SPICE Simulation and Modeling of DC-DC
 Flyback Converter

by

Hong Man Leung

B.A.Sc.(Hons), University of Toronto, Canada (1994)

Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE in Electrical Engineering and Computer Science at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
August 1995
(c) Massachusetts Institute of Technology 1995. All rights reserved.

Author
Department Electrical Engineering and Computer Science
August 10, 1995

Accepted by \qquad

F.R.Morgenthaler Chairman, Departmental Committee on Graduate Students

SPICE Simulation and Modeling of DC-DC Flyback

Converter

by

Hong Man Leung

Submitted to the Department of Electrical Engineering and Computer Science on August 10, 1995, in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE in Electrical Engineering and Computer Science

Abstract

SPICE simulations were done on a hybrid-built 28 V input, 5 V output, 100 W power oval flyback converter. In order to have the simulation results comparable to those derived experimentally, SPICE models for power transistor and Schottky power diode were developed. Similarities and differences from the experimental results are discussed.

A novel current recovery circuit was proposed and tested with the flyback converter. This current recovery circuit, with careful timing, was showed to be inheriting the snubber characteristics. The simulated results showed an increase of efficiency of about 5%. The recovery circuit was proved to be functional under a fair range of turn-on time by a sensitivity analysis. Different voltage and power combination were tested and showed a gain in efficiency of at least 3% in general.

Large signal models for the flyback converter were also developed using both simplified transistor models and the averaged-state method. The averaged-state method was found to provide a faster means for the simulation.

Finally the two-port model of the flyback converter was developed and tested.

Thesis Supervisor: Martin F. Schlecht
Title: Professor of Electrical Engineering

Acknowledgments

I would like to begin by thanking my thesis adviser, Professor Martin F. Schlecht, for his help and guidance, both in my master program and in supervising the research for this thesis, and also for his patience and kindliness.

I would also like to thank Elizabeth Chung, Marty's Secretary. Without her help, I probably couldn't fit in my supervisor's busy schedule.

Finally, I would like to extend special thanks to my family for all the love and support to make this year happened. Thank you.

Contents

1 Introduction 10
1.1 Background 10
1.2 Thesis Objectives 11
1.3 Thesis Outline 12
2 SPICE Modeling 14
2.1 Transformer Core 14
2.2 Schottky Diode 15
2.3 Power MOSFET 16
3 SPICE Simulation 21
3.1 Basic Operation 21
3.2 Energy Losses 22
3.3 Simulation 24
3.3.1 Details of the Circuit Simulated 24
3.3.2 Nonconvergence Problem and Alternatives 26
3.3.3 Initial Conditions for Active Elements 27
3.3.4 Results 28
4 Energy Enhancement Strategies 30
4.1 Background 30
4.2 Operation 31
4.2.1 Values of the Devices 31
4.2.2 Details Of Operation 32
4.3 Results 33
4.4 Further Studies 35
5 Large Scale Transient Modeling 40
5.1 Current Model Control 40
5.2 Simplified Model 43
5.2.1 Results 43
5.3 Averaged Model 46
5.3.1 Results 47
5.4 Further Studies 48
6 Two-Port Modeling 52
6.1 AC Analysis 52
6.2 Two Port Network 56
6.2.1 Implementation of Input and Output Impedance in SPICE 56
6.2.2 Results 58
6.2.3 Further Studies 58
7 Conclusion 61
7.1 Further Research 62
A SPICE Program Listings 67
A. 1 Schottkey Diode 67
A. 2 HEXFET IV 68
A. 3 Flyback Transformer (w/o Energy Recovery Circuit) 69
A. 4 Flyback Converter with Control (Simplified SPICE Modal) 75
A. 5 Flyback Converter with Control (Averaged Model) 80
A. $6 Z_{\text {in }}, Z_{\text {out }}$ from Flyback Converter with Control (Averaged Model) 84
A. 7 Two Port Model 88

List of Figures

1-1 0.5 MHz DC-DC flyback converter circuit schematic 11
1-2 A proposed current recovery scheme for enhancing the circuit 12
2-1 SPICE Model for Transformer Core 15
2-2 Forward Voltage Vs. Forward Current of Schottky Diode 16
2-3 Forward and Reverse Recovery in Schottky Diode 17
2-4 The HEXFET model 18
2-5 Step Response of Gate-Source Voltage in HEXFET IV 19
2-6 Step Response of Drain-Source Voltage in HEXFET IV 19
2-7 Setp Response of Drain Current in HEXFET IV 20
3-1 Time Profile of the Switching Loss of MOSFET in the Flyback Converter 23
3-2 Actual Simulated Circuit with Devices Values 25
3-3 Simulated Current Waveform of the Flyback Converter 29
3-4 Transient of the output voltage and current of the Flyback Converter 29
4-1 Details of the Recovery Circuit 32
4-2 Voltage Profile of the Clamp Voltage During Switching On 33
4-3 Simulated Current Waveform of the Flyback Converter with Recovery Circuit 34
4-4 Transient of the output voltage and current of the Flyback Converter with Recovery Circuit 35
4-5 Currents Profile during Recovery Circuit Switching 36
4-6 Sensitivity Analysis : $P_{\text {in }}$ and $P_{\text {out }}$ Versus On-time, $28 V$ case 37
4-7 Sensitivity Analysis : Efficiency Versus On-time, 28 V case 37
4-8 Sensitivity Analysis: Efficiency Versus Rated $P_{o u t}, 28 \mathrm{~V}$ case 38
4-9 Sensitivity Analysis : Efficiency Versus Rated $P_{\text {out }}, 16 \mathrm{~V}$ case 39
5-1 Block Diagram of Constant Frequency Current Mode Control 41
5-2 Op-Amp Implementation of the Current Mode Control Transfer Function 42
5-3 SPICE Implementation of the Current Mode Control Transfer Function 42
5-4 Initial Start-Up Response of the Flyback Converter with $1 n$ step 44
5-5 Initial Start-Up Response of the Flyback Converter with $10 n$ step 45
5-6 Initail Start-Up Response of the Flyback Converter with $50 n$ step 45
5-7 Switching Regulator Model for the Buck Type 46
5-8 Switching Regulator Model for the Boost Type 47
5-9 Switching Regulator Model for the Flyback Type 47
5-10 Initial Start-Up Response of the Averaged-Model Flyback Converter with $100 n$ step 48
5-11 Auto Susceptability Response of the Averaged-Model Flyback Con- verter with $\pm 10 \%$ change in $v_{i n}$ 49
5-12 Close Up of Auto Susceptability Response of the Averaged-Model Fly- back Converter with $\pm 10 \%$ change in $v_{i n}$ 49
5-13 Loop Transmission Response of the Averaged-Model Flyback Con- verter with $\pm 50 \%$ change in $v_{\text {out }}$ 50
5-14 Close Up of Loop Transmission Response of the Averaged-Model Fly- back Converter with $\pm 50 \%$ change in $v_{\text {out }}$ 51
6-1 Magnitude of the Input Impedance of the Flyback Converter with Cur- rent Control (Averaged Model) 53
6-2 Phase of the Input Impedance of the Flyback Converter with Current Control (Averaged Model) 54
6-3 Magnitude of the Output Impedance of the Flyback Converter with Current Control (Averaged Model) 54
6-4 Phase of the Output Impedance of the Flyback Converter with Current Control (Averaged Model) 55
6-5 Proposed Model for the Two Port Network of the Flyback Converter 56
6-6 SPICE Implementation of the Two Port Network of the Flyback Con- verter 57
6-7 Magnitude and Phase of the Input Impedance of the Two Port Network 58
6-8 Magnitude and Phase of the Output Impedance of the Two Port Network 59
6-9 Response of the Two Port Network with an Input Voltage and Input Resistance 60
7-1 Suggested Efficiency Profile on different Power Out 63

List of Tables

3.1 Inital Conditions for Active Elements in 28 V in, 5 V out Case 28
4.1 Sensitivity Analysis on the Width of the On-State in 28 V in, 5 V out Case at $C_{\text {clamp }}=10 n F$ 38

Chapter 1

Introduction

1.1 Background

A distributive power supply architecture provides a number of merits compared to a centralized power supply architectures. With converters distributed throughout the electronic system, system efficiency is improved as it draws a lower current (say 10 A at 50 V) as compared to that of the centralized system (say 100 A at 5 V). It also provides better voltage regulations and transient response. In order to achieve higher power densities of $50 \mathrm{~W} / \mathrm{in}^{3}$, the switching frequency must be increased. Under the Printed Circuit Board technology, unfortunately, the parasitics inductance caused by component package leads and package-to-package connections make it difficult to achieve efficient operation at such high frequency range.

A research program has been started at M.I.T. to investigate the design of high switching frequency power supplies. This program involves the identification of new circuits [4], topologies, novel semiconductor and magnetic components [7], and packaging techniques [16]. In particular, methods for packaging a high frequency power circuit was studied in [16]. A hybrid circuit approach was used to combine switching and energy storage components in a single thermal package. The hybrid strategy was proved to be capable for the direct mounting of the active devices, and with multilayer metallization higher component densities and better control of the circuit parasitics were achieved.

1.2 Thesis Objectives

The purpose of this thesis is to analyze the built hybrid flyback converter in SPICE $[19,18,3,17,11]$. A simple transformer model for use in SPICE is to be developed. Simulation results are compared to measurements and the components are to be modeled to give a reasonably realistic simulation with the circuit. Some energy recovery circuits will be tested with the SPICE model to determine their flexibilities. A large signal computer model [10] which will correctly simulate the transient and the steady state behavior of the circuit is then to be derived from the exact SPICE model derived from the first stage. The model will be faster than a straight SPICE simulation because fewer points in time need actually to be calculated. The final stage of the thesis is to investigate the possibility of modeling a two-port network from the simplified circuit. This model is especially valuable for analyzing a distributed power supply system. A performance analysis might be conducted in a distributed system network.

The power circuit used for SPICE simulation and modeling is a 100 W DC to DC power supply with switching frequency of 0.5 MHz . The circuit accepts a 28 V , $4.5 A$ input, and converts it to a $5 V, 20 \mathrm{~A}$ output. The flyback circuit schematic is as follows:

Figure 1-1: 0.5 MHz DC-DC flyback converter circuit schematic

1.3 Thesis Outline

The thesis basically involves five stages : Chapter 2 discusses the modeling the various important components in the DC-DC converter. It involves a detailed modeling of the components that contributes to a lot of parasitics and power consumption in the circuit, namely the transformer core [8], the power switching HEXFET, IRF540 [9,20$]$ and the Schottky Diode, $S S R 8045 C T$ [14]. The modelings take the temperature effect and inductances and capacitances of the packaging into account. For the Schottky diode, a detailed model including reverse recovery effect [5, 12] is determined.

Chapter 3 is focused on the SPICE modeling for the whole 0.5 MHz DC-DC flyback converter. Then it proceeds to simulate the whole 0.5 MHz DC-DC flyback transformer in SPICE. Performances are evaluated in terms of its resemblance to the built circuit in terms of signal responses, transient responses during switching and the total power consumption (efficiency).

Evaluation of some energy recovery schemes under the determined SPICE model is found in Chapter 4. Some energy recovery strategies are evaluated to enhance the original design. One strategy in Fig. 1-2 is tested and proved to be flexible is a current recovery from the clamped circuit with a precise controlled switching time. Effect of switching delays and mismatches are investigated. Various input voltages and output power combinations are tested and tabulated.

Figure 1-2: A proposed current recovery scheme for enhancing the circuit

Chapter 5 focuses on the large signal modeling of the SPICE model. Two ap-
proaches are to be used. The first one to derive directly from the SPICE model found in Stage 2 by removing high order terms and relatively unimportant components. The second approach are to follow the similar method addressed in [10] for a series resonant converter. The main issue is to focus on its transient response such that the derived model will serve as a good model for control circuits. The control circuit together with the converter circuit is simulated and verified. Merits and shortfalls on each strategy are investigated.

Chapter 6 looks at the Two-Port Modeling. After the large scale model is derived, the model is further simplified just to maintain the transient characteristics of the system. This model is primarily targeted for a large distributed power supply network where about half a hundred such converters are to be simulated together. A lump of these models might then be simulated under the distributed power network.

Chapter 2

SPICE Modeling

This chapter is devoted to the modeling of various nonlinear components which are essential for accurate simulation of the power electronic circuits. Two approaches are used to model the components. The generic models are made by optimizing the parameters of the generic SPICE model to better fit the characteristics of a high voltage device. The Schottky diode adapts this kind of approach. The modeling of the switching power MOSFET is tackled using the subcircuit approach. It is constructed by combining conventional SPICE device models with passive components and controlled sources into a SPICE subcircuit which represents the power device model. This kind of modeling can be complex and slow to simulate, which results in small time step, 1 ns , when running the simulation in Chapter 3.

2.1 Transformer Core

The model in Fig. 2-1 adapts the generic modeling technique. It includes the leakage inductance, L_{k}, the primary resistance, $R_{\text {loss }}$, the core loss, $R_{\text {core }}$ and the magnetizing inductance, L_{μ}. Instead of using a pair of controlled voltage source for the coupling inductances, A generic coupling function is used. This gives users more flexibility on the control of magnetic coupling coefficient when geometries of the magnetic core are to be taken into account.

Figure 2-1: SPICE Model for Transformer Core

2.2 Schottky Diode

The current coefficient for a forward biased silicon Schottky diode is about five orders of magnitude larger than that for a bipolar diode. The lower on-state voltage, 0.4 V is a major advantage. The temperature dependence of the forward voltage drop on Schottky are controlled by $X T I$, the temperature coefficient of I_{S}. Typically the on-state resistance, $R_{D S_{(o n)}}$, increases by approximately a factor of two when the junction temperature is at its rated maximum. A possible solution for this shortcoming is as follows - do a hand calculation to determine the approximate junction operating temperature, and scale $R_{D S_{(o n)}}$ by the appropriate value from the $R_{D S_{(o n)}}$ versus case temperature graph. In Fig. 2-2, the forward voltage versus forward current characteristics of the model is simulated. The results are comparable to those provided by the databook.

Reverse Recovery plays an important role in the accuracy of the simulation of the flyback converter. Reverse recovery occurs when a forward conducting diode is turned off rapidly, and the internally stored charges cause transient reverse current to flow at high reverse voltage. Although the current in Schottky flows only by drift and there is no need to accumulate or remove excess carriers, A Schottky diode does contain SCL capacitance which must be charged and discharged during switching. The charge storage effects are modeled by the transit time $T T$ in SPICE and is set to zero in the case of Schottky diode. The nonlinear depletion layer capacitance, which depends on the zero-bias junction capacitance $C J O$, the junction potential $V J$, and grading coefficient M is set accordingly in the SPICE code. Figure 2-3 shows the

Figure 2-2: Forward Voltage Vs. Forward Current of Schottky Diode
simulated results of the forward and reverse recovery due to SCL capacitance. In Fig. 2-3 both forward and reverse recoveries are demonstrated with a $600 \mathrm{~ns}, 10 \mathrm{~V}$ step. As shown, there is a forward drop of approximately 0.4 V during conduction and a reverse recovery time of less than 200 ns .

As the reverse voltage on a Schottky diode increases, the peak electric field at the metal-semiconductor interface eventually reaches the avalanche state. Avalanche in Schottky diode can be simply be modeled with an ideal diode and a negative voltage source connected parallel across the Schottky diode model.

2.3 Power MOSFET

The greatest limitation in using SPICE to model a power MOSFET is the effect of the gate-drain capacitance, which is highly nonlinear function of $V_{g d}$, especially at low $V_{g d}$ values. As the MOSFET is a majority carrier device, the transient performance of the MOSFET is governed only by the oxide and SCL capacitances and by the impedances that limit the ability to charge and discharge these capacitances. The

Figure 2-3: Forward and Reverse Recovery in Schottky Diode
SPICE computer model for HEXFET III is documented in [13]. The SPICE model proposed is in Fig. 2-4. As shown, the Miller capacitance, $C_{g d}$ is emulated by C_{x} and $E_{1} . C_{x}$ is modeled as a high order polynomial of $V_{g d}$. Its value changes rapidly when $V_{g d}$ is close to zero volt. E_{1} is dependent voltage source of $V_{d g}$. It offers offset of the voltage across the capacitor, thus allowing $C_{g d}$ to vary rapidly in the local region. It variably reduces the voltage change across the capacitor, a factor of 200 in high voltage devices and 20 in low ones.

The connection of the p-wells to the source level metal gives the MOSFET an antiparallel body diode. The bulk-to-drain diode of the built-in MOSFET model cannot be used for this purpose because the on-state resistance has to be adjusted to give a satisfactory simulation of the MOSFET output characteristics in the linear region. A diode with reverse recovery characteristics and small on-state resistance is used instead of what is documented in [13]. The tradeoff is an increase of computation times.

Inductances and resistances of the gate, source and drain are determined by the packaging of the transistor. R_{1} and R_{2} in the model is used to control the DC

Figure 2-4: The HEXFET model
performance of the model. R_{2} is the parasitic resistance in the source. R_{1}, the epitaxial layer bulk resistance, is calculated as $R_{1}=R_{d s(o n)}-R_{\text {channel }}$, where $R_{d s(o n)}$ is simply equal to V / I in low voltage region.

The avalanche of the power MOSFET is modeled with an ideal diode and an about 150 V voltage source connected in parallel to it.

HEXFET IV power MOSFET is used instead in the flyback converter. It results in a double in die size, channel width, W, and all the corresponding junction capacitances. Resistances decrease by half, also.

The HEXFET model is tested with a 500 n second, 10 V step. It is noted that due to the manner in which $C_{g d}$ is emulated by C_{x} and $E_{1} . C_{d g}$ reaches very high value when $V_{g d}$ reaches +10 V . This model will not be valid when the gate voltage is much higher than 12 volts.

Figures 2-5, 2-6 and 2-7 are the simulated results for the HEXFET IV with a 10 V step change in 500 ns modified from [13]. As shown, there is a degree of correspondence between the theoretical and actual waveforms which indicate that the model produces results in switching regime that are sufficiently accurate for most purposes.

Figure 2-5: Step Response of Gate-Source Voltage in HEXFET IV

Figure 2-6: Step Response of Drain-Source Voltage in HEXFET IV

Figure 2-7: Setp Response of Drain Current in HEXFET IV

Chapter 3

SPICE Simulation

This chapter looks at the simulation of the flyback converter using HSPICE, [1, 2] with the expected theoretical results.

3.1 Basic Operation

The basic operation of the transformer-isolated buck-boost converter, or "flyback" converter is as follows. Energy is stored in the magnetic core of the flyback transformer while the transistor is on, and "flies back" to the output through the Schottky diode while the transistor is off. The flyback transformer is designed with an appropriate air gap so that it serves the dual role of inductor and transformer. In that way, isolation and polarity reversal can be achieved in a practical flyback converter with no more power components than are in the basic buck-boost converter. The output voltage, $V_{\text {out }}$ is equal to $N V_{\text {in }} D /(1-D)$ where N is the transformer ratio, $V_{\text {in }}$ is the input voltage, and D is the duty ratio in which the transistor switch is on. The load current is assumed to be such that the transformer is operating in the continuous conduction. In the case of discontinuous conduction, where the magnetizing inductor current, $i_{L_{\mu}}$, returns to zero amperes before the end of the cycle, the output to input ratio is given by D_{1} / D_{2} where D_{1} is the duty ratio and D_{2} is the time ratio in which the magnetizing current takes to go back to zero.

There are some design constraints. For instances, in the case of a $5 V$ output,
we normally require a DC ripple of less than 1%. In the steady state, the ripple in the output is basically the charging and discharging of the output filter with the $i_{o u t}$, which is equal to the $\Delta Q / C$, where ΔQ is the change in charge stored in the output capacitance, C. In order to minimize the output voltage ripple, the switching frequency, $f_{s w}$ is chosen to be $\frac{1}{2} M H z$.

In addition, the rising and the falling edge of the $i_{\text {out }}$ are very steep. In our case, where the transformer circuit is built in the hermitic sealed hybrid substrate, the components are all attached to parasitics inductances on the conduction legs. The damping resistor of 0.25Ω is added across the output filter to provide a damping to the high 100 MHz spike during switching.

This converter is operated in the control current mode, which is discussed more detail in Chapter 5. Basically the magnetizing inductor current is compared with a threshold and the transistor is turned off once this threshold is reached. The control circuit providing the threshold signal is basically a triangular pulse generator which inevitably has a dead time between each cycle. The maximum duty cycle, $D_{\max }$ which can be calculated from $v_{o u t} / v_{i n_{\min }}=N D_{\max } /\left(1-D_{\max }\right)$ with $v_{i n_{\text {min }}}$ equals 16 V is approximately equal to 40%.

3.2 Energy Losses

There are three major losses in the flyback converter, namely the losses in the rectifiers, the conduction losses in the MOSFETs and the loss due to leakage inductance.

The losses of the Schottky diodes includes the on-state losses and the leakage current losses. Since the Schottky diodes have a finite on-state voltage, V_{f}, of approximately 0.4 V . The on-state loss is simply $V_{f} I_{\text {out }}$, where $I_{o u t}=20$ as either one must be on during the period. This gives a loss of energy of $8 W$.

The reverse leakage current for a positive centertap Schottky rectifier is about 30 $m A$ (@Rated $V_{R}, T_{A}=100^{\circ} \mathrm{C}$). The voltage reflected across the rectifier is 2 times the original input voltage times the core ratio, which is $2 \cdot 28 \cdot \frac{1}{2}=28$. With a duty ratio of 0.2885 (refer to Table 3.1), the leakage current loss is $2 \cdot 0.24=0.48 \mathrm{~W}$.

Also the charging and discharging of the junction capacitance ($1600 p F$) gives a $\frac{1}{2} C V^{2} f_{s w}$ losses., which is approximately equal to $400 \mu W$. It is insignificant compared to the forward loss. The total losses due to the Schottky diodes is 8.48 W .

The losses caused by the MOSFETs are switching losses during turn-on and turnoff and the conduction loss. As shown in Fig. 3-1, power is lost during the switching period when both the voltage and current are non-zero (conduction loss will be considered later). The peak of the magnetizing current, $I_{\mu_{p}}$, is equal to $\left(V_{i n} T_{o n}\right) / L_{\mu}$. where $V_{i n}=28, T o n=577 n, L_{\mu}=12 \mu$. This gives a value of $13.5 A$. It leads to a $I_{d 1}$ of $0.5 A$ and $I_{d 2}$ of $14 A$.

By assuming $T_{T}=20 n s$ and straight line transient rise and fall, as shown in Fig. $3-1$, the turn-on and turn-off losses are simply equal to the triangle area of VI. This corresponds to a turn-on loss of 0.14 W and turn-off loss of 3.92 W .

Figure 3-1: Time Profile of the Switching Loss of MOSFET in the Flyback Converter

Conduction loss of the MOSFET is simply given by the integral of $\frac{1}{T} \int i^{2}(t) R_{d s_{o n}} d t$. which end up in the following closed from :

$$
\frac{\left(I_{d 1}^{2}+I_{d 1} I_{d 2}+I_{d 2}^{2}\right) R_{d s_{o n}} T_{o n}}{3 T}
$$

For the surface mount MOSFET used in the built flyback converter, the drain-tosource on-state resistance, $R_{d s_{o n}}$, is relatively small of about 0.1Ω. This gives a conduction loss of $3.9 W$.

The loss due to parasitic capacitance in the two MOSFETs, $400 p C$ is 0.16 W . The
total losses due to MOSFETs is 8.12 W .
The leakage inductance of $80 n F$ gives a $\frac{1}{2} L I^{2} f_{s w}$ loss. With $I=13.5$, it accounts for 7.3 W . Hence, the total losses is 23.9 W . There are some uncalculated losses from the transformer core and skin and proximity effect of the copper windings of about 0.5 W . This gives the efficiency of the transformer of about 75.6%. The built circuit has an experimentally determined efficiency of about 79%.

3.3 Simulation

3.3.1 Details of the Circuit Simulated

Figure 3-2 shows the actual circuit that is simulated in SPICE. It should be noted that in the input filter stage, the resistors of $8 \mathrm{~m} \Omega$ are added in series with the inductors to give a more realistic comparison with the built circuit. Similarly a resistance of 3 $m \Omega$ is added to the output filter inductor. Instead of adding parasitic resistors to the transformer inductors in both side, a resistor of $8 \mathrm{~m} \Omega$ is reflected to the primary side only. The resistor of $12 \mathrm{~m} \Omega$ which is added in between the magnetizing inductor, L_{μ}, and the coupling one, not only simulates the resistive loss in the transformer core, but also provides damping for two parallel inductor sources. SPICE fails to simulate in the presence of voltage/inductor loop. Whenever a pure loop is needed, a resistor of $10 \mu \Omega$ is added in series to assist the transient analysis in SPICE. ($10 \mu \Omega$ is the smallest possible value for resistance in SPICE.)

The parasitic inductances of the HEXFET IV, modeled in Section 2.3 due to the packaging of the die, (namely the L_{g}, L_{s}, L_{d}), are removed during the simulation. Parasitic inductance of the drain and source of the transistor, L_{d}, L_{g} are combined with the the leakage inductance of the transformer core as a single inductor of value 80 nF . The gate parasitic inductance, L_{s} is removed in a completely different scenario. In the SPICE code developed, the MOSFET gates are simply driven by a voltage source, in which the switching process is unnecessarily delayed by the parasitic inductances of the modeled transistor.

Figure 3-2: Actual Simulated Circuit with Devices Values

3.3.2 Nonconvergence Problem and Alternatives

Since the converter simulation requires details of the current responses of various parts of the circuit which involves large amount of transient responses of lumps of inductances and capacitances, the required time step (turned out to be $1 n s$, compared to $200 n s$ period) is very small. The failure to converge during a transient response is large. Particular attentions should be paid to the details of the device model. For instances, the default values for all parasitic resistances and capacitances are zero. For an ideal diode, which we use frequently in modeling an avalanche effect in both MOSFETs and power diodes, if the parameters $R S$ and $C J O$ are not specified, the device will have no ohmic resistance and no junction capacitance. Zero resistance implies infinite current gain during the forward region, while a zero capacitance means a null switching time. This results in a smaller and smaller internal time step and leads to a convergence failure.

SPICE uses the Newton-Raphson algorithm to simulate the nonlinear circuit equation. Sometimes, the algorithm might be converging very slowly due to the characteristics of the circuits. Increase in the number of iteration points for a given transient step is an alternative to aid convergence. The iteration limit at any point during the transient analysis can be altered by the parameter ITL4 in the .option command line. Our simulation is run under $I T L 4$ of 100 while the default value is 50 . As a result of more iteration points, a longer simulation time will be required. There is another alternative : reduce the relative accuracy of all the voltage and currents that are calculated by altering the parameter $R E L T O L$. It is not recommended, in general.

The total number of iterations in a simulation run is limited to the value of ITL5 option. In our simulation $I T L 5$ is set to zero which is the same as setting it to infinity.

To avoid overflowing of too many transient data during initial startup, the third parameter on the.$T R A N$ statement can be used to suppress part of the output at the beginning of the run. For instances, a transient analysis from 0 to 1 ms in steps of 1 ns and retaining output from 0.8 ms to 1 ms , the command would be.$T R A N$ $1 n 1 m 0.8 n 1 n$.

3.3.3 Initial Conditions for Active Elements

Initial conditions of the active elements are crucial to the running of the simulation. SPICE provides a routine to guess the initial conditions for the active elements and it is generally not recommended. In the simulations, as all the filtering capacitances are connected to ground, they are assigned with $V_{\text {in }}$ or $V_{\text {out }}$ depending on which sides they are residing. The difficult part is to assign values to the magnetizing inductance, L_{μ}, the leakage inductance, L_{k} and the coupling inductance. Failure to give correct values will either overshoot the output or damp the output to zero after several time steps of simulation. Since it is an oval converter, the initial conditions of the first transformer core is not the same as the second transformer core. In fact their secondary currents must add up to $20 A$ by KCL, the DC value of $i_{\text {out }}$. The following is a rough estimation for the initial condition in the SPICE code. Values are then fine tuned after the first simulation is completed.

First, as the second switch is off, the second leakage inductor, $L_{2 p_{k}}$ must has 0 initial current. By $V_{\text {out }} /\left(n V_{\text {in }}\right)=D /(1-D)$ with $V_{\text {out }}=5, V_{\text {in }}=28, n=0.5$, the duty ratio is roughly equal to 0.263 , which corresponds to an on time, $T_{o n}$, of 526 ns $($ period $=2000 n s)$

Assuming discontinuous mode, the maximum magnetizing current, $I_{L_{2 p_{\mu}}}$ is given by $V_{i n} T_{o n} / L_{2 p_{\mu}}$ with $L_{2 p_{\mu}}=1.2 \mu$. The magnetizing current is found to be 12.3 A .

So the coupling inductor, $L_{2 p}$, has the initial condition of -12.3 by KCL as the second leakage inductor current, $i_{L_{2 p_{k}}}$, must be null as the switch is open.

It follows that the coupling inductor of the first transformer core, $i_{L_{1 p}}$ must have an initial current of 2.3 A . (The secondary currents must add up to 20 A by KCL which leads to a secondary current for the first transformer core of $-4.6 A$. After reflecting to the primary side, it is of the value of 2.3 A .)

The magnetizing current, $i_{L_{1 p_{\mu}}}$, and the coupling current, $i_{L_{1 p}}$, must add up to the leakage current, $i_{L_{1_{k}}}$, which is equal to $4.8 \mathrm{~A}, \mathrm{DC}$ current of $V_{i n}$. This gives the initial values of the magnetizing current of 2.5 A

After one simulation, the continuous mode initial condition are found as follows :

D	$577 n s$
$I_{L_{1 p}}$	0.5 A
$I_{L_{1 p_{\mu}}}$	2.5 A
$I_{L_{1 p_{k}}}$	2.0 A
$I_{L_{2 p}}$	-10.5 A
$I_{L_{2 p_{\mu}}}$	10.5 A
$I_{L_{2 p_{k}}}$	0.0 A

Table 3.1: Inital Conditions for Active Elements in 28 V in, 5 V out Case

3.3.4 Results

In Fig. 3-3, the circuit is simulated for $40 \mu s$ with a time step of $1 n s$ and the inductor current in one side is shown. The magnetizing inductance current, $I_{L_{1 p_{\mu}}}$ exhibits continuous conduction as expected. From there, $I_{d 1}$ used in Section 3.2 is about $0.5 A$ as expected and so is $14 A$ for $I_{d 2}$. The output current, $I_{D_{13}}$ has a high frequency components of about 30 MHz which decays rapidly. This high frequency component is due to the leakage inductance, $L_{1 p_{k}}$, of $80 n F$ and the parasitic capacitance of the $H E X F E T I V$ of $400 p F$. The frequency of this $L C$ pair is given by $2 \pi \sqrt{L C}$ which is equal to 28 MHz . A parallel 100Ω resistor, $R_{L_{2 p_{k p}}}$ is added assist the exponential decay of the high frequency component. The results match those determined experimentally from the built circuit.

In Fig. 3-4, the output voltage and the output current are seen to be stabilized after $20 \mu s$. The power input and power output of the flyback converter are calculated by averaging the values from $26 \mu s$ to $38 \mu s$. The simulated results are input power is 120.06 W and the output power is 100.34 W . This gives an efficiency of 83.6%. This is a bit higher than the built circuit. The possible source of discrepancies are the circuit ignores the core loss in the transformers (without placing a parallel resistor across the coupling inductor) and the losses due to the control circuitry. In our case, the total transformer core loss of the built circuit is around $2 / 3 \mathrm{~W}$ and the control circuit loss is about $1 W$. This gives a closer result of 81% efficiency.

Figure 3-3: Simulated Current Waveform of the Flyback Converter

Figure 3-4: Transient of the output voltage and current of the Flyback Converter

Chapter 4

Energy Enhancement Strategies

In Chapter 3, the efficiency is found to be around 80% in the simulated flyback converter. One of the three major sources of energy losses is the leakage inductance loss. In this Chapter, a method of recovering part of this loss is discussed. It includes the details of how to chose various components, the underlying principles of how the circuit works and some simulations on sensitivity analysis on the switching time and various voltage and power combinations.

4.1 Background

As presented in Section 3.2, one of the major energy losses is the leakage inductance loss. The leakage loss which is $\frac{1}{2} L I^{2} f_{s w}$, where $L=80 n H$ and $I=13.5 A$, accounts for 7.3 W. The leakage inductance, $L_{p k}$, and the switching MOSFET parasitics capacitance gives a characteristic impedance of $\sqrt{\frac{L_{p k}}{C_{p a r}}}$ where $L_{p k}=80 \mathrm{nH}$ and $C_{p a r}=$ 400 pF . This gives a value of 14.1Ω. This resistance leads to an overshoot of 170 V ($14.1 \Omega \cdot 12 V$) during the transient of the switching. This, in fact, is over the avalanche of the switching MOSFETs, which is equal to 150 V . The method of preventing this to happen during the switching transient is to use a clamp circuit which includes a diode and a clamped capacitance connected parallel to the switch. However, the energy stored in the clamp circuit must be removed by some means. For instance, a capacitance of $10 n F$ has a a power dissipation of $\frac{1}{2} \cdot 10 n \cdot(60 \mathrm{~V})^{2} \cdot \frac{1}{2} \mathrm{MHz}$, which is
equal to 12.5 W ! (60 V is the voltage across the open switch). The typical method of removing this amount of energy is through a resistance. In this way, energy stored will be lost and there will be an extra cost in an heat sink to remove the heat generated.

4.2 Operation

Instead of using a diode for the clamp circuit, a secondary switch is used. It acts as a simple clamp circuit when the secondary switch is off. The basic operation is that when the primary switch is off, the leakage current flows through the body diode of the secondary switch to the clamped capacitance where charges are stored up. Just before the primary switch is turned on, the secondary switch is switched on, the current flows back into the leakage inductor removing charges from the clamped capacitance and recovering the leakage loss.

4.2.1 Values of the Devices

The clamped capacitance and the switching MOSFET must be chosen in such a way that the energy losses due to the switching is less than the energy recovered.

The clamped capacitance is calculated from $2 \pi \sqrt{L_{\text {leakage }} C_{c l a m p}}=f_{s w}$, where $f_{s w}=$ 500 kHz and $L_{l e a k a g e}=80 \mathrm{nH}$. The required clamped capacitance is 11 nF .

The characteristic impedance, in this case is $2.7 \Omega\left(\sqrt{\frac{80 n H}{11 n F}}\right)$. This gives a overshoot of 36.5 V overshoot during the switching transient, which is much lower than that of the primary MOSFET. With a maximum switching voltage of 66 V (56 V from input with 10 V reflected from output), the maximum clamped voltage the MOSFET has to withstand is around 100 V . Thus, a $H E X F E T$ of 100 V is chosen for this operation.

The on-state resistance of a surface-mounted $H E X F E T I$ MOSFET is about $\frac{1}{2} \Omega$. With a leakage current of around $10 A$ for quarter of a cycle, the power dissipation of the recovery circuitry is given by $\left(\frac{1}{2} \Omega\right)(10 V)^{2}\left(\frac{50 n s}{2 u s}\right)$ which is about 1.2 W . The energy loss due to a leakage current loss is about 7 W , thus about $5 W$ of energy, about 5% increase in efficiency, is expected to be recovered after the implementation.

Figure 4-1: Details of the Recovery Circuit

4.2.2 Details Of Operation

The secondary switch is designed to turn on before the primary switch is on and close when the primary switch is off. The secondary starts to turn off when the primary switch begins to turn on, thus providing a path for the leakage inductor current. The leakage inductance is coupled with the clamped capacitor instead. In that way, the rate of change of the device voltage and current is kept low enough for correct and reliable operation during the switch transition.

When the secondary switch is off, the equivalent capacitance is equal to the series combination of $11 n F$ clamped capacitance and the $50 p F$ parasitic capacitance of the HEXFET I, which is approximately equal to $50 p F$. When the secondary switch is on, the equivalent capacitance of the recovery circuit is simply $11 n F$. When the primary switch is turning off and the second switch is off, the equivalent capacitance is the parallel combination of $400 p F$ from primary switch and $50 p F$ from the secondary, which is the sum of the two. This $450 p F$ rings with the $80 n H$ leakage inductance to give a high single spike of 167 MHz .

Then when both switches are off, the recovery circuit acts like a simple clamp circuit and the 450 pF equivalent capacitance rings with the $1.2 \mu H$ magnetizing inductance. The clamping current oscillates with a frequency of 43 MHz and decays rapidly as the clamping capacitance is charged up.

During the off-state of the primary switch, when the secondary switch is turned on, the parallel combination of $11 n F$ clamp capacitance and the 400 pF parasitic capacitance of the primary switch rings with the 80 nH leakage inductance resulting in a high spike of 33 MHz . Then the equivalent capacitance rings with the series combination of the magnetizing inductance and the leakage inductance with a frequency of 8.7 MHz . The recovery circuit removes charges from the clamped capacitance by reversing the current flow. The current ease to flow when the voltage of the current equal to the input voltage. At that time, the secondary switch is switching off while the primary switch starts to switch on. When the secondary switch is off and the primary switch is on, the clamped voltage is lower than the input voltage by its characteristic impedance multiplied by the leakage current. It acts as a turn-on snubber for the primary switch. ($V_{\text {clamp }}$ is approximately equal to $V_{i n}-I_{p k} \cdot \sqrt{\frac{L_{p k}}{C_{c l a m p}}}$ after the undershoot during ringing, as shown in Fig. 4-2)

Figure 4-2: Voltage Profile of the Clamp Voltage During Switching On

4.3 Results

As shown in the current waveform in Fig. 4-3, current is recovered during the on-state of the secondary switch.

Figure 4-3: Simulated Current Waveform of the Flyback Converter with Recovery Circuit

Both output voltage and output current in Fig. 4-4 have increased under the same duty cycle. The input power is found to be 125.6 W and the output power is $109 W$, which gives an efficiency of 89.2%. Comparing with the simulation without the recovery circuit in Section 3.3.4, there is an increase of 5.6%. This appears to be consistent with the analysis done in Section 4.2.

Figure 4-5 shows the details of the simulated waveforms of the clamped current, $i_{\text {clamp }}$ during the switching cycle. When the primary switch turns off and the secondary switch remains off, the simulation gives a high spike of frequency of 160 MHz following a rapid transient of frequency of 30 MHz . When the secondary switch starts to turn on while the primary switch is off, there is a high frequency spike of 40 MHz . Then it starts to oscillates for half a cycle of frequency 5 MHz .

The simulated results fall within the same order as expected in Section 4.2. The discrepancies are due to the fact that the parasitic capacitances of the Schottky diodes in the secondary side have not be taken into account during the analysis.

Figure 4-4: Transient of the output voltage and current of the Flyback Converter with Recovery Circuit

4.4 Further Studies

Several simulations are carried out to investigate the effects of varying the parameters on the effectiveness of the recovery circuit. Figures $4-6$ and $4-7$ show the effect of varying the duration of the turn on of the secondary switch. The results are encouraging. As shown in Fig. 4-6, the output power, $P_{\text {out }}$ and the input power, $P_{\text {in }}$ remains almost steady. This gives a flat efficiency curve in Fig. 4-7. This sensitivity analysis implies that the recovery circuit can function properly even under a fair amount of fluctuation in the turn-on time. From Table 4.1, the efficiency outperform the non-recovery one by more than 3% throughout.

The studies on the sensitivity on various rated power and different input voltages give a mixed signal. As shown in Figs. 4-8, 4-9, the recovery circuit outperforms the non-recovery one in both cases. However, the gain in efficiency, which is the vertical difference between the two sets of data in each plot, fluctuates by a fair amount from the operation of 50 W to 100 W . In particular, it does not have any regular pattern. In Fig. 4-8, the gain in efficiency seems to be diverging out in 28 V case, while in Fig.

Figure 4-5: Currents Profile during Recovery Circuit Switching

4-9, the gain seems to be at its maximum in the center for the case 16 V . There is no conclusive result drawn unless further investigation is performed.

Figure 4-6: Sensitivity Analysis : $P_{\text {in }}$ and $P_{\text {out }}$ Versus On-time, $28 V$ case

Figure 4-7: Sensitivity Analysis : Efficiency Versus On-time, $28 V$ case

Switch $_{\text {on }}(n s)$	$P_{\text {out }}(W)$	$P_{\text {in }}(W)$	Efficiency
117	109.32	125.43	87.16
118	109.40	125.48	87.19
119	109.47	125.51	87.22
120	109.54	125.56	87.24
121	109.61	125.59	87.27
122	109.67	125.63	87.29
123	109.73	125.66	87.32
124	109.79	125.67	87.36
125	109.85	125.67	87.41
126	109.90	125.66	87.46
128	110.00	125.65	87.54
132	110.17	125.6	87.71
133	110.21	125.57	87.76
134	110.24	125.54	87.81
135	110.27	125.49	87.87

Table 4.1: Sensitivity Analysis on the Width of the On-State in 28 V in, 5 V out Case at $C_{\text {clamp }}=10 n F$

Figure 4-8: Sensitivity Analysis : Efficiency Versus Rated $P_{\text {out }}, 28 \mathrm{~V}$ case

Figure 4-9: Sensitivity Analysis : Efficiency Versus Rated $P_{\text {out }}, 16 \mathrm{~V}$ case

Chapter 5

Large Scale Transient Modeling

In order to fully investigate the performance of the flyback converter for ac, dc and transient conditions, a large signal model is needed. This chapter investigates the SPICE modeling of the flyback converter developed in Chapter 3 and 4 with the current mode control circuit. Two approaches are adapted. The first method is based on the simplification of the SPICE model developed in Chapter 2 and 3. The second method is the development of an averaged model around the operating points. Simulation results from both methods are discussed and compared.

5.1 Current Model Control

The basic current mode control method is shown in Fig. 5-1 for a fixed frequency system. The peak switch current, $i_{\text {sense }}$, is compared to the control signal, $i_{\text {control }}$, to determine the on-time of the flyback converter's primary side switch. For a given cycle of operation, turn-on is conincident with the clock pulse and turnoff is conincident with the time that the analog controlled switch current intercepts the control current. This kind of control provides several advantages. The peak current can be easily limited by clamping the control signal, thus enhancing the reliability of the controlled switches. The current feedback loop forces the inductor current to be constant, hence removing a pole and simplifying the system compensation. This also reduces the effect of line voltage changes on the output voltage, providing inherent input line
feedforward correction.

Figure 5-1: Block Diagram of Constant Frequency Current Mode Control

The feedback gain for the continuous conduction current-mode controlled flyback converter is given as

$$
G(s)=\frac{g_{o}\left(s / z_{0}+1\right)}{\left(s / z_{0}\right)\left(s / p_{0}+1\right)\left(s / p_{1}+1\right)\left(s / p_{2}+1\right)}
$$

The SPICE circuit is realized by cascading ideal op-amp in the following manner.
First reorder the transfer function into the following groups

$$
\frac{g_{0}}{s / z_{0}} \cdot \frac{s / z_{0}+1}{s / p_{0}+1} \cdot \frac{1}{s / p_{1}+1} \cdot \frac{1}{s / p_{2}+1}
$$

where g_{0} is the midband transconductance of output voltage to the average output current reflected to the primary side. The typical value of g_{0} for the flyback converter is between 6 and $7 \Omega^{-1}$. Then the implementation term by term with op-amp is shown in Fig. 5-2

The op-amps are implemented as voltage controlled voltage source. As the opamps are treated as ideal, dynamic range of their transfer functions need not to be taken into account. Resistances are all chosen to be 1Ω. The corresponding passive elements, capacitances and inductances are given by $\frac{1}{2 \pi f}$, where f is the frequency of the corresponding poles or zeros. The first term is a pole at zero, and it is emulated

Figure 5-2: Op-Amp Implementation of the Current Mode Control Transfer Function
as the current through the inductor. As mentioned in Section 3.3.1, SPICE does not allow voltage/inductor loops. Therefore, as before, a $10 \mu \Omega$ resistor is added. This gives a pole at R / L with $L=\frac{1}{2 \pi 4 k}$ and $R=10 \mu \Omega$, which is 0.25 Hz instead of an absolute zero. The implemented control circuit has $z_{0}=4 \mathrm{kHz}, p_{0}=18 \mathrm{kHz}$, $p_{1}=p_{2}=300 \mathrm{kHz}$. The actual implementation with values is shown in Fig. 5-3

Figure 5-3: SPICE Implementation of the Current Mode Control Transfer Function

The dependent sources emulating the op-amps are inverted as shown. This is to make up the negative sign of the transfer function when signals run across the op-amps, thus removing unnecessary inverter stage.

The transfer function has a plateau of gain of g_{0} between the zero frequency of z_{0} and the pole of p_{0}. The DC part settles off quickly as the gain around the DC region is high, while the high frequency components oscillate for a while, but do not contribute to the general waveform of the transient responses. Thus, the response of the transient is mainly dominated by the transconductance of the transfer function around this plateau region. At the frequency of p_{0}, the time constant is equal to 40 $\mu s(1 / 2 \pi 4 k H z)$ and at the frequency of p_{1}, the time constant is about $8.8 \mu s$. Thus,
the expected initial rise time for the flyback converter to startup is around $100 \mu \mathrm{~s}$.

5.2 Simplified Model

In Chapter 2 and 3, it was found that the time step required for an accurate simulation of the flyback converter is 1 ns . To investigate the transient response under the control mode control is quite inefficient with such a small time step. It requires around 500 μs of simulation time. This order of simulation times require a lot of computation on hourly basis. Also, the simulation results stack up to order of the tenth of mega bytes. In fact, a lot of fine details of the switching operation in the transformer core could be neglected completely. The responses of both the input and the output filters are the major factors to be investigated.

Since the detailed response of the transformer core is not necessary, the leakage inductors in the primary side, $L_{p k}$ are removed. The parallel resistors across the leakage inductors and the series resistors are removed also. The HEXFET IV switches are replaced by the same W / L ratioed, simple MOSFET switches. It enabled the time step to increase from $1 n s$ to $100 n s$ without the convergence problem during transient analysis.

5.2.1 Results

Figures 5-4, 5-5 and 5-6 are the simulated results with different time steps during the initial startup of the flyback converter using the current control techniques. As shown in the figures, the 90% rise time of the flyback converter with current control is about $20 \mu s$ and they take around $100 \mu s$ to get to 99%. They are consistent to the predicted results in Section 5.1. All three figures exhibit the same general waveform.

As the time step increases, from $1 n s$ step in Fig. 5-4 to $10 n s$ in Fig. 5-5, the waveform becomes coarse and the ripple becomes large. This can be best explained by the fact that the control circuit cannot keep track of the transient change when the time step is too large.

When comparing Fig. 5-5 and Fig. 5-6, besides the fact that the responses become

Figure 5-4: Initial Start-Up Response of the Flyback Converter with $1 n$ step
coarse when the time step increases from $10 n s$ to $50 n s$ in general, there are some similarities in the wave patterns between the time interval of $100 \mu s$ and $500 \mu s$ and also between $500 \mu s$ and $700 \mu s$ in both graphs. There are some ripple patterns in each of these two intervals. A possible explanation might be the control signal is sampling too slow that there is aliasing in frequency domain for the high order ripple frequencies. One of the evidence is that in Fig. 5-4 when the time step is equal to $1 n s$ (high enough sampling rate), such ripple patterns disappear. Further testing on the simulation and on real circuits might be needed to investigate the details of aliasing in the stability of the control circuit.

Figure 5-5: Initial Start-Up Response of the Flyback Converter with $10 n$ step

Figure 5-6: Initail Start-Up Response of the Flyback Converter with $50 n$ step

5.3 Averaged Model

The switching regulator model developed for SPICE is based on Middlebrook's averaged power stage models [15], which can be applied to ac open and closed-loop analysis. The models also work in dc or large-signal transient analysis, which is needed for our study. These averaged models only assume that the circuit must operate in the continuous conduction mode, where the instantaneous inductor current is not zero anywhere in the switching cycle. The discontinuous conduction is found in [6]. Using state-space averaging, a switching converter can be modeled as an ideal dc-to-dc transformer, in which the turns ratio is controlled by the duty cycle. The SPICE model of the Buck Type is shown in Fig. 5-7.

Figure 5-7: Switching Regulator Model for the Buck Type

The SPICE model of the Boost type is shown in Fig. 5-8 This is basically a step up transformer with turns ratio, $(1-D): N$.

The flyback converter can be shown as a combination of both the buck and boost power stages with the flyback transformer primary inductance [15]. The SPICE model is shown in Fig. 5-9. It uses the assumption that the flyback transformer is treated as a dc to dc transformer whose turns ratio is determined by the duty cycle, D. The buck power stage used is a step down transformer whose turns ratio is $1: D$, while the boost power stage is a step up transformer whose turns ratio is $1-D: N$.

After replacing the transformer core and both switches, $H E X F E T$ s and power

Figure 5-8: Switching Regulator Model for the Boost Type
diodes with the averaged model of the combination of buck and boost power stages. The SPICE code of the averaged model is basically done. It should be noted that switching is ignored and the averaged transient responses is simulated instead.

Figure 5-9: Switching Regulator Model for the Flyback Type

5.3.1 Results

Figure 5-10 shows the initial start-up response of the averaged modeled flyback converter with current control. The time step for simulation is 100 ns . There are several advantages over the simplified model discussed in Section 5.2. In particular, the large time step that this model allows is an definite advantage. When comparing the results with those in Section 5.2.1, it is noted that although the time step is much larger used in this model, the general trend of the waveform and the rise time for the initial startup is almost identical. It takes around $100 \mu s$ to reach 99% of the nominal
output voltage.

Figure 5-10: Initial Start-Up Response of the Averaged-Model Flyback Converter with $100 n$ step

5.4 Further Studies

Audio Susceptability is studied in Figs. 5-11 and 5-12. Audio Susceptability is defined as the ratio of the incremental change of the output voltage around its nominal output voltage to the incremental change of the input voltage around its nominal input voltage, $\frac{\hat{v}_{o u t}}{\hat{v}_{2 n}}$. In Fig. $5-11$, a $\pm 10 \%$ change in the input voltage is applied to the averaged-model flyback converter with current control. From Fig. 5-12, it can be seen that there is an overshoot of 0.83 V around the 5 V nominal output, which is 16.6% change, in response to a 10% upward step change in input voltage. In the downward change, there is an undershoot of 0.89 V , which is around 17.8%. Both of the overshoot and the undershoot settles quickly within $200 \mu s$.

Figure 5-11: Auto Susceptability Response of the Averaged-Model Flyback Converter with $\pm 10 \%$ change in $v_{i n}$

Figure 5-12: Close Up of Auto Susceptability Response of the Averaged-Model Flyback Converter with $\pm 10 \%$ change in $v_{i n}$

Loop transmission responses are studied in Figs. 5-13 and 5-14. Loop transmission is the product of the ratio of the incremental change of output voltage around its nominal value to the incremental change of the duty cycle when the input voltage is at its nominal and the minus ratio of the incremental change in duty cycle to the output voltage when the feedback loop is closed, that is $\left.\left(\frac{\hat{v}_{\text {out }}}{\hat{d}}\right)\right|_{\hat{v}_{\text {on }}=0}\left(\frac{-\hat{d}}{v_{\text {out }}}\right)$.

A current step of $\pm 10 \mathrm{~A}$, (50% of the nominal output current) is connected to the load in parallel. It is noted that both an upward and downward change cause overshoots and undershoots in the output voltage in Fig. 5-13. From Fig. 5-14, for an upward 50% step change in output current, there is an overshoot of 1 V (20% change) and an undershoot of $0.72 V$ (14.4% change). For the downward 50% change, there is an overshoot of 0.76 V (15.2% change) and an undershoot of 1 V (20% change). It is quite encouraging as a 50% change causes less than 20% change in output. The settling time in both cases is less than $150 \mu s$

Figure 5-13: Loop Transmission Response of the Averaged-Model Flyback Converter with $\pm 50 \%$ change in $v_{\text {out }}$

Figure 5-14: Close Up of Loop Transmission Response of the Averaged-Model Flyback Converter with $\pm 50 \%$ change in $v_{\text {out }}$

Chapter 6

Two-Port Modeling

In Section 5.3, the averaged model of the flyback converter is developed. This model not only can enhance the speed in simulating the transient response of the currentcontrolled converter, but also provide a means for the AC analysis from which the frequency response of the input impedance and the output impedance can be found. In this Chapter, the impedances of the current-controlled flyback converter are determined in a particular case. The results are then used in the development of a two-port network. General development details are discussed.

6.1 AC Analysis

The input impedance of the current-controlled flyback converter is defined as the ratio of the incremental change in the input voltage around its nominal value to the incremental change in its input current around its nominal value with a given load. The magnitude and phase of the input impedance with load of $100 \mathrm{~W}, 0.25$ Ω resistance are shown in Figs. 6-1 and 6-2 respectively. The DC gain is 16.8 dB with phase of -180°. This corresponds to a negative resistance of 6.9Ω which is approximately equal to $6.2(28 / 4.5)$, the nominal resistance at DC. The dip of the dB graph occurs around 100 kHz , the input impedance has a lowest value at that region.

The output impedance is simulated by removing the load and injecting a current
$i_{\text {out }}$ into the output node. The output impedance is defined as $v_{\text {out }} / i_{o u t}$. As shown in Figs. 6-3 and 6-4, the output impedance tends to zero on either DC or high frequency end. It attains the maximum at around 20 kHz with a value of 0.446 .

Figure 6-1: Magnitude of the Input Impedance of the Flyback Converter with Current Control (Averaged Model)

Figure 6-2: Phase of the Input Impedance of the Flyback Converter with Current Control (Averaged Model)

Figure 6-3: Magnitude of the Output Impedance of the Flyback Converter with Current Control (Averaged Model)

Figure 6-4: Phase of the Output Impedance of the Flyback Converter with Current Control (Averaged Model)

6.2 Two Port Network

6.2.1 Implementation of Input and Output Impedance in SPICE

Both the input impedance, $Z_{i n}$, and output impedance, $Z_{\text {out }}$ are given in the form of data derived from experiments. No particular empirical formulas are derived as the impedances alter as the loading condition of the flyback converter is changed. In the case of our study, the input and output impedance used are taken from Section 5.1 The data are gathered using the .PRINT command in SPICE.

As $Z_{i n}$, the input impedance, is the ratio of incremental change of input voltage around its nominal value to the incremental change of the input current around its nominal, i.e. $\frac{\hat{v}_{u n}}{\hat{i}_{\text {out }}}$, the input port is modeled as such in Fig. 6-5. As shown,
 is implemented as shown.

Figure 6-5: Proposed Model for the Two Port Network of the Flyback Converter

The data gathered from the ac analysis of the current-controlled flyback converter are tabled as a frequency response table. The G and E elements (controlled sources) in SPICE can be used as a linear functional block or element with the specific response in the frequency response table. The frequency response is obtained by performing an AC analysis and setting $A C=1$ in the input source (Laplace transform of an impulse is 1). The input and output of G and E elements are related as $Y(j 2 \pi f)=$ $H(j 2 \pi f) \cdot X(j 2 \pi f)$. In our case, the transfer function is $Z(s)=\frac{V(s)}{I(s)}$. In other words, $I(s) \cdot Z(s)=V(S)$. This implies that with $I(s)$ as the input, $V(s)$ can be obtained as
a function of $Z(s)$. This method is used for implementing the complex impedances. The impedances are implemented as dependent voltage sources which are dependent on the line current. The line current is related to the external input and this is how the two port network interact with the external sources and loads. The SPICE implementation of the Two Port Network is shown in Fig. 6-6.

The general form of the dependent voltage source with frequency response tables is
$\operatorname{Exxx} n_{+} n_{-}$FREQ $i n_{+} i n_{-} f_{1}, d b_{1}, \phi_{1}, \ldots, f_{i}, d b_{i}, \phi_{i}$
The f_{i} is the frequency point in Hertz, $d b_{i}$ is the magnitude in dB and ϕ_{i} is the phase in degrees. At each frequency the network response, magnitude and phase, is calculated by interpolation. The magnitude is interpolated logarithmically as a function of frequency. The phase is interpolated linearly.

The data are entered in three columns. The first column is the frequency in Hertz, second column is magnitude in dB , and third column is phase in Degree. The phase can be wrapped and unwrapped. However, the SPICE phase output is always the wrapped one.

Figure 6-6: SPICE Implementation of the Two Port Network of the Flyback Converter

6.2.2 Results

Figure 6-7 is the magnitude and phase of the input impedance simulated by AC analysis. The shape of both the magnitude and phase is the same as in Fig. 6-1 and 6-2 in Section 6.1. The waveforms appear to be a bit coarser. It is due to the fact that the data points of the responses are obtained from interpolation. The number of samples used in the simulation is only 60.

In Fig. 6-8, the magnitude and phase of the output impedance are similar to those obtained from Figs. 6-3 and 6-4 in Section 6.1. As discussed above, the waveforms appear to be a bit coarser. It is noted that the phase is shifted by 360° in the region between 20 kHz and 30 kHz range. As discussed in the previous section, such a phase wrapping ($\pm 360^{\circ}$) does not affect the responses of the filter.

Figure 6-7: Magnitude and Phase of the Input Impedance of the Two Port Network

6.2.3 Further Studies

As shown in Fig. 6-6, the input external source consists of an ideal source with its series input resistor. The value of the resistor plays an important role in the convergence

Figure 6-8: Magnitude and Phase of the Output Impedance of the Two Port Network of the transient simulation of the two port network. For AC analysis, the frequency response is determined by the transfer function at that particular frequency. For operating point and DC sweep analysis, the relation is the same but the frequency is set to zero. The transient analysis is more complicated, the output is the convolution of the input current waveform with the transfer function.

It is found that at DC point, the input impedance of the two port network appear to be negative. The total input resistance looking from the ideal source is the sum of the $R_{\text {source }}$ and $Z_{\text {in }}$ in Fig. 6-6. The two port model implemented is an incremental model that provides a mean to test the stability of implementing different type of $R_{\text {source }} \mathrm{S}$.

In Fig. $6-9, R_{\text {in }}$ is chosen to be 1Ω and the frequency is at 25 Hz . The input voltage and current is 180° out of phase. This is consistent with the model. When the input voltage rise up, the input current is driven down to maintain the constant power.

Figure 6-9: Response of the Two Port Network with an Input Voltage and Input Resistance

Chapter 7

Conclusion

The SPICE simulation of the hybrid built 28 V input, 5 V output, 100 W power double-ended flyback converter is generally completed. Three different classes of SPICE codes are developed for different needs.

In chapter 2, SPICE models of power transistor and Schottky diodes are tailormade to suite the design of the flyback converter. Particular attention are paid to reverse recovery effect of the power diodes, the nonlinearity of the gate-drain capacitance of the power MOSFET and core and resistive losses of the transformer core.

In chapter 3, the whole flyback converter is simulated. Both rough energy losses estimation and experimental determined results agree with the simulation results. The simulated efficiency is 83.6% which is a bit higher due to the neglect of core losses and control circuit losses.

In chapter 4, a snubber-like current recovery circuit is proposed and tested. This current recovery circuit, with careful timing show an increase of efficiency of about 5%. Sensitivity analysis shows that the recovery circuit is functional under a fair range of turn-on time. Different voltage and power combinations are tested and there is a gain in efficiency of at least 3% in general.

In chapter 5, both the simplified model and averaged-model are developed to investigate the effectiveness of the large scale transient model. It is found that the simplified model although gives more detail on the response requires a much smaller
time step, $\leq 10 n s$, to simulate. The averaged model, on the other hand, only simulates the average response of the control waveform, can be used with larger time step, 100 ns and still maintains the general shape of the transient response.

In the last chapter, the averaged model is used to determine the input and output impedances of the closed-loop flyback converter by AC analysis. Results are used for modeling the two port network. By making use of viewing the impedances as a transfer function from current to voltage, the two port network of the flyback converter is completed.

On the whole, there are three different classes of SPICE codes developed for the flyback converter in different type of design stage. The detailed model is developed for the sake of element selection during the transformer design stage. The large signal model is in general for the use of the design of controller circuit for the transformer. The final stage is used as a simple module in a large power network where details of the converter is no longer needed.

7.1 Further Research

In Section 4.4, some different combinations of voltage and power pairs are studied and the simulation results compared. It is found that the efficiency and power profile is not quite explainable.

One of the suggestion is that the efficiency versus power-out curve operates differently in the case without current recovery and that with current recovery. The efficiency frontier with recovery circuit is in the lead of that without recovery. For instance, in Fig. 7-1, if the 28 V data fall into the marked region, then the efficiency without recovery circuit starts falling while that with recovery is start rising only, giving the simulation results in Fig. 4-8. Similarly, if 16 V data fall into the marked domain described in the figure, then the trend in Fig. 4-9 is explainable. Such an investigation is important for designer to find an optimal solution for a given input voltage and most efficient output power.

Figure 7-1: Suggested Efficiency Profile on different Power Out

Bibliography

[1] HSPICE USER'S MANUAL Volume 2 Elements and Models. Meta-Software, 1992.
[2] HSPICE USER'S MANUAL Volume 3 Analysis and Methods. Meta-Software, 1992.
[3] Sam Ben-Yaakov. A unified spice compatible model of pwm and quasi-resonant converters. pages 1069-1072. 1991 IEEE International Symposium on Circuits and Systems.
[4] Leo F. Casey. Circuit Design for 1-10 MHz, DC-DC conversion. PhD thesis, M.I.T., 1989.
[5] J.G. Conway, N.J.; Lacy. Integrated reverse-recovery model of the power bipolar diode for spice3. pages 1392-1394. Electronics Letters V29 n 15 Jul 221993.
[6] Vincent G.Bello. Using the spice2 cad package for easy dimulation of switching regulators in both continuous and discontinuous condution modes.
[7] Andrew F. Goldberg. Development of magnetic components for $1-10 \mathrm{MHz}, \mathrm{DC}$ $D C$ converters. PhD thesis, M.I.T., 1988.
[8] David C. Hamill. Gyrator-capacitor modeling : a better way of understanding magnetic components. pages 326-332. Proceeedings of the 9th Annual Applied Power Electronics Confernce and Exposition.
[9] Mark; Fischer Thomas; Deveney Mike Helms, Christopher; Ackermann. Spice macromodel for a 1-megawatt power mosfet switch. pages 1336-1339. Proceedings of the 36th Midwest Symposium on Circuits and Systems.
[10] R.W.; Lofton S.; Anderson P. Hernandex, A. F.; Erickson. A large signal computer model for the series resonant converter. pages 737-744. 1991 IEEE Power Electronics Specialists Conference.
[11] Mark R. Lee. Simulation of a push-pull quasi-resonant dc-dc converter using spice. pages 481-486. Proceedings of the 23rd Intersociety Energy Conversion Engineering Conference.
[12] P.O. Ma, Cliff L.; Lauritzen. Simple power diode model with forward and reverse recovery. pages $342-346$. IEEE Transcations on Power Electonics v 8 n 4 Oct. 1993.
[13] S. Malouyans. Spice computer models for hexfet power mosfets.
[14] William McMurray. Simulation of power rectifiers in spice. pages 1569-1574. 1990 IEEE Industry Applications Society Annual Meeting.
[15] R.D. Middlerook and Slobodan Cuk. A general unified approach to modeling switching-converter power stages.
[16] Lennart D. Pitzele. The system fabrication of a 10 mhz , dc-dc switching power supply. Master's thesis, M.I.T., 1985.
[17] Donato Salazrm Lautaro; Ziogas, Phoivos; Vincenti. Simple models for spice assis power electronics circuit simulation on pc's. pages 1063-1068. 1988 IEEE Industry Applications Society Annual Meeting 23rd.
[18] V. Joseph Thottuvelil. Using spice to model the dynamic behavior of dc-to-dc converters. pages 750-759. IEEE APEC 1990.
[19] Juebang; Zeng Huanglin Xu, Jianping; Yu. Spice simulation of switched dc-dc converters. pages 3032-3026.
[20] Peter O. Yee, H.P.; Lauritzen. Spice models for power mosfets: an update. pages 281-289. IEEE APEC 1988.

Appendix A

SPICE Program Listings

A. 1 Schottkey Diode

Schotkky Rectifier

* forward voltage Vs. forward current
*Vin 10 DC 1
* forward and reverse recovery
*Vin 10 pulse (-10 10600 n 00600 n 1200n)

Rin 1292.5 m

D1 20 SSR8045CT
.model SSR8045CT d

+ is $=4 \mathrm{e}-6 \mathrm{n}=1.02 \mathrm{eg}=0.69 \mathrm{bv}=45 \mathrm{ibv}=30 \mathrm{e}-3 \mathrm{cja}=2 \mathrm{u} \mathrm{rs}=3.7 \mathrm{e}-3$
+ phi $=0.25$ exa $=0.5 \exp =0.325$ cta $=6 \mathrm{e}-4 \operatorname{ctp}=6 \mathrm{e}-4 \operatorname{trs}=2.15 \mathrm{e}-3$
+ tlev $=2$ tlevc $=1 \mathrm{xti}=2.04$
* forward voltage Vs. forward current
.dc sweep vin dec 1000.110
.plot dc i(rin)
* forward and reverse recovery
*.tran $\ln 1800 \mathrm{n} 0 \ln$
*.plot $\operatorname{tran} \mathrm{i}(\mathrm{d} 1)$
.options post brief
.end

A. 2 HEXFET IV

HEXFETiv IRF140

Vcc 10 dc 50
Vin 100 pulse (0100 20n 20n 510n 4u)

1112 51n

r1 235
r2 101156
ls $1303 n$

Xm1 31113 irf140
.subckt IRF140 1510
m140 4788 hexfet140 w=1.064l=1.2u
.model hexfet140 nmos (level=3 theta $=.12 \mathrm{uo}=450 \mathrm{vto}=3.47 \mathrm{cgso}=730 \mathrm{p}$)
d1 92 dsd
.model dsd dis=2.8e-12 rs=8e-3
ld 12 4.5n
r1 24.0275
r2 89.01
ls 9102 n
e143474.95
cx 37 poly 1200p $00000000000000000004.76 \mathrm{e}-200-2.2 \mathrm{e}-21$
rg 76.5
$\lg 653 n$
cds 110400 p
.ends IRF140
.tran 1 n $1 u 01 n$
.end

A. 3 Flyback Transformer (w/o Energy Recovery Circuit)

Transformer Circuit

* Primary Side
*Vin $=28 \mathrm{v}$
*Vin+10 DC 28
*Pout $=100 \mathrm{w}$
*Vgdrva 60 pulse (10 0577 n 20n 20n 1383n 2u)
*Vgdrvb 110 pulse (0 10980 n 20n 20n 577n 2u)
* current recovery circuit add-on
*Vgdrvc 215 pulse (0101837 n 20 n 20 n 123 n 2 u)
*Vgdrvd 2310 pulse (010837 n 20n 20n 123n 2u)
*Pout $=75$ w
*Vgdrva 60 pulse (10 0 500n 20n 20n 1460n 2u)
*Vgdrvb 110 pulse (0 10980 n 20n 20n 500n 2 u)
* current recovery circuit add-on
*Vgdrvc 215 pulse (0101835 n 20n 20n 125n 2u)
*Vgdrvd 2310 pulse (010835 n 20n 20n 125n 2u)
*Pout=50w
*Vgdrva 60 pulse (10 0415 n 20n 20n 1545n 2u)
*Vgdrvb 110 pulse (010980 n 20n 20n 415n 2u)
* current recovery circuit add-on
*Vgdrvc 215 pulse (010 1856n 20n 20n 104n 2u)
*Vgdrvd 2310 pulse (010856 n 20n 20n 104n 2u)
*Vin $=16 \mathrm{v}$
Vin+ 10 DC 16
*Pout $=100 \mathrm{w}$
*Vgdrva 60 pulse (100840 n 20 n 20 n 1120 n 2 u)
*Vgdrvb 110 pulse (010980 n 20 n 20 n 840 n 2 u)
** current recovery circuit add-on
*Vgdrvc 215 pulse (0101750 n 20 n 20 n 210 n 2 u)
*Vgdrvd 2310 pulse (010750 n 20 n 20 n 210 n 2 u)
*Pout=75w
*Vgdrva 60 pulse (100 840n 20n 20n 1120n 2u)
*Vgdrvb 110 pulse (0 10 980n 20n 20n 840n 2u)
** current recovery circuit add-on
*Vgdrvc 215 pulse (0101750 n 20 n 20 n 210 n 2 u)
*Vgdrvd 2310 pulse (010750 n 20n 20n 210n 2u)
*Pout=50w
Vgdrva 60 pulse (100747 n 20 n 20 n 1213 n 2 u)
Vgdrvb 110 pulse (010980 n 20 n 20 n 747 n 2 u)
** current recovery circuit add-on
Vgdrvc 215 pulse (0101774 n 20 n 20 n 186 n 2 u)
Vgdrvd 2310 pulse ($010774 n 20 \mathrm{n} 20 \mathrm{n} 186 \mathrm{n} 2 \mathrm{u}$)

```
*Vin=50v Pout=100w,75w,50w
*Vin+ 10 DC 50
*Vgdrva 60 pulse ( 120370 n 20 n 20 n 1590 n 2 u )
*Vgdrvb 110 pulse ( 012 980n 20n 20n 370 n 2 u )
** current recovery circuit add-on
*Vgdrvc 215 pulse ( 0101867 n 20n 20n 93n 2u)
*Vgdrvd 2310 pulse ( 010867 n 20n 20n 93n 2u)
```

d15 12 d1n4001
d1423d1n4001
${ }^{*} \operatorname{Vin}=28 \mathrm{v}$
60

* $\mathrm{c} 13101 \mathrm{u} \mathrm{ic}=28$
* $\mathrm{c} 1420 \mathrm{lu} \mathrm{ic}=28$

```
*c15 3 0 1u ic=28
*c11 30 1u ic=28
```

*Vin=16v
c13 $10 \mathrm{lu} \mathrm{ic}=16$
c14 20 lu ic=16
c15 301 u ic=16
c11 30 1u ic=16
*Vin $=50 \mathrm{v}$
*c13 10 1u ic=50
*c14 20 1u ic=50
*c15 30 lu ic=50
*c11 30 1u ic=50

* current recovery circuit add-on
clampl 22011 ic $=0$
clamp2 240 11n ic=0
* Vin=28v
*13 152500 n ic=4.5
* Vin=16v

13152500 n ic=7.875

* Vin=50v
*13 152500 n ic=2.52
rl3 5228 m
* Vin $=28 \mathrm{v}$
*14253500n ic=4.5
* Vin $=16 \mathrm{v}$

14253500 n ic $=7.875$

* Vin $=50 \mathrm{v}$
*14 253500 n ic $=2.52$
rl4 5338 m

```
r271210
r34 8 0.011
```

Xs1 567 IRF140IV
Xs2 10117 IRF140IV

* current recovery circuit add-on

Xs3 22215 IRF140I
Xs4 242310 IRF140I

* Vin $=28 \mathrm{v}$
*L1p 310199 m ic=. 5
* Vin $=16 \mathrm{v}$
*L1p 3101 99m ic=. 5
* Vin $=50 \mathrm{v}$

L1p 310199 m ic=. 5

Rl1p 1014 12m

* Vin $=28 \mathrm{v}$
*L1pu 341.2 u ic=2
*L1pk 455 80n ic=2.5
* Vin $=16 \mathrm{v}$

L1pu $341.2 \mathrm{u} \mathrm{ic}=3.5$
L1pk 45580 n ic=4

* Vin $=50 \mathrm{v}$
*L1pu 341.2 u ic=1
${ }^{*}$ L1pk 455 80n ic $=1.5$

Rl1pk 5558 m
Rl1pkp 455100

L2p 310299 m ic=-10.5

Rl2p 1029 12m

L2pu 391.2 u ic=10.5
L2pk 951080 n ic $=0$

Rl2pk 510108 m
R12pkp 9510100

* Secondary Side

L1s 01324.75 m ic $=21$
L2s 01524.75 m ic $=-1$
d13 1514 SSR8045CT
d12 1314 SSR8045CT
c18 $1408.5 u$ ic $=5$
150
c19 160 8.5u ic=5
$1114516180 \mathrm{nic}=20$
rl1 $516163 m$
r26 14160.25

* Pout=100w
*rload 160.25
* Pout $=75 \mathrm{w}$
*rload 160.3333
* Pout $=50 \mathrm{w}$
rload 160.5

K1 L1p L2s 1
K2 L2p L1s 1
.subckt IRF140IV 1510
m 1404788 hexfet140 $\mathrm{w}=1.064 \mathrm{l}=1.2 \mathrm{u}$
d1 92 dsd
*ld $124.5 n$
ld 120
r1 24.0275
r2 89.01
*ls $9102 n$
Is 9100
e1 43474.95
cx 73 poly $600 \mathrm{p} 00000000000000000002.38 \mathrm{e}-200-1.1 \mathrm{e}-21$
rg 76.5
${ }^{*} \lg 653 \mathrm{n}$
180
$\lg 650$
cds 110400 p
*daval 111 dideal
*vaval 110 dc 120
.ends IRF140IV
.subckt IRF140I 1510
m 1404788 hexfet140 w=. $133 \mathrm{l}=1.2 \mathrm{u}$
d1 92 dsd
*ld $124.5 n$
ld 120
r1 24.22
r2 89.08
*ls 9102 n
ls 9100
e143474.95
cx 73 poly $75 \mathrm{p} 0000000000000000000.2975 \mathrm{e}-200-.1375 \mathrm{e}-21$
rg 764

* $\lg 653 \mathrm{n}$
$\lg 650$
cds 11050 p
*daval 111 dideal
*vaval 110 dc 120
.ends IRF140I
. model d1n4001 d is $=.1 \mathrm{p} \mathrm{rs}=1.6 \mathrm{e}-2 \mathrm{bv}=100 \mathrm{cjo}=15 \mathrm{p}$
. model hexfet140 nmos (level=3 theta=. 12 uo $=450$ vto $=3.47 \mathrm{cgso}=730 \mathrm{p}$)
. model dsd d is $=2.8 \mathrm{e}-12 \mathrm{rs}=8 \mathrm{e}-3$
.model dideal d is $=1 \mathrm{prs}=1 \mathrm{e}-5$
.model SSR8045CT d is=4e-6 $\mathrm{n}=1.02 \mathrm{eg}=0.69 \mathrm{bv}=45 \mathrm{ibv}=30 \mathrm{e}-3 \mathrm{cja}=15 \mathrm{n} \mathrm{rs}=3.7 \mathrm{e}-3$
+ phi $=0.25$ exa $=0.5 \exp =0.325$ cta $=6 \mathrm{e}-4 \operatorname{ctp}=6 \mathrm{e}-4 \operatorname{trs}=2.15 \mathrm{e}-3 \mathrm{tlev}=2$
+ tlevc=1 xti=2.04
.tran $\ln 40 \mathrm{u} 0 \mathrm{u} \ln$ UIC
.plot tran $\mathrm{i}(\mathrm{llp}) \mathrm{i}(11 \mathrm{pu}) \mathrm{i}(11 \mathrm{pk})$
.plot $\operatorname{tran} \mathrm{i}(12 \mathrm{p}) \mathrm{i}(12 \mathrm{pu}) \mathrm{i}(12 \mathrm{pk})$
.plot tran par('i(d13)+i(d12)')
.plot tran i(rload)
.plot tran i(clamp1)
*.measure tran Pout avg par('v(16)*i(rload)') from=26u to $=38 \mathrm{u}$
.measure tran Pin avg par('-1(v(1)*i(vin+)+v(6)*i(vgdrva)+v(11)*i(vgdrvb))')
$*+$ from $=26 u$ to $=38 u$
* current recovery circuit add-on
*.measure tran Pin avg par (' $^{\prime}-1 *(v(1) * i(v i n+)+v(6) * i(v g d r v a)+v(11) * i(v g d r v b)+$
$*+(v(21)-v(5)) * i(v g d r v c)+(v(23)-v(10)) * i(v g d r v d)) ')$ from $=26 u$ to $=38 u$
.option post brief itl4 $=100$ itl5 $=0$
.end

A. 4 Flyback Converter with Control (Simplified SPICE Modal)

Control Circuit

* Primary Side

Vin+10 DC 28
*Vstep 9990 pwl(0 $01.999999 \mathrm{~m} 02 \mathrm{~m} 32.9999999 \mathrm{~m} 33 \mathrm{~m} 03.9999999 \mathrm{~m} 04 \mathrm{~m}-3$
*+4.9999999m-35m 0)
*Istep 016 pwl(0 $01.999999 \mathrm{~m} 02 \mathrm{~m} 102.9999999 \mathrm{~m} 103 \mathrm{~m} 03.9999999 \mathrm{~m} 04 \mathrm{~m}-10$
*+4.9999999m -10 5m 0)
*Vgdrva 60 pulse (10 0 546n 20n 20n 1454n 2u)
*Vgdrvb 110 pulse (0 10980 n 20n 20n 546n 2u)
Egdrva 6060001
Egdrvb 11060101

* current recovery circuit add-on
*Vgdrvc 215 pulse (010 1837n 20n 20n 123n 2u)
*Vgdrvd 2310 pulse ($010837 n 20$ n 20n 123n 2 u)
d15 12 d1n4001
d14 23 d1n4001
$\mathrm{c} 1310 \mathrm{lu} \mathrm{ic}=28$
c14201u ic=28
c15 $30 \mathrm{Lu} \mathrm{ic}=28$
c11 $301 \mathrm{uic}=28$
* current recovery circuit add-on
*clamp1 22011 n ic=0
*clamp2 240 11n ic=05

13152500 n ic=4.5
rl3 5228 m
$14253500 \mathrm{nic}=4.5$
rl4 5338 m
r27 1210
r42 78.011
r34 80.011

Xs1 567 IRF140IV
Xs2 10117 IRF140IV

* current recovery circuit add-on
*Xs3 22215 IRF140I
*Xs4 242310 IRF140I

L1p 310199 m ic=. 5
Rl1p 1015 12m

L1pu 35 1.2u ic=2
*L1pk 45 80n ic=2.5
*Rl1pk 5558 m
*R11pkp 45100

L2p 310299 m ic $=-10.5$
Rl2p 10210 12m
L2pu $3101.2 \mathrm{u} \mathrm{i} \mathrm{c}=10.5$
*L2pk 910 80n ic=0
*Rl2pk 51010 8m
*R12pkp 910100

* Secondary Side

60
L1s 01324.75 m ic=21

L2s 01524.75 m ic $=-1$
d13 1514 SSR8045CT
d12 1314 SSR8045CT
c18 1408.5 u ic=5
c19 1608.5 u ic=5

1114516180 n ic $=20$
rl1 516163 m
r26 14160.25
rload 160.25

K1 L1p L2s 1
K2 L2p L1s 1

* Feeback Control 80
.param pi $=3.141592654 \mathrm{~g} 0=7 \mathrm{z} 0=4 \mathrm{k} \mathrm{p} 0=6 \mathrm{k} \mathrm{p} 1=300 \mathrm{k} \mathrm{p} 2=300 \mathrm{k}$
vref 1990 dc 5
evout 2000161991
vcur 200300 dc 0
rsp 300201 1e-5
lsp $2010^{\prime} 1 /(2 * \text { pi*z0 })^{\prime}$
hsp0 2020 vcur g0
rszsp1 2022031
cszsp1 202203 '1/(2*pi*z0)'
esp2 0208 opamp 0207
vsw1 4000 pulse (10 $0999 n 1 n 1 n 999 n 2 u)$
vsw2 4010 pulse (010999 n 1n 1n 999n 2u)
vper1 5000 pwl 01.1362 u 43.19 R
vper 5010 pwl 01.1362 u 43.19 R td=1u
*eIsense $7000 \mathrm{vol}=$ 'v (7)/.022'
eduty1 $600400 \mathrm{pwl}(1) 208500-1 \mathrm{p}$ '-v(400)' 1 p 0
eduty2 $601401 \mathrm{pwl}(1) 208501-1 \mathrm{p}{ }^{\prime}-\mathrm{v}(401)$ ' 1 p 0
.subckt IRF140IV 1410
m 140141010 hexfet140 $\mathrm{w}=1.064 \mathrm{l}=1.2 \mathrm{u}$
.ends IRF140IV
*.subckt IRF140IV 1510
*m1404788 hexfet140 w=1.064l=1.2u
*d1 92 dsd
**ld 124.5 n
*ld 120
*r1 24.0275
*r2 89.01
**ls 9102 n
*ls 9100
*e1 43474.95
*cx 73 poly $600 \mathrm{p} 00000000000000000002.38 \mathrm{e}-200-1.1 \mathrm{e}-21$
$*_{\text {rg }} 76.5$
${ }^{* *} \lg 653 \mathrm{n}$
* $\lg 650$
*cds 110 400p
*daval 111 dideal
*vaval 110 dc 120
*.ends IRF140IV
.subckt IRF140I 1510
m140151010 hexfet140 $\mathrm{w}=.133 \mathrm{l}=1.2 \mathrm{u}$
.ends IRF140I
*.subckt IRF140I 1510
${ }^{*} \mathrm{~m} 1404788$ hexfet140 w=.133l=1.2u
*d1 92 dsd
**ld $124.5 n$
*ld 120
*r1 24.22
*r2 89.08
**ls 9102 n
*ls 9100
*e143474.95
*cx 73 poly $75 \mathrm{p} 0000000000000000000.2975 \mathrm{e}-200-.1375 \mathrm{e}-21$
*rg 764
${ }^{* *} \lg 653 \mathrm{n}$
*lg 650
*cds 110 50p
*daval 111 dideal
*vaval 110 dc 120
*.ends IRF140I
.model d1n4001 dis=.1p rs=1.6e-2 bv=100 cjo=15p
.model hexfet140 nmos
*.model hexfet140 nmos (level=3 theta $=.12 \mathrm{uo}=450 \mathrm{vto}=3.47 \mathrm{cgso}=730 \mathrm{p}$)
.model dsd d is $=2.8 \mathrm{e}-12 \mathrm{rs}=8 \mathrm{e}-3$
.model dideal d is $=1 \mathrm{prs}=1 \mathrm{e}-5$
.model dideal1 d is $=1 \mathrm{e}-5 \mathrm{rs}=1 \mathrm{e}-5$
.model dideal2 d is $=.1 \mathrm{prs}=6$
.model SSR8045CT d is=4e-6 $\mathrm{n}=1.02 \mathrm{eg}=0.69 \mathrm{bv}=45 \mathrm{ibv}=30 \mathrm{e}-3 \mathrm{cja}=15 \mathrm{n} \mathrm{rs}=3.7 \mathrm{e}-3$
+ phi $=0.25$ exa $=0.5$ exp $=0.325$ cta $=6 \mathrm{e}-4 \mathrm{ctp}=6 \mathrm{e}-4 \mathrm{trs}=2.15 \mathrm{e}-3$ tlev $=2$
$+\mathrm{tlevc}=1 \mathrm{xti}=2.04$
.tran 10n 2 m 0 10n UIC
*.ic $\mathrm{i}(\mathrm{xs} 2 . \mathrm{cds})=53$
*.plot tran $\mathrm{i}(11 \mathrm{p}) \mathrm{i}(11 \mathrm{pu}) \quad 170$
*.plot $\operatorname{tran} \mathrm{i}(12 \mathrm{p}) \mathrm{i}(12 \mathrm{pu})$
*. plot tran par('i(d13)+i(d12)')
*.plot tran i (rload)
.option post brief it14=100 it15=0
.end

A. 5 Flyback Converter with Control (Averaged Model)

Control Circuit

* Primary Side

Vin+ 1999 DC 28
Vstep 9990 pwl(0 $01.999999 \mathrm{~m} 02 \mathrm{~m} 32.9999999 \mathrm{~m} 33 \mathrm{~m} 03.9999999 \mathrm{~m} 04 \mathrm{~m}-3$
$+4.9999999 \mathrm{~m}-35 \mathrm{~m} 0)$
*Istep $016 \mathrm{pwl}(001.999999 \mathrm{~m} 02 \mathrm{~m} 102.9999999 \mathrm{~m} 103 \mathrm{~m} 03.9999999 \mathrm{~m} 04 \mathrm{~m}-10$
*+4.9999999m -105 m 0)
Egdrva 6020801

Egdrvb 11020801
*Vgdrvb 110 dc 0.286

* current recovery circuit add-on
*Vgdrvc 215 pulse (0101837 n 20n 20n 123n 2u)
*Vgdrvd 2310 pulse (010837 n 20n 20n 123n 2u)
d15 12 d $\ln 4001$
d1423d1n4001
c13 $101 \mathrm{uic}=28$
c14201u ic=28
c15 30 1u ic=28
c11 30 1u ic=28
* current recovery circuit add-on
* clamp1 220 11n ic=0
*clamp2 240 11n ic $=05$
$13152500 \mathrm{nic}=4.5$
rl3 5228 m

14253500 n ic $=4.5$
rl4 533 8m
r271210
r42 78.011
r34 80.011
x1 3790106 pwmbck
lp1 901902 1.2u
x2 90201506 pwmbst
x3 73904011 pwmbck
lp2 9049051.2 u
x4 905001311 pwmbst
d13 1514 SSR8045CT

```
c18140 8.5u ic=5
c19 16 0 8.5u ic=5
\(1114516180 \mathrm{nic}=20\)
rl1 516163 m
```

r26 14160.25
rload 160.25

* Feeback Control
.param $\mathrm{pi}=3.141592654 \mathrm{~g} 0=.1 \mathrm{z} 0=4 \mathrm{k} \mathrm{p} 0=6 \mathrm{k} \mathrm{p} 1=300 \mathrm{k} \mathrm{p} 2=300 \mathrm{k}$
vref 1990 dc 5
evout 2000161991
vcur 200300 dc 0
rsp $3002011 \mathrm{e}-5$
lsp 2010 '1/(2*pi*z0)'
hsp0 2020 vcur g0
rszsp1 2022031
cszsp1 202 203 '1/(2*pi*z0)'
rszsp2 2032041
cszsp2 $203204{ }^{\prime} 1 /(2 * \text { pi*p0 })^{\prime}$
eszsp1 0204 opamp 0203
rsp1 2042051
rsp2 2052061
$\operatorname{csp} 1205206$ '1/(2*pi*p1)'
esp1 0206 opamp 0205
rsp3 2062071
rsp4 2072081
csp2 207208 '1/($2 *$ pi*p2) '
esp2 0208 opamp 0207
80
.subckt pwmbck 12345
* buck step down transformer model
* nodes $1 \& 2$ are the input; $3 \& 4$ are the output; 5 is the duty cycle
* $\mathrm{N}=1$ is the transformer turns ratio
* 1: $\mathrm{D}^{*} \mathrm{~N}$ is the effective turns ratio
rd 501 x
ro 63.01
* Ro is the output resistance
g1 12 poly(2) 63500000100
* G1 gain = N/R0

90
e2 64 poly(2) 125000001
*E2 gain $=\mathrm{N}$, the transformer ratio .ends pwmbck
.subckt pwmbst 12345

* boost step-up transformer model
* nodes $1 \& 2$ are the input; $3 \& 4$ are the output; 5 is the duty cycle
* $\mathrm{N}=0.5$ is the transformer turns ratio
* $(1-\mathrm{D}): \mathrm{N}$ is the effective turns ratio
rd 501 x
ri 16.01
* Ri is the input resistance
ro 34 100x
g2 43 poly(2) 16800000200
* $\mathrm{G} 2=1 /\left(\mathrm{RI}^{*} \mathrm{~N}\right)$
e162 poly(2) 348000002
* $\mathrm{E} 1=1 / \mathrm{N}$
rd1 80 1x
vd1 87 dc 1
ed1 $7050-1$
.ends pwmbst
.model d1n4001 dis=.1p rs=1.6e-2 bv=100 cjo=15p
.model hexfet140 nmos (level=3 theta=. 12 uo $=450$ vto $=3.47$ cgso=730p)
.model dsd d is $=2.8 \mathrm{e}-12 \mathrm{rs}=8 \mathrm{e}-3$
.model dideal d is $=1 \mathrm{prs}=1 \mathrm{e}-5$
.model dideal1 d is $=1 \mathrm{e}-5 \mathrm{rs}=1 \mathrm{e}-5$
.model dideal2 d is $=.1 \mathrm{prs}=6$

```
.model SSR8045CT d is \(=4 \mathrm{e}-6 \mathrm{n}=1.02 \mathrm{eg}=0.69 \mathrm{bv}=45 \mathrm{ibv}=30 \mathrm{e}-3 \mathrm{cja}=15 \mathrm{n} \mathrm{rs}=3.7 \mathrm{e}-3\)
\(+\mathrm{phi}=0.25\) exa \(=0.5 \exp =0.325\) cta \(=6 \mathrm{e}-4 \operatorname{ctp}=6 \mathrm{e}-4 \operatorname{trs}=2.15 \mathrm{e}-3 \mathrm{tlev}=2\)
\[
+ \text { tlevc }=1 \mathrm{xti}=2.04
\]
```

.tran 100n 6m 0 100n UIC
*.ic i(xs2.cds)=53
.plot $\operatorname{tran} \mathrm{i}(11 \mathrm{p}) \mathrm{i}(11 \mathrm{pu}) \mathrm{i}(11 \mathrm{pk})$
.plot tran $\mathrm{i}(12 \mathrm{p}) \mathrm{i}(12 \mathrm{pu}) \mathrm{i}(12 \mathrm{pk})$
.plot tran $\operatorname{par}\left({ }^{\prime} i(d 13)+i(d 12)\right.$ ')
.plot tran i(rload)
*.plot tran i(clamp1)
*.plot $\operatorname{tran} \mathrm{v}(208)$
.measure tran Pout avg par('v(16) $ i(r l o a d) ')$ from $=26 u$ to $=38 u$
.measure tran Pin avg par('-1(v(1)*i(vin+)+v(6)*i(vgdrva)+v(11)*i(vgdrvb))')
$*+$ from $=26 u$ to $=38 u$

* current recovery circuit add-on
.measure tran Pin avg par('-1(v(1)*i(vin+)+v(6)*i(vgdrva)+v(11)*i(vgdrvb)+
$*+(v(21)-v(5)) * i(v g d r v c)+(v(23)-v(10)) * i(v g d r v d)) ')$ from=26u to=38u
.option post brief itl4 $=100 \mathrm{itl} 5=0$
.end

A. $6 Z_{\text {in }}, Z_{\text {out }}$ from Flyback Converter with Control (Averaged Model)

Zin \& Zout Circuit

* Primary Side
* Zin with 100W Load

Vin+ 10 dc 28 ac 1
HIvin+ 99990 ccvs vin+ -1

* Zout
*Vin+ 10 dc 28

Egdrvb 11020801

```
d15 1 2 dln4001
d142 3 d1n4001
c1310 1u ic=28
c1420 1u ic=28
c15 3 0 1u ic=28
c11301u ic=28
13152500 n ic \(=4.5\)
rl3 5228 m
14253500 n ic \(=4.5\)
rl45338m
r27 1210
r42 78.011
r34 80.011
x1 3790106 pwmbck lp1 901902 1.2u
x2 90201506 pwmbst
x373904011 pwmbck lp2 9049051.2 u
x4 905001311 pwmbst
d13 1514 SSR8045CT
d12 1314 SSR8045CT
```

c18 14 0 8.5u ic=5

```
c19 1608.5 u ic=5

1114516180 n ic \(=20\)
rl1 516163 m
r26 14160.25
* Zin with 100W Load
rload 160.25
* Zout
*Iout 016 dc 20 ac 1
* Feeback Control
.param \(\mathrm{pi}=3.141592654 \mathrm{~g} 0=.1 \mathrm{z} 0=4 \mathrm{k} \mathrm{p} 0=6 \mathrm{k} \mathrm{p} 1=300 \mathrm{k} \mathrm{p} 2=300 \mathrm{k}\) vref 1990 dc 5
evout 2000161991
vcur 200300 dc 0
rsp 300201 1e-5
lsp 2010 '1/(2*pi*z0)'
hsp0 2020 vcur g0
rszsp1 2022031
cszsp1 202203 '1/(2*pi*z0)'
rszsp2 2032041
cszsp2 203204 '1/(2*pi*p0)'
eszsp1 0204 opamp 0203
rsp1 2042051
rsp2 2052061
csp1 205206 '1/(2*pi*p1)'
esp1 0206 opamp 0205
rsp3 2062071
rsp4 2072081
csp2 207208 '1/(2*pi*p2)'
esp2 0208 opamp 0207
.subckt pwmbck 12345
* buck step down transformer model
* nodes \(1 \& 2\) are the input; \(3 \& 4\) are the output; 5 is the duty cycle
* \(\mathrm{N}=1\) is the transformer turns ratio
* 1:D*N is the effective turns ratio
rd 501 x
ro 63.01
* Ro is the output resistance
g1 12 poly(2) 63500000100
* G1 gain \(=\) N/R0
e2 \(64 \operatorname{poly}(2) 125000001\)
*E2 gain \(=\mathrm{N}\), the transformer ratio
.ends pwmbck
.subckt pwmbst 12345
* boost step-up transformer model
* nodes \(1 \& 2\) are the input; \(3 \& 4\) are the output; 5 is the duty cycle
* \(\mathrm{N}=0.5\) is the transformer turns ratio
* (1-D): N is the effective turns ratio
rd 501 x
ri 16.01
```

* Ri is the input resistance

```
. model d1n4001 d is \(=.1 \mathrm{p}\) rs \(=1.6 \mathrm{e}-2 \mathrm{bv}=100 \mathrm{cjo}=15 \mathrm{p}\)
. model hexfet 140 nmos (level \(=3\) theta \(=.12\) uo \(=450 \mathrm{vto}=3.47 \mathrm{cgso}=730 \mathrm{p}\) )
. model dsd d is \(=2.8 \mathrm{e}-12 \mathrm{rs}=8 \mathrm{e}-3\)
.model dideal d is \(=1 \mathrm{prs}=1 \mathrm{e}-5\)
.model dideal1 d is \(=1 \mathrm{e}-5 \mathrm{rs}=1 \mathrm{e}-5\)
.model dideal 2 d is \(=.1 \mathrm{prs}=6\)
.model SSR8045CT d is \(=4 \mathrm{e}-6 \mathrm{n}=1.02 \mathrm{eg}=0.69 \mathrm{bv}=45 \mathrm{ibv}=30 \mathrm{e}-3 \mathrm{cja}=15 \mathrm{n} \mathrm{rs}=3.7 \mathrm{e}-3\)
\(+\mathrm{phi}=0.25\) exa \(=0.5 \exp =0.325 \operatorname{cta}=6 \mathrm{e}-4 \mathrm{ctp}=6 \mathrm{e}-4 \operatorname{trs}=2.15 \mathrm{e}-3 \mathrm{tlev}=2\)
+ tlevc \(=1 \mathrm{xti}=2.04\)
.ac dec 2001 1x
* Zin with 100 W load
.print ac par('vdb(1) \(\left.-\mathrm{vdb}(9999)^{\prime}\right)\) par('vp(1)-vp(9999)')
* Zout
*.print ac \(\operatorname{vdb}(16) \operatorname{vp}(16)\)
.option post brief \(\mathrm{itl} 4=100 \mathrm{itl5}=0\)
.end

\section*{A. 7 Two Port Model}

Two Port Circuit
.param IN_V=28, OUT_V=5, IN_I=4.5, OUT_I=20, R_IN=1
*external source with resistance
Vin 990 dc 'IN_V+R_IN*IN_I' ac \(1 \sin \left(' I N_{-} V+R_{-} I N * I N_{-} I\right.\) ', ' \(\left.0.05 * I N_{-} V^{\prime}, 25\right)\)
R1 991 R_IN

Iin_nom 10 dc IN_I
Vin_nom 20 dc IN_V
Vout_nom 30 dc OUT_V
* external load with resistance, inductance

Rl 45.25
Ll 56800 m
Vdummy 60 dc 0 ac 1
* Zin

Hin 100 ccvs Vin - 1
VIin_nom 110 dc IN_I
* Sample Zin taken from simulation of ZINZOUT.CIR

EZin 12 freq 1011
```

+ 1.00000 16.7018 -179.9788
+ 1.25893 16.7018 -179.9734
+ 1.58489 16.7018 -179.9665
+ 1.99526 1r.7018 -179.9578
+ 2.51189 16.7018 -179.9469
+ 3.16228 16.7018 -179.9331
+ 3.98107 16.7018 -179.9158
+ 5.01187 16.7018 -179.8940
+ 6.30957 16.7018 -179.8665
+ 7.94328 16.7018 -179.8319
+ 10.00000 16.7018 -179.7884
+ 12.58925 16.7017 -179.7336
+ 15.84893 16.7017 -179.6646
+ 19.95262 16.7017 -179.5778
+ 25.11886 16.7016 -179.4685
+ 31.62278 16.7015 -179.3309
+39.81072 16.7013 -179.1576
+ 50.11872 16.7010 -178.9396
+ 63.09573 16.7005 -178.6651
+ 79.43282 16.6997 -178.3195
+100.00000 16.6985 -177.8847
+ 125.89254 16.6965 -177.3376
+ 158.48932 16.6934 -176.6494
+199.52623 16.6886 -175.7841
+251.18864 16.6808 -174.6970
+316.22777 16.6686 -173.3329
+398.10717 16.6494 -171.6244
+501.18723 16.6190 -169.4909
+630.95734 16.5714 -166.8390
+794.32823 16.4972 -163.5662
+ 1.00000k 16.3824 -159.5708
+ 1.25893k 16.2071 -154.7722
+ 1.58489k 15.9444 -149.1427
+ 1.99526k 15.5607 -142.7495
+ 2.51189k 15.0190 -135.7877
+ 3.16228k 14.2852 -128.5746

```
\[
\begin{aligned}
& +3.98107 \mathrm{k} \quad 13.3367-121.4827 \\
& +5.01187 \mathrm{k} \quad 12.1699-114.8335 \\
& +6.30957 \mathrm{k} \quad 10.8013-108.8139 \\
& +7.94328 \mathrm{k} \quad 9.2628-103.4615 \\
& +10.00000 \mathrm{k} \quad 7.5922-98.7071 \\
& +12.58925 \mathrm{k} \quad 5.8231 \quad-94.4281 \\
& +15.84893 \mathrm{k} \quad 3.9770-90.4776 \\
& +19.95262 \mathrm{k} \quad 2.0551 \quad-86.6599 \\
& +25.11886 \mathrm{k} \quad 33.3045 \mathrm{~m} \quad-82.6051 \\
& +31.62278 \mathrm{k}-2.1262 \quad-77.4102 \\
& +39.81072 \mathrm{k} \quad-4.3413 \quad-68.7740 \\
& +50.11872 \mathrm{k}-5.6183-54.0918 \\
& +63.09573 \mathrm{k}-4.7545 \quad-51.7676 \\
& +79.43282 \mathrm{k}-7.4093-67.6884 \\
& +100.00000 \mathrm{k}-15.5118 \quad-64.6909 \\
& +125.89254 \mathrm{k}-15.7601 \quad 65.5917 \\
& +158.48932 \mathrm{k} \quad-1.7242 \quad 77.7702 \\
& +199.52623 \mathrm{k} \quad 15.1959 \quad-60.3973 \\
& +251.18864 \mathrm{k}-1.4242 \quad-88.4740 \\
& +316.22777 \mathrm{k}-11.0619 \quad-84.0042 \\
& +398.10717 \mathrm{k}-154.2660 \mathrm{~m}-63.8778 \\
& +501.18723 \mathrm{k}-7.2703-85.3216 \\
& +630.95734 \mathrm{k}-10.5802 \quad-87.6231 \\
& +794.32823 \mathrm{k}-13.1724-88.4706 \\
& +1.00000 \mathrm{x}-15.4905-88.9168
\end{aligned}
\]
* Zout

Hout 200 ccvs Vout_nom 1
* Sample Zout taken from simulation of ZINZOUT.CIR

Ezout 43 freq 200
\begin{tabular}{rrr}
+ & 1.00000 & -106.0182 \\
+ & 1.25893 & -104.0208 \\
+ & 1.58489 & -102.0224 \\
+ & 88.5608 \\
+ & 1.99526 & -100.0234 \\
+ & 88.81189 & -98.0241
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline + 3.16228 & -96.0245 & 89.2884 & \\
\hline + 3.98107 & -94.0247 & 89.4408 & \\
\hline + 5.01187 & -92.0249 & 89.5635 & \\
\hline + 6.30957 & -90.0250 & 89.6629 & \\
\hline + 7.94328 & -88.0251 & 89.7443 & 100 \\
\hline \(+10.00000\) & -86.0251 & 89.8122 & \\
\hline \(+12.58925\) & -84.0251 & 89.8700 & \\
\hline \(+15.84893\) & -82.0252 & 89.9209 & \\
\hline + 19.95262 & -80.0252 & 89.9676 & \\
\hline + 25.11886 & -78.0252 & 90.0126 & \\
\hline \(+31.62278\) & -76.0252 & 90.0583 & \\
\hline + 39.81072 & \(-74.0252\) & 90.1070 & \\
\hline + 50.11872 & \(-72.0253\) & 90.1615 & \\
\hline +63.09573 & -70.0253 & 90.2246 & \\
\hline + 79.43282 & -68.0254 & 90.2997 & 110 \\
\hline \(+100.00000\) & -66.0255 & 90.3907 & \\
\hline + 125.89254 & -64.0257 & 90.5026 & \\
\hline + 158.48932 & -62.0260 & 90.6415 & \\
\hline + 199.52623 & -60.0265 & 90.8147 & \\
\hline \(+251.18864\) & -58.0272 & 91.0319 & \\
\hline + 316.22777 & -56.0284 & 91.3051 & \\
\hline \(+398.10717\) & -54.0302 & 91.6498 & \\
\hline + 501.18723 & -52.0329 & 92.0866 & \\
\hline + 630.95734 & -50.0371 & 92.6424 & \\
\hline + 794.32823 & -48.0431 & 93.3545 & 120 \\
\hline \(+1.00000 \mathrm{k}\) & -46.0513 & 94.2742 & \\
\hline \(+1.25893 \mathrm{k}\) & \(-44.0613\) & 95.4749 & \\
\hline \(+1.58489 \mathrm{k}\) & -42.0704 & 97.0599 & \\
\hline \(+1.99526 \mathrm{k}\) & -40.0702 & 99.1699 & \\
\hline + 2.51189 k & -38.0420 & 101.9794 & \\
\hline + 3.16228k & -35.9497 & 105.6655 & \\
\hline + 3.98107 k & -33.7367 & 110.3397 & \\
\hline + 5.01187 k & -31.3306 & 115.9628 & \\
\hline + 6.30957k & -28.6598 & 122.3152 & \\
\hline + 7.94328k & -25.6704 & 129.0964 & 130 \\
\hline \(+10.00000 \mathrm{k}\) & -22.3297 & 136.1797 & \\
\hline
\end{tabular}
\[
\begin{array}{lcc}
+12.58925 \mathrm{k} & -18.6104 & 144.0385 \\
+15.84893 \mathrm{k} & -14.4813 & 154.5871 \\
+19.95262 \mathrm{k} & -10.1106 & 173.1494 \\
+25.11886 \mathrm{k} & -7.1998 & -152.6250 \\
+31.62278 \mathrm{k} & -8.3875 & -118.3243 \\
+39.81072 \mathrm{k} & -11.2986 & -101.0761 \\
+50.11872 \mathrm{k} & -14.2032 & -93.3550 \\
+63.09573 \mathrm{k} & -17.0421 & -88.9442 \\
+79.43282 \mathrm{k} & -20.0239 & -84.1397 \\
+100.00000 \mathrm{k} & -23.2382 & -73.6079 \\
+125.89254 \mathrm{k} & -25.0973 & -48.6497 \\
+158.48932 \mathrm{k} & -22.4771 & -32.1906 \\
+199.52623 \mathrm{k} & -20.2320 & -48.1169 \\
+251.18864 \mathrm{k} & -22.8295 & -61.3746 \\
+316.22777 \mathrm{k} & -24.1252 & -70.3972 \\
+398.10717 \mathrm{k} & -26.2016 & -76.3238 \\
+501.18723 \mathrm{k} & -28.3002 & -80.0588 \\
+630.95734 \mathrm{k} & -30.3848 & -82.5294 \\
+794.32823 \mathrm{k} & -32.4438 & -84.2687 \\
+1.00000 \mathrm{x} & -34.4827 & -85.5459
\end{array}
\]
.ac dec 2001 1x
.print \(\mathrm{ac} \operatorname{par('vdb(1)-vdb(10)')} \operatorname{par('vp(1)-vp(10)')}\)
.print ac par('vdb(4)-vdb(20)') \(\operatorname{par('vp(4)-vp(20)')}\)
\(\operatorname{tran} 100 \mathrm{u} 120 \mathrm{~m}\)
.option post brief
.end```

