
A Dynamically Partitionable Compressed Cache
David Chen∗, Enoch Peserico and Larry Rudolph,SMA Fellow

MIT Laboratory for Computer Science, 200 Technology Square, Cambridge, MA 02139
∗Now at Avici Systems

Abstract— The effective size of an L2 cache can be increased by
using a dictionary-based compression scheme. Naive application
of this idea performs poorly since the data values in a cache
greatly vary in their “compressibility.” The novelty of this paper
is a scheme that dynamically partitions the cache into sections of
different compressibilities. While compression is often researched
in the context of a large stream, in this work it is applied
repeatedly on smaller cache-line sized blocks so as to preserve
the random access requirement of a cache. When a cache-line is
brought into the L2 cache or the cache-line is to be modified, the
line is compressed using a dynamic, LZW dictionary. Depending
on the compression, it is placed into the relevant partition.

The partitioning is dynamic in that the ratio of space al-
located to compressed and uncompressed varies depending on
the actual performance, Certain SPEC-2000 benchmarks using
a compressed L2 cache show an 80reduction in L2 miss-rate
when compared to using an uncompressed L2 cache of the same
area, taking into account all area overhead associated with the
compression circuitry. For other SPEC-2000 benchmarks, the
compressed cache performs as well as a traditional cache that
is 4.3 times as large as the compressed cache in terms of hit
rate, The adaptivity ensures that, in terms of miss rates, the
compressed cache never performs worse than a traditional cache.

I. I NTRODUCTION

One obvious way to increase the effective on-chip cache size
is data compression. Although compression and decompres-
sion do require extra computation, the savings in latency and
energy that can be reaped often justify the additional effort.
This is especially true in the case of L2/L3 caches, where
avoiding a miss means avoiding a (very expensive) access to
off-chip main memory, and where larger size offers greater
opportunities for compression.

Cache data compression presents several challenges. One
would like to involve only few words at a time in compres-
sion/decompression operations (avoiding excessive computa-
tional overhead) but at the same time to leverage the redun-
dancy present in the contents of thewhole cache (maximizing
the compression opportunities). Also, the logic for accessing
compressed and uncompressed data is different, and since the
“compressibility” of data can change drastically depending
on the application, choosing to devote two distinct areas of
the chip respectively to compressed and uncompressed data
would almost always result in underutilization of one of the
two, negating the benefits of compression. Finally, the fact
that compressed data at the same time requires less “space”
but more “time” requires careful consideration when choosing
which data to compress, and which data to evict from the
cache when a miss occurs.

We solve these problems in our “Partitioned Compressed
Cache” design, or PCC for brevity. PCC uses dictionary-
based rather than sliding-window compression (unlike e.g.

[2]), to allow selective, independent decompression of any
cache line. Entries in the dictionary contain common strings
of up to the size of a cache line; cache lines can thus be
compressed and decompressed on a line by line basis. PCC
uses a “clock-scheme” that cycles over the compressed entries
in the cache marking the corresponding dictionary entries as
active while another “clock-scheme” cycles over the dictionary
entries clearing out any inactive entries.

Cache entries can be compressed or not, and assuming
that a cache line could be compressed down to1/s of
its uncompressed size, we allow each cache set to contain
anywhere fromn to sn entries. No matter what,sn address
tags and LRU bits are maintained even though onlyn entries
might be present in the set. When a new cache line is brought
in or part of a cache line value is updated, PCC attempts to
compress the line. A line is considered to be compressed if its
compressed size is below a fixed threshold, e.g., a threshold
of 16 bytes for a 32 byte cache line. Then, enough of the least
recently used items are evicted from the cache so as to make
room for the new item. In this way, the number of entries
in a cache set varies depending on how compressible are the
entries.

We develop a new metric to evaluate performance: how
much larger a traditional cache which does not exploit data
compression would have to be to match the performance of
our PCC. For fairness, performance is measured not in terms
of the abstract notion of “hit rate”, but rather, in terms of
the amount of computation that can be carried out in a given
time interval - including the area and time overheads that the
compression/decompression mechanism requires (our extimate
is conservative in the sense that we do not take into account
the fact that a smaller cache could probably sustain a faster
clock cycle). Our PCC design can significantly increase the
“apparent” size of the cache, in some cases up to80%.

After reviewing related work in section2, the rest of the
paper is organized as follows. In section3 we look at the PCC
compression mechanism; in section4 at how PCC manages
the data present in the cache, deciding which data to keep in
the cache and which data to compress; in section5 we present
an experimental evaluation of the PCC design; we conclude
in section6 summarizing our results and looking to avenues
of future research.

II. RELATED WORK

While compression has been used in a variety of applica-
tions, it has only recently started to be researched extensively
in the area of processor caches. Previous research includes
compressing bus traffic to use narrower buses, compressing

code for embedded systems to reduce memory requirements
and power consumption, compressing file systems to save disk
storage, and compressing virtual and main memory to reduce
page faults.

Citron et al. [7] found an effective way to compact data and
addresses to fit 32-bit values over a 16-bit bus, while Thumb
[17], [12] and others [22], [15], [16] apply compression to
instruction sets and binary executables. Douglis [9] proposed
using a fast compression scheme [20] in a main memory
system partition and shows several-fold speed improvement
in some cases and substantial performance loss in others.
Kjelso et. al [14] and Wilson et al. [21] consider an additional
compressed level of memory hierarchy and found up to an
order of magnitude speedup. IBM’s MXT technology [18]
uses the scheme developed by Benveniste et al. [3] with 256
byte sub-blocks, a 1KB compression granularity, combining
of partially filled blocks, along with the LZ77-like parallel
compression with shared dictionaries compression method.

Yang et al. [23], [24] explored compressing frequently
occurring data values in focusing on direct-mapped L1 con-
figurations and found that a large portion of cache data is
made of only a few values, which they name Frequent Values.
By storing data as small pointers to Frequent Values plus the
remaining data, compression can be achieved. They propose
a scheme where a cache line is compressed if at least half of
its values are frequent values.

PCC is similar to Douglis’s Compression Cache in its
use of partitions to separate compressed and uncompressed
data. A major difference is that Douglis’s Compression Cache
serves data to the higher level in the hierarchy only from the
uncompressed partition, and so if the data requested is in the
compressed partition, it is first moved to the uncompressed
partition. The scheme developed by Benveniste et al. and the
Frequent Value cache developed by Yang et al. serve data
from both compressed and uncompressed representations as
the PCC does, but both lack dynamic, adaptive partitioning.

III. T HE PCC COMPRESSIONALGORITHM

The dictionary compression scheme of PCC is based on the
common Lempel-Ziv-Welch (LZW) compression technique
[19]. When an entry is first placed in the cache or when an
entry is modified, the dictionary is used to compress the cache
line. The dictionary values are purged of useless entries by
using a “clock-like” scheme over the compressed cache to
mark all useful dictionary entries.

With LZW compression, the raw input stream data is
compressed into another, shorter output stream of compressed
symbols. Usually, the size of each uncompressed symbol, say
of d bits, is smaller than the size of each compressed symbol,
say ofc bits. The dictionary initially consists of one entry for
each uncompressed symbol. See Figure 1 for an example.

Compression works as follows. Find the longest prefix of the
input stream that is in the dictionary and output the compressed
symbol that corresponds to this dictionary entry. Extend the
prefix string by the next input symbol and add it to the
dictionary. The dictionary may either stop changing or it may
be cleared of all entries when it becomes full. The prefix is
removed from the input stream and the process continues.

AppendPointerIndex

“cde”e2d+32d+6

“bac”c2d+12d+5

“db”b42d+4

“cd”d32d+3

“abc”c2d2d+2

“ba”a22d+1

“ab”b12d
………

“c”c3

“b”b2

“a”a1

2dentries
not stored

2c-2d

entries

Space-efficient Dictionary

cdeababcdbacde7

bacababcdbac6

dbababcdb5

cdababcd4

abcababc3

baaba2

abab1

String addedInput readStep

Input: “ababcdbacde”

AppendPointerIndex

“cde”de32d+6

“bac”ac22d+5

“db”b42d+4

“cd”d32d+3

“abc”bc12d+2

“ba”a22d+1

“ab”b12d
………

“c”c3

“b”b2

“a”a1
2dentries
not stored

2c-2d

entries

Reduced-latency Dictiona

Fig. 1. The space-efficient dictionary stores only one uncompressed
symbol per entry, while the reduced-latency dictionary stores the
entire string. The table at the lower half of the figure shows the
order in which entries are added to the initially empty dictionaries.

Unlike LZW, PCC compresses only a cache line’s worth
of data at a time. A space-efficient dictionary representation
maintains a table of2c entries, each of which contains two
values: a compressed symbol that points to some other dic-
tionary entry and an uncompressed symbol, for a total of
c + d bits per entry. The uncompressed symbols need not
be explicitly stored in the dictionary as the first2d values
represent themselves. Given a table entry, the corresponding
string is the concatenation of the second value to the end of
the string pointed to by the first value.

To compress a cache line, find the longest matching string,
then output its dictionary symbol. Repeat until the entire
line has been compressed. Decompression is much faster
than compression. Each compressed symbol indexes into the
dictionary to provide an uncompressed string. For a line
containingnc compressed symbols,sl/d−nc table lookups are
needed for decompression. The decompression latency can be
improved by increasing the dictionary size and by parallelizing
the table lookups. Naturally, increasing the compressed symbol
sizec while keeping the uncompressed symbol sized constant
will increase the size of the associated table and enable more
strings to be stored.

One way to purge dictionary entries is by maintaining ref-
erence counts for each entry updated whenever a compressed
cache line is evicted or replaced. PCC uses a more efficient
method to purge entries sweeping through the contents of the
cache slowly, using a clock scheme with two sets of flags.
Each of the two sets has one flag per dictionary entry, and the
status of the flag corresponds to whether or not the dictionary
entry is used in the cache. If there is a flag in either set, it
is assumed that the entry is being referenced. Compression
or decompression also cause the appropriate dictionary entries
flag to be set. A second process sweeps through the dictionary
purging entries. Alternatively, one could keep track of the most
frequently used symbols in a special “cache” - whenever one
of these symbols appears to enjoy a sufficiently high utilization

input buffer

scscscsc …

uncompressed
symbols string

pointer

Dictionary

sc

input
index

-1

output buffer

sdn … sdn sdn sdn

sdn

sc

sc

sc -sd

k k

1

hashes

dictionary

pointer

storage queue

string

length counter

string

buffer

dictionary

cleanup

flag banks

input buffer

dddd …

compressed

symbol

register
d

output buffer

c … c c c

… …

c

c

c

c

c
c

Fig. 2. Compression and Decompression Logic: note that the design
shown here does not include parallel compression or decompression, and
therefore exhibits longer latencies for larger compression partition line sizes.
n represents the number of uncompressed symbols stored in each dictionary
entry.

compared to the least utilized symbol in the dictionary, one
could replace the latter with the former in the dictionary, while
at the same either decompressing or simply invalidating all
the correspoding entries in the cache. While we are currently
investigating this second approach, the additional complexity
involved does not seem to be balanced by a sufficiently large
increase in performance, especially when larger dictionaries
are involved.

Compression time can be reduced dramatically by searching
through only a strict subset of the entire dictionary for each
uncompressed symbol of the input. A hash of the input is used
to determine which entries to examine. If the dictionary is
stored in multiple banks of memory, choosing hash functions
such that entries are picked to be in separate banks allows
these lookups to be done in parallel. Alternatively, content
addressable memory (CAM) can be used to search all entries
at the same time, reducing the number of dictionary accesses
to the number of repetitions needed, or s l/d accesses.

Decompression and compression logic is illustrated in Fig-
ure 2.

Decompression and compression can each be done in par-
allel to reduce their latency. To do so effectively, a method of

performing multiple dictionary lookups in parallel is needed.
One solution is to increase the number of ports to the dic-
tionary. Another possibility is to keep several dictionaries,
each with the same information. This provides a reduction in
latency at the expense of the increased area needed for each
additional dictionary. While decompressing, there are multiple
compressed symbols which need to be decompressed. Since
these symbols are independent of one another, they can be
decompressed in parallel.

In practice, parallelizing the decompression process may not
actually reduce latency significantly. The experiments in this
work show that performance is best when dictionary sizes are
such that only one or two lookups are needed per compressed
symbol. This is largely due to the low cost of increasing
dictionary size in comparison to the benefits of decreasing
the number of lookups.

IV. PCC MANAGEMENT

Since not all data values are compressible nor are they all
accessed at the same rate, an adaptive scheme can make the
best use of the limited resources. An examination of the data
values occurring in six benchmarks clearly show this variabil-
ity, see Figure 3. For all unique cache lines accessed during
the execution, the figure shows a histogram of the number
of data values as a function of their compressibility. What is
important to note is the variability between the benchmarks.
Moreover, the overlaying curves show the usefulness of data;
that is how often the data is referenced.

It is possible to statically partition the cache into compressed
and uncompressed sections. Experiments reported elsewhere
show that each benchmark requires a different partitioning to
get performance improvements. Not only do data values differ
in how much they can be compressed and how often they are
accessed, cache sets have different access patterns. Some sets
are “hot” experiencing a large number of accesses and some
sets experience “ thrashing” indicating they do not have enough
capacity.

PCC uses the same basic storage allocation scheme of a
traditional cache, i.e., a set of address tags and a set of data
values. The number of address tags (and comparators) is fixed,
but the number of cache lines in the set varies. For purposes of
exposition, assume that two compressed entries require about
the same number of bits as a single uncompressed entry;
modifications to other ratios are straightforward but require
more complicated circuitry. Let n be the number of normal
entries, that is the data store for a set is 32n bytes. This
space could store 2n compressed entries. In general 2i + j =
2n entries can be stored where j entries are compressed.
Associated with each 32 byte field is one bit indicating whether
there is one uncompressed or two compressed items present.
The cache has 2n tags and maintains LRU information on all
2n entries, even though there may only be n entries actually
in the cache.

On a cache hit, the cache line is either fetched directly from
the data table or it must first be decompressed. Decompression
is done via the dictionary as outlined in the previous section.
Since compressed items enable a larger number of items to be

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

128

256

384

512

640

768

896

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

art data characteristics

usage
usefulness

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

128

256

384

512

640

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

dm data characteristics

usage
usefulness

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

1024

2048

3072

4096

5120

6144

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

equake data characteristics

usage
usefulness

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

512

1024

1536

2048

2560

3072

3584

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

mcf data characteristics

usage
usefulness

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

32

64

96

128

160

192

224

256

288

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

mpeg2 data characteristics

usage
usefulness

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48
0

1024

2048

3072

4096

5120

6144

7168

8192

9216

compressibility

am
ou

nt
 o

f d
at

a
(K

B
)

swim data characteristics

usage
usefulness

Fig. 3. The histograms indicate the amount of data available at different levels
of compressibility. The x-axis gives the size of the compressed line in bytes.
The y-axis gives the amount of data in kilobytes, covering all unique memory
addresses accessed during the simulation (an infinite sized cache). The top
two histograms show that most data values are highly compressible, while
the bottom-most right histogram shows that many data values would require
more than 39 bytes to store a 32 byte cache line if compressed. The overlaying
curves show the usefulness of data at different levels of compressibility. The
y-axis gives the probability that a hit is on a particular cache line in the
corresponding partition. This y value is equivalent to taking the total number
of hits to the corresponding partition and dividing by the number of cache
lines in that partition as given by the bars.

32 byte normal cache line 16 byte compressed cache line

Decompresion
Logic

16 way tag table 4 to 16 way data table

A . . .B C D A . . .B C D

.

Fig. 4. A sample configuration in which cache lines are assumed to be
compressible to 1/2 their size, e.g. a 32 byte line compressed requires only
16 bytes. A cache set has tags and LRU bits for 16 ways, but as few as 8 or
as many as 16 actually entries.

LRU Entry
Compressed Normal

C
om

pr
es

se
d

Replace expand

N
or

m
al

If LRU2 cmprssed If LRU2 normal Replace
merge & replace replace LRU2

TABLE I

REPLACEMENT ALGORITHM

stored in the cache, the decompression overhead is offset by
the benefit of a smaller number of main memory accesses.

A. The replacement strategy

The most interesting situation happens during a cache miss -
which is a comparatively rare event for L2/L3 caches. When a
cache miss occurs, the newly retrieved item will replace either
the LRU item except sometimes it may replace two items.
When the new cache line is fetched from main memory, an
attempt is made to compress it. If the size of the compressed
line is below a threshold, e.g., 16 bytes, then it is considered
compressible otherwise it is incompressible. It must then be
stored into the data table.
PPC Replacement Scheme:There are several cases to con-
sider when inserting the cache line into the data table, see
Table I. The easiest case is when the new item and the
LRU item have the same status – either both compressible
or both incompressible – then the new item simply replaces
the evicted LRU item. When the new item is compressible
and the LRU item isn’ t, then the LRU item is evicted and its
storage is converted to two compressible entries, one that is
left empty (and marked as LRU). The case when the new item
is incompressible has two subcases. If the second most LRU
item is incompressible, then it is the only one that is evicted
and replaced; the LRU item remains in the cache.If the two
most LRU items are compressible, then they are both evicted
and their space is converted to a normal entry.

Note that in this last case there is no need for the two
“halves” of what will become the new uncompressed entry
to be adjacent. Since we have tag bits for each half - which
will be scanned in parallel anyway - we can simply break up
the line in cache, and reassemble it when it is read with the
same circuitry that extracts the line from the line set where
it is stored. In fact, through this mechanism we could even
save the additional “compressed/uncompressed bit” : the fact
that a line is compressed or uncompressed is indicated by the
presence of respectively one or two tags corresponding to it.

Updating the value of a part of a cache line can obviously
change its compressibility, potentially requiring allowing com-
pression or requiring an “expansion” of the line. However,
compressibility of a line can also change as a result of another
line being modified, since this might cause an update in the

dictionary. It is important to note, though, that such an update
can only increase, and not decrease the compressibility, since
an entry in use will never be purged from the dictionary.
The worst case scenario is then that a line will remain
uncompressed in cache even when it could be compressed.

In terms of cache hits, PCC always performs at least as well
as a comparable standard cache. This is easy to see when one
realizes that the LRU element in any set of a PCC cache was
used no more recently than the LRU element in the corre-
sponding set of a standard cache. The contents of a PCC cache
are then a superset of those of a traditional cache of the same
size, guaranteeing that, in the worst possible case, the only
additional cost of employing a PCC will be the (small) cost, in
terms of area and latency, of the compression/decompression
mechanism.

B. A latency-sensitive replacement strategy

While the above replacement strategy works well in im-
proving hit rates, it does not account for the fact that a cache
hit to a compressed item has longer latency than a hit to an
uncompressed item.

It is possible to modify the strategy in a way that may
slightly decrease the hit ratio (but never below that of a tra-
ditional cache) while also significantly decreasing the number
of times an item is decompressed.

In a level one (L1) cache, the most recently used item in a
cache set usually experiences the most accesses. The second
most recently used item in the set experiences the second
most accesses, and so on. When the L1 cache is too small
for the application, the level two (L2) cache behaves in a
similar fashion. In other cases, accesses to the L2 cache are
fairly random as to which element is accessed in a set. In
such situations, it is helpful if the number of items in the set
is large. In other words, the behavior of an L2 cache differs
among applications and the behavior of each set in the L2
cache differs.

When the L2 behaves like an L1 cache, the MRU item will
be frequently accessed. In such a case, it would be better if
that item was stored in its uncompressed form. On the other
hand, when items are accessed uniformly, it is better for the
items to be compressed.

We modify the replacement scheme as follows.
Latency-sensitive Replacement Scheme:Whenever an MRU
item is accessed and it is compressed, then it is replaced in
the cache in its uncompressed form. This may cause the LRU
item to be evicted. Whenever an LRU item is to be evicted
from the cache and it is not compressed, PCC attempts to keep
the item in the cache by compressing two other items in the
set. The items of set are scanned from LRU to MRU order and
for each item that is not compressed, an attempt is made to
compress it. If two items are found, then they are compressed
and the LRU item remains in the cache.

This approach can be generalized as follows: whenever a
compressed item is accessed for the mth time after the last
access to the LRU item, uncompress that (frequently used)
item. High values of m will lead to a cache which will
aggressively compress everything, and are more reasonable

in the case of a large gap between the additional cost of
decompression and that of a miss, while small values of m (for
example 2, as in the case described above) will lead to a cache
which behaves more like a traditional cache, and compresses
only items that are not used that frequently, an approach that
makes more sense when the gap between the additional cost of
decompression and that of a miss is not as large. A reasonable
compromise seem to set m equal to the ratio between the two
costs. Note that, for all values of m, a PCC will not suffer
more misses than a traditional cache.

V. THE PERFORMANCE OF PCC

We use simulation to evaluate the effectiveness of the PCC.
Simulation is done using a hand-written cache simulator whose
input consists of a trace of memory accesses. A trace of mem-
ory accesses is generated by the Simplescalar simulator[4],
which has been modified to dump a trace of memory accesses
in a PDATS[11] formatted file. Applications are compiled with
gcc or F90 with full optimization for the Alpha instruction
set and then simulated with Simplescalar. The benchmark
applications are from the SPEC2000 benchmark suite and
simulated for 30 to 50 million memory references.

The L1 cache is 16KB, 4 way set associative, with a 32 byte
line size, and uses write-back. The L2 cache is simulated with
varying size and associativity, with a 32 byte line size, and
write-allocate (also known as fetch on write). We assume an
uncompressed input symbol size d of 8 bits, and a compressed
output symbol size c of 12 bits. The dictionary stores 16
uncompressed symbols per entry, making the size of the
dictionary (2c − 2d)(d ∗ 16 + c), which evaluates to 537,600
bits, or 67,200 bytes.

A. Metrics

The common metric for the performance of a compression
algorithm is to compare the sizes of the compressed and
uncompressed data, i.e., the compression ratio [2], and for
a cache is the miss rate reduction metric. However, the two
configurations are not easily comparable as the partitioned
cache uses more tags and comparators per area while at
the same time using much less space to store data than the
traditional cache.

We introduce the interpolated miss rate equivalent caches
(IMRECs) metric that indicates the effective size of the cache.
That is, how large must a standard cache be to have the same
performance of a PCC cache (including the additional cost of
tags and dictionary). We wish to maximize the IMREC value; a
value above 1 means that the PCC cache behaves like a larger-
sized standard cache. For a given PCC configuration and miss
rate, there is usually no naturally corresponding cache size
with the same miss rate. Consequently, we interpolate linearly
to calculate a fractional cache size. Our sample points are
chosen by picking the size of a cache way, and then increasing
the number of ways.

The size of a standard cache is the total number of cache
lines multiplied by the cache line size. The size of a PCC cache
includes the size of the dictionary, the additional address tag
bits and additional status bits.

in
cr

ea
si

n
g

 m
is

s
ra

te

increasing cache size

knee

small change in IMREC

la
rg

e
ch

an
g
e

in
 M

R
R

in
cr

ea
si

n
g

 m
is

s
ra

te

increasing cache size

knee

large change in IMREC

sm
al

l
ch

an
g
e

in
 M

R
R

Fig. 5. To the left of the knee, small increases in IMREC ratio correspond
to large increases in MRR. To the right of the knee, small increases in MRR
correspond to large increases in IMREC ratio.

Let M(Cj) be the miss rate of a j-way standard cache and
S(C) the size of cache C, the IMREC ratio is as follows:

IMREC ratio = S(Ci) + (S(Ci+1)−S(Ci))(M(Ci)−M(PCC))
M(Ci)−M(Ci+1)

when M(Ci) >= M(PCC) and M(Ci+1) < M(PCC)

Another metric is the miss rate reduction (MRR), or the
percent reduction in miss rate. But once again, we linearly
interpolate to get the miss rate for an equivalently sized
standard cache.

Percent Miss Rate Reduction
=

(
MR(Ci) − (MR(Ci)−MR(Ci+1))(S(PCC)−S(Ci))

S(Ci+1)−S(Ci)

)
× 100%

when S(Ci) <= S(PCC) and S(Ci+1) > S(PCC)

It is important to understand what can causes large swings
in IMREC ratio and MRR. Figure 5 shows typical curves of
miss rate versus cache size. Miss rate curves typically have
a prominent knee where miss rate decreases rapidly until the
knee and then very slowly afterwards. The graph to the right
shows that to the right of the knee, a small increase in MRR
corresponds to a large increase in IMREC ratio. The graph to
the left shows that to the left of the knee, a small increase in

0 1 2 3 4 5
7

0.8

1

1.2

1.4

1.6
art IMREC ratio over time

time (processor memory accesses)

IM
R

E
C

 r
at

io

0 1 2 3 4 5
7

0.6

0.8

1

1.2

1.4

1.6

1.8
equake IMREC ratio over time

time (processor memory accesses)

IM
R

E
C

 r
at

io

Fig. 6. We plot the art and equake IMREC ratios over time so as to
know how long to simulate before recording results.

IMREC ratio corresponds to a large increase in MRR. While it
may seem that the small miss rate improvements gained when
to the right of the knee are unimportant, applications operating
to the left of the knee are likely to be performing so badly that
the issue of whether to use a PCC is not a primary concern.
Thus most situations of interest occur to the right of the knee,
where large IMREC ratios indicate that a PCC provides the
same performance gains as a large cache but with much less
hardware.

In our simulations, we account for the latency incured by
the decompression.

Let L1 be the number of hits to L1, Hu be the number
of hits in PCC to items that are not compressed, Hc be the
number of hits to items that are compressed, and Mpcc be the
number of L2 misses. Then, the time to access memory with
a PCC is

MApcc = C1L1 + C2Hu + C3Hc + C4Mpcc

For a standard cache, the number of L1 hits are the same,
but the number of L2 hits and L2 misses differ. The time to
access memory with a standard cache is:

MAsc = C1L1 + C2L2 + C4Msc

where C1, C2, C3, andC4 are the times to access L1, L2,
L2 compressed, and DRAM.

We define the average L2 access time quotient as,
ATQPCC = MAsc

MAP CC

Finally we must make sure that our simulations have run

IMREC ratio

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

art dm equake mcf swim

benchmark

IM
R

E
C

 r
at

io 4 ways
6 ways
8 ways
10 ways

Fig. 7. The IMREC values for five benchmarks show that PCC clearly
improves the performance. PCC can sometimes perform like a cache 80
percent larger. It never performs worse that the same sized standard cache.

for long enough that the values presented are representative
of the benchmark. We do this by plotting IMREC ratios over
time. While some benchmarks like mcf clearly reach steady
state quickly, others, like equake, have more varied behavior
and take longer, as shown in Figure 6.

B. Results of the simulations

Although we ran many simulations over the large space
of configurations, we present only one slice. Varying the
dictionary size, the compressibility threshold (e.g. requiring
a line to be 8 bytes or less before we consider it to be
compressible), and many others result in too many graphs.
We present what we believe to be a reasonable configuration.

The IMREC values for five benchmarks, Figure 7, show a
performance improvment. PCC can sometimes perform like
a cache 80 percent larger. It never performs worse that the
same sized standard cache. Note that since IMREC takes into
account the extra storage allocated to the dictionary, when PCC
contains no compressed values, it will be considered inferior
to an equally sized cache.

When we take into account the latency to decompress a
cache line, the results are less impressive, sometimes showing
that PCC is slower than a standard cache, Figure 8.

The latency-aware replacement scheme indeed reduces the
overhead of decompressing without significantly reducing the
number of hits. Figure 9 shows that the performance in terms
of hits does not change very much, but the latencies numbers
are much better, Figure 10. Note that access time quotients just
compare the times and since the standard cache may access
memory more frequently, PCC can do much better.

VI. CONCLUSION

Compression can be added to caches to improve capacity -
although one has to address several interesting issues for it to
be effective. A dictionary-based compression scheme allows
for reasonable compression and decompression latencies and
good compression ratios. Keeping the data in the dictionary
from becoming stale can be avoided with a clock scheme.

Various techniques can be used to reduce the latency
involved in the compression and decompression process.
Searching only part of the dictionary during compression,
using multiple banks or CAMs to examine multiple dictionary

Average L2 access time quotient
(100 cycles to main memory)

0

0.5

1

1.5

art dm equake mcf swim

benchmark

4 ways
6 ways
8 ways
10 ways

Average L2 access time quotient
(500 cycles to main memory)

0
0.5

1
1.5

2
2.5

3
3.5

art dm equake mcf swim

benchmark

4 ways
6 ways
8 ways
10 ways

Fig. 8. The ATQ values for five benchmarks show that even when the
latency of decompressing cache items, PCC still can improve the performance
although not for all applications. The graphs assume 100 or 500 cycle time
to main memory.

IMREC ratio

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

art dm equake mcf swim

benchmark

4 ways
6 ways
8 ways
10 ways

Fig. 9. The IMREC values for the modified PCC replacement strategy that
tries to keep the MRU item decompressed.

entries simultaneously, and compressing a cache line starting at
different points in parallel can reduce compression latency. De-
compression latency can be reduced by storing more symbols
per dictionary entry and decompressing multiple symbols in
parallel. There are many different compression schemes some
of which may perform better or be easier to implement in
hardware.

The benefits of having a cache design like our PCC have
not yet been fully explored. For example, CRCs of the cache
data can be done for only a small incremental cost, an idea
which is proposed also in [18]. The partitioning based on
compressibility may also naturally improve the performance
of a processor running multiple jobs, some of which are
streaming applications. The streaming data is likely to be hard
to compress, and can therefore automatically be placed into
its own partition separate from non-streaming data.

Average L2 access time quotient (100 cycles to main
memory)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

art dm equake mcf swim

benchmark

4 ways
6 ways
8 ways
10 ways

Average L2 access time quotient
(500 cycles to main memory)

0

0.5

1

1.5

2

2.5

art dm equake mcf swim

benchmark

4 ways
6 ways
8 ways
10 ways

Fig. 10. The ATQ values corresponding to Figure 9.

ACKNOWLEDGMENTS*

The authors would like to thank the Malleable Cache team:
Derek Chiou, Josh Jacobs Prabhat Jain,Peter Portante and Ed
Shu, for many helpful discussions. We would like to thank
Srini Devadas for in depth technical help. A part of this work
was funded by Defense Advanced Research Projects Agency
under the Air Force Research Lab contract F30602-99-2-0511,
titled “Malleable Caches for Data-Intensive Computing” .

REFERENCES

[1] Data Compression Conference.
[2] B. Abali, H. Franke, X. Shen, D. Poff, and T. B. Smith. Performance

of hardware compressed main memory, 2001.
[3] C. Benveniste, P. Franaszek, and J. Robinson. Cache-memory interfaces

in compressed memory systems. In IEEE Transactions on Computers,
Volume #50 number 11, November 2001.

[4] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. In
Technical report, University of Wisconsin-Madison Computer Science
Department, 1997.

[5] Miachael Burrows, Charles Jerian, Butler Lampson, and Timothy Mann.
On-line data compression in a log-structured file system. In Proceed-
ings of the 5th International Conference on Architectural Support for
Programming Languages and Operating System (ASPLOS), pages 2–9,
October 1992.

[6] D. T. Chiou. Extending the Reach of Microprocessors: Column and
Curious Caching. PhD thesis, Massachusetts Institute of Technology,
1999.

[7] Daniel Citron and Larry Rudolph. Creating a wider bus using caching
techniques. In Proceedings of the First International Symposium on
High-Performance Computer Architecture, pages 90–99, Raleigh, North
Carolina, 1995.

[8] M. Clark and S. Rago. The Desktop File System. In Proceedings of the
USENIX Summer 1994 Technical Conference, pages 113–124, Boston,
Massachusetts, 6–10 1994.

[9] Fred Douglis. The compression cache: Using on-line compression to
extend physical memory. In Proceedings of 1993 Winter USENIX
Conference, pages 519–529, San Diego, California, 1993.

[10] Peter A. Franaszek, John T. Robinson, and Joy Thomas. Parallel com-
pression with cooperative dictionary construction. In Data Compression
Conference, pages 200–209, 1996.

[11] E. E. Johnson and J. Ha. PDATS: Lossless addresss trace compression
for reducing file size and access time. In IEEE International Phoenix
Conference on Computers and Communications, 1994.

[12] Kevin D. Kissell. MIPS16: High-density MIPS for the embedded market.
In Proceedings of Real Time Systems ’97 (RTS97), 1997.

[13] M. Kjelso, M. Gooch, and S. Jones. Design and performance of a
main memory hardware data compressor. In Proceedings of the 22nd
Euromicro Conference, pages 423–430, September 1996.

[14] M. Kjelso, M. Gooch, and S. Jones. Performance evaluation of computer
architectures with main memory data compression, 1999.

[15] Charles Lefurgy, Peter Bird, I-Cheng Chen, and Trevor Mudge. Im-
proving code density using compression techniques. In Proceedings of
the 30th International Symposium on Microarchitecture, pages 194–203,
Research Triangle Park, North Carolina, December 1997.

[16] S. Liao. Code Generation and Optimization for Embedded Digital Signal
Processors. PhD thesis, Massachusetts Institute of Technology, June
1996.

[17] Simon Segars, Keith Clarke, and Liam Goudge. Embedded control
problems, Thumb, and the ARM7TDMI. IEEE Micro, 15(5):22–30,
1995.

[18] R. B. Tremaine, P. A. Franaszek, J. T. Robinson, C. O. Schulz, T. B.
Smith, M. Wazlowski, and P. M. Bland. IBM Memory Expansion
Technology (MXT). In IBM Journal of Research and Development vol.
45, No. 2, pages 271–285, March 2001.

[19] T. Welch. High speed data compression and decompression apparatus
and method, US Patent 4,558,302, December 1985.

[20] Ross N. Williams. An extremely fast Ziv-Lempel compression algo-
rithm. In Data Compression Conference, pages 362–371, April 1991.

[21] Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The case for
compressed caching in virtual memory systems. In Proceedings of 1999
Summer USENIX Conference, pages 101–116, Monterey, California,
1999.

[22] A. Wolfe and A. Chanin. Executing compressed programs on an
embedded RISC architecture. In Proceedings of the 25th International
Symposium on Microarchitecture, Portland, Oregon, December 1992.

[23] J. Yang, Y. Zhang, and R. Gupta. Frequent value compression in
data caches. In 33rd International Symposium on Microarchitecture,
Monterey, CA, December 2000.

[24] Y. Zhang, J. Yang, and R. Gupta. Frequent value locality and value-
centric data cache design. In The 9th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
Cambridge, MA, November 2000.

