
The iLab Debugging Service Broker:

A Module for Facilitating Development of Online Laboratories

by

Abhra D. Haldar

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degrees of

Bachelor of Science in Computer Science and Engineering

and Master of Engineering in Electrical Engineering and Computer Science

at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 27, 2006

© Massachusetts Institute of Technology 2006. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis

and to grant others the right to do so.

Author

Department of Electrical Engineering and Computer Science

May 27, 2006

Certified by.

Jesus A. del Alamo

hes Supervisor

Accepted by

Arthur C. Smith

Chairman, Department Committee on Graduate Theses

MASSACHUSETTS INSTiTUTE
OF TECHNOLOGY

AUG 14 2006 BARKER

LIBRARIES



The iLab Debugging Service Broker:

A Module for Facilitating Development

of Online Laboratories

by

Abhra Haldar

Submitted to the Department of Electrical Engineering and Computer Science

on January 18, 2005, in partial fulfillment of the

requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT
The iLab Shared Architecture specifies a systematic and consistent way to

architect new online laboratories. Despite its usefulness, however, building and

debugging new labs under this architecture is an arduous process. The primary reason

behind this is the use of Web services for communication. No standard tools exist for

debugging Web services, so this naturally adds to the system's complexity.

The Debugging Service Broker, a new implementation of the iLab Service

Broker, has been designed to address this problem. Using this broker, developers can

intercept and view every SOAP message that passes through this module. They can

then pinpoint errors in these messages or even make instant modifications to test their

changes. We also envision using this expanded broker to provide mock lab clients and

servers that can be used to conduct tests of individual modules in isolation.

Thesis Supervisor: Professor Jes6s A. del Alamo

Title: Professor of Electrical Engineering

2



Acknowledgments
I would first and foremost like to thank my family for always supporting me in my

personal and academic endeavors. Their encouragement has enabled me to

persevere even in times of extreme duress.

I would also like to thank the terrific research team that I worked with, led by

Professor Jesis del Alamo. I greatly appreciate his patience and understanding

during these busy two terms of research. His dedication to the iLab project also

served as a personal inspiration. I would also like to thank Jim Hardison for his

willingness to help, no matter the task.

3



Table of Contents

Chapter 1: Introduction.................................................................................. 6
1.1 Evolution of iLab............................................................................... 7
1.2 The Debugging Service Broker........................................................... 8
1.3 Overview of Thesis ........................................................................... 10

Chapter 2: iLab Shared Architecture and the (DSB) .................................. 11
2.1 The iLab Shared Architecture .......................................................... 11

2.1.1 Laboratory Client ...................................................................... 12
2.1.2 Laboratory Server...................................................................... 12
2.1.3 Service Broker........................................................................... 13
2.1.4 Web services ............................................................................. 14

2.2 An Example Experiment ................................................................... 15
2.3 iLab Development Methodology ........................................................ 16
2.4 Debugging Web services.................................................................. 16
2.5 Solution: iLab Debugging Service Broker (DSB) .............................. 18

2.5.1 Scenario 1: Standard SB Message Lifecycle............................. 19
2.5.2 Scenario 2 (DSB): Trace Entire Message Lifecycle................... 19
2.5.3 Scenario 3 (DSB): Testing Client w/ no Lab Server................... 21
2.5.4 Scenario 4 (DSB): Testing Server w/ no Lab Client................... 22

2.6 Design Considerations...................................................................... 23
2.6.1 DSB-Embedded Interception Layer.......................................... 23
2.6.2 External Interception Layer........................................................ 24

2.7 Example: End-to-End Interaction..................................................... 26
2.7.1 User Interface........................................................................... 26

2.8 DSB Message Transaction - Walkthrough........................................ 28
2.8.1 Step # 1: Request Method Interception ..................................... 29
2.8.2 Step # 2: Modification of Intercepted Request........................... 30
..................................................................................................................... 3 0
2.8.3 Step # 3: Intercepted SOAP Response ..................................... 31
2.8.4 Step # 4: Forwarding SOAP Response to Client ....................... 32

Chapter 3: System Architecture ................................................................. 34
3.1 Configuration .................................................................................... 34
3.2 Overview......................................................................................... 35

3.2.1 Request Stage (Client -> Interception Layer -> Lab Server):.........35
3.2.2 Response Stage (Lab Server-> Interception Layer-> Client):........36

3.3 Detailed System Design ................................................................... 36
3.3.1 ASP.NET Web services processing .......................................... 36
3.3.2 The SoapExtension Class ........................................................ 37

3.4 Client Side Behavior ......................................................................... 41
3.4.1 Reloading Conditions ............................................................... 41
3.4.2 IIS Concurrency Problems........................................................ 42

3.5 Technical Evaluation ........................................................................ 43
Chapter 4: Conclusions and Recommendations for Future Work ............... 44

4.1 Progress on Objectives.................................................................... 44
4.2 Evaluation of System Design.......................................................... 44

4



4.2.1 Modularity and Maintainability ................................................... 44
4.2.2 Extensibility ............................................................................... 45
4.2.3 Usability..................................................................................... 45

4.3 Recom m endations for Future W ork................................................. 45
4.3.1 G rant User G reater Control ........................................................ 46

Appendix A -- Interception Layer: DB Table.................................................... 48
Appendix B - Sam ple SoapExtension .......................................................... 49
Appendix C -- m yM essages.aspx .................................................................... 52
Bibliography ..................................................................................................... 55

5



Chapter 1: Introduction

The iCampus iLabs project is an MIT-led initiative aimed at simplifying the

development of online laboratories ("iLabs"). The notion of an iLab stems from

the inefficiencies inherent in a standard class laboratory setting. Typically, there

are simply too many students for too few pieces of hardware. This arrangement

taxes both students, who usually have limited time to learn a specialized device

interface, and class staff, who must maintain and administer each of these

machines.

iLabs address these limitations through the use of the Internet. Here, students

simply submit Web requests to run an experiment on a remote piece of

hardware. The laboratory server maintains a queue of such requests and

executes them sequentially. This allows for effective load-balancing on the

hardware, since the student no longer needs dedicated access to a device. This

also eases the burden on course staff, since they can centrally set up and

maintain these remotely accessible machines [1]. It also addresses scalability

concerns, since supporting more students does not require an additional

hardware investment [3].

The overlying benefit of iLabs is that it allows a shift in focus. Instructors can now

craft relevant experiments without worrying about hardware malfunction.

Moreover, since they can control students' means of access to a device,

6



teachers can provide a Web-accessible interface that meets the educational

need without drowning students in its complexity of operation.

iLabs also present obvious economic advantages [1]. Classes will need far fewer

hardware setups to serve their students, thus freeing them to purchase more

specialized or advanced devices. One can even imagine devices at one

educational institution serving students at several others through the Web.

1.1 Evolution of iLab

The notion of an iLab was originally realized through the MIT Microelectronics

Weblab, a classroom tool that enabled students to remotely conduct current-

voltage measurements on a microelectronics device or a small circuit using a

Java applet client [5]. The project underwent several iterations and has been

successfully used in a large MIT device electronics class since 1998.

During these initial deployments, it became that clear that the ad-hoc distributed

architecture of Microelectronics Weblab would not suffice as a generalized

architecture for future iLabs. As a result, in 2002, the iLabs team specified the

iLabs Shared Architecture [2], which established modular units of lab

functionality: the lab client, lab server, and Service Broker. The final unit acts a

middleman between the client and server and also encapsulates much of the

generic functionality that all iLabs typically share [8]. The team also published

7



XML (Extensible Markup Language) Web services [9] method descriptions for the

interfaces between each of these units.

1.2 The Debugging Service Broker

In spite of this new architecture, which was aimed at easing lab development, it

was discovered that the creation of new iLabs was still an arduous process. This

was primarily due to the new architecture's use of Web services technology. The

three disparate modules could communicate using Web services, but when a

problem arose, the transmitted SOAP (Simple Object Access Protocol) [7]

message was invisible and inaccessible to the developer. Given the multi-tiered

architecture, developers need to follow the entire path of a raw SOAP

transmission to pinpoint problem areas and debug effectively.

Another significant problem is the need to concurrently develop lab client and

server. More specifically, without at least a barebones lab server, a developer

cannot test out new feature changes on his client and vice versa.

The iLab Debugging Service Broker (DSB), an extension of the standard Service

Broker, addresses these problems. The DSB offers one additional capability:

interception of SOAP messages at any point along the architecture. Since all

communication flows between the Service Broker and another module, the DSB

adds an intercepting /ayer around the broker to capture SOAP transmissions.

8



After retrieving the message, the user can view or edit it before choosing to send

it to the original destination.

Furthermore, using this interception functionality we can solve the

aforementioned problem of concurrent client-server development. We can create

a "dummy lab server" that, just like a normal lab server, waits for a SOAP input

message, intercepts it, and then allows the user to type a SOAP response from

scratch. Similarly, a "dummy client" would let the user type SOAP output

messages for the server and retrieve actual results from running on the

hardware.

This enhancement is important for several reasons. First, it promises to save

time for future iLabs developers. Those new to the team can use it to quickly get

an understanding of how iLabs SOAP messages are constructed. Also, the ability

to dynamically edit an intercepted message enables developers to quickly

diagnose and fix potential problems. Second, the dummy modules allow iLabs

developers to individually build up client or server without needing the other.

More significantly, it lets us test generic client and server components (i.e. a new

client graphical engine) without being limited by slow server performance or

limited client functionality.

9



1.3 Overview of Thesis

Chapter 2 first describes the Shared Architecture and its mechanisms in more

depth. It then illustrates the difficulties in developing new labs, particularly in

debugging, and shows how the DSB resolves each of these difficulties. This

chapter also examines a hypothetical experiment request with particular focus on

the behavior of the DSB. Chapter 3 gives a detailed account of the

implementation of the SOAP interception/editing feature of the DSB, analyzing

both server-side and client-side behavior. Chapter 4 draws conclusions on the

DSB and proposes further work to be done to make the module more useful for

lab developers.

As of this writing (5/06), the interactive or sensor architectures have not yet been

finalized, so this paper will only focus on the batched variety of online lab.

10



Chapter 2: iLab Shared Architecture and the

Debugging Service Broker (DSB)

This chapter takes a closer look at the different components and specifications of

the iLab Shared Architecture. The interaction among these modules is depicted

in Figure 1 [2]. It also identifies the current bottlenecks in developing new iLabs

and introduces the Debugging Service Broker (DSB), a tool to mitigate these

difficulties.

Student-Side
Lab-Side Campus 

E ntemet Student Client
Lab Devices Servi Broker I Intranet

LarvrDatabase E

Student Client

Figure 1: iLab Shared Architecture Components

2.1 The iLab Shared Architecture

The Shared Architecture specifies three different functional units. The lab client

and server are holdovers from older ad-hoc approaches and allow the basic

exchange of experiment specifications and results. The Service Broker is a new

module encapsulating non-lab specific functionality, thus enabling iLab

developers to concentrate on their specific domain.

11



2.1.1 Laboratory Client

The laboratory client is used to:

" Retrieve the laboratory configuration (including settable parameters)

" Send experiment specifications to the lab server

" View and analyze the resulting data

Java applets are the most commonly-used client technology. They have

complete rich-client functionality and also have access to the Service Broker's

credentials, which are necessary for lab server authentication. The main

drawback of this technology is its potentially lengthy download time on each load.

In addition, because Java applets have nearly monopolized this form of rich-

client technology, developers must have a good understanding of this complex

language. Even then, the task of building an applet client is an involved and time-

intensive task.

2.1.2 Laboratory Server

The laboratory server is responsible for authorizing incoming requests from users

and sending commands to the actual hardware of the laboratory. It typically

manages a queue of incoming experiment requests. The server sequentially

parses each experiment specification into a set of commands to dispatch to the

hardware and waits for a response. This device data is subsequently processed

12



and converted into XML. The lab server then calls a Web service method,

Notify(, to inform the broker of job completion.

2.1.3 Service Broker

The broker is the centerpiece of the iLab Shared Architecture. It serves several

important functions, including:

" Authenticating/Authorizing users for lab server access

" Storing experiment records

" Launching client (applet or HTML)

The broker acts as a middleman between the client and the server. Users

of the system log on to a service broker (authentication), launch an accessible

client (permissioning), and subsequently perform client-lab server Web service

requests transparently through the broker. ' If authentication of the user is

successful, the broker will add its credentials to the request so it is accepted by

the lab server.

The benefit of the broker versus individual accounts is that one broker handles

permissions for a multitude of client/server pairs. This entails that lab server

developers do not have to concern themselves with individual user authorization;

1 Note: For the remainder of this paper, one can assume that any contact between the lab client
and lab server is invisibly transmitted through the Service Broker.

13



they may do it on a service broker basis. For instance, university B could

centrally grant access to its lab server to all university A's registered students in

certain class if it trusts A's broker [1].

2.1.4 Web services

Given that each of the three modules could run on a different computing platform,

Web services seemed a natural mode of interaction. The Shared Architecture

specifies detailed Web Services Description Language (WSDL) [6] interfaces for

each module interface, in addition to several internal application programming

interfaces (APIs) for Service Broker administrative functions.

The Shared Architecture also defines three XML schemas for sharing key

information at certain points in the session.

* The Lab Configuration describes parameters about the laboratory setup

that is relevant to the client, i.e. measurement parameters that must be

set, available devices, etc. The client first makes a request for this

document.

* The Experiment Specification is a description of the requested

measurement created by the client. The lab server translates its contents

into hardware commands and runs the measurement.

* The Experiment Result contains a data vector with the results of the

previous measurement. The lab server forwards it back to the client.

14



2.2 An Example Experiment

The following section outlines a round-trip interaction with a batched experiment

iLab built under the Shared Architecture.

1. A user logs on to a Service Broker at his college and selects a Service

Broker group for the session.

2. He then launches an accessible lab client (determined by his group

permissions) and receives the lab server's Lab Configuration.

3. The user prepares his experiment by setting the appropriate parameters in

his lab client.

4. After the user submits a job, the client creates and sends the Experiment

Specification to the Service Broker. The broker adds its own credentials to

the message for Lab Server authorization. The client typically polls, calling

RetrieveResulto periodically.

5. The Lab Server authorizes the incoming experiment request and then runs

verification on the job. If successful, interprets the parameters, runs the

experiment on the hardware, and constructs the Experiment Result. It then

notifies the Service Broker of job completion.

6. The Service Broker may notify the client. The client now successfully polls

for the Experiment Result and can present it to the user.

In summary, the Shared Architecture specifies three different modules and the

Web service interfaces that are needed for transmitting experiment requests,

results, and relevant messages.

15



2.3 iLab Development Methodology

The development of a new lab under the Shared Architecture is a straightforward

process. Once the hardware has been arranged, the format of the lab

configuration and experiment specification documents are specified. With this in

hand, the client and the lab server can both be built up, either in sequence or in

parallel.

The important thing to note is that either way, one module cannot be tested until

we have a substantial part of the other functional. For instance, even if we built

the client completely, we cannot verify its behavior until we have a basic lab

server with the ability to interpret our experiment specifications and communicate

with the hardware. Of course, this is not an advisable way to build a lab, since

we want to modify each component incrementally after we test. This chapter will

introduce a tool that will allow developers of iLabs to test each module in

isolation. It accomplishes this by allowing users to impersonate either the lab

client or server in a message exchange.

2.4 Debugging Web services

The iLab shared architecture leverages the platform independence of Web

services to communicate among distributed systems. Yet debugging a Web

services-based application is a frustrating task for the developer. For one, the

error could lie in any or all of these distributed systems, perhaps even external to

16



the Web service producer and consumer. In addition, most Web services

development environments shield programmers from the complexities of SOAP

and help them adhere to an object-oriented programming paradigm. For

instance, ASP.NET automatically marshals/unmarshals the relevant data fields

from the SOAP message and passes them, as objects, to the Web service

methods. Nowhere in the method lifecycle does the developer need to parse or

write to the actual SOAP message body. Yet in debugging, developers need to

follow the entire path of a raw SOAP transmission to pinpoint problem areas and

debug effectively.

A generic message tracer would be a step in the right direction. Such a tool

would forward each SOAP transmission to a third-party server, which would log

the message for later reference. One product that provides this basic functionality

is the now-deprecated MS Soap Trace Utility [10], although it suffers from

dependence on the Windows platform. This is a particularly egregious limitation,

given Web services' promises of platform independence.

Developers would also benefit from the ability to modify or even compose

messages at different stages of the Web service invocation. For instance,

perhaps a programmer notices a potential bug in the XML produced by the client;

instead of fixing and rebuilding the client, he could fix the XML, forward the

document, and see whether that change produces the right results. Another

common scenario is when a Web service consumer has not yet been fully built,

17



but we still want to see the raw output produced by the Web service method. In

such a scenario, a user could compose a SOAP message and impersonate the

client by sending it to the lab server.

2.5 Solution: iLab Debugging Service Broker (DSB)

These problems in iLab development can be solved by using an interception

layer. Simply put, this is a layer that sits in between each module (client and lab

server) and the service broker. Incoming SOAP documents are stored here until

the user decides to either confirm or modify the message. At that point, the

SOAP message is forwarded to its original destination.

This concept is best understood through some common scenarios. The first

scenario, depicting message passing in the standard SB, is provided for

comparison purposes. In all the scenarios below, it is understood that a) every

message sent between the lab client and lab server passes invisibly through the

Service Broker, and b) users and their SBs have appropriate privileges on the

target lab server.

18



2.5.1 Scenario 1: Standard SB Message Lifecycle2

In this arrangement, shown in Figure 2, a lab client is launched from a service

broker. The client invokes a lab server method, which delivers a SOAP message

to the broker (Step 1). The broker adds its own authentication information and

forwards to the lab server, which authorizes and runs the experiment. The client

polls and eventually retrieves the experiment results from the lab server (Steps 2,

3).

(1)
Submit ()

(2)
RetrieveResult

<',cl ?'>

Figure 2: Sample method call in standard

(3)

(3)
RESULTS

Service Broker

2.5.2 Scenario 2 (DSB): Trace Entire Message Lifecycle

In this scenario, shown in Figure 3 and Figure 4, a lab client is launched from a

service broker. The client invokes a particular lab server method, which delivers

2 Note: In the scenario diagrams, a solid line indicates a method request and a dotted, contiguous line indicates the

corresponding response. The contents sent are positioned adjacent the sending module. The bold numbers represent

stages in the message lifecycle, and are referenced in the text.

19

APPLET
CLIENT

- - --

SERVICE BROKER

LAB SERVER



a SOAP message X to the interception layer (1). The user is now shown this

client-generated message and can choose to modify or forward as-is to the lab

server (2, 3).

/: /

SERVICE
BROKER

To Lab Server...

LAYER

SERVICE

SERVICE
BROKER

RESULTS

....)

(b)

Figure 3: Sequence of Steps in a Sample Method Call in DSB
(a) Client -> Int. Layer -> Lab Server; (b) Lab Server -> Int. Layer -> Client

3 It is understood that when using the DSB, the user and developer are the same. The terms will be used
interchangeably henceforth.

20

APPLET
CLIENT

S..Pl

0 ...... ....

USER

ModfyConir

(a)

APPLET
CLIENT

USER

LAB SERVER



The lab server generates a SOAP response Yto the interception layer (4). The

user once again chooses to modify or accept (5), and the message is

subsequently sent back to the client as the method response (6).

2.5.3 Scenario 3 (DSB): Testing Client w/ no Lab Server

For this testing scenario, illustrated in Figure 4, the DSB includes a 'dummy' lab

server. The client issues a Web service request (1), which is modified and

submitted by the user just as before (2, 3). However, in the absence of a lab

server, the user enters a SOAP message as a response and sends it directly

back to the client (4). There is no need to intercept this message on the response

path because the user himself generated the message.

(4)
RESULTS DUMMY LAB SERVER

(USER)APPLET XML
CLIENT

INTERCEPTION LAYER

Figure 4: DSB allowing User to act as a "Dummy" Lab Server

Note that this is not limited to situations where no functional lab server exists.

Suppose the lab client's graphical engine just underwent a major upgrade.

Typically, users would test this by repeatedly sending requests to the lab server,

21



waiting for results, and examining the client graph. With this dummy lab server,

the user can continually send pre-packaged lab server data that illustrates

various features in the client applet. This avoids needless hardware execution

wait time, since the user is interested in testing aspects of the client applet. In

this approach, one can test each module efficiently and independently.

2.5.4 Scenario 4 (DSB): Testing Server w/ no Lab Client

For this testing scenario, the DSB includes a 'dummy' lab client. When launched,

this client allows users to manually enter a SOAP message to send to a lab

server (1). Here again, there is no need to capture the message in the

interception layer since the user is creating it himself. The lab server generates

the results and sends it to the interception layer (2). Since there is no client

available to manipulate the data, the user would inspect the SOAP response

directly to diagnose any potential lab server problems.

SERVICE
BROKER

LAB SERVER
DUMMY LAB CLIENT

(USER) XML
Ge tLabCon ig ()0

XMLK~

INTERCEPTION
LAYER

Figure 5: DSB allowing User to act as a "Dummy" Lab Client

22



2.6 Design Considerations

There were two options with regard to where to position the interception layer: a)

on the same server as the service broker or b) on an external server. The pros

and cons of each approach are considered below.

2.6.1 DSB-Embedded Interception Layer

In this model, the layer is located within the DSB itself. Thus, when a DSB Web

service method is invoked, the method itself handles all necessary message

storage and retrieval in the interception layer. In this scheme, the method directly

interacts with this buffer through local method calls. This is markedly different

from, for instance, sending networked requests to another server that implements

the interception layer functionality. This design is illustrated in Figure 6.

SERVICE BROKER

<other Web services methods>.... NTERCEPTING LAYER

Method: GetLabConfiguration( {

// get client's original SOAP XML
cLLabCon ig()

II wait for user's modifications

/ get and send modified SOAP

XML..<other Web services methods>....
GetLabConf g()

wkJ-SERE TS

Figure 6: The DSB-Embedded Intercepting Layer Design

23

14k 1,6



The advantage of this model is its conceptual synthesis of the functions of the

DSB. The DSB, as the middleman in the iLab architecture, handles all message

traces, modifications, and submissions in the system. It does not need to

communicate with and rely on another server just for this interception

functionality.

The disadvantage is primarily that this new functionality is now being tied into the

SB's complex code base, potentially creating subtle new bugs. In addition, now

that the two parts of the SB are more tightly coupled, maintenance and

enhancements may also prove to be more difficult.

2.6.2 External Interception Layer

In this model, the layer is located on an external server, separate from the

service broker. The user's client forwards its SOAP messages to this machine,

which presents users with raw requests and responses for modification before

sending to the ultimate destination. Unlike in the embedded model, here the DSB

needs a way of communicating with this external server (for retrieving user-

modified SOAP requests), and vice versa (for retrieving raw SOAP responses for

user modification).

This scheme is depicted in Figure 7. The user retrieves the client's original SOAP

request from the external server and makes any modifications. The DSB then

retrieves these modifications (1) and sends the experiment for execution on the

24



lab server (2). The intercepting server then attempts to retrieve the experiment

results from the DSB and present them to the user for final modification (3),

before being forwarded to the client.

The main advantage of this approach is that the interception layer code is

completely separate from the SB; in fact, no changes at all are required on the

service broker's code base.

INTERCEPTING LAYERISERVER

(1)
XML Retrieve User-

G LabCnf modSERVICE(2gOmod Request BROKER
w s ElITS Send to

Lab Server

USER Retneve Lab
RESULTS Server Results

M k VY/Conimi n(3)

Figure 7: DSB with External Interception Layer

This is also the primary disadvantage, because to communicate with the service

broker, the interception layer must programmatically tie into a service broker

session (normally accomplished by user log in). This would require some

inelegant code that would essentially "screen-scrape" SB credentials from the

DSB login page. Evidently, this is poor from a maintenance point of view because

it introduces a dependency on the system's site layout.

In the other direction, when the DSB attempts to retrieve intercepted messages

from the external server, it must present some form of authentication as well.

25



This introduces the need for a separate SB authentication system on this

external server, a non-trivial and unnecessary complication.

Ultimately, the DSB-Embedded Interception Layer is a better choice for this

application and is the model adopted in my code. It cleanly ties together all DSB

functionality and avoids the inelegant tethering of the external layer with the DSB.

2.7 Example: End-to-End Interaction

A step-by-step example of a complete message transaction (request, response,

interception, and modification) best illustrates the potential benefits of the DSB.

Screenshots of the actual DSB are presented here, although technical details

about the implementation of the system are deferred until the next chapter. The

purpose of this section is to concretely demonstrate the basic usage and

operation of the DSB.

2.7.1 User Interface

Before delving into details, we compare the browser interfaces of the standard

SB and the DSB in Figure 8. The obvious difference between the displays is the

presence of an additional frame in the DSB, which we call the interception

window. This frame serves as the user's main point of contact with the

interception layer and is examined more carefully in Figure 9.

26



Ws-~

My Labs

Standard Service Broker Debugging Service Broker

Figure 8: Browser Interfaces for the Standard versus Debugging Service Broker

There are three main components in the interception window from Figure 9. (a)

shows the request field, where SOAP requests from the client are presented to

the user for modification. (b) shows the response field, where original SOAP

responses are presented to the user for the same purpose before being

forwarded back to the client. (c) will contain some log/timestamp data to help the

user determine which message is being examined. This is currently not yet

implemented, but will be useful in a later version of the DSB (see Chapter 4 for

planned future work).

27



2.8 DSB Message Transaction - Walkthrough

This section gives a detailed walkthrough of a user's complete interaction with

the DSB, starting from the client's generation of a request and ending at the

receipt of a SOAP response. To further put this sequence of events in

perspective, refer to Section 2.5 for a textual overview of the operation of

standard SB. As mentioned previously, implementation details are omitted

entirely in this section; they are presented in Chapter 3.

[Method Name
Forwarded (C)

Response Received:

Couldn't fInd anything(

(a)(b

-TransmitResponse

Figure 9: Structure of Intercepting Window
(a) Request Interception/Modification Field

(b) Response Interception/Modification Field
(c) Method Description/Timestamps

This walkthrough uses the client and server from the Dynamic Signal Analyzer

(DSA) [11], a mature batched-experiment iLab. It also assumes the user has

logged into the broker and that both the DSB and the user have the appropriate

permissions for accessing the DSA lab server.

28

Porwaid Mnss~go I

(b)



2.8.1 Step # 1: Request Method Interception

,* Mm* -kbay 5410'R55 C2 J;~WI* c~iwf $55*WbeanM~ Th websvv8s Cjtiyweb5" ~ tf ebbaj9*N~e _, CAMisAisL1

My Labs
Group: DSA Users

Lab Client DSA Client (for Valdivia) Mtsges for DAC int(for VadMa)

Method Name

Forwarded

Response Received

-Olntfind anything!

Trans espehee

Figure 10: DSB polling for Client requests

The DSA client issues a GetLabConfiguration() request (to retrieve the lab

configuration) before it displays itself. The interception window reloads itself

periodically, checking for any new messages in the DSB's interception layer. It

will continue to poll until it populates the request interception field on the left.

29



2.8.2 Step # 2: Modification of Intercepted Request

My Labs
Group: DSA Users

Lab Client DSA CHent (for Valdivia)

v"$M on21
Descrtdon

tCoea EIadR eaIstnlteanAr

Method Name

Forwarded Wa dng

Response Received Waiting

<nS0P-ENVEtve1ope aelas~iLab--http://iiab.e5t.edu"
xla. .5i- tsp://a.3.orI/2001/X L3 hem-instance-

,-ana.k--:btp://atsaeae.,La0sp.org/acap/eata1ope/">
<SnkP-DEnV:BodY

nSP -EV~na.dingstnle-whttp-//acbs~aa.,.iaop.org/soap/encoding/->

<iLabn1abL.c"a5ata d5 sk-Dca.-

xi: typ-.xd~si aa">a24f6ce23bl763Za51ta7Z5la3</iLat~lea~rve5>
</ iLabLOetLabConiasatio>

</nnst-ENtv wan>
</5nAP-uN:n-oe

<V

Pbn*I54e~seqe I liansedid5ealtante

Figure 11: Intercepted SOAP Request; waiting for user modifications

Once the client's GetLabConfiguration() request has reached the interception

layer, the window eventually finds it and populates the request field accordingly.

At this point, reloading stalls while the DSB waits for the user to examine and

modify the SOAP request as necessary. Once changes have been made, the

user clicks "Forward Message" to forward the request to the DSB. The broker

takes this modified message and transmits it directly to the Lab Server.

At this point, the interception window again begins to poll, now looking for the

SOAP response from the Lab Server.

30

Moss ages for DSA Client (far Valdivia)



2.8.3 Step # 3: Intercepted SOAP Response

Figure 12: Intercepted SOAP Response from Lab Server; waiting for user modifications

The Lab Server processes the user-modified SOAP request and sends its

response to the interception layer.

The interception window keeps polling until it retrieves this response, which is

copied into the response text field. The window now stalls to allow the user to

make his modifications to the response and click the "Transmit Response"

button.

31



2.8.4 Step # 4: Forwarding SOAP Response to Client

Figure 13: Forwarding of modified SOAP Response to Client

Once the developer has modified the original Lab Server SOAP response, the

DSB retrieves this modified message and delivers it to the lab client as its

response.

Upon receiving this response, the client constructs its interface (namely, parts

that are dependent upon the lab configuration) and displays itself.

32



The next chapter will discuss the design of the DSB and notable technical

successes achieved during the process. It describes in detail the implementation

of each component in the DSB, and also the hurdles encountered in the course

of development.

33



Chapter 3: System Architecture

This chapter takes an in-depth look at the low-level implementation of the DSB.

Previous sections have described DSB user interaction via screenshots and

diagrams. Here, the focus will be on

" outlining technical challenges faced during implementation and their

respective solutions, and

" giving future developers a solid architectural overview to facilitate

maintenance and build improvements upon the existing DSB.

3.1 Configuration

The DSB system is running on a Dell PowerEdge 650 server operating on

Windows 2003. The server runs the iLabs v6.0 service broker release (with an

embedded interception layer) on 11S 6.0 with a SQL Server 2003 backend.

To test the interception layer, we use the standard Dynamic Signal Analyzer Java

client to contact a development copy of the DSA Lab Server. Our test DSB

(henceforth named Valdivia broker) is running on the same machine [12].

Hosting both on one server is certainly not a requirement, and there is no reason

why this arrangement should affect the behavior of either module.

34



3.2 Overview

We first sketch, in some technical detail, the standard sequence of events when

a user's client makes a Web service request through the DSB. For a more

comprehensive, high-level overview with screenshots, refer to Chapter 3, Section

5 or Figure 3.

3.2.1 Request Stage (Client -> Interception Layer -> Lab Server):

This section walks through a sample Web service client request. It examines the

interplay between the user, interception window, and DSB in transmitting an

experiment specification to the Lab Server. The next section does a similar

analysis for the Lab Server response back to the client.

1. Client launched => triggers a Web service call (WSCaI()) on the DSB

(sends SOAP Request R)

2. User browser's "interception window" (Chapter 3, Section 5.1) periodically

polls database for newly intercepted messages

3. Web service receives R, records it in a database table of traced messages

a. Method stalls until it detects user confirmation/modification of R

4. Once window finds R, it is presented to user for modifications (R -> R')

and forwarding

5. R'retrieved by DSB, sent as input to Lab Server

a. Web service blocks while experiment executes

b. User's interception window polls for SOAP response

35



3.2.2 Response Stage (Lab Server-> Interception Layer-> Client):

A similar process occurs after the Lab Server generates a response S.

" DSB Web service method inserts S into the traced messages table, stalls

until it detects confirmation/modification of S

" User's interception window retrieves S, approves/makes changes (S -> S')

* Web service returns S' as SOAP output to the client

3.3 Detailed System Design

This section first looks at the intricacies of handling Web services in ASP.NET,

the environment in which the DSB runs. It describes shortcomings in standard

ASP.NET Web services processing and proposes an architectural solution to

resolve these difficulties.

The remainder of this section also looks at the implementation of the browser

interception window and examines a challenging concurrency issue that shaped

the design of this module.

3.3.1 ASP.NET Web services processing

ASP.NET offers a great deal of infrastructure for using existing Web services.

WSDL descriptions of a Web service method can be automatically generated

from any .NET method, so a third party can easily construct the appropriate

SOAP envelope in sending a request.

36



ASP.NET also provides marshaling/unmarshaling features for its Web services

methods, extracting the necessary argument values from the SOAP request and

appropriately packaging the return values in the SOAP response. With this

paradigm in place, Web service methods, and thus .NET developers, typically do

not have to manipulate messages on an XML level.

3.3.2 The SoapExtension Class

With this ease of use comes a price - ASP.NET Web services do not, by default,

allow methods access to the underlying SOAP messages. Yet for interception

and debugging, this is an absolutely crucial requirement since users are

manipulating request/response messages on an XML level.

Fortunately, ASP.NET provides a supplemental facility for lower-level processing

[13]. The SoapExtension class exposes the SOAP input and output streams,

typically hidden by the ASP.NET infrastructure, to any associated Web services

method. It grants these methods access to the raw XML of the SOAP request

and the ability to manually write XML into the SOAP response. The class'

ProcessMessage () function is called during each stage of the Web service

method lifecycle, specifically before and after marshaling/unmarshaling. Listing 1

demonstrates, via informal pseudocode, the general structure and function of

ProcessMessage() in the DSB when associated with a Web service procedure

called methodY(.

37



SoapExtension for methodY(
ProcessMessage () pseudocode

Inout LStream soapRequest;
Outputstream soapResponse;

Database db;

void ProcessMessage ()

// original request => DB
storeclientrequest-db(soapRequest.contents)

// poll for user modified request
while ( !db.hasModifiedRequest ()

// sleep for three seconds and polL again

// makes the modified request available to WS method
soapRequest.contents = db.getModifiedRequest ()

// generates LS result and stores in db
methodY ()

// poll for user modified response
wh ile ( !db.hasModifiedResponse ()

// sleep for three seconds and poll again

// send modified response as WS method output
soapResponse.contents = db.getModifiedResponse ()

Listing 1: Pseudocode for ProcessMessage() - Role in DSB

Figure 13 shows how SoapExtension fits into DSB by tracing through a

GetLabConfigurationo request from the client. Upon receiving a request from the

input stream, the SoapExtension for GetLabConfiguration() stores the message

in a local database table TracedMessages (see Appendix A for table

structure) and stalls, polling for user input (1). The database table essentially acts

as the interception layer buffer described previously. In its interception window,

the user's browser retrieves this message directly from the database and permits

any modifications (2). Once the user has submitted any changes, the

SoapExtension finds the modified message and passes it as input to the main

body of GetLabConfigurationo (3). In the meantime, the SoapExtension

38



SOAP Input Stream

SOAP Output Stream

USER

(2)

SERVICE

SoapE tension:
GetLa Config()

()

BROKER

Method Body:
GetLabConfig( To LE

(3)

XMIL
Ge LabCo fig()

difi )

Getog ()

Traced Messages

Figure 13: SoapExtension handling of SOAP method request

now begins polling for a modified Lab Server response (see Figure 14). This

method can now parse the input as necessary before executing the experiment

on the lab server. Figure 14 illustrates the role of SoapExtension on the response

path. The results are retrieved by GetLabConfiguration('s method call, upon

which they are delivered to the TracedMessages database table (1). Once the

user's interception window has retrieved this results message and he has made

his changes (2), SoapExtension finally stops polling and copies the modified

response to the SOAP output stream (3). Whatever message is copied to the

39

Server



SERVICE BROKER

SOAP Input Stream

SoapExtension: Method Body: (1)
GetLabConfig() etLabConfig() RESULTS

SOAP Output Stream

Traced Messages

Figure 14: SoapExtension handling of SOAP method response

output stream will then be sent back to the originator of the request, the lab

client.

This new model entails a significant change in the way a Web service method

behaves. Previously, the method processed its arguments (demarshaled from

the SOAP input) and returned an object (marshaled into the SOAP output). With

a SoapExtension, the method can still use its demarshaled arguments, but since

the extension is expecting its response on the output stream, the service method

must write its XML response to the output stream. This allows

ProcessMessage() to subsequently operate on its contents.

Appendix B contains a simplified listing of the modified GetLabConfiguration)

method and its associated SoapExtension.

40



3.4 Client Side Behavior

As in the standard SB, the user launches the client through the page

myClient . aspx (Figure 8). In the DSB, as explored in Chapter 3, this page

contains an additional interception window called myMessages . aspx (Figure 9).

This page shows users' traced SOAP messages and allows them to modify and

send them back to the appropriate SoapExtension.

myMessages . aspx initially reloads itself periodically, searching the database for a

Web service request issued from the applet. Once a message was found and

displayed to the user, the page would stop reloading and wait for the user to

submit changes to the database; the Web service retrieves and uses this as its

input message. myMessages . aspx subsequently starts reloading itself, searching

the database now for the SOAP response message. When this message is found

and displayed to the user, the page stops reloading and allows the user to enter

his changes. This changed copy is finally submitted, first to the DSB and then to

the client.

3.4.1 Reloading Conditions

This page is set to reload only when it expects to read a message from the

database: either the original SOAP request or the unmodified SOAP response.

myMessages . aspx' server-side code checks for these two conditions and if met,

programmatically inserts the necessary reloading JavaScript into the page.

41



The server-side code for myMessages .aspx' is given in Appendix C.

3.4.2 US Concurrency Problems

Microsoft Internet Information Server (IIS) 6.0, a popular Web server supporting

ASP.NET, typically assigns a dedicated request thread per current session.

Thus, if a user tries to launch two dynamic pages that require processing on the

server, the assigned thread will service one request and block on the other.

This property of IIS led to a subtle threading issue in myclient . aspx. The initial

version of myMessages .aspx had been part of the session (by default). However,

because the Web service methods sent by the applet are implicitly requested

through mylient . aspx, myMessages. aspx' reload call blocks while the Web

service invocation completes.

We explored two potential solutions to this problem. One way to achieve

concurrency without explicitly using more threads is to use asynchronous

programming. In .NET, one can dispatch a job to be performed concurrently and

automatically invoke a callback method once it completes. We could theoretically

have the database message polling performed asynchronously and in the

callback, update the display when complete. This would not work, however,

because the callback executes on the server and cannot affect the browser

display.

42



The other solution to this problem is to disable state on one of the concurrent

pages, a feasible yet inelegant workaround. Thus, IIS can dispatch

myMessages . aspx and myClient . aspx to separate request threads since the

one thread/session constraint no longer applies. Yet with this approach, we must

explicitly pass the iLab session identifier to the page as an HTTP request

parameter. This value, typically stored as a cookie, is used by myMessages. aspx

to identify messages from the current session.

3.5 Technical Evaluation

Building a system connecting so many disparate parts together is a daunting

task, especially when the interactions between them are hard to systematically

capture. Nevertheless, the current incarnation of the DSB, while still very much a

prototype, manages to fulfill its original objectives and in a clean way.

The following chapter will draw specific conclusions about the success and

efficacy of the DSB approach. It will evaluate the system on various standard

metrics, such as extensibility and ease of maintenance. This section will also

outline the work that needs to be done before the DSB can be shifted to a

production setting.

43



Chapter 4: Conclusions and

Recommendations for Future Work

4.1 Progress on Objectives

My overall impression of the DSB was very positive. The system was architected

in a conceptually clear manner with definite end goals in mind, and those

objectives were all met by the system. Most notably, the DSB supports each of

the usage scenarios illustrated in Section 2.5.

4.2 Evaluation of System Design

The following section critiques the DSB on the basis of its architectural merits.

4.2.1 Modularity and Maintainability

Despite the assertion that binding the intercepting layer and SB code together

would hurt maintainability, the SoapExtension mechanism allows a nice

separation between Web services method logic and logic to control the method's

SOAP input and output. Because of this conceptual divide, we have two modular

components. Most importantly, because the Web services methods never directly

know of their SoapExtensions, we introduce only very limited changes into the

method bodies.

44



4.2.2 Extensibility

The SoapExtension approach also proved very extensible. Because

ProcessMessage() does not contain any code specific to a given Web services

method, our lone SoapExtension class can potentially handle all the Web

services methods in the Shared Architecture. Currently, it is associated with all

the major method calls, such as GetLabConfigurationo, Submit(, and

RetrieveResulto.

4.2.3 Usability

As demonstrated by the screenshots in the last chapter, the DSB's interception

window is easy-to-use and convenient since it is launched within the Service

Broker page itself. The reloading behavior was designed to be non-intrusive (i.e.

no reloading while user is modifying a SOAP message) and works just as

expected.

4.3 Recommendations for Future Work

Although the current version of the DSB is a successful proof-of-concept, there

are a few additional pieces of functionality that can be added to increase its

overall usefulness.

45



4.3.1 Grant User Greater Control

One problem with the current design of the system is that the user has very little

control over the flow of execution in the system. Regardless of what feature or

problem he is debugging, the user must passively intercept and forward all

messages that pass through the system.

One idea for improving the user experience is to grant him greater control over

the interception behavior. For instance, if the developer knows the problem lies in

retrieving results, there is no need for him to capture and view

GetLabConfiguration). This can be accommodated by dynamically allowing

users to select the methods they want to intercept during a session - in a

checkbox within the interception window, for instance.

Another feature that would help the user is a dynamically maintained log of all

method calls during a particular session. The interception window might show a

table that lists all messages, times sent, etc. Selecting a particular entry within

the table would populate the request and response fields with the corresponding

SOAP messages from that method call (not editable, of course). The user can,

for example, try a variety of different modifications to a request and then compare

each of their responses, leading to more effective debugging.

All in all, this project was a terrific opportunity to address some of major

inefficiencies in the iLab development process. The DSB has so far shown

46



promising results. With an increased emphasis on the user experience, it has the

potential to become an invaluable tool for the lab developer. It is also my sincere

hope that a streamlined debugging system such as the DSB will decrease the

technical barriers to entry posed by the distributed iLab architecture and Web

services technology.

47



Appendix A -- Interception Layer: DB Table

The interception layer is accessed asynchronously by the various DSB

components. The layer, which acts as a buffer for incoming messages until

developers retrieve and modify them, is actually implemented as a table in a

database.

The structure of the table, Traced_Mes sages, is as follows:

Column Name Data Type Description
Message id Int Unique id for each message
( = primary key)
Userid Varchar (500) Cookie identifier unique per

session
Origmessage Varchar (2000) SOAP request sent by client
Modmessage Varchar (2000) Origmessage modified by

user
Response Text (16) SOAP response received

from Lab Server
Response modified Text (16) Response modified by user
Message-received Datetime Time Orig message received

by DSB
Modmessagereceived Datetime Time Modmessage

submitted by user
Response-received Datetime Time Response received by

DSB from Lab Server
Complete Smallint (0,1) Indicates whether response

has been transmitted to client

48



Appendix B - Sample SoapExtension

To allow users to access raw SOAP messages in ASP.NET, a Web service

method must have an associated SoapExtension subclass. The bulk of the work

in this class is done by the Process_Message () . A sample implementation of

this method, simplified from the actual DSB code, is provided below for

illustration purposes.

[MethodImpl(MethodImplOptions.Synchronized)]
public override void ProcessMessage(SoapMessage message)

{
try

switch (message.Stage) {

case SoapMessageStage.AfterDeserialize

DateTime currTime = DateTime.Now;
double millis = 0;

// loop until we find a modi fied message
while(millis < 100000)

string command = "SELECT mod-message FROM

TRACEDMESSAGES WHERE message id = " +
"(SELECT MAX(message_id) FROM

TRACEDMESSAGES WHERE userid = '+"

context .Request .Cookies ["iLabSBCookie"].

Value + "')";

SqlCommand comm =

new SqlCommand(command, myConnection);

SqlDataReader readSQL = comm.ExecuteReader(;

readSQL . Read ();

if(readSQL.IsDBNull(0))

System.Threading.Thread.Sleep(1000);
continue;

49



// recovered a mod message

string modMessage = readSQL.GetString(O);

readSQL.Close );
break;

HttpContext.Current.Request.InputStream.Position = 0;

HttpContext.Current.Items ["SoapInputStream"] = modM

StreamReader rdr = new

StreamReader(context.Request.InputStream);

StringWriter writer = new StringWriter(modMessage);

writer.Write(rdr.ReadToEnd());

HttpContext.Current.Items ["SoapOutputStream"] =

appOutputStream;

break;

}

case SoapMessageStage.AfterSerialize

StreamReader reader = new StreamReader(appOutputStream);

SqlConnection myConnection = new SqlConnection(
System.Configuration.ConfigurationSettings.
AppSettings["conn"]);

myConnection.Open();

string command =
"UPDATE TRACEDMESSAGES SET response = '" + messages
+ "', responsereceived = GETDATE() WHERE messageid

(SELECT max(messageid) FROM

traced_messages WHERE " +
" userid = '" +

HttpContext .Current .Request .Cookies ["iLab

SBCookie"].Value + "' ) ";

SqlCommand sqlComm = new SqlCommand(command, myConnection);

sqlComm.ExecuteNonQuery (;

myConnection.Close(;

the modi4 fi, rs n m e to -m r I

while (millis < 100000)

sLring command = "SELECT responsemodified FROM

TRACEDMESSAGES WHERE messageid = " +

"(SELECT MAX(message id) FROM
TRACEDMESSAGES WHERE userid = '" +

50

}



myConnection);

comm.ExecuteReader();

context.Request.Cookies["iLabSBCookie" ].V

alue + I ) "V;

SqlCommand comm = new SqlCommand(command,

SqlDataReader readSQL =

readSQL.Read();

if(readSQL.IsDBNull(0))

System.Threading.Thread.Sleep(1000);

Continue;

TimeSpan ts = DateTime.Now - currTime;

millis = ts.TotalMilliseconds;

readSQL.Close (;

continue;

else

// found modified response

string modResponse = readSQL.GetString(0);

readSQL.Close );
break;

output to tihe outout strean

StreamReader rdr = new

StreamReader(context.Request.InputStream);
StringWriter writer = new StringWriter(modResponse);
writer.Write (rdr.ReadToEnd());

reamtn ( aPapp putStr e am, T htp 'tpUtS
strm.Flusho;
strm.Position = 0;
CopyStream(strm, httpOutputStream);

strm.Close ();
}

51

{

}

}

}

I



Appendix C -- myMessages.aspx

The user's interception window in the browser is generated by

myMessages.aspx. The following C# code excerpt details the loading of this

window:

public class myMessages: System.Web.UI.Page

private void PageLoad(object sender, System.EventArgs e)

if (Page.lsPostBack)
{

// add a javascript block
string newPage = "myMessages.aspx?id=" +

HttpContext.Current. RequestQueryString["id"];
string jScript = @"<script language='javascript'>lnitializeTimer('

newPage + "');</script>";
Page. RegisterClientScriptBlock("PopWindow6",jScript);

return;

// session state disabled, so have to pass this manually
ilablD = HttpContext.Current.Request.QueryString["id"];

myConnection.Openo;

DateTime currTime = DateTime.Now;

/string ilablD = Request.QueryString("id");
//sw.WriteLine("ilab ID: " + ilabID);

try

string command = "Select messageid, origmessage,
response, mod-message, message_received, mod_message received, responsereceived "+

" FROM TracedMessages WHERE messageid =+
"(SELECT max(messageid) FROM

TRACEDMESSAGES WHERE complete = 0 AND userid ='+
HttpContext.Current.Request.QueryString["id"] + ')";

52



myConnection);

response...");

SqlCommand sqlComm = new SqlCommand(command,

SqlDataReader reader =
sqlComm.ExecuteReadero;

/if there is any such message
if(reader. Reado)
{

string mod_message;
/string orig-message;
string response-message;

if (!reader.IsDBNull(2))
{

sw.WriteLine(DateTime.Now + ": Retrieved a

// everything else should be available
response-message = reader.GetString(2);
Horig_message = reader.GetString(1);
modmessage = reader.GetString(3);

responseBox.Text = response-message;
messageBox.Text = modmessage;

//DateTime dt = reader.GetDateTime(6);
/IlblResponseTime.Text = dt.ToStringo;

I

has gotten in yet
// otherwise, just check whether the modified message

else
{

response

Retrieved the modified message only...");

reader.GetString(3);

//IblResponseTime.ForeColor = Color.Green;
lblResponseTime.Text = "Waiting";

// modified message has been received, but no

if (!reader.IsDBNull(3))
{

sw.WriteLine(DateTime.Now +

messageBox.Text =

// extract the time this modified message
was sent

DateTime dt2 = reader.GetDateTime(5);

lblForwardTime.Text = dt2.ToString(;

string newPage =
"myMessages.aspx?id=" + HttpContext.Current.R equest.QueryString["id"];

53



string jScript = @"<script
language='javascript'>lnitializeTimer(" +

newPage + "');</script>";
string jScript = @"<script

language='javascript'>InitializeTimer(""http://www.cnn.com/"");</script>";

Page.RegisterStartupScript("PopWindow2",jScript);
}

// only original message is retrieved
else

lblForwardTime.Text = "Waiting";

sw.WriteLine(DateTime.Now +
Retrieved the original message...");

messageBox.Text =
reader.GetString(1);

}

else

string newPage = "myMessages.aspx?id=" +

HttpContext.Current.Request.QueryString["id"];

string jScript = @"<script
language='javascript'>lnitializeTimer("' +

newPage +
"') ;</script>";Page. RegisterStartupScript("PopWindow3",jScript);

}

reader.Closeo;
myConnection .Closeo;
sw.Closeo;

return;

catch (Exception e3)
{

sw.WriteLine(DateTime.Now + "********EXCEPTION
ENCOUNTERED*******: "+ e3.ToString() + "\nTrace: " + e3.StackTrace);

finally

//sw.WriteLine(DateTime. Now + ": Outta here...");
myConnection.Closeo;
sw.Closeo;

54



Bibliography

1. "The Challenge of Building Internet Accessible Labs." 2001. Accessed 10 May 2006

<http://icampus.mit.edu/iLabs/architecture/downloads/downloadFile.aspx?id=2>.

2. V. Judson Harward, J. A. del Alamo, et al: "iLab: A Scalable Architecture for Sharing

Online Experiments". International Conference on Engineering Education (Gainesville,

FL, 16-21 October 2004).

3. J. Hardison, D. Zych, J. A. del Alamo, et al: "The Microelectronics WebLab 6.0 - An

Implementation Using Web Services and the iLab Shared Architecture". Exploring

Innovation in Education and Research (Tainan, Taiwan, 1-5 March 2005).

4. G. Viedma, I. Dancy, et al: "A Web-Based Linear-Systems iLab". 2005.

5. J. A. del Alamo, L. Brooks, et al: "The MIT Microelectronics WebLab: a Web-Enabled

Remote Laboratory for Microelectronics Device Characterization". 2002 World Congress

on Networked Learning in a Global Environment (Berlin, Germany, May 2002).

6. E. Christensen, F. Curbera, et al: "Web Services Description Language (WSDL) 1.1".

W3C. 2001. Accessed 11 May 2006. <http://www.w3.org/TR/wsdl>.

7. M. Gudgin, M. Hadley, et al: "SOAP Version 1.2 Part 1: Messaging Framework". W3C.

2003. Accessed 11 May 2006. <http://www.w3.org/TR/soap1 2-part1>.

8. K. Yehia: "The iLab Service Broker: a Software Infrastructure Providing

Common Services in Support of Internet Accessible Laboratories", MIT

Master of Science thesis, May, 2004.

9. D. Booth, H. Haas, et al: "Web Services Architecture". W3C. 2004. Accessed 9 May

2006. <http://www.w3.org/TR/ws-arch>.

10. "SOAP Toolkit 3.0". 2005. Accessed 10 May 2006.

<http://www.microsoft.com/downloads/details.aspx?familyid=c943cOdd-ceec-4088-9753-

86f052ec8450&displaylang=en#QuickinfoContainer>.

55



11. G. Viedma: "Design and Implementation of the Feedback Systems Web Laboratory".

Master of Engineering Thesis. MIT, 2005.

12. <http://valdivia.mit.edu/DebuggingBroker>

13. T. Ewald: "Accessing Raw SOAP Messages in ASP.NET Web Services". 2003.

Microsoft. Accessed 5 May 2006.

<http://msdn.microsoft.com/msdnmag/issues/03/03/WebServices>

56




