
Policy Search Approaches to Reinforcement
Learning for Quadruped Locomotion

by

Antonio R. Jimenez

Submitted to the
Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology MAFCH NOWGY
Don e DdOF TECHNOLoGY

MN'ay 2006May 2006AUG 1 14 2006
@ Antonio R. Jimenez, MMVI. All rights reserved.

LIBRARIES
The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis and to
grant others the right to do so.

Author
Department of Electrical tnginedifWg and Computer Science

May 12, 2006

Certified by
Leslie P. Kaelbling

Professor of Computer Science and Engineering, MIT
is Supervisor

Certified by
Paul A. DeBitetto

Member of aboratory
)upervisor

Accepted by_
Artnur C. Smith

Chairman, Department Committee on Graduate Theses

BARKER

THIS PAGE INTENTIONALLY LEFT BLANK

2

Policy Search Approaches to Reinforcement Learning for

Quadruped Locomotion

by

Antonio R. Jimenez

Submitted to the

Department of Electrical Engineering and Computer Science

May 12, 2006

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

Abstract

Legged locomotion is a challenging problem for machine learning to solve. A quadruped
has 12 degrees of freedom which results in a large state space for the resulting Markov
Decision Problem (MDP). It is too difficult for computers to completely learn the
state space, while it is too difficult for humans to fully understand the system dy-
namics and directly program the most efficient controller. This thesis combines these
two approaches by integrating a model-based controller approach with reinforcement
learning to develop an effective walk for a quadruped robot. We then evaluate dif-
ferent policy search approaches to reinforcement learning. To solve the Partially
Observable Markov Decision Problem (POMDP), a deterministic simulation is devel-
oped that generates a model which allows us to conduct a direct policy search using
dynamic programming. This is compared against using a nondeterministic simulation
to generate a model that evaluates policies. We show that using deterministic transi-
tions to allow the use of dynamic programming has little impact on the performance
of our system. Two local policy search approaches are implemented. A hill climb-
ing algorithm is compared to a policy gradient algorithm to optimize parameters for
the robot's model-based controller. The optimal machine-learned policy achieved a
155% increase in performance over the hand-tuned policy. The baseline hill climbing
algorithm is shown to outperform the policy gradient algorithm with this particular
gait.

Thesis Supervisor: Leslie P. Kaelbling
Title: Professor of Computer Science and Engineering, MIT

Thesis Supervisor: Paul A. DeBitetto
Title: Member of the Technical Staff, Charles Stark Draper Laboratory

3

THIS PAGE INTENTIONALLY LEFT BLANK

4

Acknowledgments

This thesis was prepared at the Charles Stark Draper Laboratory, Inc., under internal

Research and Development.

Publication of this thesis does not constitute approval by the Draper Laboratory

or any sponsor of the findings or conclusions contained herein. It is published for the

exchange and stimulation of ideas.

I would like to thank Leslie Kaelbling for the guidance she has provided and the

opportunities she has given me. I would also like to thank Paul DeBitetto for allow-

ing me to work in his group and opening the doors of robotics research for me.

I could not have accomplished this research without the rest of the Draper Labo-

ratory Cognitive Robotics group: Greg Andrews, Jeff Miller, Adam Rzepniewski,

Scott Rasmussen, and Chris Rakowski. Their engineering efforts and important in-

sights were essential to this work. Also, I must thank Rick Cory and Russ Tedrake

for key conversations that were immensely helpful.

Finally, I thank my family for all their support and help. Liz, for always believ-

ing in me. Katie, for the immense motivation she gave me and being a bundle of

joy.

Antonio R. Jimenez

May 12, 2006

5

THIS PAGE INTENTIONALLY LEFT BLANK

6

Contents

1 Introduction 15

1.1 M otivation . 16

1.2 Thesis Approach . 16

1.3 Thesis Roadmap . 18

2 Background 19

2.1 Reinforcement Learning . 19

2.2 Markov Decision Processes . 20

2.2.1 The Fully Observable Case . 20

2.2.2 Partially Observable Markov Decision Processes 21

2.3 Solving Reinforcement Learning Problems 23

2.3.1 Q-learning.......... 23

2.3.2 Policy Search . 24

3 Policy Search by Dynamic Programming 27

3.1 PEG A SU S . 27

3.1.1 The Deterministic Model . 27

3.1.2 Function Approximation . 28

3.2 P SD P . 29

3.2.1 Non-Stationary Policies . 30

3.2.2 Performance Bounds . 30

3.3 Problem Abstraction . 31

7

3.3.1 Performance Bounds with this Problem Abstraction 32

3.3.2 Applying Deterministic Models to the Problem Abstraction. . 34

4 Implementation 37

4.1 Controlling a Quadruped . 37

4.1.1 The Designed Gait . 37

4.1.2 Step Control. 38

4.2 Learning a Better Walk . 40

4.3 Simulation of an Aibo . 42

5 Results and Analysis 43

5.1 R esults . 43

5.1.1 Simulation Results . 43

5.1.2 Hardware Verification . 45

5.2 A nalysis . 48

5.2.1 Comparing PGA and Hill Climbing 48

5.2.2 Comparing Models . 51

6 Conclusion and Summary 55

6.1 C onclusion . 55

6.2 Future Work . 56

6.3 Sum m ary . 57

A Simulation Data 59

A.1 Joint Positions . 59

A.2 Torque Control . 61

B Acronyms 63

8

List of Figures

2-1 Overview of Reinforcement Learning 20

2-2 A Partially Observable Markov Decision Process 23

3-1 Degrees of Freedom per Leg . 31

4-1 The Aibo Robot Model ERS-7 . 37

4-2 The Designed Gait . 38

4-3 Controlling the Step . 39

5-1 Nondeterministic Test Results with the Quasi-Greedy Algorithms . . 45

5-2 Deterministic Test Results with the Quasi-Greedy Algorithms 46

5-3 Nondeterministic Test Results with the Completely Greedy Algorithms 46

5-4 Deterministic Test Results with the Completely Greedy Algorithms . 47

5-5 The Learned Gait . 48

5-6 Comparison of Nondeterministic and Deterministic models with PGA 52

5-7 Comparison of Nondeterministic and Deterministic models with Hill-

C lim bing . 53

A-i Shoulder Position . 59

A-2 Upper Leg Position . 60

A-3 Lower Leg Position . 60

A-4 Shoulder Torque . 61

A-5 Upper Leg Torque . 62

A-6 Lower Leg Torque 62

9

THIS PAGE INTENTIONALLY LEFT BLANK

10

List of Tables

3.1 Problem abstraction .

4.1 The initial control parameters and the modified c values

5.1 The best scores found with each algorithm

5.2 The optimized control parameters .

5.3 Hardware verification .

11

32

39

43

44

47

THIS PAGE INTENTIONALLY LEFT BLANK

12

Chapter 1

Introduction

Much research has been conducted in autonomous robotic control. Legged, ground

robots pose much promise in allowing the ability to operate in rough terrain. In situ-

ations requiring humans to carry increasingly heavier loads through terrains such as

mountains, larger legged robots would be able to serve as pack mules. Smaller legged

robots would also be able to operate in areas where humans are unable to easily en-

ter, such as through rubble. The challenge then becomes to try to develop intelligent

controllers to be able to quickly and effectively operate in challenging terrain.

Reinforcement learning can be used to adapt to the environment or optimize a

robot's controller for a specific terrain. Directly searching for the best policy can be

very effective in designing a controller [16].

The goal of this research is to create a better controller for quadruped locomotion,

movement across the ground for a four-legged robot. For the scope of this work, the

focus is on the speed of the walk, with the goal of walking as fast as possible without

falling over. In this case, reinforcement learning is applied to optimize the controller.

13

1.1 Motivation

Two approaches have been used to solve this problem. It is possible to completely

hand design a controller. The parameters of the controller are then set by hand to

attempt to maximize the efficiency of the controller.

The second approach is for reinforcement learning to completely control all as-

pects of the robot's movement. This would mean controlling the angle for each of the

joints. The balance of an inverted pendulum which controls a joint with one degree of

freedom (DOF) is a common example problem for reinforcement learning. However,

a quadruped is especially challenging since it has 12 degrees of freedom. This creates

a rather large state space which has not even taken into account other sensors on the

robot yet.

Each of these approaches has inadequacies. With many parameters, it is too dif-

ficult for humans to directly design the most efficient controller. In addition, it is

not practical for computers to completely learn the state space of the reinforcement

learning problem.

The current solution is a combination of these two approaches. This combines a

human designed model with reinforcement learning to either learn parameters for the

model-based controller or some aspect of the state space. It is possible to view the

model-based controller as a method to abstract the state space of the problem to a

solvable space for the reinforcement learning algorithms.

1.2 Thesis Approach

This thesis approaches the reinforcement learning problem using the policy search

set of algorithms. Our goal is to compare two optimization algorithms [10] that will

14

attempt to maximize the performance of the policy. In addition, we will frame the

problem according to the standard Markov model for reinforcement learning. This

will allow the analysis of the problem for algorithms for more complex belief state

spaces [15] [3]. It will also provide insight and a development of the intuition for the

performance bounds of these algorithms.

A theoretical analysis of the problem moves us in the direction of solving the

additional aspects of the overall problem of controlling a walk over rough terrain.

By producing insight into the performance bounds of these algorithms using a more

complex belief state space, this work may help to integrate reinforcement learning

into a larger scope of the controller.

Specifically, this thesis produces insight into these algorithms by analyzing the use

of deterministic models for policy search. Using deterministic models allows the use

of dynamic programming directly on the policies, rather than on the states, which is

how dynamic programming is traditionally used for reinforcement learning. By inves-

tigating the use of deterministic models, we will look at its impact on performance in

the simulated and real worlds.

The designed model-based controller, or gait, is created for future use in rough

terrain. It uses a single-step gait, meaning only one leg is off the ground at a time, as

opposed to using two diagonal legs in phase with one another, which would maximize

the speed over flat terrain. Each step is defined by a simple quadratic trajectory. The

model-based controller with learning shows a large speed increase over the original

hand-tuned controller. This demonstrates the value of using policy search to optimize

a quadruped's controller.

15

1.3 Thesis Roadmap

In this thesis I demonstrate the use of policy search on reinforcement learning. I will

compare two policy search algorithms and show the impact of deterministic models

on the rate of learning and performance in the real world.

The chapters of this thesis are organized as follows:

" Chapter 2 gives an overview of reinforcement learning and the strategies used

to solve this class of problems. This chapter presents the fundamental frame-

work used for reinforcement learning problems by detailing Markov Decision

Processes (MDPs) which define the states and actions of the system.

" Chapter 3 goes in depth into the policy search set of algorithms for reinforcement

learning. Specifically, it addresses recently developed algorithms that allow the

use of dynamic programming directly on the policies. This chapter also provides

an analysis that can serve as a theoretical basis for future work.

" Chapter 4 presents the implementation of the system. The model-based con-

troller is described in detail and the optimization algorithms are presented. The

experiments are described along with the framework of the simulation.

" Chapter 5 presents the results from the experiments in simulation and the hard-

ware verification of these results. The analysis shows the verification of the

theoretical results presented in Chapter 3.

" Chapter 6 discusses the conclusions from this research and expands on future

work for quadruped locomotion in rough terrain in dealing with the correspond-

ing challenges.

16

Chapter 2

Background

2.1 Reinforcement Learning

In this chapter, the basics of reinforcement learning are reviewed and the notation

for the rest of the thesis is presented.

Reinforcement learning is the problem of learning behavior through trial and error

while interacting with the environment. This sequential decision making needs to take

into account a delayed reward. A good action now may not result in receiving a high

reward until much later. In the same manner, penalties for current actions may not

be received until later. A future state of the agent is also conditionally independent

of past states given the current state. It is solely dependent on the actions taken from

the current state.

To formalize this system, a Markov Decision Process provides the basis for rein-

forcement learning.

17

Figure 2-1: An overview of the reinforcement learning model. The state is determined

by the environment with the transition probabilities, P. The reward is determined by

the Reward Function, R.

2.2 Markov Decision Processes

2.2.1 The Fully Observable Case

A Markov Decision Process is defined as a model with the following components:

" A set of states, S

* A set of actions, A

" A reward function, R: S x A -+ *R

" A transition probability function, P : S x A -- P (S), where P (S) is a proba-

bility distribution over the states of the environment.

The transition probability function determines the chances that a particular action

from a particular state will take the agent to another state. This basically means that

the result of an action is nondeterministic. The reward function provides the expected

reward received from a state while taking an action. The task in solving an MDP

18

is to create a policy 7 for choosing actions which will maximize the agent's lifetime

reward. This is shown as

Q = ro + r +-Y2'r2 +... ,(2.1)

where -/ is defined as the discount factor for rewards in future states. This allows this

value to converge. This Q value can be defined by value iteration for a finite horizon

H as

QH (s, a) = R (s, a) + [P (S' s, a) m ax QH-1 (s', a') (2.2)

The policy that will solve this reinforcement learning problem is just

7r (s) = arg max Q (s, a) . (2.3)

In summary, the process of executing a MDP is to observe the state in time step t, to

choose an appropriate action, to receive the reward corresponding to that state and

action, and to change the state according to the transition probabilities.

2.2.2 Partially Observable Markov Decision Processes

There are many sources of uncertainty in the real world. With any sensor for a robot,

it is important to model the uncertainty caused by the sensor's noise. The robot never

has perfect knowledge of the environment around it, but it can maintain a belief of

the environment, based upon its sensors.

For the Markov Decision Process, this means that it is not possible to fully ob-

serve the state the agent is in. Instead, at each step in the decision process, the agent

receives an observation and then has a belief of which state it is in, based upon the

observation probabilities for the states and the transition model.

19

Therefore, let us define a Partially Observable Markov Decision Process (POMDP)

as having the following components:

" A set of states, S

" A set of actions, A

* A reward function, R : S x A -* R

" A transition probability function, P: S x A -'P (S)

* A set of observations, 0

" A set of observation probabilities, p (0IS)

" An initial state distribution, [to

Let us also define lit as the state distribution at a given time t. [to would be

the initial state distribution, but D is also used in Chapter 3 to reference the initial

state distribution. In that chapter these state distributions are used to provide an

expectation on the value of policies.

The belief state generated from the observations is not independent of past obser-

vations. It can be defined as

bt = p (slot I at, ot, at- , .. , oo asO) (2.4)

While updating the belief state is easy, finding the optimal k-step policy is doubly

exponential in k. For n states, the optimal policy must be found over an n - 1 di-

mensional belief state. This causes the finding of the optimal policy for a POMDP

to be a rather difficult task.

20

t, 12 t

s sa) S Hidden

------ ------
p(O|si_

Observable

A A

Figure 2-2: An overview of a Partially Observable Decision Process. The states are
hidden from the agent, which must choose its actions just from its observations.

2.3 Solving Reinforcement Learning Problems

There are two general approaches to solving reinforcement learning problems. The

first is to use dynamic programming to estimate the utility of taking actions for spe-

cific states in the world. Q-Learning is an example of this method and is presented

here for completeness. The second approach is to directly search the space of policies

for a policy that results in the best performance. The main focus of this thesis is on

these policy search methods.

2.3.1 Q-learning

The Q-value of a state can be determined if the P and R are known. If they are not

known, then the Q-value can be trained directly through a method called Q-Learning.

Q-Learning is called a model-free method since it does not need a model for either

learning or action selection. Instead, the Q-values are learned for each state. Q-

21

Learning is an iterative process that will eventually compute exact Q-values. The

value iteration for a state is given by Equation 2.2. The update equation for Q-

Learning is given by

Q(s, a) := Q (s, a) + a (R () + 7 max Q(s',a') -Q(sa)) , (2.5)

where a is the learning rate. a must be decayed appropriately. Then if each action is

executed in each state an infinite number of times, the agent's Q-values will converge

to the exact Q-values of the system.

Calculating the optimal policy is then straightforward since it is given by choosing

the actions that will maximize the Q-value.

2.3.2 Policy Search

Policy search is the straightforward solution to the reinforcement learning problem,

by focusing on what we truly care about, the behavior of the agent.

A form of policy search can be summarized as

7r (s) = max Q (s, a) . (2.6)

The general idea is to continuously adjust the policy to improve the performance

and then stop. With the proper parameterization, this problem can be formulated to

be solved by using standard local function optimization. As with all local searches,

deciding when to stop or finding ways to move out of local optima is a challenge.

There are further challenges in dealing with function discontinuity which is common

with policies. We present two algorithms in Chapter 4 that attempt to solve a local

policy search that deals with these issues.

22

If the policy is determined by Q-functions as in Equation 2.6, then policy search

results in a process that learns the Q values of a state. Dynamic programming is

used to save these values. However, this is different than Q-learning, since the goal of

Q-learning is to find a Q that is close to the optimal Q-function, Q*. Instead, policy

search is solely focused on the policy that results in good performance, even though

the the Q-values may by greatly different than the true underlying Q-value of a state.

Russell [19] presents a good example of this difference. The approximate Q-
function defined by Q (s, a) = Q* (s, a) /10 will give an optimal policy, but it remains

far from Q*.

However, this method of policy search is still using dynamic programming on the

Q-values of a state. In the next chapter, we will present a method which will allow

the use of dynamic programming directly on the policies.

23

THIS PAGE INTENTIONALLY LEFT BLANK

24

Chapter 3

Policy Search by Dynamic

Programming

3.1 PEGASUS

3.1.1 The Deterministic Model

The model that we are referring to with the phrase "the deterministic model", is the

generative model that allows us to try actions from different states. This will generate

our scores for each of the actions. In a practical sense, this model is the simulation

of the robot used to test a controller. This use of the term "model" should not be

confused with the overall Markov or POMDP model presented in Chapter 2.

Russell [19] provides a clear example for the benefit of using a deterministic model.

He asks us to consider the task of determining which of two blackjack programs is

the best. An initial approach is to have each program play against the same dealer

and then base their score on the amount of money they earn (or lose). However,

their score will vary depending upon the cards that each of them receive. We are left

wondering whether one program was just lucky, or if it is truly the better blackjack

program.

25

A solution to this problem is to have each program receive the same set of cards.

The idea is to eliminate the error due to the cards that are received. To apply this to

our problem, the system randomness is found in our sensor noise. This noise impacts

the placement of each of the joints. Even though a joint is commanded to a certain

angle, it only achieves that angle with a certain amount of error.

To make a deterministic model for the quadruped simulation, we set aside a pre-

determined set of random numbers which is used to determine the system noise.

Therefore each policy is scored with the same sensor noise model. This is referred to

as a deterministic simulative model [15]. We will compare this to a nondeterministic

model.

What results from this transformation is a modified POMDP where taking an

action in a state will always result in transitioning to some fixed state. It is this

deterministic simulative model that provides the new Markov model with which PE-

GASUS can operate on. In general, this deterministic model gives the ability to store

the value of an action for a given state into a table. In this way, we are able to use

dynamic programming directly on policies.

3.1.2 Function Approximation

PEGASUS presents a function approximation for the value of policies. In general,

the value of a policy can be defined by the following equation with respect to some

initial state distribution D

V (7) = EsO~D [V (so)] (3.1)

where so - D means that so is drawn according to D for the expectation. V' (so)

26

returns the estimated sum of the rewards for executing 7r from So.

An approximation to V (7r) can be defined as

V(w) ~ V" (S) (3.2)
i=1

where so is a drawn sample of m initial states according to D. Then since the tran-

sitions from each state can be exactly determined, this sum can also be exactly deter-

mined. The simulative model will determine the states from the policy and sum the re-

wards with a discount factor -y. The horizon, H, is set as H = log, (e (1 -) /2Rma,)

which will give an c/2 approximation for the function.

The final approximation is given as

Z() R (+) R (s) + ... + MHR (2 , (3.3)

where m scenarios are used to define V (-F) for all T. Since we are using deterministic

transitions, this is a deterministic function and standard optimization techniques can

be used to find the optimized policy. Two optimization algorithms are presented in

Section 4.2. They are implemented and tested with the problem abstraction presented

later in this chapter.

3.2 PSDP

Fundamentally, Policy Search by Dynamic Programming (PDSP) and PEGASUS are

very similar. In fact, PEGASUS is, itself, a form of Policy Search by Dynamic Pro-

gramming. However, the PSDP algorithm presented in [3], specifies the use of non-

stationary policies and does not specify the function approximation method, while

PEGASUS uses stationary policies with a specific approximation function.

27

3.2.1 Non-Stationary Policies

PSDP as presented in [3] is summarized in Algorithm 1 where pt is the state distri-

bution at time t. This would mean that po = D where D is defined in Section 3.1.2.

This algorithm states that the policy can change over time, T and the algorithm

maximizes this non-stationary policy, H.

Algorithm 1 PSDP. Given T, pt, and 1l
for t= T- I, T -2, . .. , 0 do

Set rt = argmaxir E,~,, [V7t,+-]....,7T (s)]
end for

3.2.2 Performance Bounds

The theorem for the performance bounds of this algorithm for an optimized policy 7r

calculated with a function approximation with an error E is defined as

V, (so) > V,,, (so) - Tc - Tdvar (P, i'i7rej) (3.4)

where 7,,f is any possible policy in H and where dva, (/p,, I') is defined as the average

variational distance between two distributions. This is given as

1 T-1
= E E IP't (S) 14 (S)| .

Tt=O se s
(3.5)

Iref is defined as the future state distribution caused by following policy, lrref. De-

fined explicitly it is

/17' (s) = Pr (st = s so, r) . (3.6)

Using the average variational distance assumes that the policy values are calculated

28

dvar 01, 11'/)

based upon the expectation of the policy sampled against its future state distribution.

Proofs for the theorem presented in Equation 3.4 can be found in [2], [3] and [9].

However, with the following problem abstraction, we will show an intuitive under-

standing of the correctness of this theorem.

3.3 Problem Abstraction

To apply reinforcement learning to a quadruped, the state space has 12 degrees of free-

dom (DOF) for the positions of the joints for the legs. This is created by 2 dimensions

for a shoulder and 1 dimension for an elbow as seen in Figure 3-1. In addition, there

is a 2 dimensional stability vector and a 2 dimensional velocity vector. This gives a

16 dimensional state space and the space of actions within the 12 DOF joint positions.

Z

x

Figure 3-1: This demonstrates the three degrees of freedom per leg for the quadruped.
This gives a total of 12 degrees of freedom for the four legs.

An underlying Markov model of this size is not practical to base a reinforcement

29

learning system on, so we use an approach that uses model-based control to abstract

the state and action spaces. The controller has a model of a stable walk and step pat-

tern. It then uses 6 control parameters to govern this model. We define the resulting

problem abstraction from the underlying POMDP model for use with this problem

formulation.

The resulting model for the reinforcement learning problem is as follows: Let the

state space S be defined as a subset of the observations of the underlying POMDP

model, so that S is the position of the robot in the y-direction of a plane. Let

the actions A be defined as the 6 control parameters. Let so be set to 0 and D or

10 = f{1, 0, 0, .. .}. This means that the robot will always be initialized at 0. This

allows us to define R (s) as the magnitude of the state which is the distance in the

y-direction, IsI. We will only measure the results of the action after 10 seconds. This

means that T = 1 time step of 10 seconds. The discount factor / is not needed with

this setting of T. The horizon H is also set to 1.

S : Position in the y-direction A : Control Parameters for Gait

SO= 0 D or yto = { 1, 0, 0,}
R (s) Isl P (s, a) : Defined by simulation

T : 1 Time Step of 10 seconds : Not needed

Table 3.1: An abstraction of the underlying POMDP for use with our model-based

controller. S is a subset of the observations of the underlying POMDP model.

3.3.1 Performance Bounds with this Problem Abstraction

Taking this model and applying it to PEGASUS and PSDP will show that this is a

special case for both algorithms. Since the time step, T and horizon H is set to 1,

non-stationary policies have no additional meaning since there are no time steps for

the policy to change. Also, the function approximation for policy values in PEGASUS

ends up with a single term. The remaining parts of the equation drop out when the

30

horizon is set to 1.

This has a direct impact on Equation 3.4. Since po is defined to be {1, 0, 0, . . .

and the state transitions are deterministic, the future state distributions will also

have a complete certainty that we will be in one particular state. This means that

the average variational distance for all policies 7Fref will be zero. In other words,

dvar (P, P-,T,) =-- 0.

This trivializes Equation 3.4 as the following for our problem formulation

VK (so) ;> VX, (so) - 6 . (3.7)

This states that the optimal policy will be greater than all other policies within the

error rate 6. Since the value of any policy is just the reward of one run in the simula-

tion, it should be clear that this error rate c is just the error rate of the simulation,

which is the observation error from the underlying POMDP. Therefore by definition,

the optimal policy will be greater than all other policies within the error rate of the

simulation.

Similar to the proof by induction presented in [2], we can extend this to a larger

time scale. It will be necessary to calculate dtar (, PTef). Bagnell [3] states that it

is well know that for any function f (s) bounded in absolute value B the following is

true

|ES~,1 [f (s)] - ES~ 2 [f (s)]| < B 1pi (s) - [2 (s) . (3.8)

In our case, this is bounded by B = 1. This means that the average variational dis-

tance will be greater than any distance between two expectations of the policy values

when sampled against their future state distributions. Therefore, since an optimal

policy is derived based upon these expectations, an optimal policy will be greater than

31

all other policies minus the error rate and this average variational distance. This is

exactly what is stated in Equation 3.4.

3.3.2 Applying Deterministic Models to the Problem Ab-

straction

With deterministic models, the question arises, does a deterministic simulation learn

an optimal policy faster? The follow-up question is, by what standard? According to

a "real world" measurement, the policy being learned will actually perform worse in

the real world dependent upon the complexity of the model [15].

However, in the simulation world, the deterministic simulation should learn an

optimal policy faster according to certain circumstances. To understand why, and to

see how it applies with our particular problem abstraction, we need to look at exactly

what we are doing.

In using a deterministic simulative model, what we end up doing with our Markov

model is setting our transitions froni the transition probabilities to be certain. This

means that the variance from the results is zero which then means that the system is

certain of its results and can react accordingly. This reduced variance is compounded

with each step in the state space. In other words, the system does not have to "hedge"

its bets.

However, our problem formulation has the system only take one step in the state

space. While we search through the policy space, we only ever take one step in the

state space. It is not possible to exploit the lower variance for future states since none

ever occur.

32

The k-armed bandit problem [8] demonstrates the tradeoff in reinforcement learn-

ing systems between exploration and exploitation of current knowledge of the world.

However, the presented system is focused on exploration of the possible policies as

opposed to exploitation of the known states. It is not setup to exploit the rewards of

the accumulated states. It is due to this lack of exploitation of accumulated or future

states that we would expect the deterministic model to not have an impact on the

rate of learning in the simulation world.

33

THIS PAGE INTENTIONALLY LEFT BLANK

34

Chapter 4

Implementation

4.1 Controlling a Quadruped

Figure 4-1: This Aibo robot, model ERS-7, was used as the development platform.
Tests were conducted in simulation and verified on hardware.

4.1.1 The Designed Gait

The objective of this system is to walk over complex terrain. As opposed to a gait

designed for speed, our designed controller needs to place more weight on stability. A

gait designed for speed can use diagonal legs synchronously. However, our designed

gait uses a single step walk. This will allow it to maintain balance over uneven ter-

rain, since three legs will always be in contact with the ground.

35

Figure 4-2 shows the step ordering for the controller. Front and back steps are

alternated. This designed gait has been implemented with software primitives devel-

oped at Draper Laboratory for use with other legged robots. It as been extended for

use with this quadruped.

1 3

42

Figure 4-2: This is the gait that was used for control. Each step occurred sequentially

according to the numbers in this figure.

4.1.2 Step Control

In contrast to the half ellipses used by [11], the leg movement is controlled by a

quadratic equation. This is governed by 2 y-intercepts for the front and rear legs

(referred to as step distances) and a uniform height for each leg. The parameters

are listed in Table 4.1. The aft and fore step distances are reversed for the rear legs

to make a front to back symmetrical walk. Figure 4-3 shows these parameters in

reference to a leg.

The initial values used were originally from a simpler gait that were then optimized

using genetic algorithm coupled with a feed-forward neural network. The values were

then hand-tuned slightly.

36

Parameter Initial Value c
Shoulder Height 130 3

Speed 2000 100
Leg Lift Height 57 3

Fore Step Distance -20 1
Aft Step Distance 4 1

Leg Width 6 1

Table 4.1: The control parameters along with the initial values used and the C values
that modify the parameters. c was chosen through experimentation to give the small-
est possible delta for the next parameter while still showing a measurable change in
results.

A

~B

C/ D--

x

Figure 4-3: This illustrates how the parameters match against the actual Aibo leg.
A is the shoulder height, B is the leg lift height, C is the forward step distance, D is
the aft step distance, and E is the leg width.

37

4.2 Learning a Better Walk

The two algorithms are presented in [10]. The first, a hill climbing approach, is a

straightforward, greedy local search on the policy and it serves as our baseline ap-

proach. The pseudocode is shown in Algorithm 2. Two versions of the algorithm are

implemented. The first allows the new policy that is generated to possibly worsen the

current score. This will occur if all the randomly sampled policies happen to worsen

the score of the current policy. This, in effect, provides a limited ability to get out of

local optima. A more standard greedy approach is implemented in the second version

of this algorithm, where only a policy that improves upon the current, score will be

used as the new policy. Both of these versions of the algorithm were implemented

with t = 10. These algorithms will be referred to as Hill Climbing 1 and Hill Climbing

2 respectively.

Algorithm 2 The greedy hill climbing algorithm. t policies are sampled near w by
the e given in Table 4.1.

T <- InitialPolicy
loop

{ R 1 , R 2 , .. , Rt} = t random perturbations of F

evaluate({R1, R 2 , ... , Rt})
w +- get HighestScoring({R 1, R 2 . . ., Rt})

end loop

The second algorithm presented by [10] is an N-dimensional policy gradient al-

gorithm shown in Algorithm 3. After evaluating the t randomly generated policies

surrounding the current policy, the gradient is calculated. The policy is moved along

the gradient by a learning factor T1. A correction that I have made to this algorithm as

presented in [11] and [10] is also multiplying the adjustment vector A by the c vector.

This is absolutely necessary and can be easily seen as such when the parameter and C

values are far greater than one. Otherwise, A will always be a unit vector and the pol-

icy will hardly change. Kohl and Stone([10],[11]) were able to avoid being impacted

by this since their E values were all less than one and pretty much uniform. In their

38

implementation they, in effect, have a learning rate of 6 instead of the learning rate

of 2 that they assume.

Again, two versions of this algorithm were implemented. The first allowed the

policy to take an action that decreases its score as described in [10], while the second

would only update the policy if the new policy actually improved the score. These

algorithms will be referred to as Policy Gradient 1 and Policy Gradient 2 respectively.

Algorithm 3 The N-dimensional policy gradient algorithm. t policies are sampled
near w to estimate the gradient around w. Then w is moved along the gradient by a
learning factor q.

S<-- InitialPolicy
loop

{R 1, R 2 , Rt} = t random perturbations of w
evaluate({R1, R 2 ,. . ., Rt})
for n = 1 to N do

Avg+,,n +- average score for all Ri with +c added in dimension n
Avg+o, <-- average score for all R that have no change in dimension n
Avg,,n <- average score for all Ri with -E added in dimension n
if Avg+o,n > Avg+ ,n and Avg+o,n > Avg-,n then

An <- 0

else
An - Avg+,,n - Avg_,n

end if
end for

end loop

To develop an intuition for the difference between these two algorithms, it should

be noticed that the hill climbing algorithm randomly samples policies around the cur-

rent policy and then takes the best of the tested set. In contrast, the policy gradient

algorithm develops an estimate of the gradient around the current policy from the

tested set. The policy is then moved along that gradient.

Both of these versions of the algorithm were implemented with t = 10. This was

39

chosen through experimentation to show a reasonable space around the policies. Too

many iterations is expensive for the algorithms, while too few will not provide a suf-

ficient estimation of the space around the current policy. It is the same value that is

used by Nate [10]. Also, the evaluate function for the policy gradient algorithm was

implemented to score each random policy three times as recommended by Kohl [11].

This was done to help compensate for randomness in the system. This corresponded

to 30 evaluations per trial for the non-deterministic PGA in contrast to Hill Climb-

ing's 10 evaluations. The deterministic PGA does not need multiple evaluations per

trial since by definition, it returns the same result each time.

4.3 Simulation of an Aibo

The four algorithms were implemented and then executed on an Aibo simulator with

the initial values from Table 4.1. The simulator was built on the Yobotics Simulation

Construction Set [23] and my research group has developed the Aibo models. The

construction set is physics based and allows the use of terrian models. A standard

trial time of 10 seconds was used and the policies were scored by the distance traveled

in that time.

40

Chapter 5

Results and Analysis

5.1 Results

5.1.1 Simulation Results

The policy search algorithms found a 297% faster gait using the deterministic and

nondeterministic models with the Hill Climbing algorithm that allowed steps to de-

crease the score, also referred to as Hill Climbing 1. The initial score in simulation

was 67 mm/sec while Hill Climbing 1 was able to find a score of 266 or 267 mm/sec.

The remaining scores are shown in Table 5.1.

Hill Climbing 1 Policy Gradient 1
Nondeterministic 267 236

Deterministic 266 236
Model Hill Climbing 2 Policy Gradient 2

Nondeterministic
Deterministic

126
200

226
155

Table 5.1: The best scores found in simulation with each algorithm. The scores are
presented in mm/sec. Hill Climbing 1 and Policy Gradient 1 allowed policies that may
reduce the current score, while the other two algorithms online allowed new policies
that improved the current score. Each of the algorithms were run for 200 iterations.

The optimized values for the parameters are presented in Table 5.2. This is the

41

Model

approximate policy that Hill Climbing 1 converged to with both nondeterministic

and deterministic models. The Policy Gradient Algorithm was never able to find the

expected optimized region for the policy.

Parameter Initial Value Optimal Value
Leg Height 130 112

Speed 2000 11000
Leg Lift Height 57 33

Fore Step Distance -20 -34
Aft Step Distance 4 5

Leg Width 6 40

Table 5.2: The approximate optimized control parameters found by both the nonde-
terministic and deterministic models with Hill Climbing 1. Once the simulation was
within a small difference of these expected optimal values, they had very close scores.

The joint positions for one leg with the optimal parameters are presented in Fig-

ure A-1 to A-3. This was captured for the right front leg. The corresponding torque

levels used by the simulated motors are presented in Figure A-4 to A-6.

Figures 5-1 to 5-4 show the policy score for each algorithm per iteration of the

simulation. This is used to demonstrate the rate of learning in the simulation world

for each algorithm. The standard hill climbing algorithm consistently outperforms

the Policy Gradient Algorithm. In Figure 5-2 the Policy Gradient Algorithm is shown

to have a high degree of fluctuation with the deterministic model, however it is still

not able to outperform the Hill Climbing algorithm as Hill Climbing rises to the 260's

by the end of the trial.

The completely greedy versions of the algorithms are never able to find the ex-

pected optimal policy region as seen in Figures 5-3 and 5-4. While some have success

in getting above the 200 score, they are still unable to find the policy region of the

first set of algorithms. Most runs remain stuck in the lower scores. While 200 itera-

42

tions of the algorithms were run, the completely greedy versions remain stuck in local

optima after 120 iterations.

Nondeterministic Simulation Test Results

-Pol-y Gadent 1 Hill Climbing I

250

0
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Trial Number

Figure 5-1: The speed per trial as the nondeterministic simulation executes the first
version of the algorithms. This allows steps to be taken that may hurt the score. There
were 30 evaluations per trial for the policy gradient algorithm and 10 evaluations per
trial the greedy hill climbing algorithm.

5.1.2 Hardware Verification

The optimal policy was tested on the actual Aibo hardware. It was compared against

the initial hand-tuned parameters. During testing, it was found that the Draper de-

veloped software primitives were unable to handle the higher leg speeds, so it had to

be turned down to 5000 from 11000. None of the parameters governing the stance

were modified. With these parameters, this showed a 155% increase in speed on the

actual hardware. This comes out to be 0.75 leg lengths per second which passes Phase

II speed requirements for DARPA's Learning Locomotion program.

43

- -~- ~ ~'r-~- - -~

Deterministic Simulation Test Results

-Policy Gradient 1 -- Hill Climbing 1

250

200

9 150

100

50

0
151 161 171 181 191 201

Figure 5-2: The speed per trial as the deterministic simulation executes the first
version of the algorithms. This allows steps to be taken that may hurt the score.
There were 10 evaluations per trial for both the policy gradient algorithm and the
greedy hill climbing algorithm.

Nondeterministic Simulation Test Results

250
- Policy Gradien 2 - HiR Climbxng 2

200

150

.100

50

0
1 11 21 31 41 51 61 71

Trial Number

81 91 101 111

Figure 5-3: The speed per trial as the nondeterministic simulation executes the second
version of the algorithms. This only allows steps that will improve the score. There
were 30 evaluations per trial for the policy gradient algorithm and 10 evaluations per
trial for the greedy hill climbing algorithm.

44

300 -

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141

Trial Number

- -IUA rl

f I II

Deterministic Simulation Test Results

250 --- - -r--- - ----- ---

-- Policy Gradient 2 -- Hill Climbing 2

200 1--

150

E

a100

50

0
1 11 21 31 41 51 61 71 81 91 101 111

Trial Number

Figure 5-4: The speed per trial as the deterministic simulation executes the second
version of the algorithms. This only allows steps that will improve the score. There
were 10 evaluations per trial for both the policy gradient algorithm and the greedy
hill climbing algorithm.

Policy mm/sec I inches/sec I leg lengths/sec
Initial

Optimized
41
105

1.622
4.138

0.26
0.75

Table 5.3: These are the scores from hardware verification. The parameters were
slightly modified to handle the leg speeds allowed by the software controller. This
shows a 155% increase in speed with the real hardware.

45

qPWnow -M.-M.

5.2 Analysis

Hill Climbing 1 found a gait that had a wider step width, a short aft step distance,

and a much longer forward step distance as seen in Table 5.2. This broader stance,

illustrated in Figure 5-5, allowed for higher leg speeds. The challenge for a human

to find this particular stance is due to each of these factors separately causing the

walk to be slower or more unstable from our initial gait. However, with the right

combination of changes, the gait has been shown to be modified to be much faster.

Since both the nondeterministic and deterministic models for Hill Climbing 1

found the same optimal policy region, this shows that deterministic models with the

complexity of our system do not have an impact on the real-world performance of the

optimized policy.

Figure 5-5: The optimally learned gait had a wider stance with a longer forward step
distance. This allowed for higher leg speeds.

5.2.1 Comparing PGA and Hill Climbing

Our results show that the Policy Gradient Algorithm (PGA) is consistently outper-

formed by the standard hill climbing algorithm. In Figure 5-1 PGA is running three

46

times as slow as Hill Climbing, yet it always lags behind Hill Climbing in its score

per trial. Higher learning rates do not help with PGA since it causes the gradient to

be overly applied and creates even higher discontinuities in the graph. This demon-

strates the challenges in calculating the policy gradient for complex models. These

results show that for complex models, the discontinuities in the policy function cause

hill climbing to comparatively be a much stronger tool.

When trying to calculate the gradient of the policy space, penalized scores for

unstable gaits will skew the gradient. Upon inspection of the policy gradient algo-

rithm, it can be seen that the adjustment vector takes into account the difference

between the two sets of modified scores. Therefore if one of the modified scores is

overly penalized, the gradient will not be accurate.

As a simple illustration for how a policy can be overly penalized and skew the

gradient, imagine a policy that is walking on the edge of stability. Due to an amount

of randomness in the system, this policy is equally likely to fall at 4 seconds or 8

seconds. For this particular set of policy scores, the negative score may fluctuate

randomly as much as 100% of the lowest score. When it is very easy to stumble

across these failed policies, the gradient estimation suffers from the high amount of

randomness.

To attempt to alleviate the discontinuities, a higher number of evaluations can

be done for each policy in the nondeterministic model. In these tests, I used the

recommended 3 evaluations per policy [11]. While I can attempt to further increase

the number of evaluations per policy, it can be shown that this average score will go

to the expectation of the probability distribution of when the gait becomes unstable.

In the case of a uniform distribution, this will give an expected penalty score of I2

the normal score. This is still quite a bit and will likely still skew the gradient. It

may make more sense to assume that it is a geometric distribution with an expected

47

penalty score of 1 the normal score, where p is the probability that it will fail at anyp

given time. The challenge then becomes estimating this p in a reasonable amount

of time and deciding what a 'normal' score should be. In contrast, the hill climbing

algorithm simply ignores these penalized scores and only takes the best policy found.

With the deterministic model, it does not make sense to sample the policy more

than once. Since the state transitions are deterministic, the resulting state for each

action will always be the same. While this increases the performance in time of the

algorithm, it does not help with the rate of learning the optimal policy.

Kohl and Stone[10] were able to show that the Policy Gradient Algorithm and hill

climbing algorithm greatly outperform other reinforcement approaches to this prob-

lem. In their case, the policy gradient approach slightly edged out the hill climbing

approach. However, they are using a gait that is optimized for speed over a flat

Robocup soccer field and probably much less likely to fall over than our gait.

There is definitely an art to finding the proper initial parameters. While the ranges

for the parameters were known, certain combinations of the parameters in the proper

ranges would not work at all, causing the robot to fall over. Because of this, common

methods for dealing with local optima were not available. Using a random restart

for the policy was likely to cause the controller not to work at all. The parameters

had to have some initial intelligence in their selection. Simulated annealing could be

made to work but can initially cause the same effect if the starting amount of added

randomness was too great.

In analyzing the differences in optimal policies between Policy Gradient 1 and

2, and then Hill Climbing 1 and 2, it shows the limited ability to escape local op-

tima provides better performance for the gait. This method forced a move from a

position even if a better policy was not found. Instead the best policy or the best

48

gradient was taken of those sampled nearby regardless of the outcome. Without any

ability to escape local optimal, the second version of the algorithms performed poorly.

Finally, the graph of the policy gradient results in Figure 5-2 demonstrates why

it is so difficult for humans to set these parameters. The outliers on the graph are

caused by the discontinuity of this function. The policy is set to the best expected

result along the gradient, which may end up drastically decreasing the actual score.

Just having general knowledge of the expected gradient, in this case that a wider,

longer stance should be faster and more stable, does not help when trying to tweak

these parameters by hand. The original hardware score of 1.6 inches per second was

not improved upon by hand because the research team became bogged down by the

discontinuities in this high dimensional policy space.

5.2.2 Comparing Models

These results show that there is little impact on policy scores when using deterministic

models. Figure 5-6 shows that trial runs closely follow each other. While initially with

the Hill Climbing algorithms, the deterministic models look like they are performing

better than the nondeterministic models, the functions quickly converge together and

eventually move up to the optimal policy region. The same holds true for the Policy

Gradient Algorithms, however, neither converge to the optimal policy region.

This corresponds to the expectation that there will be little benefit to the learn-

ing rate in the simulation world from using deterministic models as stated in Sec-

tion 3.3.2. This is in regard specifically to the problem abstraction of the underlying

Markov model. Those as discussed earlier, a more complex Markov model may be

able to take advantage of the deterministic transitions. Even though the learning rate

was not improved, there is a benefit of using deterministic transitions since it allows

the use of dynamic programming which speeds up the overall execution time of the

system. Dynamic programming allows us to use a table to lookup the results of an

49

action from a state if it has been calculated once, instead of having to simulate the

10 seconds with the nondeterministic noise.

The impact on performance in the real world was not seen since Hill Climbing 1

was able to find the optimal region with both models. With a more complex Markov

model, this factor should continue to be watched.

Nondeterministic vs. Deterministic
Policy Gradient

300
-- Nondet. Policy Gradient 1 -Dot. Policy Gradient 1

250

200

150

100

50

0
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Trial Number

Figure 5-6: This is a comparison of the trial runs with nondeterministic and deter-
ministic models with the Policy Gradient Algorithm. Outliers have been removed for
clarity.

50

IM __ - _ _ --- 7=4-

Nondeterministic vs. Deterministic
Hill Climbing

300
- Nondet. Hill Climbing 1 - Det. Hill Chmbing 1

250 -- - - -- -- -

200 - -- - -

100

50

0. .
1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191 201

Trial Number

Figure 5-7: This is a comparison of the trial runs with nondeterministic and deter-
ministic models using the Hill-Climbing algorithm.

51

THIS PAGE INTENTIONALLY LEFT BLANK

52

Chapter 6

Conclusion and Summary

6.1 Conclusion

Policy Search is an effective Reinforcement Learning approach for optimizing con-

trollers. This work demonstrates that using a standard hill climbing approach can

be more rewarding than trying to generate a policy gradient approach. While perfor-

mance may be achieved by smoothing out discontinuities or generating more intelli-

gent methods for calculating the gradient, hill climbing is still difficult to beat.

The penalty in time of the policy gradient approach and the high performance

of hill climbing suggests that hill climbing should be considered first when designing

policy search for highly complex models.

The benefit of using dynamic programming on policies can greatly speed up the

performance of the algorithms in computational speed. Implementing deterministic

transitions to allow the use of dynamic programming has little impact on the perfor-

mance of our system with the problem abstraction of the iMarkov model.

We also show that our abstraction is a special case for PEGASUS and PSDP. This

special case allows an intuitive understanding of the performance guarantees of this

53

set of algorithms. The abstraction of the Markov model simplifies the state space for

use with our model-based controller.

6.2 Future Work

While this work has been able to complete one requirement of the DARPA Phase II

requirements, the other requirement is still a challenge. The quadruped is required

to be able to step over an obstacle at two thirds its leg length.

To overcome obstacles, the consensus is to integrate reactive control to maintain

stability. The challenge will be to integrate this stability control with a reinforcement

learning system to intelligently control steps. This work contributes towards that

goal by investigating the impact on the use of deterministic transitions on learning

performance.

As step control is integrated with stability control, it will be necessary to redesign

the abstraction of the Markov model for the reinforcement learning system. The new

model should make better use of the deterministic transitions to improve the rate of

learning while in simulation. This new model would be able to make better use of

the more advanced algorithms in Policy Search such as PEGASUS and PSDP.

A part of the challenge in using these algorithms will be to calculate the initial

state distribution for use in estimating the value of a policy. To overcome this, passive

learning of the state distribution of a real animal quadruped may be useful. Once

this initial state distribution is calculated, dynamic programming for policies will be

even more powerful which would allow a better integration of reinforcement learning

with stability control and allow the robot to take more intelligent steps.

54

6.3 Summary

This thesis shows that Policy Search is an effective means of optimizing a controller.

We demonstrated a 155% increase in performance on hardware. This work also

demonstrates that standard hill climbing works well in comparison to a policy gradi-

ent approach for complex models. Deterministic transitions allow the use of dynamic

programming to speed up system performance at little impact to the overall learning

performance both in simnlation and the real world.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

Appendix A

Simulation Data

I

A.1 Joint Positions

Shoulder Position

0.4 ,

0.2

0

0

0
0.

-0.2

-0.4

-0.6

-0.8

-1
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Seconds)

Figure A-1: The position of the shoulder joint for the right front leg over 5 seconds.
This position is commanded with the optimal found policy.

57

Upper Leg Position

-0.1

-0.2
0

-0.3
0

0
-0.4

-0.5

-0.6
3 3.5 4 4.5 5

Figure A-2: The position of the upper leg joint for the right
This position is commanded with the optimal found policy.

front leg over 5 seconds.

Lower Leg Position

A A ft A A
tTH7H7HT9HLHJi

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (Seconds)

Figure A-3: The position of the lower leg joint for the right front leg over 5 seconds.
This position is commanded with the optimal found policy.

58

0

1 1.5 2 2.5

Time (Seconds)

0 0.5

2

1.8

1.6

1.4

c
e 1.2

0

'i 0.8
0

0.6

0.4

0.2

0

V-

-

A.2 Torque Control

Control Torque for the Shoulder

2.5

2

1.5

1

0.5
0*

0
0

O -0.5

-1

-1.5

-2

-2.5

I.

.4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

Figure A-4: The torque of the shoulder joint for the right front leg over 5 seconds.
This torque is controlled by the optinial found policy.

59

Control Torque for the Upper Leg

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time

Figure A-5: The torque o' the upper leg joint for the
This torque is controlled by the optimal found policy.

Control Torque for the Lower Leg

0 0.5 1 1.5 2 2.5 3

Time

3.5 4 4.5 5

Figure A-6: The torque of the lower leg joint for the right front leg over 5 seconds.
This torque is controller by the optimal found policy.

60

2.5

2

1.5

0

0*

0
L-

0.5

0

-0.5

-1

-1.5

-2

-2.5

right front leg over 5 seconds.

2.5

2

1.5

1

0.5

0

-0.5

-1

-1.5

-2

-2.5

C*
0

Appendix B

Acronyms

DOF Degrees of freedom

MDP Markov Decision Process

PEGASUS Policy Evaluation of Goodness And Search Using Scenarios

PGA Policy Gradient Algorithm

POMDP Partially Observable Markov Decision Process

PSDP Policy Search by Dynamic Programming

RL Reinforcement Learning

61

THIS PAGE INTENTIONALLY LEFT BLANK

62

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Learning first-order markov models for control.

In Advances in Neural Information Processing Systems 17 (NIPS-04), 2005.

[2] J. Andrew Bagnell. Learning Decisions:Robustness, Uncertainty, and Approxi-

mation. PhD thesis, Carnegie Mellon University, 2004.

[3] J. Andrew Bagnell, Sham Kakade, Andrew Y. Ng, and Jeff Schneider. Policy

search by dynamic programming. In Advances in Neural Information Processing

Systems 16 (NIPS-03), Vancouver, 2004.

[4] J. Andrew Bagnell and Jeff Schneider. Autonomous helicopter control using

reinforcement learning policy search methods. In Proceedings of the International

Conference on Robotics and Automation, May 2001.

[5] J. Andrew Bagnell and Jeff Schneider. Covariant policy search. In Proceedings

of the International Joint Conference on Artifical Intelligence, August 2003.

[6] Tao Geng, Bernd Porr, and Florentin Woergoetter. Fast biped walking with a

reflexive controller and real-time policy searching. In Advances in Neural Infor-

mation Processing Systems 18 (NIPS-05), 2006.

[7] Leemon C. Baird III. Reinforcement Learning through Gradient Descent. PhD

thesis, Carnegie Mellon University. May 1999.

63

[8] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforce-

ment learning: A survey. Journal of Artificial Intelligence Research, 4:237-285,

1996.

[9] Sham Kakade. On the Sample Complexity of Reinforcement Learning. PhD

thesis, University College London, 2003.

[10] Nate Kohl and Peter Stone. Machine learning for fast quadrupedal locomotion.

In Proceedings of the Nineteenth National Conference on Artificial Intelligence,

July 2004.

[11] Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast

quadrupedal locomotion. In Proceedings of the IEEE International Conference

on Robotics and Automation, May 2004.

[12] Ivo Kwee, Marcus Hutter, and Jurgen Schmidhuber. Gradient-based reinforce-

ment planning in policy-search methods. In Proceedings of the 5th European

Workshop on Reinforcement Learning, 2001.

[13] Weiwei Li and Emanuel Todorov. Iterative linear quadratic regulator design

for nonlinear biological movement systems. In Proceedings of 1st International

Conference on Informatics in Control, Automation and Robotics, 2004.

[14] Gerhard Neumann. The reinforcement learning toolbox: Reinforcement learning

for optimal control tasks. Master's thesis, Graz University of Technology, Austria,

2005.

[15] Andrew Y. Ng and Michael I. Jordan. PEGASUS: A policy search method for

large MDPs and POMDPs. In Proceedings of the 16th Conference on Uncertainty

in Artificial Intelligence (UAI-00), 2000.

[16] Andrew Y. Ng, H. Jin Kim, Michael I. Jordan, and Shankar Sastry. Autonomous

helicoptor flight via reinforcement learning. In Advances in Neural Information

Processing Systems 16 (NIPS-03), Vancouver, 2004.

64

[17] Leonid Peshkin. Reinforcement Learning by Policy Search. PhD thesis, Massa-

chusetts Institute of Technology, 2001.

[18] Nicholas Roy. Finding Approximate POMDP Solutions Through Belief Compres-

sion. PhD thesis, Carnegie Mellon University, 2003.

[19] S. Russell and P. Norvig. Artificial Intelligence:A Modern Approach, chapter 17.

Prentice Hall, 2003.

[20] Scott Sanner and Craig Boutilier. Approximate linear programming for first-

order MDPs. In Proceedings of the 21st Conference on Uncertainty in Artificial

Intelligence (UAI-05), 2005.

[211 Russ Tedrake, Teresa Weirui Zhang, and H. Sebastian Seung. Learning to walk

in 20 minutes. In Proceedings of the Fourteenth Yale Workshop on Adaptive and

Learning Systems, New Haven, CT, 2005. Yale University.

[22] G. Theocharous and L. Kaelbling. Approximate planning in POMDPs with

macro-actions. In Advances in Neural Information Processing Systems 16 (NIPS-

03), Vancouver, 2004.

[23] Yobotics, Inc. Yobotics Simulation Construction Set.

http://www.yobotics.com/simulation/simulation.htm., 2005 edition.

65

