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Abstract

Detecting the presence of contaminants in water is a critical mission, but thorough
testing often requires extensive time at a remote facility. A MEMS implementation
of a FAIMS (High-Field Asymmetric-Waveform Ion Mobility Spectrometry) sensor has
recently been developed, and is capable of promptly analyzing water on-site. In this
thesis, we apply two well-established statistical target detector algorithms to the detec-
tion of chlorite in water. The matched filter and the adaptive cosine estimator (ACE)
are subspace detectors that possess complimentary geometric properties. We address
several significant challenges in implementing these detectors, including the estimation
of the covariance given the limited amount of data available and the design of a target
signature subspace in response to the fact that the signature does not scale linearly with
the contaminant concentration. In addition, we consider the need for dimension reduc-
tion through the use of wavelets. We evaluate each of the detectors on FAIMS data of
pure and chlorite-contaminated water.
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1 Introduction

1.1 Background and Motivation

The ability to accurately determine the safety level and contaminant concentration

of water is critical, but thorough testing often requires extensive time and sophisticated

facilities for chemical tests to be run a great distance away from where the water sample

was taken [15]. This serves as the motivation for an on-site water monitoring tool

through which water can be sampled and then processed by a statistical detector to give

an indication of the presence or lack of contaminants in the water.

The FAIMS (High-Field Asymmetric-Waveform Ion Mobility Spectrometry) sensor

is a recently-developed analytical sensor that has been used to measure and analyze ion

mobility properties of biological and chemical materials [16, 17, 18, 19, 20, 21, 22, 26, 27].

It can be used to analyze water samples, and does not require the addition of any chem-

ical reagents nor extensive handling and processing of the sample that many other water

monitoring methods require [15]. Further, a MEMS (Micro-Electro-Mechanical System)

device has been developed at Draper Laboratories to analyze samples and produce a

pair of three-dimensional signals indicative of the concentration levels of different types

of ions in the sample [1, 16].

Because the spectrometer has been implemented in a MEMS device, it can poten-

tially be used to acquire and analyze water samples at the site as a small, portable device

capable of almost instantly determining water safety levels. Researchers at Draper Lab-

oratory have previously acquired data demonstrating the ability of FAIMS to detect

changes in water quality and the presence of contaminants [37]; however, the initial

study only provided the basis of proof-of-concept classification of signals evaluated post-

acquisition. The primary objective of this thesis is to introduce and develop analytical

techniques for the statistical detection of contaminants in water using FAIMS with the

goal of operating with the lowest probability of false alarm (PFA) and highest probability
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of detection (PD).

1.2 Project Overview

This thesis aims to develop and evaluate several advanced methods for the detec-

tion of contaminants in water using FAIMS. We employ techniques well-established on

other types of data and examine their application to the FAIMS data. With a goal

of minimizing the error rate of the detector, we devise an optimal strategy assuming

an infinite quantity of FAIMS pure and contaminated water data for use in real-time

analysis. Given our limited number of data samples and a desire for low computational

requirements, we examine the various assumptions that allow us to proceed to a series

of different statistical analysis methods, hereafter referred to as detectors. Note that the

term "detector" will be used in this thesis to refer to the statistical detection algorithm

implemented in software as the step following FAIMS data acquisition; this term will

not be used to refer to the FAIMS hardware.

We analyze and evaluate two complimentary subspace detectors: a matched filter

detector [9], which is based on the relative energy' in the received signal, and an adaptive

cosine estimate (ACE) detector [9], which is based on the relative angle in the received

signal. Both are based upon a linear signal model and Gaussian additive noise, and

have been derived to be statistically optimal for distinct signal models. ACE also has

the desirable property of maintaining a constant false alarm probability (CFAR) under

certain variations in the noise model.

We also consider the case of a multi-dimensional target subspace for both the matched

filter and ACE detectors. This will be relevant if the target signals span a multidimen-

sional subspace as they vary with concentration instead of simply increasing in mag-

nitude [9]. Algorithms developed for radar data have been employed to detect radar

target signatures for the conditions and environments in which radar systems operate.

'In this thesis, energy is defined to be the sum of the squares of each ion intensity point.
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Although FAIMS collects data in a significantly different environment, our goal is to

investigate how well contaminants (i.e., targets) can be modeled and detected under the

same assumptions.

In addition, we employ a wavelet transform [10] to reduce the dimensionality of

the original data and thus improve the covariance estimates on a smaller number of

coefficients. We then implement the corresponding matched filter and ACE detectors

on a limited number of those wavelet coefficients.

In order to properly juxtapose the different detector performances, we create a metric

based on the level of separation between classes yielded by each of the detectors. Without

enough data to sufficiently generate a receiver operating curve (ROC), this metric allows

us to compare detectors for the purpose of minimizing the rate of error. A more rigorous

analysis of detector outputs would utilize the exact parametric form of the detector test

statistic, but requires significantly more experimental data than was at our disposal.

1.3 Related Works

There has been no published work using a statistical detector with FAIMS sensor data

to detect contaminants in water. The few related papers utilize the FAIMS technology,

but concentrate on results that visually discern different ion species [14, 18, 19, 20, 21,

23, 26] and do not employ any statistically optimal approaches. In addition, because

FAIMS can be used in a variety of different setups (e.g., using a different sensor or sample

introduction technique), there is a vast array of FAIMS data that is very different, and

yields different types of datasets indicative of different quantities [12, 13, 19, 20, 27, 29,

30]. As a result, the processing required on such datasets is different.

Despite the lack of published results involving statistical detectors on FAIMS data,

the field of classification and detection is rich in similar work done on other types of

data. These papers include the development and evaluation of a large class of subspace

detectors, including the matched filter and adaptive cosine estimator (ACE) detectors

13



[9], both of which will be utilized in this thesis [35, 36].

We address the notion of a wavelet transform to gain parsimonious representations

of FAIMS data; this concept as applied to other types of data is one which has been

widely publicized [10, 11, 31, 32, 33, 34]. We will draw on these concepts as the building

blocks for the wavelet section of this thesis.
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2 FAIMS

2.1 Description

The technology in use is a FAIMS sensor which measures the abundance of ions

arriving at the sensor after travelling through a channel with an externally applied

electric field. Conventional ion mobility spectrometers operate in the low field regime

where the applied electric field strength is less than 1000 V/cm and the mobility is

essentially constant [1]. However, it has been demonstrated that the mobility of an

ion is field dependent and can change significantly as the field strength increases [2].

Different ion species will have particular mobility dependencies on an electric field, and

the FAIMS technology utilizes this differential mobility of ions in an electric field to

identify the different ion species.

ionization O
Source RF electric field

Sample~
in Gas ,Detector

Flow'

Eecpc field adjusted to aDow this
-Comipensation ion species to pass trough to

Ion Trajectonies electric field detector

Figure 1: FAIMS schematic & ion flow path [1]

The FAIMS sensor operates as follows: a gas sample derived from the headspace

above a water sample (described in Section 2.2) is introduced to the FAIMS spectrometer;

after entering the spectrometer, the ions are transported by a carrier gas between a

pair of parallel plates in which an asymmetric electric field, ERF(t), is applied at radio

frequencies [1, 2] over time as shown in Figure 1 [1]. The ions travel along a path between

15
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the parallel plates, and a sensors at the end of the plates measure the voltages resulting

from the stream of positive and negative ions arriving at the sensors. The electric field

alternates at radio frequencies with an asymmetric duty cycle between a high-magnitude

positive electric field (Emax) and a low-magnitude negative electric field (Emin) so that

the net electric field is zero, as shown in Figure 2 [1].

ER (t)

E iax ......

E _ 't

Figure 2: ERF(t): FAIMS asymmetric electric field [1]

To better understand how the FAIMS technology works, we can consider the forces

that act on a single ion. The ion experiences a constant force from the carrier gas flow

(z-directed) which transports it through the parallel plates.

YV

L RF ad Compensation 
Fields

Z Gas Flow

Figure 3: FAIMS force directions [1]

A transverse force (y-directed), produced by the RF electric field (ERF(t)) and a DC

compensation voltage (V), also acts on the ion, as shown in Figure 3 [1]. These fields

are generated by applying voltages to the parallel plate electrodes. The resulting ion

16
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velocity in the y-direction is given by [3]:

V, = KE (1)

where K is the coefficient of ion mobility for the ion species and E is the electric field in-

tensity. The dependence of the mobility on the electric field intensity can be represented

by the following expression [3, 4]:

K(E) = KO[I + a2E2 + a4E4 + ... (2)

where a 2 and a4 are coefficients of a series expansion, and KO is the mobility coefficient in

a vanishingly small field [6]. As the electric field strength increases (above 5000 V/cm),

the second and higher order terms in the series become significant and the mobility

coefficient can change substantially (10-15%) from its low field value.

If we take K 1 to be the mobility of a particular ion at Emax and K 2 to be the

mobility of the ion at Emsi, then the average displacement of the ion in the y-direction

as a function of time can be expressed as [1]:

y(t) = 3(K 1 - K 2) * t (3)

where / is a constant determined by the strength and duty cycle of the applied electric

field. Thus, the overall trajectory will not be straight if the mobilities K 1 and K 2 are

not equal. To compensate for this and to allow the ion to arrive at the sensor, a low-field

compensation electric field can be applied to the parallel plates.

A range of compensation voltages is repeatedly swept through linearly for each time

sample, and the positive and negative sensors measure the voltage generated at the

detector for each particular compensation voltage at each time sample, which yield

a quantification of ions present. The ions strike a Faraday plate which generates a

voltage based on the charge transfer. The FAIMS sensor measures separately the voltage

17



generated by both the positive ions and the negative ions, and this voltage is referred

to as the ion abudance or ion intensity value for each point in time and compensation

voltage. The resulting output of the FAIMS sensor is a pair (one for each polarity)

of three-dimensional signals of ion intensity that are dependent on the time, t, and

compensation voltage V.

2.2 Sample Introduction

The FAIMS setup discussed above requires specialized sample introduction and ion-

ization methods. The data used in this thesis was taken with a headspace sampler and

used gas chromatograph (GC) as a pre-separation step prior to the gas sample entering

the FAIMS unit. The headspace sampler heats up the given fluid sample, which has the

effect of transferring substances that are volatile at that temperature into the air in the

sample vial above the water. The headspace sampler then removes a sample of the air

in the vial and GC is used to provide a separation in time of the substances presented to

the FAIMS unit. When the substance enters the FAIMS device, the material is ionized

using a beta-particle emitting radioactive nickel source (63 Ni).

The motivation behind this comes from the fact that we are interested specifically in

detecting chlorite; since chlorite is a particularly volatile substance, 63Ni is well suited

to ionizing the analyte. The initial headspace gas chromotograph (HS-GC) separation

yields a first pass at extracting the substance of interest, thus yielding a higher ratio of

contaminant signal to water background.

2.3 Sensor Quantization

There are limitations on the analog-to-digital converter attached to the FAlMS sensor

that converts the analog voltage values into a digital output as read in by accompanying

software. As a result, the sensor output is quantized to discrete values. This sets an

upper bound on the level of resolution, which is empirically found to be approximately 10

18



uV. Figure 4 shows a histogram of points from the entire collection of pure and chlorite-

contaminated data samples. This figure illustrates the fraction of data points that fell

into each range of ion intensity values. The ionization intensity range was divided into

sections, or "bins", 2 IV wide, and the histogram shows the fraction of the data fell into

each section. As can be seen in Figure 4, there are many empty bins between each full

bin; this indicates that the ion intensity values do not exist in a continuum, but instead

have been quantized to discrete intervals. This can lower the overall performance of

the data analysis methods and is one of the sources of noise that we will analyze in

subsequent chapters.

.18
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Figure 4: Histogram of noise points illustrating sensor quantization
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2.4 Signal Model

In order to properly develop a statistical detector, it is necessary to model the received

signal. Toward this end, we develop a signal model to describe the process that results

in the measured signal from the FAIMS sensor.

The water sample without contamination possesses a characteristic background sig-

nal, and we model the contaminated water as the sum of the background water signal

with an additional signal due to the contamination. This model assumes linearity in the

addition of the water background and contaminant signals.

The received signal is dependent on the contaminant type, concentration level, Emax

and Emin (the high and low electric field magnitudes), and the background water source.

In its most general form, the received 3-dimensional positive and negative ion signals

will be:

r(t, V) = f (contaminant, concentration, Emax, Emin, water) + n(t, V) (4)

where r, the received signal, is the voltage (mV) measured at the FAIMS sensor, and

t and V are the time (seconds) and compensation voltage (V), respectively, at which

the voltage was measured. The signal, n(t, V), is the random additive noise accounting

for the variation in the signal that we model as Gaussian and will examine further in

section 5.

If we do not vary Emax, Emin and the deionized water source, as is the case in this

project, we can simplify this to:

r(t, V) = f (contaminant, concentration) + n(t, V) (5)

If we assume that the ion quantities in the contaminated sample add linearly to the

background, then the function f will be the addition of the signal due to the contaminant

and the signal due to the water background, denoted by s and w, respectively.

20



r(t, V) = s(t, V) + w(t, V) + n(t, V) (6)

Thus, in the context of a statistical detector to differentiate between the hypotheses

HO and H 1 , we have the binary hypothesis test:

Ho : ro(t, V) = w(t, V) + n(t, V) (7)

H, : ri(t, V) = s(t, V) + w(t, V) + n(t, Vc) (8)

where the signals ro and r1 correspond to the received signals under the null hypothesis

HO and the test hypothesis H 1, respectively.
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3 Data Acquisition

3.1 Overview

We focus on chlorite as the contaminant used in the training and testing of a suitable

statistical detector algorithm. Concentrations of 2.5 ppm, 5 ppm, 10 ppm, 20 ppm, and

40 ppm of chlorite-contaminated water, in addition to pure water, were submitted to

the FAIMS sensor and used as training and testing data.

The contaminated samples were obtained by mixing deionized water with household

bleach (5.25 % NaClO). 152 pL of bleach was mixed with 199.848 mL of deionized water

to obtain 200 mL of a chlorite-contaminated solution with a concentration of 40 ppm.

Half of this solution was removed and added to 100 mL of deionized water to obtain 200

ml of a chlorite-contaminated solution with a concentration of 20 ppm. This process was

repeated to obtain new solutions with half the concentration of the previous solution

until the lowest concentration of 2.5 ppm had been created.

A total of 76 vials were created, with each 20 mL vial containing 10 mL of pure

or contaminated water. The 76 vials were comprised of 16 pure water samples and 12

samples of each concentration of the chlorite-contaminated water. The vials were were

split over two runs (with 38 samples each). A total of 76 data files were obtained, with

16 pure water samples, and 12 samples of each concentration of chlorite solution.

3.2 FAIMS Setup & Parameters

The FAIMS setup consisted of a headspace sampler 2 connected to the inlet of a gas

chromatograph3 (GC) with a FAIMS sensor4 connected to the detector outlet of the GC.

The GC used a 10 meter HP VOC fused silica column with an inner diameter of 0.32

mm. Nitrogen was used as a carrier gas to direct the flow of ions from the headspace

2Agilent 7694 Headspace Sampler. Agilent Technologies. Palo Alto, CA
3HP 5890 II gas GC. Agilent Technologies. Palo Alto, CA
4microDMxTM. Sionex Corporation. Waltham, MA
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sampler through a transfer line into a silica column and carry it into to the FAIMS

sensor. The sample carrier flow was regulated by the headspace sampler and was joined

by a second flow of Nitrogen at 300 mL/min regulated by a mass flow controller5 . The

carrier gas and sample were ionized with 5 mCi of "Ni. Tables 1, 2, and 3 below show

the parameters used for the headspace sampler, GC, and FAIMS sensor, respectively.

Oven temperature 600 C
3 mL sample loop temperature 750 C
Transfer line temperature 850 C
Sample vial heating time 1 minute
Sample vial heating temperature 40'C
Pressure 15.0 psi
Pressure duration 0.10 minutes
Loop fill time 0.02 minutes
Loop equilibrium time 0.05 minutes
Injection time 0.05 minutes

Table 1: Headspace sampler parameters

Inlet temperature 2500 C
Oven ramp initial hold time 0.5 minutes
Oven ramp initial hold temperature 40 0 C
Oven ramp rate 30'C/min
Final hold time 2 minutes
Final hold temperature 170 0 C
Detector heating block temperature 140 C

Table 2: GC parameters

Emax 1200V/cm
V range [-35,5]V
Number of V samples 100
Sample duration 1.6 seconds
Number of time samples 500

Table 3: FAIMS parameters

24
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3.3 Detector Implementation

All statistical detectors were implemented in MATLAB, with the input being a

single FAIMS signal, a matrix 500 x 100 in size. Each sample signal, denoted by r(t, V),

consisted of 500 scans in time, t, and 100 points in compensation voltage, V, yielding a

matrix of ion intensities with 50,000 entries.

As noted previously, the FAIMS sensor outputs a pair of 3-dimensional signals cor-

responding to the positive and negative ion quantities. However, the negative ion signal

was not found to yield any difference among the means of various concentrations of

chlorite and water for this particular application (data not shown). As a result, we focus

our work on the positive ion signal, and all received signals, r(t, V), refer to the positive

ion FAIMS output signal.

As we empirically determined from various FAIMS spectral traces, there is an element

of time variance that exists within the data; two data samples from the exact same

solution will look slightly different if they were run at different times. As a result, it is

difficult to acquire large quantities of consistent data, and we have chosen to focus all of

our testing and training on the two runs of data comprising 76 total samples. Because

of the limited number of samples, we have both trained and tested on the same data.

Although this is a limitation of our analysis, we were able to establish proof-of-concept

for applying statistical detection algorithms to this complex data type.

For the wavelet transforms, the MATLAB Wavelet Toolbox was used for the function

'wavedec' to implement the wavelet transforms on the data.

3.4 Data Description

As mentioned previously, each data sample signal, r(t, V), consists of 100 scans over

a compensation voltage range of [-35, 5] V, and 500 scans over a time range of [0, 800]

seconds.

Shown below is Figure 5, which illustrates the mean signature (over all runs in
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a particular class) of pure water and chlorite-contaminated water at 2.5 ppm and 40

ppm. Water and chlorite at 2.5 ppm are relatively visually indistinguishable, while the

difference becomes much more obvious at 40 ppm of chlorite. A small peak arises in

the 40 ppm chlorite mean while another peak disappears as compared to the 2.5ppm

concentration of chlorite. Arrows indicate the areas in the data that are visually different

between concentrations.
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Figure 5: Top-View Plots of FAIMS Spectra for Water and Chlorite-Contaminated Water
at 2.5 ppm and 40 ppm
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4 Problem Formulation and Development

4.1 Problem Description

We wish to develop a statistical detector to determine with the lowest possible rate

of error whether or not chlorite is present in the water; the detector output is a binary

decision and we wish to minimize the rate of missed detections and false alarms.

While the final output of the detector is binary, the unthresholded detector test

statistic is a random variable indicative of how much of the input sample lies in the

domain of the contaminated water and how much of the input sample falls in the domain

of pure water. This random variable will have a different mean and variance for a given

training concentration and a given testing concentration, but the goal is for the means to

be as far apart as possible for pure water and contaminated water, and for the variance

to be as small as possible. Thus, the distribution of this random variable serves as an

important tool for a particular detector as the probability distribution function (PDF)

and parameters under each hypothesis dictate how far apart the classes are under a

given detection algorithm.

4.2 Bayesian Derivation

We have the null and test hypotheses, HO and H 1 , for each single observation, r;

given this, we wish to estimate which hypothesis occurred and minimize the probability

of error associated with this estimate. Thus, for every received signal, r, we wish to

devise a mapping f(r) between the received signal and the estimated hypothesis. The

problem becomes, for each particular r, to determine which hypothesis minimizes the

probability of error. The probability of error will be the probability that the actual event

is different from the hypothesis we choose.

For any given received signal r, the probability of error associated with choosing Ho

will be the probability that the actual hypothesis was H 1, conditioned on receiving r:
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Pr[H = HIr = r]

Similarly, for any given received signal r, the probability of error associated with

choosing H1 will be the probability that the actual hypothesis was HO, conditioned on

receiving r:

Pr[H = Hoir = r] (10)

Since we are attempting to minimize the probability of error, the optimal decision

rule is to choose HO when the probability of error for choosing HO is smallest, or when:

Pr[H = Hojr = r] > Pr[H = H1jr = r] (11)

By using Bayes' Rule [8], we recall that:

Pr[H = Hmr = r] = PrIH (r IH,) Pm
PrIH(rIHO)P +PrIH(YIH1)P

where PO and P denote the a priori probabilities of hypotheses HO and H 1 , respectively.

By plugging this into the expression for the optimal decision rule in (11), we see that

we should choose HO when:

PrIH(rIHO)PO > PrIH(rHl)P

or, equivalently, when:

pr|H(rIHo) P1

Pr|H(r|H1) Po

(13)

(14)

If we further assume that PrIH(rHo) and PrjH(r|H1) are Gaussian distributions (which

will be the case when the variation on the received signal is due entirely to Gaussian
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noise, as we will discuss in the next section), then we can simplify this expression for

the decision rule further. Here we denote mo as E[rIHo], mi as E[rIH], EO as E[(r -

mo)(r -mo)TIHo], and E1 as E[(r -mi)(r -mi) T H], where E[.] indicates the expected

value of the given random variable. This yields the following decision rule to choose HO

when:

1 e-(r-mo)TE-(r-mo)

1 e-(r-mi)T (rm1) (15)
V(27r)nlFe 2 P

where n is the dimension of the received signal.

By simplifying, we obtain:

1 mo)TE-1 (r - mo) + -(r - mi)T 1 (r - mi) > In ) (16)2 (- o 02 PO \ |E1

This general form of the likelihood ratio test yields two problems. This first is that

we cannot determine with great accuracy the covariance matrix of either the null or

test hypothesis, HO and H 1 . There are 500 x 100 = 50,000 total points in each received

signal, r(t, V), and therefore the covariance matrix we wish to estimate would be 50,000

x 50,000 in dimension. As discussed in [7], if we wish to estimate this covariance matrix,

we would require at least 50,000 distinct data samples for each of the hypotheses, HO

and H 1 . To maintain an average loss ratio of better than one-half, we would require

at least 2 x 500 x 100 = 100,000 samples of each case (with and without chlorite) to

sufficiently calculate the covariance [7]. Given our limited number of data samples, this

is not feasible.

The other issue that arises is that even if we were to have the appropriate covariance

matrix estimates, to invert such a large matrix would require substantial computing

power. While such a feat can be accomplished on a standard personal computer, to

implement on a microcontroller or FPGA, the most cost-effective portable computation

systems, would easily require too much time or space to compute, and would thus not
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be feasible to implement in a cost-effective portable water monitoring tool.

These issues lead to a need of a reduction in dimensionality or a simplified covariance

matrix. If we can find a way to represent the relevant information in the signal with only

a few coefficients, then we will have enough data samples to form a valid estimate of the

covariance matrix of those coefficients and consequently perform detection on a small

number of coefficients. Alternatively, we can make simplifications and assumptions about

the covariance matrix of the original data sample. If we can support the notion that

the covariance matrix is diagonal (i.e., a constant variance multiplied by the identity

matrix), then the inversion of the covariance matrices requires only a division of the

constant variance (since the inverse of the identity matrix is itself). By using these

simplifications, we can perform detection on the original 50,000 points in each data

signal.
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5 Noise Analysis

In order to properly characterize the received signal, r(t, V), we need to analyze the

noise and variation on the signal. Specifically, we seek to gain an understanding of Eo

and El, the covariances of the signal under hypotheses Ho and H 1 . The covariance is an

indication of how correlated different random variables are; if the covariance is diagonal,

then the random variables are completely uncorrelated. If the covariance is not diagonal,

then the different random variables are not independent, but are instead influenced and

affected by one another. As derived previously, E0 and El are necessary for use in the

optimal detector, and thus we would like to make a valid estimate. Toward this end, we

are looking to characterize the covariance with time, t, and the covariance with voltage,

V, for the purpose of gaining information about the interdependence of points within

the received signal r(t, V).

5.1 Overview of Analysis and Estimation

As mentioned earlier, we assume that all variation on the signal comes from the

additive random noise and is independent of the water background or chlorite signal.

As a result, we can begin a preliminary characterization of the noise by generating a

histogram of the points produced by the FAIMS sensor that occur before the sample has

been injected into the FAIMS setup. During this time, the carrier gas is flowing through

the FAIMS setup and the sensor is measuring the ion intensity variation, but there is no

water background or chlorite signal.

The choice to use the points before the sample has been introduced (and thus evident

at the sensor output) comes from the need to analyze inherent sensor variation without

the presence of any signal, either from water or chlorite. The introduction of the signal

would distort the underlying distribution of the noise, preventing us from adequately

characterizing it. In addition, this allows for an accurate histogram of the noise at all
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data points instead of requiring a histogram for each of the 50,000 data points in the

sample.

In addition to the distribution of the individual noise points, we are interested in their

interdependency upon one another. In order to estimate an accurate covariance matrix

of size 50,000 x 50,000 entries, it would be necessary to have more than 100,000 samples,

which is impractical. At a rate of approximately 11 minutes per sample, 100,000 samples

would require a constant data acquisition of more than two years. As a compromise, we

can accept the lack of of a full covariance estimate and instead make an approximation

through the covariance in time and the covariance in voltage. These estimates are

discussed below.

5.2 Covariance in Time

In order to address the issue of dependency between noise samples, it is necessary to

estimate a covariance of the noise. Unfortunately, it is unrealistic to estimate a 50,000

x 50,000 sample matrix with such a small number of datasets. Thus, we are focusing

first on the covariance with respect to time, and then on the covariance with respect to

voltage. To estimate the covariance in time, the sample time for a given voltage scan was

used to calculate the expected product as a function of time scan. A total of 76 different

signals (r(t, V)) with each contributing 15 rows of V scans was used to estimate the

covariance. The covariance estimate, Et(i, j) was calculated as given below:

Et(i, j) = E[(r(i, V*) - f(i, V*))(r(j, V*) - f(j, V*))] (17)

where V* indicates one of the first 15 V, points in the signal before any contaminant

was introduced.
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5.3 Covariance in Vc

Similarly to the estimate of the covariance in time, it was necessary to estimate

the covariance in compensation voltage. To estimate the covariance with respect to

compensation voltage, the sample voltage lag for a given time scan was used to calculate

the expected product as a function of compensation voltage. A total of 76 different

signals (r(t, V)) with each contributing 15 rows of t scans was used to estimate the

covariance. The covariance estimate, Ev (i, j) was calculated as given below:

Ev, (i, j) = E[(r(t*, i) - f(t*, i))(r(t*, j) - f(t*, j))] (18)

where t* indicates one of the first 15 t points in the signal before any chlorite contaminant

was introduced. Figures 6 and 7 show the estimated covariance matrix with respect to

compensation voltage, while figures 8 and 9 show the estimated covariance matrix with

respect to time.

As can be seen in Figures 6, ??, ??, and 9, the noise is roughly uncorrelated as the

off-diagonal entries are at least a factor of 10 below the diagonal entries. In addition,
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the diagonal entries are all approximately 9.27 x 10-4 (mv) 2 for both covariances, with

a variation of less than 5% between diagonal entries in the same covariance and between

the two covariance matrices. This provides a very strong indication that the noise is

uncorrelated both in time and in voltage, and further that variance is equal for all points.

Given that the noise is uncorrelated in both dimensions, it is reasonable to assume that

the noise will be uncorrelated for all coordinate points (t, V) in the measured data

and thus that the overall covariance matrix will be white and diagonal as well. We

will employ this key assumption, based on these experiments, in the implementation of

statistical detectors.

5.4 Histograms

The histogram for all data points of the baseline sensor output is shown in Figure

10, along with a fitted Gaussian distribution with the mean and variance obtained from

the data. As mentioned previously in Section 2.3, there is a level of quantization that

makes it difficult to estimate with a high resolution the histogram of data points, and
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thus the resolution shown is the highest attainable.

I I I I I I I I I

mean = 7.10 x 10- 2 mV

var = 9.27 x 104 (mV)2

0 0.02 0.04 0.06 0.08 0.1 0.12

Positive Spectra Ion Intensity (mV)

0.14 0.16 0.18

Figure 10: Histogram of noise with fitted Gaussian probability distribution function

The Gaussian distribution shown in Figure 10, when combined with the indication of

decorrelation as seen in the covariance estimates, allows us to make the assumption that

the overall covariance matrix is white and that each of the noise points is independent

and identically distributed. The mean, p, and variance, a2, of the noise was found to

be 7.10 x 10-2 mV and 9.27 x 10 4 (mv) 2 , respectively.
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6 Matched Filter and ACE Detectors

6.1 Matched Filter

6.1.1 Overview

As mentioned previously, there are two statistical analysis routes which we have

chosen to take. The first route is a simplifed assumption on the covariance estimate

which allows us to utilize noise that is independent and identically distributed (IID) and

therefore has a diagonal covariance matrix that is equal for both Ho and H1 and does

not require 100,000 samples to obtain a good estimate. Since we naively assume that the

covariance matrix is white (i.e., the data is uncorrelated), the inversion is trivial and we

can perform detection on the raw data. Thus, for a received signal, r(t, V), we use all of

the 50,000 points of a given sample in the detection, but the detector algorithm assumes

a simple covariance matrix. This assumption leads us to two detectors: matched filter

and ACE (adaptive cosine estimate) which we investigate further.

The optimal binary detection test was derived in Section 3.2. Through the assump-

tion that the covariance matrices for both Ho and H1 are the same and diagonal as

discussed above, we have E0 = El = a 21 (where I denotes the identity matrix), and we

can simplify the decision rule to:

rT(m2 - i) > ln( i) + I (m'mo - mTmi) (19)
2 P 2g 2  0

This leads to our definition of the matched filter raw detector output:

,L r T(Mo - Ml)AMF(r) - r 2 (20)

where the received signal r is taken as an inner product with the difference between

the mean signals; this measure is compared against a threshold to produce a decision
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output.

6.1.2 Assumptions

This detector makes the assumption that the noise is white and consequently that

the covariance matrix of the noise is oa21, where a 2 denotes the variance. As mentioned

previously, this assumption is supported in the previous section of noise analysis, but is

not rigorously proven.

6.1.3 Implementation

The matched filter detector was trained separately on each of the five chlorite concen-

trations: 2.5 ppm, 5 ppm, 10 ppm, 20 ppm, and 40 ppm. This detector was then tested

on each of the data samples for pure water and the five concentrations of chlorite. The

likelihood ratio random variable is denoted by AMF (itrain, test), where [Lrain denotes

the training concentration and [test denotes the concentration of the received signal.

This random variable is characterized and documented with detector performance in

section 7.2.

6.2 Adaptive Cosine Estimator

6.2.1 Overview

The adaptive cosine estimatator (ACE) [9] detector is similar to the matched filter

detector, but relies on a measure of the angle between the received signal and the target

signatures instead of a measure of the energy overlap. This is particularly important

when there is a scaling factor of the received signal that varies with time or data collec-

tion. Unlike with the matched filter detector, the ACE detector will maintain a constant

false alarm rate (CFAR) even with scale variations in the received signal, which is an

important property for a deployed sensor. While the matched filter detector examines
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the inner product of the received signal and the difference of the means, the ACE de-

tector examines the angle between the received signal and the difference of the means

as shown below:

,L r T(MO - M1)
AACE(r) = m (21)

liril * limo - mill

where IF-|| denotes the Euclidean norm.

This value is then compared against a threshold for a binary detector decision.

6.2.2 Assumptions

This detector makes the assumption that the noise is white and consequently that

the covariance matrix of the noise is a 2I. As mentioned previously, this assumption is

supported in the previous section of noise analysis.

6.2.3 Implementation

The ACE detector was trained separately on each of the five chlorite concentrations:

2.5 ppm, 5 ppm, 10 ppm, 20 ppm, and 40 ppm. This detector was tested on each of

the data samples for pure water and the five chlorite concentrations. The likelihood

ratio random variable is denoted by AACE(Ptest, Ptrain), where ptest denotes the testing

concentration and Ptrain denotes the training concentration. This random variable is

characterized and documented with detector performance in section 7.2.

6.3 Performance Metrics

In order to evaluate different detectors, it is necessary to determine a set of met-

rics with which to compare relative performance. The likelihood ratio output, AACE

and AMF, for the ACE and MF detectors respectively, serves as an indicator of how

much separation there is between contaminated water and pure water. To this end, it
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is necessary to calculate the means of A for each contaminant concentration and detec-

tor. However, the mean itself does not indicate the degree of separation; the variance

must also be used. We denote Atrain and test as the training concentration and testing

concentration, respectively. We define the following measures: mdetector(Ptrain, Ptest) to

denote the mean of Adetector (Ptrain, Ptest), and Odetector (ptrain, Ptest) to denote the standard

deviation of Adetector (train, Atest).

We propose a metric to define the level of separation between two classes:

'Ydetector (ttrain, Itest) =m-m- (22)

where mw and a, indicate the mean and standard deviation of A for the pure water class

of a single type of detector and m, and oc indicate the mean and standard deviation of

A for the testing concentration, pt est.

This quantity, -y, serves as a measure of detector performance evaluation that is

independent of scaling factors of A and only depends on relative separation of the dis-

tributions between two classes. To illustrate this point, consider the case of multiplying

a particular detector output random variable by a constant a. If the previous means

were given by me and mw, the new means will be a * m, and a * m,. Similarly, if the

previous standard deviations were given by oc and a,, the new standard deviations will

be au, and aox,. Consequently, the new 7 will be given by:

amc - amw (23)

All factors of a cancel out, leaving the previous -y as before. This is important because

it demonstrates that -y gives an accurate measure of how separated two classes are and

does so without regard to the absolute values of A.

We recognize that m and a completely characterize the distributions of the matched

filter output, which is Gaussian. ACE, however, produces a T-distributed statistic which
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is parameterized by a number of degrees of freedom and a non-centrality parameter [9].

However, we will focus on the first and second moments by utilizing our metric, 'y, to

compare the relative separation power of the detectors.

6.4 Results

As discussed in the previous section, it is important to examine the statistics for the

likelihood ratio test, AACE and AMF, to properly evaluate detector performance. Shown

below in Figures 11 and 12 are the median, lower quartile, upper quartile, range of data

and outliers [38] for AACE and AMF respectively for each of the different classes (water

and chlorite at 5 different concentrations). In both cases, the detectors were trained on

the lowest concentration of 2.5 ppm of chlorite. As can be seen, by choosing a threshold

of -40 for the ACE detector or -1.2 for the matched filter detector, the classes could

correctly be separated for all of the data, thus yielding perfect detection on the limited

available data.

In order to more easily compare the two detectors, we calculate -y as a function of

the testing concentration for the training concentration of 2.5ppm; the plot of -y for both

the matched filter and ACE detector is shown below in Figure 13.

As can be seen from the comparative y values, the ACE detector performs better

than the matched filter detector for all testing concentrations when trained at 2.5 ppm.

Since the difference between the matched filter and ACE detectors lies in the measure

of signal magnitude versus signal angle, it is evident that the received signal angle is a

better indication of its class. This may be due to the fact that the data is scaled by

an unknown and random factor which affects the relative energy in the signal. We can

conclude that the target signature is best characterized by the angle it maintains instead

of the energy and magnitude of relative points within the signal.

Also note that -y is not monotonically related to concentration. Since the detectors

were trained at 2.5 ppm, this gives an early indication that the signals at higher con-

43



-15 + median
- upper/lower quartile

-data range
-20- + outliers

-25

E +
-30 --

0.

C"

0 -35

-40

-45-

-50-

I I I I I I

Pure Water 2.5 ppm 5 ppm 10 ppm 20 ppm 40 ppm
Chlorite Chlorite Chlorite Chlorite Chlorite

Figure 11: ACE detector output (AACE) statistics (itrain=2-5 ppm)

centrations are not simply stronger versions than those at lower concentrations. This

motivates the need for more sophisticated techniques to analyze the target signals.

In Figures 14 and 15, -y is plotted for the ACE and Matched Filter Detectors, re-

spectively, for all training and testing concentrations. As can be seen, 7 is uniformly

higher when the testing concentration matches the training concentration (i.e., when the

signature the detector is looking for is the one it was trained on). This makes intuitive

sense, as the detector performance should be higher when the testing concentration is

the same as the training concentration. However, we might have expected -IMF to be

increasing with the testing concentration if the chlorite signal were increasing in magni-

tude with concentration. Since this is not the case, we can infer that the chlorite signal
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varies nonlinearly. This gives another motivating factor for the need to analyze the tar-

get signals of various concentrations not simply as an increase in signal, but perhaps as

a subspace inhabited by the class of chlorite-contaminated signals.
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7 Multidimensional Target Subspaces

7.1 Overview & Motivation

The matched filter and ACE detectors discussed in previous sections assume that

the target signatures (means) of various chlorite concentrations are scaled versions of

one another. The detectors treat the training concentration mean as a vector and look

for the received signal to be in the same direction as that vector, and expect that if the

received signal concentration is higher, the received signal magnitude will increase, but

the direction will be the same.

However, we have empirical evidence to show that the signatures of various concen-

trations of chlorite-contaminated water do not behave as discussed above. In Figures 16

and 17, we have plotted the mean energy as a function of concentration and the mean

angle between higher concentrations of chlorite and chlorite at 2.5 ppm.

2.5 ppm 5 ppm 10 ppm 20 ppm
Chlorite Concentration

40 ppm

Figure 16: Mean energy for chlorite

'0

0)
a

C

10

5 ppm 10 ppm 20 ppm
Chlorite Concentration

Figure 17: Angle between concentrations

As can be seen, the energy does not increase with concentration, as we would expect

if the signal were scaling with concentration. Instead, the angle of the signature between
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the signature of another concentration and chlorite at 2.5 ppm is significant and becomes

more so as the concentration increases. It is evident that the signature is not simply

scaling with concentration. Instead, higher concentrations of chlorite-contaminated wa-

ter develop new features in varying locations, (t, V), and, in reference to the vector

analogy, vary their direction as the concentration increases.

In a practical implementation of this detector, we will be looking to monitor a given

water source and sound an alarm the first time chlorite is detected in the water. However,

using this method, we are unable to predict at what concentration level the contami-

nant will first appear, making it difficult to best train the detector on the appropriate

concentration.

In an effort to address this point and create a set of detectors that are more robust to

varying levels of chlorite, we aim to create a subspace that is spanned by multiple levels

of chlorite. As we recall from the single dimensional matched filter and ACE detectors,

we projected the received signal onto the difference between the mean of chlorite and

the mean of water. This quantity served as a measure of the energy and made up the

basis for the matched filter detector. When this quantity was normalized by the energy

in the signal, it became a measure of the angle of the signal and served as the basis for

the ACE detector.

In the multidimensional case, we wish to extend the dimension of the target sub-

space onto which we project the received signal. Instead of consisting of a single vector

composed of the mean difference of water and a single concentration of chlorite, we will

create a subspace spanned by multiple vectors composed of the difference of water and

varying concentrations of chlorite. The amount of energy in the received signal that

lies in this subspace will be the basis for the matched filter multidimensional subspace

detector. The angle that the received signal makes with this subspace will be the basis

for the ACE multidimensional subspace detector.

It is important to note that when we begin looking for multiple dimensions that the
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received signal lies in, we also open up the possibility of including more of the subspace

that is spanned by pure water. This inclusion of multiple subspaces will increase the

amount of the received signal that lies in those multiple subspaces, but will do so for

both chlorite-contaminated water and pure water. Thus, a multidimensional subspace

detector might perform better than a single dimensional detector compared to testing

on a concentration different than that it was trained on, but we do not necessarily

expect it to perform as well as the single dimensional detector when testing on the same

concentration it was trained on.

For this section, we continue to maintain the previous assumption that the covariance

is white and the noise is uncorrelated in both time and compensation voltage.

7.2 Implementation

We define a projection matrix, PD, whose subspace, 4, is spanned by the differences

of the mean of water and means of the the five chlorite concentration signatures, denoted

here by mdl, mc2, m3, md4, and md5, where each is a column vector of length 50,000.

The water mean is denoted by m,. The subspace, 1 is given by:

I I I
(mdi - mw) (mcl2 - m.) (md3 - m.) (md4 - m.) (mcl5 - m)

I I I

The orthogonal projection matrix, PD, which projects a received signal onto the

subspace is given by [16]:

p"I D4  D()lD (24)

Thus, the corresponding matched filter detector measures the energy of the received

signal in the subspace, given by rTP r. The ACE detector measures the cosine-squared

of the angle of the received signal and the subspace, given by rTr We arrive at
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the following definitions for the matched filter and ACE multi-dimensional subspace

detectors:

rT Pg
AMFMD(r) = 2 (25)

rTPr
AACEMD(r) = rT (26)

The multidimensional matched filter will produce a chi-squared statistic, while the

multidimensional ACE filter will produce an F-statistic, both of which have numerous

degrees of freedom [9]. However, as before, we will focus on the first and second moments

by utilizing our metric, 'y, to compare the relative separation power of the detectors.

7.3 Results

Shown in Figure 18 is the performance measure, y, for the matched filter and ACE

multidimensional detectors. The ACE detector does uniformly better than the matched

filter detector, implying that the angle of a received signal is a better indication of its

class than the relative energy in that signal. Recall that this result is similar to that of

the single dimension case, in which the ACE detector also outperformed the matched

filter. By examining the definition for the matched filter and ACE detectors, it is clear

that the ACE detector normalizes the output by the energy in the received signal. Since

the ACE detector performs better than the matched filter for this data, it suggests that

the data may possess a varying scale multiplier that operates upon the energy in the

received signal. Since ACE accounts for this, it performs better than the matched filter

which bases its measurement off the energy in the signal.

The goal of implementing a multidimensional subspace detector is to improve the

performance of the detectors across a range of concentrations. In the case of the mul-

tidimensional subspaces, the training of the detector occurs on a subspace consisting of

all concentrations, while in the single dimensional case, the training occurs on a single
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Figure 18: -y for matched filter and ACE multidimensional subspace detectors

concentration.

We would like to investigate the performance of the multidimensional detectors com-

pared to that of the single dimensional detectors. In Figure 19, we compare the multi-

dimensional results to the best and worst case results for that of the single dimensional

detectors. In this case, the best case corresponds to Ptrain = Itest and the worst case

corresponds to the training concentration which yielded the lowest Y for each testing

concentration. As can be seen, the best case single dimension detectors perform far

better than the multidimensional detectors, with an average y 1.78 times that of the

multidimensional detectors. However, the multidimensional detectors perform generally

better than the worst case single dimension detectors, with an average -y 1.38 times that
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of the single dimensional detectors.

MF SD (Worst Case)
S ACE SD (Worst Case)
M MFMD

~ACE MD
[ MF SD (Best Case)
[ ACE SD (Worst Case)

I

10 ppm
Chlorite

9test

I
20 ppm
Chlorite

Figure 19: -y for multidimensional subspace detectors
case single dimensional detectors

as compared to best and worst

The results are not unexpected. When training on the subspace spanned by all of

the means, we expect to get a better performance than when we test on a concentration

different from the one we trained on. However, the best performance can still be obtained

by training on the same concentration that we are testing on.

Table 4 below shows y for both the matched filter and ACE multidimensional de-

tectors. In column 2, for Ptest= 2 .5 ppm, we can see that the highest -y occurs when the

training subspace only consists of the 2.5 ppm concentration, and uniformly decreases
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as more concentrations of chlorite are added to the training subspace. In general, the

performance measure, -y, decreases as more concentrations are added to the training

subspace. By examining Figures 14 & 15, we can see that the training value of 2.5 ppm

yields very good -y results (as compared to the other training values) across all testing

concentrations, and thus it is expected that the -y value would decrease as more training

concentrations are added. However, for a different training value, the addition of extra

concentrations in the subspace can vastly improve the attainable -y as shown in Figure

19.

Ptrain\Ptest 2.5 ppm 5 ppm 10 ppm 20 ppm 40 ppm
[2.5 ppm] 28/34 14/16 21/27 23/25 16/18
[2.5 ppm 5 ppm] 14/19 21/26 13/19 23/31 17/21
[2.5 ppm 5 ppm 10 ppm] 11/14 13/15 14/20 19/24 15/19

[2.5 ppm 5 ppm 10 ppm 20 ppm] 9/12 10/13 10/14 21/28 15/19
[2.5 ppm 5 ppm 10 ppm 20 ppm 40 ppm] 8/10 9/11 9/13 17/21 13/16

Table 4: y for matched filter & ACE multidimensional detectors (MF/ACE)
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8 Wavelet Transform & Associated Detectors

8.1 Overview & Motivation

The wavelet transform is implemented as a method of reducing the dimensionality

of the data. In both the matched filter and ACE detectors used on the raw data, all

50,000 data points in the signal were used by the detectors to develop a likelihood ratio

test. In general, this requires an adequate estimate of the covariance, which in this case

would be a 50,000 x 50,000 matrix. However, for the matched filter and ACE detectors,

we made the key assumption that the covariance matrix was white and avoided the need

to actually estimate the covariance.

An alternate route is to avoid making any assumptions about the covariance matrix,

but instead perform detection by using a limited number of the coefficients in the signal.

The covariance for a limited number of coefficients can be adequately estimated with the

number of data samples available. However, the signal difference between pure water and

chlorite-contaminated water is spread out over a vast number of coefficients, and thus

it is be difficult to keep enough of those important coefficients to perform a reasonable

detection.

This motivates the need to compress the relevant chlorite features into a smaller

number of coefficients, and then use those coefficients, along with a reasonable estimate of

the covariance of those coefficients in a corresponding matched filter and ACE detector.

A wavelet transform is suitable for the given data because of the shape of the sig-

natures that are indicative of chlorite-contaminated water. Since each coefficient in the

wavelet transformed data corresponds to the energy in the overlap of a wavelet and

the raw data for a particular location and scale, the energy contained in the raw data

over a range of points is now concentrated in a few wavelet coefficients. Thus, instead

of spreading out the relevant information in a number of coefficients in the raw data,

the wavelet transform will serve to consolidate the relevant information into a smaller

57



number of coefficients as represented in the wavelet transform.

8.2 Implementation

A 1-dimensional wavelet transform is performed on each time scan in the data. This

is done instead of a 2-dimensional wavelet transform since the rolloff of the peaks occur

only in neighboring compensation voltage points, and not in time points; thus, the

inherent shape of the chlorite signature is matched only by wavelets in compensation

voltage axis.

The wavelet coefficients resulting from the wavelet transform are given by:

c S- hn- 2 kCk (27)
n

df- = gn-2kn1  (28)
n

where h and g are finite impulse response (FIR) quadrature-mirror filters correspond-

ing to the Daubechies 6 wavelet [11], and the highest level coefficients, cn, correspond

to the original signal. A level 5 decomposition (equations (27) and (28)are iterated 5

times to produce c' & do,) is performed on the 100 point signal, yielding 6 approximation

coefficients and 94 detail coefficients of 5 scales for each time scan. A new 3-dimensional

signal is produced as a concatenation of all the 1-dimension wavelet transform coefficients

as a function of time.

In the resulting wavelet transformed data, the means for each of the two classes (pure

water and a particular chlorite concentration) is computed, along with the difference of

the means. A limited number of coefficients (1-6 in our tests) is kept according to the

coefficients that demonstrate the largest difference between the means of the two classes

are; detection is performed on those coefficients only.
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8.3 Associated Matched Filter & ACE Detectors

The corresponding detectors for the new wavelet-transformed data are a direct ex-

tension of the matched filter and ACE detectors for the raw data. However, since we

are no longer assuming a white covariance matrix, it becomes necessary to whiten both

the received signal and the corresponding target mean signatures.

As mentioned previously, the coefficients that demonstrate the largest difference be-

tween the means of the two classes are kept. Let us denote that vector of coefficients as

w, where w E R', where n is between 1 and 6 and denotes the number of coefficients

retained.

We are able to estimate a covariance for these n points, yielding a covariance matrix

denoted here as EWT, which can decomposed into its eigenvector decomposition as shown

below [16]:

EWT= UAUT (29)

where U denotes the matrix of eigenvectors and A denotes the diagonal matrix of the

corresponding eigenvalues.

The associated whitening matrix, R-2, is given by [8]:

R-2 = (UA-')-- (30)

By substituting whitened versions of our received signal and target signatures into

the earlier derivation of the matched filter and ACE detectors, we obtain the following

detectors:

AMFWT(W) (R- w)T(R-I(mo - mi)) (31)

AACEWT(W) (R w)T(R--.(mo - mi))
|IR-IwI * IIR-i(mo - mi) I (

Thus, the signals are whitened using the inverse of a reasonable estimate of the
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covariance, and then implemented in the matched filter and ACE detectors as previously

derived.

8.4 Results

We wish to investigate the performance of the wavelet transform detectors relative to

that of the raw data detectors. To this end, we will first examine the amount of energy

retained when the largest wavelet coefficients are kept and the remaining portion of the

signal discarded. As can be seen in Figure 20, a relatively small portion of the overall

signal energy is retained when only n coefficients are kept. This is due either to the

inability to compress relevant information in such a small number of coefficients, or due

to a large amount of noise energy on the signal that distorts the total energy relative to

the relevant signal energy.
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Figure 20: Percentage of energy retained versus
wavelet transform
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In Figures 21 and 22, we can see the detector performance for the wavelet transform

matched filter and ACE detectors. The first thing to notice is that the ACE wavelet
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transform detector performance is not impressive. There is little, if any, level of dif-

ferentiation possible between the different classes of chlorite and water. In contrast,

the statistics for the matched filter wavelet transform detector show a clear level of

differentiation between the classes.
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Figure 21: Wavelet transform matched filter detector statistics (Ptran=2.5ppm, 6 coef-
ficients retained)

This is not particularly surprising. After applying a wavelet transform to the data,

we chose to retain the coefficients that showed the greatest signal differentiation energy.

As a result, we should be looking to the energy in those coefficients to determine to

which class a received signal belongs. By normalizing the received signal by its energy,

the ACE detector effectively removes much of the signal differentiation power, and the
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Figure 22: Wavelet transform ACE detector statistics (P,ai.=2 .5 ppm, 6 coefficients
retained)

detector becomes very weak.

We will consider only the matched filter wavelet transform detector in subsequent sec-

tions. Consider the performance evaluation coefficient, 'y, for the matched filter wavelet

transform detector in Figure 23. In many cases, the matched filter wavelet transform

detector does not perform as well as the raw data detectors (compare Figures 23 and

15), as the raw data detectors have a combined average -y of 16.7, while the matched

filter wavelet transform detector has an average y of 9.3.

However, as can be seen in Figure 24, for the testing and training concentration of 2.5

ppm, the wavelet transform detectors with 6 coefficients retained perform far better than
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Figure 23: -y for matched filter wavelet transform detector at 6 different coefficient levels
and all testing concentrations

the either of the raw data detectors. Thus, under certain circumstances, it is possible for

the wavelet transform detector to perform better. This is likely due to the fact that there

are fewer differences in the signal between the 2.5 ppm chlorite signal and the pure water

signal, meaning that the relevant separation can be compressed into a smaller number of

coefficients. In addition, the more accurate estimation of the covariance could play a role

in the increased detection power. However, in all cases except for ptet =2.5 ppm, the

wavelet transform matched filter detector with 6 coefficients retained yields the worst

performance (as compared to the detectors with fewer coefficients retained). This could

indicate that although the number of coefficients is increasing, the relative quality of the
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covariance estimate is decreasing and is thus giving a lower performance.

While the wavelet detector performs well in this case, in general we can see that the

wavelet transform detectors perform at a lower level than the raw data (matched filter

and ACE) detectors. However, this difference may not be as relevant as it seems. While
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wavelet transform detectors with 6 coefficients retained

the wavelet transform detectors do not generally perform as well, by looking at the raw

statistics on the detector output in Figur ??, we can see the signal differentiation is

still possible, and with the appropriate threshold, the thresholded binary output would

frequently be the same for both types of detectors. Thus, a large amount of the relevant

signal differentiation energy and relative detector performance is still retained while
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allowing for a factor of 10,000 in reduction of data size.
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9 Conclusion

9.1 Summary

The goal of this thesis was to develop and evaluate several methods for the detection

of contaminants in water. We employed techniques well-established for their use on

other types of data and examined their application to the FAIMS data.

With a goal of minimizing the error rate of the detector, we began by supposing

an optimal strategy assuming an infinite quantity of data for use in analysis. One

significant challenge to our work was the limited number of data samples available, and

we examined the various assumptions that allowed us to proceed to a series of different

detectors.

We began by analyzing and evaluating two complimentary subspace detectors: a

matched filter detector and an adaptive cosine estimate (ACE) detector. Both of these

detectors performed very well; in all cases the detector produced the correct output

and yielded a high level of separation. The success which we attained with these de-

tectors validated our earlier assumption that the noise was uncorrelated in time and

compensation voltage.

A general trend that arose was that the ACE detector on average performed better

than the matched filter, with a mean y of approximately 1.2 times that of the matched

filter -y. Since the ACE detector is scale-invariant to the received data while the matched

filter detector relies on the overall energy in the received signal, we can conclude that

an unknown and uncharacterized scaling factor may play a role in the acquisition of the

raw data.

We also considered the case of a multi-dimensional target subspace for both the

matched filter and ACE detectors. We showed that the energy in the means of various

classes did not increase with concentration, thus disproving the simple model of the

signal being scaled with concentration. Instead, we demonstrated that the relative angle
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of the each class was changing with concentration, and this prompted the need to look

in a subspace in which the received signal might lie.

We found that the resulting multidimensional detector trained on all concentrations

was more robust but performed worse than a detector trained on a single concentra-

tion. Specifically, the multidimensional detectors performed better than the worst-case

single dimensional detectors, but worse than the best-case single dimensional detectors.

Thus, the multidimensional detectors traded in peak performance for a better worst-case

performance, and served to make y consistent across all testing concentrations and less

prone to changes in performance with the introduction of a new class.

We also employed a wavelet transform to reduce the dimensionality of the original

data and improve the covariance estimates. We implemented corresponding matched

filter and ACE detectors on a limited number of those wavelet coefficients. The results

were mixed. The ACE detector did not perform particularly well, but this was not

surprising given that the wavelet coefficients had been picked based on their relative

energy and not on their relative angle. Effectively, the wavelet coefficients were picked

to maximize performance with the matched filter detector.

The matched filter detector, however, performed relatively well given that we were

keeping such a small fraction of the energy in the signal. The detector was able to

differentiate between pure water and chlorite, though it did so with a much smaller

performance factor, y, than the raw data detectors. Given the compression factor of

10,000, the detector performed remarkably well, and it is reasonable to assume that for

many applications, this tradeoff is reasonable.

9.2 Future Work

From the work done on the detectors discussed above, it is evident that there is a

plethora of future work to be investigated in the pursuit of detecting the lowest possible

concentration of contaminant with the lowest rate of error.
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In the implementation and evaluation of the wavelet transform and associated de-

tectors, we mentioned that the ACE detector performed badly because we had made

our initial choice of the coefficients to be retained based on the energy they contributed.

Instead, however, it would be possible to choose the retaining coefficients based on the

overall angle they produced between the two classes. In this case, the matched filter

detector would probably not work very well, but the ACE detector would work much

better. This is a detector situation that has yet to be pursued.

In the work on multidimensional subspaces, we defined the subspace based on varying

chlorite concentrations. However, it would be equally possible to define a subspace based

on the mean of a particular concentration and the direction of highest variance for that

same concentration. This would serve to create a detector that was trained on only

one concentration but could possibly serve to improve detector performance for that

concentration over the single dimension detectors.

In many cases, we were limited by the amount of data available. It would be ideal

to be able to take more data in a consistent fashion to yield better results. This would

mean being able to have separate training and testing data, and having much better

estimates of the covariance in the case of the wavelet transform results. This would also

allow us to do experiments with retaining more and more wavelet coefficients, which

would allow us to determine exactly how many wavelet coefficients needed to be kept to

develop equal or better performance than that of the ACE and matched filter detectors.
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