
Monte Carlo Simulation of Radiation Transport

for Benchmarking

Intel's iPSC/2, iPSC/860, and Touchstone Delta Machine

by

Thomas J. Klemas

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Electrical Science and Engineering

at the Massachusetts Institute of Technology

December 1992

Copyright Thomas J. Klemas 1992

The author hereby grants to M.I.T. permission to reproduce
and to distribute copies of this thesis document in whole or in part.

Author
Department of Electrical Engineering and Computer Science

December 11, 1992

Certified
by

Gregory M Papadpoulos
Thesis Supervisor

by

W.ITHTDRAWN.:. I
LAONEI A. UiOUI

Chairman, Department Committee on Undergraduate Theses.
i
I
I
iII

I j W ?

Monte Carlo Simulation of Radiation Transport

for Benchmarking the iPSC/2, iPSC/860, and Intel Touchstone Delta Machine

by

Thomas J. Klemas

Submitted to the

Department of Electrical Engineering and Computer Science

December 11, 1992

In Partial Fulfillment of the Requirements of the Degree

Bachelor of Science in Electrical Engineering

ABSTRACT

A substantial fraction of Los Alamos National Laboratory's computing power is spent in
simulating particle transport. This thesis project involves writing a Monte Carlo simulation of
radiation transport to be used for benchmarking the Intel iPSC/2, iPSC/860, and Touchstone
Delta Machine. The results of such tests would assist scientists in evaluating the performance
of the Intel parallel supercomputers. The Monte Carlo simulation of photon and neutron
transport exhibits plenty of coarse-grained parallelism. The challenge involved in writing
this code for the Intel parallel machines is that the size of the cross-section data set required
by the tracking program is greater than the size of the memory at each node. Therefore, the
simulation program divides the cross-section data set of large neutron problems into segments,
by energy range, that will fit in the memory of a single node. Then, the simulation program
sends each segment of cross-section data to the nodes successively and tracks each particle until
its energy drops below the current cross-section data segment's lower energy bound. By using a
double buffer technique, the delay associated with the communication is overlapped by
computation involved with tracking particles; while one buffer of data is being used by the
tracking program, the other buffer waits for the next segment of cross-section data to arrive. In
this manner, the communication latency is hidden by overlapping it with computation at the
nodes. Because each node tracks the same number of particles and the number of particles that
the simulation program is tracking is usually very large, the time for one node to complete the
tracking of its particles approaches some mean value. Therefore, the processor loads are
balanced. Preliminary studies of this implementation strategy are very positive and indicate
that is is a feasible approach for parallelizing the Monte Carlo radiation transport
simulation; Results suggest that the simulation strategy scales well with problem size and the
number of nodes being used.

Thesis Supervisor: Gregory Papadopoulos
Title: Assistant Professor of Electrical Engineering and Computer Science
Supervisor: Olaf Lubeck
Title: Research Staff at Los Alamos National Laboratory

Table of Contents

1. Introduction 1

1.1. Benchmarking 2

1.2. Simulation of Radiation Transport 5

1.3. Monte Carlo Techniques 9

1.4 Machine Description 13

2. Implementation Issues 16

3. Strategies for Implementation 21

3.1. Global-Send Phases 21

3.2. Pipelined Particle Tracking 25

3.3. Caching Cross-section Data 29

4. Testing and Results 33

4.1. Testing Correctness 33

4.2. Testing Performance 35

5. Conclusion 41

Appendix A 42

Appendix B 44

References 56

1. Introduction

A substantial fraction of Los Alamos National Laboratory's computing

power is spent in simulating particle transport. This thesis project involves

writing a Monte Carlo simulation of radiation transport to be used for

benchmarking the Intel iPSC/2, iPSC/860, and Touchstone Delta Machine. The

results of such tests would assist scientists in evaluating the performance of the

Intel parallel supercomputers. The Monte Carlo simulation of photon and

neutron transport exhibits plenty of coarse-grained parallelism. The challenge

involved in writing this code for the Intel parallel machines is that the size of

the cross-section data set required by the tracking program is greater than the size

of the memory at each node. Therefore, the simulation program divides the

cross-section data set of large neutron problems into segments, by energy range,

that will fit in the memory of a single node. Then, the simulation program

sends each segment of cross-section data to the nodes successively and tracks each

particle until its energy drops below the current cross-section data segment's

lower energy bound. By using a double buffer technique, the delay associated

with the communication is overlapped by computation involved with tracking

partides; while one buffer of data is being used by the tracking program, the other

buffer waits for the next segment of cross-section data to arrive. In this manner,

the communication latency is hidden by overlapping it with computation at the

nodes. Because each node tracks the same number of particles and the number

of particles that the simulation program is tracking is usually very large, the

time for one node to complete the tracking of its particles approaches some mean

value. Therefore, the processor loads are balanced. Preliminary studies of this

implementation strategy are very positive and indicate that is is a feasible

approach for parallelizing the Monte Carlo radiation transport simulation.

2

Results suggest that the simulation strategy scales well with problem size and the

number of nodes being used.

The next few sections of this thesis will present benchmarking, radiation

transport, simulation of this process using Monte Carlo techniques, specific

features of the iPSC/2 parallel supercomputer, strategies for implementing the

simulation on the iPSC/2, and initial test results from running the benchmark

on the iPSC/2. The paper will conclude with a discussion of the future work to

be done on this project.

1.1 Benchmarking

Benchmarking is a process used by researchers to evaluate the

performance of a computer for certain types of computations. Because scientists

need more computational power in order to solve some of the more complex

problems such as climate modeling, fluid turbulence, and pollution dispersion,

computer manufacturers are racing to deliver supercomputers which offer

improved performance. Supercomputers, however, have no "tell all" statistics

by which one can evaluate the performance of a given computer. As a matter of

fact, supercomputer performance often varies widely depending on the problem

being solved. Thus, benchmarking is a necessary step in the process of

determining whether new machines will provide scientists with greater

computational power.

At Los Alamos National Laboratories, C3, the High Performance

Computing Group, is heavily involved in benchmarking new supercomputers.

In order to benchmark new supercomputers successfully, C3 collects statistics

regarding the usage patterns of the computers that are already present at the lab.

For example, many scientists at Los Alamos National Laboratories are interested

in radiation transport problems. Apparently, 33% of the cycles of the Los Alamos

Advanced Computing Facility are spent solving such problems. Because this

problem is so important to the laboratory, the simulation of radiation transport

is a good candidate for benchmarking new supercomputers.

Traditional high performance computers, such as the Cray

supercomputers, have been able to supply the computational power required by

the scientific community over the past several decades. These machines typically

have a few powerful processors and use techniques such as pipelining to achieve

high degrees of throughput. Such machines are called vector machines because

they are optimized for performing computations on large vectors of operands

that are streamed through the pipelines. However, many researchers are

worried that the room for improvement in these vector machines is limited

because the degree of parallelism in the pipelines; because it is important to keep

the propagation delay of the logic between the registers much greater than that of

the registers themselves, the number of stages in a pipeline is bounded (usually

pipelines have about 10 stages).

Recently, computer designers have achieved significant improvements in

the cost/performance ratio of supercomputers by adopting a new architectural

model. In this new model, large numbers of less powerful processors (relative to

the CRAY processors) are interconnected. The goal of this approach is to utilize

all of the processors to perform operations in parallel. By performing separate

computations simultaneously, these massively parallel supercomputers have

potential to achieve extremely high throughput. The cost/performance ratio of

these machines is superior compared with traditional supercomputers because

they are composed of slightly less powerful processors which are often

dramatically less expensive than those in the traditional supercomputers. An

4

additional advantage of these machines is that cost and performance are often

scalable, allowing users to purchase as much computational power as they can

afford.

One disadvantage of these parallel systems is the difficulty associated with

identifying and exploiting the parallelism in a user's problem. Some operations

are dependent on the results of previous operations and certain data objects are

shared throughout the computations of a program. The data dependencies

constrain the order of execution of certain instructions within a program.

a = f(c)

b = f(a)

In the pseudo-code above, the second operation is dependent on the result of the

first operation. Therefore the two operations must be executed sequentially.

Traditionally, users write their code sequentially, and the order of execution is

determined by the order in which the code is written. However, it is often the

case that a significant portion of code in a program is independent of the rest of

the program.

a = f(c)

b = f(d)

5

In the above example, the first and second operations are independent of each

other and can be executed in parallel (assuming that there are no side-effects

performed during execution of function f that constrain the order of the two

operations). Detecting parallelism can be quite difficult, especially if the

granularity of the parallelism is very large.

The Intel iPSC/2 is an example of a coarse-grained parallel supercomputer.

The iPSC/2 uses message passing to explicitly coordinate its 128 numeric

processing nodes. Each of the computational elements are powerful, but the

time required for communication between the nodes is relatively high. Thus,

the iPSC/2 is a coarse-grained parallel computer. This thesis project involved

writing a Monte Carlo simulation of radiation transport to be used in

benchmarking the iPSC/2 hypercube machine. We developed several strategies

to exploit the coarse-grained parallelism inherent in the Monte Carlo photon-

neutron tracking problem. The challenge of designing these strategies was to

exploit coarse-grained parallelism within the constraints posed by the limited

size of the memory at the numeric nodes. We implemented one of these

strategies and examined the iPSC/2's performance while running this

benchmark.

1.2 Simulation of Radiation Transport

Scientists spend a considerable amount of time and effort to research

particle transport problems. One of the primary motivations for this research is

to study shielding problems. For example, radiation levels and their effects are of

considerable concern to anyone working with radiation. The importance of

particle transport simulation is evident when one considers the extensive safety

6

the processors is very high, and the cost of communication is

very expensive relative to the cost of computation. Therefore,

it is desirable to limit the communication between the

processors. However, in order to reduce the communication

between processors, the coarseness of parallelism must be

increased, but, unlike fine grained parallelism, coarse grained

parallelism is difficult to identify. Compilers are not very

successful at extracting coarse grained parallelism from

programs. As a result, the user is usually left the task of

identifying and exploiting coarse grained parallelism for these

types of parallel machines. Furthermore, since some problems do

not exhibit a high degree of coarse grained parallelism, coarse

grained parallel supercomputers are not able to achieve maximal

performance on these types of problems. As a matter of fact,

the performance of many coarse grained parallel supercomputers

can be pretty dismal on problems lacking this type of

parallelism. Thus, the performance of parallel machines (non-

dataflow) appears to be problem dependent. Clearly benchmarking

is extremely important on these machines since their performance

varies so greatly.

The Intel iPSC/2 is an example of a coarse grained parallel

supercomputer. Message passing is used to explicitly coordinate

the computational elements of the iPSC/2, and its 128 numeric

processing nodes are extremely powerful. Communication between

the nodes is very expensive. Thus, the iPSC/2 is a coarse

grained parallel computer. This thesis project involved writing

a Monte Carlo simulation of radiation transport to be used in

7

collision can cause the photon to lose energy and/or scatter in a new direction, or

can cause the nuclide, with which the photon collided, to absorb the photon and

possibly generate new particles termed daughter particles. These interactions

include Compton scattering (incoherent or coherent), photo-electric interaction,

and pair production.

Compton scattering can occur when a photon collides with an electron.

Compton collisions are characterized by the preservation of the total energy and

momentum of the particle. Photons can undergo two types of scattering during a

Compton collision, incoherent or coherent scattering. The atomic structure of

the nuclide partially determines the type of scattering which occurs.

I I

Figurel. During incoherent scattering, a photon collides with a free
electron which is not connected with any atom.

Incoherent scattering occurs when a photon collides with a free electron.

Since the electron is assumed to be independent of the atom, the simulation

ignores interference effects, and the mass of the electron is assumed to be just

that of the electron. Because the atomic electron can gain momentum from the

collision and possibly become excited and depart from the atom, the photon can

lose energy. Furthermore, the collision can redirect the photon.

Free Collision
Electr on

I

8

When a photon has low energies, coherent scattering will often occur as a result

of collisions. The atomic electron involved in the collision remains bound to

the atom, and the effective mass of this electron is essentially the mass of the

atom. The photon loses no energy during the collision but may change

direction.

C
Bound
Electrons

Figure2. During coherent scattering, a photon collides with an electron that is bound to an
atom of the material through which the photon is travelling.

Figure 3. During photo-electric interactions, the atom
absorbs the photon and may emit one or two photons. This
diagram also describes pair production. During pair
production, the photon is also absorbed, and the interaction
may result in two new photons with half the energy of the
original.

9

During photo-electric interactions, the atom consumes the photon. If the

nuclide has an atomic number greater than twelve, the collision may cause

fluorescence, resulting in the emission of one or two photons. The degree of

fluorescence that occurs during a photo-electric interaction is also dependent on

the photon's energy and the orbital of the atomic electron involved in the

collision. These calculations involve discrete energy levels since the atomic

electron may only possess certain energy values, depending on its orbital.

The last of the possible interactions that occur during a photonic collision

is pair production. Pair production occurs frequently for particles with energy

greater than 1.022 MeV. During pair production, the original photon is absorbed

by the atom, and a positron and electron are generated, and the sum of the

energy of these two particles is equal to twice the energy of the original photon.

The positron is annihilated by combination with an electron, and the result is

the creation of two photons with equal energies of .51108 MeV and opposite

directions of travel.

1.3 Monte Carlo Techniques

Scientists are often unable to recreate every facet of a problem exactly.

Sometimes the calculations involved in solving a problem deterministically are

beyond the capacity of contemporary computing resources. Therefore researchers

will often construct a simpler model for a system or process, based on

experimental studies, and attempt to use the model to study that system or

process.

There are several possible events that are associated with every system or

process. Researchers are interested in constructing models that will allow them

10

to best predict the possible sequences of events that might occur in processes,

given certain initial conditions. Monte Carlo methods provide a technique by

which one can simulate the behavior of a system or process using random

sampling.

Monte Carlo methods [4] are based on the existence of probability

distributions which describe the occurrence of events in a process or system.

Often, these probability distributions will be determined experimentally, since

they describe processes which are not easily modelled by equations.

Event Probabilities

i ,1 Die Rolls for

SamUling Probabili SmpedEvents

1,23,4 .4 1

, 5,6 .2 2 :

.2

O

· I ~~~~~~~~~I
1 7,8,9,10 .4 3 I

E1 E2 E3

Figure 4. Sampling with a 10 sided die (Discrete Case)

A0

9%

If one has a random number generator that generates uniformly distributed

values, and one can determine an inverse of the observed probability

distribution function, then one can sample the events which occur by inputting

the random numbers into the inverted probability distribution function, as

shown in figure 4 for the discrete case. For continuous distribution functions,

one can use slightly more complex but analogous techniques to sample events.

-

_ _
m i

0

11

To simulate photon transport using Monte Carlo techniques, one must

have distribution functions to describe the distance a particle travels before

collision and the type of interaction that occurs during a collision. It is possible

to implement a simulator in which numbers of particles can be created and

tracked through objects of varying geometries and material composition, based

on these distribution functions. In the following equations s is the distance a

photon travels before its next collision, N is the density of target particles, A is

the cross-sectional area presented by the target particles, and r is a random

number uniformly distributed between 0 and 1.

p(s) = 1 - eSNA

p(s) is the probability that a photon will travel at least distance s before its next

collision.

p(r) = r

p(r) is the probability of generating a random number less than or equal to r.

In order to sample let

p(s) = p(r)

Since both functions are cumulative distribution functions they return a value

between 0 and 1.

1 - e - sNA = r

12

e-sNA = 1 - r

After some algebra we obtain

s(r)=- 1 In(l - r)
NA

Since (1 - r) and r are random numbers uniformly distributed between 0

and 1 we can substitute r for (1 - r) to obtain the following sampling function:

s(r) =- 1 ln(r)
NA

With a random number generator that can supply uniformly distributed values

for r, one can use this sampling function to sample the distance a photon travels

before its next collision. Analogous sampling functions exist to sample the type

of interaction that occurs during a collision. These functions are the basis for my

implementation of a Monte Carlo simulator for radiation transport. The density

information is obtained from the problem specifications created by the user of

the simulator, and the cross-sectional area used in the functions is contained in a

data set compiled by Howerton et al [2].

In order to improve the statistical accuracy of the simulation, variance

reduction techniques are used to increase the sampling in regions of the

geometry that are of interest. As particles enter areas of greater interest, their

number is increased and their weight is decreased. Similarly in areas of less

interest the simulator reduces the number of particles and increases the weight

of the particles to improve performance. In the user's geometry specification for

13

a problem,- each region is labelled with an importance factor that is used with

these techniques.

1.4 Machine Description

The Monte Carlo simulation of radiation transport was written for

benchmarking several of Intel's parallel supercomputers, including the iPSC/2,

the iPSC/860, and the Touchstone Delta machine. [1] [5] [3] Few changes would be

required to test all three machines with the simulator because the source code is

identical for each of these machines. However, we will only test the iPSC/2 for

this thesis project because of time constraints and the lack of available machine

time on the other machines. As the other machines are supposed to be

successors of the iPSC/2, it is reasonable to expect that their performance would

be better. Thus, testing the feasibility of performing neutron simulations on the

iPSC/2 should also provide one with sufficient information with which to

formulate expectations for the iPSC/860 and the Touchstone Delta Machine.

The iPSC/2 is a MIMD parallel supercomputer. Thus, each node of the 128

processor machine can be loaded with a different set of instructions and data.

These nodes are interconnected with a hypercube network configuration, and

each node consists of a 386/387 processor and a 4 megabyte memory. The

processors run at 16 megahertz.

14

The network consists of router modules that connect each node to the

network. The router modules allow messages to be routed from the source node

to the destination node without interrupting any intermediate nodes. The

header of a message creates a path between the source and destination nodes as it

travels to the destination node. Once the path is created the rest of the message

will follow, and the tail of the message releases the modules comprising the

connection. This style of message routing is called circuit-switched routing. The

alternative, called packet switched networks, restricts messages to units of packets

which contain all routing or header information. In packet-switched networks,

15

connections are only temporarily established between neighboring nodes rather

than all of the nodes in the path between the source and destination nodes.

The results of a study [5] that was conducted by researchers at Auburn

University provides some insight into the performance of the iPSC/2's

communication network. First, the study claims that the number of intermediate

nodes between the source and destination nodes does not have a significant

impact on the latency of communication. For very small messages(50 to 100 byte

messages), the researchers observed that message length had minimal effect on

communication latency, but for large messages, the they demonstrated that

communication time was directly related to the size of the message. The study

concluded that the communication speed was slow relative to processor speed.

Thus, based on the study, one reasonable assumption is that the iPSC/2 would

perform better on problems with coarse-grained parallelism rather than fine-

grained parallelism.

16

2. Implementation Issues

Until recently uni-processors have dominated the computer arena, and

code written for these machines was sequential in nature. Now, parallel

processors have been introduced with better performance than the traditional

sequential machines. [7] [8] Some parallel computers allow the user to continue

to write code in the same sequential style, and compilers for these machines

attempt to identify and exploit any parallelism in a program. Most parallel

computers, however, require instruction codes written in a different, more

complex programming style. For example, Intel's parallel supercomputers boast

great computational power, but the user is responsible for identifying parallelism

and dividing a task among the processors to obtain optimal performance.

Specifically, synchronization and communication must be explicitly inserted into

programs to coordinate the activities of nodes, which further complicates the

task of writing programs for these machines.

Communication is the overhead associated with dividing a task among

the various processors of a parallel machine and coordinating them to complete

it. If the amount of time required for communication is great relative to the

time required to perform computations, the performance of the parallel machine

might be worse than that of a sequential machine. Minimizing the total time

that processors spend communicating with each other on the Intel parallel

machines is challenging because message throughput is very low relative to

computational speed. Furthermore, if the memory requirements of the code and

data exceed the size of the memories at the nodes of the Intel machines, the

17

nodes may- have to perform additional communication in order to share data.

(Node memories range in size between 4 and 16 Mbytes.)

The code for photon transport calculations is less than 1 Mbyte in size and

the cross-section required for these computations is about 1 Mbyte in size. Thus,

because the nodes can store all of the required data, the simulation of photon

transport using Monte Carlo techniques is fairly simple on the Intel machines:

one merely has to place a copy of the entire tracking code and the required cross-

section data on each node, and start each node tracking its own particles. A node

tracks each particle until termination, whereupon it creates a new particle and

begins tracking it. Only the current particle's start is maintained, and therefore,

the memory requirements of each node are relatively independent of the

number of particles being tracked. Furthermore, the only coordination

involved in this scheme occurs at the end when the host awaits the tally results

from the nodes. The host can only compute the mean and variance of the

weights of particles crossing the tally surface once it receives the results from

each node. Because simulating photon transport problems requires minimal

communication, writing the code is relatively easy and high performance is

achieved on the Intel parallel computers.

The simulation of neutron transport is more difficult to implement

successfully on the Intel parallel machines than the simulation of photon

transport. Although the calculations performed during simulation of neutron

transport are very similar to those performed for tracking photons, the cross-

section data for neutron problems can reach sizes of approximately 80 Mbytes.

Because the cross-section data in a neutron problem is too large to fit into the

memory of Intel's machines, the nodes must communicate to share data, which

increases the complexity of the simulation program considerably.

18

Neutron Data Set too
large to fit on a single

Node. It must be divided
up.

I

One Possible Sequence of Actions in Simulation of Radiation Transport

Photon Transport

1. Host sends cross-section data to Nodes
2. Create particle
3. Track and tally
4. Particle terminates - energy drops below cutoff etc.
5. Repeat step 1 until Node has tracked required number of particles
6. Send tally results to Host
7. Host computes necessary statistics using Node tally results

Neutron Transport

1. Host send first phase of cross-section data to nodes
2. Nodes create all of the required number of particles
3. Nodes track all particles until particle energies drop below lower bound of current phase of

cross-section data
4. Nodes request more data
5. Host waits for requests to arrive from all Nodes
6. If all particles have terminated (energies below energy cutoff or absorbed etc.) Host sends next

phase of cross-section data. Otherwise skip to step 8
7. Return to step 3
8. Nodes send tally results to host
9. Host computes necessary statistics using Node tally results

Figure 6. This figure demonstrates the difficulties associated with the large cross-section data set.
Note that the sample sequence of actions for the neutron transport simulation is significantly more
complex than the sequence of actions for the photon transport simulation.

Neutron Cross-section
Data Set

-80 Megabytes

Node Memory
<16
Megabytes

Photon
Cross-section

Data Set
-1 Megabyte

,10��

19

To avoid additional complexity, we did not implement calculations for

simulation of neutron transport. Instead, in order to test the feasibility of

running neutron transport simulations on the Intel computers, we modified the

photon tracking program to model the huge cross-section data set of a typical

neutron problem (pretend the data will not fit in the memory of a single node by

limiting the available memory for the cross-section data). The modified problem

(called pseudo-neutron simulation hereafter) challenged me to identify

parallelism and implement a strategy to exploit it with minimal

communication. Even though we have not constructed an entirely accurate

model of neutron transport simulations, we hope that running the photon and

pseudo-neutron transport simulation codes on the Intel supercomputers will

provide insight into the performance of these machines on a popular problem:

the simulation of photon and neutron transport.

The primary statistics computed by the simulator are he sum of the

weights and the sum of the squares of the weights of particles (used for

computing the mean and variance of particle weights) that cross the tally surface,

a designated surface of interest in the problem. (The weight of a particle that

crosses the tally surface several times will be summed for each crossing.) These

tallies are computed for all energy levels between 0 MeV and 100 MeV, in 2 MeV

increments. Thus, a particle with energy of 15 MeV would be tallied in the 7th

energy level(14MeV to 16 MeV) if it crossed a tally surface.

The calculation of the sum of squares of the weights of particles in tally

routines can affect the strategy decisions involved in tracking particles and can

add complexity because the weight of a source particle includes the weight of all

of its daughter particles. Since the tally routines cannot square the tally weight

for a source particle until the simulation has tracked all daughter particles, the

20

simulator must maintain a weight-tally entry for each source particle that has

been tracked until the tracking of all of its daughter particles has terminated.

If the tracking strategy involves tracking each source particle through to

termination, one at a time, and the daughter particles are tracked immediately

following the termination of their source particle, this tallying is not difficult.

Photon simulation strategies would probably involve this tracking strategy

because of its simplicity.

If the tracking strategy involves partial tracking of particles and multiple

stages in which all the particles are eventually tracked to termination, a weight

tally array must be maintained. The size of the weight-tally array is proportional

to the number of particles being tracked in the simulation, and has up to 50

entries for each source particle, one for each corresponding energy level in the

problem. Because of the size of the weight-tally array and because source

particles can generate a variable amount of daughter particles, managing the

node memory can be challenging. Although a tracking strategy in which

particles are created initially and partially tracked in stages (until all particles are

terminated) is more complex, it might be successful in hiding communication

latency by taking advantage of temporal locality for neutron simulations, where

a node can only store a portion of the cross-section data at one time.

21

3. Strategies for Implementation

Implementing a neutron transport simulation on the Intel parallel

machines is a challenging problem for the programmer because of the

combination of a limited memory size and huge data set. Obviously, in any

successful strategy, the data must be segmented in some manner since it will not

fit on a single node (for larger problems). Furthermore, either the data or the

particles must be passed between nodes and shared. After careful analysis, we

have devised several strategies for sharing the data between the nodes.

3.1 Global-Send Phases

The first strategy is the only one which has already been implemented. In

this strategy, the cross-section data is split into segments according to energy

ranges. Each line of the cross-section data set has a corresponding energy value.

Since the natural logarithms of the energy values in the cross-section data are

distributed fairly uniformly throughout the data set, it can be divided into

approximately equal-sized segments by selecting equal ranges of the natural

logarithms of the energy values. Once the data set is evenly divided into

segments, the first segment of data is sent to each node. Thus, during phase one,

each node receives all of the cross-section data corresponding to the range of

particle energies with the highest values.

The first phase of cross-section data is stored in a buffer allocated from the

node memory. A request for the second phase of data is sent to the host,

22

although the nodes do not wait for its arrival. All of the particles to be tracked

are created before any tracking starts. The particle bank is the array allocated for

all of these particles and it contains space for any daughter particles which will be

created during the simulation. All particles in the particle bank are tracked

through the lower bound of the energy range of the current phase. Once all

particles have energies below the lowest energy value of the current segment of

cross-section data that is located at the node, the current cross-section data buffer

is discarded and the node checks for the arrival of the next phase of data. If it has

already arrived, the next phase of cross-section data is installed in a buffer.

Otherwise, the node waits for the data to arrive from the host. Once it arrives

and is installed as the current energy level, a request for the next phase of data is

sent to the host and the node begins tracking all of its particles until their

energies drop out of the current range. As before, the node requests the next

energy level. This process continues until all particles are terminated.

Although this strategy requires a significant level of communication for

the nodes to request data from the host and for the host to send data to the nodes,

much of the latency of this communication is hidden because the nodes track

particles in the current energy range as the node requests the next energy level.

Waiting only occurs if all of the particles have been tracked out of the current

energy range and the next phase of data has not yet arrived. However, the phases

of cross-section data are sent by global send operations. In other words, the host

waits until it receives requests from all nodes before it sends the next phase of

data. Thus, if one node takes longer to track all of its particles, it will be delayed

in sending a request for the next phase of data. Therefore, since the host waits

until it has received requests from all nodes before sending data, all of the rest of

the nodes may have to wait idly for the next phase of data if one node takes more

time to track its particles.

23

Figure 7. The Global-Send Phases strategy for neutron transport simulation. The large neutron
cross-section data set is divided into segments. Each segment is sent to all nodes in a single phase.
The nodes track all of their particles during a phase until the energy of each particle drops below
the cutoff for that segment of cross-section data. The next segment corresponding to a lower
energy range is sent in the next phase. When all of the nodes inform the host that they have
completed tracking particles with the current segment of data, the host sends the next segment of
the data.

Idle-waiting in nodes corresponds to reduced performance. Thus, it is

essential that the nodes are load balanced or possess tasks of roughly equal size in

terms of time spent in computation. Because of the randomness associated with

the Monte Carlo simulation, it is impossible to guarantee that the particles on

each node will require equal time for computation. By the Laws of Probability,

24

however, as the number of particles to be tracked on each node is increased

towards infinity, the average amount of time required to track a particle will

converge to some value that is the same for all of the nodes. Thus, the

randomness of the process will assist in load balancing the nodes, and idle-

waiting will be minimized. Furthermore, since the numeric nodes are tracking

particles while the cross-section data is being sent(except for the first phase), the

latency of communication will be hidden.

An issue that complicated the implementation of this strategy was the

tallying of statistics performed by the simulator. As mentioned in the previous

sections of this paper, the weights of daughter particles must be added together

before squaring for calculating the sum of squares of the weights of source

particles. Since the particles are all created initially at each node, a two-

dimensional weight-tally array must be created and maintained for each source

particle at each energy level (up to 50 is possible). Since this array is proportional

to the size of the number of particles, it can be immense, possibly larger than the

size of the node memory. This problem was solved by storing the tallies in an

array of 50 tally arrays. Each of the tally-arrays contains a weight-tally entry

corresponding to each source particle. In order to reduce the memory

requirements of these tally-arrays, the array for each energy level is created only

when the first particle in that energy level crosses a tally-surface and the array is

destroyed when all of the particle energies have dropped below that energy level.

The result is that only a few energy level arrays will exist at a time, rather than

all 50. This strategy reduces the memory occupied by one energy level weight-

tally array.

Another disadvantage of this strategy is that there are situations in which

the nodes perform unnecessary work. For example, during the tracking of the

particles there are certain energy levels which particles rarely enter. In fact, it is

25

possible that there are entire phases of data that could go unused by the nodes.

However, in this strategy, all energy levels of cross-section data are sent to all of

the nodes anyway. Obviously, this communication is unneeded and wasteful.

Several approaches could be used eliminate the sending of this unneeded data.

One approach would be to compute the largest energy value of any particle, so

that at the end of the phase the nodes would be able to determine which phase of

data they would need next. Phases which most of the nodes required could be

sent with global send operations, those required by only a few nodes could be

sent individually, and unneeded phases would not be sent at all. Thus,

unneeded communication could be eliminated. In current versions of the

simulator, all phases are sent to all nodes.

3.2 Pipelined Particle Tracking

In this approach, equal-sized segments of the cross-section data set are each

sent to a different node and the data set is divided among the minimum number

of nodes that can store all of it. In this manner, nodes are grouped together so

that the entire cross-section data set is contained in each group and each node in

a group contains a different segment of the data set. Thus, each group is a

duplicate of the rest and serves as a pipeline for tracking particles.

Particles are created at the node with the cross-section data corresponding

to the highest energy values in the group. They are tracked on the current node

until their energy values drop below the lower bound of the energy values

corresponding to the cross-section data contained at that node. At this point, the

particles are sent to the node which possesses the cross-section data for the next

lower energy level. This continues until the particles terminate at the last node

26

in the group. Since photons always lose energy during interactions, they will

never have to return to a node or go back up the pipeline.

was

Figure 8. This figure illustrates the Pipelined Particle Tracking strategy. Processor pipelines are
composed of groups of N neighboring processors, where N is the number of cross-section data
segments. Particles are created and streamed through the pipeline. At each stage the particles are
tracked until their energies drop below that stage's lower energy cutoff for the cross-section data.
Following tracking, each node sends the host its tally results.

Since studies have shown that an optimum size exists for messages at

which maximum bandwidth is achieved, experimentation can be used to

determine how many particles should be sent between nodes. This number is

also the number of particles that will be created at the first node at the start of

Segment 1
cross-section

A .r

Segment 2
cross-section

.A esuaLa

Segment N
cross-section

An teLuaaa
II

uaa

27

each phase and sent to successive stages after being tracked out of each energy

level. The total number of phases can be computed by dividing the total number

of particles to be tracked by the number of particles that are tracked at each stage

and sent between them.

Although this seems to be a rather elegant approach, there are several

flaws in this strategy. First of all, all of the nodes in a group except for the node

with the highest energy level will be idle at the first phase in which particles are

created and tracked at the first node. The rest of the nodes will become busy, one

by one, at each successive phase until all are busy. At completion, the nodes

become idle, one by one, at each successive phase until the entire pipeline is idle

and tracking is completed.

n is the number of nodes in a group

i is the sum of the idle phases spent by the nodes in a group

i = n(n- 1)

From the above equation above, a total of i node-phases are idle during the start

and finish of the simulation. However, if enough particles are tracked, the

number of intermediate phases between the filling and emptying of the pipeline

will be large enough so that the idle time will be negligible compared to the total

tracking time. Thus, the performance of the pipeline approach improves for

large numbers of particles.

Another flaw in this strategy is that some stages will take longer than

others to track the particles. Some nodes will have to waste time waiting because

each stage must wait until the slowest stage has completed the last phase before

28

accepting new particles for tracking and sending the old particles to the next node

in the pipeline. This is very similar to the load balancing issue that arose in the

global-send approach. In the previous strategy, however, each node had the

same data. For a large number of particles, therefore, the average time to track a

particle would converge to one value for all of the nodes and the load would be

relatively balanced. In this approach, each node in the pipeline contains

different cross-section data corresponding to a different range of energy values.

Therefore, nodes with certain segments of cross-section data will spend more

time tracking particles than others because particle energies are not uniformly

distributed.

One way to amortize the cost of sending messages containing particle state

between the nodes would be to use the same double buffer technique used in the

previous strategy. Thus, while one set of particles is being tracked on a node, the

next phase would be arriving into another buffer. Waiting would only occur if

the particles in the new phase had not arrived. Once the latest phase of particles

had arrived, the node would send a request for the next phase to the node which

provides its particles and tracking would begin on the current phase. This

technique overlaps some of the communication with computation. However, if

there is a difference in the average time for each stage of the pipeline to track a

phase of particles, this time differential will show up as idle-waiting and will not

be hidden by computation.

In this approach, calculation of the tallies requires the allocation of a tally

array for each of the energy-tally-levels in the node's energy range. Each tally

array contains separate tally entries corresponding to each source particle so that

daughter particle weights can be added before computing the sum of squares of

the weights of particles that cross tally surfaces. If the number of particles in each

phase is very large, this approach could have memory shortages due to the size

29

of this array. However, the array can be squared and added at the completion of

each phase. Since the number of particles in each phase is a constant that is

relatively independent of the total number of particles, the size of this array will

also be a constant, which makes memory management much easier than in the

previous strategy.

The pipeline approach incorporates many of the programming features

required in the global-send approach. As a result, implementation of this

strategy will be easier since the previous approach has already been

implemented. Preliminary analysis reveals that the pipeline would achieve its

best performance for large numbers of particles. However, since the stages

appear to be mismatched in terms of the time required for computation, the

performance under this strategy will never approach the maximal performance

possible from the Intel parallel machines.

3.3 Caching Cross-section Data

With this strategy, each node must create and maintain a cross-section

data cache. The cache would be used to store recently requested fragments of data

that the node was not able to store in its own memory. The cache would take

advantage of temporal locality in the cross-sections data requests caused by

tracking of particles. Each node would also possess a permanent portion of the

data, which it would use for replying to cross-section data requests from other

nodes. This strategy could be successful if there was sufficient locality in the

cross-section data requests arising from tracking particles.

30

Node A

L
Figure 9. In this figure, Node A has a cache miss and requests the cross-
section for a required energy range. Node A can potentially track other
particles as it waits for the data from Node B. Node B, which has the
requested data in its permanent segment of cross-section data, sends the data
to Node A. Node A places the received data in its cache and uses it to track
particles.

One advantage of this strategy is that unneeded cross-section data would not be

sent to nodes, and since the nodes operate fairly independently, there would not

be any global send operations, which require synchronization and can cause idle

waiting. One disadvantage of this strategy is that cross-section data can be

requested more than once at each node if the cache replaces it with new data.

There are two alternative methods that can be used to implement this strategy.

Each have potential advantages and disadvantages, but experimental testing

would probably be needed to determine which is the best method.

Permanent
cross-section data

cross-section data
Cache

Permanent
cross-section data

cross-section data
Cache

Node B

Interconnection
LTL_.___1_

� i
,

1

i

iv Nrt UKK
1

31

The first of these methods is to create a particle and track it and any of its

daughter particles until termination. Similarly, the next particle would be

tracked, and so on, until all particles have been tracked. This would eliminate

the large, troublesome tally arrays required by the other strategies. However, the

success of this approach depends on whether there is sufficient locality in the

cross-section data requests generated during the tracking of particles. Specifically,

if tracking a particle fills part of the cache with cross-section data, it is desirable

that the requests generated from tracking other particles be entirely satisfied by

the cache. One possible setback of this method of implementing caches for cross-

section data is that thrashing is a likely result if the cache size is too small. In

other words, it is likely that the cache will thrash if the cache is small enough

that frequently requested data has to be replaced by other frequently requested

data.

The second method for implementing the cross-section data caches is to

initially create all of the particles, fill the cache by tracking the first few particles,

and track all of the rest of them as long as the data that they request is in the

cache. Once all of the particles are tracked out of the energy values represented in

the cache, the particles are tracked again, adding cache entries until the cache is

refilled. Once the cache is again full, the particles are only tracked as long as the

cross-section data that they require is in the cache. This process continues until

all particles are terminated. This approach sounds similar to the global send

approach in many ways, but the primary differences are that communication

occurs in smaller messages which contain one energy level (maybe a few with

prefetching) and that data will only be sent if it is required by some other node.

(In the unmodified global send approach, all data is sent to all nodes regardless of

whether it is requested.) In this approach, thrashing is less likely because less

data is less likely to be needed after all of the particles are tracked out of a cache

32

than in the previous approach where particles were successively created and

tracked until terminated.

Cache size is very important to the success of this general strategy.

Although some of the code in the global-send strategy can be reused for this

approach, the design and implementation of the caches would still be fairly

complicated. Furthermore, a great deal of experimentation and fine tuning

would be required to obtain a successul implementation of this strategy. Caching

is a general technique that has been implemented successfully for many different

problems. Since there is plenty of locality in the cross-section data references of

the simulator, this strategy should be capable of achieving respectable

performance.

33

4. Testing and Results

It is important to understand that the goal of this project was to implement the

global-send phases strategy for the pseudo-neutron simulator (photon

simulation which mimics a neutron simulation problem by modelling the larger

neutron cross-sections data set). As part of this goal we will examine the

feasibility of the strategy but will not thoroughly test the simulator program. The

reason for making this distinction is so that the reader will take the performance

results with a "grain of salt" and understand that this program is a model of a

neutron simulator rather than the program itself.

4.1 Testing Correctness

To test the feasiblity of the global-send phases strategy, we chose a problem

geometry (see problem illustration), ran a range of different problem-sizes

(varying number of particles) on the iPSC/2 supercomputer, and compared the

tallied results of the pseudo-neutron simulator to those of the photon simulator.

Since all of the tallied statistics for both simulators matched the fortran

simulator's results very closely for every test, it seems reasonable to trust the

correctness of the global-send phases strategy. Some of the statistics that we

compared were the total number of collisions, the total number of tally surface

crossings, and the number of entries for each cell. Although these tests lack

thoroughness, they do demonstrate that both of the simulators produce very

similar results.

34

One might mistakenly expect that the results of the neutron and photon

simulators should be identical because the seeds for the random number

generators on the nodes and the tracking routines are identical in each program.

(The main difference between the programs is that the photon simulator places

the entire photon cross-section data set on each node and the pseudo-neutron

simulator models the larger cross-section data set of a neutron problem, which

may be too large to place in the memory of a single node.) The reason the results

are not identical is that the photon simulator tracks each particle through to

'ally Surface

urce of Particles

Figure 10. This illustration shows the problem geometry that was chosen for testing the
Monte Carlo Radiation Transport Simulator. Each number represents a different cell which
can contain different materials. In this case, all cells have the same composition of nuclides
except for 6 and 7. Cell 7 is free space, in which particles can have no interactions. When
particles cross the indicated tally surface, the tally arrays are modified appropriately to
record the event. Particles emanate from the source at the center of the diagram.

35

completion without interruption, whereas the pseudo-neutron simulator tracks

particles only until they drop out of the energy range for the current phase of

cross-section data. Thus, although the sequences of random numbers which

serve as the basis for the Monte Carlo simulations are the same for each

simulator, the photon and pseudo-neutron simulators utilize their random

number sequence differently.

4.2 Testing Performance

As mentioned earlier, testing performance was not one of the goals of this

project. However, in order to check the feasibility of the chosen strategy and my

implementation of it, it is necessary to examine its performance. Therefore, we

performed tests to help determine if the global-send phases strategy for the

pseudo-neutron simulation was able to achieve reasonable performance. In

order to accomplish this, we ran the same problem geometry (see problem

illustration) several times with differing numbers of particles and timed each of

the simulations. we also ran the same tests on the photon transport simulation

in order to gather information about the difference in performance between the

pseudo-neutron simulation, which partitions the cross-section data set into

segments and only stores two of the segments on the node at any time, and the

photon simulation, which places the entire cross-section data set on the node at

once. The results of running both simulations on the iPSC/2 are shown in

Figures 11 and 12 (based on tables 1 and 2 in Appendix A). Analysis of these

results revealed several important observations.

First of all, small problems took very little time (about 10 seconds for

tracking 50 particles) to complete relative to large problems(about 20 minutes for

36

tracking 20,000 particles), even though they require the same amount of

communication to send the cross-section data set (see Figure 11). Since

communication takes very little time and is independent of problem-

size(numbers of particles), both the photon simulation and the pseudo-neutron

simulation scale very nicely as the problem size is increased. The results of the

tests demonstrate that the particle-throughput increased as the problem size was

increased: for 50 particles, the simulation tracked about 5 particles per second,

and for 1,280,000 particles the simulation tracked over 1000 particles per second.

Time versus Number of Nodes
for Neutron Transport Simulation

A 'vIUW

1200

' 1000
o

/ 800

600

400

200

20,000 particles per node

5,000 particles per node

50 particles per node
500 particles per node*,, 2 l

0 10 20 30 40 50 60 70

Number of Nodes

Figure 11. This graph demonstrates that the neutron simulation time is dependent on the
number of particles but independent of the number of nodes used in a simulation. (see table 1
Appendix A).

The increase in particle-throughput results from the increase in the ratio of time

spent in computation(increases with problem-size) to the time spent in

communication(independent of problem-size).

37

One significant point to note for pseudo-neutron simulations is that the

increase in particle-througput is limited by the size of node memory because the

size of the tally arrays and the particle bank are dependent on the number of

particles and must fit in the node memory. The maximum particle-throughput

corresponds to the largest problem (number of particles) in which the node

memory is full with the particle bank, tally arrays, and the rest of the data, which

has a size that is problem independent. Larger problems can be simulated by

repeating simulations which track the largest number of particles that fit on a

node, but performance will be limited to the maximum particle-throughput

attained when all of the additional node memory is utilized to hold particles and

tally-results.
Time versus Number of Nodes

for Photon Transport Simulation

20.000 narticle ner nodelOW

1400

'0 1200
0
< 1000

eo 800

- 600

400

200

5 r er der

5,000 particles per node

50 particles per node

500 particles per node /
=t= *

0 10 20 30 40 50 60 70
Number of Nodes

Figure 12. As in the case of the neutron transport simulation, this graph demonstrates that
the photon simulation time is dependent on the number of particles but independent of the
number of nodes used in a simulation. (see table 2 Appendix A)

Another observation, based on the results in Figures 11 and 12, is that the

photon simulation times are larger than the neutron simulation times. This

38

contradicts our expectations, because we assumed that that extra communication,

caused by segmenting the data set and sending it in phases, in the pseudo-

neutron simulation would have a severe impact on performance despite the

double buffer technique which attempts to mask communication latency. The

results indicate, however, that the double buffer technique is effective. Since the

communication in the photon simulation occurs in one synchronous message-

send, for which the nodes wait, the iPSC/2 nodes in the pseudo-neutron

simulator should have a smaller idle-waiting time. Because the idle-waiting

time is relatively independent of problem size the pseudo-neutron simulation

should have a time advantage, which should be relatively constant for all sizes

of a given problem, over the photon simulation.

Further examination of the results in Figures 11 and 12 reveals that the

time differential between the pseudo-neutron and photon simulations increases

as the problem size increases. These unexpected results are explained by the

following differences in the tracking routines of the pseudo-neutron and photon

simulators: the photon simulator creates a particle and tracks it, thus avoiding

the necessity of maintaining state and tally information for all source particles at

once, and the pseudo-neutron simulator creates all particles immediately and

tracks them all partially, until new cross-section data is needed. Because the

pseudo-neutron simulator tracks all particles until they fall out of the current

phase's energy range and maintains tally entries for each source particle for each

energy level, it only squares and adds weights in the affected energy level tallies

for each source particle before continuing to track. The photon simulator, on the

other hand, must square all 50 tally entries, that are added as the current source

and its daughters are tracked for each particle before tracking the next particle.

One important shortcoming of this pseudo-neutron simulation model is

that neutrons, unlike photons, can gain energy during interactions. As a result,

39

particles can reenter the energy range of previous cross-section data phases. This

behavior is undesirable, especially if a particle's energy leaves the current phase's

energy range because previous phases of the cross-section data will have to be

sent to the node in order to complete tracking of such particles. One simple

approach to this problem is to repeat sending all phases of data, in the same order

as before, until all particles are tracked to termination. It is difficult to estimate

the impact of requiring several cycles of global-send phases, but, since the

common case is that particles lose energy as a result of collisions, it is likely that

this general strategy would still have reasonable performance.

The second set of measurements was taken to determine whether or not

the global-send phases strategy achieves reasonable performance. These tests

were comprised by measuring the time from the start to the finish of a

simulation for a range of different simulation sizes. Just by looking at the largest

problem size, it is easy to demonstrate the feasibility of this strategy. For 64

nodes, each tracking 20,000 particles, the pseudo-neutron simulation took about

20 minutes. Thus, the iPSC/2 can track over 64,000 particles in one minute. This

stand-alone statistic, 64,000 particles per minute, is pretty impressive. Although

these numbers do give us significant information for determining feasibility,

preliminary results were also obtained from running the same range of

simulations on the Cray 2 for purposes of comparison. The results of running

the same problem-geometry on the Cray 2 suggests that the iPSC/2 performance

is inferior to that of the Cray. However, these results are not included because

the radiation transport simulation implementation on the iPSC/2 has not been

sufficiently tested for correctness to allow comparison to other machines. The

results in tables 1 and 2 are only really useful for looking at scaling issues. The

significance of the numbers is in relation to each other rather than as a

performance measurement.

40

When one compares the times for the pseudo-neutron simulations to the

times for the photon simulations one discovers that the neutron simulation

took less time to track particles even though it assumes a larger cross-section data

set. Although, this observation appears to make no sense, it can be explained by

remembering that the global-send phases strategy for the pseudo-neutron

simulation employs the double-buffer technique which overlaps

communication with tracking of particles. In contrast, the photon simulation

sends cross-section data synchronously in one big send while the nodes sit

waiting. Thus, the more frequent communication of phases of cross-section data

in the pseudo-neutron simulation had less impact on the total time required to

track particles than the few initial messages in the photon simulation, because

the nodes in the pseudo-neutron simulation track particles as the messages

containing the cross-section are sent rather than waiting idly for required data to

arrive.

41

5. Conclusion

The testing performed on the pseudo-neutron simulator suggests that the

global-send phases strategy can achieve respectable performance. The results

compared favourably to those of the photon simulation and of the fortran

MCNP code on the Cray 2. The double buffer technique for masking message

latency with computation seems to be effective. Although we did not

thoroughly test correctness and performance, the results of testing this

implementation suggest that it is a feasible approach for neutron tracking

problems. All goals for this stage of the project, namely implementation and

feasibility testing of one strategy for handling complexities of neutron tracking

simulations, were met by this thesis. Future work will include complete testing

of correctness and performance with a wide range of simulation problems which

differ in geometry, number of particles, and number of nodes. The results will be

compared to identical simulations on the Cray 2 and possibly to dataflow

machines running an Id version of the program.

In this study as well as others, the iPSC/2, one of the earlier Intel parallel

supercomputers, has demonstrated that it achieves good performance on

problems with sufficient coarse-grained parallelism. Because the iPSC/860 and

Touchstone Delta Machine are successors to the iPSC/2 with similar

architectures, they will probably demonstrate similar performance levels that

reflect their improvements.

Appendix

Particles

50
50
50
50
50

500
500
500
500
500

5000
5000
5000
5000
5000

20000
20000
20000
20000
20000

Simulation
Time

(seconds)

9.7
9.7

11.2
13.2
21.5
36.2
37.7
40.5
43.5
44.7

307.9
308.1
312.2
316.6
317.7

1208.1
1214.6
1219.6
1219.5
1221.0

Table 1. This table contains the results of a neutron transport simulation.
Notice the minimal change in time as the number of processors is
increased. This fact that increasing the number of processors does not
significantly affect the simulation time indicates that communication, in
particular global communication, is minimal. Thus, the results in this
table are one indication that this strategy is feasible.

42

A.

Nodes

1

4
16
32
64

1

4
16
32
64

1

4
16
32
64

1

4
16
32
64

Particles

50
50
50
50
50
500
500
500
500
500

5000
5000
5000
5000
5000

20000
20000
20000
20000
20000

Simulation
Time

(seconds)

11.4
13.2
15.6
14.3
18.8
41.1
50.0
50.6
51.4
51.6

391.4
395.8
399.5
399.0
406.4

1554.9
1566.3
1568.3
1564.4
1569.1

Table 2. This table contains the results of a photon transport simulation.
Again, note the minimal change in time as the number of processors is
increased. The results in this table are surprising because the simulation
times are not less than those in the neutron simulation. This observation,
however, is explained by the fact that the neutron simulation strategy
overlaps communication of the data set with computation, but the
photon simulation just sends the cross-section data set in one big chunk
at the start of the simulation.

43

Nodes

1

4
16
32
64

1

4
16
32
64

1

4
16
32
64

1

4
16
32
64

44

Appendix B.

45
/* track() tracks a particle through the specified problem
** geometry and simulates its interactions with the materials in
** the object. In the neutron simulation, the particle can only be tracked
** until its energy has dropped below the lower energy bound of the
** corresponding energy range of the current cross-section phase. Once
** this has happened, the tracking of a particle can only continue once
** the next phase of data is available from the host (according to the
** global-send phases strategy) Eventually a particles will terminate and
** tracking will cease.
*/

void
track(part_p)

particle

double
double
cross_sections
nuclide
nuclide
cell_specs
char
int
int
int
double
double
int
int
double
int

*partp;

distance c;
sigma;
cs;
tnucl;
*t_nucl_arr;
*temp_c_sp;
change;
old_cell_ind;
nuclide index;

/* pointer to current particle

/* distance to next collision
/* cross-sectional area
/* cross-section data at energy level
/* nuclide atomic # and % of material
/* array of structures as above
/* cell material,importance,& density
/* if TRUE then calc. new sigma
/* old cell index
/* array index for nuclide

num_mat_nuclides; /* # nuclides in a material
rnd; /* random number between 0 and 1
old_erg; /* used to see if erg changes
ind;
i;

currmat;

*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

/* Set up some pointers to arrays */

temp_c_sp = stats_on_cells + part_p->cellindex;
curr_mat = temp_c_sp->material;
tnucl_arr = material_nucl_arr[curr_mat];
change = TRUE;

/* This while loop tracks particles until they are no longer in the
** energy range of the current phase of cross-section data.
*/

while(partp->ergs > ergphase_lbnd) {

/* The cross-section area only needs to be recomputed when
** a particle enters a new cell (different material) or has
** a collision and changes energy (change == TRUE).

if(change == TRUE) (
num_mat_nuclides = material_num_nuclides[curr_mat];

/* Test if the particle energy is less than the upper
** bound of the energy range of the current phase of
** cross-section data. (part_p->ergs > erg_phase_unbd)
** If this is true, the particle must have gained
** energy, since the next phase is never made available
** until all particle energies have dropped below the

46
** lower bound of the energy range of the current
** phase. Thus, there is an error.
*/

if(part_p->ergs > erg_phase_ubnd) (
printf\n********** *************** \ n");
printf("particle erg %f, ergubnd %f ",
part_p->ergs, erg_phase_lbnd

+ erg_mg);
printf("particle_bank %d, currparticle %d",

particle_bank, curr_bank_part);
printf("\nERROR Particle erg > ergubnd\n");
printf(\n*************************);

cs.inc = cs.coh = cs.photo = cs.pp = 0.0;

/* Calculate the cross-section area for the material
** in the current cell.
*/

for(i = 0; i < nummat_nuclides; i++) {
t_nucl = t_nucl_arr[i];
interpolate(t_nucl.atomicnum,part_p->ergs);
k = t_nucl.percent;
/* inc coh photo pp */
cs.inc += return_cs.inc * k;
cs.coh += return_cs.coh * k;
cs.photo += return_cs.photo * k;
cs.pp += return_cs.pp * k;
/* totals is used for sampling the nuclide*/
totals[i] = cs.inc + cs.coh + cs.photo + cs.pp;

if(part_p->ergs < ERG_THRESHHOLD)
sigma = cs.inc + cs.coh + cs.photo + cs.pp;

else
sigma = cs.inc + cs.photo + cs.pp;

rnd = RND;

/* sample to determine the nuclide with which the
** particle collides
*/

for(i = 0; i < num_mat_nuclides; i++)
if (rnd < (totals[i] / sigma)) (

nuclide_index = i;
break;

)

/* Just recalculated cross-section area after losing
** energy or entering new cell. Reset change to
**false
*/

change = FALSE; /* energy or material did not change */

/* Sample the distance until the next collision */

distance_c = dist_collision(sigma, temp_c_sp->density);

47
/* Calculate the distance until the nearest surface in the
** path of the particle
*/

dist_to_near_surf(partp);

/* If the distance until the next collision and nearest surface
** are infinite then the particle has escaped the object and
** the particle travels forever in free space. Therefore
** stop tracking it
-/

if(distance_c >= HUGE_NUM && intrsctn.d >= HUGE_NUM) (
part_p->ergs = 0.0;
return;

)

/* If the particle enters a new cell without any collisions
* then determine the new cell and perform any necessary
* tallies
*/

if (distance_c >= intrsctn.d) (
translate(partp, intrsctn.d + SMALLNUM);
old_cell_ind = part_p->cell_index;
findnewcell(partp, intrsctn.surfnum, old_cellind);
(cellentries[part_p->cellindexl] ++);
if(intrsctn.surfnum == tallysurface) (

/* Tally mean and variance of energies of
*particles that cross the tally surface

ind = (int)floor((double)(part_p->ergs / 2.0));
if(tally_v_sums[indl == NULL) (

tally..v_sums[indl = (double *)
calloc(numparticles, sizeof(double));

if(tally_v_sums[indl == NULL)
printf("'ally_vsums not ");
printf("allocated in track!\n");
fflush(stdout);
exit(0);

)
)
tally_m[ind] += part_p->weight;
/* Daughter particle energy values
** must be summed for each source
* particle separately and then these
* sums will be squared and summed

** to calculate the variance.
** Tallyvsums is the array
" used to sum the daughter erg values
** for each source.
*/
tally_vsums[ind][partp->parent_id] +=

partp->weight;

variance_reduction(partp, oldcellind);
temp_csp = statson_cells + partp->cellindex;

48
curr_mat = temp_c_sp->material;
t_nucl_arr = material_nucl_arr[curr_matl;
change = TRUE;

/* Otherwise a collision will occur before the particle reaches
** a new cell. Sample the type of collision which has occurred
** and modify the particle state to reflect the effects of the
** collision
*/

) else (
(cell_collisions[part_p->cell_index])++;
translate(part.._p, distance_c);
olderg = partp->ergs;
if(old_erg < ERG_THRESHHOLD)

detailed_photonics(part_p, cs, sigma,
nuclide_index);

else
photonics(part.p, cs, sigma);

if(part_p->weight == 0.0)
part_p->ergs = 0.0;

if(part_p->ergs != old_erg)
change = TRUE;

/* When the particle's energy value has dropped out of the energy range
** of the current phase or has dropped below the energy cutoff for
** tracking, it is no longer necessary to track this particle (at least
** until the next phase of cross-section data has arrived). The
* particle can also terminate by.absorption as a result of collision

** or by variance reduction techniques
*/

return;

/* replace..regarrpntrsO called by init_dataarrays). A cell is a region
** composed of a combination of primitive surfaces (planes, spheres,
** cylinders) and other regions. Thus a region is a structure which points to
** both an array of pointers to regions and an array of primitive surfaces.
** In order to achieve high efficiency, the host creates one single array of
** regions and another array of primitive surfaces to send to each node.
** The node must recalculate all of the pointers in the structures.
** separate arrays of the same data type into one large array.
** replace.reg..arr-pntrs() recalculates and resets the pointers in cells[]

void
replaceregg_ arr _pntrs(t_re garrp, t_surf arrp)

region **treg.arrp;
int **t_surf_arrp;

int i;
region *regp;

regp = *tregarrp;
regp->surf_number = *t_surfarrp;
*tsurf_arrp += regp->num surfs;
for(i = 0; i < regp->num_regs; i++) (

49
(* t regarrp)++;
regp->regs[i] = *t_regarrp;
replace_reg_arr_pntrs(t_reg_arrp, tsurf_arrp);

/* The host created single arrays of the one data types out of separate arrays
** of the same data type. Sending data to nodes in one message is more
** efficient because it avoids the overhead of sending multiple messages.
** The host creates other arrays of pointers to the portions of these single
** arrays (subarrays) corresponding to each originally separate array in the new
** larger arrays. init_data_arrays() recalculates the pointers in the arrays
** of pointers used to address the subarrays in the larger arrays.
** init data-arrays creates arrays of pointers to offsets in arrays for various
** subarrays. It also replaces old array pointers in the region constructs
** with addresses into the arrays of regions and surface numbers;

void
initdata_arrays()

int i, j;
int tnum_xsects;
int temp = 0;
region *tregarr;
int *t_surf_arr;

/* Allocate arrays */
incffarr = (double *) calloc(num_nuclides, sizeof(double *));
cohff_arr = (double **) calloc(numnuclides, sizeof(double *));
fl_arr = (double **) calloc(num_nuclides, sizeof(double *));
xsectarr = (xsect **) calloc(num_nuclides, sizeof(xsect *));
/* Check arrays to make sure they were allocated */
if(incffarr == NULL I I cohff_arr == NULL I I flarr == NULL

I I xsectarr == NULL) (
printf("\n****"\ *" * *\nf");
printf("array in init_dataarrays() not malloced");
printf("\n****** **** WI;\n")
exit(O);

tnum_xsects = 0;
incff_tot = 0;
cohff_tot = 0;
/* Create arrays of arrays from single arrays */
for(i = 0; i < num_nuclides; i++)

incff_arr[il = incff + incfftot;
cohff_arr[i] = cohff + cohff tot;
fl_arr[il = fl + fl_tot;
xsectarrlil = phasexsect + tnum_xsects;
incff_tot += NINCFF;
cohff tot += NCOHFF;
fltot += nfls[il;
tnumxsects += phase_nxsects[curr_phasel[il;

material_nucl_arr = (nuclide **) calloc(num_materials, sizeof(nudide *));
if(material nuclarr == NULL) (

printf("\ n* **" " M*** * \n ");
printf("materialnucl_arr in initdata_arrays) not malloced");

50
printf(" \ n**0******** ******* *\n");
exit(O);

)
for(i = O; i < num_materials; i++) (

material_nucl_arr[i] = materialnuclides + temp;
temp += materialnum_nuclides[i];

x_ref_array = (int **) calloc(num_surfaces, sizeof(int *));
if(x_ref_array == NULL) I

printf("\n* * ** *** *** ** ~ '** ** * * ** *\n ");

printf("x_ref_array in init data arrays(not malloced");
printf("\n * ** '* * **** ** ** **** * ** * ** ' **\ n ") ;

exit(O);
}
temp = 0;
for(i = 0; i < numsurfaces; i++)

x_ref_array[i] = crossrefs + temp;
temp += cross_ref_nums[i];

t_reg_arr = reg_arr;
t_surf_arr = surfarr;
cells = (region **) malloc(numcells * sizeof(region *));
if(cells == NULL)

printf("\n * * *** '" " ' ** * *"* * *** * * ** \ n ");

printf("cells in initdataarrays() not malloced");
printf("\n ***** *** **** ****** *** **** \ n");

exit(O);

/* The region structure contains pointers to arraysand structures.
** Reset the pointers for the arrays allocated at the nodes
*/
for(i = O; i < num_cells; i++) (

cells[i] = t_reg_arr;
replace_regarr_pntrs(&treg_arr, &tsurf_arr);

- t_reg_arr++;
).

/* mcpO starts the particle transport simulation running. It initializes
** an inputted number of particles to source coordinates and
** samples for direction cosines and energy etc. by calling sample
* source.

void
mcp()

int i, j;
int tnum_xsects;
double t_tallyv;
int hi_erg_ind;
particle *currpartp;
double curr_erg, max_part_erg;

/* the bank should have sufficient room for any daughter particles */
total_bank_size = num_particles + 5000;
totals = (double *) calloc(num_nuclides, sizeof(double));
tally_v_sums = (double **) calloc(50, sizeof(double *));

51
hi_ergind = (int) floor((double) (exp(maxergval) / 2.0));
for(i = 0; i < hi_erg_ind; i++)

tally_vysums[i] = NULL;

/* allocate an array for all of the particles to be tracked */
partide-bank = (particle *) malloc(total_bank_size * sizeof(particle));

/* Did the particle_bank array get allocated? If not, halt! */
if(particle_bank == NULL) (

printf"\n******************************\n");
printf("Partide Bank not malloced");
printf("\n*********************************\n");
fflush(stdout);
exit(0);

)

/* create all source particles initially */
num bank_parts = numparticles;
for(i =0; i < num_particles; i++)

create_particle(particlebank + i, i);

currbank_part = 0;

/* while loops through each phase until all particles terminate */
while(curr_phase > -1) (

maxparterg = 0.0;

/* Track all of the particles that are created until their
* energies drop below the lower bound of the energy range
* for the current phase

*/
while(currbank_part < num_bank_parts) {

curr_partp = particle_bank + curr_bank_part;
if(curr_partp->ergs > erg.phaselbnd)

track(curr_partp);
curr_erg = curr_partp->ergs;
if(max_part erg < curr_erg)

max_part_erg = curr_erg;
curr_bank_part++;

/* Tally any energy levels if all particle energies
* have dropped below that energy level's range. Thus
* all daughter particles tallies will be associated with their
* parent's tally as required for statistics because no
* particles can still cross a tally surface at that energy

" level. Once the tally is computed, the tallyv..sums array
· with entries for each source particle can be freed for that

energy level.
,/
while(hi_ergind > (int) floor((double)(max_part_erg / 2.0))

I I (curr_phase == 0 && hi_ergind == 0))
ttallyv = 0.0;
tally..v[hi..erg_..ind] = 0.0;
if(tallyv_sums[hi_er..i nd] != NULL) (

for(i = 0; i < num_particles; i++)
ttallyv += pow(tally_v..sums[hi_ergind][i],

2.0);

52
/* Here we can free the tally_v_sums array
** since it is no longer necessary to
** distinguish between source particles for
** tally purposes because no new daughter
** particles can be created with energies
** at that energy level.
*/
free(tally_vsums[hierg_ind]);
tally_v[hi_ergindl = t_tally_v;

}
hierg_ind--;

/* Wait for the cross section data to be put
** in the extra buffer in case it hasn't arrived yet
** If this strategy is any good this waiting will be
** minimal
*/
curr_phase--;
if(curr_phase > - 1) {

printf("\n********WAITING phase %d**** %d\n", currphase,
Node_num);

/* Wait for the new erg level of cross section data.
** Hopefully, in most cases, it has already arrived
** because mcp requested it in advance while it was
** still tracking particles with the previous phase of
* data.
*/
msgwait(rqstd_xsect_msgid);

printf("\n******RECEIVEDphase %d**** Sd\n", curr_phase,
Node_num);

/* Deallocate memory holding the last phase of
** cross-section data
*/
free(phase_xsect);
phase_xsect = nextphase_xsect;
num_xsects = num_xsects_next;
tnum_xsects = 0;
for(i = O0; i < num_nuclides; i++) (

xsectarr[i] = phasexsect + tnum_xsects;
tnum_xsects += phase_nxsects[curr_phase[i];

)

/* Set upper and lower bound for energy range of
** cross-section data
*/
erg_phase_ubnd = erg_phase_lbnd;
erg_phase_lbnd = exp(log(erg_phase_lbnd) - ergrng);
if(curr_phase == 0)

erg_phase_lbnd = ERG_CUTOFF;
curr_bank_part = 0;

/* Allocate array for next phase of cross-section data and
** send request for next phase of data
*/
if(currphase > 0) (/* curr_phase decrements above*/

num_xsects_next = phase_numxsects[curr_phase - 1];

53
csend(18, &num_xsects_next, sizeof(int), Host_num, 17);
next_phase_xsect = (xsect *)

calloc(num_xsects_next, sizeof(xsect));
if(nextphase_xsect == NULL) (
printfC(\ n**************U*****************\n);
printf("nexphasexsect in mcp() not malloced");
printf("\ n*****************************\ n");
exit(O);
I

/* Asynchronous receive for next erg level of cross-
** section data. In the meantime, track all
** particles in the current phase's energy range.
** Double buffer technique masks cost of
** communication and sending data.
*/
rqstdxsect_msg_id = irecv(17, next..phase_xsect,

sizeof(xsect) * num_xsectsnext);

/* Tally variance of erg levels. these sums include the weight
** of all daughter particles. They can only be squared after
** all daughter particles for a source have been tracked.

j=-1;
csend(18, &j, sizeof(int), Host_num, 17); /* Done */

/* main() allocates arrays, receives data from the host, and sets program
** variables. It then calls mcp() to begin tracking particles. When
** the node terminates particle tracking, tally statistics are sent to the
** host at the end of mainO. crecv() is used to receive data from the host
'* at the node and csendO is used to send data from the node to the host
,/

main()

int *int_arr;
double *double_arr;
int i, j;
int intarr_size = 15;
int double_arr_size = 7;
int totaloffsets;
int *offsets;

/* Allocate arrays */
intarr = (int *) calloc(int arr size, sizeof(int));
double_arr = (double *) calloc(double_arr_size, sizeof(double));
Node_num = mynode();
Host_num = myhost();
crecv(1, int arr, int_arr_size * sizeof(int));
crecv(2, double arr, doublearrsize * sizeof(double));
numnuclides = intarr[O;
numcells = int_arr[1];
num surfaces = intarr[21;
num_materials = int_arr[31;

54
source_cell_index = intarr[4];
num_particles = intarr[5];
tally_surface = int_arr[6];
num_distr_levels = int_arr[7];
tot_material_nuclides = int_arr[81;
total_cell_refs = int_arr[91;
total_regs = int_arr[10];
total_surfs = int_arr[11];
fl_tot = int_arr[12];
Seed = intarr[13];
num_phases = int_arr[141;

erg_mg = double_arr[0];
source_pointx = doublearrt[l];
source_pointy = double_arr[2];
source_point_z = double_arr[3];
max_ergval = double_arr[4];
ERG_THRESHHOLD = double arr[5];
ERG_CUTOFF = double arr[6];
erg.phase_ubnd = exp(max_ergval);
erg_phaselbnd = exp(max_ergval - ergrng);
srand((2 * Node_num) + Seed);
incff_tot = num_nuclides * NINCFF;
cohff_tot = num_nuclides * NCOHFF;
incff = (double *) calloc(incff_tot + cohff_tot + fl_tot, sizeof(double));

crecv(3, incff, sizeof(double) * (incff_tot + cohff_tot + fl_tot));
cohff = incff + incff_tot;
fl = cohff + cohff_tot;
cross_refs = (int *) calloc(total_cell_refs, sizeof(int));
crecv(4, cross_refs, sizeof(int) * total_cell_refs);
regarr = (region *) calloc(total_regs, sizeof(region));
crecv(5, reg_arr, total_regs * sizeof(region));
surf_arr = (int *) calloc(total_surfs, sizeof(int));
crecv(6, surf_arr, total_surfs * sizeof(int));
atomicnumbers = (int *) calloc(num_nuclides, sizeof(int));
crecv(7, atomic_numbers, num_nuclides * sizeof(int));
material_num_nuclides = (int *) calloc(num_materials, sizeof(int));
crecv(8, materialnum_nuclides, num_materials * sizeof(int));
material_nuclides = (nuclide *) calloc(tot_material_nuclides, sizeof(nuclide));
crecv(9, materialnuclides, totmaterial_nuclides * sizeof(nuclide));
total_offsets = (3 * num_nuclides) + num_materials + num_surfaces;
offsets = (int *) calloc(total_offsets, sizeof(int));
crecv(10, offsets, total_offsets * sizeof(int));
nfls = offsets;
material_num_nuclides = nfls + num_nuclides;
cross_ref nums = material_num_nuclides + num_materials;
ps = (surf *) calloc(num_surfaces, sizeof(surf));
crecv(ll 1, ps, num_surfaces * sizeof(surf));
stats_on_cells = (cell_specs *) calloc(numcells, sizeof(cell_specs));
crecv(12, stats_on_cells, num_cells * sizeof(cell_specs));
source_distribution = (e_p_pair *) calloc(num_distr levels, sizeof(e_p_pair));
crecv(13, source_distribution, num_distr_levels * sizeof(e_p_pair));
phase_num_xsects = (int *) calloc(num_phases, sizeof(int));
crecv(14, phase_num_xsects, num_phases * sizeof(int));
curr_phase = num_phases -1;
num_xsects = phase_num_xsects[curr_phase] ;
phase_nxsects = (int **) calloc(numphases, sizeof(int *));

55
phase_nxsects[Ol = (int *) calloc(num_phases * num nuclides, sizeof(int));
crecv(15, phase_nxsects[0], num_phases * num_nuclides * sizeof(int));
for(i = 1; i < num_phases; i++)

phase_nxsects[i] = phase_nxsects[i -11 + num_nuclides;
phase_xsect = (xsect *) calloc(num_xsects, sizeof(xsect));
crecv(16, phase_xsect, sizeof(xsect) * num_xsects);
num_xsects_next = phasenumrxsects[curr-phase - 1];
nextphase_xsect = (xsect *) calloc(num_xsects_next, sizeof(xsect));
rqstd_xsect_msg_id = irecv(17, nextphasexsect, sizeof(xsect) * num_xsects_next);
cell_entries = (int *) calloc(2 * numcells, sizeof(int));
cell collisions = cell_entries + numcells;
if(incff == NULL I I reg..arr == NULL I I phase_nxsects == NULL

I I phase_nxsects([O] == NULL I I surfarr == NULL
I I phase_num_ xsects == NULL I I next..phase_xsect == NULL
I I stats_on_cells == NULL I I source_distribution == NULL
I I ps == NULL I I material nuclides == NULL
I I offsets == NULL I I materialnumnuclides == NULL
I Iint_arr == NULL I I double_arr == NULL
I I cell entries == NULL
I I material nuclides == NULL I I cross_refs == NULL) (

printf("\n************* "******** \n");
printf("Array in main() not malloced");
printf("\n***** **** * *** ** **** *** ** \ n");

fflush(stdout);
exit(O);

initdata_arrays();
mcp();
csend(23, tally_v, NUM_ERG_LEVELS * sizeof(double), Host.num, 17);
csend(24, tally_m, NUM_ERG_LEVES * sizeof(double), Host-num, 17);
csend(25, cell_entries, 2 * num_cells * sizeof(int), Host_num, 17);

)

56

References
[1] T. H. Dunigan, Performance of the INTEL iPSC/860 and NCUBE 6400
Hypercubes, Oak Ridge National Laboratory, Oak Ridge, TE, 1991.

[2] R. J. Howerton, R. J. Doyas, T. C. Michels, and S. T. Perkins, An Integrated
System for Production of Neutronics and Photonics Calculational Constants,
Vol. 4, Evaluated Nuclear Cross Section Library, USAEC Report UCRL-50400,
University of California Lawrence Radiation Laboratory, 1971.

[3] Intel Supercomputer Systems Division, A Touchstone Delta System
Description, Intel Corporation, Beaverton, OR, 1991.

[4] Malvin H. Kalos and Paula A. Whitlock, Monte Carlo Methods, Volume I:
Basics, John Wiley and Sons.

[5] M. E. McArdle, C. L. McCreary, and J. D. McCreary, Broadcast Communication
Delay Metric for the iPSC/2 and iPSC/860 Hypercubes, Auburn University, AL.

[6] Roger Prynn, Neutron Scattering A Primer, Number 19, Los Alamos Science,
Los Alamos National Laboratory, 1990.

[7] James L. Tomkins and John P. VanDyke, Massively Parallel Computing and
the Mid-Course Tracking Problem, Sandia National Laboratories, Albuquerque,
NM.

[8] James L. Tomkins and John P. VanDyke, SDI Tracking and Correlating,
Massively Parallel Computing Research Laboratory Research Bulletin, Sandia
National Laboratories, 1991.

