Credible Compilation

*

Martin Rinard
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

This paper presents an approach to compiler correctness in
which the compiler generates a proof that the transformed
program correctly implements the input program. A simple
proof checker can then verify that the program was com-
piled correctly. We call a compiler that produces such proofs
a credible compiler, because it produces verifiable evidence
that it is operating correctly.

1 Introduction

Today, compilers are black boxes. The programmer gives
the compiler a program, and the compiler spits out a bunch
of bits. Until he or she runs the program, the programmer
has no idea if the compiler has compiled the program cor-
rectly. Even running the program offers no guarantees —
compiler errors may show up only for certain inputs. So the
programmer must simply trust the compiler.

We propose a fundamental shift in the relationship be-
tween the compiler and the programmer. Every time the
compiler transforms the program, it generates a proof that
the transformed program produces the same result as the
original program. When the compiler finishes, the program-
mer can use a simple proof checker to verify that the pro-
gram was compiled correctly. We call a compiler that gen-
erates these proofs a credible compiler, because it produces
verifiable evidence that it is operating correctly.

Original __ffompilo(l
——| Compiler
Program Program

Figure 1: Traditional Compilation

Original B Compiled
—| C lox
Program Program
DProol
DProol
Checker
Verified Not Verilied

Figure 2: Credible Compilation

*This is an abridged version of the
technical report MIT-LCS-TR-776 with the same title, available at
www.cag.lcs.mit.edu/~rinard/techreport/credibleCompilation.ps.

Figures 1 and 2 graphically illustrate the difference be-
tween traditional compilation and credible compilation. A
traditional compiler generates a compiled program and noth-
ing else. A credible compiler, on the other hand, also gen-
erates a proof that the compiled program correctly imple-
ments the original program. A proof checker can then take
the original program, the proof, and the compiled program,
and check if the proof is correct. If so, the compilation is
verified and the compiled program is guaranteed to correctly
implement the original program. If the proof does not check,
the compilation is not verified and all bets are off.

2 Example

In this section we present an example that explains how a
credible compiler can prove that it performed a translation
correctly. Figure 3 presents the example program repre-
sented as a control flow graph. The program contains several
assignment nodes; for example the node 5 : i <~ i+2z+y at
label 5 assigns the value of the expression i+x+y to the vari-
able ¢. There is also a conditional branch node 4 : br ¢ < 24 .
Control flows from this node through its outgoing left edge
to the assignment node at label 5 if 7 < 24, otherwise control
flows through the right edge to the exit node at label 7.

1:bri<21

Siici+rty] [7:oit]

Figure 4: Program After
Constant Propagation and
Constant Folding

Figure 3:
gram

Original Pro-

Figure 4 presents the program after constant propagation
and constant folding. The compiler has replaced the node
5:4<+i4+x+y atlabel 5 with the node 5:¢ < ¢+3. The
goal is to prove that this particular transformation on this
particular program preserves the semantics of the original
program. The goal is not to prove that the compiler will
always transform an arbitrary program correctly.

To perform this optimization, the compiler did two things:



e Analysis: The compiler determined that z is always
1 and y is always 2 at the program point before node
5. So, x +y is always 3 at this program point.

e Transformation: The compiler used the analysis in-
formation to transform the program so that generates
the same result while (hopefully) executing in less time
or space or consuming less power. In our example, the
compiler simplifies the expression = + y to 3.

Our approach to proving optimizations correct supports
this basic two-step structure. The compiler first proves that
the analysis is correct, then uses the analysis results to prove
that the original and transformed programs generate the
same result. Here is how this approach works in our exam-
ple.

2.1 Proving Analysis Results Correct

Many years ago, Floyd came up with a technique for proving
properties of programs [4]. This technique was generalized
and extended, and eventually came to be understood as a
logic whose proof rules are derived from the structure of the
program [2]. The basic idea is to assert a set of properties
about the relationships between variables at different points
in the program, then use the logic to prove that the proper-
ties always hold. If so, each property is called an invariant,
because it is always true when the flow of control reaches
the corresponding point in the program.

In our example, the key invariant is that at the point
just before the program executes node 5, it is always true
that ¢ = 1 and y = 2. We represent this invariant as
(x =1Ay=2)5.

In our example, the simplest way for the compiler to
generate a proof of (x =1 Ay =2)5 is for it to generate a
set of invariants that represent the analysis results, then use
the logic to prove that all of the invariants hold. Here is the
set of invariants in our example:

(x=1)3
e (x=1Ay=2)4
(

z=1Ay=2)5
e (x=1Ny=2)6

Conceptually, the compiler proves this set of invariants
by tracing execution paths. The proof is by induction on the
structure of the partial executions of the program. For each
invariant, the compiler first assumes that the invariants at
all preceding nodes in the control flow graph are true. It
then traces the execution through each preceding node to
verify the invariant at the next node. We next present an
outline of the proofs for several key invariants.

e (z = 1)3 because the only preceding node, node 2, sets
x to 1.

e To prove (z = 1Ay = 2)4, first assume (z =1)3 and
(r =1Ay=2)6. Then consider the two preceding
nodes, nodes 3 and 6. Because (z = 1)3 and 3 sets
y to 2, (t =1Ay=2)4. Because (r =1Ay=2)6
and node 6 does not affect the value of either z or
y, (t =1 Ay =2)4.

In this proof we have assumed that the compiler gener-
ates an invariant at almost all of the nodes in the program.
More traditional approaches use fewer invariants, typically
one invariant per loop, then produce proofs that trace paths
consisting of multiple nodes.

2.2 Proving Transformations Correct

When a compiler transforms a program, there are typically
some externally observable effects that it must preserve.
A standard requirement, for example, is that the compiler
must preserve the input/output relation of the program. In
our framework, we assume that the compiler is operating on
a compilation unit such as procedure or method, and that
there are externally observable variables such as global vari-
ables or object instance variables. The compiler must pre-
serve the final values of these variables. All other variables
are either parameters or local variables, and the compiler
is free to do whatever it wants to with these variables so
long as it preserves the final values of the observable vari-
ables. The compiler may also assume that the initial values
of the observable variables and the parameters are the same
in both cases.

In our example, the only requirement is that the trans-
formation must preserve the final value of the variable g.
The compiler proves this property by proving a simulation
correspondence between the original and transformed pro-
grams. To present the correspondence, we must be able to
refer, in the same context, to variables and node labels from
the two programs. We adopt the convention that all enti-
ties from the original program P will have a subscript of P,
while all entities from the transformed program T will have
a subscript of T'. So ip refers to the variable i in the original
program, while ir refers to the variable ¢ in the transformed
program.

In our example, the compiler proves that the transformed
program simulates the original program in the following
sense: for every execution of the original program P that
reaches the final node 7p, there exists an execution of the
transformed program T that reaches the final node 77 such
that gp at Tp = gr at 7. We call such a correspondence a
simulation invariant, and write it as (gp)7p > (gr)7T.

The compiler typically generates a set of simulation in-
variants, then uses the logic to construct a proof of the cor-
rectness of all of the simulation invariants. The proof is by
induction on the length of the partial executions of the orig-
inal program. We next outline how the compiler can use
this approach to prove (gp)7p > (gr)7r. First, the compiler
is given that (gp)lp > (gr)lr — in other words, the values
of gp and gr are the same at the start of the two programs.
The compiler then generates the following simulation invari-
ants:

* ((gpr,ir))2p > ((g7,i1))21
e ((gp,ir))3p > ((gr,ir))3r
* ((gpr,ir))4p > ((g7,ir))4r
o ((gp,ir))sp > ((gr,ir))5r
* ((gp,ir))6p > ((gr,ir))6r

(gp)7p > (gr)Tr

The key simulation invariants are {(gp)7p > (97)7T,
((gp,ip))6p > ((gr, ir))6r and ((gp,ir))dr > ((gr, ir))4r.
We next outline the proofs of these two invariants.

e To prove (gp)7p I> (g7 )7, first assume ((gp,ip))4p >
((gr,ir))4r. For each path to 7p in P, we must find
a corresponding path in T to 7p such that the values
of gp and gr are the same in both paths. The only
path to 7p goes from 4p to 7p when ip > 24. The
corresponding path in T goes from 47 to 77 when i7 >



24. Because {(gp,ip))dp > ((gr, iT))4r, control flows
from 47 to 7r whenever control flows from 4p to 7p.
The simulation invariant ((gp,ip))4p > ((gr,ir))4r
also implies that the values of gp and gr are the same
in both cases.

e To prove {(gp,ir))6p > {(gr,iT))67, assume
((gp,ip))5p > {(g9r,iT))5r. The only path to 6p goes
from 5p to 6p, with ip at 6p = ip at 5p + zp at
5p +yp at bp. The analysis proofs showed that xzp at
5p +yp at 5p = 3, s0 ip at 6p = ip at 5p + 3. The
corresponding path in T goes from 57 to 67, with ir
at 60 = i at 57 + 3.

The assumed simulation invariant

((gp,ir))op > ((gr,i7))dr allows us verify a corre-
spondence between the values of ip at 6p and ir at
6p; namely that they are equal. Because 5p does not
change gp and 57 does not change gr, gp at 6p and
gr at 6p have the same value.

e To prove ((gp,ir))4p > {(gr,ir))4r, first assume
((gp,ir))3p > ((gr,ir))3r and
((gp,ip))6p > ((gr,iT))6r. There are two paths to
4p:

— Control flows from 3p to 4p. The correspond-
ing path in T is from 37 to 47, so we can apply
the assumed simulation invariant {(gp,ip))3p >
((gr,i7))37 to derive gp at 4p = gr at 47 and
ip at 4p = i at 4.

— Control flows from 6p to 4p, with gp at 4p =
2 *ip at 6p. The corresponding path in 7T is
from 67 to 47, with gr at 47 = 2 % ir at 67.
We can apply the assumed simulation invariant
((gp,ip))6p > ((gr,iT))67 to derive 2 x ip at 6p
= 2 xir at 67. Since 6p does not change ip and
67 does not change i, we can derive gp at 4p =
gr at 471 and ip at 4p = iT at 4.

2.3 Formal Foundations

In this section we outline the formal foundations required to
support credible compilation. The full paper presents the
formal foundations in detail [11].

Credible compilation depends on machine-checkable proofs.

Its use therefore requires the formalization of several compo-
nents. First, we must formalize the program representation,
namely control-flow graphs, and define a formal operational
semantics for that representation. To support proofs of stan-
dard invariants, we must formalize the Floyd-Hoare proof
rules required to prove any program property. We must also
formalize the proof rules for simulation invariants. Both of
these formalizations depend on some facility for doing simple
automated proofs of standard facts involving integer prop-
erties. It is also necessary to show that both sets of proof
rules are sound.

We have successfully performed these tasks for a sim-
ple language based on control-flow graphs; see the full re-
port for the complete elaboration [11]. Given this formal
foundation, the compiler can use the proof rules to produce
machine-checkable proofs of the correctness of its analyses
and transformations.

3 Optimization Schemas

We next present examples that illustrate how to prove the
correctness of a variety of standard optimizations. Our goal

is to establish a general schema for each optimization. The
compiler would then use the schema to produce a correctness
proof that goes along with each optimization.

3.1 Dead Assignment Elimination

The compiler can eliminate an assignment to a local variable
if that variable is not used after the assignment. The proof
schema is relatively simple: the compiler simply generates
simluation invariants that assert the equality of correspond-
ing live variables at corresponding points in the program.
Figures 5 and 6 present an example that we use to illustrate
the schema. This example continues the example introduced
in Section 2. Figure 7 presents the invariants that the com-
piler generates for this example.

Figure 5: Program P Figure 6: Program T After
Before Dead Assignment Dead Assignment Elimina-
Elimination tion

I = {{(gpr,ir))4r > ((gr,ir))4r, (ir)bp > (iT)5T,

(ip)6p > (iT)67,{(gr)Tp > (g7)71}

Figure 7: Invariants for Dead Assignment Elimination

Note that the set I of invariants contains no standard
invariants. In general, dead assignment elimination requires
only simulation invariants. The proofs of these invariants
are simple; the only complication is the need to skip over
dead assignments.

3.2 Branch Movement

Our next optimization moves a conditional branch from the
top of a loop to the bottom. The optimization is legal if
the loop always executes at least once. This optimization is
different from all the other optimizations we have discussed
so far in that it changes the control flow. Figure 8 presents
the program before branch movement; Figure 9 presents the
program after branch movement. Figure 10 presents the set
of invariants that the compiler generates for this example.

One of the paths that the proof must consider is the
path in the original program P from 1p to 4p to 7p. No
execution of P, of course, will take this path — the loop
always executes at least once, and this path corresponds to
the loop executing zero times. The fact that this path will
never execute shows up as a false condition in the partial
simulation invariant for P that is propagated from 7p back
to 1p. The corresponding path in T that is used to prove
I+ (gp)7p > (gr)7r is the path from 17 through 57, 67,
and 47 to 7r.



Figure 9: Program T After
Branch Movement

Figure 8: Program P Be-
fore Branch Movement

I ={(ir)5p > (iT)57, (ip)6p D> (iT)6T, (9P)7P > (97)7T}

Figure 10: Invariants for Branch Movement

3.3 Induction Variable Elimination

Our next optimization eliminates the induction variable
from the loop, replacing it with g. The correctness of this
transformation depends on the invariant (gp = 2*ip)4p.
Figure 11 presents the program before induction variable
elimination; Figure 12 presents the program after induction
variable elimination. Figure 13 presents the set of invari-
ants that the compiler generates for this example. These
invariants characterize the relationship between the elimi-
nated induction variable ip from the original program and
the variable g7 in the transformed program.

Figure 11: Program P Figure 12: Program T
Before Induction Variable After Induction Variable
Elimination Elimination

I = {(gp=2%ip)dp,(2*ip)bp > (gr)bT,

(2% ip)dp > (gr)dr, (gp)Tp > (gr)Tr}

Figure 13: Invariants for Induction Variable Elimination

3.4 Loop Unrolling

The next optimization unrolls the loop once. Figure 14
presents the program before loop unrolling; Figure 15 presents
the program after unrolling the loop. Note that the loop un-
rolling transformation preserves the loop exit test; this test
can be eliminated by the dead code elimination optimization
discussed in Section 3.5.

3:brg<48

4:brg <48

Figure 14: Program P Be-
fore Loop Unrolling

Figure 15: Program T Af-
ter Loop Unrolling

I = {(gp%12 =0V gp%12 = 6)413, (gp%12 = 0,gp>5p

>(gr)27, (gp %12 = 6, gp)4p > (97)37,
(9p%12 = 6,9pP)5p > (g7)5T,
(9p%12 = 0, gp)dp > (gr)4r,{(9P)7pr > (9pP)TP}

Figure 16: Invariants for Loop Unrolling

Figure 16 presents the set of invariants that the compiler
generates for this example. Note that, unlike the simulation
invariants in previous examples, these simulation invariants
have conditions. The conditions are used to separate dif-
ferent executions of the same node in the original program.
Some of the time, the execution at node 4p corresponds to
the execution at node 47, and other times to the execu-
tion at node 3. The conditions in the simulation invariants
identify when, in the execution of the original program, each
correspondence holds. For example, when gp%12 = 0, the
execution at 4p corresponds to the execution at 47; when
gp%12 = 6, the execution at 4p corresponds to the execu-
tion at 3r.

3.5 Dead Code Elimination

Our next optimization is dead code elimination. We con-
tinue with our example by eliminating the branch in the mid-
dle of the loop at node 3. Figure 17 presents the program be-
fore the branch is eliminated. The key property that allows
the compiler to remove the branch is that g%12 = 6Ag < 48
at 3, which implies that g < 48 at 3. In other words, the con-
dition in the branch is always true. Figure 18 presents the
program after the branch is eliminated. Figure 19 presents
the set of invariants that the compiler generates for this ex-
ample.

One of the paths that the proof must consider is the
potential loop exit in the original program P from 3p to 7p;
In fact, the loop always exits from 4p, not 3p. This fact
shows up because the conjunction of the standard invariant
(gp%12 = 6 A gp < 48)3p with the condition gp > 48 from
the partial simulation invariant for P at 3p is false. The
corresponding path in T that is used to prove I + (ip)7p >
(ir)7r is the path from 57 to 47 to 7r.

4 Code Generation

In principle, we believe that it is possible to produce a proof
that the final object code correctly implements the original
program. For engineering reasons, however, we designed the



3:brg<48

4:brg<48
4:brg <48

Figure 17: Program P Be-

fore Dead Code Elimina- | 8ure 18: Program T Al

ter Dead Code Elimination

tion
I = {{gp%12=0Agp < 48)2p,
gp%12 =6 A gp < 48)3p,
gp%12 =6 A gp < 48)5p,
)

4p,(gr)2p > (gP)2p,
gr)5p > (gr)op,
gr)3p > (gr)bp, {(gr)dpr 1> (gr)dp,

(

(

(

(gp%].z =0Agp <48
(

(

(9p)7p > (9P)7pP}

Figure 19: Invariants for Dead Code Elimination

proof system to work with a standard intermediate format
based on control flow graphs. The parser, which produces
the initial control flow graph, and the code generator, which
generates object code from the final control flow graph, are
therefore potential sources of uncaught errors. We believe
it should be straightforward, for reasonable languages, to
produce a standard parser that is not a serious source of
errors. It is not so obvious how the code generator can be
made simple enough to be reliable.

Our goal is make the step from the final control flow
graph to the generated code be as small as possible. Ideally,
each node in the control flow graph would correspond to
a single instruction in the generated code. To achieve this
goal, it must be possible to express the result of complicated,
machine-specific code generation algorithms (such as regis-
ter allocation and instruction selection) using control flow
graphs. After the compiler applies these algorithms, the fi-
nal control flow graph would be structured in a stylized way
appropriate for the target architecture. The code generator
for the target architecture would accept such a control flow
graph as input and use a simple translation algorithm to
produce the final object code.

With this approach, we anticipate that code generators
can be made approximately as simple as proof checkers. We
therefore anticipate that it will be possible to build standard
code generators with an acceptable level of reliability for
most users. However, we would once again like to emphasize
that it should be possible to build a framework in which the
compilation is checked from source code to object code.

In the following two sections, we first present an ap-
proach for a simple RISC instruction set, then discuss an
approach for more complicated instruction sets.

4.1 A Simple RISC Instruction Set

For a simple RISC instruction set, the key idea is to in-
troduce special variables that the code generator interprets
as registers. The control flow graph is then transformed so
that each node corresponds to a single instruction in the
generated code. We first consider assignment nodes.

o If the destination variable is a register variable, the
source expression must be one of the following:

— A non-register variable. In this case the node cor-
responds to a load instruction.

— A constant. In this case the node corresponds to
a load immediate instruction.

— A single arithmetic operation with register vari-
able operands. In this case the node corresponds
to an arithmetic instruction that operates on the
two source registers to produce a value that is
written into the destination register.

— A single arithmetic operation with one register
variable operand and one constant operand. In
this case the node corresponds to an arithmetic
instruction that operates on one source register
and an immediate constant to produce a value
that is written into the destination register.

o If the destination variable of an assignment node is a
non-register variable, the source expression must con-
sist of a register variable, and the node corresponds to
a store instruction.

It is possible to convert assignment nodes with arbitrary
expressions to this form. The first step is to flatten the
expression by introducing temporary variables to hold the
intermediate values computed by the expression. Additional
assignment nodes transfer these values to the new temporary
variables. The second step is to use a register allocation
algorithm to transform the control flow graph to fit the form
described above.

We next consider conditional branch nodes. If the con-
dition is the constant true or false, the node corresponds to
an unconditional branch instruction. Otherwise, the condi-
tion must compare a register variable with zero so that the
instruction corresponds either to a branch if zero instruction
or a branch if not zero instruction.

4.2 More Complex Instruction Sets

Many processors offer more complex instructions that, in
effect, do multiple things in a single cycle. In the ARM in-
struction set, for example, the execution of each instruction
may be predicated on several condition codes. ARM instruc-
tions can therefore be modeled as consisting of a conditional
branch plus the other operations in the instruction. The x86
instruction set has instructions that assign values to several
registers.

We believe the correct approach for these more complex
instruction sets is to let the compiler writer extend the possi-
ble types of nodes in the control flow graph. The semantics
of each new type of node would be given in terms of the
base nodes in standard control flow graphs. We illustrate
this approach with an example.

For instruction sets with condition codes, the program-
mer would define a new variable for each condition code and
new assignment nodes that set the condition codes appro-
priately. The semantics of each new node would be given



as a small control flow graph that performed the assign-
ment, tested the appropriate conditions, and set the appro-
priate condition code variables. If the instruction set also
has predicated execution, the control flow graph would use
conditional branch nodes to check the appropriate condition
codes before performing the instruction.

Each new type of node would come with proof rules au-
tomatically derived from its underlying control flow graph.
The proof checker could therefore verify proofs on control
flow graphs that include these types of nodes. The code
generator would require the preceding phases of the com-
piler to produce a control flow graph that contained only
those types of nodes that translate directly into a single in-
struction on the target architecture. With this approach, all
complex code generation algorithms could operate on con-
trol flow graphs, with their results checked for correctness.

5 Related Work

Most existing research on compiler correctness has focused
on techniques that deliver a compiler guaranteed to operate
correctly on every input program [5]; we call such a compiler
a totally correct compiler. A credible compiler, on the other
hand, is not necessarily guaranteed to operate correctly on
all programs — it merely produces a proof that it has oper-
ated correctly on the current program.

In the absence of other differences, one would clearly pre-
fer a totally correct compiler to a credible compiler. After
all, the credible compiler may fail to compile some programs
correctly, while the totally correct compiler will always work.
But the totally correct compiler approach imposes a signif-
icant pragmatic drawback: it requires the source code of
the compiler, rather than its output, to be proved correct.
So programmers must express the compiler in a way that
is amenable to these correctness proofs. In practice this
invasive constraint has restricted the compiler to a limited
set of source languages and compiler algorithms. Although
the concept of a totally correct compiler has been around
for many years, there are, to our knowledge, no totally cor-
rect compilers that produce close to production-quality code
for realistic programming languages. Credible compilation
offers the compiler developer much more freedom. The com-
piler can be developed in any language using any methodol-
ogy and perform arbitrary transformations. The only con-
straint is that the compiler produce a proof that its result
is correct.

The concept of credible compilers has also arisen in the
context of compiling synchronous languages [3, 8]. Our ap-
proach, while philosophically similar, is technically much dif-
ferent. It is designed for standard imperative languages and
therefore uses drastically different techniques for deriving
and expressing the correctness proofs.

We often are asked the question “How is your approach
different from proof-carrying code [6]?”" In our view, cred-
ible compilers and proof-carrying code are orthogonal con-
cepts. Proof-carrying code is used to prove properties of one
program, typically the compiled program. Credible compil-
ers establish a correspondence between two programs: an
original program and a compiled program. Given a safe pro-
gramming language, a credible compiler will produce guar-
antees that are stronger than those provided by typical ap-
plications of proof-carrying code. So, for example, if the

*Proof-carrying code is code augmented with a proof that the code
satisfies safety properties such as type safety or the absence of array
bounds violations.

source language is type safe and a credible compiler pro-
duces a proof that the compiled program correctly imple-
ments the original program, then the compiled program is
also type safe.

But proof-carrying code can, in principle, be used to
prove properties that are not visible in the semantics of the
language. For example, one might use proof-carrying code
to prove that a program does not execute a sequence of in-
structions that may damage the hardware. Because most
languages simply do not deal with the kinds of concepts
required to prove such a property as a correspondence be-
tween two programs, credible compilation is not particularly
relevant to these kinds of problems.

Since we first wrote this paper, credible compilation has
developed significantly. For example, it has been applied to
programs with pointers [10] and to C programs [7].

6 Impact of Credible Compilation

We next discuss the potential impact of credible compila-
tion. We consider five areas: debugging compilers, increas-
ing the flexibility of compiler development, just-in-time com-
pilers, concept of an open compiler, and the relationship of
credible compilation to building custom compilers.

6.1 Debugging Compilers

Compilers are notoriously difficult to build and debug. In a
large compiler, a surprising part of the difficulty is simply
recognizing incorrectly generated code. The current state of
the art is to generate code after a set of passes, then test
that the generated code produces the same result as the
original code. Once a piece of incorrect code is found, the
developer must spend time tracing the bug back through
layers of passes to the original source.

Requiring the compiler to generate a proof for each trans-
formation will dramatically simplify this process. As soon as
a pass operates incorrectly, the developer will immediately
be directed to the incorrect code. Bugs can be found and
eliminated as soon as they occur.

6.2 Flexible Compiler Development

It is difficult, if not impossible, to eliminate all of the bugs in
a large software system such as a compiler. Over time, the
system tends to stabilize around a relatively reliable software
base as it is incrementally debugged. The price of this sta-
bility is that people become extremely reluctant to change
the software, either to add features or even to fix relatively
minor bugs, for fear of inadvertantly introducing new bugs.
At some point the system becomes obsolete because the de-
velopers are unable to upgrade it quickly enough for it to
stay relevant.

Credible compilation, combined with the standard orga-
nization of the compiler as a sequence of passes, promises
to make it possible to continually introduce new, unreliable
code into a mature compiler without compromising function-
ality or reliability. Consider the following scenario. Work-
ing under deadline pressure, a compiler developer has come
up a prototype implementation of a complex transforma-
tion. This transformation is of great interest because it dra-
matically improves the performance of several SPEC bench-
marks. But because the developer cut corners to get the
implementation out quickly, it is unreliable. With credible
compilation, this unreliability is not a problem at all — the
transformation is introduced into the production compiler as



another pass, with the compiler driver checking the correct-
ness proof and discarding the results if it didn’t work. The
compiler operates as reliably as it did before the introduc-
tion of the new pass, but when the pass works, it generates
much better code.

It is well known that the effort required to make a com-
piler work on all conceivable inputs is much greater than
the effort required to make the compiler work on all likely
inputs. Credible compilation makes it possible to build the
entire compiler as a sequence of passes that work only for
common or important cases. Because developers would be
under no pressure to make passes work on all cases, each pass
could be hacked together quickly with little testing and no
complicated code to handle exceptional cases. The result is
that the compiler would be much easier and cheaper to build
and much easier to target for good performance on specific
programs.

A final extrapolation is to build speculative transforma-
tions. The idea is that the compiler simply omits the anal-
ysis required to determine if the transformation is legal. It
does the transformation anyway and generates a proof that
the transformation is correct. This proof is valid, of course,
only if the transformation is correct. The proof checker fil-
ters out invalid transformations and keeps the rest.

This approach shifts work from the developer to the proof
checker. The proof checker does the analysis required to
determine if the transformation is legal, and the developer
can focus on the transformation and the proof generation,
not on writing the analysis code.

6.3 Just-In-Time Compilers

The increased network interconnectivity resulting from the
deployment of the Internet has enabled and promoted a new
way to distribute software. Instead of compiling to native
machine code that will run only on one machine, the source
program is compiled to a portable byte code. An interpreter
executes the byte code.

The problem is that the interpreted byte code runs much
slower than native code. The proposed solution is to use a
just-in-time compiler to generate native code either when
the byte code arrives or dynamically as it runs. Dynamic
compilation also has the advantage that it can use dynami-
cally collected profiling information to drive the compilation
process.

Note, however, that the just-in-time compiler is another
complex, potentially erroneous software component that can
affect the correct execution of the program. If a compiler
generates native code, the only subsystems that can change
the semantics of the native code binary during normal oper-
ation are the loader, dynamic linker, operating system and
hardware, all of which are relatively static systems. An orga-
nization that is shipping software can generate a binary and
test it extensively on the kind of systems that its customers
will use. If the customer finds an error, the organization
can investigate the problem by running the program on a
roughly equivalent system.

But with dynamic compilation, the compiled code con-
stantly changes in a way that may be very difficult to re-
produce. If the dynamic compiler incorrectly compiles the
program, it may be extremely difficult to reproduce the con-
ditions that caused it to fail. This additional complexity in
the compilation approach makes it more difficult to build a
reliable compiler. It also makes it difficult to assign blame
for any failure. When an error shows up, it could be ei-
ther the compiler or the application. The organizations that

built each product tend to blame each other for the error,
and neither one is motivated to work hard to find and fix
the problem. The end result is that the total system stays
broken.

Credible compilation can eliminate this problem. If the
dynamic compiler emits a proof that it executed correctly,
the run-time system can check the proof before accepting
the generated code. All incorrect code would be filtered out
before it caused a problem. This approach restores the reli-
ability properties of distributing native code binaries while
supporting the convenience and flexibility of dynamic compi-
lation and the distribution of software in portable byte-code
format.

6.4 An Open Compiler

We believe that credible compilers will change the social
context in which compilers are built. Before a developer
can safely integrate a pass into the compiler, there must be
some evidence that pass will work. But there is currently
no way to verify the correctness of the pass. Developers
are therefore typically reduced to relying on the reputation
of the person that produced the pass, rather than on the
trustworthiness of the code itself. In practice, this means
that the entire compiler is typically built by a small, cohesive
group of people in a single organization. The compiler is
closed in the sense that these people must coordinate any
contribution to the compiler.

Credible compilation eliminates the need for developers
to trust each other. Anyone can take any pass, integrate into
their compiler, and use it. If a pass operates incorrectly, it
is immediately apparent, and the compiler can discard the
transformation. There is no need to trust anyone. The
compiler is now open and anyone can contribute. Instead of
relying on a small group of people in one organization, the
effort, energy, and intelligence of every compiler developer
in the world can be productively applied to the development
of one compiler.

The keys to making this vision a reality are a standard in-
termediate representation, logics for expressing the proofs,
and a verifier that checks the proofs. The representation
must be expressive and support the range of program rep-
resentations required for both high level and low level anal-
yses and transformations. Ideally, the representation would
be extensible, with developers able to augment the system
with new constructs and new axioms that characterize these
constructs. The verifier would be a standard piece of soft-
ware. We expect several independent verifiers to emerge
that would be used by most programmers; paranoid pro-
grammers can build their own verifier. It might even be
possible to do a formal correctness proof of the verifier.

Once this standard infrastructure is in place, we can
leverage the Internet to create a compiler development com-
munity. One could imagine, for example, a compiler devel-
opment web portal with code transformation passes, front
ends, and verifiers. Anyone can download a transformation;
anyone can use any of the transformations without fear of
obtaining an incorrect result. Each developer can construct
his or her own custom compiler by stringing together a se-
quence of optimization passes from this web site. One could
even imagine an intellectual property market emerging, as
developers license passes or charge electronic cash for each
use of a pass. In fact, future compilers may consist of a set of
transformations distributed across multiple web sites, with
the program (and its correctness proofs) flowing through the
sites as it is optimized.



6.5 Custom Compilers

Compilers are traditionally thought of and built as general-
purpose systems that should be able to compile any program
given to them. As a consequence, they tend to contain anal-
yses and transformations that are of general utility and al-
most always applicable. Any extra components would slow
the compiler down and increase the complexity.

The problem with this situation is that general tech-
niques tend to do relatively pedestrian things to the pro-
gram. For specific classes of programs, more specialized

analyses and transformations would make a huge difference [12,

9, 1]. But because they are not generally useful, they don’t
make it into widely used compilers.

We believe that credible compilation can make it possible
to develop lots of different custom compilers that have been
specialized for specific classes of applications. The idea is
to make a set of credible passes available, then allow the
compiler builder to combine them in arbitrary ways. Very
specialized passes could be included without threatening the
stability of the compiler. One could easily imagine a range
of compilers quickly developed for each class of applications.

It would even be possible extrapolate this idea to include
optimistic transformations. In some cases, it is difficult to do
the analysis required to perform a specific transformation.
In this case, the compiler could simply omit the analysis,
do the transformation, and generate a proof that would be
correct if the analysis would have succeeded. If the trans-
formation is incorrect, it will be filtered out by the compiler
driver. Otherwise, the transformation goes through.

This example of optimistic transformations illustrates
a somewhat paradoxical property of credible compilation.
Even though credible compilation will make it much easier
to develop correct compilers, it also makes it practical to
release much buggier compilers. In fact, as described below,
it may change the reliability expectations for compilers.

Programmers currently expect that the compiler will work
correctly for every program that they give it. And you can
see that something very close to this level of reliability is
required if the compiler fails silently when it fails — it is
very difficult for programmers to build a system if there is a
reasonable probability that a given error can be caused by
the compiler and not the application.

But credible compilation completely changes the situa-
tion. If the programmer can determine whether or not the
the compiler operated correctly before testing the program,
the development process can tolerate a compiler that occa-
sionally fails.

In this scenario, the task of the compiler developer changes
completely. He or she is no longer responsible for delivering
a program that works almost all of the time. It is enough
to deliver a system whose failures do not significantly ham-
per the development of the system. There is little need
to make very uncommon cases work correctly, especially if
there are known work-arounds. The result is that compiler
developers can be much more aggressive — the length of
the develoment cycle will shrink and new techniques will be
incorporated into production compilers much more quickly.

7 Conclusions

Most research on compiler correctness has focused on obtain-
ing a compiler that is guaranteed to generate correct code
for every input program. This paper presents a less ambi-
tious, but hopefully much more practical approach: require
the compiler to generate a proof that the generated code

correctly implements the input program. Credible compila-
tion, as we call this approach, gives the compiler developer
maximum flexibility, helps developers find compiler bugs,
and eliminates the need to trust the developers of compiler
passes.

References

[1] S. Amarasinghe, J. Anderson, M. Lam, and C. Tseng.
The SUIF compiler for scalable parallel machines. In
Proceedings of the Eighth SIAM Conference on Parallel
Processing for Scientific Computing, February 1995.

[2] K. Apt and E. Olderog. Verification of Sequential and
Concurrent Programs. Springer-Verlag, 1997.

[3] A. Cimatti, F. Giunchiglia, P. Pecchiari, B. Pietra,
J. Profeta, D. Romano, P. Traverso, and B. Yu. A
provably correct embedded verifier for the certification
of safety critical software. In Proceedings of the 9th
International Conference on Computer Aided Verifica-
tion, pages 202-213, Haifa, Israel, June 1997.

[4] R. Floyd. Assigning meanings to programs. In
J. Schwartz, editor, Proceedings of the Symposium in
Applied Mathematics, number 19, pages 19-32, 1967.

[6] J. Guttman, J. Ramsdell, and M. Wand. VLISP: a
verified implementation of scheme. Lisp and Symbolic
Computing, 8(1-2):33-110, March 1995.

[6] G. Necula. Proof-carrying code. In Proceedings of
the 24th Annual ACM Symposium on the Principles of
Programming Languages, pages 106-119, Paris, France,
January 1997.

[7] G. Necula. Translation validation for an optimizing
compiler. In Proceedings of the SIGPLAN 00 Confer-
ence on Program Language Design and Implementation,
Vancouver, Canada, June 2000.

[8] A. Pnueli, M. Siegal, and E. Singerman. Translation
validation. In Proceedings of the 4th International Con-
ference on Tools and Algorithms for the Construction
and Analysis of Systems, Lisbon, Portugal, March 1998.

[9] M. Rinard and P. Diniz. Commutativity analysis: A
new framework for parallelizing compilers. In Pro-
ceedings of the SIGPLAN ’96 Conference on Program
Language Design and Implementation, pages 54-67,
Philadelphia, PA, May 1996. ACM, New York.

[10] M. Rinard and D. Marinov. Credible compilation with
pointers. In Proceedings of the Workshop on Run-Time
Result Verification, Trento, Italy, July 1999.

[11] Martin Rinard. Credible compilation. Technical Report
MIT-LCS-TR-776, Laboratory for Computer Science,
Massachusetts Institute of Technology, March 1999.

[12] R. Rugina and M. Rinard. Automatic parallelization
of divide and conquer algorithms. In Proceedings of
the Tth ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, Atlanta, GA, May
1999.



