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Abstract

This thesis explores the problems of lossy source coding and information embedding.
For lossy source coding, we analyze low density parity check (LDPC) codes and low
density generator matrix (LDGM) codes for quantization under a Hamming distor-
tion. We prove that LDPC codes can achieve the rate-distortion function. We also
show that the variable node degree of any LDGM code must become unbounded for
these codes to come arbitrarily close to the rate-distortion bound.

For information embedding, we introduce the double-erasure information embed-
ding channel model. We develop capacity-achieving codes for the double-erasure
channel model. Furthermore, we show that our codes can be efficiently encoded and
decoded using belief propagation techniques. We also discuss a generalization of the
double-erasure model which shows that the double-erasure model is closely related to
other models considered in the literature.
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Chapter 1

Introduction

This thesis explores some aspects of the complexity inherent in source coding. Source

coding is one of the fundamental problems in digital communications. In information

theory, we model a source of information as a random variable, or more generally as

a stochastic process. We would like to find a compact representation of this process,

for example using only binary digits (0 and 1). Finding a compact representation is

useful because this allows fewer bits to be transmitted when the source is sent to a

receiver.

The standard version of source coding is lossless source coding. In this frame-

work, an encoder maps the source into bits, or more generally into some alphabet.

The receiver sees the encoding, and needs to reconstruct the source exactly. One

of the classic results of information theory is the source coding theorem [26], which

characterizes the best possible compression we could ever hope to achieve. Lossless

source coding has been studied thoroughly, and several efficient solutions are known,

including Huffman codes, arithmetic codes, and the Lempel-Ziv algorithm.

In many applications, it may not be necessary for the decoder to reconstruct the

source exactly from the compressed version. For example, complex real-world data

such as audio and video can typically be distorted slightly without affecting the quality

substantially. The popular JPEG 2000 image compression algorithm takes advantage

of fact that the human eye is not very sensitive to the high frequency components of

an image in order to achieve better compression. By using fewer bits to encode the

11



high frequency components, the decoder cannot exactly recover the original image,

but the reconstruction still looks good. The MPEG standard uses similar techniques

which do not allow exact reconstruction at the decoder, but maintain high-quality

nonetheless.

Information theory provides a theoretical basis for analyzing algorithms like JPEG

2000. Specifically, we can study lossy source coding. In lossy source coding, the

decoder does not have to reconstruct the source exactly. Instead, there is a distortion

measure which is a function of the particular source realization and the reconstruction.

This distortion measure quantifies how good a particular reconstruction is for a source

realization. The fundamental result in this area is the rate-distortion theorem [26].

This theorem gives a characterization of the optimal tradeoff between compression

rate and (average) distortion.

From a theoretical standpoint, modelling a distortion measure that captures how

humans perceive signals such as audio or video is difficult. Thus, currently there is

no way of determining how well an algorithm like JPEG is performing compared to

an optimal lossy compression algorithm. Instead, in order to gain insight into the

problem, we will consider simple distortion measures and analyze the performance

of compression algorithms under these distortion measures. In particular, this thesis

focuses on the binary symmetric source. This source outputs i.i.d. symbols that are 0

with probability .5 and 1 with probability .5. One of the simplest distortion measures

that we can consider is the Hamming distortion. The Hamming distortion between

a source and a reconstruction is simply the number of positions where the source

and the reconstruction differ, i.e., the Hamming distance between the source and the

reconstruction. The rate-distortion theorem can be used to show that for a binary

symmetric source under Hamming distortion, if we allow a relative distortion of J, 1

then the smallest possible compression rate is 1 - hb(6). 2

Although the rate-distortion theorem gives us a simple formula for the optimal

'Assume the source is n symbols long. Then, the relative distortion is the Hamming distance
between the source and the reconstruction divided by n. Thus, the relative distortion is always
between 0 and 1.

2 hbo is the binary entropy function. For a more formal discussion of the rate-distortion theorem
see, e.g., [26].
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compression rate for a binary symmetric source under Hamming distortion, the result

is not very useful for designing efficient algorithms for lossy source coding. The

standard proof of the rate-distortion theorem uses a randomly generated quantizer.

The result is that complexity of compression and decompression scales exponentially

with the source block length if we simply try to use the random quantizer used in the

proof. To develop a practical solution for the binary symmetric source, a quantizer

with more structure is needed. Based on the close relationship between lossy source

coding and channel coding, it is natural to examine good channel codes for potential

as lossy source codes.

Recently, low density parity check (LDPC) codes [13] have been the object of

much study. These codes are based on sparse bipartite graphs. Even though LDPC

codes have much more structure than random codes, they can come arbitrarily close

to channel capacity for many channel models. More importantly, LDPC codes are

equipped with an efficient decoding algorithm, belief propagation (BP) [11, 12, 28].

Belief propagation has applications in many disciplines, and has been used to at-

tack problems in machine learning, statistical inference, and error-correcting codes.

Briefly, this algorithm works by passing messages along the edges of a graph. By it-

eratively updating these messages, BP computes approximations to certain marginal

probabilities. For example, when applied to LDPC codes, belief propagation passes

messages along the Tanner graph the code. This can be used to find the most probable

codeword given a particular received channel output.

Based on the excellent performance of LDPC codes and BP decoding, we will

examine LDPC codes for lossy source coding. In [3], the connection between lossy

source coding and channel coding is developed for the binary erasure channel (BEC)

and an appropriate distortion model. The authors are able to modify BP in order to

develop efficient encoding algorithms for their simple distortion measure. In Chapter

2, we present some results on LDPC codes and other related codes which generalize

some of the results in [3] to the case of Hamming distortion. While we are unable

to develop efficient algorithms 3 for encoding and decoding, we prove several results

3Using linear codes, the time required for decoding a lossy source code is reduced to polynomial
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that suggest that LDPC codes have potential as low-complexity lossy source codes.

In particular, one of our results is that if we use an optimal encoding algorithm,

LDPC codes can come arbitrarily close to the rate-distortion function for a binary

symmetric source under Hamming distortion.

In addition to lossy source coding, this thesis examines information embedding.

The information embedding problem, also known as channel coding with transmitter

side information, combines aspects of both channel coding and lossy source coding.

At a high level, the setup for information embedding is similar to standard channel

coding - a transmitter would like to send data to a receiver over a noisy channel.

The difference in information embedding is that the channel is now parameterized by

some state information. Given this channel state information, the transmitter can

potentially send data at higher rates than he could without the state information.

This general framework arises in many applications, including coding for a mem-

ory with defects, broadcast channels, inter-symbol interference channels, multi-access

channels and digital watermarking; see, e.g., [15,16]. One of the fascinating results

is that in many cases, it suffices for only the transmitter to know the channel state

information. Specifically, for many models, the capacity does not increase if the re-

ceiver also knows the channel state information. One method for proving results of

this nature uses random codes and a binning argument. As with the rate-distortion

theorem, this has the drawback that such constructions have very high complexity.

Thus, developing low-complexity schemes for binning could lead to efficient solutions

for many problems.

In Chapter 3, we examine the information embedding problem for a particular

state and channel model. This model is very closely related to the model in [15].

For our model, we are able to develop a capacity-achieving coding scheme that can

be efficiently encoded and decoded using BP. The analysis of this scheme shows the

interplay between lossy source coding and information embedding.

time. The time for encoding remains exponential using naive algorithms, and for many linear codes,
computing the optimal encoding is NP-complete. Our measure of an efficient algorithm is a linear-
time algorithm, i.e., O(n) if the block length is n.
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Chapter 2

Lossy Source Coding

2.1 Introduction

In this chapter we present several results on lossy source coding. As discussed in the

introduction, this problem has many practical applications. Also, as we will see in

Chapter 3, to solve the problem of coding for a memory with defects [15], it seems

necessary to have a code that performs well for lossy source coding under a Hamming

distortion. Thus, there are many reasons to look for efficient solutions to the problem

of compression under a Hamming distortion.

Because of their effectiveness in channel coding, LDPC codes are quite attractive

as candidates for lossy source codes. Our focus in this chapter is to give some general

performance bounds for LDPC codes and their duals, low density generator matrix

(LDGM) codes. As part of our analysis, we will revisit the simpler distortion model

considered in [3]. It is shown in [3] that LDPC codes are in some sense bad for this

distortion model, but that LDGM codes can achieve the appropriate rate-distortion

bound with efficient encoding and decoding algorithms. The results in this chapter

(Section 2.2 and Section 2.3) show that LDPC codes are actually not as bad as one

might think, in that these codes can come arbitrarily close to the rate-distortion

functions for the distortion considered in [3], and for quantization under a Hamming

distortion.

From the point of view of graphical complexity (as measured by the number of
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edges in the graph), [24] shows that certain codes with bounded graphical complexity

per bit can come arbitrarily close to the rate-distortion function for quantization under

a Hamming distortion. In Section 2.4, we prove that while LDGM codes can come

arbitrarily close to the rate-distortion function, the variable degree of these codes

must become unbounded in order to get closer to the rate-distortion function. Thus,

other constructions have the potential for better performance than LDGM codes, if

efficient algorithms can be found for encoding.

2.2 LDPC Codes Are Good For BEQ

To start our study of lossy source codes, we will reexamine the binary erasure quan-

tization (BEQ) problem considered by [3]. The BEQ problem is defined as follows.

We are given a string X of n symbols from the alphabet {0, 1, *}. We would like to

compress X. The constraint is that the reconstructed version of X generated by the

decoder must match the original source at all of the positions where X is 0 or 1. We

can reconstruct * symbols to 0 or 1. The following lemma, from [3], gives a useful

relationship between good codes for the BEC and good codes for BEQ.

Lemma 1. A linear code C with block length n can recover from a particular erasure

sequence (under ML decoding) iff the dual code C' can quantize the dual sequence,

i.e., the sequence where all the erased symbols have been turned into unerased symbols

and vice versa. Also, if C can recover from an erasure sequence using BP decoding,

then C'L can quantize the dual sequence using a dualized form of BP. (For the details

of how to dualize BP to work for BEQ, see [3].)

Based on Lemma 1, one can show that LDGM codes that are duals of capacity-

achieving LDPC codes for the BEC will be capacity-achieving for BEQ. On the other

hand, in [3] the authors prove that low complexity LDPC codes are not effective

for this problem. Specifically, they prove that the check node degree of a capacity-

achieving LDPC code for BEQ must be at least Q(log n). This result would suggest

that LDPC codes are bad quantizers, because even for the simple distortion in BEQ,

these codes have at least logarithmic complexity.
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As we will demonstrate, there is a simple way around the lower bound proved

in [3]. The bound in [3] is reminiscent of the Q(log n) lower bound for LT codes on

the BEC. By combining LT codes with a precode, Raptor codes are able to beat the

lower bound for LT codes and achieve constant complexity encoding and decoding

per bit. 1 So, let us consider the dual of Raptor code. Figure 2-1 shows the structure

of a Raptor code, and figure 2-2 shows the structure of the dual of a Raptor code.

LT Code

LDPC Precode

Figure 2-1: Raptor Code - This code performs well on the BEC

Dual LT Code

Dual Precode

Figure 2-2: Dual Raptor Code - This code performs well for BEQ

Figure 2-2 warrants some explanation. If we define G to be a generator matrix

for the LT part of a Raptor code, and H to be a parity check matrix for the precode,

then a Raptor code is the set {cI~x s.t. xG = c, HxT = 0}. Therefore, the dual is

the set {yIBz s.t. GyT + (zH)T = 0}. To see this, note that for any words c and y

satisfying these constraints, cyT = xGyT = x(zH)T = xH TZT = (zHxT)T = 0. Thus,

the set of y's defined by our constraint must be contained in the dual code. Assuming

that G and H have full rank, it is easy to see that the dimension of our set of y's

lIn chapter 3, we will discuss LT codes in more detail. For now, it suffices to know that LT codes
are one class of LDGM codes, and that a Raptor code is just an LT code with an LDPC precode.
The only property used in this section is that Raptor codes can achieve capacity for the BEC using
BP decoding.
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is the maximum possible value, which shows that the constraint exactly specifies the

dual. Translating the constraint into normal graph notation [6], computing GyT can

be accomplished by dualizing the LT part of the Raptor code, i.e., switch the variable

and check nodes as in the top part of figure 2-2. 2 To compute (zH)T we just dualize

the precode, i.e., switch the variable and check nodes as in the bottom part of figure

2-2. Thus, the constraint Gy T+ (zH)T = 0 is exactly captured by the graph in figure

2-2. Because the dual constraint only asks for some z to exist, to interpret figure 2-2

properly, the codeword is placed on the top set of variable nodes, and the bottom

variables nodes are all erased, i.e., we can set them arbitrarily in order to satisfy the

check nodes.

Because Raptor codes are capacity-achieving on the BEC, it follows from lemma

1 that the duals of Raptor codes are capacity-achieving for BEQ. Now, imagine re-

drawing figure 2-2 with all the variable nodes on the top, i.e., we move the variables

nodes corresponding to the dual precode to the top of the figure. Then, we see that

a dual Raptor code is really just an LDPC code. The important point is that the

variable nodes corresponding to the precode are always erased. Thus, a dual Raptor

code is an LDPC code which has been padded so that a few variable nodes are always

erased. 3

The precode is the crucial component that allows a Raptor code to beat the lower

bound for LT codes. The dual of the precode is an LDGM code. Thus, dual Raptor

codes get around the lower bound for BEQ by padding the input with a small number

of erased symbols, and these erased symbols form an LDGM code over the check nodes

of the dualized LT code. This means that no check node is connected to only unerased

symbols, so the lower bound from [3] does not apply. Just as the LDPC code in a

2For LDGM and LDPC codes drawn using Forney's normal graph notation [61, the dual code can
be obtained by swapping the variables nodes with the check nodes. More generally, swapping the
variables nodes with the check nodes allows us to compute GyT if we do not view the check nodes
as constraints, but instead think of them as producing outputs.

3Interpreting a dual Raptor code as an LDPC code suggests that a Raptor code can be interpreted
as an LDGM code. This is true in the sense that if we move the check nodes of the precode in figure
2-1 to the top of the figure, then the result is an LDGM code where the last set of code bits must
always be 0. The dual result to our claim that LDPC codes are good for BEQ is something of the
form "LDGM codes can be modified slightly to perform well on the BEC."
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Raptor code "fixes" the few variable nodes we could not recover by decoding the LT

code, the LDGM part of a dual Raptor code fixes the few parity checks we could

not satisfy using the dual LT code. The simple modification of designating a set of

positions as padding symbols allows LDPC codes to achieve capacity for BEQ. This

suggests that we should not give up on LDPC codes so quickly, and that they might

be useful for coding under a Hamming distortion.

2.3 LDPC Codes Are Good Under Hamming Dis-

tortion

In this section we prove that LDPC codes are good under a Hamming distortion. We

will actually prove a more general statement which, at a high level, means that good

error-correcting codes are also good lossy source codes. To make this precise, we have

the following theorem, specialized to codes for the BSC.

Theorem 1. Consider a sequence of codes {C}, where the nih code has block length

n. Define the rate R of the sequence to be limn-, 0 Rn, where Rn is the rate of the

nth code and it is assumed that this limit exists. Assume that for some p, E > 0, and

sufficiently large n,

Pr[Error when using C, over BSC(p)] < 2En

Let 6 ,pt be the optimal distortion for rate R, i.e., R + hb(Jpt) = 1. Then, for

sufficiently large n, the expected (normalized) Hamming distortion when we use Cn

to quantize a binary symmetric source is less than J,t + /2(hb(6t) - hb(p)).

Theorem 1 implies that an ensemble of codes that has a positive error exponent at

all rates below capacity can achieve distortions arbitrarily close to the rate-distortion

bound. For example, Theorem 1 proves that many LDPC ensembles are good for

compressing a binary symmetric source under a Hamming distortion. Of course,

Theorem 1 does not say anything about the computational complexity of using a
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channel code for lossy source coding.

We will need the following lemma in order to prove Theorem 1.

Lemma 2. Consider a (binary) code C with codeword length n (C need not be lin-

ear). Let p,.. . ,pn be probability distributions over {0, 1}, and let P =|L 1 pi be a

probability distribution over {0, 1} (P generates each source bit independently). Let

D be the normalized distortion when an optimal quantizer (i.e., encode to the nearest
,2,

codeword) is used. Then, Pr[ID - E[D]I > c] < e 2.

Proof. We apply Azuma's inequality. Form random variables Y = E[Dlfirst i bits of source].

Then, the sequence Y, i E {0, 1, ... , n} is a Doob martingale (see, e.g., [25] for a

discussion of martingales). Also, by construction Y = E[D] and Yn = D. Now,

jY - Y_ I -, Vi. To see this, consider how the distortion changes when we reveal

the next bit of the source. Let

Y= E[Djfirst i bits of source and that the ith bit is 0].

Similarly, let Y 1 = E[Djfirst i bits of source and that the ith bit is 1]. Then, Y_ =

p(0)Yo+pi(1)Yjj. Also, Y = YO with probability pi(0) and Y = Ya with probability

ps(1). Therefore, to show IY - Y-iI _ I it suffices to show IYO - Y, 1 5 -.

To prove IYo - YjiI 1, let us expand

Yo (1 Pk) -optimal distortion for this assignment,

assignments to last n-i bits \k=i+1

and similarly for Yj. The key point is that each bit of the source is independent

because of the form of P. So, the probability of any assignment to the last n - i bits

is the same whether we assign bit i to 0 or 1. Also, for a particular assignment to the

last n - i bits, the difference in distortion between sources with the ith bit set to 0 or

1 is at most -. This is because the distortion for the optimal codeword for the source

with the ith bit set to 0 goes up by I when used for the source with the ith bit set to 1.

The optimal codeword for the source with ith bit set to 1 has to be at least this good.

Thus, for corresponding terms in the sums for YO and Yj, the difference in distortion

20



is at most I. Therefore, the difference between the sums is also at most , i.e., we

have IYo - Yi I . Plugging into Azuma's inequality completes the proof. 3

The proof of Theorem 1 is extremely simple. Roughly speaking, first we will show

that if we draw balls of radius pn around the codewords of C, then these balls do

not overlap much, i.e., the fractional volume of the intersection is negligible. This is

intuitively obvious, since these balls correspond to the typical set of the noise, and

a code achieving small probability of error on the BSC cannot have the noise balls

overlap significantly. Next, we use lemma 2 to prove that if the balls do not have

significant overlap, then the code is good under a Hamming distortion.

Proof of Theorem 1. Consider the code C, for sufficiently large n. Let k be the

information length of the code. Define the numbers x1 , x2 , .. . , X 2 k as follows. Let c

be a codeword of C, and let E, > 0 be a parameter we will set later. Define I -H to be

the Hamming weight of a string. Consider the Hamming "shell" of strings w E {0, 1}

satisfying (p - ci)n < Ic+wIH (pei )n, where addition is performed in GF(2). We

can draw these shells around every codeword, and potentially the shells may overlap.

We define xi to be the number of words w with the property that w lies in exactly

i Hamming shells. Then, Er ixi counts the number of (word, codeword) pairs such

that the Hamming distance between the word and the codeword is within (p t Ei)n.

We can evaluate this sum by summing from the point of view of codewords instead

of words. This gives Ei ixi = 2kVol(shell), where Vol(shell) is the number of words

within distance (p ± Ei)n of some fixed center (because of the symmetry of Hamming

space, Vol(shell) does not change no matter what point is chosen as the center of the

shell). Using Stirling's approximation, Vol(shell) , 2 hb(pn , so ix, > 2 k+h(p)n

Now, consider ML decoding of C over the BSC. This corresponds to drawing a

Voronoi region in Hamming space around each codeword. Consider a word w that

contributes to xi, i.e., w is contained in i Hamming shells. We can assume that

w is assigned to a particular codeword, that is to say we can use a deterministic

ML decoder without increasing the error probability (for example, we can break ties

by assigning a word to the lexicographically first codeword that it is closest to.)
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Given this deterministic rule, consider what happens when we transmit one of the

i codewords that w is in the Hamming shell of. Out of these i codewords, w gets

decoded to at most 1 since our decoding rule is deterministic. Thus, for the remaining

i - 1 codewords, if we receive w then we will make an error with probability 1. From

the AEP, we know that Pr[receive wic} 2 -(hb(P)+E1)n, where c is one of the i - 1

remaining codewords.

Armed with this observation, we can lower bound the probability of error by Z (i-

1)xi2-k-(h(P)+E1)n, since all codewords have probability 2 -k of being transmitted. By

assumption, this quantity is less than 2 -En. Rearranging terms, 2 kp n - Z

2 k+(hb(P)+E1-E)n + Ei xi. From the AEP, we can choose El < E for sufficiently large

n, since Theorem 1 assumes that E > 0 is a constant independent of n. Comparing

exponents then gives 2V < E Zxi, for sufficiently large n. But Ei xi is exactly

the number of words in the Hamming shells when we count without multiplicity.

Therefore, we have shown that for sufficiently large n, at least 2 (R+hb(P)-o(1))n -

2(1+hb(p)-hb(b 0 t)-o(1))n words are within distance p + c, of some codeword (The o(1)

is because R is a limit, so the R, may be slightly less than R, but we can make

the difference as small as we like by making n larger). Let Dn be the expected

distortion when we use Cn to quantize a binary symmetric source. Then, we have

shown Pr[Dn < p + 61 ] 2 -(hb(3 0 rt)-h(p)+o(1))n

Recalling that lemma 2 applies to any code, we can conclude that E[Dn] 3pt +
/2(h(6 0 Pt) - hb(p)) - (6opt - p) + o(1), where we have absorbed terms involving El

into the o(1) term. 0

2.3.1 Comments

1. The proof above appears to be quite general. As mentioned earlier, the small

overlap property is quite intuitive, and should be quite simple to generalize

to other channel models. Even the constraint of asking for a positive error

exponent can probably be relaxed by looking at the AEP more carefully, but

we have not tried this. The proof of lemma 2 is also quite general, and only

requires a bounded distortion metric. Thus, it seems that for a broad class of
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channels, we should be able to show that channel codes are automatically good

for properly dualized distortion metrics.

2. A natural question is whether the correspondence goes the other way, i.e., are

good quantizers also good channel codes? The short answer is no, because if we

have a good quantizer, we can add words next to each quantizer word, result-

ing in a quantizer with essentially the same rate but terrible error-correction

properties. However, it may be possible to show that good quantizers can be

turned into good error-correcting codes with small modifications. In particular,

it seems that given a good quantizer, it should be possible to perform a small

amount of expurgation so that the expurgated code is a good channel code. 4

The intuition for why expurgation should be enough to turn a good quantizer

into a good channel code is that although the block error probability is high

when we add words next to each quantizer word, the conditional entropy of the

channel input is small.

3. We can also ask for codes that come close to the rate-distortion function for

quantization under a Hamming distortion in the worst-case. To see this, say we

have a code with expected distortion 6. From lemma 2, with high probability

the observed distortion is at most 6+ E. So, to create a worst-case quantizer,

repeatedly try to quantize a given source by adding independent, uniformly

chosen strings to the given source. A simple union bound argument shows that

after a constant number of trials (the number is a function of E), with high

probability the worst-case distortion is at most 6 + c. If we want to restrict

ourselves to linear codes, the arguments in (20] show that we can append a few

extra columns (or rows for LDGM codes) so that the resulting linear code works

well in the worst-case. The basic idea is that by adding O(log n) suitably chosen

columns, we can "fix" the original code to cover the small fraction of words that

previously would have been quantized with high distortion. The drawback of

4By small, we mean that the rate loss due to the expurgation should be at most E for some small
E should be a function of the quantizer, i.e., better quantizers should have a smaller value of E,

and F should approach 0 for quantizers that approach the rate-distortion bound.
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this method is that the resulting code may no longer be sparse.

4. The authors of [19] analyze the performance of MacKay's ensemble for quantiza-

tion under a Hamming distortion. One might hope for a more direct proof that

LDPC codes are good for quantization by strengthening their approach. The

authors use a fairly complicated proof, but the same result can be derived using

Chebyshev's inequality and bounding the covariance term. However, even with

this method, choosing codes from MacKay's ensemble still gives a logarithmic

degree bound. Intuitively, the reason MacKay's ensemble does not give a better

bound is that it takes r ln n steps before a random walk on a hypercube has

mixed well enough for the covariance term to be small.

The analysis in [19] is based on trying to lower bound the probability that all

syndromes can be written using only a few columns of the parity check matrix.

This approach appears to have a fundamental limit that makes it impossible

to prove any bound of better than logarithmic degree for MacKay's ensemble.

Essentially, if we want to be able to write all syndromes, the matrix we look at

must have full rank. However, one can easily show that if we use a constant (or

sublogarithmic) degree in MacKay's ensemble, then with high probability the

matrix will have an all 0 row. Thus, with high probability the matrix does not

have full rank. The probability of every row having at least one entry set to

1 does not become large until the degree becomes logarithmic, which explains

why the analysis in [19] only produces a logarithmic degree bound.

2.4 A Lower Bound On The Degree Of LDGM

Codes

Recently, several authors have considered a compound code formed by concatenating

LDGM and LDPC codes. It has been shown that this compound construction has

remarkable graph complexity properties. In particular, bounded degree compound

codes can come arbitrarily close to channel capacity under ML decoding for any
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memoryless binary input output-symmetric channel [23]. Also, bounded degree com-

pound codes under optimal encoding can come arbitrarily close to the rate-distortion

bound for a binary symmetric source under Hamming distortion [24]. Finally, sev-

eral classes of compound codes have been found that achieve capacity on the BEC

using message-passing with bounded complexity, i.e., we can come arbitrarily close

to capacity without the running time increasing as a function of the gap to capacity.

These results beg the question of whether LDGM or LDPC codes can achieve

similar performance, i.e., come arbitrarily close to either channel capacity or the

rate-distortion function while keeping the variable and check node degrees bounded.

For channel coding, bounded degree LDGM codes have terrible minimum distance,

and hence can never achieve small block error rates on the BSC. Also, there is a well-

known bound due to Gallager that says that bounded degree LDPC codes cannot

come arbitrarily close to channel capacity, i.e., on the BSC achieving smaller gaps

requires increasing the degree. This shows that compound constructions outperform 5

pure LDGM or LDPC constructions for channel coding.

We will prove that for quantization under a Hamming distortion, the variable

node degree of any LDGM code must become unbounded. Note that this applies to

any code, not codes drawn from some specific random ensemble.

Theorem 2. Let d be the maximum degree of any variable node in some LDGM

code. Let R be the rate of the code, and let 6 be the expected distortion. Define

E = 6 - 6 opt, where 6J,t is the optimal distortion for rate R, i.e., R + hb(6 0pt) - 1.

Then, d =Q (log{).

Proof. This is another simple application of lemma 2. If we have a short code, we

can repeat the code many times to get a long code with the same expected distortion.

Therefore, consider a long code with rate R and maximum variable degree d. We

will prove Theorem 2 by proving a lower bound for e in terms of d. Let D be a

random variable denoting the observed normalized distortion. From lemma 2, we

'All of these results assume maximum-likelihood decoding. From the point of view of iterative
decoding, it is still unclear whether the new constructions improve the number of BP iterations
compared to irregular LDPC codes.
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know that Pr[D > 3opt + 2c] < e 2 . Thus, since the source is uniform, at least

2" - 21-og)" = 2 words have distortion less that 6opt + 2E.

Now, pick some c1. If we flip ' information bits of the code, the distortion

increases by at most ein, using the triangle inequality. So, we will prove the theorem

by counting the number of (codeword, source) pairs such that the relative distance

between the codeword and the source is < Jpt + 2E + El in two different ways. First,

from the point of view of codewords, this sum is clearly - 2(R+hb(5oopt+2E+El))n. Now,

we have already observed that almost every source has a codeword within distance

5opt + 2E. Therefore, using our observation about flipping information bits, the sum is

-2 ( +Rhd())". Because a good short code can be repeated to form a good long code,

we can compare the exponents in the two expressions to obtain R+hb(Jopt +2e+61)

1 + Rhb(L). Now, hbO is a concave function, so hb(6
0 pt + 2E + Ej) 5 hb(eopt) +

h'(6,,t)(26+el). So, we get h'(6 0pt)(2E +i) > Rhb(g), i.e., E > i (Rhb -el). Note

that our entropy bounds work for any el _ R.

To complete the proof, we optimize over El. Taking the derivative with respect to

El, we find that

d (Rhb( ) - log(e) Rd
-R -d log - _1 -1dE '7b(Jopt) dhbOOPO) e

Setting this expression to 0, we find that the optimal value is E* = R .

Because h' is nonnegative over the range of interest (6 opt < 1) we see that c* < Rb 2 1 - 2
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as required. Substituting in E*, we find that

1 (Rh, R

= k46~) 2 h~6op)log (i + 2 J +ort 1 + )log (
2 h's~opt) 1 2dh's6)ort)h's(6 0 pt) 1+ 2dhb(6)opt d'~ot

Rd

1 ±dh' (opt)

R 2 d1'(6opt l(

> .(+ h(jp) log 1 + 2- V'6ooPt)

2h'(60 pt) 1+ 2 dh'()opt) /

R (1 - 2 -1-hn'6(ovt)) in(2
- 2h(6opt) 1 + 2 do(12t)

R 1

- 8h's(6ot) 1 + 2 dhs(60 ±)p

To obtain the second to last inequality, we have used the inequality x in (1 + ~) >

1 - ~. In the last inequality, we have used the fact that h',S~oot) is nonnegative, so

the first term in the numerator is at least 1, and ln (2) > j. If we invert the last
log 1 -

inequality, we see that d;> 8hb (60rt)E , proving that d must be Q(log (1)). LI

2.4.1 Comments

This bound is in some sense tight. We can prove that if d = O(log ), then the gap

can be reduced to E. One way to see this is to consider a dualized form of MacKay's

ensemble. We cannot use the simpler Poisson ensemble considered in [24] because

a few variable nodes might have large (logarithmic) degree. Of course, looking at

the proof of Theorem 2, we see that having a few nodes with large degree does not

affect the proof since we can always flip the other information bits. However, to prove

the bound is tight for the case of the maximum degree being d, it is easier to use a

dualized form of MacKay's ensemble because this ensemble is guaranteed to have a

constant maximum variable node degree. 6

6By"dualized" form of MacKay's ensemble, we mean an ensemble that selects each row of the
generator matrix independently using a random walk. This is not quite the dual of MacKay's ensem-
ble, since the dual would select each column independently. However, selecting rows independently
is more convenient since this guarantees a bounded maximum variable degree. The proof that the
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Also, we note that in another sense, the bound in Theorem 2 is quite loose. The

bound says c = Q(j') for some constant a, while the random ensembles have a much

larger value of E. (Note : we can optimize the bound without using the simplification

of approximating hb by a first order Taylor series expansion. However, this does not

improve the bound significantly.)

dualized form of MacKay's ensemble works is similar to [24], but involves quite a bit of algebra.
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Chapter 3

Information Embedding

3.1 Introduction

In this chapter we consider information embedding, a more complicated coding prob-

lem which has both channel and source coding aspects. As discussed in the introduc-

tion, this problem arises in several contexts. There is a growing interest in under-

standing the complexity required to approach capacity for information embedding,

and how to design codes with such complexity.

Low density codes on graphs are compelling candidates for the information embed-

ding problem. As was mentioned in chapter 2, LDPC codes and LDGM codes present

efficient solutions for the BEC and for BEQ. In closely related work, such codes have

been used to approach capacity of the noiseless broadcast channel [17,18, but some

difficulties remain. For example, [17] requires logarithmic (as opposed to constant)

density in the block length while [18] uses an O(n 2 ) algorithm. Furthermore, it is

unclear how those approaches fare in the presence of channel noise.

In this chapter, we analyze what may be the simplest information embedding

channel model whose source and channel coding aspects are both nontrivial. The

model we consider is a variant of the channel analyzed in [15]. The precise model is

discussed in Section 3.2. For our simpler channel, we construct a class of capacity-

achieving linear complexity codes.

The chapter is organized as follows. The information embedding channel of in-
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state
--------

message encoder - channel - decoder message

Figure 3-1: The information embedding model. The encoder embeds a message into
the channel state, and the decoder recovers the embedded message from the channel
output.

terest is described in Section 3.2. Two simpler cases are analyzed in Section 3.3 and

Section 3.4. A code construction for the general case is developed in Section 3.5.

Our main results are stated in Section 3.6, with the associated proofs summarized in

Section 3.7. A discussion of an alternative channel model is given in Section 3.8, and

some possible extensions of our results are given in Section 3.9. Finally, Section 3.10

discusses some points related to developing a practical implementation our codes.

3.2 Channel Model

The general information embedding problem is illustrated in Fig. 3-1. A channel

state vector s consisting of n symbols from the alphabet E, is selected according to

the probability law p(s). The encoder takes as input s as well as a k-bit message m,

and produces a channel input vector x consisting of n symbols from the alphabet EX-.

The channel takes x as input and produces a channel output vector y consisting of

n symbols from the alphabet E, according to the probabilistic channel law p(yjx, s).

Finally, the decoder receives y, (which we sometimes denote as y(x, s) to indicate

the dependence on the channel input and state), and attempts to determine the

message m. The goal of the information embedding problem is to construct systems

operating at rates near capacity with low complexity encoders and decoders, with the

probability of decoding error vanishing as n -* oo.

Our "double-erasure" information embedding channel of interest is a variant of
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the "memory with defects" channel model [15]. Specifically,

EX = {0, 1}, E, = EY = { 0, 1, *}, (3.1)

the state s is independent and identically distributed (i.i.d.) with

Ps(S) = (1-e,)/2 s=Oors=1 (3.2)
es s=*.

and the channel law is i.i.d. with

e.
,s y = * and s = *

Pyis,x(yls,x) = 1- g, y = x and s = * (3.3)

1, y= s and s#*.

The channel is almost identical to the channel considered in [15]. Instead of allow-

ing the channel to introduce errors, we only allow erasures. The erasures introduced

by the channel can only occur in positions where the state was erased, i.e., unerased

state positions are never changed by the channel. Also, we define the channel erasure

probability as - so that the expected fraction of erasures introduced by the channel

is e,. It may seem that allowing the channel to only introduce erasures makes the

problem too simple. In Section 3.8, we will show that a small change in the statistical

distribution of the erasures introduced by the channel makes our model essentially as

difficult as the original channel in [15].1

The capacity of the information embedding problem for the state and channel

models given by (3.2) and (3.3) is e, - e,. To see that es - e, is an upper bound,

consider the case where the encoder and decoder both know the state. In this case,

the channel is essentially a BEC with erasure probability f, but with the added

constraint that out of n channel uses, only een are actually usable because the rest

'It turns out that in some sense, changing the statistics of the channel erasures forces a good
encoder to deliberately introduce errors. The random coding argument in [15] also relies on the
encoder to deliberately add errors.
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will be hardcoded positions. Thus, when the encoder and decoder both know the

state, the capacity is e,(1 - f) = e. - ec. Because the decoder does not see the state,

the capacity can only decrease. In Section 3.5, we show that the capacity is in fact

es - ec by constructing codes that achieve rates arbitrarily close to this upper bound.

3.3 A Simple Scheme For Large Alphabets

To develop some intuition for code design, let us consider a simpler case. Assume that

the channel state is drawn from a large alphabet of size q, and assume the state block

length n < q. Assume that the channel state has > een erasures with high probability,

and that the channel introduces < een erasures with high probability. Then, there

is a simple coding scheme using Reed-Solomon (RS) codes that can transmit at rate

e. - ec. The precise statistical model for the state and the channel does not affect the

scheme, provided that the right number of erasures occur. Thus, our scheme could be

useful in situations where there is no information about the distribution of the state

or channel erasures.

Treat the state s = 1 S2 . . Sn as an RS codeword, i.e., the evaluations of some

polynomial at n points x1 , ... , Xn EGF(q). Then, we can transmit a message m =

m 1 m 2 . .. mn(esec) of length n(es - e,) as follows. Form a string t = tt 2 ... tfle. 8 ) of

n(1 - es) unknown symbols, and append the n(e, - e,) symbols of m to get the string

tm = ti . .. tn(1-es)hMl . . . mn(e,_ec), with total length n(1 - e,).

For encoding, m is known, and s has n(1 - e,) or fewer unerased symbols. There-

fore, we can find an assignment to t such that the encoding of tm matches s at all

unerased positions. Specifically, we want to find t such that for

n(1-e,) n(e,-e,)

~I x;'- +mix Si
i=1 i=1

for all j where the state is unerased, i.e., sj f *. The second term on the left hand

side is known because the message is an input to the encoder, so we can subtract

to get a system of equations for the ti. The fact that there are at most n(1 - es)
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unerased symbols in s means that there are at most n(1 - e,) equations constraining

the ti. Since t has length n(1 - e,), it would appear that this system must always

have a solution. This is true, and can be proved in many ways (for example, the

Vandermonde matrix is always invertible; also, this is a simple consequence of the

fact that RS codes are MDS). Furthermore, there are efficient algorithms for finding

the required t. If there are fewer than n(1 -e,) unerased symbols in s, assign values to

some of the erased symbols such that the new string s' has exactly n(1 - e,) erasures.

Then, our previous arguments show that there exists a unique t such that the RS

encoding of tm matches s' at all unerased positions. To find this t, we can apply any

standard decoding algorithm for RS codes. Then, we apply an RS encoder to find

the final encoding, i.e. assign values to any remaining erased positions in s'.

To decode, we receive at least n(1 - e,) unerased symbols. Therefore, we can solve

for the length n(1 - ec) input tm that was used during encoding, again by applying an

RS decoding algorithm. Then, the last n(e. - ec) bits are m, the message we wanted

to transmit. Thus, we can reliably communicate using this simple scheme. The reason

that this method works is that RS codes are MDS codes, which implies that they are

simultaneously optimal for both channel coding and erasure quantization. 2 To design

a scheme that works for the binary alphabet, we need to use binary codes that are

simultaneously close to optimal for both channel coding and erasure quantization. In

Section 3.5 we will develop a scheme that works over the binary alphabet by proving

that certain binary codes are nearly MDS codes, and have nearly MDS duals. This

fact allows us to construct codes for information embedding with rates arbitrarily

close to e. - ec.

Finally, note that the reason that the above method can only transmit at rate

(e, - ec) is because our coding scheme does not take into account the statistical

models for the erasures in the state and the channel, so it has to work even in the

worst case placement of the erasures. In particular, it is obvious that if the state

2To see that an MDS code is optimal for erasure quantization, recall that the Singleton bound
implies that given any set of n(1 - e,) output positions, the codewords take on all possible n(1 - ec)-
length strings when restricted to these positions, and each string occurs exactly once. Therefore,
we can quantize optimally. Alternatively, note that the dual of an MDS code is MDS, and apply
Lemma 1.
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always has the first een positions erased, and the channel always erases the first een

positions, then the maximum rate of transmission e, - e,. Thus, without using the

statistics of the state and channel, we cannot do better than our RS scheme. For the

state and channel models given in Section 3.2, this is not a problem since e, - e, is

the capacity. However, in a situation where the erasure model is unknown, we need

to bear in mind that some erasure models have a higher capacity. For example, the

model considered in Section 3.8 has a higher capacity. Thus, to transmit at higher

rates for these different channels, we need to take into account the models for state

and channel erasures.

3.4 Simple Coding Schemes for the case ec = 0

In this section we consider the information embedding problem when e, = 0, i.e., the

channel introduces no erasures. The state is drawn from (3.2), i.e., the alphabet is

binary. In this case, the capacity is just e8, and there is a particularly simple way

to get arbitrarily close to capacity. Based on the results from the last section, we

would think that if there are no channel erasures, then we only need a code that has

a nearly MDS dual. As we now show, this intuition is correct.

To give a more precise definition of what it means for a code to have a nearly MDS

dual, we will use the BEQ problem. The information embedding problem with e, = 0

essentially boils down to finding a code C1 that is good at BEQ.3 Therefore, using

Lemma 1, if C1 is the dual of a good code for the BEC, C1 should work well for this

setup. As a concrete example, consider taking C1 to be the dual of a nonsystematic

irregular repeat-accumulate (IRA) code [5]. Figure 3-2 shows the normal graph [6]

representation of a nonsystematic IRA code.

These codes are the same as traditional IRA codes, except that the systematic

bits have been punctured. It is shown in [5] that these codes can achieve capacity on

the BEC for all erasure probabilities p E [0, .95], and it is conjectured that these codes

3We also need C1 to be invertible. Specifically, we would like a linear-time algorithm that takes
as input a codeword and outputs the information bits that produce this codeword.
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n Encoded Bits

Rn (Punctured) Information Bits

Figure 3-2: Nonsystematic Irregular Repeat-Accumulate Code

achieve capacity Vp E [0, 1). Furthermore, these codes achieve capacity with bounded

complexity. This means that unlike many other known codes, as we approach capacity,

the complexity does not become an unbounded function of the gap to capacity.

Figure 3-3 shows how the dual of a nonsystematic IRA code looks.

n Channel State Bits

k Message Bits

Figure 3-3: Dual Nonsystematic IRA Code - this code is capacity-achieving when
e, = 0

Dual nonsystematic IRA codes can achieve capacity for information embedding

when e, = 0. Encoding proceeds as follows. The channel state is placed on the top

n check nodes of the code, as shown in figure 3-3. The message is placed along the

bottom k check nodes. Using the dualized version of BP for BEQ, we calculate values

for the n intermediate variable nodes such that all unerased checks are satisfied. In

order to use the algorithm given in [3] to calculate the values for the variable nodes,

one cannot simply apply the message passing rules. Instead, one needs to pretend

that the variable nodes have "hidden" inputs which need to be determined, and then

use the ERASURE-QUANTIZE algorithm given in [3] to determine the values of
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these inputs. Finally, given the values of the variable nodes, the encoder calculates

the values of the erased symbols in the state, i.e the erased check nodes. The output

is the top n check nodes. Figure 3-4 gives an example of what we mean by "hidden"

inputs.

The dashed lines represent hidden inputs which need to be solved for using ERASURE-QUANTIZE.

Figure 3-4: The graph above shows a very simple dual nonsystematic IRA code. If
we pretend the variable nodes have "hidden" inputs, the code can be thought of
as an LDGM code. Then, ERASURE-QUANTIZE [3] can be used to solve for the
variable nodes. Finally, values for the erased checks can be determined by adding the
appropriate variable node values together (the message-passing rules in [3] will not
give the correct answer on this example).

Since e, = 0, the decoder sees the top n check nodes as calculated by the encoder.

Now, the variable nodes are simply the check nodes accumulated, i.e., vi = I e ci,

so we can calculate the values of all the variable nodes in O(n) time. Then, we can

calculate the values of the bottom k check nodes by summing the appropriate variable

nodes, as determined by the graph. Since the graph has O(n) edges, this step also

takes O(n) time.

Thus, dual nonsystematic IRA codes appear to present a computationally efficient

solution to the information embedding problem when e, = 0, and also appear capable

of achieving rates arbitrarily close to capacity, i.e., e,. Technically, we still have not

given a precise definition of what it means for a sequence of codes to achieve capacity.

A formal definition which also works for the general case where e, > 0 will have to wait

until the next section. However, for the sake of having a precise result, we summarize

our reasoning so far in the following lemma, which verifies that dual nonsystematic

IRA codes achieve capacity. The proof assumes knowledge of the definitions given in

the next section.
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Lemma 3. There exists a sequence of dual nonsystematic IRA codes which achieves

capacity for information embedding when e, = 0 and e, E [.05, 1].

Proof. We need to prove that dual nonsystematic IRA codes have the encoding and

decoding properties. From Lemma 1 and [5], we conclude that there exist dual nonsys-

tematic IRA codes which are capacity achieving for BEQ, provided that the erasure

probability (e, in our case) is > .05. This means that for these dual nonsystematic

IRA codes, our encoding procedure succeeds with high probability as long as e n

The decoding property is trivial to verify since if encoding succeeds, then our decoder

recovers the message bits with probability 1. By taking J arbitrarily close to e,, we

can construct capacity-achieving ensembles, since we observed earlier that the capac-

ity is e,. (Note: the encoding property requires that encoding works always. So, we

can modify the encoding algorithm as follows. If BP fails, the encoding is just the

state with erased positions set to 0. Then, the decoder fails with a small probability,

namely the probability that BP failed during the encoding step.) 0

3.5 A Coding Scheme For The Binary Alphabet

When ec > 0

In this section we describe a capacity-achieving coding scheme for the general case

where e, > 0. A coding scheme consists of a sequence of encoding functions4 En

E" x {0, 1} - E" and decoding functions Dn : E' V {0, 1}k for n = 1, 2 ....

Definition 1. A coding scheme is admissible for the double-erasure information em-

bedding channel if i) En(s, m)i = si whenever si $ * for all messages m (cf. (3.2));

and ii) for a message m drawn at random, and any e > 0, there are infinitely many n

such that Pr[Dn(y(En(s, m), s)) # m] ; e. The rate of an admissible coding scheme

is defined as R = limsup(k/n).

Our encoder, illustrated in Fig. 3-5, is formed by combining an (n + il, k) LDGM

4We use the notation Ab to denote the b-fold Cartesian product of a set with itself and ci to
denote the ith component of a vector c.
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code C1 and an (h, k) LDPC code C2.5 A k-bit message m is encoded into an n-bit

channel input x as a function of the n-bit channel state s as follows:

1. Encode m using C2, obtaining w m G2 - M, where G 2 is the generator matrix

for C2 -

2. Use a modified version of belief propagation (BP) [3,11,12] to find a codeword

of C1 denoted (s, *) such that (s, *) matches (s, w) in as many non-* posi-

tions as possible. For example, this can be implemented by directly applying

the ERASURE-QUANTIZE algorithm of [3]. If ERASURE-QUANTIZE fails,

randomly assign values to all of the so-called unreserved variables [3], thereby

incurring some small number of errors. Then, solve for the reserved variables

as if ERASURE-QUANTIZE did not fail.

3. The channel input is the n-bit vector x where xi = si if si # *, and xi = 9i if

si = *

Message---+ Encoder for C2

Channel State = s Output of C 2 =w

0 * 1 * 1 0 1

Generator
Graph for C1

Figure 3-5: Encoder structure. The message consists of k bits, which are encoded
by code C2 to produce i5 outputs labeled w. After concatenating w onto the n-bit
channel state s, the encoder finds a codeword of the main code C1 that matches (s, w)
in as many non-* positions as possible.

5By LDGM and LDPC codes, we mean codes with a graphical representation having O(r) edges,
where r denote the block length. In particular, this definition allows codes that have unbounded
maximum degree, as long as the average degree is bounded by a constant independent of r.
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Final Decoder Output
Input y

0 1 * 00 0 1 Decoder for C2

ignore 0 1V
erased
checks

- - Compute w
using information bits

information bits

Figure 3-6: Decoder Structure. The arrows indicate the flow of information through
the decoder from the channel output y to the final decoder output.

To understand the encoding algorithm, it helps to contrast the ideal case where

there exists a codeword of C1 that exactly matches (s, w) in all non-* positions with

what actually happens. Usually, there will be at least a few positions of (s, w) that

cannot be exactly matched by a codeword of C1 . The encoding algorithm accounts

for this in step 3 by changing the positions of s that do not match the non-* positions

of s. The decoder will need to correct these errors in addition to the erasures in the

channel output.

Fig. 3-6 illustrates the decoder for our codes. Decoding a received n-bit channel

output y proceeds as follows:

1. Form the subgraph of el obtained by ignoring the erased positions of the re-

ceived signal y and the last h positions of C1 .

2. Use BP on this subgraph as if the vector s was corrupted by a binary symmetric

channel (BSC) to estimate the information bits of C1. Then, use the information

bits to compute an estimate - of w.

3. Decode C2 to recover the message m from . 6

We first discuss the required properties of C1 .

'In practice, one would probably want to use a code C2 that would allow BP decoding.
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Definition 2. A C1 code ensemble is good if for some choice of Ec, C, i, C it is

(E,, EC,0s, Ec)-good. The latter is a family of C1 codes, with a probability distribution

over the family, mapping k information bits to n + ii code bits, where members C1 of

the ensemble have the following two properties:

1. Erasure Quantization: Let t E E+6 be arbitrary. If the number of * sym-

bols in t exceeds n + ii - k(1 - 6,), then with high probability, there exists a

codeword c E C1 such that |{i: ci f tj and t2 C {0, 1} and i < n}I 6n and

{li : ci = tj and tj E {0, 1} and i > n - 1}1 < J.,5.

2. Erasure Correction: Let 1j denote a punctured version of C1 that keeps only

the first n code bits of every codeword, and let 6 E C1 correspond to a codeword

C E C1 . Form t by changing n - k(1 + E,) positions of 6 to * symbols.

With high probability, we can compute a reconstruction w = f(t) such that

If{i : ci =/ wi and i > n - I}I < 6ji.

One class of codes C1 that can meet the conditions of Definition 2 is an LT code

[14], to which we restrict our attention for the remainder of this chapter. Following

the notation from [1], a (k, Q(z)) LT code is one with k information bits and output

degree distribution given by the generator polynomial' Q(z). For our construction,

we use, as in [1], a modified version of the ideal soliton distribution. Specifically, our

distribution has generator polynomial

I D-1 iD)

Qp,D (Z) + IPIZ + . + -5

where we have made the parameters p and D explicit. We truncate this LT code so

that only n + h outputs are produced.

For C2, we require only that the code 1) be of high-rate, 2) have efficient (linear

complexity) encoding and decoding algorithms, and 3) be a good error-correction

code. With respect to the latter, we require that the code be capable of correcting

7Recall that the probability of a degree i node is specified by the coefficient of z* in a generator
polynomial f(z). Thus the expected degree is given in terms of this polynomial by '(1).
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a fixed fraction r of errors regardless of the locations of these errors in the received

signal. However, we do not require that the code be capacity-achieving. As an

example, one class of codes C2 that meets these requirements is that due to Spielman

[8].

3.6 Main Theorem

We will choose the following parameters for C1. Let es > 0 be arbitrary, and let cc

(2 n(1/ES)) 1 /S. In turn, set the parameters of C1 according to p = es/2 + (e,/2)2 and

D = [1/p], where p =c/(4(1+6c)). Furthermore, let 6s =10/Q',,(1) < 10/ ln(1/ec),

and let 6, = 2(k/i)pQ',,D(l). Then we have the following:

Lemma 4. The ensemble of (k, Q,,D(z)) LT codes truncated to length n + h is an

(ESI Ec , 6,O)-good code for C1.

This C1 code, when combined with a suitably parameterized C2 code, yields an

admissible coding scheme for our channel in the sense of Definition 1. Specifically, we

have the following as our main result.

Theorem 3. Suppose C1 is chosen as in Lemma 4, and C2 is capable of correcting

a fraction r = 6, 6e of errors. Then for the double-erasure information embedding

channel with
k-u k

e. >1- -s,n n

and

ec <1-- 1+Ec +
- n (1F - _ec) ln(1/cc)

our construction produces an admissible coding scheme with rate lim sup k/n.

Our proof of Theorem 3 is actually a bit more general, in that our coding scheme

can handle other channel erasure models. We will discuss this more in Section 3.8. It

follows immediately from Theorem 3 that our coding scheme is able to achieve rates

close to es - ec, i.e., close to capacity. Specifically, we have:
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Corollary 1. For a double-erasure information embedding channel with parameters

es and e,, we can choose k, k, n, i to obtain an admissible coding scheme with rate

arbitrarily close to e. - ec.

3.7 Proofs

In this section, we prove Lemma 4 and Theorem 3.

3.7.1 Proof of Lemma 4

To prove Lemma 4, we verify the erasure quantization and erasure correction prop-

erties separately.

The erasure quantization property is so named because it requires the code en-

semble to be good for BEQ. To prove that (k, Q,,D(x)) LT codes satisfy the erasure

quantization property, we will use lemma 1.

Lemma 5. For any e, > 0, let ec, p, and D be defined as in Section 3.6 . Then,

a (k, Qi,,D(x)) LT code truncated to produce n output symbols can match all but a J,

fraction of any subset of k(1 - ,E) + 1 unerased output symbols with high probability.

Proof. From Lemma 1, it follows that to prove Lemma 5 we only need to show that

the dual of a truncated (k, Qi,D(x)) LT code is good on the BEC. 8 More precisely,

we must show that if all the inputs to the dual code are erased, we can recover all

but a 6, fraction of the erased symbols.

The analysis of the dual code is similar to the proof of [1, Lemma 4]. Let w(x)

and f(x) be the generating functions for the edge degree distributions with respect

to the variable and check nodes of the dual LT code. From [1], w(x) = , and

f(x) = (1 - N'" ))k(-Es). Using the density evolution method, to prove Lemma

5 we must show that w(1 - f(1 - x)) < x,Vx E [6,, 1]. (The only difference between
8 1n Lemma 1, "recover" includes the case where BP decoding can only determine some of the

information bits. For a particular erasure sequence, suppose BP decoding can recover 1 information
bits. Then, the dualized form of BP applied to e' and the dual sequence can quantize the dual
sequence such that at least 1 unerased positions are matched.
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our argument and the argument in [1] is that in [1] the author proves f(1 -w(1 -x)) <

x, Vx E [68, 1], i.e., our argument proves that we can interchange w and e and preserve

the inequality.)

Now, w(1 - f(I - x)) < x reduces to Q'(1 - f(I - x)) < Q'(1)x. Using the formula

for Q(x) given in [1], we obtain

1
= (M - n(1 - f(1 - x)) + ( (1 - x))' -

p+ I

Now, choose k so

1 (it~1c)n 1

< + 1(M + I(1 - E) In I + (1- [(1 - x))D)

+ Q'(1)x
< p+ fk(1 - c,) + (1-E1-X))D.

that > 10'(1). This implies that < 1+ Vx E I]0,1. So,

'(1 - e(1 - x)) 5

< + Q'(1)x - 10(1)X + (I - f(1 - X))D

If x > , , then the RHS is < Q'(1)x - Q'(1)x + (1 - f(1 - x))D. So, to complete

the proof, we must show (1 - f(1 - x))D <

< -Dt(1--x)

< eD(1-)
K De k

because t(1 - x) > e k

logarithms twice, we find

using the inequality 1 - x > e 1-x.

lnD-lnIn 10
X'<
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E (1 - e(1 - x))d
)

d=D+1

we get

So, taking

Q'(1 -f(1 - X))

(1 - f(1 - X))D



We want this inequality to be true for the interval [6,, 1]. If 6 = - then

In D - In ln 10 In D -lIn

'()1- e) - '()1- )'

so it suffices to show
In D - In ln1

Q'(1)(1 - ES)

which in turn is true iff it is true at x = 1. This reduces to

In D - In In 1

Now, ln D = Q'(1) - 0(1), so the RHS

In in 1 + (1)
O'(1)'

so we need to choose Q'(1) so that

ln ln 1 + 0(1)

Q'(1)

Q'(1) = In -+ O(1), so we find

1iECs

CS<(l + 0 (1)) es

This proves the lemma.

Lemma 5 shows that (k, Q,,,D(x)) LT codes satisfy the erasure quantization prop-

erty because the LT code generates every output bit independently and identically.

Thus, the unmatched positions are evenly distributed throughout the n output posi-

tions, and we can consider the first n positions separately from the last ii positions.

(In fact, since all the erasures are in the first n positions, the fraction that are incorrect

in the first n positions is upper bounded by 6s(1 - e )).

The erasure correction property follows from the following lemma, given in [1,
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Lemma 4].

Lemma 6. For any E, > 0, let ec, p, D, and p be as defined in Section 3.6. Then,

the LT code with distribution (u,D(x) can recover all but a p fraction of the k inputs

from any subset of k(1 + a) + 1 output symbols with high probability.

Proof of Lemma 4. Lemma 5 proves the erasure quantization property. To complete

the proof of Lemma 4, we need to turn the bound on the number of unrecovered inputs

given in Lemma 6 into a bound on the number of unrecovered outputs in the last 5i

positions. With high probability at most 2kp variable nodes of C1 are unrecovered

(we need the 2 for Lemma 8 to come later). These unrecovered variable nodes induce

at most 2kpQ',,D(l) unrecovered check nodes in the last h positions of C1 with high

probability. This is because the number of unrecovered check nodes in the last h

positions is upper bounded by EZ deg(i), where deg(i) is the degree of node i in the

subgraph induced by the last h check nodes of e 1 , and the sum ranges over all the

variables nodes that are in error. Because the check nodes choose their neighbors

independently at random, this sum is tightly concentrated around its expected value,

which is Q'p,D(1)fip. Thus, with high probability we do not see more than 2kpQ,,(1

unrecovered check nodes in the last h positions.' Note that this analysis would hold

even if we made errors in the variable nodes instead of just not recovering certain

nodes. This is important when we prove Lemma 8 to come. 1

Note that the proofs of Lemmas 5 and 6 show that BP can be used to find the

strings guaranteed by the good code property.

3.7.2 Proof of Theorem 3

We prove, in order, that our construction satisfies both the encoding and decoding

properties of an admissible coding scheme.

The former is established by the following Lemma.

9We assume k > ii. This is reasonable because the proof of corollary 1 sets k n(1 - e,), and
f ~ n(e, - ec).
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Lemma 7. For the choices of C1 , C 2 , state, and channel distributions given in The-

orem 3, our construction satisfies the encoding property of Definition 1.

Proof. The encoding algorithm given in Section 3.5 guarantees that we satisfy the

encoding property, since step 3 of the algorithm ensures that the encoding matches

s at all non-* positions. However, we can make a stronger statement than this.

Lemma 4 guarantees that a large fraction of the state positions are matched after

step 2 on the encoding algorithm. Thus, step 3 only changes a small (6,) fraction

of unmatched positions to get the final encoding. This will be important when we

analyze the decoder. E

In the sequel, we refer to the encoding computed after step 2 as the preliminary

encoding.

Now we prove that our construction satisfies the decoding property. Specifically,

we have the following result, whose proof requires us to show that our code can correct

the erasures made by the channel, and the errors introduced by the preliminary

encoding.

Lemma 8. For the choices of C1 , C2 , state, and channel distributions given in The-

orem 3, our construction satisfies the decoding properties of Definition 1.

To prove Lemma 8, we first need the following Lemma, which implies that a

truncated version of C1 can be decoded reliably over BSC( 6s). 10

Lemma 9. For the choice of parameters given in Theorem 3, assume that the first n

bits of a codeword of C1 are sent over BSC( 6s), and then over the erasure channel

specified in Theorem 3. Then, BP can be used to recover the variable nodes of C1 with

high probability, in the sense that at most a fraction p of the nodes are not recovered

correctly.

10The reason we divide by (1 - e,) is that although at most 6,n errors are introduced by the
encoder, the channel only erases positions which were not in error. This is because the channel
only erases positions which were erased by the state. This means that there are 6,n errors in only
(1 - ec)n received positions, so the relevant fraction of errors is 6-.1-en
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In order to prove Lemma 9, we will make use of the following result from [4, Thm.

4.2] relates the performance of a code on the BEC to its performance on any binary

input-symmetric channel (BISC). The Bhattacharya parameter of a BISC is defined

as A = E[e-/ 2 ], where L is the log-likelihood ratio of the input given the channel

output.

Lemma 10. Let A(C) be the Bhattacharya parameter of an arbitrary BISC C. If BP

can decode an ensemble of codes over BEC(A(C)), then BP can also decode reliably

over C.

We remark that the proof of Lemma 10 given in [4] actually proves the stronger

statement that if the fraction of unrecovered inputs over BEC(A(C)) < 6, then the

fraction of inputs which are recovered incorrectly over C is also less than 6. u

Proof of Lemma 9. We prove that the subgraph of C, formed by only considering the

positions that were not erased by the erasure channel is good for BSC( ). Let j > 0

be a parameter we determine later. Say we receive k(1 + F) bits, but a b- fraction of1-ee

these bits are incorrect. From Lemma 6, we know that this subcode of C1 can recover

from erasures provided that k(1 +ec/2) unerased outputs are available. Thus, we can

tolerate an erasure probability of j = (F - e,)/(1 + E). Applying Lemma 10, it follows

that if 6. satisfies A( ) = 2 V--(1 - -s-) < , then we can correct a 6s fraction

of errors. This inequality is satisfied if we choose E =Ec + V160/((1 - e,) ln(1/ec)).

The reader can verify that the choices of Theorem 3 give at least this value of j. 0

It remains to confirm that C, can correct enough of the errors from the preliminary

encoding that C2 can correct those that remain.

Proof of Lemma 8. We first define a new channel Ce, which models the positions

whose bits we need to change after the preliminary encoding in order to satisfy the

encoding property. Let F be the fraction of unmatched positions after the preliminary

"Density evolution typically looks at the values passed along edges of the graph. To turn this
into a bound on inputs, it suffices to pretend that each variable nodes has an "extra" edge leaving
which is not attached to any other nodes. The value of this edge is updated using the same density
evolution equations, and the value on this edge determines the value of the associated variable.
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encoding, so that Ce introduces Fn errors to form the final encoding. Because the LT

code generates each output symmetrically, and because the state distribution (3.2)

is symmetric, it follows that given F = -y, the y positions flipped by Ce are equally

likely to be any y positions. Thus, conditioned on the number of errors, Ce has the

same distribution as a BSC.

Lemma 4 guarantees that F < with high probability. Let 7 be the expected

value of F (our proof of Lemma 5 shows 77 6, but we can calculate 7 to any desired

accuracy using density evolution). Then, a standard martingale argument [7] shows

that there exists a constant / such that for any c > 0,

Pr[jF - 7| > El < e- (3.4)

Let D(-11-) denote the Kullback-Leibler distance between two Bernoulli random

variables. For any particular value y and sufficiently large n, we know that the

probability P,,, that a realization BSC(-y) of the BSC makes, for some E > 0, a

fraction y + E errors in n transmissions is lower bounded by

e-nD(+EjLy)
P~ > (3.5)

and a similar statement is true for -y - E.

We say that BP decoding of (a truncated version) of C1 fails if the fraction of

level 1 variable nodes that are not recovered correctly is greater than 2p. Using

martingale arguments, one can show that Lemma 9 implies

Pr[BP decoding fails for BSC( 5 )] : 2 e ", (3.6)

1
2 In deriving equation 3.4, it is important that the encoder uses the algorithm specified in Sec-

tion 3.5. Specifically, the unreserved variables need to be assigned randomly. This allows us to
conclude that about half of the unreserved checks are not satisfied. Then, we can multiply the
density evolution value for the number of unreserved checks by .5 to get 7. The concentration result
in equation 3.4 follows easily by combining the facts that the fraction of erasures introduced by the
channel concentrates around ec, the number of unreserved checks concentrates around the density
evolution value, and the number of errors introduced by the encoder concentrates around .5*the
density evolution value since we 'assign the unreserved variables randomly.
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for a suitable constant a > 0. Choosing e such that o- = D(;7 t c I J|) - ap2 < 0, then

combining (3.4), (3.5), (3.6), and the fact that conditioned on the number of errors,

the distribution of a BSC and Ce is the same, we obtain

Pr[BP decoding fails for Ce] < e-"v"v2/7 + e- ".

Thus, the probability that BP decoding of C1 fails is exponentially small even when

the errors are introduced by Ce.

To complete the proof, we need to correct the small fraction of check nodes which

are not recovered properly after decoding C1 . There are two sources of error for the

last i check nodes: errors caused because our definition of failure allows for a 2p

fraction of errors in the variable nodes, and errors caused because during encoding

we may not be able to match a 6. fraction of the check nodes. In total, with high

probability the two sources of error induce at most a fraction J. + J, of errors in the

last fi check nodes, which can be corrected given the choice of C2 . Note that we have

not shown that the errors introduced to the level 2 variable nodes occur independently

for each variable. This is not necessary since we assume that C2 can correct a small

fraction of errors in the worst case, so the probabilistic model for the errors is not

important. E

We have proved that our construction has the encoding and decoding properties,

so this proves Theorem 3. Encoding and decoding take time O(n + h). The rate of

our ensemble is e, - e, - O(V). However, because c is so small compared to 6s, the

number of edges in the graph in figure 3-5, and hence the complexity of encoding and

decoding, scales with ln(1) = O( Inln(1)). Thus, our choice of Qp,D(x) allows us

to prove the asymptotic result, but the dependence on E, makes it difficult to get close

to e, - ec with this scheme. However, in section 3.10, we will see that the performance

can be improved by finding choices for Q(x) with a lower value of Q'(1), which still

perform well simultaneously for the BEQ and BEC.
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3.8 Information Embedding Capacity

As mentioned earlier, our coding scheme can be used for certain other channel erasure

models. In this section we analyze one such model, and then discuss some extensions

of Theorem 3.

Consider the information embedding problem where the state is still drawn from

(3.2). The channel model is no longer restricted to only erase positions which were

unerased in the state. Instead, we take the channel as a BEC with parameter e,.

Thus, the channel still introduces an e, fraction of erasures, but these positions are

evenly distributed now, as opposed to being concentrated on the positions where the

state was erased.

To calculate the capacity for this new channel model, we use the Gel'fand-Pinkser

[10] formula. This formula gives the channel capacity as

C = max I(U; Y) - I(U; S),
p(uls),p(Xlu,s)

where U is an additional random variable. We can solve this optimization problem

numerically using a version of the Blahut-Arimoto algorithm [9]. However, we can

determine the capacity analytically for this particular channel.

Lemma 11. Assume that the state is drawn from (3.2), and that the channel is a

BEC with erasure probability e,. Let hb(w) be the binary entropy function. Then, the

capacity of the information embedding problem is

C = e, - ec + (1 e) hb (W*) - (1 - ec) hb (w* (1- e,)),

where w* satisfies 1-* = (-''(1e) (1-ec)

We give a simple method that obtains a lower bound to the capacity. Appendix A

uses a brute-force approach to prove that the lower bound is actually tight. Consider

forming the random variable U in the Gel'fand-Pinkser formula as follows. With

probability 2w, set U to be 0 or 1 with equal probability, independent of S. With
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probability 1 - 2w, set U = S if S E {0, 1}, and set U to be 0 or 1 with equal

probability if S = *. Take X = U. Then, optimizing over w gives a lower bound of

C- = e, - e, + (1 - es)hb(w*) - (1 - ec)hb(w*(1 - e,)),

where w* satisfies 1w* (1-"i'))(-ec) Thus, Lemma 11 shows that this simple

choice of U and X gives the correct formula for capacity, i.e., C- = C.

Figure 3-7 shows the capacity for several choices of e. and e,.
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Figure 3-7: Capacity for Information Embedding Problem

3.9 Remarks

1. The proof of Theorem 3 does not require much knowledge of the statistical

model for the channel. In particular, no matter how the channel erasures are

placed, there will be less than 6,n errors with high probability. There will also

be about n(1 - e,) received symbols with high probability. Thus, the fraction

of errors is concentrated in the interval [0, ';-] with high probability, since the

worst kind of erasure noise would be noise that avoided the mismatched symbols
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entirely, i.e., the channel given by 3.3.

Based on this fact, we can show that the result of Theorem 3 holds even for the

new channel considered in this section. To see this, note that our new channel

introduces the same fraction of erasures as the old channel. The only other

property we need from the channel is that the fraction of errors seen at the

decoder is concentrated around some value. This is true for our new model, so

Theorem 3 still holds. (Basically, since the new channel model is a BEC, every

bit is equally likely to be erased, which means we do not need to change 6. to

- in the proof of lemma 8 anymore.) Note that although our construction1 -e,

works for the new channel, it does not achieve capacity. From figure 3-7, we see

that when e, is small compared to e8, the capacity is very closely approximated

by e, - e,. Thus, our coding scheme does come close to capacity for a reasonable

range of values for e, and e,.

2. The capacity-achieving distribution for U described after Lemma 11 essentially

quantizes the state under a Hamming distortion. Going through a random cod-

ing argument shows that U achieves capacity because the associated random

code has the property that it is simultaneously good for the BSC and for quanti-

zation under a Hamming distortion. Thus, it seems that the new channel model

is just as hard as the original coding for a memory with defects problem, even

though the channel is an erasure channel rather than a BSC. It is interesting

that even though the state and channel models only introduce erasures, quan-

tization under a Hamming distortion and error correction have come into play

under our new channel model.

3. Note that Lemma 5 does not assume anything about the statistical model of

the erasures in the state, i.e., Lemma 5 says that LT codes can match the state

provided the right number of erasures occur, regardless of how the erasures are

placed. Lemma 6 gives a similar result for channel decoding. Thus, it is natural

to wonder why Theorem 3 needs to assume that the state sequence is generated

from the distribution given by (3.2). Recall that in the proof of Theorem 3,
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we modelled the unmatched check nodes as errors from an additional channel.

When the state is generated from (3.2), we can use symmetry to argue that

every check node is equally likely to be unmatched. This would not be true for

an arbitrary state distribution. We could prove that Theorem 3 is true for any

state distribution if we could make a statement of the form, "If BP works over

BSC(6), then BP also works over a channel where different bits are flipped with

different probabilities ; 6." Intuitively, it seems like this statement should be

true, since we are essentially switching between BSCs with different parameters;

however, we have not tried to prove this statement rigorously.

4. We note that the LT code analyzed in section 3.7 is in some sense optimal.

Specifically, the LT code satisfies w(1 - f(1 - x)) < x, Vx E [6, 1] and f,(1 -

w(1 - x)) < xVx E [p, 1] for arbitrarily small Js, p. Here, f,(x) is the generating

function for the edge degree distribution of the variable nodes of C1 when we

only look at the subgraph induced by the unerased check nodes received over

a BEC. Thus, ((x) and f1(x) are only different in that the exponent in the

distribution changes by en. Now, using a message-passing decoder, no LT code

can satisfy the BEQ and BEC constraints better than our choice Q,,D(x). This

is because the BEC constraints imply that w(O) > 0, while the BEQ constraints

imply w(0) = 0 if we want the BEQ constraints to hold on (0,1]. Similarly,

the BEC constraints imply that f1(0) = 0, and the BEQ constraints imply

f(O) > 0. Because the only difference between e(x) and f1(x) is the exponent,

we see that it is impossible to satisfy the constraints better than the LT code

above without introducing some fixed points into the decoder. The problem

basically boils down to the fact that if we want BEQ (or BEC) to work all the

way down to 0, then there can't be degree 1 check (or variable) nodes, and this

will cause the decoder for the other problem to get stuck and not even start. Of

course, this simple analysis says nothing about the rate of convergence in 6, p

to 0, which could be improved greatly by using a different code. To this end, we

note that in [1], it is shown that the dependence between p and ',,D(1) is nearly

53



optimal for the BEC. Thus, the source of our bad dependence between encoding

and decoding complexity and the gap to capacity is the slow convergence of S,

to 0. The rate of convergence can probably be drastically improved, especially

in light of the fact that there exist constant-degree LDGM codes which achieve

capacity for BEQ.

5. Related to the last remark, consider the inequalities w(1 - f(1 - x)) <x, Vx E

[68, 1] and e(1-w(1-x)) < xVx E [p, 1]. By inverting the first inequality, we see

that intuitively, a capacity-achieving ensemble for the BEC, where w(1 - f(1 -

x)) ~ x, will probably satisfy the dual condition. This "symmetry" is discussed

in more detail in [22]. Thus, it seems that most capacity-achieving codes for

the BEC should work as a C1 code in our construction, provided that we use

random puncturing techniques to make the information/code bits symmetric.

Also, note that even though we haven't drawn C1 this way in the figure, really

C1 can be thought of as an LDPC-GM code, i.e., C1 has the same structure as

the compound code considered by [23], [24] (Imagine drawing the last h nodes

of C1 on the bottom. This looks like an LDPC precode).

3.10 Some Notes On Practical Schemes For Infor-

mation Embedding

In this section we make a few observations that may be relevant for actually imple-

menting the codes describes earlier. First we examine the case considered in Sec-

tion 3.4, where e, = 0. Figure 3-8 shows a code construction based on Raptor codes.

Essentially the code in figure 3-8 is formed by taking the dual of the LT part

of a Raptor code. This looks like a parity check code. Now, instead of dualizing

the precode, we keep the precode the same. More precisely, we use a low density

parity check (LDPC) [13] precode capable of correcting a small fraction of errors.

The details are similar to the construction based on nonsystematic IRA codes given

in Section 3.4, so we will be brief. To encode a message, we first encode the message
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Channel State goes along the top variable nodes

Dual LT Code

Precode

Figure 3-8: Code Based on Raptor Codes - Another capacity-achieving construction
for the case e, = 0. The variable nodes in the middle represent the message after it
has been encoded with the precode.

with the precode. Then, we use the dualized form of BP to assign values to the

variable nodes of the dual LT code. From Lemmas 1 and 6, we know that this

algorithm will compute an assignment to the erased state nodes which satisfies all

but a small linear fraction of the check nodes. So, the decoder sees the encoded state,

calculates the values at the check nodes, and corrects this small fraction of errors

using BP or some other algorithm capable of correcting a small fraction of errors.

This scheme has the advantage that it is easily proved to work for all values of e8,

while the dual IRA code is only conjectured to work for all values. Also, experiments

need to be carried out to determine which scheme would work better for short block

lengths. We know that for long block lengths the dual IRA codes are good since

they have bounded complexity, but in [5] the authors find that for short block lengths

other codes perform better than nonsystematic IRA codes. However, the construction

based on Raptor codes has the drawback that we need to use an error-correcting code

rather than an erasure-correcting code. This makes it harder to have a small gap to

capacity.

Now we deal with the case e, > 0. To design distributions Q(x) for C1 that exhibit

better performance than the choice Q,,D used to prove Theorem 3, we can use many

of the same design techniques outlined in [1]. From [1), we know that the following
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constraint works well for finding good distributions for the BEC:

- n (1-x - c n -, )

where c is some constant. We discretize this inequality by evaluating it at many

points in [0, 1 - p]. Each of these evaluations gives a linear constraint on the unknown

coefficients of Q(x).

We need to add constraints that will make Q(x) good for BEQ. Recall from Lemma

5 that the condition for quantization success is w(1- f(1 - x)) < x, Vx E [6k, 1]. Going

through the same derivation as in [1], we find that

-n(x) < ,Vx E [Q'(1)S,, 11

should be a good constraint on Q(x) to ensure good performance at BEQ. We can

discretize this inequality, and add the resulting constraints to get the final LP. We

note that to get close to capacity, it is crucial that 6J, p be very small. This is because

the fraction of errors C2 needs to correct scales with these parameters, and the rate of

C2 will be < 1 - Q(Vfraction of errors corrected). This rate loss will be the dominant

source of the gap to capacity for reasonable choices of E, and E,.
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Chapter 4

Conclusion

This thesis has examined the problems of lossy source coding and information em-

bedding. For lossy source coding, we proved several results showing that LDPC codes

are effective for this problem, at least if we allow optimal (high complexity) encod-

ing algorithms. We also saw that LDGM codes cannot achieve constant graphical

complexity per bit, unlike the compound codes in [24].

For information embedding, we developed a coding scheme with efficient algo-

rithms for encoding and decoding over the double erasure information embedding

channel. The key ingredient in our construction was an LT code that was simultane-

ously optimal for BEQ and BEC. We also showed that changing the erasure model

creates an information embedding channel that is essentially as hard as coding for a

memory with defects. Our code construction, although not capacity-achieving, still

works for the new model.

The results of Chapter 2 leave many questions unanswered. Our goal in study-

ing lossy source codes was to develop codes for the binary symmetric source under

Hamming distortion with efficient algorithms for encoding and decoding. While we

have shown that LDPC codes should be considered along with LDGM codes and

compound constructions, our proof techniques rely on optimal encoding algorithms,

so the obvious question is whether any of these sparse graph codes has an efficient

encoding algorithm. Towards this end, we note that density evolution shows that

standard BP cannot work as an encoding algorithm, but there is evidence that BP
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can be modified to work for lossy source coding [3,27].

A simpler problem mentioned earlier is to determine whether the correspondence

between error-correcting codes and quantizers proved in Section 2.3 goes the other

way. Also, a problem suggested by our result in Section 2.4 is to prove a similar

lower bound on the degree of either the variable nodes or the check nodes of good

LDPC codes. Based on the fact that LDPC codes with bounded degree cannot

come arbitrarily close to capacity for the BSC, we would be surprised if LDPC codes

with bounded degree could come arbitrarily close to the rate-distortion function for

a binary symmetric source under Hamming distortion. A lower bound for LDPC

codes would be important conceptually because this would show that the compound

construction of [24] somehow greatly improves over using LDGM codes or LDPC

codes separately.

For information embedding, the natural problem to consider is how to generalize

our construction to other source and channel models. In particular, a better C1 code

is needed in order to achieve capacity for the channel considered in Section 3.8. It is

easily shown that if C1 is simultaneously good for the BSC and for quantization under

a Hamming distortion, then our construction can come arbitrarily close to capacity for

the channel in Section 3.8. Therefore, if we proceed along these lines, finding a good

lossy source code is a prerequisite for finding a C1 code that is good enough for our

construction. For example, taking C1 to be a random linear code allows us to achieve

capacity for arbitrary e, and ec, but practical algorithms generally do not work for

random linear codes. It would be interesting to see if another code construction is

possible which bypasses the need for such strong properties from the code. We believe

that this is probably not possible. Intuitively, it seems that modifying the encoder

for a good code for coding for a memory with defects ought to produce a good lossy

source code, i.e., we should be able to prove a reduction from coding for a memory

with defects to lossy source coding.
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Appendix A

Proof of Lemma 11

This appendix contains a proof of Lemma 11.

To prove that the formula for capacity is correct, consider the following equations

given in [9]:

q(tjs) = H Q(ty)P(YIX=t(s),S)

Q(tly) = E p(s)q(tjs)p(yjx = t(s), s)

Zs,t, p(s)q*(t'Is)p(yjx = t'(s), s)

Here t ranges over all functions from {0, 1, *} -+ {0, 1}, and p(ylx = t(s), s) is the

distribution of the channel conditioned on the state s and the input x. The fixed

point of these equations defines the optimal distributions q*(tls) and Q*(tfy), which

can be used to calculate the capacity. We will show that the following choices for q*

and Q* are a fixed point:

q*(tls) = 4 - + J(s - 1+ t(*)) + 1(s -
44 8

Q*(t1y) e)w* 6 (y - t(*)) + e)w 6(y - 1 + t(*)) + J(y -

To show that these choices are a fixed point, we will start by verifying that q*(tIs)

can be calculated from Q*(tly). We break down the verification by s. First, consider
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the case s = 0. Then, if t(*) = 0,

H Q(ty)(yIx=t(),s) - - e ( eseC

1 1-e,)w* I-er

4 8

Similarly, if t(*) = 1,

Q(tIy)PYIx=t(s),s) =

y()

There are four functions with t(*) = 0 and four functions with t(*) = 1. So, if

t(*) = 0,
Fly Q* (t Iy)P(Ylz=t(8),S)

Et rl Q*(tIy)P(ylx=t(S),S)

1 (1 - (1 - e,)w*) -ec

4(1 - (1 -e)W*)e + ((1 - es)w*) 1 ec

1 -w*(1-e) (1-ec)

w*(1-(es) /

4 l -1
1 -w*

4

= q*(j~s),

where we have used the fact that = (-w( ) Thus, we have verified

the case s = 0, t(*) = 0. The case s = 0, t(*) = 1 follows immediately because our

calculations imply that the probability in this case must be 1- the probability of the

case s = 0, t(*) = 0.

The case s = 1 also follows easily from our analysis so far because essentially all

that changes is that we flip the t(*) = 0 and t(*) = 1 formulas for Fly Q(tjy)P(yIx=t(),s).

This flip carries throughout the rest of the derivation, so we have verified the case
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s = 1. Finally, for s =

H- Q(t1y)P(Y1X=t()'S) 4 1-( es)wA*) -ec 8( e

for all t. Thus, normalizing will give q*(tls) = . when s = *, so we have verified the

first fixed point condition.

Now, we verify the second condition. Again, we will break the analysis down by

cases. First, consider the case y = 0. Then, if t(*) = 0,

1es1 W* le, W*1
Ep(s)q*(ts)p(yjx = t(s), s) 2 4 (1- ec) + 2 (0) + e(1 - ec)

S

(1-e)w* 8 8

Similarly, if t(*) = 1, E. p(s)q*(tjs)p(yjx = t(s), s) = (1 - es)w*i-r. So, nor-

malizing and recalling that four functions have t(*) = 0 and four have t(*) = 1, we

obtain

Esp(s)q*(tls)p(ylx = t(s), s) 1 1 - w*(1 - e')

Zt, p(s)q*(tIjs)p(yjx = t'(s), s) 4 1 - w*(1 - es) + w*(1 - e,)

1 - w*(1 - e,)

4

= Q*(tly)

for the case y = 0, t(*) = 0. The cases y = 0, t(*) = 1 and y = 1 follow using the same

arguments as we used for the first condition. Finally, if y = *, ,p(s)q*(t-s)p(yx =

t(s), s) = 1je (1-* + L) e, + e5 lec = i for all t. Q*(ty) = when y=*, so we

have verified both fixed point conditions.

To complete the proof, we must calculate the capacity from q* and Q*. In [9], the

following formula is given for the capacity:

C = p(s)q*(tIs)p(yIt, s) log Q .t-y
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This sum resembles the sum in the second fixed point condition, so we will use the

same approach and consider each value of y separately. The terms corresponding to

y = O,t(*) = 0 are

1 - e, 1 - w* - -es 1 1-w*(1-es)

2og -'. +e 8 -(1-ec)log 1
2 44 8 8

The terms for y = 0, t(*) = 1 are

1 - e3 w*1e~ o w*(1-es)
(1-e) log 24.

24 4

To get the total contribution from the y = 0 terms, we need to add these two expres-

sions and multiply by 4 since there are four functions t of each type. Factoring out

2 and cancelling out common terms in the fractions, we get a total of

- c(1 - e,) (1 - w*) log ,*1- . + e., log 2(1 - w*(1 - e,)) + (1 - e,)w* log (1 - e,).
2 1 - W

Now, using the same argument that y = 1 just flips some terms around, it is easy to

see that the total contribution from y = 1 terms must be the same as the contribution

from y = 0 terms. So, the total from y = 0 and y =1 terms is

(11 1 W* - e o2
(1-ec) (I - es)(1 - w*) log + e, log 2(1 - w*(1 - e,)) + (1 - es)w* log (1 - es)

The contribution from y = * terms will be the same for all t. Multiplying an individual

term by 8 gives us a total contribution of

1 1 1

(1 - e,)(1 - w*)ec log 18+ (I - e)w*e log + esec log
4 2 8

Note that the last term is 0 since log 1 = 0. Adding together the contributions from

y = 0, 1 and * gives

C = (1-e,) ((1 - es)(1 - w*) log + e, log 2(1 - w*(1 - e,)) + (1 - e)w* log es)

1 - w ~lg(
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+ec (1 - e)(1 w*) log 2 (1 -w*) + (1 - e,)w*log 2 * )
12( - * w

= (1 -ec) (1 - e) (1 -w*) log 1 + (I - ec) (1 - e.) (1 - w*) log (1 - w* (I - e,,))
1-W*

1
+(1 - ec)es log (1 - w(1 - e,)) + (1 - ec)e, log 2 + (1 - ec) (1 es)w* log 1-

1
+ (I - ec) (I - e,)w* log (w* (1 - e,)) + ec (1 - e,,) (1 - w*) log 1

1 1 1
+ec(1 - e,)log- + ec(1 - e8)W* log + ec(1 - es)w* log -

1
= (1-es)h(w*) - (1-ec)hb(W*(-e,))+e(-e) og 2+e( -e s)log 1

2

= e. - ec + (1 - es)hb(w*) - (1 - ec)hb(w*(1 - e,)).

This completes the proof.
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