() is as defined previously in (5.3-18). In the above, the

constant triadic K(r) and constant tetradic K(s) are respectively defined as

r) def ( V + 1jmn 1
ijk - Kijm mop mn nomp

-o 1
Apq oqk

2

(S) def [ K(I) 1 1 I ] APk 4
ijkl - L- ijm mop + ijmn nomp pq okq7
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where the constant tetradic K 1 is defined as

def T4-0
Kijkl - Imjn [Pmnkl + Vmnkl + Vml6nk]

--v/ij [Pmmkl + Vmmkl +Vk (5.4-23)

The triadic R(r) couples the macroscale vorticity with the symmetric part of the

macroscale stress. It is both symmetric and traceless with respect to its first two

indices:

K) =ijk - K 'i (5.4-24)

K) = 0 V (j = 1, 2,3). (5.4-25)

As well, as a result of the symmetry properties of V 1 and I4, K(r) vanishes when the

permeability (or equivalently A ) is isotropic, showing that a macroscale rotational

flow field in this type of medium does not make a (linear) contribution to Ts.

The tetradic K(s) couples the macroscale symmetric rate-of-strain dyadic to the

symmetric part of the macroscale stress. It is symmetric and traceless with respect

to its first two indices, as well as symmetric with respect to its last two indices:

f(s) -( ) k(s) u(s)
ijkl = jikl = ijk = jilk (5.4-26)

iijk = 0 V({j,k} = 1,2,3). (5.4-27)

The pseudovector corresponding to the antisymmetric part of the macroscale stress

may be derived by combining (5.4-17), (5.2-24), (5.4-14) and (5.4-15), ultimately

yielding

Px = [) V + * + (r. U + -cf(S) ·S] , (5.4-28)

where the constant dyadic c(l) is defined in (5.3-21). The constant dyadic c(r) and

constant pseudotriadic u(s) are defined as

() - Aop (5.429)
1) d [ Cil VIno Cilm llnlo ] A0 pj) (5.4-29)
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Cs de [-il Vno Cilm nlo] Aop knjp7 (5.4-30)

where the constant triadic 1 is defined as

_d def o
Cijk = -ilm Pmlk + Vmlj + j (5.4-31)

A porous medium possessing an isotropic permeability (or equivalently an isotropic

tensor X0) also has the property that c(r) = 0; hence, a macroscale rotational flow

field in this type of medium does not contribute (linearly) to Px.

The triadic (S) is symmetric with respect to its last two indices:

c(s) 4) (5.4-32)
ijk = Cikj. (5.4-32)

5.4.3 External Body Force Density, F(e)

The external body force density, computed by substituting the expression for the

microscale stress (5.4-16) into the defining relation (5.2-28), is

F(e) = + W -2 ._ (O-) : 2 (5.4-33)

for this first-order flow field. In the latter, order-of-magnitude considerations similar

to those used in simplifying (5.3-10) were used. Unlike the zeroth-order external force

(5.3-25), this first-order external force has a component that scales linearly with R.

Putting V2 = 0 in (5.4-33) recovers the lower-order result.

Form the macroscale divergence of P from (5.4-17) and simplify the resulting

expression to obtain

V.P= -_1 _V -R+ ytOj:) . (5.4-34)

Upon comparison with (5.4-33), the macroscale linear momentum equation satisfied
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by this first-order flow is simply

F(s) + V. P = 0 (5.4-35)

as was the case too for the zeroth-order flow. The preceding equation confirms that

the (inertia-free) macroscale form of Cauchy's linear momentum equation (5.2-38) is

satisfied by this flow field.

To express the force density in terms of the macroscale velocity field, rewrite

(5.4-33) using the inversion formulas (5.4-8) and (5.4-15) to obtain

+(e) = ,+ .V [f(L) v (5.4-36)

where the constant triadic f() is defined as

-(I) def -- 0 -1 0 --- 0 r4 o

fijk - -AjlV limAmk - Pljn'nilmamk. (5.4-37)

In the latter two equations, a distinction between contributions to the external force

arising from the symmetric S and antisymmetric -W components of the macroscale

velocity has not yet been made. Equation (5.4-36) will prove useful when determining

the contributions from both the stress and the external force to the mean pressure

gradient.

A similar analysis of the external body couple density N(e) computed from the

definition (5.2-37) and the microscale (first-order) stress field (5.4-16), followed by

comparison with the macroscale stress pseudovector Px determined from (5.4-33),

simply confirms the (inertia-free) angular momentum equation (5.2-43).

5.4.4 Macroscale Equation: Darcy's Law and Couple

As in (5.3-35), the general relation between V5 and v is

Vp = Fe +V. (TS + 1Px), (538)
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where the expressions for F(e), T8 and Px are given in (5.4-36), (5.4-20) and (5.4-28),

namely

(e) o= o +V. [() ] ' (5.4-39)

T = L r) + . + (S) , (5.4-40)

P = p [(l) v +(r) + :(S] . (5.4-41)

The definitions of the constants f(l), R) K(r) (s) c(l), (r) and c(S) may be found

in (5.4-37), (5.3-18), (5.4-21), (5.4-22), (5.3-21), (5.4-29) and (5.4-30) respectively.

Direct substitution of these expressions into the previous equation yields

V =-k + [I(') + -) (')]' (Vv)t (5.4-42)

In writing (5.4-42), no contributions arise from the velocity gradients in the stress,

because the gradient of the velocity field is a constant for this first-order flow. As such,

any higher-order gradients are all identically zero. Comparison of (5.4-42) with the

footnote on page 140 reveals that a contribution from the external force (l) must be

included when retaining higher-order velocity gradients in the momentum equation.

Equation (5.4-42) may be expressed more succinctly as

1-
-V = -k - 1 . V + * V, (5.4-43)

where the constant triadic X* is defined as

--* def -(I) j1 =(- K~)
Xijk =- k kij - -6iklCj . (5.4-44)

This can, in turn, be rewritten explicitly in terms of S and U as

IV -k-1 X) + (s) S+ (5.4-45)
A.
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where the constant dyadic x(r) is defined as

-(r) defit (5.4-46)

and the constant triadic (S) as

(+s) d ) (5.4-47)

Equation (5.4-43) [or (5.4-45)] constitutes the macroscale momentum equation

for this first-order flow. It contains both a permeability term, as in (5.3-39), and

a higher-order term, the latter correcting (5.3-39) for the presence of a macroscale

velocity gradient. Equation (5.4-45) must be solved in conjunction with the continuity

condition (5.4-7), namely

. V = 0. (5.4-48)
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5.5 Second-order Macroscale Flow

In this section, the goal is to determine the contribution to the external body force

density -(e) arising from second-order macroscale gradients of V, namely terms in-

volving VV V. One may compute the contributions to the stress P arising from these

gradients, but when the momentum equation is formed, only those contributions to

the stress up to and including terms involving V V [determined in the previous section

and given in (5.4-20) and (5.4-28)] will contribute to second-order gradients in v. As

such, the subsequent focus will be primarily on determining f(r) [cf. (5.5-21)] and f(S)

[cf. (5.5-22)].

For second-order flow, the microscale velocity and pressure fields are given by

(4.5-51) and (4.5-52) as

v(R)= V°(R) [ + 2 R+ 13 :RR]
+V(R): [2 .+ 3 3 R]

+V (R)iW 3 (5.5-1)

and

-1 1-2 1-3p(R) o R + * R+ - :RR + - RRR
2 6

+I°(R) [~1 + 2* R +3· RR]

+II'(R): 2 + 3 R]

+jI2(R):W . (5.5-2)

5.5.1 Macroscale Velocity, v

As in preceding sections, the microscale velocity field (5.5-1) is substituted into

(5.2-6), and the corresponding macroscale velocity field calculated to be

/v() = °. 2 +
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+Vi a (5.5-3)

with an error of O (IdRl). This second-order macroscale velocity field retains all the

prior elements of the first-order macroscale velocity of § 5.4.1 plus an additional term

quadratic in R. The choice &3 = 0 confirms the previous first-order result. Form the

macroscale second derivative of (5.5-3) so as to obtain

V V V= 3 . V. (5.5-4)

As will now be shown,

v = 0, (5.5-5)

as with the first-order flow. To prove the above, form the gradient of (5.5-3),

VV = i2 + W i]. V + (V1: 3)t, (5.5-6)= + °+
whose trace yields

v.V* :V- 2 + [-V + [ + 3. (57)

Use of the definitions of V° and V, together with the divergence theorem and the

equations satisfied by V°(r) and Vl(r) gives

/V ( V = - (Vo) + (V1)3)+ (r)) V d3r3. (5.5-8)
Tf

In the macroscale limit, r is of order dR, whereupon the latter equation reduces to

V' = :I (VO) W2+ V 3) - t V0 3. R, (5.5-9)

of which the first two terms are zero as a result of auxiliary condition #1, while the

last term is identically zero as a result of auxiliary condition #2. Q. E. D.

Equations (5.5-4), (5.5-6) and (5.5-3) may be successively inverted to obtain the
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respective partial sums

[3] ijk = Injmko Aol V.VE V.

4 0
/ i,,1jm nmk VlVk

4o - q1 6 0 -/~Inio Anp Vpqr Irmqlos Ask VmVUk

and

[@1+ ±2 R+ -13
2 = Aij vj

-Ail Vlkm Amj VkVj
-- --1 -0 1 6 v2

+±Aim (Vmno op Vpqr rlqkns - Vmkls) j VlVkV j,

(5.5-12)

where the sixth rank isotropic tensor I6 is defined as

1J def j]sikIjklmn d [ ij~klbmn

- 6 (6ijiklimn + ij6ml16k n + kjjml6in + 6mjilkn + mj6klAin) -

(5.5-13)

5.5.2 Macroscale Stress, P

The microscale stress for this second-order flow, determined from (4.5-51), (4.5-52),

(5.2-13), (5.2-14) and (5.3-9), is

P(R) +Wi- R+ ±IW2 RR+ R]
2 6RR

R])

+p(R),[l+ 2. R+3 :·RR]
+P (R): [ + . R + (VO(R) R] + 

+p2 (R).3 + 2(V1(R): 3). (5.5-14)
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Substitute (5.5-14) into (5.2-12), and compare terms so as to successively convert

from Rn to Rn to Wn, thereby obtaining the second-order macroscale stress field:

Use of (5.2-19) shows that the macroscale pressure field for this second-order flow is

given by

p(i) +1 R+ 1 *-+ -RR+- · I RR

-I ° [ + 2. 1+2 3 R +1
L[~L --- n:P· .T+2 J

-v[I + V )+ ] I +V ] RI

[I: (12 V-) V'] @ (5.5-16)

This second-order pressure field retains all the previous characteristics of the zeroth-

and first-order fields plus terms multiplied by j3, most notably a term cubic in R.

As mentioned in the beginning of this section, interest lies in determining the

second-order contribution to the external force F(e) rather than the comparable con-

tributions to Ts and Px.

5.5.3 External Body Force Density, F(e)

The external body force density computed from (5.2-28) and (5.5-14) is(e) +- 1-.3 --11(e) ~ - 'I"± '2 ±-3 :RR
2 

t : (5.5-17) -
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The latter may be compared with that obtained by forming V P from (5.5-15),

thereby showing that the divergence of the stress and the external body force density

properly sum to zero for this second-order flow field. The inversion formulas (5.5-10)-

(5.5-12) can be used to express the external force in terms of V and its gradients,

thereby converting (5.5-17) into the form

F(e) = -.A° · + + f V(5.5-18)

The latter is similar to (5.4-36), but now with an additional contribution arising from

the second-order gradient of V. The constant triadic f(l) was defined in (5.4-37); the

constant tetradic f is defined as

-1 derf 6 f7(t) 7VI _-2 TO-1
fijkl - inlop (J ojq qnm + Pojnm + Vojnm + 6ojVnm + AjmVmlip Ak.

(5.5-19)

The macroscale velocity gradient appearing in (5.5-18) may be rewritten in terms of

S and w, ultimately enabling the external body force density to be expressed as

F() = x° ·v + [f( ) v + () . + (S], (5.5-20)

where the constant triadic i(r) is defined as-() def--1 -1
fijk = fjlmEm k (5.5-21)

and the constant tetradic f(8) as

S) derf 1 - -
f ijkl - 2 (jkl + fijlk) (5.5-22)

The form of (5.5-20) will be useful when comparing contributions in the momentum

equation arising from either the macroscale stress or external body force density.

As in previous sections, one may also compute the external body couple density

N(e) from (5.2-37) and (5.5-14), as well as the macroscale stress pseudovector Px
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directly from (5.5-15). The sum of these terms is found to be zero [to within errors

of 0 (IdRI)], confirming the angular momentum equation (5.2-43).

5.5.4 Macroscale Equation: Brinkman's Equation and Cou-

ple

The relation between Vp and V for this second-order flow is similar to that computed

for the first-order flow [equations (5.3-35), (5.4-20) and (5.4-28)], but now with the

external body force density, Fe) given by (5.5-20), namely

(5.5-23)F(e)= ° ·v +. f(l) V + () ' . + y ( ) S
wherein the additional constant tensors f(r) and f(s) are defined in (5.5-21) and (5.5-22)

respectively. Upon combining these relations, the momentum equation may be writ-

ten in a similar form to (5.4-45) as

(-() + P(S) (5.5-24)

where the triadic jt(r) is defined as

I-(r) def y(r) + R(r) + 1E
A 2

(5.5-25)

and the tetradic (s) as

1 (s) def (s) + (s) + 1

2
(5.5-26)

A

The momentum equation (5.5-24) could similarily be expressed in a form analagous

to (5.4-43) as

-Vp=-k-1 .V+ * VV+ Vth-:VVV,
AL /1

(5.5-27)
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where the 'effective' viscosity tetradic p* appearing therein is defined as

_* df t'(s) _ t(r) · E. (5.5-28)

Equations (5.5-24) or (5.5-27) must be solved simultaneously with the continuity

condition (5.5-5), namely

V * v = . (5.5-29)
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5.6 General Macroscale Flow

It is clear from the preceding lower-order cases that the macroscale velocity vector

v, the stress tensor P and, of course, the macroscale momentum equation, can all be

expressed in terms of known geometric constants characterizing the skeletal porous

medium, and partial sums of the Wn's. Furthermore, upon inverting these partial

sums in terms of the gradients of V [see Eq. (5.3-7) for the zeroth-order, Eqs. (5.4-8)

and (5.4-15) for the first-order, and Eqs. (5.5-10), (5.5-11) and (5.5-12) for the second-

order], it is now apparent that any terms including H4, V, etc., for higher-order flows

will ultimately contribute terms of order V 3 V and higher. Hence, the applicability of

the system of equations

1 1
-V = -k- 1 V + VV+ -i* VVV (5.6-1)

V v = 0 (5.6-2)

in describing an arbitrary inhomogeneous flow in a porous medium is correct to order

V V V, as can be shown explicitly from the general microscale flow field developed

previously.

A more insightful way to express the momentum equation is as shown in (5.3-35),

namely

v-=Ie)+ . ( s± + 2 1 ), (5.6-3)

explicitly showing the contributions to the macroscale pressure drop from the ex-

ternal voumetric body force density (e), symmetric deviatoric stress T* and stress

pseudovector Px (being the negative of the external volumetric body couple density,

N(e)). In turn, the dependencies of these quantities upon the macroscale velocity V,

vorticity U and symmetric rate-of-strain dyadic S are given as

(e) = -_/ik - + V'. [f() V + f(r). U + f() S], (5.6-4)

TS v+ , +R(r) -+ (s) : (5.6-5)
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Px = [() .v + car) . + (S): (5.6-6)

with the phenomenological coefficients appearing therein uniquely determined from

the first three lattice fields (Vo, io), (V1, Il') and (V2, j2)
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Chapter 6

Flow through Two-dimensional

Arrays

6.1 Introduction

Here, the first three microscale lattice fields VI and In', whose equations were de-

termined in Chapter 4, are computed numerically for two-dimensional square arrays

of cylinders and ellipses. These fields are then manipulated as outlined in Chapter

5 in order to derive the relevant phenomenological coefficients describing the depen-

dence of the macroscale symmetric deviatoric stress T, stress pseudovector Px and

external body force density Fe) upon the macroscale flow field and porous medium

geometry. As well, the macroscale momentum equation-relating the pressure drop

V jp to the velocity field V and its gradients-is derived for these two types of arrays.
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6.2 Microscale Fields

The exact microscale solutions (4.6-39) and (4.6-40) for arbitrary velocity v(R) and

pressure p(R) fields requires solutions of the cellular lattice fields V m (r) and tIm(r).

The differential equations characterizing each 0 (m) cell problem are set forth in the

system of equations (4.6-41).

The number of unknowns to be solved for (or equations to be solved) increases

with m, since the rank of the lattice field increases correspondingly. In general, the

fields Vm and fIm possess 2 m+2 and 2m+l components (in two dimensions or 3m+2 and

3 m+1 components in three dimensions) respectively, revealing that each cell problem

(4.6-41) consists of 3 x 2 m+1 (or 4 x 3 +1) unknowns and equations. However, the

linear operator in (4.6-41) only affects the first index of V m and nfm. As such, the

equations decouple into linearly independent sets of equations of the Stokes-like form

V2v- V = f, (6.2-1)

v v = 9, (6.2-2)

v = 0 V(r E s), (6.2-3)

(gp = 0, (6.2-4)

along with the requirement on the cell faces 0 -0 that v and are fully spatially

periodic functions. In this Stokes-like problem, v(r) is a vector 'velocity' field and

p(r) a scalar pressure field. These equations are forced by the fully spatially periodic

vector and scalar fields f(r) and g(r). As a consequence of the continuity condition

(6.2-2), the no-slip condition (6.2-3), and the spatially periodic nature of v, it is

apparent that the function §(r) is restricted by the requirement that

(9) = 0. (6.2-5)
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This condition is automatically satisfied since g derives from the inhomogeneous term

in the continuity condition in (4.6-41).

Since the number of unknowns in (6.2-1)-(6.2-4) is 3 (or 4), it would appear that

one needs to solve (6.2-1)-(6.2-4) 2m+1 (or 3m+1) separate times in order to construct

Vm and IIm. The actual number is less as a consequence of the symmetric nature

of V m (which is symmetric with respect to its last m + 1 indices) and Hm (which is

symmetric with respect to all its m indicies). As such, the number of independent

unknowns in Vm and IIm is reduced. This fact ultimately shows that the number

of separate times that (6.2-1)-(6.2-4) must be solved to construct V m and fI m is

reduced to m + 2.

For a two-dimensional array (with perpendicular unit vectors i i and i2 = iy),

Table 6.1 summarizes the choices of f and for each of the two times that (6.2-1)-

(6.2-4) must be solved in order to construct the lattice fields V0 and 110. Similarily,

the construction of (Vl, i') and (V2, 12) is summarized in Tables 6.2 and 6.3

respectively. The explicit dependence of these fields upon previously calculated ones

is apparent in the choices of f and . The symmetric properties of Vm and flm are

also obvious from their relations to v and p.

6.2.1 Numerical Solutions of the Lattice Fields

The inhomogeneous Stokes-like problems posed by Eqs. (6.2-1)-(6.2-4) to be solved

in the construction of the lattice fields Vm and JI m are linear in and ; as such,

solutions exist and are unique. The solutions for v and p were obtained for various

cell geometries by use of the Galerkin finite element technique (Strang & Fix [106]).

A mesh of the cell geometry was first constructed using an inhouse mesh

generator.' A sample mesh for a square array of circular cylinders is given in Figure C-

1 (on page 206) of Appendix C.

Within each element, vI and v2 were approximated using continuous biquadratic

basis functions qi(x, y), whereas f was approximated with continuous bilinear basis

1All codes used here were adapted from pre-existing codes developed by David Bornside and
Prof. Brown's research group.
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Solution to V °, fI °

Input f2 0

Problem 0

#1 ~ Vo,
Solution v2 V201

fi o 

Input f2 1

Problem 9 0o

#2 j 1 '102

Solution v 2 V2 2

Table 6.1: The dyadic field V ° and vector field II° for a two-dimensional geometry can
be determined from two linearly independent solutions of the inhomogeneous Stokes
equations.
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Solution to V1, fli

f1 H°l - 2V 1 V1 °

Input -f22 V 1

Problem -

#1 vL1 VA1

Solution 2 

~P fIn~11

1fl I 2 - 2 V 1o

Input f2 2nl-V122 - V2 2

Problem Problem 9 2 ( (12 )-_ 02 + ( 2 )- 2 o )01

#2 vl V1l 2 or 21

Solution V2 Vf212 or V2°

__ P 1112 or 1121

fi -2V 2V10

Input f2 ft - 2V2V ° 2

Problem 9 (V202)-V2°

# 3 vl V122

Solution V2 V212

p - 22

Table 6.2: The triadic field V1 and dyadic field IlI for a two-dimensional geometry
can be determined from three linearly independent solutions of the inhomogeneous
Stokes equations. The symmetries of V 1 and fI1 are apparent in problem # 2.
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Solution to V 2, j12

Afi If1 - 2VVA1 l, - V °

Input f 2 -2VIV2 - V2°

Problem 9 (Vll)-V 1

# 1 _ il v<111
Solution v2 2111

P 1 1

f 2N1 4,1 1 , 2- 10fl I12 121 - iV2
Input f2 §1f1 4Vl1 12 2 V2 1 - 22

Problem 29 -3 (112)-11 2 ) + 3 (('2 11 ) -2111

#2 v V 112l or V 121 or V1
2
211

Solution V2 V211 2 or V2 12 1 or 2
2 11

_ _ _ P_______II112 or 121 or II11

l 3I22 4V2 11 2 V122 - i1°l
Input 4 7212 f12 2

Input 12 - 2123 321
Problem 9 3 ((2 2 )- V212) + 3 ((1122) 122)

#3 vl V1222 or V12 1 2 or V 1221

Solution v 2 V21 22 or V2212 or V2 21

122 or fI2l or H2 2 1

~fl~ ~ -2V2V122- V12
Input f2 2 - 2V 22 2 2 - 202

Problem 9 (_222)_-2122

#4 v 1 V122 2

Solution v2 V22 2

__ _ _ ft222
Table 6.3: The tetradic field V2 and triadic field II2 for a two-dimensional geometry
can be determined from four linearly independent solutions of the inhomogeneous
Stokes equations. The symmetries of V2 and jj2 are apparent in problems # 2 and
3. The symmetries of V1 and I have been considered in determining f and g for
problems # 2 and 3.
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functions 'i(x, y). Within an element, the solution was approximated as

9

v1 = Eviqi(xy),
i=l

9

V2 = 0i)i(X ),
i=1

3

-- = Ep(i) i(x,y),
i-=l

where v(i) is the value of the approximation to i at the ith biquadrtic node, while

p(i) is the approximation to p at the ith bilinear node of a given element.

The code was adjusted to account for multiple pairs of spatially periodic bound-

aries. The code used to compute the resuduals at each node was adjusted to include

the inhomogeneous forcing functions f and . These additional contributions appear

in the weak forms of (6.2-1) and (6.2-2). To generate the weak form of (6.2-1), dot

multiply this equation with the vector 4c = ijOi (j = 1, 2), integrate over the fluid

domain, and use the divergence theorem to obtain

- ()t v + p - . d3r + dS [I (VV) - ] = o .
Tf .o70+Sp

In the preceding equation, the integral over Sp vanishes as a result of the essential

condition (6.2-3), while the integral over ar0 vanishes as a result of the spatially

periodic nature of v and A(; hence, the weak form of (6.2-1) is2

()t : -p-V a + f d3r = 0.
-f

2 Care should be taken when rewriting this relation in terms of the stress,

P =-p + [v + t (V)]

because i is not divergence free. As a result, the weak form of (6.2-1) possesses the equivalent form

(V) P + (f+ V) dr = 0.
rf
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n Elementsi V-111°/T | /| Vll/ 
2 32 -1.92922486 x 10-2 2.68448625 x 10-2 -1.20911403 x 10 - 3

4 128 -1.93871719 x 10-2 2.51720185 x 10-2 -1.21950257 x 10-3

6 288 -1.94014973 x 10-2 2.50671065 x 10-2 -1.22044396 x 10 - 3

8 512 -1.94049012 x 10-2 2.50602513 x 10-2 -1.22066585 x 10- 3

10 800 -1.94060679 x 10-2 2.50646935 x 10-2 -1.22074187 x 10 - 3

12 1152 -1.94065713 x 10-2 2.50697386 x 10-2 -1.22077461 x 10- 3

14 1568 -1.94068242 x 10-2 2.50738757 x 10-2 -1.22079102 x 10-3

16 2048 -1.94069663 x 10-2 2.50770839 x 10-2 -1.22080022 x 10- 3

Table 6.4: Dependence of some lattice constants upon mesh size. These are for circular
cylinders in a square array of concentration 0 = 0.2. The meshes were constructed
of 8 similar regions consisting of n x n elements within each region. All subsequent
results were obtained with n = 10.

Similarily, multiply the continuity condition by Vii and integrate over Tf to obtain the

weak form of (6.2-2):

J(V. -) /d3r = 0.
f

The solution of Eqs. (6.2-1)-(6.2-4), for the mesh shown in Figure C-I, takes

roughly 4.5 minutes to compute on an HP735 Apollo. Since the analytic problem

is linear, well-posed, and possesses a unique solution for given functions f and ,

Newton's method converges in a single step. To check the numerical solution, various

analytical functions for r and p were chosen which satisfied condition (6.2-3). The

corresponding analytical forms of f and g were then obtained directly from (6.2-1) and

(6.2-2). These same inhomogeneities were then used as data, from which numerical

fields ere calculated. These numerical solutions were then compared compared with

their original analytical counterparts.

Simulations were done with various mesh sizes in order to determine the accuracy

of the solutions. The effect of mesh size upon typical constants appearing in the circu-

lar cylinder solution (see § 6.3.1) is shown in Table 6.4. All subsequent computations

were performed using a mesh consisting of 800 elements.
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6.2.2 Square Array of Circular Cylinders

The lattice fields within a porous medium composed of circular cylinders arranged on a

square lattice were determined by the procedure outlined in Tables 6.1-6.3. Solutions

of the first three cell problems (for a volume fraction of X = 0.2) are presented in

Figures C-2-C-28 in Appendix C. Because of the symmetric nature of the array,

these fields are invariant to interchanging the x- and y-directions. This is apparent,

for example, upon comparing the results for V12222 (Figure C-20, page 225) and V22,

(Figure C-21, page 226). The relationship between these lattice fields and the physical

microscale velocity v(R) and pressure p(R) fields can be obtained directly from the

microscale solutions (4.6-39) and (4.6-40), along with appropriate choices for the

constant tensors I.

6.2.3 Square Array of Elliptical Cylinders

Similar lattice fields were also calculated for a porous medium composed of elliptical

cylinders arranged in a square array. A typical mesh corresponding to a volume

fraction of = 0.2 and eccentricity e = 2 (where e is the ratio of major to minor

axis lengths) can be found in Figure D-1 on page 236 of Appendix D. Lattice fields

corresponding to this mesh are shown in Figures D-2-D-28. Unlike the array of

circular cylinders, this array is not invariant upon interchanging x and y. As such, the

lattice fields for elliptical arrays do not have the symmetries mentioned previously for

cylindrical arrays. Compare, for instance, the results for V12222 (Figure D-20, page 255)

and V2211 (Figure D-21, page 256). Among other things, whereas the permeability is

isotropic for the circular cylinders, it is anisotropic for the elliptical cylinders.
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6.3 Macroscale Results for Two-dimensional Ar-

rays

With the microscale lattice fields computed, the phenomenological coefficients appear-

ing in the various expressions for the macroscale deviatoric stress, stress pseudovector,

and external force may now be computed. These expressions related Ts, Px and F(e)

to the macroscale velocity and its gradients as follows:

= [ v + K(r). + K(s) (6.3-1)

Px = V + E.cr) +. cs): S (6.3-2)

e) = --1_k-1 -v+ [i' .v±r) + M±( ) -S] (6.3-3)

these being obtained from (5.4-20), (5.4-28) and (5.5-20) respectively. The various

coefficients appearing in the previous equations are derived from the constant geo-

metric tensors (V °, , ( ,Pi) and V 2, determined from the zeroth-, first-

and second-order cell problems.

In two-dimensional arrays, the stress pseudovector Px and macroscale vorticity

vector 0 are oriented in a direction perpendicular to i and i2, i.e. in the i3 - iz

direction. As such, the constants coupling them are at most of the form

K(r)
ijk

Cii

(r.)

Cijk

-(r)

_-(r)
ij3

- C33 ,

_ (s)
- C3jk,

-(r)
f ij3

if they are nonzero at all.
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6.3.1 Square Array of Circular Cylinders

A porous medium composed of circular cylinders arranged on a square lattice is

invariant to either reflection about i or i2, or rotation through 90 degrees; hence,

most of the phenomenological coefficients appearing in Eqs. (6.3-1) to (6.3-3) are

identically zero. Various volume fractions 0 were studied, with a typical unit cell for

= 0.2 shown in Figure C-i (on page 206) of Appendix C. The geometric constant

tensors for this type of array were found to be of the form

V ° = (ilil + i 2i 2) 1,

P = 0,-°--- - --0
V = (ili lilil + i2i2i2i2) V1111 + (ili2i2i i2ilii 2) V1221,

V1 = 0,

iP = (ii1 1 + i2i2i2i2) P11 + (ii 1i2i2 + i2i2ii 1) 1122

+ (ili2il i2 + ili 2i2 il + i2 ilili 2 + i2ili2 il) P1212,
-2 = . -2
V2 = (11111111iiii + i2i2i2i2) V1111

V2
+ (ilili 2 i2 + ili2 ili2 + ili2i 2il + i2ilili 2 + i2ili 2il + i2i2 ilil) V1122.

---0 : =0
Since V ° can be formed from V (basically = Vikj, such that for this array,

V1 = V1111) the macroscale phenomenological coefficients depend at most upon

seven constants. The values of these constants for various volume fractions are shown

in Table 6.5. As a result of the forms of these tensors, the constants appearing in

the relationship for the macroscale symmetric deviatoric stress (6.3-1) and computed

from (5.3-18), (5.4-21), (5.4-22) and (5.4-23), have the forms 3

R(M = 0,

3Note that since the macroscale rate-of-strain S is traceless (as a result of continuity, i.e. V-V = 0)

R(s) has the equivalent representation

R(s) = 2 (i1i l ilil + i2i2i2i2) K18 + (ili 2ili2 + i1i2i2il + i2ili li2 + i2ili 2il) K3.

169



0.05 0.2 0.4 0.6
=0
V1,11/0 -6.426 x 10-2 -1.941 x 10-2 -4.589 x 10-3 -5.670 x 10-4

V1221/o0 -1.019 x 10-1 -4.503 x 10-2 -1.667 x 10-2 -3.764 x 10-3

mll'o 2.978 x 10-2 2.506 x 10-2 2.620 x 10-2 2.326 x 10-2

Pl 12 2 /r0 3.243 x 10-2 9.378 x 10 - 3 -1.062 x 10-2 -2.222 x 10-2

P1 21 2/ 0 o 4.541 x 10- 2 2.136 x 10- 2 7.847 x 10- 3 1.819 x 10- 3

Vn-/T2 -5.681 x 10- 3 -1.221 x 10- 3 -2.777 x 10-4 -4.007 x 10- 5

-Vl22/02 1.424 x 10- 3 6.650 x 10- 4 1.546 x 10- 4 1.711 x 10-5

Table 6.5: Non-zero components of the geometric constant tensors determined for a
square array of circular cylinders at different volume fractions.

R(r) = 0

K(s) = (ilililil + i 2i2i2i2 - ilili2i2 - i2i2ilil1) K1

+ (ili2 ili2 + ili2i2 il + i2ilili 2 + i2 ili2 il) K3.

The constants appearing in the expression for the macroscale stress pseudovector

(6.3-2), which computed from (5.3-21), (5.4-29), (5.4-30) and (5.4-31), are all identi-

cally zero for this type of geometry:

c(l)

-(r)

0,

0,

0.

(6.3-4)

Finally, the constants appearing in the

umetric body force density (6.3-3) and

(5.5-21) and (5.5-22) are of the forms

expression for the macroscale external vol-

computed from (5.3-40), (5.4-37), (5.5-19),

k = (ilil + i2i2) k
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and

-(l) = 0,
®(r = o,

Y(s) = (ilililil + i2i2i2i 2) f 8

+ (ilili 2i2 + ili 2i li2 + ili2i2 il + i2ilili 2 + i2ili 2il + i2i2 il il) f3.

(6.3-6)

=0 -1 -1 -1 -2 2
Of the original seven parameters (V 11 1, V 1 2 21, P 1 1 11 , P 1 1 2 2, P1 2 1 2 VI,, and V11 22)

characterizing the geometric constant tensors, they appear in only 5 different group-

ings (k, K1, K3s, f and f3) in order to characterize the macroscale relationships

(6.3-1)-(6.3-2) for this square array of circular cylinders.

The permeability for this square array of circular cylinders is isotropic, and a plot

of k as a function of volume concentration is shown in Figure 6-1. Deviations between

the permeability calculated here and that calculated by others (Sangani & Acrivos

[95], Edwards et al. [47]) is less than 3%. As expected, the permeability decreases

with increasing volume fraction.

For a square array of circular cylinders, the form of the constants appearing

in (6.3-1)-(6.3-3), along with the definitions (5.2-18) and (5.2-23), show that the

macroscale stress tensor (up to and including gradients of V) takes the form

P = -I + K(s) S. (6.3-7)

This is similar to (5.2-13) for an incompressible newtonian fluid; however, the viscous-

type tetradic K(s)-coupling the macroscale stress to the macroscale symmetric rate-

of-strain-is now characterized by two (dimensionless) geometric constants Ks and

K3s. The presence of two constants characterizing K(s) also arises in the suspension

case [125], where the no-slip condition is replaced by a stress-free condition. Note

that the macroscale stress is symmetric. There is no external body couple acting

on the cyllinders in the array. Furthermore, contributions to this symmetric stress
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Figure 6-1: Permeability as a function of volume fraction for a square array of circular
cylinders.
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tensor and scaling with either V or w are absent. The values of K' and K3 as a

function of volume concentration are shown in Figure 6-2. The value of K~ decrease

from K' - 1.0 at = 0.05 to K - -40 at q = 0.6. On the other hand, K3 remains

roughly constant at a value of K3 _ 0.6, independent of q$.

The two coefficients f and f, characterizing the other non-zero constant (s) in

the external body force density (6.3-3), are shown in Figure 6-3. The coefficient fi

increases from 0.5 to 160 while f decreases from -0.5 to -67 as the volume fraction

of particles is increased from 0.1 to 0.6. The general form of the momentum equation

(5.5-26), accurate to order VVV and written for this porous medium geometry,

becomes
1 1-1 V p = -k- ·v + -y* V v. (6.3-8)
AU IL

As a result of the forms of (s) and f(s), the effective 'viscosity' has the form

1 
-A1C1 = (i1 i1ili1 + i2i2i2i2) a' + (ili1i2i2 + i2i2ilil) P

+ (ili2i li2 + ili2i2il + i2iili 2 + i2ili2il) 9.

As this tetradic is to be contracted with the triadic V V V, which is traceless with

respect to its last two and first and last indices, * can be expressed in the more

compact form

-,* = (ilililil + i2i2i2i2) a + II, (6.3-9)
IL

where

a def- - 2y. (6.3-10)

The constants a and P are plotted in Figure 6-4. Note that the momentum equation

does not require a contribution from VV, since the constants K(, c(l) and f() are

all identically zero for this geometry.
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Figure 6-2: The components K and K3 as a function of particle volume fraction, 
for a square array of circular cylinders. These components characterize the constant
tensor K(s) which couples the macroscale symmetric rate-of-strain S to the macroscale
stress P.
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Figure 6-3: The components f and f as a function of particle volume fraction, 0
for a square array of circular cylinders. These components characterize the constant
tensor f(s), which couples gradients in the macroscale symmetric rate-of-strain S to
the external body force density F(e).
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Figure 6-4: The components a and /3 as a function of particle volume fraction 0

for a square array of circular cylinders. These components characterize the effective
viscosity tetradic, which couples second-order gradients of the macroscale velocity to
the macroscale pressure drop.
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6.3.2 Square Array of Elliptical Cylinder

Results are presented in this section for a porous medium composed of elliptical

cylinders and arranged on a square lattice. Because of the shapes of the elliptical

particles, the macroscale material tensors cannot be isotropic. Consequently, the

phenomenological coefficients appearing in Eqs. (6.3-1) to (6.3-3) will possess a more

complex structure than their circular counterparts. In the subsequent computations,

the volume fraction was kept constant at = 0.2 and the eccentricity e of the ellipse

allowed to vary up to a maximum of 2.0. A typical unit cell with e = 2.0 is shown

in Figure D-1 on page 236 of Appendix D. The major axis is parallel to i and the

minor axis parallel to i2. As a result of the loss of a symmetry axes, the geometric

constant tensors were found to be of the forms

V ° illVl + i2i2V22,
P 0,
--0 -----0 - 0 --0
VI = O.

-1 ....-- . ...-- .... ..V 11111111 1 1ll + 121212 2V2 22 + 1lli212ilV 122 + 121 1i 2V2112,-1P =iiii 11j11111 + +22i~2P2222 + lili2P122 + i2i2illP22

+ (ili2ili2 + i2i2i) i1212 + (i2ilili2 + i2ili2il) 2112
-- 2 2 ...-2
V = 11111111V 11 1 1 + 2 12 1212V22 2 2

+ (ii li2i 2+ ili2ili2 + ili2i2il) V1122 + (i2iii 2 + i2ili2il + i2i2ilil) 221,

ultimately doubling the number of geometric variables (from 7 to 14) upon which the

macrscale phenomenological coefficients depend. The values of these constants for

various eccentricities are shown in Table 6.6. Included in the table are the values of

the constants for the previous circular case (e = 1). Notice the deviation in these

constants as the eccentricity is increased. From these constants, the forms of the

phenomenological coefficients appearing in (6.3-1) to (6.3-3) can be derived. The

coefficients describing the macroscale symmetric deviatoric stress (6.3-1) have the
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Table 6.6: Non-zero components of the geometric tensors determined for a square
array of elliptical cylinders at different eccentricities. The volume fraction is 0 = 0.2.

178

e 11 1.0 1.2 1.6 2.0

V1111/o -1.941 x 10-2 -2.282 x 10-2 -2.784 x 10-2 -3.133 x 10-2

==o
V2222/To -1.941 x 10.-2 -1.588 x 10-2 -1.035 x 10-2 -6.402 x 10-3

V 1221/To -4.503 x 10-2 -3.878 x 10-2 -2.812 x 10-2 -1.950 x 10-2

V2112/7o -4.503 x 10-2 -5.079 x 10-2 -5.881 x 10-2 -6.414 x 10-2

Pm111l/o 2.506 x 10-2 2.420 x 10- 2 2.287 x 10-2 2.210 x 10- 2

P2222/%- 2.506 x 10- 2 2.583 x 10-2 2.682 x 10- 2 2.737 x 10- 2

P1122/T0 9.378 x 10- 3 6.514 x 10- 3 1.465 x 10 - 3 -2.854 x 10- 3

P22nl/o 9.378 x 10- 3 1.202 x 10- 2 1.568 x 10- 2 1.813 x 10- 2

P12 12/ro 2.136 x 10-2 1.793 x 10-2 1.204 x 10-2 7.220 x 10 - 3

P2112/7 2.136 x 10- 2 2.454 x 10- 2 2.897 x 10- 2 3.194 x 10- 2

Vn/o 2 -1.221 x 10-3 -1.518 x 10-3 -1.985 x 10- 3 -2.322 x 10-3

V2222/2 -1.221 x 10- 3 -9.353 x 10- 4 -5.394 x 10- 4 -2.999 x 10- 4

-Vn22/o2 6.650 x 10- 4 5.570 x 10-4 3.965 x 10- 4 2.882 x 10- 4

V2112/o72 6.650 x 10 - 4 7.738 x 10 - 4 9.402 x 10- 4 1.060 x 10-3



following forms:

= 0,

K(r) = (ii 2 + i2il) i3Kr,

= (iiiil - i 2i 2i1i1) Kl + (i2i2 i2 i2 - ii 1i2i2) K2

+ (il i2ili2 + ili2i2il + i2ilili2 + i2ili2il) K3. (6.3-12)

The constants pertaining to the macroscale stress pseudovector (6.3-2) now have the

forms

-E(I)?(S)

~()

= 0,

= i3i3Cr , (6.3-13)

= i3 (ili 2 + i2il) CS, (6.3-14)

and, in general, are nonzero, unlike their circular counterparts. Finally, the constants

describing the macroscale external body force density (6.3-3) now have the form

k = ii lkll + i2i2k22 (6.3-15)

and

= 0,

111213fj + i2ili3 f2r, (6.3-16)

f.t) = ilil ili lff + i2i2i2i2fs

+iilii 2if3 + i2i2ililf4s

+ (ili 2ili 2 + i+i2i2i) f + (i2ilili 2 + i2ili 2il) f.

(6.3-17)

The permeability dyadic for this square array of elliptical cylinders is anisotropic

and characterized by two constants, k1l and k22. A plot of the directional perme-
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Figure 6-5: Permeability in each of the principal directions as a function of eccentricity
for a square array of elliptical cylinders. The volume fraction of particles is 0 = 0.2.

abilities for various values of e is shown in Figure 6-5. As the eccentricity increases

(with 0 constant), flow in the x direction becomes less obstructed, while flow in the

y direction becomes more so. This can be seen from the fact that k1l is increasing

while k 22 is decreasing relative to the circular cylinder case. Ultimately, in the limit

e -+ oo, one would expect to recover the 'flat-plates' case with k/To = 1/12 and

k22 = 0.4

Unlike the case of circular cylinders, the macroscale stress may no longer be sym-

4 0f course, if the impenetrability of each ellipse is taken into account, then the maximum eccen-
tricity for this square array is e - 7r/(40), at which point k22 = 0.
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metric, as evidenced by the non-zero nature of c(r) and c(s). In the presence of a

homogeneous macroscale flow (V = const.) the stress is symmetric since c(l) is iden-

tically zero. On the other hand, a macroscale inhomogeneous flow field in this type

of geometry now requires the presence of an external body couple density to keep

the particles fixed. The constants cr and c, which couple Px with al and S respec-

tively, are shown in Figure 6-6. Both these coefficients increase as the eccentricity is

increased, attaining values of cr = 0.92 and c = 1.4 at e = 2 for a particle volume

fraction of 20%.

As in the case of an array of circular cylinders, the symmetric part of the sress does

not depend linearly upon V since K(1) = 0. However, in contrast with this case, an

array of elliptical cylinders manifests a symmetric deviatoric stress, dependent upon

both 0 and S. In all, four constants characterize this coupling. These constants (Kr,

K', K2 and K3) are shown in Figure 6-7.

Although the external body force density does not depend linearly upon V as

f(1) = 0, a contribution to this force arising from gradients in both the macroscale

vorticity and rate-of-strain arises for this array geometry. The contributions from the

former (characterized by the two constants, f and f) are displayed in Figure 6-8,

while contributions from the latter (namely l f, f, f , f, f5 and f) are displayed

in Figure 6-9.

Ultimately, the phenomenological coefficients characterizing these

macroscale quantities can be combined to create the general linear momentum equa-

tion [accurate to O (V VV)], similar to (5.5-24), namely

Iv~= -1 ·V + · I t-rr(Cc ·> ·w+ ITS~(F'"·-V -k v + V. (6.3-18)

In the above, -g(r) is of the form

-1(r) = i1 i2i 36 1 + i2ili 362 , (6.3-19)
I-t
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whereas i(s) is

I-(s) = ilililil + i2i2i 2i2 2

+iii2i12/31 + i2i2ilil/2

+ (ili2ili 2 + ili 2i2il) ?1 + (i2ilili 2 + i2 ili2 il) 72- (6.3-20)

The constants characterizing these effective viscosities are shown in Figures 6-10 and

6-11 as functions of the eccentricity of the ellipses in the array. As in the circular

case, the momentum equation does not contain a contribution arising from V v since

the constants K(1), c(') and f(1) are all identically zero.

182



1.5

1.0

0Io

S 0.50
0

0.0
1.0 1.2 1.4 1.6 1.8 2.0

Eccentricity, e

Figure 6-6: The components cr and c as a function of eccentricity for a square array
of elliptical cylinders with volume fraction X = 0.2. These components define c(r) and
c(s), which relate the macroscale stress pseudovector to the macroscale vorticity and
macroscale symmetric rate-of strain respectively.

183



1.0

0.8

0.61

0.4

Ix 0.2

0.0 

,1 -0.2
0o

0 -0.4
0

-0.6
0

-0.8

-1.0

-1.2

-1.4

I I I I I �I -1-----------] I I I � I I I I I I I

1.0 1.2 1.4 1.6 1.8 2.0

Eccentricity, e

Figure 6-7: The components K r , Kj, K2 and K3 as a function of eccentricity for a
square array of elliptical cylinders with volume fraction 0 = 0.2. These components
define K(r) and K(s), which relate the macroscale symmetric deviatoric stress to the
macroscale vorticity and macroscale symmetric rate-of strain.
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Figure 6-8: The components f and f as a function of eccentricity for a square array
of elliptical cylinders with volume fraction X = 0.2. These components define (r),

which relates gradients in the macroscale vorticity to the external body force density.
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Figure 6-9: The components fl, f2, f3, f4, f55 and f6 as a function of eccentricity for
a square array of elliptical cylinders with volume fraction 0 = 0.2. These components
define f(8), which relates the macroscale symmetric rate-of-strain to the external body
force density.
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Figure 6-10: The components 61 and 2 as a function of eccentricity for a square array
of elliptical cylinders with volume fraction = 0.2. These components characterize
that part of the effective viscosity which couples gradients in the macroscale vorticity
to the macroscale pressure drop.
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Figure 6-11: The components ce, 2, 71, 12, P1 and P2 as a function of eccentricity
for a square array of elliptical cylinders with volume fraction 0 = 0.2. These compo-
nents characterize that part of the effective viscosity which couples gradients in the
macroscale symmetric rate-of-strain to the macroscale pressure drop.
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Appendix A

Nomenclature

Selected Notation List

a sphere radius

Cr non-zero component of c(r)

CS non-zero component of c(s)

c() dyadic phenomenological coefficient coupling the

dependence of Px upon V

c(r) dyadic phenomenological coefficient coupling the

dependence of Px upon i

c(S) triadic phenomenological coefficient coupling the

dependence of Px upon S

C macroscale couple stress dyadic
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macroscale differential force vector

macroscale differential volumetric flow rate

differential volume element

macroscale differential displacement vector

directed differential element of surface area

macroscale directed differential element of surface area

macroscale differential volume element

elliptical cylinder eccentricity

non-zero components of (r)

non-zero components of f(s)

force exerted by fluid on positive side of sk upon

fluid on negative side of sk

vector inhomogeneous forcing function in momentum equation

triadic phenomenological coefficient coupling the

dependence of F(e) upon V V

triadic phenomenological coefficient coupling the

dependence of F(e) upon V w
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d3 r

dR

dS

dS

dV

e

fiS

(I)

f(r)

df



('S) tetradic phenomenological coefficient coupling the

dependence of F(e) upon VS

rm(lX') mth derivative of f(X) evaluated at X = X'

F force (per unit superficial volume) exerted by the fluid upon

the particles in cell {n}

F(e) net external volumetric body force density

scalar inhomogeneous forcing function in continuity equation

ij unit vector in jth direction

I dyadic idemfactor

I4 fourth-rank isotropic tensor

16 sixth-rank isotropic tensor

I macroscale volumetric intrinsic angular momentum density

k scalar permeability

kii non-zero components of permeability dyadic k

k dyadic permeability

k- 1 inverse of dyadic permeability
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dimensionless scalar permeability

Kir
S

non-zero components of K(r)

non-zero components of K(s)

triadic phenomenological coefficient coupling the

dependence of Ts upon V

triadic phenomenological coefficient coupling the

dependence of Ts upon w

tetradic phenomenological coefficient coupling the

dependence of T upon

characteristic microscale or unit cell lenght scale

lattice vector

characteristic mesoscale lenght scale

characteristic macroscale lenght scale

torque (per unit superficial volume) exerted by the fluid upon

the particles in cell {n}

space dimensionality

macroscale volumetric momentum density
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K(r)

f

L

L

M

M

K

K(s)



one-dimensional unit cell position

unit cell position

net external volumetric body couple density

hydordynamic pressure

fully spatially periodic pressure field satisfying

inhomogeneous Stokes-like problem

approximation to p at ith bilinear node

macroscale pressure

mth rank tensor Taylor coefficient containing the r

dependence of the expansion of p

mth gradient of p evaluated at R'

mth rank fully spatially periodic tensor Taylor coefficient

microscale stress tensor (dyadic)

m + 3 rank geometric 'stress' field formed from Vm and IIm

as defined in (5.3-9)

macroscale stress tensor (dyadic)
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n

N(e)

P

p(i)

p m

pmP

pm
P

P

pm



m + 3 rank mean of pm as defined in (5.3-11)

macroscale stress pseudovector

net volumetric flow rate of fluid through sk

continuous local or cellular position vector

position vector

reference position

macroscale position vector

discrete global position vector

directed area of a curvilinear face of a unit cell

particle surfaces

symmetric rate-of-strain dyadic

macroscale symmetric rate-of-strain dyadic

macroscale deviatoric stress tensor (dyadic)

macroscale antisymmetric deviatoric stress tensor (dyadic)

macroscale symmetric deviatoric stress tensor (dyadic)
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-- mP

Px

qk

r

R

R'

sp

S

aT

T 8

Sk



mean velocity

microscale vector fluid velocity

fully spatially periodic velocity field satisfying

inhomogeneous Stokes-like problem

approximation to v at ith biquadratic node

macroscale vector superficial velocity

m + 1 rank tensor Taylor coefficient containing the r

dependence of the expansion of v

mth gradient of v evaluated at R'

m + 1 rank fully spatially periodic tensor Taylor coefficient

fully spatially periodic lattice field of rank m + 2

and solution to mth order characteristic cell problem

m + 2 rank mean of VT as defined in (5.4-3)

m + 4 rank mean of V m as defined in (5.4-18)

m + 2 rank interstitial average of V m

one-dimensional continuous local position

one-dimensional position variable
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U

V

v

V

Vm

Vm

V

V

(Vm)

X

X

Vm



one-dimensional reference point

Xn one-dimensional discrete global position

Greek Symbols

a non-zero component of ji* or nondimensional slip coefficient

a' non-zero component of ,*

cai non-zero components of p(s)

non-zero component of Pi*

P3i non-zero components of 71 (s)

a non-zero component of H*

? non-zero components of (S)

?i non-zero components of -A(r)

jij Cartesian tensor notation of I

OE unit isotropic triadic or unit alternating tensor

AO inverse of the dyadic V °
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isotropic and uniform fluid viscosity

scalar Brinkman viscosity

scalar nonuniform Brinkman viscosity

tetradic phenomenological coefficient coupling the

dependence of V p upon V V V

triadic phenomenological coefficient coupling the

dependence of V p upon V 0

tetradic phenomenological coefficient coupling the

dependence of V upon V S

inverse of the dimensionality of space

fully spatially periodic lattice field of rank m + 1

and solution to mth order characteristic cell problem

cellular fluid domain

cellular domain, fluid plus particles

the closed surface bounding the unit cell externally

particle volume fraction

continuous biquadratic basis function
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A*/1

or

A*'I

1(s)

I

IIm

Tf

To

9To



biquadratic vector used to generate weak form

X * triadic phenomenological coefficient coupling the

dependence of V p upon V V

x(r) dyadic phenomenological coefficient coupling the

dependence of V p upon J

x(S) triadic phenomenological coefficient coupling the

dependence of V p upon S

arbitrary scalar field

,b~i continuous bilinear basis function

'I' areal fraction of solids near a macroscale boundary

arbitrary constant tensors (functions of R')

w macroscale vorticity vector

Operators

dot product, contraction between innermost indices

: double-dot product, contraction between innermost two indicies
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tripple-dot product, contraction between innermost three indicies

multiple-dot product, contraction between innermost m indices

vector gradient operator with respect to either R (3.3-3) or r (4.2-15)

macroscale vector gradient operator with respect to R

mth rank gradient operator (3.3-2)

Laplacian operator, V. V

macroscale Laplacian operator, V V

divergence operator

macroscale divergence operator

binomial coefficient

jump in the function f

normalized permutation symmetrization operator

symmetrization operator with respect to the last i indices of f

denotes the field f as being fully spatially periodic
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V

V m

V2

-2
V

V.

iA
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interstitial average

cross product

material derivative

order-of-magnitude

(f)

x

D
Dt

o()
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Appendix B

Geometry of Spatially Periodic

Systems

Consider a spatially periodic porous medium composed of generally curvilinear unit

cells (refer to Figures B-1 and B-2 on pages 203 and 204 for visual representations of

the notation presented here). The position vector R of any point in the system can

be represented by the decomposition

R =Rn + r, (B.0-1)

where r is a local position vector within a unit cell and Rn is a discrete lattice vector

defining the location of the lattice point identifying the nth cell in the array:

Rn = nill + n212 + n313, (B.0-2)

(B.0-3)(ni = O, l, 2, +±3,.. .), (i = 1, 2, 3),

with {ll, 12,13} denoting a trio of basic lattice vectors.

The superficial volume of the cell is,

T = 11 12 X 13- (B.0-4)
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The unit cell is bounded externally by the closed surface A0o and consists of the six

faces, s±j (j = 1, 2, 3); hence,

3

ro0 E sj s+j. (B.0-5)
j=1

The location of the nth cell in space can be specified either by the position vector

Rn or, equivalently, by the triplet of integers,

{ni, n2, n3} =- {n}. (B.0-6)

With T0 {n} the domain contained within the nth unit cell, the entire spatial domain

V0 encompassed by the periodic medium may be represented as

Vo - Z o {n}, (B.0-7)
n

where
00 00 00-_ IE E E . (B.0-8)

n nl=-oo n2=-oo n3=-oo

The directed area of each of the six faces of the unit cell is defined as

S1 = 12 X 13 , s 2 = 13 X l, s 3 = 11 X 12 , (B.0-9)

along with s_j = -s+j. It follows from these together with (B.0-4) that li and sj are

reciprocal to one another in the sense that,

li sj = ijTo (i; j = 1, 2, 3), (B.0-10)

with ij the Kronecker delta.
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f

Ii

Figure B-l: A two-dimensional spatially periodic array. The spatially periodic char-
acter of the array is represented by the translational symmetry of the lattice points.
The pair of planar basic vectors (11, 12) drawn between 'adjacent' lattice points forms
a 'unit cell' in the shape of a parallelogram. Other choices, such as (1', 1) also qualify
as a set of basic lattice vectors. These form a differently shaped unit cell, as shown.
However, the magnitudes, Ill x 121 and 1 x 1'l, of the superficial unit cell areas are
identical, as too are the respective particle and interstitial areas. Furthermore, any
point in the infinite array specified by a vector R drawn from some origin 0, may be
represented by a discrete lattice vector Rn and continuous cellular vector r.
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Figure B-2: Unit cell of a spatially periodic array. The unit cell is a parallelepiped
formed from the set of basic lattice vectors (11,12,13). The directed areal vectors
(s1 , 2 , s 3) are normal to the respective faces, pointing out of the cell, and are equal
in magnitude to the areas of the respective faces.
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Appendix C

Circular Cylinder Lattice Fields

The first three microscale lattice fields for a square array of circular cylinders of

volume fraction b = 0.2 is shown here. Figure C-i is the mesh of the unit cell. The

various independent components of the fields (Vo, II), (Vi, i) and (V2, 2) are

shown in Figures C-2-C-7, Figures C-8-C-16 and Figures C-17-C-28 respectively. For

the given mesh, there corresponded 800 elements, 3360 nodes and 7600 equations (or

unknowns).
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Figure C-1: Sample mesh of a square array of circular cylinders ( = 0.2). There are
800 elements, 3360 nodes and 7600 eqations. This unit cell has a 'volume' To = 4.
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Figure C-2: Contours of V1° from the 0 (0) cell problem for a square array of circular
cylinders of volume fraction X = 0.2.
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Figure C-3: Contours of V1° from the 0C (0) cell problem for a square array of circular
cylinders of volume fraction q = 0.2.
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V 21

F 0.0307652

E 0.0263702

D 0.0219751

C 0.0175801
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1 -0.0307652

Figure C-4: Contours of V from the 0 (0) cell problem for a square array of circular
cylinders of volume fraction 0 = 0.2.
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Figure C-5: Contours of V2°0 from the 0 (0) cell problem for a square array of circular
cylinders of volume fraction 0 = 0.2.
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Figure C-6: Contours of HI° from the 0 (0) cell problem for a square array of circular
cylinders of volume fraction q = 0.2.
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Figure C-7: Contours of WI° from the 0 (0) cell problem for a square array of circular
cylinders of volume fraction q = 0.2.
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Figure C-8: Contours of 111 from the 0 (1) cell problem for a square array of circular
cylinders of volume fraction q = 0.2.
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Figure C-9: Contours of V 12 (or V21) from the 0 (1) cell problem for a square array
of circular cylinders of volume fraction = 0.2.

214

4 -

/ ,. _ - \

3' --.... _,

0 a Q .



/ i- I I I I-- , . i 

'-2. ,' ,, F' F 0.0349849
3 ,' , , E 0.029987

I I

" ' · 'S , , -D 0.0249892

5 ' , C 0.0199914
"I , ,'B 0.0149935

' 7I A 0.00999568

9 0.00499784i7 t 8 -4.65E-10
, 6 7 -0.00499784

, ' 6 -0.00999568
--- 6. ', 5 -0.0149935

,/ %---vs " '4 -0.0199914
-', " X 3 -0.0249892

* , - -"' 2 -0.029987

"---2 , ' ' 1 -0.0349849
\ II

\ I I III ' \ ,I | , ....

I, Ii ii,

Figure C-10: Contours of V122 from the 0 (1) cell problem for a square array of
circular cylinders of volume fraction X = 0.2.
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Figure C-11: Contours of 2j1 from the ( (1) cell problem for a square array of
circular cylinders of volume fraction 0 = 0.2.
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Figure C-12: Contours of V212 (or V,221) from the 0 (1) cell problem for a square array
of circular cylinders of volume fraction X = 0.2.
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K2 2

F 0.0248794

E 0.0213252

D 0.017771

C 0.0142168

B 0.0106626

A 0.00710836

9 0.00355416

8 -4.563E-8

7 -0.00355425

6 -0.00710845

5 -0.0106627

4 -0.0142169

3 -0.0177711

2 -0.0213253

1 -0.0248795

Figure C-13: Contours of V2122 from the 0 (1) cell problem for a square array of
circular cylinders of volume fraction q = 0.2.
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F 0.266824

E 0.231958

D 0.197092

C 0.162226

B 0.12736

A 0.0924937

9 0.0576277

8 0.0227617

7 -0.0121043

6 -0.0469703

5 -0.0818363

4 -0.116702

3 -0.151568

2 -0.186434

1 -0.2213

Figure C-14: Contours of IIfl from the 0 (1) cell problem for a square array of circular
cylinders of volume fraction 0 = 0.2.
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21F 0.337695
F 0.337695

E 0.289453

D 0.24121

C 0.192968

B 0.144726

A 0.0964842

9 0.0482421

8 -7.450E-9

7 -0.0482421

6 -0.0964842

5 -0.144726

4 -0.192968

3 -0.241211

2 -0.289453

1 -0.337695

Figure C-15: Contours of Il2 (or I1 ) from the O (1) cell problem for a square array
of circular cylinders of volume fraction = 0.2.
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ll 22

F 0.266825

E 0.231959

D 0.197093

C 0.162227

B 0.127361

A 0.0924954

9 0.0576294

8 0.0227634

7 -0.0121026

6 -0.0469686

5 -0.0818346

4 -0.116701

3 -0.151567

2 -0.186433

1 -0.221299

I I I I I % % % % ,I I, I \ . \ \ \
I I I I I I I I I I I

Figure C-16: Contours of 22 from the 0 (1) cell problem for a square array of circular
cylinders of volume fraction X = 0.2.
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--- ... A -- 

v12 1 1

F 0.00425241

E 0.000688319

D -0.00287578
e' A nAOAQ7" -V.VVQsOIO 
B -0.010004

A -0.0135681

9 -0.0171322

8 -0.0206963

7 -0.0242603

6 -0.0278244

5 -0.0313885

4 -0.0349526

3 -0.0385167

2 -0.0420808

1 -0.0456449

Figure C-17: Contours of V1
2
11 from the 0 (2) cell problem for a square array of

circular cylinders of volume fraction 0 = 0.2.
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V 1112

V 12 1

0.00211
F 0.00146031

E 0.0012517

D 0.00104308

C 0.000834464

B 0.000625848

A 0.000417232

9 0.000208616
8 -4.36E-11

7 -0.000208616

6 -0.000417232
5 -0.000625848
4 -0.000834464
3 -0.00104308
2 -0.0012517
1 -0.00146031

Figure C-18: Contours of V2
12 (or VC2 1 or V2 ) from the 0 (2) cell problem for a

square array of circular cylinders of volume fraction = 0.2.
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V1 22
2

V 1 2 12

V21221

F 0.0180893

E 0.0168163

D 0.0155433

C 0.0142703

B 0.0129973

A 0.0117243

9 0.0104513

8 0.00917832

7 0.00790532

6 0.00663231

5 0.00535931

4 0.00408631

3 0.0028133

2 0.0015403

1 0.000267297

Figure C-19: Contours of V1
2
122 (or V2212 or V2221) from the (2) cell problem for a

square array of circular cylinders of volume fraction =- 0.2.
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12
V1 2 2 2

F 0.0038605

E 0.003309

D 0.0027575

C 0.002206

B 0.0016545

A 0.001103

9 0.0005515

8 5.82E-11

7 -0.0005515

6 -0.001103

5 -0.0016545

4 -0.002206

3 -0.0027575

2 -0.003309

1 -0.0038605

Figure C-20: Contours of V,2222 from the 0( (2) cell problem for a square array of
circular cylinders of volume fraction = 0.2.
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2111

F 0.00385809

E 0.00330693

D 0.00275578

C 0.00220462

B 0.00165347

A 0.00110231

9 0.000551156

8 5.82E-11

7 -0.000551156

6 -0.00110231

5 -0.00165347

4 -0.00220462

3 -0.00275578

2 -0.00330693

1 -0.00385809

Figure C-21: Contours of V2
2
11 from the 0 (2) cell problem for a square array of

circular cylinders of volume fraction 0 0.2.
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VA 1 2

v 12 1
~ 2
V2211

F 0.0180894

E 0.0168164

D 0.0155434

C 0.0142704

B 0.0129974

A 0.0117244

9 0.0104514

8 0.00917835

7 0.00790534

6 0.00663233

5 0.00535933

4 0.00408632

3 0.00281331

2 0.00154031

1 0.000267299

Figure C-22: Contours of V2
2

12 (or V2
2
21 or V22211) from the 0 (2) cell problem for a

square array of circular cylinders of volume fraction 0 = 0.2.
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Vz 2

V 2 12 2~2
V2 2 1

F 0.00146163

E 0.00125283

D 0.00104402

C 0.000835218

B 0.000626413

A 0.000417609

9 0.000208805

8 4.36E-11

7 -0.000208804

6 -0.000417609

5 -0.000626413

4 -0.000835218

3 -0.00104402

2 -0.00125283

1 -0.00146163

Figure C-23: Contours of V 2 22 (or V2212 or V 2221 ) from the 0 (2) cell problem for a
square array of circular cylinders of volume fraction S = 0.2.
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F 0.00425236

E 0.000688282

D -0.0028758

C -0.00643988

B -0.010004

A -0.013568
9 -0.0171321

8 -0.0206962

7 -0.0242603

6 -0.0278244

5 -0.0313885

4 -0.0349525

3 -0.0385166

2 -0.0420807

1 -0.0456448

Figure C-24: Contours of V2
2
222 from the (2) cell problem for a square array of

circular cylinders of volume fraction O = 0.2.
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211

F 0.116605

E 0.0999473

D 0.0832894

C 0.0666315

B 0.0499736

A 0.0333157

9 0.0166579

8 -1.862E-9

7 -0.0166579

6 -0.0333158

5 -0.0499736

4 -0.0666315

3 -0.0832894

2 -0.0999473

1 -0.116605

Figure C-25: Contours of II2l1 from the (2) cell problem for a square array of
circular cylinders of volume fraction 0 = 0.2.
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I ,', _ _ _ _ _ _I 2 I_ I a 1 1192

i21
211

F 0.0435212

E 0.0373038

D 0.0310865

C 0.0248692

B 0.0186519

A 0.0124346

9 0.00621725
a _0 Q04 C_

. I L--'

7 -0.00621739

6 -0.0124347

5 -0.018652

4 -0.0248693

3 -0.0310867

2 -0.037304

1 -0.0435213

Figure C-26: Contours of i1 12 (or 1 21 or 211) from the 0 (2) cell problem for a
square array of circular cylinders of volume fraction 0 = 0.2.
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11122

21 2
n2

221

F 0.0435207

E 0.0373034

D 0.0310862

C 0.0248689

B 0.0186517

A 0.0124345

9 0.00621724

8 4.65E-10

7 -0.00621724

6 -0.0124345

5 -0.0186517

4 -0.0248689

3 -0.0310862

2 -0.0373034

1 -0.0435207

Figure C-27: Contours of l22 (or 212 or H221) from the 0 (2) cell problem for a
square array of circular cylinders of volume fraction b = 0.2.

232

I I
I

I
I

I~~~~~~
I~~~~~~
I~~~~~~~~~~~~~

a,''I6

7 j , -

5' ,"',/" I r /II / - - ~ ~,I , - , - -

,,,' .,-dI I I ,,,,,, .A
I I / ' I

I
·j /

]I I I f --- Ill,,, -

15 , I II I I

I , I I I
I I, 

I"

, 1 , .'I % I /? 5. -'I ! \I I *I I \.I I * - -

I - -

I I

I 
I , ~ -
I I I

I II

N



p222

F 0.116681

E 0.100012

D 0.0833436

C 0.0666748

B 0.0500061

A 0.0333374

9 0.0166686

8 -8.568E-8

7 -0.0166688

6 -0.0333376

5 -0.0500063

4 -0.066675

3 -0.0833438

2 -0.100012

1 -0.116681

Figure C-28: Contours of 22 from the 0 (2) cell problem for a square array of
circular cylinders of volume fraction X = 0.2.
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Appendix D

Elliptical Cylinder Lattice Fields

The first three microscale lattice fields for a square array of elliptical cylinders of

volume fraction 0 = 0.2 and eccentricity e = 2 is shown here. Figure D-1 is the mesh

of the unit cell. The various independent components of the fields (V ° , ij0), (VI, iil)

and (V2, ft2) are shown in Figures D-2-D-7, Figures D-8-D-16 and Figures D-17-

D-28 respectively. For the given mesh, there corresponded 800 elements, 3360 nodes

and 7600 equations (or unknowns).

235



1.0

0.5

0.0

-0.5

-1 

-1.0 -0.5 0.0 0.5 1.0

Figure D-1: Sample mesh of a square array of elliptical cylinders ( = 0.2, e = 2).
There are 800 elements, 3360 nodes and 7600 eqations. This unit cell has a 'volume'
, 0 = 4.
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-- 2 , 2 .1- . - .I
-3. "-~~~2. " ' - . . . . - -. ' . "

V10

F -0.0175303

E -0.0350607

D -0.052591
n An7nAl1A

B -0.0876517

A -0.105182

9 -0.122712

8 -0.140243

7 -0.157773

6 -0.175304

5 -0.192834
4 -n 91nRd4A

3 -0.227895

2 -0.245425

1 -0.262955

Figure D-2: Contours of V1 from the 0 (0) cell problem for a square array of elliptical
cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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v1O

F 0.0205689

E 0.0176305

D 0.0146921

C 0.0117537

B 0.00881525

A 0.00587684

9 0.00293842

8 0

7 -0.00293842

6 -0.00587684

5 -0.00881525

4 -0.0117537

3 -0.0146921

2 -0.0176305

1 -0.0205689

Figure D-3: Contours of V1° from the 0( (0) cell problem for a square array of elliptical
cylinders of volume fraction = 0.2 and eccentricity e = 2.
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v21

F 0.0256495

E 0.0219853

D 0.0183211

C 0.0146569

B 0.0109927

A 0.00732844

9 0.00366422

8 2.32E-10

7 -0.00366422

6 -0.00732843

5 -0.0109927

4 -0.0146569

3 -0.0183211

2 -0.0219853

1 -0.0256495

Figure D-4: Contours of V°1 from the 0 (0) cell problem for a square array of elliptical
cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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I I I

I I I
I I I I

I . I j

\% I I

l ' I I 

- I I I I I I I 

I I I I,, \ I \I I I I I I I I I 
I I I I I I I I II

B :I I I I \
l~~~~~ I I I 

F -0.00766076

E -0.0153215

D -0.0229823

C -0.030643

B -0.0383038

A -0.0459646

9 -0.0536253

8 -0.0612861

7 -0.0689469

6 -0.0766076

5 -0.0842684

4 -0.0919291

3 -0.0995899

2 -0.107251

1 -0.114911

Figure D-5: Contours of V2° from the 0 (0) cell problem for a square array of elliptical
cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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nio

F 0.638418

E 0.547215

D 0.456013

C 0.36481

B 0.273608

A 0.182405

9 0.0912025

8 -1.490E-8

7 -0.0912025

6 -0.182405

5 -0.273608

4 -0.36481

3 -0.456013

2 -0.547215

1 -0.638418

Figure D-6: Contours of I° from the 0 (0) cell problem for a square array of elliptical
cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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F 0.907358

E 0.777735

D 0.648113

C 0.51849

B 0.388868

A 0.259245

9 0.129623

8 3.576E-7

7 -0.129622

6 -0.259245

5 -0.388867

4 -0.51849

3 -0.648112

2 -0.777735

1 -0.907357

Figure D-7: Contours of fI° from the 0 (0) cell problem for a square array of elliptical
cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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F 0.0203284

E 0.0174243

D 0.0145203

C 0.0116162

B 0.00871217

A 0.00580812

9 0.00290406

8 -2.32E-10

7 -0.00290406

6 -0.00580812

5 -0.00871217

4 -0.0116162

3 -0.0145203

2 -0.0174243

1 -0.0203284

Figure D-8: Contours of V1,,l from the 0 (1) cell problem for a square array of elliptical
cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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11 2

112 1

F 0.032892

E 0.0281932

D 0.0234943

C 0.0187954

B 0.0140966

A 0.00939774

9 0.00469889

8 3.818E-8

7 -0.00469881

6 -0.00939767

5 -0.0140965

4 -0.0187954

3 -0.0234942

2 -0.0281931

1 -0.0328919

Figure D-9: Contours of Vl112 (or V121) from the 0 (1) cell problem for a square array
of elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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li ',\ x 2

, F 0.0139427

E 0.0119509

' '· " -- " _" , , , D 0.00995906
----- ' I C 0.00796725

' B 0.00597543

A 0.00398362

9 0.00199181

8 -2.32E-10

7 -0.00199181

, -6. 7 6 -0.00398362--- - ', 5 -0.00597543
,-'- ,- -- , ,, 4 -0.00796725

, -,,',, ,--- 3 ' ' ' 3 -0.00995906
,' ,' -- I 2 -0.0119509

7 I /' -I' ', , ---I 1 -0.0139427
4I3I 1 / / / _ I 1

I I
I I I I I I

ii i i i i i iI i i i i i

Figure D-10: Contours of V122 from the 9 (1) cell problem for a square array of

elliptical cylinders of volume fraction q = 0.2 and eccentricity e = 2.
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2111

F 0.0455772

E 0.0390662

D 0.0325551

C 0.0260441

B 0.019533

A 0.013022

9 0.00651094

8 -1.015E-7

7 -0.00651115

6 -0.0130222

5 -0.0195332

4 -0.0260443

3 -0.0325553

2 -0.0390664

1 -0.0455774

Figure D-11: Contours of V 1
1 from the 0 (1) cell problem for a square array of

elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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r U.UUOU/da
E 0.00712099

D 0.00593416

C 0.00474733

B 0.00356049

' A 0.00237366

9 0.00118683

8 -4.65E-10

'/ 7 -0.00118683
, 6 -0.00237366

5 -0.00356049
4 -0.00474733

3 -0.00593416

2 -0.00712099
n nnnrm n7Qo

Figure D-12: Contours of V212 (or V2l2) from the (9 (1) cell problem for a square array
of elliptical cylinders of volume fraction = 0.2 and eccentricity e = 2.

247

i- -

I -

I / 

I I / / I I
I / // 15

I A I I I I~~~~~~

I
I
I
I

I

I



V2 2

F 0.0156935

E 0.0134516

D 0.0112096

C 0.00896771

B 0.00672577

A 0.00448384

9 0.00224191

8 -2.840E-8

7 -0.00224196

6 -0.0044839

5 -0.00672583

4 -0.00896776

3 -0.0112097

2 -0.0134516

1 -0.0156936

Figure D-13: Contours of V212 from the 0 (1) cell problem for a square array of
elliptical cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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-' , ,, ,, , E; - F 0.178471
- ~- . .. ,... ~~ - E 0.130103

D 0.0817346

C 0.0333666

B -0.0150014

A -0.0633694

9 -0.111737

3S "? \:· E 8 -0.160105
7 -0.208473

6 -0.256841

-' ,I,,§ , '" " - 5 -0.305209
4 -0.353577

I9 'i9 3 -0.401945
2 -0.450313

1 -0.498681

Figure D-14: Contours of ll from the (1) cell problem for a square array of
elliptical cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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ril12

fI 121

U.30U1022

E 0.258019

D 0.215015

C 0.172012

B 0.129009

A 0.0860062

9 0.0430031

8 -1.117E-8

7 -0.0430031

6 -0.0860062

5 -0.129009

4 -0.172012

3 -0.215015

2 -0.258019

1 -0.301022

Figure D-15: Contours of '1 2 (or fll) from the 0 (1) cell problem for a square array
of elliptical cylinders of volume fraction = 0.2 and eccentricity e = 2.
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22

F 0.328246

E 0.29572

D 0.263194

C 0.230669

B 0.198143

A 0.165617

9 0.133092

8 0.100566

7 0.0680405

6 0.0355148

5 0.00298922

4 -0.0295364

3 -0.062062

2 -0.0945877

1 -0.127113

Figure D-16: Contours of f 22 from the 0 (1) cell problem for a square array of
elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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-1. -----------------------

F

E

D

C

B

A

9

8

7

6

5

4

3

2

1

-0.000325191

-0.00563521

-0.0109452

-0.0162552

-0.0215653

-0.0268753

-0.0321853

-0.0374953

-0.0428053

-0.0481154

-0.0534254
-0.0587354

-0.0640454
-0.0693554

-0.0746655

Figure D-17: Contours of V1
2

1 from the 0(9 (2) cell problem for a square array of
elliptical cylinders of volume fraction ¢ = 0.2 and eccentricity e = 2.
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1112

1121

1211

F 0.00108273

E 0.000928055

D 0.000773379

C 0.000618703

B 0.000464028

A 0.000309352

9 0.000154676

8 5.82E-11

7 -0.000154676

6 -0.000309352

5 -0.000464028

4 -0.000618703

3 -0.000773379

2 -0.000928055

1 -0.00108273

Figure D-18: Contours of V21 2 (or V1221 or V21) from the ( (2) cell problem for a
square array of elliptical cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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V1 1 2 2

,~2
1212

~2
V 221

F 0.012502

E 0.0115529

D 0.0106039

C 0.00965488

B 0.00870585

A 0.00775682

9 0.00680779

8 0.00585876

7 0.00490974

6 0.00396071

5 0.00301168

4 0.00206265

3 0.00111362

2 0.000164593

1 -0.000784435

Figure D-19: Contours of V 2,122 (or V2212 or V1
2
221) from the 0 (2) cell problem for a

square array of elliptical cylinders of volume fraction = 0.2 and eccentricity e = 2.
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V2
1222

F 0.00196567

E 0.00168486

D 0.00140405

C 0.00112324

B 0.000842429

A 0.000561619

9 0.00028081

8 -1.16E-10

7 -0.00028081

6 -0.00056162

5 -0.000842429

4 -0.00112324

3 -0.00140405

2 -0.00168486

1 -0.00196567

Figure D-20: Contours of V1222 from the 9 (2) cell problem for a square array of
elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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V2211

F 0.00382026

E 0.00327451

D 0.00272876

C 0.00218301

B 0.00163726

A 0.0010915

9 0.000545752

8 5.82E-11

7 -0.000545752

6 -0.0010915

5 -0.00163726

4 -0.00218301

3 -0.00272876

2 -0.00327451

1 -0.00382026

Figure D-21: Contours of V22111 from the 0 (2) cell problem for a square array of

elliptical cylinders of volume fraction X = 0.2 and eccentricity e = 2.
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2112

2121

2211

F 0.0213907

E 0.0199472

D 0.0185036

C 0.01706

B 0.0156165

A 0.0141729

9 0.0127293

8 0.0112858

7 0.00984221

6 0.00839865

5 0.00695508
4 0.00551151

3 0.00406795

2 0.00262438

1 0.00118082

Figure D-22: Contours of V2112 (or V2121 or V2,1l) from the O (2) cell problem for a
square array of elliptical cylinders of volume fraction = 0.2 and eccentricity e = 2.
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V2

V2212

V2

2221

F 0.00131766

E 0.00112942

D 0.000941185

C 0.000752948

B 0.000564711

A 0.000376474

9 0.000188237

8 2.91E-11

7 -0.000188237

6 -0.000376474

5 -0.000564711

4 -0.000752948

3 -0.000941185

2 -0.00112942

1 -0.00131766

Figure D-23: Contours of V2122 (or V22 12 or V22221) from the 0 (2) cell problem for a
square array of elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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Figure D-24: Contours of 12 from the 0 (2) cell problem for a square array ofFigure D-24: Contours of V2222

elliptical cylinders of volume fraction & = 0.2 and eccentricity e = 2.
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211

F 0.122926

E 0.105365

D 0.087804

C 0.0702432

B 0.0526824

A 0.0351216

9 0.0175608

8 3.725E-9

7 -0.0175608

6 -0.0351216

5 -0.0526824

4 -0.0702432

3 -0.087804

2 -0.105365

1 -0.122926

Figure D-25: Contours of I2 from the (2) cell problem for a square array of
elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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12
112

121
ft2

211

F 0.0317158

E 0.027185

D 0.0226542

C 0.0181233

B 0.0135925

A 0.00906163

9 0.00453079

8 -5.587E-8

7 -0.0045309

6 -0.00906174

5 -0.0135926

4 -0.0181234

3 -0.0226543

2 -0.0271851

1 -0.031716

Figure D-26: Contours of HI2 (or fl22 or t211) from the 0 (2) cell problem for a
square array of elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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122
2

212
fi12

221

F 0.0541325

E 0.0463993

D 0.0386661

C 0.0309328

B 0.0231996

A 0.0154664

9 0.00773321

8 0

7 -0.00773321

6 -0.0154664

5 -0.0231996

4 -0.0309328

3 -0.0386661

2 -0.0463993

1 -0.0541325

Figure D-27:
square array

Contours of , 122 (or "212 or 2 21 ) from the 0 (2) cell problem for a
of elliptical cylinders of volume fraction 0 = 0.2 and eccentricity e = 2.
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F 0.06222

F 0.0638773

E 0.054752

D 0.0456267

C 0.0365013

B 0.027376

A 0.0182507

9 0.00912539

8 7.264E-8

7 -0.00912524

6 -0.0182506

5 -0.0273759

4 -0.0365012

3 -0.0456265

2 -0.0547518

1 -0.0638771

Figure D-28: Contours of Ji222 from the (2) cell problem for a square array of
elliptical cylinders of volume fraction b = 0.2 and eccentricity e = 2.
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